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FINITE-TIME STABILITY OF CONTINUOUS
AUTONOMOUS SYSTEMS*

SANJAY P. BHATT AND DENNIS S. BERNSTEIN?

Abstract. Finite-time stability is defined for equilibria of continuous but non-Lipschitzian
autonomous systems. Continuity, Lipschitz continuity, and Holder continuity of the settling-time
function are studied and illustrated with several examples. Lyapunov and converse Lyapunov re-
sults involving scalar differential inequalities are given for finite-time stability. It is shown that the
regularity properties of the Lyapunov function and those of the settling-time function are related.
Consequently, converse Lyapunov results can only assure the existence of continuous Lyapunov func-
tions. Finally, the sensitivity of finite-time-stable systems to perturbations is investigated.
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1. Introduction. The object of this paper is to provide a rigorous foundation
for the theory of finite-time stability of continuous autonomous systems and motivate
a closer examination of finite-time stability as a possible objective in control design.

Classical optimal control theory provides several examples of systems that ex-
hibit convergence to the equilibrium in finite time [17]. A well-known example is the
double integrator with bang-bang time-optimal feedback control [2]. These examples
typically involve dynamics that are discontinuous. Discontinuous dynamics, besides
making a rigorous analysis difficult (see [9]), may also lead to chattering [10] or excite
high frequency dynamics in applications involving flexible structures. Reference [8]
considers finite-time stabilization using time-varying feedback controllers. However, it
is well known that the stability analysis of time-varying systems is more complicated
than that of autonomous systems. Therefore, with simplicity as well as applications
in mind, we focus on continuous autonomous systems.

Finite-settling-time behavior of systems with continuous dynamics is considered
in [3], [4], [11], [19], [21]. However, a detailed analysis of such systems has not been
carried out. In particular, a precise formulation of finite-time stability is lacking, while
little is known about the settling-time function. Furthermore, while references [3], [4],
[11], [19] present Lyapunov conditions for finite-time stability, neither rigorous proofs
nor converse results can be found. Reference [21] suggests, based on a scalar example,
that systems with finite-settling-time dynamics possess better disturbance rejection
and robustness properties. However, no precise results exist for multidimensional
systems. This paper attempts to fill these gaps.

In section 2, we define finite-time stability for equilibria of continuous autonomous
systems that have unique solutions in forward time. Continuity and forward unique-
ness render the solutions continuous functions of the initial conditions, so that the
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solutions define a continuous semiflow on the state space. Uniqueness also makes it
possible to define the settling-time function. Certain useful properties of the settling
time function are established. It is shown by example that it is possible for the set-
tling time to be unbounded in every neighborhood of the origin even if all solutions
converge to the origin in finite time. A different example shows that the settling-time
function may be continuous without being Holder continuous at the origin.

In section 3 we define finite-time repellers (called terminal repellers in [7], [23]),
which are a special class of unstable equilibria that arise only in non-Lipschitzian
systems. We show that a system having a finite-time repeller possesses multiple
solutions starting at the finite-time repeller.

In section 4, we give a Lyapunov theorem for finite-time stability. Dini derivatives
are used since Lyapunov functions are assumed to be only continuous. A converse
result is shown to hold under the assumption that the settling-time function is continu-
ous. In general, the converse result cannot be strengthened in its conclusion regarding
the regularity of the Lyapunov function; that is, a system with a finite-time-stable
equilibrium may not admit a Holder continuous Lyapunov function. This is because
Holder continuity of the Lyapunov function necessarily implies Holder continuity of
the settling-time function at the origin. On the other hand, as mentioned above,
there exist finite-time-stable systems with settling-time functions that are not Holder
continuous at the origin.

The existence of a Holder continuous Lyapunov function assumes importance in
section 5 where we investigate the sensitivity of stability properties to perturbations
of systems with a finite-time-stable equilibrium under the assumption of the existence
of a Lipschitz continuous Lyapunov function. Both persistent and vanishing pertur-
bations are considered. It is shown that under certain conditions, finite-time-stable
systems may exhibit better rejection of bounded persistent disturbances than Lip-
schitzian exponentially stable systems. It is also shown that finite-time stability is
preserved under perturbations that are Lipschitz in the state.

2. Finite-time stability. Let || - || denote a norm on R™. The notions of open-
ness, convergence, continuity, and compactness that we use refer to the topology
generated on R™ by the norm || - ||. We use R, R, and R, to denote the extended,

nonnegative, and extended nonnegative, real numbers, respectively. We also use A
and bd A to denote the closure and the boundary of the set A, respectively. We will
call a set A C R™ bounded if A is compact. Finally, we denote the composition of
two functions U : A — BandV:B—-CbyVoU:A—C.

Consider the system of differential equations

(2.1) y(t) = fy(1)),

where f: D — R"™ is continuous on an open neighborhood D C R" of the origin and
f(0) =0. A continuously differentiable function y: I — D is said to be a solution of
(2.1) on the interval I C R if y satisfies (2.1) for all ¢ € I. The continuity of f implies
that, for every x € D, there exist 79 < 0 < 71 and a solution y(-) of (2.1) defined on
(70, 71) such that y(0) = z [12, Thm. I.1.1]. A solution y is said to be right mazimally
defined if y cannot be extended on the right (either uniquely or nonuniquely) to a
solution of (2.1). Every solution of (2.1) has an extension that is right maximally
defined [12, Thm. I1.2.1]. For later use, we state the following result on bounded
solutions of (2.1). For a proof, see [12, pp. 17-18] or [22, Thm. 3.3, p. 12].

