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Corollary 3.4: For any © € BRG(G)

1
k*[G] =2 —»p[|0]]. 3.5
Proof: As in the proof of Corollary 3.3, we show that for any
matrix G = [g;]e C™*™

(3.6)

1
inf 5[ DGD™!'] = —p[|G|].
d\lzD,,, d ] vm elicl]
This can be accomplished by showing that
[G] = (3.7)

and noticing that | DGD”'| = D|G| D! for any DeD,,. Note
first that 5(G] = (1/Vm)|| G r = (1/Vm || |G| || s, and let N
denote the eigenvalue of |G|. Then it follows from Schur’s

decomposition [6] that || |G| ||= /3T N[ = o[|G|].
This proves (3.7) and thus completes the proof for the corollary.
vvvy
As a final remark, we note that before computing the lower
bounds in (3.3) and (3.5), it is helpful to first inspect the diagonal
clements of ©. It follows from both corollaries that if these ele-
ments are large, then the minimal condition number will also be
large.

—o[16]]
o ﬁp||

Iv. CoNcLusiON

We have developed new relations between the block relative gain
and condition number as well as the minimal condition number. Our
results show that the condition number must be large if the corre-
sponding block relative gain has a large maximum singular value,
and the minimal condition number must be large if the block relative
gain has a large structured singular value. These relations improve
the previous result in [8] and are useful in clarifying the role of
block relative gain as a measure of potential design difficulties
associated with plants that have large block relative gains.
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Robust Controller Synthesis Using
Kharitonov’s Theorem

Dennis S. Bernstein and Wassim M. Haddad

Abstract—Kharitonov’s theorem provides a necessary and sufficient
analysis test for robust stability of polynomials whose coefficients lie
within a hyperrectangle. In this note, we present a method based upon
Kharitonov’s theorem for synthesizing robustly stabilizing feedback
controllers. Our approach is based upon a multiple plant model formu-
lation with a quadratic cost functional. Sufficient conditions are ob-
tained for characterizing robustly stabilizing static output feedback
(proportional) controllers for MIMO plants with denominator polyno-
mial uncertainty.

I. INTRODUCTION

Kharitonov’s theorem provides a necessary and sufficient analy-
sis test for determining the robust stability of polynomials with
perturbed coefficients [1]. Although Kharitonov’s original result was
limited to uncertain polynomials having independently varying co-
efficients, considerable progress has been achieved in generalizing
this result to more general regions [2]-[8]. Although these results
are useful for analyzing the stability robustness of a given feedback
control system, there are relatively few results that exploit
Kharitonov’s theorem for Synthesizing robust controllers. Notable
exceptions are [9]-[12] which give necessary and sufficient condi-
tions for robust stabilizability of uncertain plants.

The goal of the present note is to develop a technique that can be
used for synthesizing such robustly stabilizing controllers. Our
approach considers a class of MIMO systems in companion state-
space form with denominator polynomial uncertainty. By limiting
the controller to be proportional, i.e., static output feedback, the
hyperrectangular structure of the parameter uncertainty is pre-
served. Hence it suffices to simultaneously stabilize the four
““plants’” corresponding to Kharitonov’s theorem.

Although there exists extensive literature on simultaneous stabi-
lization (see [13] and the references therein), we adopt here a
fixed-structure optimization-based approach involving multiple mod-
els with a quadratic performance functional. This approach allows
us to develop reasonably general conditions for robust static output
feedback (proportional control) synthesis. Although extensions to
dynamic compensation are more complex, we also show how SISO
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systems without zeros can be treated in a similar fashion by means
of integral control.
1. PROBLEM FORMULATION

We begm with a matrix formulation of Kharitonov’s theorem. For
i=0,--,n—1,Let §; and B be given uncertainty bounds with
B, = B;.

Lemma 2.1: Consider the set of matrices

0 I,
J{é (n—-1x1 n-1 .
{[ -8B —B,_,

EiSBISB_i":

-,n—l}.

Then every matrix in & is stable if and only if the four matrices

4 é 0(n—|)><\ _ In-l B

! —Bn 4 n 3 *Bn—z_ﬂrﬁl
4 (n Hx1 I,

2= - Bn 4 Bn~3 “Pn- - Enfl ’
A O(n %1 -1

3T —Bn 4_ﬁn—3 - -5'1*1 '
4.2 (n—l)xl

¢ Bn—} Bn 1

are stable.

Remark 2.1: As noted in [3], simplification is possible if n = 2,
3, 4. If n =2, then it suffices to check A,. If n = 3, then it
suffices to check A; and 3, > 0. Hence, for n = 3, either of the
pairs (A5, A)) or (A;, ;12) suffices. If n = 4, then it suffices to
check A,, A,, and 8, > 0. Hence either of the triples (A,, 4,,
A,)or (A,, As, A,) suffices. Simplification to these cases of the
results given in later sections is obvious and thus will not be noted
explicitly.

