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Letting z.(v) = (z(v), z(v)), then (3.21) can be written as

8:gvu)a(v) = f(z(v), K1z(v) + R2z(v), v),
P20 o) = Graw) + Galo) (3.22)
where
y(v) = Mx(v), Kiz(v) + Roz(v), v). (3.23)

In terms of notation (3.11), =(v),
expressed as

z(v), and y(v) can be uniquely

k
z(v) = ijlvm + O(v(k'H)),

=1

3
z(v) = Zo,u[” + ()(v(k'*'l))7

=1
k
y(v) = > Vol + 0@*h),
=1
Substituting (3.24) into (3.22) and (3.23), expanding (3.22) and
(3.23) as power series in vm, and identifying the coefficients of v[’],
1 =1,2,--- k, yield the result
¢1A1 = (A+ BR)o + BK26, + Uy,
61A = G161+ G2((C + DRy )é + DR6; + Vi)

(3.24)

(3.25)

and
Yi=(C+ DK\)o:+ DR26,+ 'V, (3.26)

where (Ui, Vi) = (E, F), and, for I = 2,3,---,k, (U, V)
depends only on ¢y,---,¢;—; and 6y,---,6;_;. Since, for each
[, all the eigenvalues of A; have zero real parts, ¢;, §; are the
unique solution of (3.23). Therefore by Lemma 3.9, we have, for
I =1,k

Y =0. 327

That is, we have
h(z(v), Kiz(v) + Kaz2(v), v) = O(zr(k+1))_

Note that by Remark 3.10, the above argument still holds for the case
that there are regular perturbations in the plant and the control law.
This completes the sufficiency part.

To show necessity, assume that there exist a kth-order robust
controller of the form (2.3). Let (v) and z(v) be smooth functions
satisfying

9x(1
JB:E)U)G(U) = f(z(v), u(v), v)

0
20 aw) = glatv). y(v)

he(ze(v), v) = O(v(k+1))

where u(v) = k(z(v), z(v)). Now expand z(v) as in (3.24), and let

&
u(v) = szvm + Oty

=1
then, for I =1,---,k, (¢, ) will necessarily be a solution of the
linear matrix equation
oAt = Agr + Byn + Uy,

0=Coi+ Dy + V. (3.28)
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Note that kth-order robustness implies that regardless of the pertur-
bations, in particular, of U;. Vi, (3.28) is solvable for (@, ¥1). This
is possible only if (3.18) holds.

Remark 3.13: When k = 1, (3.20) is nothing but a linear robust
servo-regulator as given in [6]. Applying this controller to a nonlinear
plant only annihilates the coefficient Y of the error mapping. This
explains why a linear robust servo-regulator cannot tolerate parameter
perturbation in a nonlinear plant as shown in the example of [2].

ACKNOWLEDGMENT

The authors would like to thank Prof. W. J. Rugh for his helpful
suggestions and comments.

REFERENCES

[1] R. E. Bellman, Matrix Analysis, 2nd ed. New York: McGraw-Hill,
1968.

[2] C. 1. Byrnes and A. Isidori, “Nonlinear Output Regulation: Remarks
on Robustness,” presented at the 27th Allerton Conf. Communications,
Contr. Computing, 1989.

[3]1 . Carr, Applications of the Center Manifold Theory. New York:
Springer-Verlag, 1981.

[4] E. J. Davison, “The robust control of a servomechanism problem
for linear time-invariant multivariable systems,” IEEE Trans. Automat.
Contr., vol. 35, no. 2, pp. 131-140, 1990.

[5] F. Delli Priscoli and A. Isidori, “Robust tracking for a class of nonlinear
systems,” in Proc. European Contr. Conf., Grenoble, France, 1991, pp.
1814-1819.

[6] C. A. Desoer and Y. T. Wang, “Linear time-invariant robust servomech-
anism problem: A self-contained exposition,” Contr. Dynamic Syst., vol.
16, pp. 81-129, 1980.

[7] B. A. Francis and W. Murray Wonham, “The internal model principle
of control theory,” Automatica, vol. 12, pp. 457465, 1976.

[8] J. Huang and C.-F. Lin, “Internal Model Principle and Robust Controls
of Nonlinear Systems,” in Pro. 32nd CDC, Dec. 1993, pp. 1501-1506.

9] J. Huang and W. J. Rugh, “On a nonlinear multivariable servomech-

anism problem,” Automatica, vol. 26, no. 6, pp. 963-972, 1990.