PROPOSITION 2.1. Ify:[0,7) — D is a right mazimally defined solution of (2.1)
such that y(t) € K for all t € [0,7), where K C D is compact, then T = cc.
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We will assume that (2.1) possesses unique solutions in forward time for all initial
conditions except possibly the origin in the following sense: for every z € D\{0}
there exists 7, > 0 such that, if y; : [0,71) — D and y, : [0,72) — D are two right
maximally defined solutions of (2.1) with y1(0) = y2(0) = z, then 7, < min{r, 7}
and y1(t) = ya(t) for all ¢ € [0,7,). Without any loss of generality, we may assume
that for each z, 7, is chosen to be the largest such number in R,. In this case,
we denote by (-, x) or, alternatively, *(-) the unique solution of (2.1) on [0,7;)
satisfying ¥(0,2) = x. Note that )* cannot be extended on the right uniquely to a
solution of (2.1) because if 7, < oo, then as t — 7, either ¢ (¢, z) approaches bd D
[12, Thm. 1.2.1], in which case ¥® cannot be extended on the right to a solution of
(2.1), or ¥ (t, z) approaches 0 with (2.1) having nonunique solutions starting at 0, in
which case ¥* can be extended on the right to a solution of (2.1) in more than one
way. If (2.1) has nonunique solutions in forward time for the initial condition 0, then
1 is defined on a relatively open subset of R, x D\{0} onto D\{0}. If (2.1) possesses
a unique solution in forward time for the initial condition 0, then 1 is defined on a
relatively open subset of Ry x D onto D and for each x € D, ¥* : [0,7,) — D is the
unique right maximally defined solution of (2.1) for the initial condition z. Uniqueness
in forward time and the continuity of f imply that 1 is continuous on its domain of
definition [12, Thm. 1.3.4] and defines a local semiflow [6], [20, Ch. 2] on D\{0} or
D, as the case may be. Various sufficient conditions for forward uniqueness in the
absence of Lipschitz continuity can be found in [1], [9, sect. 10], [14], [22, sect. 1].

DEFINITION 2.2. The origin is said to be a finite-time-stable equilibrium of (2.1)
if there exists an open neighborhood N C D of the origin and a function T: N\{0} —
(0,00), called the settling-time function, such that the following statements hold:

(i) Finite-time convergence: For every x € N\{0}, ¥* is defined on [0,T(x)),
Y (t) € N\{0} for all t € [0,T(x)), and lim,_,p ) ¥*(t) = 0.

(ii) Lyapunov stability: For every open neighborhood U. of O there exists an
open subset Us of N containing 0 such that, for every x € Us\{0}, ¥*(t) € U for all
te[0,T(x)).

The origin is said to be a globally finite-time-stable equilibrium if it is a finite-time-
stable equilibrium with D = N = R™.

The following proposition shows that if the origin is a finite-time-stable equilib-
rium of (2.1), then (2.1) has a unique solution on R for every initial condition in an
open neighborhood of 0, including 0 itself.

PROPOSITION 2.3. Suppose the origin is a finite-time-stable equilibrium of (2.1).
Let N C D and let T : N\{0} — (0,00) be as in Definition 2.2. Then, ¢ is defined

on Ry x N and ¢(t,x) =0 for allt > T'(x), x € N, where T(0) 20.

Proof. Tt can be shown that Lyapunov stability of the origin implies that y = 0
is the unique solution y of (2.1) satisfying y(0) = 0. This proves that Ry x {0} is
contained in the domain of definition of ¥ and ¥° = 0.

Now, let A/ C D and T be as in Definition 2.2 and let z € N'\{0}. Define

y(t) = otx), 0<t<T(x)

(2:2) 0, T(z) < t.

By construction, y is continuously differentiable on R \{7T'(z)} and satisfies (2.1) on
Ri\{T'(x)}. Also, it follows from the continuity of f that

lim () = i ) =0=lim gt
im gt = lm fy#) =0=lm (),
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so that y is continuously differentiable at T'(x) and satisfies (2.1). Thus y is a solution
of (2.1) on Ry. To prove uniqueness, suppose z is a solution of (2.1) on R satisfying
2(0) = x. Then by the uniqueness assumption, y and z agree on [0,7(z)). By
continuity, y and z must also agree on [0,7(x)] so that z(T(z)) = 0. Lyapunov
stability now implies that z(¢t) = 0 for ¢ > T'(z). This proves uniqueness. By the
definition of 1, it follows that ¢* = y. Thus 9* is defined on Ry and satisfies
Y*(t) =0 on [T'(x),00) for every x € . This proves the result. d

Proposition 2.3 implies that if the origin is a finite-time-stable equilibrium of
(2.1), then the solutions of (2.1) define a continuous global semiflow [20] on A; that
is, ¥ : Ry x N'— N is a (jointly) continuous function satisfying

(2.3) (0,2) =z,
(2.4) Y(t, (h,x)) = p(t + h,x)
for every x € N and ¢, h € Ry. In addition, 1 satisfies
(2.5) Y(T(x) +t,z)=0

forall z € N and ¢t € R,

Proposition 2.3 also indicates that it is reasonable to extend T to all of A by
defining 7'(0) = 0. With a slight abuse of terminology, we will also call this extension
the settling-time function. It is easy to see from Definition 2.2 that, for all z € N,

(2.6) T(x) =inf{t € Ry : ¢(t,x) = 0}.

To illustrate finite-time stability, as well as for later use, we consider a scalar
system with a finite-time-stable equilibrium.
Example 2.1. The right-hand side of the scalar system

(2.7) y(t) = —ksign(y(t))[y(H)[*,

where sign(0) = 0, ¥ > 0, and a € (0,1), is continuous everywhere and locally
Lipschitz everywhere except the origin. Hence every initial condition in R\{0} has
a unique solution in forward time on a sufficiently small time interval. The global
semiflow for (2.7) is easily obtained by direct integration as

,u(t,gc) = mgn(x) [|x|1—o¢ - k(l - Oé)t] e , t< ﬁ‘:ﬂl—a’ T 7£ 0,
(28) = 0, t 2 ﬁ‘ﬂl_a, X 7é 0,
= 0’ t 2 0, xr = 0.

