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l, Introduction

This report describes in detail the inelastic buckling
behavior of a concentrically loaded strut having a reduced rectangular
cross section as a mid-section. The buckling model is identical to
that originally used by Shanley(l) to support his concepts except that
in the Shanley model two localized points of area were assumed whereas
in the present model a solid rectangular corss section is introduced
which permits a detailed exploration of stress distribution across the
section, One purpose of this paper is to determine quantitatively at
various load levels the stress distributions that were described intui-
tively by Shanley in his original paper. The behavior of struts held
s0 as to remain straight above the tangent modulus load will also be
studied, as well as other aséects of behavior that may lead to a
better appreciation and understanding of inelastic buckling behavior,

The results presented herein pertain to a series of simulated
experiments on structural aluminum alloy struts of various lengths,
Stress distribution across the section, load deflection curves, and

other information are determined by use of the IBM 704 computer., There

Professor of Structural Engineering, Civil Engineering Department,
University of Michigan, Ann Arbor, Michigan.
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are many advantages in simulated tests, carried out with the aid of a
computer, in comparison with real tests in an actual testing machine,
No machining is involved, no materials need be acquired, and there is
no scatter in the test results, Moreover, the precision of results,
although based on a simulated and idealized material, permits a study
of details of behavior that is not possible in ordinary laboratory
tests, It would be impossible to duplicate completely the observations
that may be made on the basis of the simulated tests reported in this
paper., The Shanley load is determined guantitatively and is defined
as the maximum load that is attained by a concentrically loaded strut
that starts to bend at‘the tangent modulus load,

In discussing properly the work of Shanley it is essential
that the development of the Fuler formula and its modifications be re=
viewed over the period of 203 years between it and Shenley's work. An
excellent source for such a review has been provided by N, J. Hoff,(g)
Figure 1 summarizes the principal developments in outline form, In
174k Fuler presented his evaluation of the average stress at which a
slender axially loaded strut of constant cross section will develop
bifurcation of equilibrium positions at a counstant load, For many
years Euler's formula was not generally applied to actual design since
proof tests of structures indicated that columns freguently failed be-
low the Euler load, In 1889 Considere indicated why Fuler®’s formula
had not been more useful to engineers. He conducted a series of 32
column tests and suggested that if buckling occurred above the propor-

tional limit the elastic modulus "E" should be replaced in the Euler
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formula by an Eeff .

He correctly stated that this effective modulus
should be somewhere between the elastic modulus E and the tangent modu-
lus Et’

Independently of Considere, during the same year of 1889,
Engesser suggested that column strength in the inelastic range might

be obtained by the substitution of E, in plagce of E in the Euler

t
formula, This is known today as the “tangent modulus formula” and

has been accepted recently by Column Research Council(5) as the “proper
basis for the establishment of working load formulas” for both ferrous
and non-ferrous metals,

In 1895 Jasinski suggested that there was an apparent mistake
in Engesser's formula in that the nonreversible characteristic of the
stress~strain diagram in the inelastic range should be considered as
had been done in a very general way by Considere, Engesser proceeded
within the same year to produce a "corrected” general formula for a
"reduced modulus” and he stated that this reduced modulus depended not
only upon "Et” and "E" but on the shape of the cross section as well.

In 1910 vonKarmhn derived explicit expressions for the
"reduced modulus” for both the rectangular and the idealized Hesection

columns, For the rectangle

By . (1)

= ) A 8
(VE +E)
The reduced modulus is also called, appropriately, the
"double modulus” and for about 35 years subsequent to vonKarmén's work

a controversy was waged over the comparative merits of the tangent

modulus and double modulus column formilas, From the classical
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instability concept the double modulus theory was correct since it
indicated the load at which a perfectly straight and centrally loaded
column could have neighboring equilibrium configurétions with no change
in load, This is identical in concept to‘the Euler load in the elastic
buckling range, However, many experimenters found that columns tested
in the laboratory with utmost care usually buckled at loads Jjust
slightly above the tangent modulus load, For example, very careful
tests were made in the 1930's by the Aluminum Research Laboratories,(u)
One of their conclusions was: "The test data presented herein are in
close agreement with Engesserf's formula,..”. By this was meant the
tangent modulus formula, even though Engesser had himself renounced it.