J. Huang and W. J. Rugh, “Stabilization on zero-error manifolds and

the nonlinear servomechanism problem,” IEEE Trans. Automat. Contr.,

vol. 37, no. 7, pp. 1009-1013, 1992.

J. Huang and W. J. Rugh, “An approximation method for the nonlinear

servomechanism problem,” IEEE Trans. Automat. Contr., vol. 37, no.

9, pp. 1395-1398, 1992.

A. Isidori and C. I. Byrnes, “Output regulation of nonlinear systems,”

IEEE Trans. Automat. Contr., vol. 35, no. 2, pp. 131-140, 1990.

[10]
[11]

{12]

Nonlinear Controllers for Positive Real
Systems with Arbitrary Input Nonlinearities
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Abstract—Input nonlinearities such as saturation can severely degrade
closed-loop performance due to integrator windup and other effects.
For positive real plants with positive real controllers, we propose a
nonlinear controller modification that effectively counteracts the effects of
arbitrary input nonlinearities. For this class of problems, we prove global
asymptotic stability of the closed-loop system and demeonstrate closed-loop
performance by means of system simulation.
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1. INTRODUCTION

In certain applications, such as the control of flexible structures,
the plant transfer function is known to be positive real. This property
arises if the sensor and actuator are colocated and also dual, for exam-
ple, force actuator and velocity sensor, or torque actuator and angular
rate sensor. In practice, the prospects for controlling such systems are
quite good since, if sensor and actuator dynamics are negligible, sta-
bility is unconditionally guaranteed as long as the controller is strictly
positive real [1], [2]. Although there is no general theory yet available
for designing positive real controllers, a variety of techniques have
been proposed based upon H; theory [3]-[5] and H theory [6]-[8].

The purpose of this note is to address the following question: Given
a positive real plant and strictly positive real compensator, how can
the compensator be modified if the plant is found to possess an input
nonlinearity? For exmaple, proof mass and piezoelectric actuators
have force constraints that lead to saturation nonlinearities [9]. There
exists an extensive literature devoted to the control saturation and
associated windup problem (see, for example, [10]-[14] and the
numerous references cited therein).

Our main result (Theorem 1) implies that closed-loop stability
is guaranteed so long as the compensator is modified to include
a suitable input nonlinearity. Although this result is limited to
positive real plants, it turns out that it is not limited to saturation
nonlinearity, but rather applies to a large class of input nonlinearities.
We require only that the nonlinearity be memoryless and that either
its characteristics be known or its output be measurable. The proof
of this result is based upon Lyapunov function theory. An alternative
proof based upon dissipative system theory [15, 16] shows that the
nonlinear controller modification counteracts the effects of the input
nonlinearity by recovering the passivity of the plant.

Since our results focus on positive real plants, it is natural to
suspect that our results are related to classical absolute stability
criteria such as the circle or Popov criterion. Such results are often
used to verify stability of closed-loop systems involving saturation
nonlinearities [10], [11]. Such criteria, however, require a gain or
phase constraint on the linear portion of the loop transfer function.
Such constraints are not satisfied in our formulation since both the
plant and compensator are positive real, and hence the loop gain
need not possess either a gain or phase constraint. In addition, the
approach of [10], [11] assumes beforehand that only a finite portion of
the nonlinearity is used in closed-loop operation or, equivalently, that
the state is confined to a finite region of the state space. Our approach,
however, guarantees unconditional global asymptotic stability.

In certain special cases, absolute stability criteria can be
used to guarantee closed-loop stability in the presence of an
input nonlinearity and without modifying the compensator [17].
Specifically, if the input nonlinearity is sector-bounded and
either monotonic or odd monotonic, then closed-loop stability is
guaranteed if the product G(s)G.(s)Z(s) is positive real, where
G(s) and G.(s) denote the linear portion of the plant and the linear
compensator, respectively, and Z(s) denotes a stability multiplier of
a specified class [18]. If G- (s) belongs to this class of multipliers,
then by choosing Z(s) = G, !(s), it follows that the closed loop
is stable. Our results, however, are valid for nonlinearities that are
not necessarily either sector-bounded or odd or monotonic and for
positive real compensators that are otherwise arbitrary. Closed-loop
stability for such systems is guaranteed by employing the modified
nonlinear compensator introduced herein.

