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Abstract—This paper addresses the problem of a rigid body, with
unknown inertia matrix, tracking a desired angular velocity refer-
ence using adaptive feedback control. The control law, which has
the form of a sixth-order dynamic compensator, does not require
knowledge of the inertia of the rigid body. A Lyapunov argument
is used to guarantee that asymptotic tracking is achieved globally.
Furthermore, an analytical expression for an upper bound on the
magnitude of the required torque is presented for a given refer-
ence signal. Next, sufficient conditions on the reference signal are
given under which asymptotic identification of the inertia matrix
is achieved. Reference signals that satisfy these sufficient condi-
tions are characterized and simulation results that illustrate the
control algorithm are presented for a constant spin about a fixed
axis and for sinusoidal spins about the body axes. The controller
is implemented on an experimental testbed, and experiments are
performed for several commanded reference signals. The experi-
mental results demonstrate the tracking performance of the con-
troller, and parameter convergence is observed.

Index Terms—Adaptive control, angular velocity tracking, con-
trol saturation, estimation, inertia identification, rotating bodies,
space vehicle control.

1. INTRODUCTION

TABILIZATION of a single free rigid body in three di-

mensions is a widely studied and a fundamental problem in
spacecraft dynamics. Although the problem is trivial in the pres-
ence of three control torques, significant research has been de-
voted to the cases of two torques [2]-[10] and one torque [3], [4],
[11]. If minimum fuel or miminum time performance is required
in addition to stabilization, then this problem is challenging even
in the case of three torques [12]-[14]. When rotors are used to
provide control torques, the problem involves multiple bodies
and significantly greater complexity [15], [16].

The above discussion is based on the assumption that the
spacecraft mass distribution is known. In practice, however, fuel
usage, moving appendages, and complex geometry limit the
ability to determine the mass distribution with arbitrary accu-
racy. Hence, it is of interest to determine stabilizing controllers
that can operate with minimal inertia information. This moti-
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vates the use of Lyapunov-based techniques to design an adap-
tive controller [17].

In the present paper, we address the inertia uncertainty
problem by deriving an adaptive controller that tracks an an-
gular velocity reference without any information concerning the
mass distribution. In addition, we present sufficient conditions
on the reference signal that guarantee asymptotic identification
of the inertia matrix of the rigid body. The reference signal need
not be periodic. Reference signals that satisfy these sufficient
conditions include a constant spin about a body-fixed axis and
a sinusoidal spin about a body axis. The controller provides
asymptotic tracking of angular velocity reference signals. For
a rotating spacecraft modeled as a rigid body, the adaptive
tracking controller is effectively a PI control law involving six
integrators whose values correspond to estimates of the entries
of the inertia matrix. The case of single degree-of-freedom
(DOF) rotation with an input nonlinearity was considered in [1].

It is important to point out that angular velocity tracking does
not imply attitude tracking. Attitude control of a spacecraft
under inertia matrix uncertainty was studied in [18]. The inclu-
sion of attitude states within an inertia-independent adaptive
controller is given in [19]. The tracking problem, considered
in the present paper, can be viewed as an extension of [19]
to the case in which attitude measurements are not available.
Furthermore, we present sufficient conditions on the reference
signal that guarantee asymptotic identification of the unknown
inertia. Also, the present paper includes experimental results
obtained from implementing the controller on an air-bearing
testbed. These results demonstrate the tracking performance
and parameter identification ability of the controller.

The contents of the paper are as follows. In Section II, we con-
sider the three-dimensional (3-D) case of a rotating rigid body.
We develop the equations of motion for a rotating rigid body,
and we rewrite these equations in a form that isolates the un-
certain inertia parameters. Next, in Section III, we present an
adaptive tracking control law that requires no knowledge of the
inertia matrix. In Sections IV and V, we present methods for
identifying the inertia matrix with aperiodic and periodic refer-
ence signals, respectively. Simulations and numerical examples
are presented in Section VI to illustrate the tracking and identi-
fication algorithms. In Section VII, we discuss implementation
issues for the control algorithm, and we provide details of an
experimental testbed (TACT). In Section VIII, we discuss ex-
perimental results obtained from the implementation of the al-
gorithm. Finally, we close with conclusions in Section IX.
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II. RIGID BODY EQUATIONS OF MOTION

Consider arigid body, such as a spacecraft, with actuators that
provide body-fixed torques about three mutually perpendicular
axes that define a body-fixed frame B located at the center of
mass of the body. For each axis a body-fixed torque can be ob-
tained by employing, for example, a pair of actuators to produce
equal and opposite forces perpendicular to the line joining the
actuators. The lines joining each pair of actuators need not pass
through the center of mass.

For ¢ > 0, the angular velocity w = w(t) € R? of B with
respect to an inertial frame I, and resolved in B, satisfies

= —J W Jw+ J 7 (D
where
Jiu Ji2 Ji3
J=|Jia Jao Jo3z
Jis Joz I3z

is the constant positive-definite inertia matrix of the body, also
resolved in B, and 7 = 7(t) € R3 is the vector of control
torques. The notation a* for a = [a1aza3]’ denotes the skew-
symmetric matrix

0 —as as
as 0 —a1
—a a1 0

The inertia matrix J is assumed to be unknown.

Letv : [0,00) — R3 denote the desired angular velocity of B
with respect to /. We assume that v is differentiable. Defining
the angular velocity error

~ A
w =

w—v 2)

it follows from (1) that @ satisfies

w=—JY o+ ) J(@+v)—v+ T 3)

The control objective is to determine 7 such that w(¢) — 0 as
t — oo for all initial conditions w(0) and without knowledge of
J.

III. ADAPTIVE CONTROL LAW

In this section, we present a feedback control law that asymp-
totically tracks the reference angular velocity v(¢). We define a
linear operator L : R? — R3* 6 acting on a = [a; as a3]T by

al 0 0 0 as Qaz
L(a)é 0 as 0 a3 0 aq]. )

Letting

J = [J11Jaa 33 Ja3J13J10] T

it follows that:

Ja = L(a)J.

Equation (3) can now be rewritten in the form

w=—-JYF(o,u0)T+J 7 (5)

where F' : R? x R® x R? — R3*6 is defined by

F(o,v,0) 2 (0 +v) L0+ v) + L(p). (6)

We now present an adaptive controller for angular velocity
tracking based on an estlmate J of J. We denote the inertia
estimate error by J £ 7 — 7. Furthermore, let || - ||, denote
the Euclidean norm.