In 1946 Shanley(5) reconciled the controversy between the
proponents of the tangent modulus and the double or reduced modulus
theories, His explanation now seems simple in retrospect. Shanley
showed that since it was obviously possible for a column to bend simule-
taneously with increasing axial load, without strain reversal, it was
reasonable to conclude that such bending would start at the tangent
modulus load, Thus, normally, for the usual stress-strain curves, the
double modulus load never could be reached because it is based on egui-
librium configurations in the néighborhood of a perfectly stralght
column, In a letter published jointly with the 1947 Shanley paper,
vcnKﬁfmén(l) redefined the tangent modulus load in a way that may be
paraphrased as follows:

“"The tangent modulus load is the ‘smallest value
of the axial load at which bifurcation. of the

equilibrium positions can occur regardless of
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In 1950 Lin(7) presented results of his inelastic analysis
of a slightly curved column, including effects of strain reversal, con-

sidering a rectangular section with distributed area,

2. Evaluation of the Shanley Load

A numerical procedure will be presented for the evaluation
of the Shanley load, Although the method is applied herein to an in=-
elastic buckling model with only a limited section at the center that
undergoes bending, the method may readily be extended to more realistic
columns with variable cross section, A digital computer will be re-
quired in such an undertaking and at each successive equilibrium evalu-
ation, the column configuration by the Newmark(a) numerical procedure
will be determined,

After bending starts at the tangent modulus load, successive
deflected equilibrium configurations must be established for which the
increased column load and increaged internal bending resistance are in
equilibrium. The resisting internal moment and thrust resultants are
determined by a pattern of stress across the cross-section of the col-
umn that changes shape with each load increment., The calculation 'of a
sequence of equilibrium positiens’for a succession of smalllloéd incre-
ments is essential because over an appreciable portion of the column
cross section the material experiences first an increase in stress
under a continually changing tangent modulus followed by a regression
of strain which produces a stress reduction as determined by the elasg~

tic modulus.
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The successive equilibrium configurations must be determined
very precisely for a sequence of very small increments of unit rota-
tion with consideration of the continually changing values of tangent
modulus, . It is not practicable to use values of Et obtained graphi-
cally from an experimental curve, It is necessary to use a mathemati-
cal expression which will simulate consistently both the tangent modu-
lus and compressive stress as a function of strain to as great a numer-
ical precision as may be required to give consistent numerical results,
Duberg and Wilder(é) used the generalized stress-strain curves of
Ramberg and Osgood.(9) These provide a wide variety of shapes with
the added advantage that each curve throughout the entire range is re=-
presented by a single expression, The Ramberg-Osgood curves could
readily be adapted to the procedure employed herein, but it was desired
to take a very close look at the behavior near the transition from elas-
tic to inelastic behavior, The Ramberg=-0sgood curves have no truly
elastic range and were not used in the present study.

The simulated properties for computer analysis correspond
closely to the minimum properties guaranteed by the Aluminum Company
of America for aluminum alloy 2014=T6, The guaranteed minimum prop-
erties are shown by dashed lines in Figure 2 andkthe simulated prop-
erties represented by various empirical relationships within the ranges
indicated are shown on the same figure. The eguations for stress and
tangént modulus within the range 0,0032 < ¢ < 0,0062 are given by

Equations 2 and 3, respectively, as follows:

= 14,08 + 6200 ¢ + 4,34175 sin |nle-= 000032)]
o + € + 4,34175 s8in [ 5 605T . (2)

= o0 _ n{e-=-0,0032
B, = 9. 6200 + 4400 + cos [x ot ) (3)
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It is assumed that for stresses up to 33.92 ksi that the material is

elastic with an elastic modulus of 10,600 kips per'inchQ, For

€ > 0,0062 additional expressions for ¢ and Et are indicated on
Figure 2,

The buckling model to be considered herein is shown in
Figure 3, The central non-rigid segment is of square cross section
with breadth H and length A, It is assumed that during bending the
segment of length A has a parabolic bent shape for which a simple
equilibrium evaluation in the deflected position, using the moment

area procedure, gives the following buckling stress in the elastic

range.,

0, = i (1)

