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Finite Settling Time Control of the Double Integrator Using
a Virtual Trap-Door Absorber

Robert T. Bupp, Dennis S. Bernstein, Vijaya S. Chellaboina, and
Wassim M. Haddad

Abstract—Finite settling time control of the double integrator is consid-
ered. The approach taken is to design a compensator based on a virtual
lossless absorber which is tuned so that, at some predetermined time, the
virtual subsystem possesses all of the system’s energy. At this time the con-
troller is turned off, and the double integrator remains at rest at the origin.
This strategy gives the appearance of instantaneously removing all of the
system’s energy as if a trap door had been sprung. A practically useful
feature of the virtual trap-door absorber is that only position measure-
ment is required. Parameters for the virtual trap-door absorber controller
are chosen, and the resulting controller is compared to the classical min-
imal-time and minimal-energy controllers, which require measurements of
both position and velocity.

Index Terms—Double integrator, finite settling time control, min-
imal-time and minimal-energy optimal control, virtual absorber.

I. INTRODUCTION

Exponential stabilization of rigid-body translational or rotational
motion,M �q = u, the double integrator problem, is obtained by setting
u = �a _q � bq, wherea; b > 0. However, it is often desirable to
stabilize the motion in finite time. Several approaches have been con-
sidered for this problem [1]–[6] including the classical minimal-time
and minimal-energy controllers [7], [8].

The purpose of this paper is to develop a continuous-time feedback
controller that achieves finite settling time for the double integrator
using position measurement only. Position feedback may be practical
when position information is obtained from sensors such as LVDT’s,
capacitive sensors, and encoders.
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The controller we develop in this paper is based upon physical
principles rather than optimality criteria. Inspired by mechanical
absorbers [9], this controller emulates the action of a proof-mass
absorber by applying forces that a physical absorber would apply.
Since the proof-mass absorber is emulated and is not a physical device,
our controller can be viewed as avirtual absorber [10]. A general
treatment of controllers that exploit energy transfer between real and
virtual subsystems is given in [11] and [12].

The controller design involves choosing the values of the virtual
proof mass and stiffness so that, at a predetermined time, the energy
of the double integrator is completely transferred to the absorber sub-
system. Ordinarily, the absorber subsystem would possess all of the
energy only instantaneously, after which time energy would return to
the plant. However, since the time at which total energy transfer occurs
is known independent of the initial state of the plant, we turn off the
controller at that instant, so that all of the energy is instantaneously re-
moved from the plant, as if it had exited through a trap door, and thus
the mass subsequently remains at rest at the origin.

A virtual controller using acceleration measurements and similar to
the trap door absorber is given in [13]. The use of resetting as in the
present paper and [11] in order to instantaneously remove controller
energy is not discussed in [13].

II. SYSTEM DESCRIPTION

Consider the double integrator described by

M �q1 = u (1)

with initial conditionsq1(0) = q10; _q1(0) = _q10. Our goal is to use
feedback control to bring the positionq1(t) and velocity _q1(t) to zero
in finite time using only a measurement of the positionq1(t). The
feedback controller we consider emulates the lossless system shown
in Fig. 1, where the springsK andk as well as the massm are vir-
tual elements whose effect on the massM is implemented by means
of a dynamic compensator and a force actuator. The dynamics of the
closed-loop system are given by (1) and

m�q2 + kq2 � kq1 = 0 (2)

u = kq2 � (K + k)q1 (3)

whereq2 is the position of the virtual massm. As shown in Fig. 2,
(1)–(3) can be represented as the single-input/single-output (SISO)
feedback interconnection of the double integrator plant with a
second-order, proper dynamic compensator whose input is the position
of the massM .

The virtual absorber shown in Fig. 1 can also be applied to the har-
monic oscillator. Suppose that the mass is attached to the ground by
means of a stiffness with spring constantK . ThenK can be sub-
sumed by the virtual spring constantK in the analysis given below.