Theorem 1: Assume that v is differentiable and bounded, and
that © is piecewise continuous and bounded. Let K € R**3 and
Q € RY%6 be positive definite, and consider the closed-loop
system consisting of (5) and the adaptation and control law

T = —QF (&,v,1)o 7)
T=—-Ko+ F(O,v l/)j )

Then, the zero solution of the closed-loop dynamics of (5), (7),
and (8) given in error coordinates by

w=—-J Ko+ J'F(o,v,i)\T 9)
J =—QF"(@,v,i)® (10)
is Lyapunov stable. Furthermore, for all w(0) € R® and

J) e
(10) satisfies lim; oo w(t) =
limyoo [|Q " T (£)]]2 exists.
Proof: Equations (9) and (10), comprise a nine-di-

mensional (9-D) nonlinear, time-varying system, for which
[@rJ7] = [0 0] is an equilibrium. Furthermore, since v is
bounded and 7 is piecewise continuous and bounded, the
right-hand side of (9) and (10) is piecewise continuous in
time and locally Lipschitz in states, uniformly in time. Thus,
solutions of the closed-loop system (9), (10) exist.

To prove asymptotic tracking, consider the positive-definite
Lyapunov candidate

RS, the solution of the closed- loop system (9),
0, lim¢_oo J(t) =0, and

V(e,J) = ( Tio+J7%Q 1) (11



CHATURVEDI et al.: GLOBALLY CONVERGENT ADAPTIVE TRACKING OF ANGULAR VELOCITY AND INERTIA IDENTIFICATION 843

which does not explicitly depend on time and is radially un-
bounded. The total time derivative of V, along trajectories of
the closed-loop system, is given by

V(@,J)=-0"Ko+ T F (o,v,0)0 + Q7 T]

=-0TK® (12)
which shows that V is negative semidefinite and is not an ex-
plicit function of time. Hence, Theorem 8.4 of [20] implies that
for all initial conditions &(0) and 7(0), the solutlons of (9)
and (10) are bounded and approach the set £ = VH0) =
{[© J] € R : & = 0}. Hence, &(t) — 0 as t — oco. Also,
since V(-) is positive definite and V(-) is negative semidefinite,
it follows that the equilibrium (0, 0) of the system (9) and (10)
is Lyapunov stable.

Since w(t) — 0 ast — oo and v and © are bounded, it
follows from (10) that 7 /(t) — 0 as t — oo. Furthermore, @ (t)
and J(t), and, hence, J (t), are bounded. Now, since V(t) £
V(@(t), J(t)) < 0and V(t) & V((t),J(t)) > 0 for all
t > 0, it follows that lim;_, o, V(¢) exists.

Next, letting ¢ — oo in (11) yields

lim JT(H)Q™ T (t) =2 lim V()

t—o00 t—o00

where the right-hand side exists. Hence, lim;_, 0 [|Q 7 ®)|l2
exists. |

IV. INERTIA IDENTIFICATION

Note that the control law (7) and (8) does not require

knowledge of the inertia J. Although J converges to zero
and ||Q~'/27||> converges, J does not necessarily converge
and, even if J converges, it does not necessarily converge to
the actual inertia 7. We now give sufficient conditions under
which J converges to J. The following lemmas and notation
are needed. Define W : R x R — R3*6 by

W(v,v) £ F(0,v,0) = v L(v) + L(¥). (13)
Lemma 1: Consider the closed-loop system (9) and (10)

under the assumptions of Theorem 1. Then

V(1) (1) T (1) = 0.
(14)
Proof: Theorem 1 implies that @(¢) — 0 as t — co. Then

lim W (v (t), 7(t))J(t) = lim F(a(t),

t—oo t—oo

t

w(s)ds = lim &(t)

t—o00

lim
t—o0 0

—@(0) = —@(0). (15)
Since v is continuous and bounded and v is piecewise contin-
uous and bounded, (9) implies that w(t) is globally piecewise
uniformly continuous (see [1] for definition). Now, applying the
generalized version of Barbalat’s Lemma given in Appendix B

of [1] yields lim;_, o, (I)(t) = 0. Therefore, it follows from (9)
that

lim F(&(t), v(t), o(t) T (t) = 0.

t—o0

(16)

Note that

[F(@(t), v(t), (t) = W (1), o(t))]T () ~
= [@(®)* L(@(t) +&(t)* L(¥(t) + v(t)“ L@(®)] T (1).
7)

Since (t) — 0ast — oo and J(t) and v(t) are bounded, (17)
implies that

Jim [P(@(8), (), (1)) = W (o(0). /()T (1) = 0. (18)

Furthermore, since

W (w(t), ()T (1) = F(@(t), v(t), 7() T (1) ~

=[F(@(t),v(t), v(t) = W(v(t),o(1)]T (1)
it follows from (16) and (18) that

lim W (v(t),

t—o0

o(1)T () =

|

For H € R™*", denote the ith largest singular value
of H by o;(H). Furthermore, o (H) = oy(H) and
Omin(H) = Omin{m,n}([) denote the largest and the smallest
singular values of H, respectively.

Lemma 2: Consider the closed-loop system (9), (10), under
the assumptions of Theorem 1. Furthermore, for ¢ > 0, define
W (t) & W (v(t),(t)). Then, for every € > 0 and every § > 0,
there exists 7' > 0 such that, for all £y > T and to € [to, o+ 9],
[W(to)T (to)|l2 < e

Proof: Lete > 0 and 6 > 0. Since v(t) and ©(t) are
bounded for all ¢ > 0, it follows from the definition of W (¢) and
(13) that W (¢) is bounded for all ¢ > 0 and, hence, oyax W (%)
is bounded for all ¢+ > 0. Define & = Maxs>0 Omax W (t) and
choose 1 = (¢£/2) and e = (£/250).