It is clear from (2.8) that (i) in Definition 2.2 is satisfied with D = /' = R and the
settling-time function T': R — R, given by

1

(2.9) ) = =

|.T|1704.
Lyapunov stability follows by considering, for instance, the Lyapunov function V (z) =
22. Thus the origin is a globally finite-time-stable equilibrium for (2.7). Note that T
is Holder continuous but not Lipschitz continuous at the origin.

The following proposition investigates the properties of the settling-time function
of a finite-time-stable system.

PROPOSITION 2.4. Suppose the origin is a finite-time-stable equilibrium of (2.1).
Let N C D be as in Definition 2.2 and let T : N' — R be the settling-time function.
Then the following statements hold.
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(i) Ifx € N and t € Ry, then
(2.10) T((t,x)) = max{T(z) — t,0}.

(ii) T is continuous on N if and only if T is continuous at 0.
(iii) For every r > 0, there exists an open neighborhood U, C N of 0 such that,
for every x € U, \{0},

(2.11) T(x) > r|x].

Proof. (i) The result follows from (2.6), (2.4), and (2.5).

(ii) Necessity is immediate. To prove sufficiency, suppose that T' is continuous at
0.
Let 2 € N and consider a sequence {z,} in AN that converges to z. Let 7= =
liminf,, oo T'(2p) and 7% = limsup,, .., T(zn). Note that both 7= and 7+ are in
R+ and
(2.12) T~ <7t

Next, let {2} be a subsequence of {z,,} such that T'(z;") — 7+ as | — co. The
sequence {(7T'(z), z;")} converges in R} x N to (T(z),z). By continuity and equation
(2.5), ¥(T(2),2") — ¢(T(2),2) = 0 as | — oo. Since T is assumed to be continuous
at 0, T(¢Y(T(2),2")) — T(0) =0 as | — oco. Using (2.10) with t = T'(2) and = = z;",
we obtain max{7T'(z;") — T(z),0} — 0 as [ — oo. Thus max{r* — T'(z),0} = 0, that
is,

(2.13) < T(2).

Now, let {#, } be a subsequence of {2} such that T'(z,; ) — 7~ as [ — oco. It
follows from (2.12) and (2.13) that 7= € R,.. Therefore, the sequence {(T'(2;, ), 2, )}
converges in Ry x N to (77, z). Since 1 is continuous, it follows that ¢(T'(z;), 2z, ) —
(17, 2) as | — co. Equation (2.5) implies that ¢(T'(2; ), 2 ) = 0 for each I. Hence
P(17,2) =0 and, by (2.6),

(2.14) T(z) <7.
From (2.12), (2.13), and (2.14) we conclude that 7= = 71 = T'(z) and hence T'(z,,) —
T(z) as m — 0.

(iii) Let > 0. The function || f()|| is continuous on D and f(0) = 0 so that the
set Q, = {{E eN:|f(@)| < %} is open and contains 0. By Lyapunov stability, there
exists an open set U, such that 0 € U, C N and ¢(t,z) € Q, for every t € R, and
x € U,. Letting = € U, \{0}, we have

T(z)
o:¢@umw:z+A Fb(t, ),
so that

T(z)

T(x) T(x)
Hw=HjA fwteona] < [ Iswieanta < T2,

which proves the result. 1]
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Fic. 2.1. Finite-time stability with discontinuous settling-time function.

Proposition 2.4 (ii) is significant because, in general, finite-time stability does
not imply that the settling-time function 7" is continuous at the origin. Indeed, as
the following example shows, the settling-time function can be unbounded in every
neighborhood of the origin.

Ezample 2.2. Consider the system (2.1) where the vector field f : R? — R? is
defined on the quadrants

Q = {zeR)N{0}:21>0,2,>0}, Qu = {reR®:z <0,z >0},
Qm = {zreR?:z1<0,22 <0}, Qv = {zreR?*:z;>0,z5 <0},

as shown in Figure 2.1, with f(0) = 0, » > 0, § € [0,27), and = = (z1,22) =
(rcos,rsinf). It is easy to show that the vector field f is continuous on R? and
locally Lipschitz everywhere on R? except on the positive z;-axis, denoted by X1+ ,
the negative xy-axis, denoted by X, , and the origin. Since the derivative of 23 along
the solutions of (2.1) is nonpositive in a sufficiently small neighborhood of every point
x € X, every solution y(-) of (2.1) that satisfies y(0) € X, satisfies y(t) € &, for
t > 0 sufficiently small, while on X;", f is simply given by &y = —/z7, @2 = 0 which
is easily seen to have unique solutions for initial conditions in X1+ . In fact, by Example
2.1, solutions starting in Xfr converge to the origin in finite time. The vector field
f is also transversal to X5 at every point in X5 . Hence it follows from [14, Prop.
2.2] or [9, Lem. 2, p. 107] that initial conditions in X; possess unique solutions in
forward time. Thus (2.1) possesses a unique solution in forward time for every initial
condition in R?\{(0,0)}.

We show that the system given in Figure 2.1 has a globally finite-time-stable
equilibrium at the origin and demonstrate a sequence {z,,} in R? such that x,, — 0
and T'(z,,) — oo, where T is the settling-time function.

Lyapunov stability of the origin is easily verified using the Lyapunov function
22 + x2. To show global finite-time convergence, we show that solutions starting in
Orv and Orr U Opy enter Qrr and Qg respectively, in a finite amount of time, while
solutions starting in Qp converge to the origin in finite time.

On Qpv, ¥ = 0 and 77 < —23 < 0 so that after a finite amount of time (that
depends on the initial condition) every solution starting in Qry enters Q. Since
rcosf — /% sinf < max {—,/F,—r} for r > 0 and 0 € [§, 7], it follows that 7 = 0
and 6 < max {—\/? —r} < 0 on QU Qyr so that every solution starting in QiU Qry
enters Qp after a finite amount of time. Now, O is positively invariant. Hence, if
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a solution y starting in Qp does not converge to the origin for a sufficiently long
time, then, since the scalar equation 6 = —v/0 has the origin as a finite-time-stable
equilibrium by Example 2.1, y converges to Xﬁ in finite time. We have already seen
that solutions in Xfr converge to the origin in finite-time. Thus the origin is a globally
finite-time-stable equilibrium.

