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LQG Control with an H,, Performance Bound:
A Riccati Equation Approach

DENNIS S. BERNSTEIN, MEMBER, IEEE, AND WASSIM M. HADDAD, MEMBER, IEEE

Abstract—An LQG control-design problem involving a constraint on
H,, disturbance attenuation is considered. The H, performance con-
straint is embedded within the optimization process by replacing the
covariance Lyapunov equation by a Riccati equation whose solution leads
to an upper bound on L, performance. In contrast to the pair of separated
Riccati equations of standard LQG theory, the H..-constrained gains are
given by a coupled system of three modified Riccati equations. The
coupling illustrates the breakdown of the separation principle for the H..-
constrained problem. Both full- and reduced-order design problems are
considered with an H, attenuation constraint involving both state and
control variables. An algorithm is developed for the full-order design
problem and illustrative numerical results are given.

1. INTRODUCTION

THE fundamental differences between Wiener-Hopf-Kalman
(WHK) control design (for example, LQG theory [1]) and Ho,
control theory [2]-[4] can be traced to the modeling and treatment
of uncertain exogenous disturbances. As explained by Zames in
the classic paper [2], LQG design is based upon a stochastic noise
disturbance model possessing a fixed covariance (power spectral
density), while H, theory is predicated on a deterministic
disturbance model consisting of bounded power (square-integra-
ble) signals. Since LQG design utilizes a quadratic cost criterion,
it follows from Plancherel’s theorem that WHK theory strives to
minimize the L, norm of the closed-loop frequency response,
while H,, theory seeks to minimize the worst-case attenuation.
For systems with poorly modeled disturbances which may possess
significant power within arbitrarily small bandwidths, H, is
clearly appropriate, while for systems with well-known distur-
bance power spectral densities, WHK design may be less
conservative.

In addition to the fact that H,, design embodies many classical
design objectives [5], it also presents a natural tool for modeling
plant uncertainty in terms of normed H,, plant neighborhoods. In
contrast, the H, topology has been shown in [6] to be too weak for
a practical robustness theory, while the H., norm is not only
suitable for robust stabilization but is also conveniently submulti-
plicative. Within the WHK state-space theory, however, the
appropriate robustness model appears not to be a nonparametric
normed plant neighborhood as in H, theory, but rather a
parametric uncertainty model. The principal technique for bound-
ing the effects of real parameters within state-space models is
Lyapunov function theory (see, e.g., [7]-[16] and the references
therein). Such structured uncertainties are difficult to capture
nonconservatively within H, theory except with specialized
refinements [17].

Manuscript received November 24, 1987; revised August 1, 1988 and April
20, 1988. Paper recommended by Associate Editor, A. C. Antoulas. This
work was supported in part by the Air Force Office of Scientific Research
under Contracts F49620-86-C-0002 and F49620-87-C-0108.

D. S. Bernstein is with the Government Aerospace Systems Division,
Harris Corporation, Melbourne, FL 32902.

W. M. Haddad is with the Department of Mechanical and Aerospace
Engineering, Florida Institute of Technology, Melbourne, FL 32901.

IEEE Log Number 8824525.

In spite of the fundamental differences between WHK design
and H., theory, a significant connection was discovered in [18].
Specifically, Petersen observed that a modified algebraic Riccati
equation developed for parameter-robust full-state-feedback con-
trol can be reinterpreted to yield controllers satisfying Ho
disturbance attenuation bounds. This relationship was further
explored in [19] where it was shown that the H.-optimal static
full-state-feedback controller is also optimal over the class of
dynamic full-state-feedback controllers. The results of [18]-[20]
thus solve the standard problem considered in [3] and [4] for the
full-state-feedback case.

The extension of these results to the standard problem for
dynamic output-feedback compensation, however, was not given
in [18]-[20]. Within the realm of quadratic robust stabilization,
the dynamic output-feedback problem was addressed in [7]. The
results of [7] involve a pair of decoupled modified Riccati
equations along with an auxiliary inequality. Using different
techniques, a more complete solution was obtained in [13] and
[14] involving a coupled system of three modified Riccati
equations for full-order dynamic compensation and a coupled
system of four modified Riccati and Lyapunov equations in the
fixed-order (i.e., reduced-order) case as in [21]. The results of
[13] and [14] thus raise the following question: What is the
relevance of this system of coupled design equations to the
problem of H,, disturbance attenuation via fixed-order compensa-
tion?

To begin to address this question, the goal of the present paper
is to develop a design methodology for fixed-order, i.e., full- and
reduced-order, L, optimal control which includes as a design
constraint a bound on H.,, disturbance attenuation. There are three
principal motivations for developing such a theory. First, the
results of [18]-[20] present full-state-feedback controllers whose
form is directly analogous to the standard LQR solution.
However, no L, interpretation was provided in [18]-[20] to
explain this similarity. The present paper thus provides an L,
interpretation within the context of an H,, design constraint. A
novel feature of this mathematical formulation is the dual
interpretation of the disturbances. That is, within the context of L,
optimality the disturbances are interpreted as white noise signals
while, simultaneously, for the purpose of H.,, attenuation the very
same disturbance signals have the alternative interpretation of
deterministic L, functions. This dual interpretation is unique to
the present paper since stochastic modeling plays no role in [18]-
[20]. We also note recent results obtained in [22] which essentially
show that the H, plant topology can be induced by imposing L,
and L., topologies on the disturbance and output spaces, respec-
tively. For further investigation into the relationships between L,
and H,, control, see [22a].

The second motivation for our approach is the simultaneous
treatment of both L, and H, performance criteria which
quantitatively demonstrates design tradeoffs. Specifically, in
order to enforce the H.,, constraint we derive an upper bound for
the L, criterion. Minimization of this upper bound shows that the
enforcement of an H.. disturbance attenuation constraint leads
directly to an increase in the L, performance criterion.

The third motivation for our approach is to provide a
characterization of fixed-order dynamic output-feedback control-
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lers yielding specified disturbance attenuation. Existing optimal
H,, design methods tend to yield high-order controllers. Intui-
tively, solving the fixed-order design equations for progressively
smaller H, disturbance attenuation constraints should, in the
limit, yield an H-optimal controller over the class of fixed-order
stabilizing controllers. Although our main result gives sufficient
conditions, we also state hypotheses under which these conditions
are also necessary (Proposition 4.1). It should also be noted that
the inherent coupling among the modified Riccati equations shows
that the classical separation principle of LQG theory is not valid
for the H,-constrained full- and reduced-order design problems.

In the full-order case involving equalized L, and H, perform-
ance weights, we also show that the H-constrained gains are
given by two rather than three equations (Section V). These two
equations are precisely those given in [26] for the pure H.
problem without an L, interpretation. Since the results of [26] are
necessary as well as sufficient, these connections show that our
sufficient conditions (at least in this special case) are also
necessary. The authors are indebted to Prof. J. C. Doyle for
pointing out these relationships and to D. Mustafa for providing a
preprint of [45] which further clarifies these connections.

Besides establishing connections with robust stabilizability in
state-space systems, an immediate benefit of the modified Riccati
equation characterization of H,-constrained controllers is the
opportunity to develop novel computational algorithms for con-
troller synthesis. To this end a continuation algorithm has been
developed for solving the coupled system of three modified
Riccati equations. In a numerical study (see Section VIII) we have
demonstrated convergence of the algorithm and reasonable
computational efficiency. Homotopy methods were suggested for
the coupled Riccati equations because of their demonstrated
effectiveness in related problems which also involve coupled
modified Riccati equations [23]-[25]. Since H., control problems
are solvable by established numerical methods [4], it should be
stressed that the objective of these numerical studies is not to make
direct comparisons with existing H, synthesis algorithms, but
rather to demonstrate solvability of the coupled modified Riccati
equations.