Next, it follows from (14) that there exists 77 > 0 such that,
for every t > T, ||W ()T (t)||2 < e1. Similarly, since 7 (t) —
0 ast — oo, it follows that there exists a 7» > 0, such that for
every t > Ty, ||j||2 < &9.Choose T' = max(Ty,T»). Then, for
every to > T and ty € [to,to + 6]

W (10)7 (o)1l
= W (t0) 7 (Bo) + W (10)(F () ~ T (1)
< W ()T (10) ]2 + [W ()T (o) — T (1)
< W (ta) T (to)ll2 + 117 (F) — T (to)ll

< W (to) T (to) 1> + / 17 (7) ladr

< g1+ 0ex6 =
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Define W : [0,00)% — R!¥%6 by

W(t1)

W(ts, ... te) = (19)

W(:tﬁ)

where W () is defined in Lemma 2.

Lemma 3: Consider the closed-loop system (9) and (10)
under the assumptions of Theorem 1. Then, for every ¢ > 0
and 6§ > 0, there exists T > 0 such that,~ for every T' > T and
t1,...,t6 € [T,T-l- (5]/ ||W(t17. .. 7t6)j(T+ (5)”2 <e.

Proof: Let e > 0 and 6 > 0. Then, Lemma 2 im-
plies that there exist T > 0, such that, for every to > T,
|W (to)J (to)]l2 < (¢/V/6), where ty € [to,to + 6]. Consider

any T > T and t; € [T,T + 6], where i@ = 1,...,6.
Then, note that (T' + 6) € [ti,t; + 6], ¢ = 1,...,6.
Hence, substituting to = ¢; and fp = T + 6, yields
W ()T (T +68)|I3 < (€2/6),i =1,...,6. Thus
IWT (T + 6)|5 = W ()T (T + )5+ ...
+ W (te) T (T + 6)II3
52 52 2
< E + ...+ E =e“.
| ]

The next result provides a sufficient condition for conver-
gence of the inertia estimate J to the actual inertia .7 .

Theorem 2: Consider the closed-loop system consisting of
(5) and the adaptive control law (7) and (8), where K and () are
positive definite. Suppose there exist 6 > 0 and vy > 0 such that,
for every T' > 0, there exist t1,...,t¢ € [T, T + 6] such that

Omin(W(t1,. .. ,16)) > . Then lim; oo J(t) = J.
Proof: Theorem 1 implies that
AElimyo |Q™Y2T(t)||2 exists. If A = 0, then,

since Q~1/? is nonsingular, lim,_,, J(t) = 0. Now suppose
A # 0. Then, for every e; > 0, there exists 73 > 0 such
that, for every ¢t > Ti,|A — ||Q /27 (t)||2] < e1. Choose
£1 < A/2. Hence, for every t > T1, ||Q Y27 (t)]2 > A/2.
Furthermore, QY27 (D]l < uax(@ V2T (1)
Hence, for every t > T4, || 7 (t)||2 > (1/2)A/0max(Q /).

Next, by assumption, for every T' > Tj, there exist
t1,...,t¢ € [T, T + 8], such that o, (W(t1,...,t6)) > 7.
Therefore, it follows that, for every T' > Ti, there exist
t1,...,t¢ € [T, T + 6] such that

IW(ts, - .- t6) T (T+8)||2> Tumin(W(t1, - te))|T (T+8)]|2

2 _
> 5 M Omax(Q 12y,
However, Lemma 3 implies that there exists 75 > 0 such

that, for every T3 > Ty and ty,...,t¢ € [T3,T3 +
8, W (tr, - t6) T (T3 + )2 < (V/2)A/omax(Q7/?),
which is a contradiction. Hence, A = 0, and thus,
limg oo J(t) = J.

|

Next, we provide an analytical expression for an upper bound
on the maximal magnitude of the torque required to track a given
reference signal. To compute this bound, we require knowledge
of an upper bound on the initial angular velocity error and the

initial inertia estimate error. We denote these bounds by my
and me, respectively. :[‘hus, let m; > 0 and mg > 0 satisfy
12(0)]l2 < my and [T (O)]]z < mo.

In Theorem 1, it was assumed that (¢) and ©(¢) are bounded
in [0,00). Let y; > 0 and 72 > O satisfy ||v(t)||2 < 11, and
lo(t)||2 < m2 for all ¢ > 0. Furthermore, let my, o'* and

o'nf be positive numbers satisfying || 7||> < mz and o3 >
UmaX(J) > Omin(J) > o'pf.

Theorem 3: Consider the closed-loop system consisting of
(5) and the adaptive control law (7) and (8), where K and () are
positive definite. Denote

M 2 0o (K )V 6(ma 41 )2 (matm 7 4V 6(mg+m 7 )a

(20)
where
sup 2
_ s |9y 2 mj
mp = ' 2D
\/ U}Inf ' Umln(Q)U}Inf
su Umax
Mo 2 \/O'J pamax(Q)m% + p_— ((g)) m% (22)
Then, for all ¢t > 0, [|&(t)|]2 < my, [|T(t)]]2 < My and

(@)l < M.

Proof:  Consider the Lyapunov function (11) as in
Theorem 1. It follows from Theorem 1 that V(& (%), 7 (t)) <
V(@(0),7(0)) for all ¢ > 0 and hence

<7(0)J2(0) + 7T (0)Q™'T(0). (23)
Next, note that
, e IT@I3
Fuin(DSOI + ;= ~
<OTWJIOt) + TTHQTIT () (24)
and
T (0)Jo(0) + TT(0)Q™'T(0)
e 17013
< s SO+ 78 29
Furthermore, since ||&(0) ||z < my and |7 (0)||2 < mo
- 17 (0)]13 5, M3
max J S Omax J AN 26
Tmax () |0 (0)[[3+>——22 (@) ( )m1+omm(Q) (26)
Thus, from (23), (24), (25), and (26), we obtain
NI+ WOB oy 8
Umax(Q) o Umin(Q)
for all ¢ > 0 and hence
~ Umax(J) 2 m%
||w<t>||2 S \/Umin(J) i + Umin(Q)Umin(J)
< 1 (27)
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and

||j(t)||2 < \/O'max(‘])o'max(Q)m% T A7

< mg (28)
where m; and My are defined as in (21) and (22). Thus,
[@(®)l2 < my and [|T(1)]|2 < mo.

Now, the control torque 7 in (8) can be written as

7(t) = —Ko(t) + (@(t) + (1)) * L@ (t) + v (1))

X (T +T) + L)) (T () + T).