Now consider the sequence {z,,}, where @, = (Tp1,2m2) = (0,—%), m =
1,2,...,in X5 . Thus {z,,} lies in X; and x,, — 0 as m — oo. Since 6 = —r on
O, for every m, the time taken by the solution y,, starting at z,, to enter Qjp is

™

equal to —=Z—— = ™% Since must enter before converging to the origin
4 24/ xl +al 2 Ym Qu gimng g,

it follows that T'(x,,) > " for every m and hence T'(x,,) — oo.

Proposition 2.4 (iii), which is equivalent to the statement that ﬁﬂ,‘) —0asx —

0, implies that the settling-time function is not Lipschitz continuous at the origin.
This is consistent with Example 2.1 where the settling-time function is not Lipschitz
continuous. However, as noted earlier, the settling-time function in Example 2.1 is
Holder continuous at the origin. In contrast, the following example shows that even
if the settling-time function is continuous, it may not be Holder continuous at the
origin.

Ezample 2.3. Consider the system (2.1) with D = {z € R : |z| < 1} and
f:D — R given by

= —z(ln|z|)?, =€ D\{0},

(215) e reo.

The system defined by (2.15) is continuous and has the global semiflow

In |z

p(t.xr) = sign(@)em™mm, t< -l zeD\{0},
(2.16) = 0, >~ TE D\{0},
= 0, t>0, z=0.

From the solution (2.16), it is clear that 0 is a finite-time-stable equilibrium in the
neighborhood N’ = D and the settling-time function, which is continuous, is given by

T(x) = ffﬁ,xebwm,

= 0, z=0.

(2.17)

Since limy,_g+ h7|Inh| = 0 for every v > 0, it follows that for every v > 0, % is

unbounded in every deleted neighborhood of 0. Thus T is not Holder continuous at
the origin.

3. Finite-time repellers. The results of this section do not depend upon the
assumption of forward uniqueness.

If the origin is not Lyapunov stable, then there exists an open neighborhood U of
the origin and solutions that start arbitrarily close to the origin and eventually leave
U. However, in the case of Lipschitzian dynamics, solutions are continuous in the
initial condition over bounded time intervals so that solutions with initial conditions
sufficiently close to the origin stay in U for arbitrarily large amounts of time. In the
non-Lipschitzian case, where solutions need not be continuous in the initial condition
even over a bounded time interval, it is natural to expect the existence of solutions
that start arbitrarily close to the origin and yet leave a certain neighborhood in a
fixed amount of time. We therefore have the following definition.
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DEFINITION 3.1. The origin is said to be a finite-time repeller if there exists a
neighborhood U C D of the origin and T > 0 such that, for every open neighborhood
YV C U of the origin, there exists h € (0,7] and a solution y : [0,h] — D of (2.1) such
that y(0) € V and y(h) € U. The origin is said to be a finite-time saddle if the origin
is a finite-time repeller in forward as well as reverse time.

Definition 3.1 implies that solutions of (2.1) with initial conditions sufficiently
close to a finite-time repeller do not depend continuously on the initial conditions
over the bounded time interval [0, 7]. In other words, a system is extremely sensitive
to perturbations close to a finite-time repeller. As noted in section 2, under the
assumption of uniqueness, solutions are continuous functions of the initial conditions
and hence nonuniqueness is necessary for the existence of a finite-time repeller. The
following proposition gives the precise connection between nonuniqueness and finite-
time repellers.

PROPOSITION 3.2. The origin is a finite-time repeller if and only if there exist
more than one solution of (2.1) originating at the origin.

Proof. Note that z = 0 is a solution of (2.1) satisfying z(0) = 0. To prove
sufficiency, suppose y : [0,7] — D, 7 > 0, is a solution of (2.1) such that y(0) = 0
and y(7) # 0. Then there exists an open set & C D such that 0 € U and y(7) € U.
If V C U is an open neighborhood of the origin, then 0 = y(0) € V and y(h) € V for
h = 7. Thus the origin is a finite-time repeller.

To prove necessity, suppose that the origin is a finite-time repeller and let ¢/ and
7 be as in Definition 3.1. There exists a sequence {h,,} of real numbers in (0, 7]
and a sequence of solutions y,, : [0,h,] — D of (2.1) such that, y,,(0) — 0 as
m — oo and Y (hy) & U. Now suppose that z = 0 is the unique solution of (2.1)
satisfying z(0) = 0. Then there exists N > 0 such that for every m > N, y,, can be
extended to a solution @, of (2.1) defined on [0, 7] and §,, — z uniformly on [0, 7]
[12, Lem. 1.3.1]. However, this contradicts the fact that, for every m, h,, € [0, 7] and
Jm(Pm) = Ym(hm) € U. Hence we conclude that z = 0 is not the unique solution of
(2.1) satisfying z(0) = 0. a

Finite-time repellers are called terminal repellers in [7], [23] and some of the refer-
ences therein. Reference [5] gives an example of a one-degree-of-freedom Lagrangian
system having a finite-time saddle, while in [4] finite-time saddles arise in the con-
trolled double integrator. Proposition 3.2 implies that a system exhibits spontaneous
and unpredictable departure from an equilibrium state that is a finite-time repeller.
This property of finite-time repellers was used in [5] as an example of indeterminacy
in classical dynamics, while [23] and some of the references contained therein postu-
late finite-time repellers as models of irreversibility and unpredictability in complex
systems. Finally, [7] proposed a fast global optimization algorithm which utilizes the
tendency of solutions to rapidly escape from a neighborhood of a finite-time repeller.