The contents of the paper are as follows. After presenting
notation at the end of this section, the statement of the H-
constrained LQG control problem is given in Section II. The
principal result of Section II (Lemma 2.1) shows that if the
algebraic Lyapunov equation for the closed-loop covariance is
replaced by a modified Riccati equation possessing a nonnegative-
definite solution, then the closed-loop system is asymptotically
stable, the H,, disturbance attentuation constraint is satisfied, and
the L, performance is bounded above by an auxiliary cost
function. The problem of determining compensator gains which
minimize this upper bound subject to the Riccati equation
constraint is considered in Section III as the auxiliary minimiza-
tion problem. Necessary conditions for the auxiliary minimization
problem (Theorem 3.1) are given in the form of a coupled system
of three modified Riccati equations. In Section IV the necessary
conditions of Theorem 3.1 are combined with Lemma 2.1 to yield
sufficient conditions for closed-loop stability, H, disturbance
attenuation, and bounded L, performance. In Section V we derive
alternative forms of the design equations and specialize the results
to the simpler case in which the LQG weights are equal to the H,,
weights. To achieve further design flexibility, the reduced-order
control-design problem is considered in Section VI. A simplified
qualitative analysis of the full-order design equations is given in
Section VII to highlight important features with regard -to
existence and multiplicity of solutions. Finally, a numerical
algorithm is presented in Section VIII along with illustrative
numerical results. A series of designs is obtained to illustrate
tradeoffs between the L, and H,, aspects and the conservatism of
the L, performance bound. Although in the present paper the
numerical results are limited to the case of full-order dynamic
compensation, reduced-order designs have been obtained in [27]
using Theorem 6.1.
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Notation

Note: All matrices have real entries. )
R, R, R, E Real numbers, 7 X § real matri-
ces, R7*!, expected value

r X r identity matrix, transpose,

In ( )Tr OrXSJ 0r .
r X s zero matrix, 0,,

tr, p( ) Trace, spectral radius

8, N, P r X r symmetric, nonnegative-
definite, positive-definite matrices

Z2i<2,, 2,<2Z, 2,-2, € N, Z, - zZ, € P,

Z,,2,€8
Positive integers; n + n.(n. < n)
n, m, l, n., Ai-dimensional vectors

]

n,m,l, n.,p,q,qe; A
x’ u’ y’ xc’ x

x

A, B C n X n,n X m,l X n matrices

A, B, C. n. X ng, n. X I, m X n.matrices

. A BC.

4 [Bcc A, ]

w(-) p-dimensional standard white
noise

D, D, n X p, 1 x p matrices; D;DI = 0

Vla V2 DlDlT’ DZDZT; V2 € P,

. D,

17 Vl onxnc

Oncxn BcVZBZ-

E, E, g X n, ¢ X m matrices; ETE;, = 0
[E, ExC.]

R, R, ETE,, ETE;; R, € P™

- Ry Opun, e

=FTE

R [on‘.xn CZRZCL':I

E\», Ey» geo X N, Gw X m matrices;
ETNEZQ\,:O

E. [Eie EzaC.]

Rlow RZoo E{;Elm, EIGEZQ,

~ Rlao onxnc o~ i

R, =ETE,
[oncxn CZRzonCc b

NP> BR;'BT, CTV;!C

8,y Nonnegative constant, positive

constant

II. STATEMENT OF THE PROBLEM

In this section we introduce the LQG dynamic output-feedback
control problem with constrained H, disturbance attenuation
between the plant and sensor disturbances and the state and
control variables. Without the L, performance criterion, the
problem considered here essentially corresponds to the standard
problem of [3] and [4]. For simplicity we restrict our attention to
controllers of order n. = n only, i.e., controllers whose order is
equal to the dimension of the plant. This constraint is removed in
Section VI where controllers of reduced order are considered.
Hence, throughout Sections II-V the controller dimension 7. and
closed-loop plant dimension i 2 n + n, should be interpreted as
n and 2n, respectively. Controllers of order greater than n are
generally of less interest in practice and thus are not considered in
this paper.
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H_-Constrained LQG Control Problem: Given the nth-order
stabilizable and detectable plant

xX(t)=Ax(t)+Bu(t)+D,w(?), 2.1
y()=Cx(t)+D,w(t) .2)

determine an nth-order dynamic compensator
X (1) =Acx: (1) + Bcy (1), 2.3)
u(t)=Cex(t) 2.9

which satisfies the following design criteria:

i) the closed-loop system (2.1)-(2.4) is asymptotically stable,
i.e., A is asymptotically stable;

ii) the g X p closed-loop transfer function

H(s) & E (sI;-A)"'D .5)
from w(f) to Ejox(?) + Ez,,u(f) satisfies the constraint
I H (o= (2.6)

where ¥ > 0 is a given constant; and
iii) the performance functional

J(Ac, B, Co) £ lim ElxT(O)Rx(0) + uT (D Ru()(2.7)

is minimized.
Note that the closed-loop system (2.1)~(2.4) can be written as

#HO=A%(t)+Dw(t) 2.8)
and that (2.7) becomes
J(A, B, C)= }im BI(Ex(1) T(EX()]
=lim EL£T(H)Rx(1)). 2.9

Remark 2.1: Since (4, B, C) is assumed to be stabilizable and
detectable the set of nth-order stabilizing compensators is non-
empty.

Remark 2.2: 1t is easy to show that the performance functional
(2.7) is equivalent to the more familiar expression involving an
averaged integral, i.e.,

JAc, Be, CO=lim ; & {So XT(SIRIX(S)

+uT(s)R u(s)] ds

Remark 2.3: For convenience we assume D;D] = 0, which
effectively implies that the plant disturbance and sensor noise are
uncorrelated.

Remark 2.4: One may also consider a general L, optimization
problem of the form min |7 — UQV|,, where Q is a
parameterization of stabilizing controllers. In this case, without a
constraint on the MacMillan degree of Q, it may be possible to
satisfy (2.6) with smaller values of .

Note that the problem statement involves both L, and H,
performance weights. In particular, the matrices R, and R; are the
L, weights for the state and control variables. By introducing L,-
weighted variables

2(ty=Ex(1), v(t)=Eyu(t)
the cost (2.7) can be written as

J(Ac, B, Co)=lim BlzT(1)z(1)+ vT(v(D).
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For convenience we thus define Ry £ ETE, and R, 2 ETE,
which appedr in subsequent expressions. Although an L, cross-
weighting term of the form 2x”(f) Ri,u(f) can also be included,
we shall not do so here to facilitate the presentation.

For the H., performance constraint, the transfer function 2.5
involves weighting matrices E). and E,,, for the state and control
variables. The matrices R, £ ET_E, and Ry £ E] E, are
thus the H,, counterparts of the L, weights R, and R,. Although
we do not require that R,. and R,. be equal to R, and R,, we
shall require in the next section that Rys = B2R,, where the
nonnegative scalar 8 is a design variable. Finally, the condition
ET_E,, = 0 precludes an H., cross-weighting term which again
facilitates the presentation. ~

Before continuing, it is useful to note that if A is asymptotically
stable for a given compensator (A, B;, C.), then the performance
(2.7) is given by

J(Ac, B., C)=tr QR (2.10)

where the steady-state closed-loop state covariance defined by

g2 lim B[R()ET()] .11
satisfies the i X 7 algebraic Lyapunov equation
0=A0+ QAT+ V. (2.12)

Remark 2.5: Using (2.10) and (2.12) it can be shown that the
L, cost criterion (2.7) can be written in terms of the L, norm of
the impulse response of the closed-loop system. Specifically, by
writing Q satisfying (2.12) as

0= r At VeATt gt
[}
(2.10) becomes
J(Ac, Be, C)= | 1 BeAD |kt

where | - || r denotes the Frobenius matrix norm

The key step in enforcing the disturbance attenuation constraint
(2.6) is to replace the algebraic Lyapunov equation (2.12) by an
algebraic Riccati equation which overbounds the closed-loop
steady-state covariance. Justification for this technique is pro-
vided by the following resuit.

