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Abstract: Sufficient conditions are developed for characterizing robust decentralized static output feedback controllers. The approach 
involves deriving necessary conditions for minimizing a bound on closed-loop performance over a specified range of uncertain 
parameters. The effect of plant parameter variations on the closed-loop covariance is overbounded by means of a modified Lyapunov 
equation whose solutions are guaranteed to provide robust stability and performance. 
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1. Introduction 

Because of implementation constraints, cost, and reliability considerations, a decentralized controller 
architecture is often desirable for controlling large scale systems. Furthermore, such controllers must be 
robust to variations in plant parameters. The present paper addresses both of these concerns within the 
context of a robust decentralized theory for continuous-time static (i.e., proportional) controllers. 

The approach to controller design considered herein involves optimizing closed-loop performance with 
respect to the feedback gains. This approach to static output feedback was developed for centralized 
controllers in [9,11] and for decentralized controllers in [12]. An interesting feature of [11,12] is the 
recognition of an oblique projection (idempotent matrix) which allows the necessary conditions to be 
written concisely in terms of a modified algebraic Riccati equation. When the problem is specialized to 
full-state feedback, the projection becomes the identity and the modified Riccati equation coincides with 
the standard Riccati equation of LQR theory. It should be pointed out that this oblique projection is 
distinct from the oblique projection arising in dynamic compensation [5]. 

The present paper goes beyond [12] by deriving sufficient conditions for characterizing decentralized 
static controllers which guarantee robust stability and performance with respect to variations in the plant 
parameters. Although plant disturbances are represented in the usual stochastic manner by means of 
additive white noise, uncertainty in the plant dynamics is modeled deterministically by means of constant 
structured parameter variations within bounded sets. Thus, for example, the dynamics matrix A is 

p replaced by A + ~k=lOkAk,  where o k is a constant uncertain parameter assumed only to lie within the 
interval [ - a k ,  ak] but otherwise unknown, and A k is a fixed matrix denoting the structure of the 
uncertain parameter o k as it appears in the nominal dynamics matrix A. The closed-loop performance is 
defined to be the worst-case value over the class of parameter uncertainties of a quadratic criterion 
averaged over the disturbance statistics. 

Since the closed-loop performance can be written in terms of the second-moment matrix, a performance 
bound over the class of uncertain parameters can be obtained by bounding the state covariance. The key to 
bounding the state covariance is to replace the usual Lyapunov equation for the second-moment matrix by 
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a modi f ied  Lyapunov  equat ion.  The modi f ied  L y a p u n o v  equa t ion  involves add i t iona l  terms which 
essent ial ly  serve to const ruct  a quadra t i c  Lyapunov  funct ion guarantee ing  robus t  s tabi l i ty.  F o r  detai ls  see 
[1,2]. 

Having  b o u n d e d  the state covar iance  over  the class of pa rame te r  uncer ta int ies ,  the wors t -case  pe r fo r -  
mance  can thus be bounded  in terms of  the solut ion to the modi f ied  L y a p u n o v  equat ion.  Viewing the 
pe r fo rmance  b o u n d  as an auxil iary cost thus leads to the Auxi l ia ry  Min imiza t ion  Problem:  Minimize  the 
pe r fo rmance  b o u n d  while sat isfying the modi f ied  L y a p u n o v  equat ion.  The  pr inc ipa l  fea ture  of the 
auxi l iary  p rob lem is that  necessary condi t ions  for minimiz ing  the pe r fo rmance  b o u n d  now serve as 
sufficient condi t ions  for robust  pe r fo rmance  in the or iginal  p rob lem.  Phi losophical ly ,  the overal l  a p p r o a c h  
of  cont ro l  design for a pe r fo rmance  b o u n d  is re la ted to guaran teed  cost  cont ro l  [4]. W e  note,  however,  that  
the b o u n d  ut i l ized in [4] is nondif ferent iable ,  which precludes  the app roach  of  the presen t  paper .  

A further extension of  [12] considered in the present  paper  involves the types  of  feedback  loops  
considered.  Whi le  the usual  app roach  to stat ic ou tpu t  feedback  is res t r ic ted to nonno i sy  measurement s  and  
weighted controls ,  we also include the dual  p rob l e m which involves feeding back  noisy  measurement s  to 
unweighted controls .  This s i tuat ion leads to an add i t iona l  pro jec t ion  which is dual  to the p ro jec t ion  
discussed in [11,12]. The inclusion of  the dual  case now leads to a pa i r  of  modi f i ed  Ricca t i  equa t ions  
coupled  by  bo th  the uncer ta in ty  bounds  and the obl ique  project ions.  