Sections 3.25 and 3.26 in [1] contain sufficient conditions for (2.1) to possess
multiple solutions with the initial value 0. In view of Proposition 3.2, these conditions
can also be used to deduce whether the origin is a finite-time repeller. Therefore,
sufficient Lyapunov conditions for the origin to be a finite-time repeller will not be
considered in this paper.

4. Lyapunov theory. The upper right Dini derivative of a function g : [a,b) —
R, b > a, is the function DT g : [a,b) — R given by

(4.1) (DT g)(t) = limsup%[g(t +h) —g(t)], t € [a,b).
h—0+t
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The function g is nonincreasing on [a, b) if and only if (DT g)(¢) < 0 for all ¢ € [a, b)
(13, p. 84], [16, p. 347]. If g is differentiable at ¢, then (D¥g)(t) is the ordinary
derivative of g at t.

If the scalar differential equation §(t) = w(y(t)) has the global semiflow u :
Ry xR — R, where w : R — R is continuous, and ¢ : [a,b) — R is a continuous
function such that (D%g)(t) < w(g(t)) for all ¢ € [a,b), then g(t) < u(t,g(a)) for
all t € [a,b). Proofs and more general versions of this result, which is known as the
comparison lemma, can be found in [13, sect. 5.2], [15, sect. 2.5], [16, Chap. IX], and
[22, sect. 4]. The comparison lemma will be used along with the scalar system of
Example 2.1 in the proofs of the main results of this section and the next.

The following lemma will prove useful in the rest of the development.

LEMMA 4.1. Let V : A — R be a continuous function defined on the open set
A CR". Let B be an open set such that B C A, let Q, = {x € B: V(x) < k}, where
k < inf,ecpa gV (2), and let p: R — R be a continuous function satisfying p(k) > 0.
Ify : [a,b) — A is a continuous function that satisfies y(a) € Q, and satisfies

(4.2) (DT (Voy))(t) < —p(V oy(t))

for every t € [a,b) such that y(t) € B, then y(t) € Q, for allt € (a,b).

Proof. The assertion is vacuously true if Q, is empty. Therefore, let y : [a,b) — A
be a continuous function satisfying the hypotheses in the statement of the lemma.
Note that by the choice of x and the continuity of V', bd Q, C {z € B: V(z) = k}.

First suppose that y(a) € bd Q. Since p, V, and y are continuous and p(V (y(a)))
= p(k) > 0, it follows that there exists s > 0 such that p(V(y(¢))) > 0 for all
t € [a,a + s). Moreover, s may be chosen such that y(¢t) € B for all ¢t € [a,a + s).
Equation (4.2) now implies that V oy is strictly decreasing on [a,a + s) so that
y(t) € Q for all t € (a,a+ s).

Now suppose y(h) € Q,, for some h € [a,b). If y(t) & Q,, for some t € [h,b), then,
by continuity, there exists 7 € (h,b) such that y(7) € bd Q, and y(t) € Q, for all
t € [h, 7). Therefore, y satisfies (4.2) on [h, 7). Since p, V, and y are continuous and
p(V(y(7))) = p(k) > 0, it follows that there exists s > 0 such that p(V(y(¢))) > 0 for
all t € [t — s,7). Equation (4.2) now implies that V oy is nonincreasing on [1 — s, T)
so that k = V(y(7)) < V(y(r — s)) < k, which is a contradiction. Hence we conclude
that y(t) € Q, for all t € [h,b).

It follows from the above two facts that if y(a) € Q., then y(t) € Q, for all
t € (a,b). |

Given a continuous function V: D — R, the upper-right Dini derivative of V
along the solutions of (2.1) is a R-valued function V' given by

(4.3) V(x) = (DH(V 0 45%))(0).

V() is defined for every = € D for which * is defined. It is easy to see that V (0), if
defined, is 0. Also, since 1) is a local semiflow, it can be shown that if ¢/ (t) is defined,
then

(4.4) V(@*(t) = (DH(V o 9™))(t).

It can also be shown that if V' is locally Lipschitz at z € D\{0}, then [13, sect. 5.1],
[16, p. 353], [22, p. 3]

(4.5) V(x) = limsup %[V(z + hf(x)) —V(z)].
h—0+
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If V' is continuously differentiable on D\{0}, then (4.3) and (4.5) both yield the Lie
derivative
_ d(Voy”)

(4.6) V(SU) = T(O)

oV

= 5, @f(@), = € D\{0}.

A function V : D — R is said to be proper if V~1(K) is compact for every compact
set K C R. Note that if D = R" and V is radially unbounded, then V is proper.

We are now ready to state the main result of this paper. Versions of this result
have either appeared without proof or have been used implicitly in [3], [4], [11], [18],
[19].

THEOREM 4.2. Suppose there exists a continuous function V: D — R such that
the following conditions hold:

(i) V is positive definite.
(ii) There exist real numbers ¢ > 0 and a € (0,1) and an open neighborhood
V C D of the origin such that

(4.7) V(z) +c(V(z)* <0, z € V\{0}.

Then the origin is a finite-time-stable equilibrium of (2.1). Moreover, if N is as in
Definition 2.2 and T is the settling-time function, then

(4.8) T(z) < ﬁ

V()™ zeN,
and T is continuous on N'. If in addition D = R", V is proper, and V takes negative
values on R™\{0}, then the origin is a globally finite-time-stable equilibrium of (2.1).

Proof. Since V is positive definite and V takes negative values on V\{0}, it follows
that y = 0 is the unique solution of (2.1) on R satisfying y(0) = 0 [1, sect. 3.15] [22,
Thm. 1.2, p. 5]. Thus every initial condition in D has a unique solution in forward
time. Moreover, V(0) = 0 and thus (4.7) holds on V.

Let 4 C V be a bounded open set such that 0 € & and &/ C D. Then bd U
is compact and 0 € bd Y. The continuous function V attains a minimum on bd U
and by positive definiteness, mingeng ¢ V(z) > 0. Let 0 < 8 < mingenq o V(z) and
N={z el :V(z) < B} N is nonempty since 0 € N, open since V is continuous,
and bounded since U is bounded.