II. INPUT NONLINEARITIES
Consider the positive real plant

2(t) = Ax(t) + Bu(t),

y(t) = Cz(t) + Du(t)

@
)
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with the positive real feedback compensator
Ic(t) = Acrc(t) + ch(t), 3)
u(t) = =[Cexc(t) + Dey(t)] )

where z(t) € R™, u(t), y(t) € R™, z.(t) € R"¢, and all matrices
are real with appropriate dimensions. In (4), the minus sign denotes
the fact that the positive real plant (A4, B, C, D) and positive
real compensator (A., Bc, Ce, D.) are interconnected in a negative
feedback configuration. As discussed in Section I, such compensators
can be designed by means of a variety of techniques [3]-[8]. Also, by
standard theory [1] the closed-loop system is guaranteed to be stable
in the sense of Lyapunov and, furthermore, is asymptotically stable
if either the plant or the compensator is strictly positive real.

Now suppose that the plant is found to possess an input nonlinearity
so that, in reality, (1) is not valid. Rather, in place of (1) a more
accurate plant model is

#(t) = Az(t) + Bo(u(t)),
y(t) = Cz(t) + Do(u(t))

&)
6

where o: R™ — R™ denotes the input nonlinearity. We shall require
the following assumption concerning o (-). Let u = [u1 -+ um]? and
o(u) = [o1(x) - - om(u)]” denote the components of v and 0.

Assumption 1: For all i = 1,---,m, if u; = 0, then ¢i(u) = 0.
That is, the ith component of o(u) vanishes whenever the ith
component of u vanishes.

To illustrate the allowable input nonlinearities, consider first the
special case o(u) = [61(u1) - &m(um)]T of decoupled nonlin-
earities. In this case, the ith component &;(u;) of o(-) depends
only upon the ith component u; of w. Now :(-) can represent
an arbitrary scalar nonlinearity that vanishes at the origin. For
example, the saturation nonlinearity & (u1) = sat(u;) is allowable
as well as deadzone, quantization, and relay nonlinearities. Note
that different types of nonlinearities are permissible. For example,
o(u) = [sat (u1) sgn (u2)]” is allowed, where sgn (0) = 0.

More generally, o(u) may also denote a nonlinearity whose coor-
dinates are not necessarily decoupled. For exmaple, the nonlinearity

lull < 1,
flull2 > 1

o(u) = u,
= ]_7

where ||ullz = VuTu, satisfies Assumption 1 and has the form of a
radial saturation function on R™.

In the presence of such nonlinearities, closed-loop stability and
performance can be affected. In the next section we modify the
controller (3), (4) to account for the input nonlinearity to guarantee
closed-loop stability.

III. NONLINEAR CONTROLLER MODIFICATION

To counteract the effect of the input nonlinearity o (u) in (5), (6)
we modify the controller by replacing the compensator dynamics (3)
and control inputs (4) by

&c(t) = Aczxe(t) + BeB(u(t))y(t), @)
u(t) = ~[Ceae(t) + DeB(u(t))y(?)] ®)
where the controller nonlinearity 3(u) is the diagonal matrix
B1(u) 0
Blu) = . (&)
0 Bm (u)
where, for i = 1,---,m
Bi(w) = ai(u)/ui, ui # 0,
= arbitrary, u; = 0. (10)
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TABLE 1

Input Nonlinearity o(u) Controtler Nonlinearity 8(u) = o(u)/y

alu) Blw)
Saturation qu e e—
o(w) / Blw)
Deadzone . . :
_ u I u
() / &
Relay u u
a(u) Blw
Relay with ‘/E :\
Deadzone N v e ——
a(u) — —/ $w \
— ) .
Quantizatfon —_—t _ u

Because of Assumption 1, it can be seen that 3;(u)u, = o,(u), for
allé=1,---,m and v € R™. Since o;(u) = 0 whenever u; = 0, it
can also be seen that 3;(u)u; = o;(u) is satisfied for arbitrary 3;(u)
whenever u; = 0. Consequently, it follows that

B(u)u = o(u), u€eR™. (11

By using (11), it thus turns out that the value of ;3;(u) when u; = 0
plays no role in the subsequent stability analysis.

The form of the controller nonlinearity 3(u) to be implemented in
(7) and (8) is quite simple, requiring only knowledge of o () and di-
vision by u;. For the case m = 1 and several common nonlinearities,
the required controller nonlinearity 3(u) is illustrated in Table 1. It can
be seen that a relay nonlinearity o (u) = sgn () leads to unbounded
B(u) for u near zero. Hence in this case it may be desirable to
artificially implement a deadzone so that 3(u) is bounded. Finally,
although all of the input nonlinearities shown in Table I are sector-
bounded and odd monotonic, our results are valid for nonlinearities
that are not necessarily either sector-bounded or odd or monotonic.