Thus, ||7(#)[|2 < omax (K)[|@(#)]l2 + o (#) + v(2) ||| L(@(F) +
v(O)(T () +T)l2+[IL(E(#))(T (£)+T)||2. To obtain an upper
bound on ||7(t)||2, we first find an upper bound on ||L(a)v||2,
where L(-) is given by (4) and a € R® and v € RS. Given
a = [a1 ag a3]", express L(a) in (4) as L(a) = [L1(a) L2(a)],
where

ar 0 O 0 a3 as
Ll(a) = 0 a9 0 5 Lg(a) = as 0 a1
0 0 a3 az a; 0

Furthermore, express v € R® as v = [vf v3 |T, where vy, vs €
R3. Then L(a)v = L1(a)v1 + La(a)vs. Therefore, || L(a)v]|s <
V(@) llonllz + 1 2(a)llosll2, where || - [ is the induced
2-norm. Note that ||L1||; = ||a]loo < ||allo.

To obtain || Ly (a)||;, let [z y 2] T € R3 be such that 2 + Y2+
2% = 1. Then

IL2(a)lli = sup ||Lz(a)[zy 2]"[l2-

[z y z]T€S?

Now

| L2(a)z y 21" |13
= a3(y” +2%) + a3(2* + 2?)
+ai(z" +y°)
+ 2aza2yz + 2a3a1xz + 2a2a1 7y,
= [lall3 = (a32* + a3y® + afa?)
+ 2a3a2yz + 2asa1x2 + 202017y,
= llal3 + (432 + o3y? + a2s?)
— (a3z — agy)? — (asz — a12)* — (asy — ayx)?,
< lall3 + (a32% + a3y® + afa®) < 2||alf3.
Therefore, ||La(a)|l; < v/2||a||2 and hence, ||L(a) - v|2 <
lalllo1]l2 +V2llal[2]|vall2 < V2[lalla([lo1]l2 +[Jvz2]l2). Since,

[o1llz + llvallz < V3[v[l2, | L(a) - v]l2 < V6|all2]|v]l2.
Thus

I7®)l> < Fmax(K) @ (1)]]2 + VEl@(5) + v(B)]I5
X|IT (1) + Tll2 + VOIO21T (1) + T |l2-

Next, (27), (28), and the upper bounds on v(t) and J, yields
o) +v()ll2 < M1 +m and [|T () + T2 < m2 + myg.
Therefore, forallt > 0

I7(®)ll2 < o1 (K)my + V6(im +m)
X (m2 +mg) + V6(ma +mg)ne = M

and the result follows. [ ]

If the upper bounds 71, 12, M1, M2, and m 7 are known, then
M in Theorem 3 can be computed. Thus, Theorem 3 implies
that as long as the actuators can provide a torque of magnitude
M, the controller given by (7) and (8) can track any reference
command signal that satisfies ||v(t)||2 < 71 and ||2(¢)|]2 < 2,
for all t > 0. Thus, M provides a minimum saturation level for
the applied torques.

Remark 1: The bound M computed in Theorem 3 is conser-
vative since the maximum required torque level can be much
lower than M. Theorem 3, however, demonstrates that the con-
troller given by (7) and (8) can function even under saturation
effects, and M represents an upper bound for the required sat-
uration level.

V. INERTIA IDENTIFICATION USING PERIODIC
REFERENCE SIGNALS

The following corollaries of Lemma 1 consider the special
case in which v is constant. The proof is similar to results pre-
sented in [19]. Define

Go(v) 2 {x e RS : v*L(v)x = 0}. (29)

Corollary 1: Assume that v is constant. Under the control
law (7) and (8), J(t) — Go(v) as t — oo.

In Corollary 1, v represents a constant spin about a body-fixed
axis. In the case that this body-fixed axis is the principal axis,
it is equivalent to »* Jv = 0. For such a case, we expect that
7 — 0 ast — oo. The following result shows that the control
law (7) and (8) indeed has this property.

Corollary 2: Assume that v is constant and satisfies v* Jv =
0. Then, under the control law (7) and (8), it follows that 7 — 0
ast — oo.

We now apply Corollary 1 to identify the off-diagonal terms
J12, J23, and J31.

Proposition 1: Let v be constant. If v = [v1 00]T, where
v, # 0, then, under the control law (7) and (8), j13 — J13 and
Jias — Jys as t — oo. Furthermore, if v = [0, 0]T, where
vy # 0, then, under the control law (7) and (8), j23 — Ja3 and
j12 — J12 ast — oo.

Theorem 2 provides sufficient conditions on the reference
signal v that guarantee asymptotic identification of the inertia
matrix. In particular, the reference signal need not be periodic.
However, in the case of a periodic reference signal, we obtain a
stronger result.

Proposition 2: Let v be periodic with period T and sup-
pose there exist 0 < & < fo <,...,< tg such that rank
(W(i1,...,t)) = 6. Then, under the control law (7) and (8),
j(t) — J ast — oo.
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Proof: Since rank(W (i1, ... ,1s)) = 6, there exists v > 0
such that o (W(i1, ..., 1)) > 7. Choose § = 2Tj. Next,
we show that for all 7" > 0, there exist ¢1,...,ts € [T,T + 6]
such that o, (W(t1, ..., t6)) > 7.

Define rem(x, ) as the remainder obtained when z is divided
by y, where x,y € R. Then, T > 0 can be expressed as T' =
mTy + rem(T,Ty), for some non-negative integer m. Choose
t; 2 (m+ 1) Ty + rem(t;, Tp), for alli € {1,...,6}. Clearly,

t; > T and

|ti — T| S |(m + ].)T() — T| + rem(T, T(])7
= |To — rem(T, Tp)| + rem(T, Tp),
S T(] + I‘GH?[(T’7 T(]) S 2T0 = 6.