Now, consider z € N and let ¢ and « be as in the theorem statement above. By
uniqueness, ¥* : [0,7,) — D is the unique right maximally defined solution of (2.1)
for the initial condition x. For every t € [0,7,) such that ¢¥*(¢t) € U, (4.4) and (4.7)
yield

(4.9) (DF(Voym))(t) < —c(V o™ (t))".

Thus y = ¢* satisfies the hypotheses of Lemma 4.1 with A = D, B = U, k = (3,
Q,, = N, and p(h) = ch® for h € Ry. Therefore, by Lemma 4.1, ¥*(t) € N for all
t € [0, 7). Now 9* satisfies the hypotheses of Proposition 2.1 with K = N. Therefore,
by Proposition 2.1, * is defined and satisfies (4.9) on R;. Thus ¢ : Ry X N — N is
a continuous global semiflow satisfying (2.3) and (2.4).

Next, applying the comparison lemma to the differential inequality (4.9) and the
scalar differential equation (2.7) yields

(4.10) V(p(t,x)) < ut,V(z), t Ry, z €N,
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where p is given by (2.8) with & = ¢. From (2.8), (4.10), and the positive-definiteness
of V', we conclude that

1

(4.11) Uta) =0, t2 s

(V(z)™2, 2z e N.

Since ¥(0,z) = = and @ is continuous, inf{t € Ry : ¢(t,z) = 0} > 0 for = €
M\{0}. Also, it follows from (4.11) that inf{t € Ry : ¢(t,z) = 0} < oo for z € N.
Define T : N' — R, by using (2.6). It is a simple matter to verify that 7" and N
satisfy (i) of Definition 2.2 and thus T is the settling-time function on A/. Lyapunov
stability follows by noting from (4.7) that V takes negative values on V\{0}. Equation
(4.8) follows from (4.11) and (2.6). Equation (4.8) implies that T is continuous at the
origin and hence, by Proposition 2.4, continuous on N

If D =R"™ and V is proper, then global finite-time-stability is proven in the same
way that global asymptotic stability is proven using radially unbounded Lyapunov
functions. See, for instance, [15, Thm. 3.2], [22, Thm. 11.5]. d

Remark 4.1. Tt is difficult to compute V by using (4.3) unless solutions to (2.1)
are known. Thus, in practice, it will often be more convenient to apply Theorem 4.2
with a Lipschitz continuous or a continuously differentiable function V so that V is
given by (4.5) or (4.6), respectively.

Theorem 4.2 implies that for a system with a finite-time-stable equilibrium and
a discontinuous settling-time function, such as the system considered in Example 2.2,
there does not exist a Lyapunov function satisfying the hypotheses of Theorem 4.2. In
the case that the settling-time function is continuous, the following theorem provides
a converse to the previous one.

THEOREM 4.3. Suppose the origin is a finite-time-stable equilibrium of (2.1) and
the settling-time function T is continuous at 0. Let N be as in Definition 2.2 and let

€ (0,1). Then there exists a continuous function V : N'— R such that the following
conditions are satisfied:
(i) V is positive definite.
(ii) V is real valued and continuous on N and there exists ¢ > 0 such that

V(z)+c(V(@)*<0, zeN.

Proof. By Proposition 2.4, the settling-time function 7: N' — R is continuous.
Define V. : N' — Ry by V(z) = (T(x))ﬁ Then V is continuous and positive
definite and, by (2.5), V(0) = For z € N\{0}, (2.10) implies that V o 4 is
continuously differentiable on [0, )) so that (4.3) can be easily computed as V() =
—ﬁ(T(ar))ﬁ = ——( (z))*. Thus V is real valued, continuous, and negative
definite on " and satisfies V(z) + c(V(2))* = 0 for all z € N with ¢ = 1. 0

Equation (4.8) implies that if V' in Theorem 4.2 is Holder continuous at 0 then
so is T. However, as shown by Example 2.3, the settling-time function need not
be Holder continuous at the origin. Thus the conclusion regarding the continuity of
V in Theorem 4.3 cannot be strengthened to Holder continuity. In particular, the
scalar system considered in Example 2.3, where T is not Hdélder continuous, does
not admit a continuously differentiable or Lipschitz continuous Lyapunov function
that satisfies the hypotheses of Theorem 4.2, since either Lipschitz continuity or dif-
ferentiability implies Holder continuity. As the next section shows, the existence of
Lipschitz continuous Lyapunov functions is of importance in studying the behavior of
finite-time-stable systems in the presence of perturbations.

0.
T(x
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5. Sensitivity to perturbations. In a realistic problem, (2.1) might represent
a nominal model that is valid only under ideal conditions, while a more accurate
description of the system might be provided by the perturbed model

(5.1) y(t) = f(y(@) +g(t, (1)),

where the perturbation term g results from disturbances, uncertainties, parameter
variations, or modelling errors. In this section we investigate the sensitivity to per-
turbations of systems with a finite-time-stable equilibrium by studying the behavior
of solutions of the perturbed system (5.1) in a neighborhood of the finite-time-stable
equilibrium of the nominal system (2.1).

For simplicity, we consider only continuous perturbation terms g : Ry x D — R”
so that the local existence of solutions of the perturbed system (5.1) is guaranteed.
Right maximally defined solutions of (5.1) are defined as in section 2. We will need
the following extension of Proposition 2.1 to time-varying systems. Proofs appear in
[12, pp. 17-18], [22, Thm. 3.3, p. 12].

PROPOSITION 5.1. Ify:[0,7) — D is a right mazimally defined solution of (5.1)
such that y(t) € K for all t € [0,7), where K C D is compact, then T = co.