Lemma 2.1: Let (A., B., C.) be given and assume there exists
Q € R™" satisfying

Q € N7 2.13)
and
0=4AQ+QAT+y QR Q+V. (2.14)
Then
(A, D) is stabilizable (2.15)
if and only if
A is asymptotically stable. (2.16)
In this case,
IH =y .17
and
o=q. (2.18)
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Consequently,

J(Ac, B, C)s3(A, B, Ce, Q) (2.19)

where
J(A., B., C., Q) & tr QR.

Proof: It follows from [28, Theorem 3.6] that (2.15) implies
that (A4, [y 2QR.Q + V]?) is also stabilizable. Using the
assumed existence of a nonnegative-definite solution to (2.14) and
[28, Lemma 12.2], it now follows that A is asymptotically stable.
The converse is immediate. The proof of (2.17) follows from a
standard manipulation of (2.14); for details see [29, Lemma 1].
To prove (2.18), subtract (2.12) from (2.14) to obtain

(2.20)

0=4(Q-0)+(Q-Q)AT+y2QR.Q @21
which, since A is asymptotically stable,’is equivalent to

Q-0= g Ay 2QR.QleA™ dt=0. 2.22)
Finally, (2.19) follows immediately from (2.18). O

Remark 2.6: Note that (2.15) is actually a closed-loop
disturbability condition which is not concerned with control as
such. This condition guarantees that the system does not possess
undisturbed unstable modes. Of course, if V' is positive definite or
(A4, D) is controllable, then (2.15) is satisfied.

Lemma 2.1 shows that the H, disturbance attenuation con-
straint is automatically enforced when a nonnegative-definite
solution to (2.14) is known to exist and A is asymptotically stable.
Furthermore, all such solutions provide upper bounds for the
actual closed-loop state covariance Q along with a bound on the L,
performance criterion. Next, we present a partial converse of
Lemma 2.1 which guarantees the existence of a unique minimal
nonnegative-definite solution to (2.14) when (2.17) is satisfied.
The minimal solution is desirable since it yields the least
performance bound in (2.19). This was first pointed out in [45].

Lemma 2.2: Let (A., B., C.) be given, suppose A is
asymptotically stable, and assume the disturbance attenuation
constraint (2.17) is satisfied. Then there exists a unique nonnega-
tive-definite solution @ satisfying (2.14) and such that 4 +

vy~2QR.. is asymptotically stable. Furthermore, this solution is
a]so minimal.

Proof: The result is an immediate consequence of [30, pp.
150 and 167], using Theorems 3 and 2, along with the dual
version of [28, Lemma 12.2]. The proof of minimality is given in
[29].

Remark 2.7: To further clarify the relationships between the L,
and H, aspects of the problem, we note that the closed-loop
system can be represented by two possibly different transfer
functions. Specifically, with respect to the L, cost criterion, the
closed-loop transfer function between disturbances and controlled
variables is given by the triple (4, D, E) while for the H,
constraint the closed-loop transfer funct1on (2.5) corresponds to
the triple (4, D, E.).

Finally, it can be shown that the closed-loop Riccati equation
(2.14) also enforces a constraint on the norm of the Hankel
operator corresponding to the closed-loop system A, D, E,)
when Q is positive definite. Thus, let 7 € N” denote the solution
to

0=ATP+PA+R, (2.23)
and note that P and { [satisfying (2.12)] are the observability and
controllability Gramians, respectively, of the system (A, D, E.).
As shown in [31] the norm of the Hankel operator corresponding
to (A, D, E.) is given by N2 (PQ).

Proposition 2.1: Suppose there exists Q € P satisfying
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(2.14) and such that (2.15) or, equivalently, (2.16) holds. Then

M e (PO)<¥.

Proof: Since @ is assumed to be invertible, (2.14) is
equivalent to

(2.24)

0=924TQ '+72Q A +42Q'VQ "' +R..

Subtracting (2.23) from (2.25) shows that Q! -
equivalently, v2I; = Q2PQ2. Thus,

(2.25)
- P =0,or,

722 )\mu(Ql/szl/z) - )\m“(P"llqu'l/Z) > )\M(P'I/ZQP'I/Z)
which yields (2.24). O

III. THE AUXILIARY MINIMIZATION PROBLEM AND NECESSARY
CONDITIONS FOR OPTIMALITY

As discussed in the previous section, the replacement of (2.12)
by (2.14) enforces the H,, disturbance attenuation constraint and
ylelds an upper bound for the L, performance criterion. That is,
given a compensator (4., B., C.) for which there exists a
nonnegative-definite solution to (2.14), the actual L, performance
J(A., B, C.) of the compensator is guaranteed to be no worse
than the bound given by §(A4., B., C., Q). Hence, §(4., B, C,,
Q) can be interpreted as an auxiliary cost which leads to the
following mathematical programming problem.

Auxiliary Minimization Problem: Determine (A., B,, C., Q)
which minimizes (4., B., C., Q) subject to (2.13) and (2.14).

It follows from Lemma 2.1 that the satisfaction of (2.13) and
(2.14) along with the generic condition (2.15) leads to: 1) closed-
loop stability; 2) prespecified H,, performance attenuation; and 3)
an upper bound for the L, performance criterion. Hence, it
remains to determine (A., B., C.) which minimizes J(A4., B.,
C., Q), and thus provides an optimized bound for the actual L,
performance J(A,, B., C.). Rigorous derivation of the necessary
conditions for the auxiliary minimization problem requires addi-
tional technical assumptions. Specifically, we restrict (4., B.,
C., Q) to the open set

X 2 {(A;, B, C., Q) : Q € P, A+772QRo

is asymptotically stable,
and (A, B, C,.) is controllable and observable}. @3.1)

Remark 3.1: The set X constitutes sufficient conditions under
which the Lagrange multiplier technique is applicable to the
auxiliary minimization problem. Specifically, the requirement
that Q be positive definite replaces (2.13) by an open set
constraint, the stability of A + y~2QR. serves as a normality
condition, and (4., B., C.) minimal is a nondegeneracy condi-
tion. Note that the stabilizability condition (2.15) and stability
condition (2.16) play no role in determining solutions of the
auxiliary minimization problem.

The following result presents the necessary conditions for
optimality in the auxiliary minimization problem. The proof of
this result is given in the Appendix as a special case of the
corresponding result for reduced-order dynamic compensation
considered in Section VI. As mentioned previously, we assume
that R, = B2R;, where 8 = 0. Furthermore, for arbitrary Q, P
€ N” define

S A (I,+B*y2QP)-\. (3.2)
Since the eigenvalues of QP coincide with the eigenvalues of the
nonnegative-definite matrix P2QP"2, it follows that QP has
nonnegative eigenvalues. Thus, the eigenvalues of I, + 8%y -20p
are all greater than one so that the above inverse exists.
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Theorem 3.1: If (A, B,, C., Q) € X solves the auxiliary
minimization problem then there exist Q, P, @ € N” such that

Ac=A-QS-3PS+7 2QRa, G.3)
B.=QCTV !, (3.4
C.= -R;'BTPS,

_[o+o 0
Q*[ % Q]

and such that Q, P, Q satisfy
0=AQ+0A4 T+v, +-y‘2QR,,,Q— QEQ,
0=(A+72[Q+O01R1) TP+ P(A+72[Q+0IRix)
+R,~STPIPS,

3.5

(3.6)

3.7

(3.8)
0=(A—3IPS+v 20R,)0+O(A-ZPS+v 2QRix)7

+7720(Ry +B2STPEPS)Q+Q2Q. (3.9)
Furthermore, the auxiliary cost is given by
9(A,, B., C., Q=tr [(Q+ Q)R+ OSTPEPS]. (3.10)

Conversely, if there exist Q, P, 0 € N~ satisfying (3.7)-(3.9),
then (A., B., C., Q) given by (3.3)-(3.6) satisfies (2.13) and
(2.14) with auxiliary cost (2.20) given by (3.10).