2. Notation and definitions 

R ,  R r X s ,  ~ r ,  ~_ 

1,, ()T 

~ ,  
~ r  

p r  

Z 1 ~ Z 2 

Z 1 < Z 2 
Asympto t i ca l ly  

s table  matr ix  
n, r, s, p 
i , j , k  

I'~ i , 

'~s' l, 
X 

Ui, Yl 

A,  A A  

B i, A B i ;  C~ 

c,, ac, 
Ak 

Bik 

&, 
Ecj  
O; 

Yk 

0 k 

real numbers ,  r × s real  numbers ,  R ' x  1, expecta t ion.  
r x r ident i ty ,  t ranspose.  
Kronecke r  sum, Kronecke r  p roduc t  [3]. 
r x r symmetr ic  matrices.  
r x r symmetr ic  nonnegat ive-def in i te  matrices.  
r x r symmetr ic  posi t ive-def ini te  matr ices.  
Z2 _ Z1 ~ [~r  Z1 ' Z2 E ~ r. 
Z2__ ZI ~ p r ,  ZI ' Z2 ~ ~r .  

mat r ix  with eigenvalues in open  left half  plane.  
posi t ive integers. 
indices, i =  1 . . . . .  r,  j = 1 . . . . .  s, k = 1 . . . . .  p.  
posi t ive integers,  i = 1 , . . . ,  r. 
posi t ive integers,  j = 1 . . . . .  s. 
n -d imens iona l  vector. 
rn,, ~-d imensional  vectors, i = 1 , . . . ,  r. 
rhj, / pd imens iona l  vectors,  j = 1 , . . . ,  s. 
n × n matrices.  
n x m~ matr ices;  /, x n matr ices,  i = 1 . . . .  , r. 
n x rhj matr ices;  lj x n matr ices,  j = 1 . . . . .  s. 
n x n matr ices,  k = 1 , . . . ,  p.  
n x rn, matr ices,  i = 1 , . . . ,  r,  k = 1 , . . . ,  p.  
lj x n matr ices,  j = 1 , . . . ,  s, k = 1 . . . .  , p.  
m i x ~ matrices,  i = 1 . . . .  , r. 
rh: x lj matrices,  j = 1 , . . . ,  s. 
posi t ive number .  
A + - ~ I , .  
posi t ive number ,  k = 1 , . . . ,  p.  
~2/,~, k = ] . . . . .  p.  

real number ,  k = 1 . . . . .  p.  
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Wo(t), w j ( t )  

Zo, b 
Voj 
Ro, Ri 
R o i  ~ 

A, A .  

i f ( t )  
k 
¢, 

For  arbi t rary n 

n-dimensional ,  / f d imens iona l  white noise, j = 1 . . . . .  s. 

intensit ies of w 0, w /  V 0 ~ N", V s ~ W,, j = 1 . . . . .  s. 
n × lj cross in tensi ty  of w o, wj, j = 1 . . . . .  s. 
state and  control  weightings; R 0 ~ IN", R i ~ P'~ ' ,  i = 1 . . . . .  r. 
n × mi cross weighting; R o - Ro~R~aR~ >~ O, i = 1 . . . . .  r. 
A + Zri~lBiDcifi +~.~ lB jE%iq,  A -Jr ½aI,. 

+ E)_,BjEcjaCj. AA E,= ,aB iDc ,C , +  _ 
Wo(t) + E" lB E~ywy(t) J= J ^ ^" ^ ^ 
R o + 5~ 7 l[RoiDciCi + ciTDTRT i + C, TDTR,D_,C,] . 

s T B T + B  T T T V o + FV=a[VojE~j j ?E~yVoj + BjE~jVjE~jBj I. 
× n Q, P define 

P P 

R,  " Ri + ~., T P~i " Tp y k B i k P B k ,  = Bi  + RT i  + E T = "[kBjkPAk, i =  1 , . . ,  r, 
k = l  k = l  

P P 

V~j & Vj + E YkCjkQCj~, Qoj a= QcjT + Vo j + E YkAkQCj~, j = 1 . . . . .  s. 
k = l  k = l  

3. Robust Stability and Performance Problem 

In  this section we state the Robus t  Stabili ty and  Performance Problem along with related no ta t ion  for 

later use. Let 

q lC R "x "  X R "xm~ X • • • X R  nx'n" X R h x n  X • • • X R  t ' x "  

denote  the set of uncer ta in  per turbat ions  (AA, AB 1 . . . . .  AB,, AC 1 . . . . .  AC,) of the nomina l  system 

matrices A, B a . . . . .  B,, C 1 . . . . .  C s. 