If y: [0,7) — D is a solution of (5.1) and V' : D — R is Lipschitz continuous on
D with Lipschitz constant M, then it can be shown that

(5:2) (DH(Voy))(t) < V(y(t) + Mllg(t, y(@))ll, t € [0,7),

where V is computed along the solutions of the unperturbed system (2.1) using equa-
tion (4.3). See, for instance, the proof of Lemma X.5.1 in [12].

The following theorem concerns the behavior of finite-time-stable systems un-
der bounded perturbations. Such perturbations, include, as a special case, bounded
persistent disturbances of the form g¢(¢, y(t)) = v(¢).

THEOREM 5.2. Suppose there exists a function V : D — R such that V is positive
definite and Lipschitz continuous on D, and satisfies (4.7), where ¥V C D is an open
neighborhood of the origin, ¢ > 0 and a € ((), %) Then there exist 69 > 0, | > 0,
I' > 0, and an open neighborhood U of the origin such that, for every continuous
function g : Ry x D — R™ with

(5:3) 6= sup |lg(t, z)[| < bo,

+><D

every right mazimally defined solution y of (5.1) with y(0) € U is defined on Ry and
satisfies y(t) € U for allt € Ry and

(5.4) ly(@)|| <167, t =T,

where v = 177’1 > 1.

Proof. By Theorem 4.2, the origin is a finite-time-stable equilibrium for (2.1).
Let NV be as in Definition 2.2 and let T : A/ — R™ be the settling-time function.
By Proposition 2.4, there exists 7 > 0 and an open neighborhood U, C N NV
of 0 such that T'(z) > r|z| for z € U,. Also, by Theorem 4.2, T satisfies (4.8).
Without any loss of generality, we assume that U/, is compact and U, C N N V. Let
U={x el :V(z) <}, where 0 < f < min,epbq ¢, V(z). Then U is nonempty,
open, and bounded.

Let M > 0 be the Lipschitz constant of V' and let 6g > 0 satisfy ¢3¢ —2M by > 0.
Suppose g : Ry x D — R™ is a continuous function that satisfies (5.3) and consider a
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right maximally defined solution y : [0,7) — D of (5.1) with z = y(0) € U. Equations
(4.7), (5.2), and (5.3) imply that for every ¢ € [0, 7) such that y(t) € U,,

(5:5) (DT (Voy))(t) < —c(V(y(1)™ + Ms.

Since ¢ — M6 > ¢8* — 2Mé > ¢ — 2Méy > 0, (5.5) implies that y satisfies the
hypotheses of Lemma 4.1 with A =D, B=U,, k = 3, Q; =U, and p(h) = ch®* — M§
for h € Ry. Therefore, Lemma 4.1 implies that y(¢t) € U for ¢t € [0,7). The right
maximally defined solution y satisfies the hypotheses of Proposition 5.1 with L = U.
Thus, by Proposition 5.1, y is defined on R4 and (5.5) holds on Ry.

Now,let W={z el :V(z) < (%)é} If y(7) € W for some 7 > 0, then (5.5)
implies that y satisfies the hypotheses of Lemma 4.1 on [r,00) with A =U,., B=U,

1

K= (%)E, Q. =W, and p(h) = ch® — M6 for h € R, and hence y(t) € W for all
t > 7. Therefore, suppose y(0) = x € W so that y~1(W), which is open by continuity,
is of the form (t,00) with ¢, > 0. Since y(¢t) ¢ W for all ¢ € [0,t,], it follows that

1
V(yt) > (L)~ for all t € [0,¢,]. Equation (5.5) now implies that

1 «
(5.6) (DT (Voy)(t) < —5e(V(y(1)* t € [0,ta).
Applying the comparison principle to the differential inequality (5.6) and the scalar
differential equation (2.7) we obtain

(5.7) (Voy)t) < p(t,V(x)), t€[0,t),

where p is given by (2.8) with k = %c. By continuity, the inequality (5.7) also holds
1

for t = t,. Since V(y(tz)) > (%) * > 0, the comparison (5.7) yields p(tz, V(z)) >

0. Equation (2.8) now gives t, < —=2 )(V(x))lfa < 2B Thus V(y(t))

c(1—a) c(l—a)

1
< (Q—Z\CM)“ fort > T 2 C(lia)ﬁl—@. It now follows from (2.11) and (4.8) that for
t>T,

b0l < = V) < o (B 7

1-—a) ~re(l1— ) c

11—«

Equation (5.4) now follows by choosing ! 2 ﬁ (%) > 0. 0

Note that in Theorem 4.3, o can be chosen to be arbitrarily small. Hence the
requirement in Theorem 5.2 that « lie in (0, %) is not restrictive. This choice of «
leads to v > 1 in (5.4) which implies that for ¢ in equation (5.3) sufficiently small,
the ultimate bound (5.4) on the state is of higher order than the bound on the per-
turbation. In analogous theorems on exponential stability for Lipschitzian systems, «
in equation (4.7) is at least 1 [15, Thm. 3.12], [22, Thm. 19.2] while 7 in (5.4) is at
most 1 [15, Lemma 5.2]. Thus for a Lipschitzian system with an exponentially stable
equilibrium at the origin, the ultimate bound on the state can only be guaranteed to
be of the same order of magnitude as the perturbation and not less. Consequently,
finite-time stability of the origin leads to improved rejection of low-level persistent
disturbances.

The following theorem deals with perturbations that are globally Lipschitz in
the state variables uniformly in time. Such perturbations might represent model
uncertainties.



764 SANJAY P. BHAT AND DENNIS S. BERNSTEIN

THEOREM 5.3. Suppose there exists a function V : D — R such that V is positive
definite and Lipschitz continuous on D, and satisfies (4.7), where V C D is an open
neighborhood of the origin, ¢ > 0 and o € (0,%), Then, for every L > 0, there
exists an open neighborhood U of the origin and I' > 0 such that, for every continuous
function g : Ry x D — R™ satisfying

(5-8) lg(t, )| < Lil]l, (t,2) € Ry x D,

every right mazimally defined solution y of (5.1) with y(0) € U is defined on Ry and
satisfies y(t) € U, for allt € Ry, and y(t) =0 for allt > T.