The modified nonlinear controller (7), (8) can be implemented in
two different ways. If the model o(u) of the input nonlinearity is
known, then 3(u) can be constructed from (10) by evaluating o (u)
in real time for each value of u. If, however, the model o (u) is not
available but o (u(t)) can be measured during closed-loop operation,
then 3(u(t)) can be formed from u(¢) and o (u(t)) by implementing
(10) with u = wu(¢). This scheme is illustrated in Fig. 1. If, however,
neither a model of o () nor a measurement of o (u(t)) is available,
then 3(u(t)) cannot be formed, and our approach does not apply. We
assume, however, that either an accurate model of o(u) is available
or that the signal o(u(t)) is available for feedback.

In the case in which the controller is proper but not strictly proper,
that is, D. # 0, then the controller output equation contains an
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algebraic constraint on u. For each choice of D. and 3(u) this
equation must be examined for solvability in terms of «. For the
PI controller with saturation nonlinearity considered in Section VI, it
can be shown that (8) has a unique solution u for each r.

IV. CLOSED-LOOP STABILITY

Our goal now is to show that in spite of the input nonlinearity,
closed-loop stability is guaranteed if the modified controller (7), (8)
is implemented in place of (3), (4). To do this we invoke the positive
real lemma [19], [20] which states that there exist a positive integer
p and matrices P € R"*", L € R"*?, and W € R™*?, where P
is positive definite, such that

0=A"P+PA+L"L, (12)
0=BTP-C+WTL, (13)
0=D+D7 —wTw. (14)

Furthermore, since the compensator is positive real there exist a
positive integer p. and matrices P. € R*<*"¢, L. € R"<*P<, and
W, € R™*P< where P. is positive definite, such that

0=A"P. + P A+ L] L., (15)
0=BTP. -C.+W'L,, (16)
0=D.+ DI - W W.. (17

If the plant or compensator is strictly positive real [21], [22], then
(L, A) or (L., A:) is observable, respectively.

Theorem 1: Consider the closed-loop system consisting of the
nonlinear plant (5), (6) and the nonlinear controller (7), (8), where
the input nonlinearity o (-) satisfies Assumption 1. If the linear plant
(1), (2) and the linear compensator (3), (4) are both positive real,
then the nonlinear closed-loop system (5)—(8) is stable in the sense
of Lyapunov. Furthermore, if the linear plant (1), (2) and the linear
compensator (3), (4) are both strictly positive real, then the nonlinear
closed-loop system (5)—(8) is globally asymptotically stable.

Proof: Using (5) and (7) we can form the closed-loop system

Az + Bo(u)

x
L:} = [Acxc + B.A3(u)y as
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where u = —C.z. — D.B3(u)y, y = Cz + Do (u), and consider the

Lyapunov function candidate
Viz, zc) = 2T Pz + mZPczc (19)

where P and P. are given by (12)~(17). Since V(z, z.) is positive
definite, it remains to examine V(z, z.) to determine closed-loop
stability. Using the identities (11)—(17) it thus follows that

V(x, x.) = 227 P[Az + Bo(u)] + 227 P.[A.x. + B.3(u)y]
=—2TLTLe = 2T LT L., + 22" PBo(u)
+ 22} P.B.f(u)y
=—2'L"Le — 2T LT Lox. + 227 [CT — L"Wlo(u)
+22][CT - LIW.]B(u)y
=—2TLT Lz - IZLZLCIC + QITCTU(U)
22T L™ Wo(uw) + 22T CTB(u)y — 22T LTW.B(u)y
—a' DL — 2T LT Loz + 2T = 6T (w)D o (v)
- 22T L™ Wo(u) — 207 8(w)y — 29T 8T (v) DT B(n)y
— 22 L{W.B(u)y
—2" LT L — 22" L"Wo(u) — T (u)[D + DTjo(u)
— ag L Leae — 200 LTW.B(u)y
~y" 87 ()[De + DS 1B(w)y + 29" [o(u) — B(u)u]
—[Le + Wo(u)]"[Lz + Wo(u))
= [Leze + WeB(u)y]" [Leae + WeB(u)y]
<0

which proves stability in the sense of Lyapunov for the nonlinear
closed-loop system (5)—(8).