Robust Stability and Performance Problem. For  the n th-order p lant  

Y c ( t ) = ( A + A A ) x ( t ) +  i ( B i + A B i ) u i ( t ) +  £ B j £ ~ j ( t ) + W o ( t ) ,  t e ~ [ O ,  o o ) ,  ( 3 . 1 )  
i = 1  j = l  

with nonno i sy  and noisy measurements  

.~i(t) = C ,x ( t ) ,  i =  1 . . . . .  r ,  ( 3 . 2 )  

y j ( t )  ----- (Cj + A C j ) x ( t )  + w j ( / ) ,  j = 1 . . . . .  s, (3.3) 

determine a decentralized static output  feedback control ler  

ui( t  ) = Dcif~i(t), i = 1 , . . . ,  r, (3.4) 

•j(t)  = Ecyyy(t) ,  j = 1 . . . . .  s, (3.5) 

such that the closed-loop system (3.1)-(3.5) is asymptot ical ly stable for all var iat ions in °k' and  such that 
the performance  cri terion 

j ( D , , . . . ,  D,.r, Ec, . . . . .  Ecs )  

& suplimsupElxT(t)R°x(t)+2ql t--~oo 1 i=,LxT(t)Ro'u'(t)+ , = , £ u f ( t ) R i u ' ( t ) ]  (3.6) 

is minimized.  



3 1 2  D.S. Bernstein, W.M. Hassad / Robust decentralized static output feedback 

For  each controller (1)  1 . . . . .  D ~ ,  E,.a . . . . .  E ~ )  and variat ion in q/, the closed-loop system (3.1)-(3.5) is 
given by  

2 ( t ) = ( , 4 + A , i ) x ( t ) + # ( t ) ,  t ~ [ 0 ,  oe), (3.7) 

where ~ ( t )  is white noise with intensity I ?~  N ~. 

Remark  3.1. The  control ler  architecture is quite general in that  it includes two distinctly different  types of 
decentralized loops. The first type, indexed by i = 1 . . . . .  r, involves feeding back nonnoisy  measuremen t s  
to weighted controls.  This is the s tandard  setting in the opt imal  ou tpu t - feedback  l i terature [9,11,12]. In 
addit ion,  we include the dual situation, indexed by j = 1 . . . . .  s, which involves feeding back  noisy 
measurements  to unweighted controls.  The  case in which only one type of loop is present  can be formal ly  
recovered f rom our  results by ignoring B~ and C~ or Bj and Cj as required. We note  that  in order  for (3.6) 
to be  finite noisy measurements  cannot  be fed back to weighted controls via static control,  while feeding 
back nonnoisy  measurements  to unweighted controls is a singular problem.  

Remark  3.2. The p rob lem s ta tement  is restrictive in the sense that  uncertainties in both  the control  and 
observat ion matr ices are not permit ted  within the same feedback loop. Al though it is indeed possible  to 
permit  such s imultaneous uncertainties,  the deve lopment  is considerably more  complex  and hence is not  
treated here. 

Remark  3.3. The cost functional  (3.6) is identical to the L Q G  criterion (usually stated in terms of an 
averaged integral) with the exception of the sup remum for  evaluating worst  case over  ql. 

4. Sufficient conditions for robust stability and performance 

In practice, s teady-state  pe r fo rmance  is only of interest when the closed-loop system (3.7) is stable over  
the uncertainty set q/. The  following result, which expresses the pe r fo rmance  (3.6) in terms of the state 
covariance,  is immediate .  