5
(B + T A)

(B + )

A|6B + A

Equahion‘h for this buckling model corresponds to the Euler
buckling stress for a column of uniform cross section, Equation L is
an approximation and, if B = O, in which case the buckling model be=-
comes & column of uniform square cross section with the length A, the

buckling stress is
oner 008
GC = 73 (5)

A
(3)
If Equation 5 is written in terms of the radius of gyration of the

cross section R = H/\/12 we have the following approximation of the

Fuler buckling load for a square column of length A,

= 9.6E
% = (6)

A
&)
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The exact Euler buckling formula for the pin ended case is the well

known Equation 7 with L designated as the length of the column,

. = LE (1)

Although the buckling load by Equation 6 is 2,7% less than
the correct value by Equation 7 the approximation in the case of the
buckling model will improve and the error grow less as ﬁhe length of
the rigid segments increases. If the elastic modulus E in Equation L
is replaced by the tangent modulus Et (corresponding to the identical
stress level) the formula will correspond to the tangent modulus for-
mula for column buckling, Similarly, if the reduced double modulus
given by Equation 1 is substituted in Equation 4 the reduced modulus
buckling stress will be obtained, In calculating ER the value of Et
corresponds, of course, to the higher reduced modulus load Oge

The initial changes in stress distribution just above the
tangent modulus load will now be discussed, Figure 4 shows the stress
distribution as uniform at GT over the cross section,

If additional load above the tangent modulus load is now
applied to the "inelastic buckling model® or "strut", as it herein-
after will be called, the strut will start to bend, This bending will
cause the stress on one side, as shown, to increase by Ag;. The sub-
script denotes this as the first increment of stress above the tangent
modulus value, Now if Ag, were thought of as an infinitesimal quan=-

tity do, in the limit, just as bending was initiated, in the limit

there would be no change in column load and the tangent modulus would
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apply over the entire cross section, There would be no strain
regression anywhere and ACy; as shown in the figure, would be zero,
Ir, hbwever, Aoy is an actual finite difference in stress level there
will be a finite increase in column load above the tangent modulus
load, If the tangent modulus governed the stress=strain relation
over the entire cross section any increase in load above the tangent
modulus load would be supercritical since the tangent modulus load ite
self would be the maximum buckling load capacity if the tangent modu-
lus were to govern the stress~strain relationship over the entire
cross section, Thus if a finite Af is thought of as representing the
first increment of unit curvature, the strut cross section at the
point of maximum deflection will have to develop enough bending moment
resistance to be in equilibrium with the resultant moment due to the
external load P, increased by APy, This increase in bending resistance
can occur only if some strain reversal takes place, Thus, if the tan-
gent modulus stress is thought of as a new reference for stress changes,
there will be in effect a movement of the "neutral axis™ inward from
the edge of the cross section by an amount Acl and there will be a
stress regression on this convex side of the column as indicated by
Acha

If a second increment of rotation is permitted, corresponding
to a further increase in axial column load and increase in internal
resisting moment, there will be a further movement during this second
increment somewhat smaller than the first one, as indicated in Figure L

by AC This is the only way in which a positive increment in moment

20

can be developed to offset the increase of external moment caused by
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the axial load P + APl + APp. The increase in compressive stress

indicated by Ao, will be less than Acl because we are now moving out

2
along a typical inelastic stresse-strain curve in which the second
derivative of ¢ with respect to € is everywhere negative, In carrying
out calculations of this type it will be assumed that the average tan-
gent modulus during each increment of rotation governs the increase in
stress that occurs during that particular rotation and load increment,

It is to be noted that within the region "C" the stress will
first increase according to the local tangent modulus and thereafter
@ecrease according to the elastic modulus,

Consider now the change in rotation and its effect on axial
load, moment, and "C" for the Nth increment of rotation, shown in
Figure 5 as the difference between the strain distribution at incre=-
ment N and at the preceding increment N-1, Although there will be an
appreciable variation in tangent modulus over the cross section of the
strut, the increments of load and moment during any particular rota-
tion increment can be closely approximated if the tangent modulus is
determined by a single value that decreases with each successive rota=-
tional increment but is determined by the actual strain one-quarter of
the distance (H-C) in from the concave side of the column, If the
stress varied linearly throughout the increasing range this would be
the location at which the total force increment could be considered as

concentrated and this will give a close approximation for the non-

linear distribution that actually exists. Thus, referring to Figure 5,
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the strain that will be used as an index of the changing tangent

modulus will be determined by Equation 8 as follows,

y(avg) = Sp + OO = 0.5)(H ~ Cp ,)Af (8)