Thus, t; € [T,T + 6], foralli € {1,...,6}. Finally, since v
has a time period 1}, it follows that v(t;) = v(rem(t;, Ty)) =
v(t;). Thus, W(ty,...,tg) = W(t1,...,ts) and hence,
Omin(W(t1,...,t6)) > . Thus, for all T > 0, there exist
t1,...,tg € [T,T + (5] such that Umin(W(tla - ,tﬁ)) > 9.
The result now follows from Theorem 2. [ |

VI. SIMULATION RESULTS

To illustrate Theorem 1, we demonstrate the results in Propo-
sitions 1 and 2, which demonstrate the convergence of the in-
ertia parameters to their true values, as well as, convergence of
the angular velocity to the reference angular velocity. The mo-
ment of inertia chosen for the model is given as

25 1.2 0.9
J=112 17 1.4|kgm>.
09 14 15

For simulations demonstrating Proposition 1, the gains for the
controller are chosen to be K = 20/5 and () = 3001, and the
initial condition for w is chosen such that ©(0) = [3 3 3] corre-
sponding to the two reference angular velocity signals given in
Proposition 1, where each of v1 and v are chosen to be 0.5. The
gains K and @ for the controller, were chosen by trial-and-error
to obtain reasonable convergence rates. Also

A 25 0.6 0.5
JO)= (06 12 2 |kg/m?
05 2 10

The first reference angular velocity to be tracked is given by
v = [0.5 0 0]T rad/s. As guaranteed by Proposition 1, the es-
timates j13 and j12, converge to the true values Ji3 and Jio,
respectively, as shown in Fig. 1. However, Jas is not guaran-
teed to converge to .Jo3, and as shown in Fig. 1, does not. Also,
Theorem 1 implies that the angular velocity converges to the ref-
erence angular velocity v. The corresponding numerical results
are shown in Fig. 2.

Next, consider the reference angular velocity v = [0 0.5 0] T
rad/sec. In this case, Proposition 1 implies that the off-diagonal
terms Jo3 and .J1 converge to their true values. Again, note that
the estimate for the off-diagonal entry .J;3 does not converge to
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Fig. 1. Identification of off-diagonal terms in the inertia matrix using v =
[0.500]T.
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its true value, and the angular velocity converges to the reference
v = [0 0.5 0]T rad/s as seen in Figs. 3 and 4. Hence, the off-



CHATURVEDI et al.: GLOBALLY CONVERGENT ADAPTIVE TRACKING OF ANGULAR VELOCITY AND INERTIA IDENTIFICATION

_ 4 T T T T
o —
8 J
"
©
o
s i
©
>
1 1 1 1 1
10 12 14 16 18 20
— T T T T
o
] — O
g %
I
©
['4 4
rs
S
a
1 1 1 Il L
10 12 14 16 18 20
T T T T
Iy
@
]
k=]
I
o
T
o
= _
4
1 1 1 L Il
10 12 14 16 18 20
Time [sec]

Fig. 4. Angular velocity tracking for v = [0 0.5 0]T.

N

Yaw Rate [rad/sec]
o

Pitch Rate [rad/sec]
o -
T
lof —
i >
18 >
o
[N —
o
|
o
|

Roll Rate [rad/sec]

-2 L L L L L L I ! !

Time [sec]

Fig. 5. Angular velocity tracking for v(¢) = [sin ¢ sin 2¢ sin 3¢]T.

diagonal terms .J12, .J13, and .Jo3 can be identified by performing
two constant tracking maneuvers.

We now consider periodic maneuvers for identifying
the entire inertia matrix. To satisfy the conditions of
Proposition 2, consider the periodic reference angular ve-
locity v/(t) = [sin ¢ sin 2¢sin 3¢]T rad/s. Then, with ¢; = 0 and
to = /2, we obtain

1 0 0 0 3 2

0 2 0 3 0 1

Al WO ] |0 0 3 2 1 0
W(O’W/Q)_[W(W/Z)}_ 0 0 0 -1 0 -1
~1 =21 0 0 0

0 0 0 -3 0 1

The maximum and minimum singular values of W(0, w/2) are
5.2406 and 0.3512, respectively. Therefore, rank W(0,7/2) =
6. Hence, Theorem 1 and Proposition 2 guarantee that, under the
control law (7) and (8), @(t) — 0 and 7 () — J. We choose
K = 15013, Q@ = 1001, and w(0) = O for simulations, and
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J(0) is chosen as before. Figs. 5 and 6 show that w(t) — 0
as t — oo, while Figs. 7 and 8 indicate that 7 (¢t) — J(¢) in
accordance with Proposition 2. The control effort is shown in
Fig. 9.
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low friction, 3-D motion with unrestricted roll and yaw and £45° pitch.
VII. EXPERIMENTAL SETUP AN A

In this section, we discuss implementation issues, as well as,
modeling of the actuator moments in the experimental setup.
Our experimental implementation uses the Triaxial Attitude
Control Testbed (TACT) in the Attitude Dynamics and Control
Laboratory of the University of Michigan, Ann Arbor. This
testbed is described in [1], [21], and [22].

The experimental testbed is based on a spherical air bearing
manufactured by Space Electronics, Inc., Berlin, CT. An 11-in
diameter aluminum sphere floats on a thin film of air that exits
from holes located in the surface of the cup. Air at 70 psi is
supplied to the cup by means of a hose that passes through the
center of the vertical support. The spherical air bearing allows
unrestricted motion in yaw (rotation about the vertical axis) and
roll (rotation about the longitudinal shaft axis). The plates and
shafts are designed to allow £45° pitch (rotation about a hori-
zontal axis) at all roll and yaw angles.

Once the main components are mounted, additional masses
can be added to modify the mass distribution. This mass dis-
tribution balances pitch motion. However, when the center of
mass is not located at the rotational center, the body possesses
pendulum dynamics [23]. In the experimental results reported
herein, the center of mass of the supported body is assumed to
be located at the pivot point. This balancing implies that there
are no gravitational moments on the body so that the body is Y (Pitch)
modeled by the equations of motion given in (1).

Fig. 10 shows a picture of the TACT and Fig. 11 shows a
schematic of the relative positions of the thrusters. The TACT
has four thrusters, each of which has nonlinear input-output X (Roll) ié
(I/O) characteristics. In [1], an adaptive feedback-linearization-
based controller was designed to handle this nonlinearity. In the X (Roll) 0 0
present paper, for simplicity, we identify the nonlinearity and T
invert it in the controller. A maximum torque of about 20 N-m
can be generated using these thrusters.