L e m m a  4.1. Let (D~I . . . . .  D¢~, E~a . . . . .  E , , )  be given and  suppose the closed-loop sys tem (3.7) is s table f o r  all  
variations in °11. Then 

J(Dca . . . . .  D~,, Ec~ . . . . .  E~,) = s u p t r  azA/~,  (4.1) 
q/  

where Q a,i ~= l im t ~ oo E [ x ( t ) x T ( t ) ] ~ IN" is the unique solution to 

0 =  ( .4  + A,4)Q,a2 + Q,a~(.4 + A.4)v + 12. (4.2) 

Remark  4.1. When  ad is compact ,  sup in (4.1) can be replaced by  max. 

We now seek an upper  bound for J ( D c l  . . . . .  Oct  , E~1 . . . . .  Ecs ). The  key step is to modi fy  the L y a p u n o v  
equat ion (4.2) to include a bounding  function 12. This technique allows us to obta in  robust  stabili ty as a 
consequence of robust  performance.  

Theorem 4.1. Let ~2 : R '~1 x/, X • • • X R re'x/" X R m' xt, x • • - X R ~'xt" X IN" ~ S "  be such that  

A ~ Q  + QA,4 T < 12(Dcl . . . . .  De, , Ecl . . . . .  Ecs , Q ) ,  

(AA,  aB ,  . . . . .  A S .  Z~C, . . . . .  aC.)  ~ ~', 

(D¢1 . . . . .  D~,, Ecl . . . . .  E~,, Q)  ~ N ~ ' x i '  x . . -  x N  "-×:" x N '~'xl '  x . - -  x N  '~'x' '  x IN" (4.3) 
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Furthermore, for  given ( D d . . . . .  Dc,, E d . . . . .  Ees) suppose there exists Q ~ N n satisfying 

O = . ~ Q +  Q,~T+ [2(Dcl . . . . .  Dcr , E¢1 . . . . .  E¢,, Q)  + l?. (4.4) 

Then the pair (.,1 + A A ,  l, ~1/2) is stabilizable for  all variations in ql i f  and only i f . 4  + A.4 is asymptotically 
stable for all variations in all. In this case, 

Qa,i < Q, (4.5) 

where Qa,i satisfies (4.2), and 

J (  D~I . . . . .  Dcr, Eel . . . . .  E~s) _< tr QR. (4.6) 

Proof. For all variations in qg, (4.4) is equivalent to 

0 = ( , 4 +  A.4)Q + Q(,A+ A.4)T + ~(D~a . . . . .  D~,, Eea . . . . .  Ecs, Q, A.4) + I?, (4.7) 

where 

• (D~I . . . . .  Dcr, Ecl . . . . .  E . ,  Q, AX) ~ 9(D~1 . . . . .  D . ,  E~I . . . . .  E . ,  Q) - ( a X Q  + QA~V). 

Note that by (4.3), ~ ( - ) >  0 for all variations in q/. If (.~ + AA, i71/2) is stabilizable for all variations in 
od, it follows from Theorem 3.6 of [14] that (,,~+A,,~, [I,~+ q~(D~l . . . . .  D~_r, E¢1 . . . . .  E~s, Q, A,4)] 1/2) is 
stabilizable for all variations in °d. Hence Lemma 12.2 of [14] implies that A + A.4 is asymptotically stable 
for all variations in od. The converse is immediate. Next, substracting (4.2) from (4.7) yields 

0 = ( .4  + A A ) ( Q  - Qa.~) + (Q  - Qa,i)(-4 + A A )  + + ~ ( D c l  . . . . .  Ocr , E~1 . . . . .  e ~ ,  Q, A A ) ,  

or, equivalently, (since A + A.4 is asymptotically stable) 

Q -  Q a d =  fo°°e('~+ad)t~(Dcl . . . . .  Dcr, E~a . . . . .  Ecs ' Q, A ~ )  e ( - ~ + a ' ~ ) t t  d t >  0, 

which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). [] 

Remark 4.2. If I2 is positive definite then the stabilizability hypothesis of Theorem 4.1 is automatically 
satisfied for all variations in q/. 