The actual strain distribution over the entire cross section will be
assumed to vary linearly and this index strain given by Equation 8 is
merely for the purpose of evaluating a tangent modulus for which an
assumed triangular distribution of increased compressive stress is as-
sumed satisfactorily to represent the actual non=linear distribution
of increased compressive stress for that particular lcad., The forego=-
ing explanation is illustrated graphically in Figure 6, which shows a
possible stress distribution at a particular bent equilibrium position
as a solid line, In the analysis the curved sclid line portion in the
right portion of the stress distribution is replaced by the dashed line
which intersects the curved line at the location where the index strain
has been determined,

Referring now again to Figure 5 the magnitude of axial force,
moment, and "C" will be determined after the Nth A@ that is introduced

as a result of bending that commences at the tangent modulus load.

Thus,
Py = Py + (8P)y (9)
Moo= My o+ (AN (10)
Cy = Cp.p + (AC)y (11)

Each A¢ during a particular numeric step will be arbitrarily

the same, thus ¢N may be considered as the independent variable in the
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solution of a particular equilibrium condition and
By = NAg (12)
On the basis of the arbitrary rotation A@, as shown in

Figure 5, the following equations may be written for APN and AMN,

Y ) 2 2 [i
AP, = _5?_5 [(_H_C_Nﬂl) By = Cy® = N | (B=Cy_)Bqy + Cy_qB |ACy

2 G .
- N°(E-E,, )E N] (13)
HA 2 2 iz
wy = B8 (recy )R(meey gy + Cf_y (3H-20y 1)E

2 2
+ 6NCN~1(H—CN_1)(E=’ETN)ACN + 3N (HwECN”l)(EmETN)ACN

S
- 2N (EuETN)Ef:J (14)

In Equation 13 values of C will have been determined in

N-1
the preceding step and,ETN will be determined in accordance with the
index strain by Equation 8., The same is true for Equation 14, Thus
the only unknown quantity in Equations 13 and 14 is ACy which appears
up to the third power, For very small values of N, when the strut

Just starts to bend, AC, may be relatively large and as bending pro=

N
ceeds the quantity NACy increases., It will be noted that in every
term in which ACN.appears it is multiplied by N,

Equations 13 and 1 are combined intc a single equation in

terms. of ACvay means of the equilibrium equation for the Nth equilib=-

rium position which may be writtens

(Py_q + APy) [ﬂgﬁé (B +\Ag)] = My o+ AM (15)
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In Equation 15 the quantity in brackets to the left of the
equal sign is the maximum deflection at the center line of the column,
The equilibrium condition that determines ACN is also illustrated in
Figure 7. The solution of the cubiec equation in AC that results from
the combination of Equations 13, 14, and 15 was carried out with the
aid of the IBM 704 computer at the University of Michigen utilizing
MAD (Michigan Algorithm Decoder) ETogramming, The work of programming
and the carrying out of all details of the actual numeric solution

were handled by Mr, Rafi Hariri, a graduate student at the University

of Michigan, for course credit in structural research,

3, Results of the Simulated Tests

Typical results of certain of the simulated tests carried
out by means of the computer solution will now be presented and dis-
cussed,

In the numerical example used in the simulated tests dimen-
sion A (Figure 3) was held constant at 2 inches and dimension H at 1
inch, Thus the reduced section has an area of 1 inch square and the
total strut load is always identical with the average stress on the
reduced section, Dimension B was varied in increments up to the value

that would result in elastic buckling.