For notational convenience, we define the quantities

x1
4

= Kq1; x2
4

= Kq2; xr
4

= x2 � x1

�
4

= k=K; �
4

=
K

M
t; !a

4

=
k=m

K=M
:

With this notation, (1)–(3) become

�x1 = u (4)

�x2 + !2

a
xr = 0 (5)

u = �xr � x1 (6)

0018–9286/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 4, APRIL 2000 777

Fig. 1. The double integrator without (above) and with (below) the virtual
absorber subsystem.

Fig. 2. Feedback control of the double integrator using the absorber controller
with position feedback.

where(_) now represents differentiation with respect to normalized
time � . The closed-loop system (4)–(6) has the form

_x = Ax; x =

x1
_x1
xr
_x2

A =

0 1 0 0

�1 0 � 0

0 �1 0 1

0 0 �!2

a 0

: (7)

The characteristic equation ofA is given bys4+(1+�+!2

a)s
2+!2

a =
0; which can be factored as(s2 + !2)(s2 + 
2) = 0, where

! = 1

2
(1 + �+ !2

a)� 1

2
(1 + �+ !2

a)
2 � 4!2

a


 = 1

2
(1 + �+ !2

a) +
1

2
(1 + �+ !2

a)
2 � 4!2

a (8)

and the eigenvalues ofA are �1;2 = �|!; �3;4 = �|
.
The closed-loop system (7) is thus Lyapunov stable. Since
(1 + � + !2

a)
2 � 4!2

a = (1 + � � !2

a)
2 + 4�!2

a > 0, it is
clear that expressions in (8) are well defined. Furthermore, note that

!
 = !a; !2 + 
2 = 1 + �+ !2

a: (9)

Next, we derive an expression for the time history of the statex1 due
to an initial condition of the formx0 = [x10 _x10 0 0]T , or, equiva-
lently in the dimensional states

q1(0) = q10;
dq1
dt

(0) = _q10

q2(0) = q10;
dq2
dt

(0) = 0 (10)

which corresponds to an arbitrary initial positionq10 = (1=K)x10 and
an arbitrary initial velocity_q10 = (1=

p
KM) _x10 of the massM , with

zero initial elongation of the virtual springk and zero initial velocity
of the virtual massm.

Taking the Laplace transform of (7) gives

X1(s) =
s(s2 + !2

a + �)

s4 + (1 + �+ !2
a)s2 + !2

a

x10

+
s2 + !2

a

s4 + (1 + �+ !2
a)s2 + !2

a

_x10 (11)

which yields

x1(�) = x10
1

2
(1 + c1) cos!� + 1

2
(1� c1) cos
�

+ _x10
1

2!
(1 + c2) sin!� +

1

2

(1� c2) sin
� (12)

where

c1
4

=
!2

a � 1 + �

(1 + �+ !2
a)

2 � 4!2
a

c2
4

=
!2

a � 1� �

(1 + �+ !2
a)

2 � 4!2
a

: (13)

III. FINITE SETTLING TIME CONTROLLER SYNTHESIS

Theorem 3.1:Let n andp be nonnegative integers, and chooseK;
k; m > 0 such that

k

K
=

m

M
=

4(2(p� n) + 1)2

(4n+ 1)(4p+ 3)
: (14)

Then the solution of (1)–(3) with initial conditions (10) satisfies

q1(ts) = 0; _q1(ts) = 0 (15)

where

ts =
�

2
(4n+ 1)(4p+ 3)M=K: (16)

Furthermore, the control forceu(t) given by (6) is bounded by

ju(t)j � (K + k) (Kq2
10

+M _q2
10
); t � 0: (17)

Remark 3.1: If K; k, andm satisfy (14), thenq1(t) is given by

q1(t) =
1

! +

q10 
cos

K

M
!t+ ! cos

K

M

t

+ _q10
M

K
sin

K

M
!t+ sin

K

M

t ; t � 0 (18)

where! = 1=
 = 4n+ 1=4p+ 3.
Remark 3.2: Note thatts is independent ofq10 and _q10. Also, the

smallest value ofts for which q1(ts) = 0 and _q1(ts) = 0 is obtained
with n = p = 0 in (16), which yieldsts = (�=2) 3M=K. This
value is achieved fork = 4K=3 andm = 4M=3. Furthermore,ts can
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be made arbitrarily small by choosingK sufficiently large, although
largeK increases the control amplitude as suggested by (17).