Remark 3.2: If Q and Q are nonnegative definite, then the fact
that the definiteness condition (2.13) is satisfied can easily be seen
by writing Q as

3172 A1/2 T
o[ 88080

As mentioned in Section II, it is desirable to determine solutions Q
and O which yield the minimal solution to (2.14).

Remark 3.3: Setting 8 = 0, or equivalently, E, = 0,
specializes Theorem 3.1 to the cheap H., control case in which
H,, attenuation between disturbances and controls is not con-
strained. In this case S = I, Q is given by (3.6), and (3.3)-(3.5)
become

A=A-QE-IP+v 0Rx, @3.11)
B.=QCTv 1, (3.12)
C.=-R;'BTP (3.13)
where Q satisfies (3.7), and (3.8) and (3.9) become
0=(A+y72[Q+01R1a)"P+P(A+y2[Q+0IR1x)
+R,—PIP, (3.14)

0=(A-IP+y 2QRiz)0+Q0(A~2P+7 *QRix)"
+7 20RO+ Q5Q. (3.15)

Finally, the auxiliary cost reduces to

I(Ac, B, Cc, Q)=tr [(Q+ Q)R +QPEP].  (3.16)
Numerical solution of (3.7), (3.14), and (3.15) is discussed in
Section VIII.

Remark 3.4: Note that if both 8 = 0 and R, = 0, then
Theorem 3.1 specializes to the standard LQG result.

Theorem 3.1 presents necessary conditions for the auxiliary
minimization problem which explicitly synthesize extremal con-
trollers (A., B;, C.). These necessary conditions comprise a
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system of three modified algebraic Riccati equations in variables
0, P, and Q. The Q and P equations are similar to the estimator
and regulator Riccati equations of LQG theory, while the o)
equation has no counterpart in the standard theory. Note that the
O equation is decoupled from the P and O equations and thus can
be solved independently. The P equation, however, depends on
Q. Thus, regulator/estimator separation holds in only one
direction which clearly shows that the certainty equivalence
principle is no longer valid for the L,/H. design problem.
Furthermore, since the P and Q equations are coupled, they must
be solved simultaneously. Finally, note that if the H., disturbance
attenuation constraint is sufficiently relaxed, i.e., y = o, then the
P equation becomes decoupled from the Q equation and thus the
O equation becomes superfluous. Furthermore, the remaining Q
and P equations separate and coincide with the standard LQG
result. .

IV. SUFFICIENT CONDITIONS FOR H,, DISTURBANCE ATTENUATION

In this section we combine Lemma 2.1 with the converse of
Theorem 3.1 to obtain our main result guaranteeing closed-loop
stability, H,, disturbance attenuation, and an optimized L, per-
formance bound. .

Theorem 4.1: Suppose there exist Q, P, @ € N” satisfying
(3.7)=(3.9) and let (4., B., C., Q) be given by (3.3)-(3.6). Then
(A, D) is stabilizable if and only if 4 is asymptotically stable. In
this case, the closed-loop transfer function H(s) satisfies the H.,
attenuation constraint

[H(Hw=v @.1
and the L, performance criterion (2.7) satisfies the bound
J(A., B, C)<tr (Q+ Q)R+ OSTPIPS]. 4.2)

Proof: The converse portion of Theorem 3.1 implies that @
given by (3.6) satisfies (2.13) and (2.14) with auxiliary cost given
by (3.10). It now follows from Lemma 2.1 that the stabilizability
condition (2.15) is equivalent to the asymptotic stability of A, the
H,, disturbance attenuation constraint (2.17) holds, and the
performance bound (2.19), which is equivalent to (4.2), holds.

O

Remark 4.1: In applying Theorem 4.1 it is not actually
necessary to check (2.15) which holds generically. Rather, it
suffices to check the stability of A directly which is guaranteed to
be equivalent to (2.15).

In applying Theorem 4.1 the principal issue concerns condi-
tions on the problem data under which the coupled Riccati
equations (3.7)-(3.9) possess nonnegative-definite solutions.
Clearly, for vy sufficiently large, (3.7)-(3.9) approximate the
standard LQG result so that existence is assured. The important
case of interest, however, involves small + so that significant H,
disturbance attenuation is enforced. Thus, if (4.1) can be satisfied
for a given y > 0, it is of interest to know whether one such
controller can be obtained by solving (3.7)-(3.9). Lemma 2.2
guarantees that (2.14) possesses a solution for any controller
satisfying (2.17). Thus, our sufficient condition will also be
necessary as long as the auxiliary minimization problem possesses
at least one extremal over . When this is the case we have the
following immediate result.

Proposition 4.1: Let y* denote the infimum of || H(s){|. over
all stabilizing nth-order dynamic compensators and suppose that
the auxiliary minimization problem has a solution for all y > y*.
Then for all v > * there exist Q, P, Q € N" satisfying (3.7)-
3.9).

Unlike the standard LQG result involving a pair of separated
Riccati equations, the new result enforcing H, disturbance
attenuation involves a nonstandard coupled system of three
modified Riccati equations. The asymmetry of these equations
suggests the possibility of a dual result in which the modifications
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to the standard P and Q Riccati equations are reversed. Such a
dual result will generally be different from Theorem 4.1 and thus
will yield an improved bound for particular problems. This poirit
was demonstrated in [16] for the problem of robust performance
analysis. Due to space limitations, however, we give only a brief
outline of the dual H,, results. Note that J(A., B, C.) given by
(2.10) is also given by

J(A., B, C)=tr PV @4.3)

where P € N7 is the unique solution to (2.23) with R, replaced
by R. Next, utilizing (4.3) in place of (2.10), the ., disturbance
attenuation constraint (2.6) can now be enforced by replacing
(2.23) by the Riccati equation
0=AT®+PA+y 2®V.®+R 4.9
where V., has the same form as ¥ but may involve weights Ve
and V,.. Note that (4.4) is merely the dual of (2.14). We also
require the condition dual to (2.15) given by
(£, A) is detectable 4.5)
and that A + y~2V.,® be asymptotically stable. Once again, the
sufficient conditions for H, disturbance attenuation involve a
coupled system of three modified Riccati equations dual to (3.7)-
(3.9). Similar remarks apply to the reduced-order case given by
Theorem 6.1 below. Finally, if R, = Rand V. = V, then it can
be shown that tr QR = tr @V and thus the solutions to the primal
and dual problems coincide.

V. ALTERNATIVE FORMS OF THE RICCATI EQUATIONS

In this section we develop alternative forms of the Riccati
equations (3.7)-(3.9). These alternative forms provide further
insight into the structure of (3.7)-(3.9) and, in certain cases, are
simpler and thus are easier to solve computationally. This section
also provides connections between our approach and [26].

First we note that the gains (3.3), (3.5), and (3.10) do not
depend upon P and Q individually, but rather only upon the term
Z & PS. Thus, it is of interest to know whether (3.8) and (3.9)
can be transformed to yield an equation which characterizes Z
directly. The following result summarizes useful properties of Z.