3,1l ©Stress Distribution

The stress distributions across the hreadth of the reduced
.section of the strut at increasing loads are shown in Figures 8, 9,

and 10, typical of short, intermediate, and long strut behavior, In
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Figure 8 the space between each of the stress distribution lines
covers ten different equilibrium evaluations at successively increas-
ing loads, Thus, the A used in the determinations of Figure 8 was
0,00001 radians whereas the plotted lines are for a A@ of 0,0001
radians, As an indication of the fact that A@ was taken sufficiently
small the following tabulation shows results for I = 43 inches for

various A@'s as follows:

1Y,

Calculated Maximum or Shenley Load
in Kips per Sq. In,

b w0 W s s [0 w

0,000002 39.4570

0,000005 39,4566

0.000010 39,4557
o

It is obvious that in the range of A¢‘s that were actually
used in determining the Shanley loads the cited value of 0.00001 gave
satisfactory accuracy,

Referring again to Figure 8, the gradual inward movement of
C is noted, reaching a maximum of 0,241 inches at = (the Shanley
load). There is a marked reduction in the index tangent modulus Et'
This demonstrates the necessity of considering the progressive change
in tangent modulus as bending proceeds above the tangent modulus load.
Also to be noted is the very small deflection in comparison with the
column length at which the Shanley load is reached. The maximum lat-

eral deflection for this strut at the maximum load is less than one

thousandth of the length of the strut., Although the constriction: in
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the chosen model tends to accentuate these effects, the model is most
nearly similar to anvactual column in the short length range where the
effects are most pronounced,

Figure 9 presents the simulated test stress distributions
for an intermediate length of a strut. The inward extent of region C
is greater than in Figure 8, The maximum deflection is considerably
greater than for Figure 8 at the maximum load but is still less than
one thousandth of the strut length, The variation of E£ during bend-
ing above the tangent modulus load is large but not so large as in the
shorter strut,

Figure 10 is for a relatively long strut that buckles Just
sbove the proportional limit, - The tangent modulus at this load is very
nearly the same as for the elastic range, It is to be noted that the
maximum extent of C at maximum load is more than 80% of the way into
the center of the column and that the deflection at maximum load is
less in proportion to the length of the column than in the previous
case, Obviouslysin the elastic range there will be no load increment
as buckling will occur at constant load and C will not move inward

gradually but will be 0,5 at all times,

3.2 Load Deflection Curves

Figure 1l shows typical load vs. lateral deflection curves
plotted from the tangent modulus load out to the maximum or Shanley
load for eight simulated tests of different strut lengths, The daghed
line shows the limit of lateral deflections out to the maximum load.

The deflection is zero at the proportional limit, below which elastic
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buckling will occur, and increases to a maximum in the intermediste
column range,

For a particular length L = 30 inches, simulated tests were
made in which the strut was held straight above the tangent modulus to
various stress levels and then permitted to start bending. The sug-
gestion for this type of test goes back to vonKarman's discussion of
the second Shanley paper(l) in which, referring to the tangent modulus
and reduced modulus loads, vonKarmén stated

"...0ne can construct sequences of equilibrium
positions starting from any load between the
two limiting values corresponding to the tan=
gent modulus and the reduced moduli, The-
inclination of the equilibrium lines repre=-
senting the load as a function of the deflec=
tion is steepest for the line starting from
the lower limiting load and becomes zero for
the line starting from the upper limiting load
(i.e, the reduced modulus load), Equilibrium
lines have an envelope that starts from the
lower limiting load and=-at least as long as
the stress strain curve can be considered
straight and the deflection smalle==~approaches
asymptotically the load computed with the re=
duced modulus."

The foregoing comment accurately describes the initial

portion of the load deflection curves shown in Figure 12, However,
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for the typical stress-strain curve used in this study, it is obvious
thaet the comments regarding the asymptotic approach to the reduced
modulus load have no real practical significance even though they are
technically correct for that special case where the stress-strain
curve would be straight above the tangent modulus load: If it were
straight, of course, the reduced modulus load in the present case

as shown, at approximetely

) y,
h7.h ksi,at which load the tangent modulus that determines the reduced

would be much greater than as calculated

modulus has substantially decreased from the tangent modulus at the
tangent modulus load of about 45,3 ksi,

To demonstrate the different load-deflection behavior that
results when the stress~strain curve remains straight above the tan=-
gent modulus (Et = const,) load, Figure 13 should be compared with
Figure 12,