Figs. 12 and 13 represent the forces due to the thrusters and Z (Yaw)
the corresponding torques about the pivot point. Let V¢, denote
the voltage applied to the ¢th thruster, and let F; and 7; denote the

Fig. 12. Forces due to thrusters on the TACT.

v

Fig. 13. Torque applied due to thrusters on the TACT.
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Fig. 14. Data for force versus input voltage for thrusters 1 and 2 (N,).
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Fig. 15. Data for force versus input voltage for thrusters 3 and 4 (N},).

force and torque due to the ith thruster, where ¢ € {1,2,3,4}.
It can be seen that the net torque due to the thrusters is given by

Tyaw = —(T1 + T2) cos f (30)
Tpiteh = — (T3 + T4) cos § 31
Troll = [(T1 — T2) + (73 — 74)] sin @ (32)

where 7; = rFj, r is the length and 6 is the angle as shown in
Fig. 12.

Experiments were performed on the TACT to determine the
force generated by the thruster as a function of voltage. These
experiments involve balancing the TACT by masses for a given
thruster voltage, and then computing the force of the thruster
from the torque required to balance the masses. Figs. 14 and 15
represent the one-to-one mappings obtained between the input
voltage applied to a thruster and the resulting thrust force, for
thruster pairs (1,2) and (3,4), respectively. The nonlinear maps

in Figs. 14 and 15 were obtained by fitting a third order polyno-
mial using least squares. The approximate expressions, N, ()
and V() for each of the thruster in the thruster pairs (1,2) and
(3,4), respectively, are given by

Ny (z) = 0.122% — 0.0042% + 0.262 + 0.01,
N, (x) = 0.12% — 0.002327 + 0.282 — 0.01

(33)
(34)

where z is in volts and N, (z) and N, (z) are in newtons. In
other words, Fi(z) = Fa(z) = Ny(z) and F3(z) = Fy(z) =
N, ().

Now ; = rF;,i € {1,2,3,4}, where r is the length as shown
in Fig. 12. Substituting this in (30)—(32) and expressing F}, ¢ €
{1,2, 3,4} in terms of N, (z) and NV, (z) yields expressions for
torques along the body axes given by

Tyaw = —T1 [Ny (Vi) + Ny (V)] 35)
Tpiteh = —T1INp (Vi) + Np (V)] (36)

Troll = Tz([M/(Vfl) (va)]
+ WV (Vi) = Np(Ve,))) (37)

where the lengths 1 = 0.945 m and 72 = 0.33 m.

Note that Tyaw, Tpitch, and Tyon are computed by the adap-
tive algorithm. Furthermore, (35)—(37) are linear equations with
Ny (Vi) Ny (Vi ), Np(Vy, ), and N, (Vy,) as unknowns, and
that Ny (-) and \V,, () are known invertible functions. Since there
are four unknowns and three equations, there are an infinite
number of solutions for the corresponding thruster voltages.
These solutions represent alternative actuation schemes that can
be implemented using four thrusters to generate three indepen-
dent torques.

Out of the possible solutions, we select the scheme wherein
the load for the roll moment is shared symmetrically between
the thruster pairs (1,2) and (3,4). This choice results in the con-
straint equation

'A/'y(Vfl) _MJ(sz) = NP(Vfa) _NP(VfA)' (38)

Then, solving for the four unknowns in (35)—(37), using (38),
and inverting the nonlinear map yields the thruster voltages

Vi, =Nt <—T2VTIV + ;;1) (39)
Vi, =N <—T27:V - ;;1) (40)
Vi, = N <—T;Tt1} + 17‘);1) (41)
Vi, =N, <—Tth1} - Z;’;l) . 42)

VIII. EXPERIMENTAL RESULTS

In this section, we implement the controller (7) and (8) on the
TACT testbed. To demonstrate the effectiveness of the control
algorithm, we perform two sets of experiments. In the first set,
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we track a reference angular velocity, starting from an initial
angular velocity provided by giving the TACT an initial push.
The aim of this set of experiments is to demonstrate the angular
velocity tracking capability of the designed controller.

In the next set of experiments, the aim is to demonstrate the
parameter identification capability of the control algorithm.
These experiments are guided by the conditions given in propo-
sitions 1 and 2. Whereas Proposition 1 requires a constant
reference angular velocity v about one of the body axes, Propo-
sition 2 requires a periodic angular velocity v along all three
body axes. Unfortunately, this requirement from Proposition 2
is stringent for two reasons. First, it is difficult to balance the
TACT so that its center of gravity lies exactly at the pivot point.
Second, the support of the TACT restricts the free motion in
pitch, and hence, limits the class of angular velocity signals
that can be given to the controller to track.

Thus, for the reasons mentioned above, it is difficult to
demonstrate Proposition 2. However, we demonstrate Propo-
sition 1 in the second set of experiments, where a constant
angular velocity reference is given and the off-diagonal inertia
estimates are computed.

Again, due to the presence of an onboard computer, sensors
and the associated electronics and the electrical wiring, the mo-
ment of inertia of the TACT is unknown. This limits our ability
to simulate a configuration that is close to the TACT.

A. Angular Velocity Tracking

As mentioned above, we push the TACT to provide an initial
angular velocity, and command a constant angular velocity ref-
erence to the controller. The chosen reference angular velocity
isv = [30 0 — 3sin(0.25¢)]1°/s, and the controller gains are
chosen to be

30 0 0
K=|0 7 0| @Q=100xdiag(1,1,1,7,1,1).
0 0 10

Furthermore, .J(0) = diag(50, 50, 5).

We now compute the bounds mj, mo, and M given by
Theorem 3. Corresponding to the reference signals we choose
m ~ 30°/s = 0.52 rad/s and 9, ~ 0.75°/s?> = 0.0131
rad/s?. Also, my; = 75 kg-m?. Since we start from rest,
m1 = 0.52 rad/s, and assuming that our estimates for the
principal moment of inertia are close to about 5 kg-m?, we
choose ma = 10 kg-m2.

Now, choose o7 = 50 kg:m?, o' = 5 kg-m?, and note that
Omin(Q) = 100, 0ax(Q) = 700, and o pax(K) = 75. Then
computing from (21), (22), and (20), we obtain 7m; = 1.7151
rad/s ~ 100° /s, my = 101.5 kg-m2, and M ~ 1990 N-m. Note
that this is a conservative estimate, and as we see subsequently,
our controller performs satisfactorily with actuators having a
much lower torque capacity of about 20 N-m.