For the statement of the robust controller synthesis problem, let
A, B, C denote n X n, n X m, and ! X n matrices, respectively,
and let x = x(f), u = u(t), and y = y(t) denote n-, m-, and
I-dimensional vectors, respectively.

Robust Controller Syntehsis Problem: Consider the dynamical
system

%=Ax+ Bu,  x(0) = xq,

(2.1)
(2.2)

where A €./, Then determine a static output feedback control law
of the form
(2.3)

y=0Cx

u =Ky
such that the closed-loop system
x=(A+BKC)x

is stable for all Ae .
The key step in exploiting Lemma 2.1 is to assume that the
n X m matrix B has the form

B= [O(n~1)xm]
b

where b has dimensions 1 x m. No assumptions are needed con-
cerning the structure of C.
It can be seen that the assumed structure for (A, B, C) is

(2.4)

sufficiently general to realize all single-output transfer functions
with denominator polynomial uncertainty. Some, but not all, MIMO
transfer functions can be realized with this structure. We now have
the following corollary of Lemma 2.1.

Corollary 2.1: Let K be a given m X ! matrix and consider the
set of matrices

SL{A+BKC: Aes}.

Then every matrix in & is stable if and only if the four matrices
A2 A, +BKC, i=1,",4, are stable.
Proof: Every matrix in % is of the form

O(n Hx1 In~l
—By + bKC, =B, + bKC, -+ = B,_, + bKC,

where C; is the ith column of C. Defining, for i=0,---,n-1

5, 8, — bKC,,,, 8 £ B, — bKC,,,, 5,2 B, = bKC,

it follows that o can be written as

;{N—- O(n—l)xl In—l }:
‘ —60 _61 “'—an—l
5, <8,<8;,i

=0, ,n— 1}.

Now note that the closed-loop matrices in # have the same
structure as the open- -loop matrices in . Furthermore, the matri-
ces Al.“ A4 now play the same role as A;,~*, A4 with
uncertain parameters B, *, 8,_,, lower bounds BO,- B s
and upper bounds Bo»t s B,_, replaced by uncertain parameters
8.7, 8,1, lower bounds 80> *»8y_1» and upper bounds
IR 8,_,, respectively.

Next, we consider an augmented system of dimension 4n that
simultaneously includes the dynamics of Al, LA 4+~ Specifically,

consider _
X=A,% (2.5)
where
X, A, (3 0 0
- 0 4 0 0
22 iz i A, = C
3 0 0 A; O
X, -
0 0 0 A,
Note that
4
"‘i'a = Aa + Z BiaKCia (26)
i=1
where
A, O 0 0
4.8 0 A, O 0
4 0 0 A, 0]
0 0 0 A,
B 0 0 0
0 B 0 0
Blaé 0 ’ BZaé 0 ’ B}aé B ’ BAaé 0 ’
0 0 0 B
C.2[c 000, C,2[0 c o0 0,
=[0 0 co, c,2[000 C].

(Note our notation scheme: (*) denotes closed-loop, (), denotes
augmented system.)
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We now turn to the problem of explicitly synthesizing a controller
that stabilizes (2.5) and hence the original system (2.1), (2.2) for all
Aed.

III. CONTROLLER SYNTHESIS VIA QUADRATICALLY
OPTIMAL CONTROL

To synthesize a controller for the system (2.5), we consider a
quadratic performance functional of the form

HKYEY

i=1

[*TR,x, + ulR,u,] dr
0

(4.1)
where R, and R, are n X n and m x m positive definite matrices
and u; is defined by

u, & K Cx;.
It now follows that J(K) is given by

o

where Q is a4n X 4n Lagrange multiplier matrix. Note that

4
Y(K,P,Q)=t|P+24,0P+2% B;,KC,,OP

i=1

i=1

4
+0R, + Y chKTRZKciaJ.
Hence
1Y 4
— =2
0K i=1
so that .7 /3K = 0 yields

[CiaQﬁBia + C,-‘,Q~C£KTR2]

4
K= -ri'| S mLAoc
i=1

4 -1
R
i=1
Similarly, evaluating 0K /3P = 0 yields

0=A,0+ QAT +1,,. (4.7

J(K) = / R,z dr (4,2) We thus have the following result.
0 Theorem 3.1: Let K€ R™*! be a feedback gain that stabilizes
where -_— v T
R, + (KC)"R,KC 0 0 0
P 0 R, + (KC)"R,KC 0 0
‘ 0 0 R, + (KC)'R,KC 0
0 0 0 R, + (KC)"R,KC

Note that R, = R,+ Y}, CrKTR,KC,,, where R, is defined
by

R, 0 0 0
0 R 0 0
R, & k
““lo o R, o0
0 0 0 R,
Writing
Xo
B(1) = efeix,, %2 | (43)
X(t) = e’'%,, 0= | x, .
Xo
leads to