In Figure 13 the curve of Figure 12 that determines the
Shanley load (bending initiated at Gt) is redrawn to a new scale, The
pseudo oR based on Et at the tangent modulus load is indicated and is
seen to be greatly in error and much too large. Although not shown
herein, this error progressively increases as the strut is made shorter,

The great difference between behavior assuming constant E_ and pre-

t
dicted actual behavior leading to the Shanley load is graphically dem-
onstrated, Whereas, with constant E., the lateral deflection and cor=-
responding column load would both theoretically increase as much as
the geometric limitations permit, the actual load differs but little

from the tangent modulus load and the Shanley load is reached at ex-

tremely small lateral deflection,
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3,3 Column Strength Curve

Figure 14 shows the curve of strut length versus average
stress (or load) at the various critical loads for the buckling model.
These include the reduced modulus load, the maximum or Shanley load,
and the tangent modulus load. Also, for comparative purposes, the re=-
duced modulus load and tangent modulus load are given for a one inch
by one inch column of constant section., The curves tend to join, as
they should, at small lengths, Although the maximum or Shanley load.
is closer to the tangent modulus load than the reduced modulus load,no
particular conclusion can be drawn from this relation since these simu=-
lated tests pertain to one particular material. The effort has not
been so much to draw general conclusions, but rather, by a very close
look at buckling behavior, lead to an improved understanding of what

actually goes on between these various loads,

L, Summary

Although the simulated tests described herein have pertained
to an inelastic buckling model with rigid bars adjacent to the center
bending portion, it would be possible with minor changes in the com=
puter program to simulate somewhat more nearly actual column behavior
by some arbitrary assumption as to the distribution of'M/EI along the
column, This was not done because it was considered better to present
a closely approximate solution of the model discussed herein rather
than an incorrect solution of a more realistic representation of a

column, The present work is simply one step along the way toward the

=20m
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projected solution of columns with variable cross section in the
inelastic range with correct evaluation of the buckled shape at the
various load levels above the tangent modulus load. In such a study
errors ih any assumed deflection configuration would be reduced by an
iterative procedure making use of NEWmark’s(B) numerical method as
adapted to inelastic buckling,

It has been the aim of the present paper simply to improve
understanding of buckling behavior in the inelastic range and to clar-
ify some concepts that relate to Shanley's important contributions,
On the basis of the simulated tests carried out in this study and desw
cribed herein the following statements may be made., These statements
are restricted to a material for which QE% is contimious and negative
above the proportional limit, e

1., The inward movement of the termination point of strain
regression from the convex side of the column, immediately
above the tangent modulus load, as predicted by Shanley in
Figure 7 of Reference 1, has been reproduced guantitatively
for a specific aluminum alloy within a localized rectangular
cross sectional constriction in an otherwise rigid strut.

2, The procedure is simple in concept and the computer program
can be adapted with minor alterstions to any other stress-
strain diagram or diagrams for which suitable mathematical
expressions may be written,

3. The procedure presented herein is projected as the initial

step toward the accurate evaluation of maximum inelastic



)2

buckling loads for columns of variable cross section and
arbitrary stress-strain properties,

L, In determining inelastic buckling equilibrium configurations
and maeximum loads above the tangent modulus load in members
made of aluminum alloy it is essential to consider the con-
tinuing decrease of tangent modulus in the region of increas-
ing compressive stress,

5. The assumption of bilinear elasticity as an approximation
Qf inelastic stress-strain properties may in some instances
lead to grossly erroneous results if inelastic stability is
involved in the case of a material such as structural aluminum
alloy.

6. If a column is constrained to remain straight in the
inelastic range, above the tangent modulus load, it will
reach a maximum load that is greater than the Shanley load
and less than the reduced modulus load, The deflection at
the maximum load will be progressively less as the reduced
modulus load is approached.

T. The maximum or Shanley load for an ideal column of a
typical structural aluminum alloy in the inelastic range is
reached at relatively small deflections relative to the
column breadth,

8. Further validation is given to the significance of the
tangent modulus load as a proper basis for the evaluation

of column design formulas and the double or reduced modulus



5.

3 P

load is seen to be of no practical significance for
materials typified by the stress~strain curve for structural

aluminum alloy used herein,
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