5. Uncertainty structure and the quadratic Lyapunov bound 

The uncertainty set q/ is assumed to be of the form 

{(AA, AB~ . . . . .  AB,, AC, . . . . .  ~ =  ACs): 

P P 

A A  = Y~. okAk ,  A B  i =  ~ akBik , i =  l . . . . .  r, 
k- -1  k = l  

, } ok/ak--< 1 , ( 5 . 1 )  
k = l  k = l  

where, for k = 1 . . . . .  p: (Ak ,  B l k , . . . ,  B,k, C1, . . . . .  Csk ) are fixed matrices denoting the structure of the 
parametric uncertainty; a k is a given uncertainty bound; and a k is an uncertain parameter. Note that the 
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uncertain parameters % are assumed to lie in a specified ellipsoidal region in R P. The closed-loop system 
(3.7) thus has structured uncertainty of the form 

P 

E o L, (5.2) 
k = l  

ad=  

where 

Ak &Ak + 
r s 

E BikD~,C~ + E i~jEcjC~k, k = 1 . . . . .  p .  (5.3) 
i = 1  j = l  

To obtain explicit gain expressions for the feedback gains (Dcl . . . . .  D~, Eca . . . . .  Ecs) we assume that, 
for each k ~ {1 . . . . .  p }, at most one of the matrices Blk . . . . .  B~k, Clk . . . . .  C~k is nonzero. This assumption 
requires that uncertainties in the input and output matrices be modeled as uncorrelated. Correlation 
between AA and AB~ and between AA and ~ can be accounted for, however. 

Given the structure of q /def ined by (5.1), the bound I2 satisfying (4.3) can now be specified. In the 
following result [as in (4.3)] Q denotes an arbitrary element of N ", not necessarily a solution to (4.4). 

Proposition 5.1. Let a be an arbitrary positive scalar. Then the function 

P 
I2(Dcl . . . . ,  Dc~, E~, . . . . .  Ecs, Q ) = a Q + a - I  ~ akAkQA k 2  - "v 

k=l 

satisfies (4.3) with all given by (5.1). 

(5.4) 

Proof. Note that 

P 

0~_~ E [ (~ l /20k / /~k ) In - - (O~k /~ l /2 ) ; k ]Ol (oL1 /2Ok /~k ) ln - - (~k / /~ l /2 )Ak]  T 
k = l  

P P P 

E (Ok//OLk)P "4-0l-1 E 2 -  ~T 

k = l  k = l  k = l  

which yields (4.3). [] 

Remark 5.1. Note that the bound $2 given by (5.4) consists of two distinct terms. The first term aQ can be 
thought of as arising from an exponential time weighting of the cost, or, equivalently, from a uniform right 

l vp  ~ 2 i  OAT arises naturally from a multiplicative shift of the open-loop dynamics. The second term a -  ,--k= a ~ - - k ~  k 
white noise model [1]. Such interpretations have no bearing on the results obtained here since only the 
bound ~2 defined by (5.4) is required. Note that the bound is valid for all positive a. For further details 
see [1]. 

Remark 5.2. The conservatism of the bound (5.4) is difficult to predict for two reasons. First, the 
overbounding (4.3) holds with respect to the partial ordering of the nonnegative-definite matrices for 
which no scalar measure of conservatism is available. And, second, the bound (4.3) is required to hold for 
all feedback gains (Dcl . . . . .  Dcr , Eta . . . . .  Ecs ) and nonnegative-definite matrices Q. The conservatism will 
thus depend upon the actual values of Ecl . . . . .  Dcr , Ec1 . . . . .  Ecs, Q determined by solving (4.4). 

6. The Auxiliary Minimization Problem and necessary conditions for optimality 

Rather than minimizing the actual cost (3.6), we shall consider the upper bound (4.6). This leads to the 
following problem. 
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Auxiliary Minimization Problem. Determine (/)ca . . . . .  D~, E~I . . . . .  E~, Q) which minimizes 

,~(D¢~ . . . . .  De,, E~I . . . . .  Ec~, Q) A tr QR (6.1) 

subject to 

Q E N", (6.2) 
P 

0 = .4,Q + Q.~J + ]~ ~,k.'lkQA~ + 19. (6.3) 
k = l  

The relationship between the Auxiliary Minimization Problem and the Robust Stability and Perfor- 
mance Problem is straightforward as shown by the following observation. 

Proposition 6.1. Suppose (Dcl . . . . .  Dcr , E~I . . . . .  E~, Q) satisfies (6.2), (6.3). Then 

(,4 + AA, 1. 71/2) is stabilizable for all variations in qZ 

if and only i f ,4 + A ~ is asymptotically stable for all variations in q,(. In this case, 

J ( D c l  . . . . .  Dcr, Ecl . . . . .  Ecs)  ~-~o~(Dcl . . . . .  Dcr, gcl  . . . . .  Ecs,  Q). 