The virtual trap-door absorber is based on Theorem 3.1. The con-
troller in Fig. 2 is implemented for0 � t � ts so that, at timet = ts,
(15) holds. At this time, the controller is shut off, and thus the massM
remains at rest at the origin. For the double-integrator plant written in
state-space form as

_q = Aq +Bu; y = Cq (19)

where

q =
q1
_q1

; A =
0 1

0 0

B =
0

1=M
; C = [ 1 0 ] (20)

the resulting linear time-varying dynamic controller has the form

_xc(t) = Acxc(t) +Bcy(t) (21)

u(t) = Cc(t)xc(t) +Dc(t)y(t) (22)

where

Ac =
0 1

�k=m 0
; Bc =

0

k=m

Cc(t) =
[k 0]; t 2 [0; ts)

[0 0]; t � ts

Dc(t) =
�K � k; t 2 [0; ts)

0; t � ts:
(23)

Remark 3.3: If M is not known exactly, or if some damping is
present, or if some external disturbance is present, then the double in-
tegrator is not expected to reach the origin at timets. In this case the
controller can be resetand restartedperiodically with periodts.

IV. PERFORMANCEANALYSIS

We first consider the full-state classical minimal-time controller
given by [7] and [8]

u(t) =

�umax sgn _q1(t) + sgn(q1(t)) 2jq1(t)j umax

M

_q1(t) + sgn(q1(t)) 2jq1(t)jumax=M 6= 0

�umax sgn(q1(t));

_q1(t) + sgn(q1(t)) 2jq1(t)jumax=M = 0

(24)

which is characterized by a discontinuous control forceu(t) that
switches between�umax.

Next, for a specified settling timets, we consider the full-state min-
imal-energy controller given in open-loop form by [7] and [8]

u(t) = �BT eA (t �t)
t

0

eAsBBT eA s ds
�1

eAt q(0);

t 2 [0; ts] (25)

Fig. 3. Trajectories for two initial conditions plotted in phase space.

and in linear time-varying feedback form by

u(t) = �BT eA t

t

t

eAsBBT eA s ds
�1

eAt q(t);

t 2 [0; ts] (26)

which minimizes the cost functionalJ =
t

0
u2(t)dt and yields

q(ts) = 0. For the double integrator (20) the control laws (25), (26)
become, respectively

u(t) =M
12q10
t3s

+
6 _q10
t2s

t�M
6q10
t2s

+
4 _q10
ts

;

t 2 [0; ts] (27)

u(t) =
�6M

(ts � t)2
q1(t)� 4M

ts � t
_q1(t); t 2 [0; ts]: (28)

It can be shown that if the initial conditionq0 satisfiesq210 + _q210 � 1,
then

ju(t)j � 2M 9 + 4t2s=t
2
s; t 2 [0; ts]: (29)

To design the trap-door controller, we choosen = p = 0 in (14), so
thatk = 4K=3 andm = 4M=3.K will be chosen to satisfy a control
amplitude constraint.

To compare these controllers, letM = 1 and impose the control
constraintju(t)j � 1; t � 0. To satisfy this constraint for the min-
imal-time controller, we setumax = 1, while for the minimal-energy
controller with initial conditions inside the unit circle, we setts =
3
p
2 � 4:24. For the trap-door controller it follows thatm = 4=3, and

we letK = 3=7, so thatk = 4=7. With these values, (17) is equivalent
to ju(t)j � 1, while ts =

p
7�=2 � 4:16.