Lemma 5.1: Let P, O € N” and define Z & PS. Then Z =
Z" = S7P, where 8T = (I, + B PO)!, and Z is
nonnegative definite. If, in addition, P is positive definite, then Z
is positive definite and

Z=(P '+8%y2Q) L .1

Proof: The result (5.1) is immediate. The remaining results
can be obtained by replacing P by P + el,, where ¢ > 0, and
taking the limit as ¢ — 0. d

Proposition 5.1: Let Q € N”" and suppose there exist P € [P"
and Q € N” satisfying (3.8) and (3.9). Then Z 2 PS satisfies

0=(A+7 2QR10+7v 2Q[Rj—~B2R)TZ
+Z(A+7 20R 10 +7 20[Rie—B2R,])
+R-Z(Z+B%y*Q[Ri-B*R10)Z

+B2y"22Q2QZ (5.2)
and (3.9) is equivalent to
0=(A-ZZ+y 2QR.)0+0(A-ZZ+v 2QR)T
+720(R1e+B2ZEZ)Q+ Q2Q. (5.3)
Furthermore, (3.3), (3.5), and (3.10) become
A=A-0-3Z+y 2QRo, 5.9
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C.=-R;'B7Z,
I(A., B, C, Q)=t[(Q+ Q)R + QZZZ).
Proof: Using the identities
P=(I,-B*y2ZQ)'Z=ZU,~ B>+ *QZ)"!

which follow from (5.1), equation (5.2) can be obtained by
forming the new equation

(I,— B>y ~2ZQ)3.8)(1,~ B2y 2QZ)+ B>y *Z(3.9)Z.

Finally, (5.3)-(5.5) are restatements of (3.9), (3.3), and (3.5)
with Z = PS. O
Having obtained a single equation (5.2) for Z = PS by
combining (3.8) and (3.9) for P and 0, it is of interest to know
whether (3.8) for P can be recovered from (5.2) and (5.3).
Proposition 5.2: Let Q € N", 8 > 0, suppose there exist Z €
P” and Q € N” satisfying (5.2) and (5.3), and assume that

p(ZQ)<B v (.8

Then P 2 (Z-' — B2y~20)~! is positive definite and satisfies
(3.8). Furthermore, P satisfies Z = PS.

Proof: If (5.8) holds, then it can be shown that P as defined
above is positive definite. Reversing the proof of Proposition 5.1,
(3.8) can be recovered by forming

(- B2y ~22Q)'[(5.2) - B2y 2Z(5.3) 21, ~ B*y2QZ) . O

(5.5)
(5.6)

5.7

Although Proposition 5.2 allows us to reconstruct (3.8) for P, it
can only be utilized when (5.8) holds. This fact raises a question
as to the sufficiency of (3.7), (5.2), and (5.3) in the absence of
(3.8). It turns out that the matrices P and Z need not actually
satisfy (3.8) and (5.2) to enforce the H,, performance constraint
(2.17) since only the Q and () equations are required. Rather, P
can be viewed as a parameterization of Z which, in turn, is a
parameterization of the gains A, and C, given by (5.4) and (5.5)
which yield a controller satisfying the desired H, performance.
These observations are summarized by the following result which
does not require that Z be obtained by solving (5.2). _

Proposition 5.3: Let Z € N" and suppose there exist Q, Q €
N7 satisfying (3.7) and (5.3). Then (4., B., C., Q) given by
(5.4), 3.4), (5.5), and (3.6) satisfy (2.13) and (2.14). Thus,
(2.15) and (2.16) are equivalent, and, in this case, (2.17) and
(2.19) hold.

Proof: The result follows by direct verification of (2.14).(]

Proposition 5.3 shows that the H,, constraint (2.17) is enforced
for arbitrary Z € N” as long as (3.7) and (5.3) can be solved for
Q and Q. The price we pay for using arbitrary Z is that we no
longer are assured that Z is obtained from (5.2) or from Z = PS
where P satisfies (3.8). Since P arises from the Lagrange
multiplier for the constraint (2.14) [see (A.3)], it follows that an
arbitrary choice of P (or Z) may fail to minimize the L, auxiliary
cost (2.20). Thus, regarding P and Z as free parameters
effectively ignores the L, aspect of Theorem 4.1.

It is also of interest to introduce yet another transformation of
(3.7)-(3.9) by defining

Y 2 (Z7'+By Q) = (P 4By Q4+ 0D T (5.9

~when P is positive definite. As in Lemma 5.1, Y is also positive

definite.

Proposition 5.4: Let Q € N” and suppose there exist P € P"
and Q € N” satisfying (3.8) and (3.9). Then Y defined by (5.9)
satisfies

0=(A+772[Q+0l[Ria—BRTY
+Y(A+y7Q+Ol[Ri»—B*R1])
+R +B2y2YV,Y-YZY

-B*y*Y(Q+ 0N Riu-BRINQ+ Q)Y (5.10)
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and (3.9) is equivalent to
0=(A-2[Y"'~B2y2Q]'+7 20R:x) 0

+0(A-2[Y ' -8y 2Q] '+720R)T
+720(Rie+ B Y1 -2y 2Q] !
- Z[Y1-B2y 201" )0+ Q%0

Furthermore, (3.3), (3.5), and (3.10) become

A=A QE-I(Y'-f3y2Q) ' +772QRim, (5.12)

(5.11)

Ce=-R;'BT(Y™'-B3y72Q)7, (.13
I(A,, B, Cc, Q)=tr (Q+ )R,
+O(Y 1= 2Q) T IE(Y T -2 )7 (5.14)
Proof: To obtain (5.10), form
Y[Z-'(5.2)Z- '+ 8%y 2(3.7)]Y. O

The following result allows us to recover (3.8) for P from
(5.10) and (5.11).

Proposition 5.5: Let Q € N", 8 > 0, suppose there exist Y €
®" and 0 € N" satisfying (5.10), (5.11), and assume that

p(Y[Q+QD<B2y? (5.15)

Then P 2 (Y-! — B%~2Q + O]~ is positive definite and
satisfies (3.8).
Proof: The result follows by reversing the proof of
Proposition 5.4. O
By specializing further, it is possible to achieve even greater
simplification. Specifically, we consider the case in which the L,
and H,, weights are equalized, i.e.,

Ri»=R,, B=1.

In this case it is always possible to eliminate (5.3) and (5 ll) by
noting that they are satisfied by O = y2Z~! and 0 = y2y-!
Q, respectively. However, although this solution enforces the H
constraint, it can be seen from the resulting form of g that this
solution does not correspond to the minimal solution @ of (2.14).
Hence, we impose additional assumptions which allow us to
directly characterize the solution which yields the minimal
performance bound. We are indebted to D. Mustafa for clarifying
this point in [45] where it is also shown that the auxiliary cost
(2.20) is equivalent to an entropy integral.

Proposition 5.6: Assume (5.16) is satisfied, suppose there
exist Q € N” and Z,, € P" satisfying

(5.16)

0=AQ+Q0AT+ V|+7‘2QR1GQ—Q)-3Q, $.17
0=(A+7 20Rx)"Zu+Z(A+v 20R )
+Ri0—Z03Ze+Y 2Z.QEQZ, (5.18)

and such that
A+v 2QR o+ (Y 2QEQ- ) Z, is asymptotically stable

(5.19)
and

(A+72QR10+ZZ'Riee, ¥ [Rioo + Zu 2 Z1172) is observable.