(6.4) 

(6.5) 

Proof. With I2 given by (5.4), Proposition 5.1 implies that (4.3) is satisfied. Since (6.3) is a restatement of 
(4.4), the hypotheses of Theorem 4.1 are satisfied. Hence (6.4) is equivalent to robust stability and, in this 
case, performance bound (4.6) is guaranteed. Note that with definition (6.1), (6.5) is merely a restatement 
of (4.6). [] 

The derivation of the necessary conditions for the Auxiliary Minimization Problem is based upon the 
Fritz John form of the Lagrange multiplier theorem. 1 Application of this technique requires that 
(De1 . . . . .  Dcr, Eta . . . . .  Ecs, Q) be restricted to the open set 

6 a~- ((D~a . . . .  , D~r, E d , . . . ,  Ecs , Q): Q ~ p "  and ~¢ is asymptotically stable), 

where 

P 

k = l  

The requirement (/)ca . . . . .  D~r , Ecl . . . . .  E~s , Q ) ~ A  a implies that Q and its nonnegative-definite dual P 
are unique solutions to the modified Lyapunov equations (6.3) and 

P 

0 = , ' t fP + P.,'t,~ + ~., 7kA~PAk + R. (6.6) 
k ~ l  

To obtain feedback gains an additional technical requirement is that (D¢1 . . . . .  D~,, E~I . . . . .  Ees, Q) be 
confined to the open set 

S p+& {(/)ca . . . . .  D~,, E,. 1 . . . . .  E~s, Q) ~ :  C, Qt~/r > 0, i =  1 . . . . .  r, and/~fP/~j > 0, j =  1 . . . . .  s} .  

The positive definiteness conditions in the definition of 6~" hold if C~ and /~j have full row and column 
rank, respectively, and Q and P are positive definite. As can be seen from the proof of Theorem 6.1 these 
conditions imply the existence of the projections v~ and 9j corresponding to the two distinct types of 
feedback loops. 

i The  K u h n - T u c k e r  theorem requires  a pr ior i  ver i f icat ion of a cons t ra in t  qua l i f i ca t ion  which  is d i f f icul t  to con f i rm in the present  
context .  The Fr i tz  John  vers ion is less res t r ic t ive and  hence  more  sui table.  
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Remark 6.1. It is possible, of course, that the set 5" may be empty in which case our results do not apply. 
As will be seen, however, our approach does not require explicit verification that 5" be nonempty since 
robust stability is obtained as a consequence of robust performance. Indeed, the sets 5" and 5 "+ are for 
theoretical convenience only and need not be determined in practice. Furthermore, the constraint 
(/)ca . . . . .  D~,, E~I . . . . .  E~,  Q ) ~ 5  p is not required for either robust stability or robust performance since 
Proposition 6.1 shows that only (6.2)-(6.4) are needed. Rather, the set 5 ° constitutes sufficient conditions 
under which the Lagrange multiplier technique is applicable to the Auxiliary Minimization Problem. 

Necessary conditions for the Auxiliary Minimization Problem can now be obtained. 

Theorem 6.1. Suppose ( Dcl . . . . .  Dcr ,Ecl . . . . .  Ecs, Q) ~ 5  '~ solves the Auxiliary Minimization Problem with 
all given by (5.1). Then the feedback gains Dcl . . . . .  Dcr , E~I . . . . .  E~s are given by 

D~i= -R~ilpaiQCiT(CiQCiT) -1, i=  1 , . . . ,  r, (6.7) 

Ec j = ( ~ T p ~  j ) - I ^ T  - 1  (6.8) - B j P Q a / V ; j ,  j = l  . . . . .  s, 

where the n × n nonnegative-definite matrices Q, P satisfy 

0 = A,~ - ~_, BiR2ilP.d,i + A ~ -  BiR2ilPaiv; + V o 
i~l  i=l 

+ u~= 1 yk Ak -- i=l B'kRS'P"iui Q Ak - i=lE OikRailpaigi 

-1 T ~ . . . .  -1,~T^T (6.9) 
- -  aajVaj Q~j + pj~ ~d~jv~j ~ j v j ±  , 

j = l  j = l  

0 = A,~ - ~,jQajVZ1C) P + P A,~ - ~jQajV;.iCj + R o 
j=l  j = l  

+ ~= "k Ak ~ ~/Q./V;/iC/k ~/Q:/V:/IC/k 
k = l  j = l  j = l  

i r + E (6.1o) 
- -  vi ± PaiR~i P=ivi ±,  

i=l i=l 

= e < T ( d ; e d i T ) - - '  Ĉi ' vi± = I . - v , ,  i = l , .  r, (6.11) /~i ~--- ~ " ' '  

( nTPJ~j ) -I^T ^ A ^ ^ z~ ( 6 . 1 2 )  v j=Bj  Bse  , v s ± = I . - 9  s, j = l  . . . . .  s. 