In Figs. 3 and 4, we choose initial conditionsq10 = �p2=2; _q10 =p
2=2. The motion ofM is shown in Fig. 3, while the control is plotted

in Fig. 4. Fig. 4 shows that the minimal-time control is piecewise
constant with three discontinuities: switching on att = 0, switching
sign, and switching off whenM reaches the origin. The minimal-en-
ergy and trap-door controllers each have two discontinuities: switching
on att = 0 and switching off whenM reaches the origin.

Fig. 5 shows the tradeoff of control magnitude versus settling time,
while Fig. 6 shows the tradeoff of control energy versus settling
time for the initial conditionq10 =

p
2=2 and _q10 =

p
2=2. For

the minimal-time controller, values ofumax were chosen and the
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Fig. 4. Comparison of control histories with initial conditionsq =
p
2=2;

_q =
p
2=2.

Fig. 5. Maximum control magnitude versus settling time for the initial
conditionq =

p
2=2; _q =

p
2=2.

Fig. 6. u (t)dt versus settling time for the initial conditionq =
p
2=2;

_q =
p
2=2.

corresponding settling times and energy integrals were computed.
For the minimal-energy controller, values of the settling timets were
chosen and the resulting values ofumax and the energy integralJ were
computed. Similarly, for the trap-door controller, values ofts were
chosen, and the parameterK was chosen according to Remark 3.2.
The values ofumax and the energy integralJ were determined from
the time history of the control. The simulations indicate that the
trap-door controller has a better tradeoff of control magnitude versus

settling time than the minimal-energy controller, and a better tradeoff
of control energy versus settling time than the minimal-time controller.

For each controller, finite settling time performance is predicated on
knowledge ofM . Simulations indicate that for a 10% perturbation of
M , the minimal-time controller chatters near the origin. Furthermore,
the feedback form of the minimal-energy controller (28) exhibits con-
trol forces that approach infinity as time approaches the design settling
time ts.

To implement the virtual trap-door absorber, we reset the states of the
controller everyts seconds, rather than disconnecting the controller at
time ts; that is, as in [11], the states of the controller are periodically
reassigned the valuesq2(t) = q1(t); _q2(t) = 0 with periodts.

For 10% perturbation inM , the resetting virtual trap-door absorber
control signal tends to decrease in amplitude with each resetting ac-
tivity, while the states approach the origin. Due to the periodic reset-
ting, the control signal exhibits regularly spaced discontinuities.

APPENDIX

PROOF OFTHEOREM 3.1

Lemma 1: Let a; b; f1; f22 , definets
4

= �(4n+1)=2f1; and let

y(t) = a(sin f1t+ sin f2t) + b(f2 cos f1t+ f1 cos f2t);

t � 0: (30)

If there exist integersn; p � 0 such thatf1=f2 = (4n+ 1)=(4p+ 3),
theny(ts) = _y(ts) = 0.

Proof: Since sin f1ts = 1; cos f1ts = 0; sin f2ts = �1;
cos f2ts = 0, it follows that

y(ts) = a(sin f1ts + sin f2ts)

+ b(f2 cos f1ts + f1 cos f2ts) = 0

_y(ts) = a(f1 cos f1ts + f2 cos f2ts)

� bf1f2(sin f1ts + sin f2ts) = 0:

Proof of Theorem 3.1:Equation (14) yields

� =
4(2(p� n) + 1)2

(4n+ 1)(4p+ 3)
; !a = 1: (31)

Substituting (31) into (9) and using (13) yields

! =1=
 =
4n+ 1

4p+ 3

c1 = � c2 =

� !


+ !
1

2
(1 + c1) =





 + !
1

2
(1� c1) =

!