J(K) =/0 xFe 'R oAz, dt

(4.4)

where we are now assuming that K is such that A4 o 1s stable. Now,
as is common practice [14], we eliminate explicit dependence on the
initial condition x, by assuming XoX3 has expected value 1,
(n X n identity). Invoking this step leads to

J(K) = E[tr/ iofge’ig’ﬁae”.ﬂ‘dtJ
0

=tr 14,,/ e’iTﬂ’ﬁae”.a’ dt
0
=tup
where B is the 47 x 4n positive definite solution to
0=A,P+ P4, +R,. (4.5)

To minimize J(K) we form the Lagrangian

Z(K.P,0) 2w [P+ 3(ATP+ BA, + R,)]

(2.5) and minimizes (4.1). Then X is given by

4 4 =1
K- —R;'[z B,-T,ﬁQCE,HZ C,-aQ"C,-Ta] (4.8)

i=1 i=1
where Q and P satisfy
0=A4,0+0AT +1,,, (4.9)
0=AlP+ P4, +R,. (4.10)

Note that the matrices 4 and R « depend upon K so that
(4.8)-(4.10) must be solved numerically together. The expression
(4.8) for K can be substituted into (4.9), (4.10) to eliminate this
dependence. This optimal static output feedback solution is essen-
tially a generalization of the standard theory [14].

IV. SUFFICIENCY RESULT FOR ROBUST STABILITY AND A
NuMERICAL EXAMPLE

Since (4.9) and (4.10) are Lyapunov equations, they guarantee
the stability of A4 « When they have solutions. Since, furthermore,
Aisa block-diagonal matrix, each of its (four) diagonal blocks will
be stable. Finally, by Corollary 2.1, the stability of these four
matrices is sufficient to guarantee the stability of the closed-loop
system (2.4) for all Ae . i.e., for all variations in the given
uncertainty set.

Theorem 4.1: Suppose that a solution to (4.8)-(4.10) can be
computed numerically. Then the resulting gain X solves the robust
controller synthesis problem.

Since (4.8)-(4.10) arise from a parametric LQ problem, there
exist a variety of numerical methods that can be used to solve them.
Here we note the extensive survey [14] as well as the homotopy-
based methods used in [16], [17]. For the following example we
used the BFGS quasi-Newton algorithm [18], [19].

The example we consider was treated in [12] and is originally due
to [20] as a model of an oblique wing aircraft. The model is given
by 415+ qo
s+ st st s+,

P(s,gq, ry=
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where g, €[90, 166], g, €[54, 74], roe[-0.1, 0.11, r €[30.1,
33.9], r,€[50.4, 80.8], and r;€[2.8, 4.6]. Since our formulation
does not include numerator uncertainty we set g, = 128 and ¢, =
64. For the remaining dominator uncertainty we introduced an
expansion factor a = 1 for rg,"*+, 3 so that r;€[3.7 — 0.9a,
3.7 + 0.9a] and similarly for ry, r;, and r,. Setting R = 100],
and R, = 1 we obtained K = —0.0687, —0.05996, —0.01486 for
a=1, 2, 2.5, respectively, for robustly stabilizing gains that
minimize the quadratic cost. Note that the solution for o = 2.5
represents a factor of (2.5)* = 39 increase in robustness ‘‘ volume’
compared to the a = 1 solution. The solution given in [12] involved
a = 1 with uncertainty in ¢ and g, with a PI controller.

V. INTEGRAL CONTROL

Static output feedback was considered in previous sections since it
preserves the ‘‘Kharitonov’” structure. Dynamic compensation is, of
course, considerably more complex. We now consider, as in [10],
the possibility of utilizing an integral controller. Our setting is more
restrictive than [11], [12] with regard to the admissible plants.

Specifically, we consider the realization

0(n—l)xl Infl B = [O(nAI)xI]
=B =By = By ' b
c=1[1 0---0]

corresponding to an SISO plant with no zeros. Letting the control u
be given by

A=

u=K,,y+K,/y

leads to closed-loop dynamics of the form

%= A%
where
X= [);1] eR"™!, X, = integrator state,
and
": Onxl In
bK;, —By+bKp- - —-B,_,+bKp ’

Note that A preserves the companion structure needed to apply
Lemma 2.1. Optimization can then proceed as in the static con-
troller case.

V1. CONCLUSION

By formulating Kharitonov’s result in terms of a MIMO state-
space realization, a robust output feedback stabilization problem
involving four plant models was formulated. A multimodel control
problem involving a quadratic cost was then used to characterize
robustly stabilizing controllers. Solving the optimality conditions by
means of the BFGS quasi-Newton algorithm provided a constructive
procedure for robust controller synthesis.

Although the resuits of the present paper were limited to plant
denominator uncertainty, the multimodel simultaneous H, optimiza-
tion approach is applicable to the 16 plant formulation developed in
[12] for both denominator and numerator uncertainty with PI con-
trollers. Extension to this case remains a topic for future research.
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