(5.20)
Furthermore, let (4., B., C,.) be given by

A=A-QE-2Z.+v 2QR, (5.21)
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B.=QCTV;! (5.22)

C.=—R;!BTZ,. (5.23)
Then (A, D) is stabilizable if and only if A is asymptotically
stable. In this case, the closed-loop transfer function H(s)
satisfies the H,, disturbance attenuation constraint

NH (s)w=y (5.24)
and the L, performance criterion (2.7) satisfies the bound
J(Ac, B, C)<trQR.+ QSQZ,.]. (5.25)
Proof: First note that it follows from (5.18) that
—(A+Y QR 1o+ ZJ'Riu)=Zou[A+7 QR
+(y2QE0-3%)Z.1Z7' (5.26)

and thus (5.19) implies that —(4 + ¥y 20Ri + Z;'Ry) is
asymptotically stable. It now follows from (5.20) that there exists
N €P" satisfying

0=-(4 +7‘2QR1,,+Z;1R1,,)TN—N(A +7 7 20Ro
+Z'Ri)+7 HRio+ ZuZZy). (5.27)

It can now be shown that § = y2Z_' — N~ satisfies (5.3) with
8 = 1and Z = Z,. Furthermore, (5.8) is satisfied so that the
hypotheses of Theorem 4.1 are verified. The expression (5. 25)
now follows by direct substitution.
Finally, we consider a simplified version of Proposition 5.4.
Proposition 5.7: Assume (5.16) is satisfied and suppose there
exist 0 € N" and Y, € P" satisfying

(5.28)

0=AQ+ QAT+ V|+‘Y_2QR|‘»Q—Q2Q,
0=ATY o+ YuA+Ri0+v 2Yu V| Yo — Yu2¥u, (5.29)
p(QYo)<v? (5.30
and such that
A+(y "2V, -2)Y, is asymptotically stable (5.31)
and
(A+Y 'R, Y MR+ (Y —y72Q) !
© (Y Z'—y~2Q)N'"?) is observable. (5.32)
Furthermore, let (4., B., C.) be given by
A=A-QS-3S(Y'-v2Q) '+v72QRi., (5.33)
B.=QCTV;! (5.34)
Ce=-RLBT(Y '-y2Q)"". (5.39)

Then (A, D) is stabilizable if and only if A is asymptotically
stable. In this case, the closed-loop transfer function H(s) satisfies
the H, disturbance attenuation constraint

|H($) o=y (5.36)
and the L, performance criterion (2.7) satisfies the bound
J(A., B, C.)<tr[QR -+ QSQ(Y ' —y~20)"']. (5.37)

Proof: The proof is similar to the proof of Proposition 5.6
with § = y2Y, — Q — N-!, where N satisfies

=—(A+Y lR1<,L,)TN N(A+Y 'Rie)
+7 2[R+ (Y 1=y 2Q)1S(Y ' =y 72Q)7 . O
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Remark 5.1: The solutions Q and Y., of (5.28) and (5.29) are
analogous to the matrices Y, and X, of [26], while (5.30)
corresponds to condition 5.2(iii) of [26]. Note that by letting v —
o, (5.25) and (5.37) coincide with 5-77a of [1] and the LQG
result is recovered.

Remark 5.2: 1t is interesting to note that (5.17) and (5.18) with
controller gains (5.21)-(5.23) are already known since they are
identical to the optimality conditions for the linear-exponential-of-
quadratic-Gaussian problem treated in [33] (see also [34] and
[35]). Specifically, see (3.1) and (4.1) on pp. 603 and 609,
respectively. As shown in [33], minimizing the criterion

J=1lim Eueul2(xrk|x+uTR2u)

t—oo

leads to the pair of modified Riccati equations (5.17) and (5.18)
with y~2 replaced by u. This implies that the exponential-of-
quadratic design problem effectively enforces a bound of ;=% on
the H,, norm of the closed-loop transfer function. There also exist
fundamental connections with the problem of entropy maximiza-
tion [43]-[45].

VI. EXTENSIONS TO REDUCED-ORDER DYNAMIC COMPENSATION

In this section we extend Theorem 4.1 by expanding the
formulation of Section III to allow the compensator to be of fixed
dimension 7, which may be less than the plant order #. Hence, in
this section define i = n + n., where n. < n. As in [21] this
constraint leads to an oblique projection which introduces
additional coupling in the design equations along with an
additional equation. The following lemma is required.

Lemma 6.1: Let Q, P € N" and suppose rank QP = n.. Then
there exist n. X n G, T', and n. X n. invertible M, unique except
for a change of basis in R”", such that

OF=G™MT, 6.1)
rG7=1,. 6.2)
Furthermore, the n X n matrices
T & GTT, 6.3)
7, & I,—7 6.4

are idempotent and have rank n. and n — n,, respectively.
Proof: Conditions (6.1)-(6.4) are a direct consequence of
[36, Theorem 6.2.5]. o
Theorem 6.1: Let n. < n, suppose there exist Q, P, Q, P €
N” satisfying

0=AQ+QAT+V,+y 2QRQ- Q20 +7, 02077, (6.5)
0=(A+y72[Q+0IRix)"P+P(A+772[Q+Q1Rix) + Ry
~STPEPS+7T STPIPST,, (6.6)
0=(A-ZPS+v 2QR1)0+Q(A—-ZPS+v 2QR1)T
+7 2Q(R1 +B2STPEPS)O+QSQ -1, 05077, (6.7)
0=(A-0%+7 2QR1)TP+P(A- Q2 +7 2QR\x)
+STPSPS—7T STPLPST,, (6.8)
rank O =rank P=rank OP=n,
and let (4., B., C., Q) be given by

6.9)

A.=T(A-QZ-2PS+v 2QR\.)GT, (6.10)
B.=TQCTV;!, 6.11)
C.=—R;'BTPSGT, (6.12)
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_|e+o or”
Q—[ ro rort |- (6.13)
Then, (A, D) is stabilizable if and only if A is asymptotically
stable. In this case, the closed-loop transfer function H (s) satisfies
the H,, disturbance attenuation constraint

I H(s)lw=

and the L, performance criterion (2.7) satisfies the bound

(6.14)

J(A., B., CC)Str[(Q+Q)R]+QSTP2PS]. (6.15)

Remark 6.1: Tt is easy to see that Theorem 6.1 is a direct
generalization of Theorem 4.1. To recover Theorem 4.1, set n, =
nsothat1 = G =T = I,and 7, = 0. In this case the last term
in each of (6.5)-(6.8) can be deleted and (6.8) becomes
superfluous. Furthermore, (6.5)-(6.7) now reduce to (3.7)-(3.9),
as expected. If, furthermore, 8 = 0 then S = I, so that (6.5)-
(6.7) now reduce to the cheap H,, control case given by (3.7),
(3.14), and (3.15). Alternatively, setting y = oo and retaining the
reduced-order constraint 7. < n yields the result of [21].

Remark 6.2: By introducing a new variable Z = PS = P!
+ B%y~2Q)~! as in Section V, (6.6) becomes

0=(A+v QR+ 2Q[Ri1u—BRINTZ
+Z(A+7 QR+ 20lR1e—B?R\])
+R - Z(Z+B%y QIR ~B*RI10)Z
+77 2327, + B2y 2Z(QEQ-7,Q20rT)Z (6.16)

which specializes to (5.2) when n. = n, i.e., 7, = 0. When
(5.16) holds, (6.16) becomes

0=(A+7 20R )" Zo+Z5(A+7 *0Rx)
+R1w_ZmEZ°,+T£ ZNEZ,,TJ.
+v 7?2 (Q2Q -7, Q5077 ) Zs.

Analogous equations for Y defined by (5.9) can also be
developed.

(6.17)

VII. ANALYSIS OF THE DESIGN EQUATIONS

Before developing numerical algorithms, it is instructive to
analyze the design equations to determine existence and multiplic-
ity of nonnegative-definite solutions. Although a detailed theoreti-
cal analysis remains an area for future research, in this section we
present a simplified treatment which highlights important asymp-
totic properties of the equations. it turns out that several key
properties are discernible by considering the scalar case n = 1.
Although many of these properties can be developed for general
n, the simplified scalar case suffices for obtaining a useful
qualitative analysis. Here we consider only (3.7), (3.14), and
(3.15).