The angular velocity tracking error, plotted in Fig. 16, shows
that the yaw angular velocity error converges to zero quickly,
whereas the error in pitch converges to zero relatively slowly.
This suggests an increase in the feedback gain in K corre-
sponding to pitch oscillations. However, attempts at this caused
large transients, in which the amplitude of the pitch oscillation
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Fig. 16. Error in angular velocity for #(¢) = [30 0 — 3 sin(0.25¢)]T. The roll
oscillation of amplitude 0.5° is due to imperfect balance of the TACT.
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Fig. 17. Angular velocity tracking for v(t) = [30 0 — 3sin(0.25¢)]T.

was close to 45° pitch constraint. Nevertheless, it is clear that
the amplitude of the oscillations in the pitch decrease with time
after 75 s.

In roll response, the angular velocity error is modulated by a
high frequency component. A power spectrum analysis of the
signal reveals a harmonic component with a frequency of about
6.5 rad/s and amplitude 0.5°. The only frequency component of
v(t) is 0.25 rad/s, and hence, the ratio of the noise frequency to
the reference signal is approximately 25. This oscillation was
not discernible to the human eye. The roll oscillations are be-
lieved to be due to imperfect balancing of the TACT, leading to
pendulum-type behavior due to gravitational moments [23].

Next, the roll data are filtered and the angular velocity error
is shown in Fig. 18. The angular velocities are shown in Fig. 17.
From this plot, it is clear that the angular velocity converges to
the reference angular velocity, even for large initial errors, thus,
demonstrating the global tracking ability of the controller.

B. Inertia Parameter Identification

In this section, we demonstrate the parameter identification
ability of the controller (7) and (8). Specifically, by means of
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Proposition 1, we use two constant maneuvers to identify the
off-diagonal entries of the inertia matrix. Thus, we command
the constant signals v; = [25 0 0]7°/s and v, = [0 25 0]T°/s.
Figs. 19, 20, 21, and 22 show the response of the TACT to the
reference angular velocities.
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Fig. 21. Angular velocity tracking for v, = [0 25 0]
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Fig. 22. Inertia estimates for v» = [0 25 0]™.

Since the TACT is constrained to a pitch angle of magnitude
less than 45°, it is not possible to allow the TACT to follow the
reference command v, starting from a position as in Fig. 10,
since a pitch rate of 25°/s might result in a collision with the
supporting pillar. Therefore, before commanding v5, TACT was
rotated by 90° about the z-axis (see Fig. 12 for an illustrative
diagram of the body-fixed axes for the TACT). In the new po-
sition, the y-axis points vertically and, hence, a pitch maneuver
(i.e., rotation about y-axis) involves rotations in the horizontal
plane, thus, avoiding collision with the supporting pillar.

Ideally, the center of mass is balanced to lie at the pivot point
of the TACT, and thus, there are no gravitational moments. Thus,
experiments can be performed starting from an arbitrary initial
attitude since attitude does not play a role in the dynamics of
the system. However, in practice, there is some residual gravita-
tional moment due to unbalanced mass distribution. Hence, the
TACT has to be rebalanced to attain the new initial configura-
tion. Due to this balancing requirement, the reference signals 1/
and v» were applied to different mass configurations. Thus, the
inertia estimates for the two cases cannot be compared.
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The gains are chosen to be

14 0 0
K=|0 14 0| @Q=diag(70,50,50,14,14,25).
0 0 3

Figs. 20 and 22 show that the off-diagonal inertia estimates con-
verge. Although the actual inertia values are not known, calcula-
tions on a simple model of the TACT suggest that the estimates
obtained experimentally have the same order of magnitude as
the values computed for the off-diagonal terms of the inertia ma-
trix. To estimate the remaining entries of the inertia matrix, we
need to use reference angular velocities that satisfy the condi-
tions of Theorem 2 or the conditions mentioned in Proposition 2.

IX. CONCLUSION

An adaptive feedback control algorithm is developed that pro-
vides global tracking of reference angular velocity signals. The
control algorithm assumes no knowledge of the inertia of the
body and is, thus, unconditionally robust with respect to this
parametric uncertainty. Using a Lyapunov argument, it is shown
that the angular velocity tracking error converges to zero and
an analytical expression for an upper bound on the magnitude
of the required torque is presented for a given reference signal.
Furthermore, the control algorithm is used to identify the in-
ertia matrix when the reference angular velocity signal satisfies
certain conditions. Numerical simulations demonstrate tracking
and identification of the inertia matrix under such conditions.
Finally, implementation issues using the TACT to test the con-
trol algorithms are discussed. Results obtained from the exper-
iments validate the effectiveness of the adaptive control algo-
rithm in tracking an angular velocity reference and estimating
the moment of inertia.

REFERENCES

[1] N. A. Chaturvedi, “Adaptive tracking of angular velocity for a planar
rigid body with unknown models for inertia and input nonlinearity,”
IEEE Trans. Contr. Syst. Technol., vol. 14, no. 4, Jul. 2006.

[2] R. W. Brockett, “Asymptotic stability and feedback stabilization,” Dif-
ferential Geometric Contr. Theory, Progress in Mathematics, vol. 27,
pp. 181-191, 1983.

[3] D. Aeyels and M. Szafranski, “Comments on the stabilizability of the
angular velocity of a rigid body,” Syst. Control Lett., vol. 10, no. 1, pp.
35-39, Jan. 1988.

[4] E. D. Sontag and H. J. Sussmann, “Further comments on the stabiliz-
ability of the angular velocity of a rigid body,” Syst. Control Lett., vol.
12, no. 3, pp. 213-217, Apr. 1989.

[5] C. I. Byrnes and A. Isidori, “New results and examples in nonlinear

feedback stabilization,” Syst. Control Lett., vol. 12, no. 5, pp. 437-442,

Jun. 1989.

C.-J. Wan and D. Bernstein, “Nonlinear feedback control with global

stabilization,” Dyn. Control, vol. 5, no. 4, pp. 321-346, Oct. 1995.

H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, “Attitude stabi-

lization of a rigid spacecraft using two control torques: A nonlinear

control approach based on the spacecraft attitude dynamics,” Auto-

matica, vol. 30, no. 6, pp. 1023-1027, Jun. 1994.

H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, “Attitude stabi-

lization of a rigid spacecraft using two momentum wheel actuators,”

AIAA J. Guid. Contr. Dyn., vol. 18, no. 2, pp. 256-263, Mar.—Apr.

1995.