To prove asymptotic stability of the nonlinear closed-loop system
(5)—(8), we assume that the plant and compensator are both strictly
positive real so that, by Lemma 5.1 of [23], there exist ¢ > 0 and
€. > 0 such that (12) and (15) can be replaced by

0=A"P+PA+L"L+e¢P, 0)

0=A; P+ P.Ac+ L{Lc + €. P. @n
respectively. Using (20) and (21), it follows that V(z, z.) is now
given by

V(x, zc) < —exT Pz — ezt Poz.

— [z + Wo ()] [Lz + Wa(u)]

= [Leze + WeB(w)y]" [Leze + Wefi(u)y] < 0
which proves global asymptotic stability of the nonlinear closed-loop
system (5)—(8).

An alternative proof of Theorem 1 in the case D = 0 can be

obtained by using dissipative system theory [15], [16]. Let V,(z) =
(1/2)zT Pz be a storage function and consider the supply rate

r(u, §) = uTj, where § is obtained by rewriting the closed-loop
system (5)—(8) as

2(t) = Az(t) + Bo(u(t)), (22)
§(t) = B(u(t))Cx(t), (23)
@c(t) = Acc(t) + Bei(?), (24)
u(t) = —[Coze(t) + Dej(t)]. (25)

It thus follows that
- 1
Vi(z) = §IT(ATP + PA)z + o7 (u)B Pz
1
= —§:vTLTLm + o7 (u)Cx

<uTB(u)Cx
T
=9 u
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which shows that the modified plant (22), (23) is dissipative. Con-
sequently, by dissipative system theory [15], [16] the closed-loop
system is Lyapunov stable. It can thus be seen that the nonlinear con-
troller modification counteracts the effects of the input nonlinearity
by recovering the passivity of the plant.

V. AN ILLUSTRATIVE EXAMPLE
INVOLVING A QUADRATIC NONLINEARITY

As a first example we consider the quadratic nonlinearity o (u) =
u?, and, for simplicity, we set G(s) = Gc(s) = 1/(s+1). As shown
in Fig. 2, this nonlinearity leads to a finite escape time instability for
certain initial conditions. The modified nonlinear controller, however,
is guaranteed by Theorem 1 to yield global closed-loop stability. This
property is confirmed by Fig. 2.

VI. APPLICATION TO INTEGRATOR WINDUP

In this section we apply our approach to the problem of integrator
windup with a saturation nonlinearity. This problem has been exten-
sively studied by prior researchers; see, for exmaple, [11}-[13] and
the numerous references cited therein. Since our results are limited
to positive real plants, we cannot make general comparisons with
the results of [11]-[13] and others. We can, however, investigate the
performance of the modified nonlinear controller in a situation that
typically entails integrator windup. We thus consider the illustrative
example considered in [12] in which G(s) = 1/s, G.(s) = (1/5)+1,
the signal r(t) shown in Fig. 1 is a unit step command, and the
saturation limits are set at £.1. Note that because the compensator
G.(s) is not strictly proper, it follows that D. in (8) is nonzero.
Thus the algebraic constraint on u in (8) must be taken into account.
It is easy to show that (8) has a unique solution u for each value
of z. For the simulation results shown below, we took advantage of
the MATLAB®/Simulink feature of automatically solving algebraic
loops by means of a Newton—Raphson iteration. Fig. 3 shows the ideal
system behavior in the absence of the saturation nonlinearity and com-
pares the performance of the linear controller with the performance
of the modified nonlinear controller. The performance improvement
attained by the nonlinear controller is directly attributable to the
decreased integrator windup as shown in Fig. 4. Finally, the signals
u, o(u) = sat(u), and 8(u) = sat(u)/u are shown in Fig. 5.
Note that, in accordance with the form of 3(u) shown in Table I,
the multiplicative coefficient 3(u) is small when 3 is large, thus
effectively “shutting down” the integrator to reduce windup.

VII. CONCLUSIONS

A new approach based upon Lyapunov stability theory has been
developed for addressing the problem of input nonlinearities. The
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approach assumes that the linear plant and compensator are positive
real, while the class of input nonlinearities that can be addressed
is quite general. To guarantee global asymptotic stability, the linear
compensator is modified to form a nonlinear compensator that coun-
teracts the effects of the input nonlinearity by recovering the passivity
of the plant. We demonstrated special cases of this result by simu-
lating control systems having quadratic and saturation nonlinearities.
Future extensions will focus on extending the result to larger classes
of linear plants and compensators.
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proofs are provided, and error bounds are constructed with respect to
the Loo and L2 norms.
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