Proof. By Theorem 4.2, the origin is a finite-time-stable equilibrium for (2.1).
Let N be as in Definition 2.2 and let 7' : N'— R be the settling-time function. Fix
L > 0 and let r > 0 be such that ¢[r(1 — a)]* > (2M L)'=, where M > 0 is the
Lipschitz constant of V. By Proposition 2.4, there exists an open set U, C A'NV such
that r||z|| < T(z) for all z € U,. Also, by Theorem 4.2, T' satisfies (4.8). Without
any loss of generality, we may assume that ||z|| < 1 for z € U, and U,, C N'N V. Let
U={x el :V(z) <}, where 0 < f < min,cpq u, V(2). Note that U is nonempty,
open, and bounded. Also, 1%~ < 1 so that ||z| < |z|| == for ||lz|| < 1. Therefore,
(2.11) and (4.8) yield

(5.9) 2M L||z|| < c[re(1 — a)||z]] ™7 < ¢le(l — a)T(z)]Ta < e(V(2)%, z € U,.

Next, let x € U and let g : Ry x D — R”™ be a continuous function satisfying
(5.8). Consider a right maximally defined solution y : [0,7) — D of (5.1) such that
y(0) = z. For every t € [0,7) such that y(t) € U,., (4.7), (5.2), and (5.8) yield

(5.10) (DF(V ou))(t) < —e(V o y(1)* + ML[y(1)].
Using (5.9) in (5.10) we obtain
(5.11) (DH(V o y)(t) < =5 (Voy(t)”, y(t) € Us.

Lemma 4.1 now applies with A = D, B =U,, k = 3, Q, = U, and p(h) = $h* for
h € Ry so that y(t) € U for t € [0,7). The hypotheses of Proposition 5.1 are now
satisfied by the right maximally defined solution y of (5.1) with L = &. Hence, by
Proposition 5.1, 7 = oo and (5.11) holds on R;. Applying the comparison principle
to the differential inequality (5.11) and the scalar differential equation (2.7) yields

(5.12) (Vo)(t) < u(t, V(x)), t€ Ry,
where p is given by (2.8) with k = %c. Equation (2.8) and the inequality (5.12) imply
that y(t) =0 for t >I = 225 [

The following theorem specializes Theorem 5.3 to time-invariant perturbations
and shows that finite-time stability is preserved under Lipschitzian perturbations.

THEOREM 5.4. Suppose there exists a function V : D — R such that V is positive
definite and Lipschitz continuous on D and satisfies (4.7), where ¥V C D is an open

neighborhood of the origin, ¢ > 0, and a € (0, %) Let g : D — R™ be Lipschitz
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continuous on D and such that the differential equation

(5.13) y(t) = fy(t) +g(y(t))

possesses unique solutions in forward time for initial conditions in D\{0}. Then the
origin is a finite-time-stable equilibrium of (5.13).

Proof. Using steps similar to those used in deriving (5.11) above, it can be shown
that V(z) < —£(V(x))* for all = in some open neighborhood of the origin, where V
denotes the upper-right Dini derivative of V' along the solutions of (5.13). Finite-time
stability now follows from Theorem 4.2. 0

The existence of a Lipschitz continuous function satisfying the hypotheses of The-
orem 5.4 is sufficient but not necessary for the conclusions to hold. For instance, con-
sider a scalar system of the form (5.13) where the nominal dynamics f are given by
(2.15) in Example 2.3, and g : D — R is Lipschitz continuouson D = {z € R: |z| < 1}
with Lipschitz constant L. As noted at the end of section 4, the nominal dynamics
do not admit a Lipschitz continuous Lyapunov function satisfying the hypotheses of
Theorem 5.4. However, the origin is still a finite-time-stable equilibrium for the per-
turbed system. This can be verified by considering the continuous Lyapunov function
V(z) = (In|z])~2, € D\{0}, V(0) = 0. It is easy to compute V along the solutions
of the perturbed system (5.13) for z # 0 and establish that V(z) < —+/V(x) for
0 < |x| < e"V2L, thus proving finite-time stability by Theorem 4.2. This indicates
that the main results of this section may be valid under the weaker assumption of
finite-time stability with a continuous settling-time function. From the point of view
of stability theory, proofs of these results under such weaker hypotheses are certainly
of interest. However, as observed in Remark 4.1, the Lyapunov functions used to
verify stability properties are often continuously differentiable in practice. In such a
case, the results of this section are immediately applicable.

6. Conclusions. The notion of finite-time stability can be precisely formulated
within the framework of continuous autonomous systems with forward uniqueness.
These assumptions, however, do not imply any regularity properties for the settling-
time function, which may be discontinuous or continuous yet Holder discontinuous.

Lyapunov and converse Lyapunov results for finite-time stability naturally involve
finite-time scalar differential inequalities. The regularity properties of a Lyapunov
function satisfying such an inequality strongly depend on the regularity properties of
the settling-time function.

Under the assumption of the existence of a Lipschitz continuous Lyapunov func-
tion, finite-time stability leads to better rejection of persistent as well as vanishing
perturbations. Such an assumption, however, is not strictly necessary, as the discus-
sion at the end of section 5 shows.

The paper thus raises certain questions that are important from the point of view
of stability theory. In particular, conditions on the dynamics for the settling-time
function to be Holder continuous and conditions on the settling-time function that
lead to a stronger converse result than Theorem 4.3 are of interest. Also of interest
are results similar to those given in section 5 but with weaker hypotheses.

As mentioned earlier, a control system under the action of a time-optimal feedback
controller yields a closed-loop system that exhibits finite-time convergence. Hence it
would be interesting to explore the connections between finite-time-stability and time
optimality and relate the results of this paper to results on the time-optimal control
problem.
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