[6

—_

[7

—

[8

—

[9] H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, “Attitude sta-
bilization of a rigid spacecraft using momentum wheel actuators oper-
ating in a failure mode,” World Space Congr., Aug. 1992, IAF-92-0035.

[10] H. Krishnan, M. Reyhanoglu, and N. H. McClamroch, “Attitude stabi-
lization of a rigid spacecraft using gas jet actuators in a failure mode,”
in Proc. 31st IEEE Conf. Dec. Contr., 1992, pp. 1612-1617.

[11] R. Outbib and G. Sallet, “Stabilizability of the angular velocity of a
rigid body revisited,” Syst. Control Lett., vol. 18, no. 2, pp. 93-98, Feb.
1992.

[12] J. L. Junkins and J. D. Turner, Optimal Spacecraft Rotational Maneu-
vers. New York: Elsevier, 1985.

[13] K. D. Bilimoria and B. Wie, “Time-optimal three-axis reorientation of
arigid spacecraft,” J. Guid. Contr. Dyn., vol. 16, no. 3, pp. 446-452,
May/Jun. 1993.

[14] B.Wie,R. Sinha, J. Sunkel, and K. Cox, “Robust fuel- and time-optimal
control of uncertain flexible space structures,” in Proc. Amer. Contr.
Conf., 1993, pp. 2475-2479.

[15] T. A. W. Dwyer and A. L. Batten, “Exact spacecraft detumbling and
reorientation maneuvers with gimbaled thrusters and reaction wheels,”
J. Astronaut. Sci., vol. 33, no. 2, pp. 217-232, Apr./Jun. 1983.

[16] J.Dzielski, E. Bergmann, J. Paradiso, D. Rowell, and D. Wormley, “Ap-
proach to control moment gyroscope steering using feedback lineariza-
tion,” J. Guid. Contr. Dyn., vol. 14, no. 1, pp. 96-106, Jan./Feb. 1991.

[17] M. S. de Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. Zhang, Lya-
punov-Based Control of Mechanical Systems, ser. Control Engineering
Series. Cambridge, MA: Birkhauser, 2000.

[18] J. L. Junkins, M. R. Akella, and R. D. Robinert, “Nonlinear adaptive
control of spacecraft maneuvers,” J. Guid. Contr. Dyn., vol. 20, no. 6,
pp. 1104-1110, Nov./Dec. 1997.

[19] J. Ahmed, V. T. Coppola, and D. S. Bernstein, “Asymptotic tracking of
spacecraft attitude motion with inertia matrix identification,” J. Guid.
Contr. Dyn., vol. 21, no. 5, pp. 684-691, Sep./Oct. 1998.

[20] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice-
Hall, 2002.

[21] D. S. Bernstein, N. H. McClamroch, and A. Bloch, “Development of
air-spindle and triaxial air-bearing testbed for spacecraft dynamics
and control experiments,” in Proc. Amer. Contr. Conf., 2001, pp.
3967-3972.

[22] S.Cho,J. Shen, N. H. McClamroch, and D. S. Bernstein, “Equations of
motion of the triaxial control testbed,” in Proc. 40 th IEEE Conf. Dec.
Contr., 2001, pp. 3429-3434.

[23] J. Shen, A. Sanyal, N. A. Chaturvedi, D. S. Bernstein, and N. H. Mc-
Clamroch, “Dynamics and control of a 3D pendulum,” in Proc. 43rd
IEEE Conf. Dec. Contr., 2004, pp. 323-328.

Nalin A. Chaturvedi received the B.Tech. and
M.Tech. degrees in aerospace engineering from
the Indian Institute of Technology, Bombay, India,
in 2003, where he received the Institute Silver
Medal. He is currently pursuing the Ph.D. degree in
aerospace engineering at the University of Michigan,
Ann Arbor.

He is a Research Fellow with the University of
Michigan. His main research interests include non-
linear stability theory with applications to aerospace
and mechanical systems/robotics, geometric me-
chanics, nonlinear and geometric control, nonlinear dynamical systems, state
estimation, and adaptive control with applications to nonaffine systems.

Dennis S. Bernstein (M’82-F’00) is a Professor
in the Aerospace Engineering Department at the
University of Michigan, Ann Arbor. His research
interests include system identification, state esti-
mation, and adaptive control, with application to
vibration and flow control and data assimilation.

Dr. Bernstein is currently the Editor-in-Chief
of the IEEE Control Systems Magazine. He is the
author of Matrix Mathematics, Theory, Facts, and
Formulas with Application to Linear Systems Theory
(Princeton Univ. Press, 2005).




CHATURVEDI et al.: GLOBALLY CONVERGENT ADAPTIVE TRACKING OF ANGULAR VELOCITY AND INERTIA IDENTIFICATION

aerospace flight systems.

N. Harris McClamroch (M’66-F’88) received the
Ph.D. degree in engineering mechanics from The
University of Texas at Austin, Austin.

In 1967, he joined the University of Michigan,
Ann Arbor, where he is currently a Professor in the
Department of Aerospace Engineering. During the
past fifteen years, his primary research interest has
been in nonlinear control. He has worked on many
control engineering problems arising in flexible
space structures, robotics, automated manufacturing,
control technologies for buildings and bridges, and

Dr. McClamroch received the Control Systems Society Distinguished

Member Award and the

IEEE Third Millennium Medal. He has served as

Associate Editor and Editor of the IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, and he has held numerous positions, including President, in the
IEEE Control Systems Society.

_

&
!

brid predictive control.

853

J. Ahmed received the Ph.D. degree with a focus on
spacecraft control from the University of Michigan in
2000.

He is currently with the Research and Technology
Center of the Robert Bosch Corporation, Palo Alto,
CA. His current interests include the development of
model-based control for complex physical systems
involving thermal-chemical-fluid interactions.

F. Bacconi was born in Florence, Italy on April 26,
1974. He received his M.S. degree cum laude in au-
tomation and control engineering from the Univer-
sity of Florence, Florence, Italy, in 2002. The topic of
his M.S. thesis was attitude control of underactuated
spacecraft in the presence of actuator failures. He is
currently pursuing the Ph.D. degree in automatic con-
trol at the Dipartimento di Sistemi e Informatica at
the Universita di Firenze.

His research interests include areas of control of
aerospace systems, formation flying control, and hy-