Since the Q equation (3.7) is decoupled from (3.14) and (3.15),
it can be analyzed separately. It is easy to see that there exists a
unique nonnegative solution for y > (R,/Z)'2 as in the case of a
standard Riccati equation with stabilizability and detectability
hypotheses. Furthermore, it can be seen that for

(RV/IE+AYV)DV2<y < (R /2)V?

there exist two nonnegative solutions when A is stable and zero
nonnegative solutions when A is unstable. Below this lower bound
for v, nonnegative solutions Q do not exist. This result thus
indicates (as in LQG theory [42]) a lower bound to the achievable
H,, disturbance attenuation as determined by the sensor noise
intensity V, appearing in Z.

Since the P and Q equations (3.14) and (3.15) are coupled, they
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must be analyzed jointly. Since (3.15) is a standard Riccati
equation it follows under generic hypotheses that it possesses
exactly one nonnegative-definite solution for all values of Q and
Q. The analysis of the O equation is, however, more involved. It
can be shown that the existence of real solutions is a complicated
function of v, Q, and P. When real solutions do exist, it follows
that there exist either zero or two nonnegative-definite solutions.
To obtain further qualitative insight into the solutions P and Q, we
fix y and allow R, —~ 0, that is, the cheap L; control case. It thus
follows that P ~ (R,Z)"? and that either O ~ 2y*(E/R;)'? or
0~ 1725 Q*ZR,)~"2, which correspond to the previously
mentioned pair of solutions satisfying (3.15). This result thus
indicates that an arbitrarily small H,, disturbance attenuation
constraint vy can be achieved [subject to the solvability of (3.7)] by
sufficiently increasing the L, controller authority. That is, since
solutions exist in the cheap L, control case, the H,, disturbance
attenuation constraint is achievable. The ability to achieve small y
is also attributable to the fact that since 8 = 0, H,, disturbance
attenuation to the control variables is not limited in (3.7), (3.14),
and (3.15) as in Theorems 3.1 and 6.1. Of course, as is well
known, it is not possible to make y — O by letting £ — oo and 2
— oo when the system possesses nonminimum phase zeros. Also,
note that both of the asymptotic solutions to (3.15) are guaranteed
to yield the bound (4.1). The solution of interest, however, is Q
= O(Z~"? since it clearly yields a lower value of §(A,, B., C.,
Q) than § = O(2Y?).

VIII. NUMERICAL ALGORITHM AND ILLUSTRATIVE RESULTS

In this section we describe a numerical algorithm which has
been developed and implemented for solving the coupled Riccati
equations (3.7), (3.14), and (3.15). We also present numerical
results for an illustrative example.

Coupled modified Riccati equations arise in a variety of
problems and homotopic continuation methods have been shown
to be particularly successful [23]-[25]. To solve (3.7), (3.14), and
(3.15) we have implemented a simplified continuation method
involving the constraint constant . The idea is to exploit the fact
that for large v the problem is approximated by LQG which
provides a reliable starting solution. The continuation parameter y
is then successively decreased until either a desired value of v is
achieved or no further decrease is possible. This algorithm is now
summarized. Let ¢ > 0 denote a convergence criterion.

Algorithm 8.1: To solve (3.7), (3.14), and (3.15), perform the
following steps:

Step 1: Initialize vy > 0.

Step 2: Solve (3.7) for Q.

Step 3: Letk = 0, Qy = 0. ~ ~

Step 4. Solve (3.14) for Py, = P with Q = Q.

Step 5: Solve (3.15) for Q.. QO with P = Py,,.

Step 6: If k = 1 check for | Py, — Pif| < eand ]]Qk“ -
O <e

Step 7: If convergence is not achieved in Step 6 (or k = 0) let k
< k + 1 and go to Step 4; otherwise decrease + and go to Step 2.

Steps 2, 4, and 5 were carried out using a standard Riccati
solver [37] which proved to be reliable even when the quadratic
term was indefinite or nonnegative definite. For instance, for the
example considered below, the term 4 2R, — I was indefinite for
all finite . The crucial step in the algorithm is the decreasing of y
in Step 7. Significant effort was devoted to providing a smooth
transition to smaller values of  without sacrificing computational
efficiency. The development of more sophisticated continuation
algorithms remains an area for future research.

The example considered was formulated in [38] and was
considered extensively in [24], [25], and [39] to compare reduced-
order design methods. The example is interesting since it
possesses a complex pair of nonminimum phase zeros due to the
fact that the physical system (coupled rotating disks) has noncol-
ocated sensors and actuators. The plant is of eighth order and has

n
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two neutrally stable poles. The problem data are as follows:

n=n.=8, m=Il=1, g=p=2,

0161 1 0 0 0 0 0 O]
6004 0 1 00 00 0
05822 0 0 1 0 0 0 0
99835 0 0 0 1 0 0 0
A= _04073 0 0 0 0 1 0 0
3982 00000 1 0
0 000000 1
0 00000 0O O
0
0
0.0064
0.00235
B=10.0713 C=11 01x7]
1.0002
0.1045
0.9955

0.55 11 1.32 18
0 0 0 01’

E= [?] » Byo= [8] » 8=0,

D,=[B 03x:}, D,=[0 1].

With the problem data as given, the LQG controller was found
to yield a closed-loop H,, performance of 1.39 (i.e., 2.87 dB
above unity gain). Using Algorithm 8.1 we obtained a solution for
v = 0.52 for a net H,, performance improvement of 8.7 dB (see
Fig. 1). Note that this result is consistent with [3, Proposition 8.1]
which implies that the maximum ratio of the H,, performance of
the optimal L, controller to the H,, performance of the optimal
H,, controller can be no more than twice the number of right-half-
plane zeros, which for the present problem with two nonminimum
phase zeros corresponds to a factor of 4 (i.e., 12 dB).

Our numerical experience revealed two interesting features.
First, the loop between Steps 4 and 6 converged reliably.
However, a critical value 7y, of y was invariably found below
which solutions could not be computed. This value v, appears to
represent the best achievable H,, performance for the given L,
weights. Second, for each value of ¥ = <y, for which a solution
was computed, the actual H,, performance was close to this value
revealing that the H,, bound is tight. For example, the actual
worst-case attenuation of the y = 0.52 design shown in Fig. 1 is
0.511. Controller characteristics are given in Table I and are
plotted in Fig. 2 for several values of y. Note that in each case the
L, performance bound is within 30 percent of the actual L,
performance.

IX. FURTHER EXTENSIONS

The results obtained herein can readily be extended in several
directions. These include the treatment of parameter uncertainties
[13]-[15], [46], extensions to controllers with static feedthrough
[32], and the inclusion of cross—welghtmg terms (xT(t)R.zu(t))
and noise correlation (D, D # 0). Finally, as mentioned in
Remark 5.2, connections with the exponential-of-quadratic cost
criterion [33] [35] and entropy maximization [43]-[45] are of
interest.
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TABLE 1
H,, Attenuation Actual Ho, Ly Performance Actual Ly
C int ¥ A i Bound Performance
1 H(8)llo J(4., B.,C., Q) J(Ac, B.,Ce)
o (LQG) 1.39 — .143
2 1.18 159 146
1.5 1.06 A1n 151
1.0 855 204 .168
9 797 217 176
8 732 236 .187
1 661 262 .203
52 511 .289 262
APPENDIX

. PROOF OF THEOREM 6.1

To optimize (2.20) over the open set X subject to the constraint
(2.14), form the Lagrangian

£(Ac, B, Ce, Q, @, N) & t{NQR+[AQ+QAT
+y72QR.Q+VI®P} (AD)
where the Lagrange multipliers A = 0 and ® € R are not
both zero. We thus obtain
0L - - - . ~
ﬁ=(A +y 2QRL)T®+®(A+v 2QR.)+AR. (A2)
Setting 3£/8Q = 0 yields

0=(A+72QR,)T®+®(A+7 *QR,)+AR. (A3)
Since A + v~ 2QR., is assumed to be stable, A = 0 implies ® =
0. Hence, it can be assumed without loss of generality that A = 1.
Furthermore, ® is nonnegative definite.