+ !
: (32)

Hence (12) becomes

x1(�) =
x10

! + 

[
 cos!� + ! cos
� ]

+
_x10

! + 

[sin!� + sin
� ] (33)

and it follows from Lemma 1 thatx1(�s) = 0; _x1(�s) = 0, where

�s =
�

2

4n+ 1

!
=

�

2
(4n+ 1)(4p+ 3) (34)

and thusq1(ts) = 0; _q1(ts) = 0, wherets is given by (16).
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To derive (17), the total energyV (x) of the closed-loop system is

V (x) =
1

2K
x21 +

1

2K
_x21 +

1

2K
�x2

r
+

1

2K

�

!2
a

_x22:

Since _V
4

= (@V=@x)Ax = 0, the total energy is constant; thus, with
the initial condition (15)

V (x(�)) � V0
4

=
1

2K
x210 +

1

2K
_x210: (35)

Hence

x21(�) + �x2
r
(�) = 2KV0 � _x21(�)�

�

!2
a

_x22(�)

� 2KV0; � � 0: (36)

To bound the control force, let� 2 and form the Lagrangian

L(x1; xr; �) = �xr � x1 + �(x21 + �x2
r
� 2KV0): (37)

Setting the partial derivatives ofL to zero, yieldsxr = �x1. Hence
(36) yields(1 + �)x21 � 2KV0, and thusjx1j � 2KV0=(1 + �). It
follows from (6) thatjuj = (1 + �)jx1j � 2KV0(1 + �), or, using
(35), juj � (1 + �)(x2

10
+ _x2

10
). This yields (17).
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Optimal Control of a Queueing System with Heterogeneous
Servers and Setup Costs

Rein D. Nobel and Henk C. Tijms

Abstract—This paper considers a queueing model with batch Poisson
input and two heterogeneous servers, where the service times are exponen-
tially distributed. The faster server is always on, but the slower server is
only used when the queue length exceeds a certain level. Activating the
slower server involves fixed set-up costs. Also there are linear operating
costs and linear holding costs. The class of two-level hysteretic control rules
is considered. Rather than proving the overall average cost optimality of a
hysteretic rule, the purpose of this paper is to develop a tailor-made policy-
iteration algorithm for computing the optimal switch-on and switch-off
levels for the slower server. An embedding method is used that is gener-
ally applicable to structured Markovian control problems with an infinitely
large state space.

Index Terms—Controlled queueing system, heterogeneous servers,
Markov decision theory.

I. INTRODUCTION

Queueing models with heterogeneous servers play a role of
increasing importance in many engineering areas, such as telecom-
munication and computer systems. Often we are faced with control
problems in which servers (transmission lines) can be switched on
and off, and costs are associated with the operation of servers and
the presence of waiting jobs (messages). The motivation for studying
such control problems comes from problems of dynamic routing in
computer systems or communication networks. The basic control
problem considered in this paper has batch Poisson input and two
heterogeneous servers who share a common buffer of infinite capacity.
The service times are exponentially distributed with different rates
for the two servers. Service is nonpreemptive. The faster server is
always activated, whereas the slower server can be both on and off.
The slower server can only be switched on upon arrival of new jobs
and it can only be switched off when it completes a service.

Lin and Kumar [3] studied this model under the criterion of mini-
mizing the long-run average number of jobs in the system. Using dy-
namic programming arguments they proved the intuitively obvious re-
sult that the optimal control rule is of the threshold type, i.e., the slower
server should be utilized only when the queue length exceeds a certain
threshold value. Simpler proofs of the same result were later given in
Koole [2] and Walrand [7], cf., also Viniotis and Ephremides [6]. Un-
like these papers that focus on proving the structure of an optimal con-
trol rule, we focus on algorithmic aspects. This is done for a more gen-
eral and more difficult problem involving fixed set-up costs for turning
the slower server on. In addition to the switching costs we assume an
operating cost at a constant rate for each unit of time the slower server is
on. Further, it is assumed that there are linear holding costs for the jobs
in the system. The goal is to compute a control rule that minimizes the
long-run average cost per unit time. In view of the fixed set-up cost for
turning the slower server on, we can no longer restrict ourselves to the
threshold policies with a single critical level. An intuitively appealing
rule in the new situation is the two-level hysteretic switching rule that
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