Now partition i X A Q® inton X n, n X n., and n. X n.
subblocks as

Ql QIZ p 1 P 12
= , ®@= .
e [ () Pl P,
Thus, with X = 1 the stationarity conditions are given by

aﬁ=(1+7-2qﬁw)70+@(1+7-2Qﬁm)+1€=0,

5q (A4)
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L

ﬁ=PlT2Q12+P2Q2=0’ (AS)
{4
ad T TYCT=0 A6
ch=PZBcV2+(P|2 1+P2Q]2)C =Y, (A.6)
0L
3C =RyC.0,+ By 2R, C(P1 Q2+ P1222) Q2
<
+BT(P1Q1+P12Q2)=0. (A7)

Expanding (2.14) and (A.4) yields
0=AQ1+QAT+BC.QT,+0CTBT+7 2 QiR Q1
+B8%y2QuCTR,C.QT,+ V1, (A9
0=AQ;+QuAT+BC.Q:+ Q1 CTBT+772Qi R Q12
+B82y 2QuCTR,C.Q;, (A9)
0=A:0:+ QAT+B.COp+QT,C"BT+y?Q[,Ri= Q12
+327‘ZQ2CCTR2C,Q2+B¢VZB:, (A.10)
0=ATP;+P,A+CTBIPT,+ P;;B.C
+7 IR (PO + PRQT)T

+v 2(PiQ1+PpQ )R+ Ry, (A.11)
0=ATP;;+PpA.+CTBTP,+ P BC,

+Y R (PLO1+P,QT)T

+B2y "AP1Qi+ P Q) CIR,C,, (A.12)

0=ATP,+P,A.+ PT,BC.+ CTBTPp +CTR,C,. (A.13)

Lemma A.1: Q, and P, are positive definite.
Proof: By a minor extension of results from [40], (A.10) can
be rewritten as

0=(A.+B.C0;) Qs+ Qs(Ac+ B.CQ O} )T+ ¥

where

¥ 2 77207 RiwQi+ B2y ?QyCTRCcQr + B.V2B]

and Q; is the Moore-Penrose or Drazin generalized inverse of
Q,. Next note that since (4., B,) is controllable it follows from
[28, Lemma 2.1 and Theorem 3.6] that (4. + B.CQ:,Q; , ¥'7?)
is also controllable. Now, since Q, and ¥ are nonnegative
definite, [28, Lemma 12.2] implies that Q, is positive definite.
Using (A.13), similar arguments show that P, is positive
definite. O

Since R, V3, Q,, P, are invertible, (A.5)-(A.7) can be written
as

—-P;'PL0nQ; =1, (A.14)
B.= —P;'(PL,0:i+P,Q)CTV !, (A.15)

Celln,+ B2y 2QLP + QP 01205
= _R{IBT(P1Q|2+P12Q2)Q2"- (A.16)

Now define the n X n matrices
QA Ql—leQ{lerz’ P4 PI_PIZP{IP{Z'
0 2 0:05'Qh, P & PyP;'P],

74 'leQEIP{lPITz
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Note that 7 = G™T', R R

Clearly, Q, P, Q, and P are symmetric and QO and P are
nonnegative definite. To show that Q and P are also nonnegative
definite, note that Q is the upper left-hand block of the
nonnegative definite matrix QQQ7, where

L —0nQ;!
On( xn 1, ne
Similarly, P is nonnegative definite.

Next note that with the above definitions (A.14) is equivalent to
(6.2) and that (6.1) holds. Hence, 7 = G'T is idempotent, i.e., T2
=T

It is helpful to note the identities

-P;'PT.

Q

A

0=01,6=G"Q%,=G"Q,G, P= —P,T'= -TTPL=TTPI,

(A.17)
1GT=GT,T7=T, (A.18)
0=1Q, P=Pr, (A.19)
QF=-Q,,P],. (A.20)

Using (A.14) and Sylvester’s inequality, it follows that
rank G=rank I'=rank Q;,=rank Pj;=n..
Now using (A.17) and Sylvester’s inequality yields
n.=rank Qy;+rank G —n.<rank Q=<rank Qp=n,
which implies that rank Q = n,. Similarly, rank P = n., and

rank GP = n, follows from (A.20).
The components of @ and ® can be written in terms of Q, P,

0, P, G,and T as

01=0+0, P=P+P, (A.21)
01,=0r7, P,=-FPGT, (A.22)
0,=TQr7, P,=GPGT. (A23)

Next note that by using (A.21)-(A.23) it can be shown that the
right-hand coefficient of C, in (A.16) is given by

§ &1, +8*2TQPG™.
To prove that S is invertible use (A.19) and (6.3) and note that
I, .+ 8%y *TQPGT=1I, + B2y T @rTPGT
=1, + B2y YT QI T)(GPGT).

Since I’'OI'T and GPGT are nonnegative definite, their product
has nonnegative eigenvalues (see Lemma 5.1). Thus, each
cigenvalue of I, + B*~TQPGT is real and is greater than
unity. Hence, § is invertible. Now note that by using (6.2) and
(6.3) it can be shown that

GTS-1=5SGT.

The expressions (6.11), (6.12), and (6.13) follow from (A.15),
(A.16), and the definition of . Next, computing either I'(A.9)-
(A.10) or G(A.12) + (A.13) yields (6.10). Substituting (A.21)-
(A.23) into (A.8)-(A.13) and the expression for A, into (A.9),
(A.10), (A.12), and (A.13) it follows that (A.10) = T'(A.9) and
(A.13) = G(A.12). Thus, (A.10) and (A.13) are superfluous and
can be omitted. Thus, (A.8)-(A.13) reduce to

0=AQ+QAT+V,+7 2(Q+0)R1(Q+ Q)
+B82y "2QSTPEPSQ

+(A-3XPS)Q+Q(A-SPS)T, (A.24)




304

0=[(A-2PS)0+0(A-ZPS)T+ 0530
+7 42+ O)R1(Q+0) -7 2QR1Q

+B2y-20STPEIPSOITT, (A.25)

0=(A+v [0+ O0lR1.)TP+P(A+vy 20+ OlR,.)+R,
+(A-QS+7 2QRx)TP+P(A- QS +7 ?QR\x), (A.26)
0=[(A4- 05+ 2QR)TP+P(A - QE+v 20R\x)
+STPEPS1GT. (A.27)

Next, using (A.24) + G'T(A.25)G — (A.25)G - [(A.25)G]T
and G'T(A.25G — (A.25)G — [(A.25)G]7 yields (6.5) and
(6.7). Similarly, using (A.26) + T'7G(A.27)T — (A27T -
[(A.27)T]7 and TTG(A2T)I' — (A2NT — [(A.2NIT yields
(6.6) and (6.8).

Finally, to prove the converse we use (6.5)-(6.13) to obtain
(2.14) and (A.4)-(A.7). Let A, B.,C., G, T, 7,Q, P, Q, P, Q
be as in the statement of Theorem 6.1 and define Q,, Oy, O», P,
Py, P, by (A.21)-(A.23). Using (6.2), (6.11), and (6.12) it is
easy to verify (A.6) and (A.7). Finally, substitute the definitions
of O, P, Q, P, G, T, and 7 into (6.5)-(6.8) using (6.2), (6.3), and
(A.19) to obtain (2.14) and (A.4). Finally, note that

_| 2 Ouxn I, T

Q= [0 o, ] + [P] Qll, T7)

which shows that Q = 0. O
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