Furthermore, the auxiliary cost is given by 

~(Dcl  . . . . .  Dcr, Ecl . . . . .  Ecs, Q) 

[ (  , )] tr Q R o +  Y'. T T -1 = v~P~;R.; P . , v , -  2R0,R2ilP,;v; . (6.13) 
i ~ l  

Conversely if  there exist Q,P  ~ IN" satisfying (6.9) and (6.10) then Q satisfies (6.3) with 
( D~I . . . . .  D~,, EcI . . . . .  E¢,) given by (6.7) and (6.8), and J (  D¢I . . . . .  D~, E~I . . . . .  E ¢,, Q) is given by (6.13). 

Prool. To optimize (6.1) over the open set <9"+ and subject to the constraint (6.3), form the Lagrangian 

[ ( , )] ,~(Dcl  . . . . .  D<~, Ecl . . . . .  E ~ ,  Q)  A= t r  XQR + .4Q + Q,~T + E "[k'4kQ ~ T  + ¢ P , 
k = l  
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where the Lagrange multipliers X > 0 and P ~ R ~×" are not both zero. Setting O.~/OQ = 0, X = 0 implies 
P -- 0 since ~¢ is asymptotically stable. Hence, without loss of generality set X = 1. Thus the stationarity 
conditions are given by 

P 

a.~ -X (6.14) = A~? + ?d~ + Y'. y ~  + ~ = o, 
k = l  o0 

- Ra, DciC~QCi x + P~iQCi T = O, 

= B / P B j E c j V a j  + [ ~ f P a a j  = O, 

OD~i i = 1 . . . . .  r, (6.15) 

OAe 
OEcj j = 1 . . . . .  s. (6.16) 

Since (D~I . . . . .  Dcr, E~ . . . . .  E~s, Q) ~ 6  ~ ,  ~ Q ~ T  and BfPBj  are invertible and hence (6.15) and (6.16) 
imply (6.7) and (6.8). Finally, (6.9) and (6.10) are equivalent to (6.3) and (6.6). [] 

Remark 6.2. Several special cases can be recovered from Theorem 6.1. For example, when the control 
weighting is nonsingular and the measurement noise is zero, i.e., when ~ and )3,. are absent for i = 1 . . . . .  r, 
delete (6.8) and set ~j - 0 and ~j± = In in (6.9). In this case the last two terms in (6.9) cancel each other. 
Deleting also the uncertainty terms Ak, B,k, Cjk yields the results of [12] with the added features of 
correlated plant /measurement  noise (Voj) and cross weighting (Rot). Furthermore, assuming a centralized 
structure for the static controller, i.e., r = 1, yields the usual static output feedback result [9,11]. 

We now combine Proposition 6.1 and Theorem 6.1 to obtain sufficient conditions for robust stability 
and robust performance. 

Theorem 6.2. Suppose there exist Q , P ~ N  n satisfying (6.9) and (6.10) and let the feedback gains 
(De1,. . . ,  Dc,, E~I . . . . .  Ecs ) be given by (6.7) and (6.8). Then ( A  + A.4, 1~1/2) is stabilizable for all variations 
in ~ i f  and only i f .4  + A.4 is asymptotically stable for all variations in all. In this case the performance (3.6) 
of the closed-loop system satisfies the bound 

[( )] J(D~I . . . .  Dcr, E~I . . . . .  E c s ) < t  r Q R0 + ~ X T -1 - -1  __ . 11 i PaJiRai R i R a i  PaiPi 2 R o i R a i l p a i v i  . (6.17) 
i = 1  

Proof. The converse portion of Theorem 6.1 shows that Q satisfies (6.3) with (D d . . . . .  Dcr, E d . . . . .  Ecs ) 
given by (6.7) and (6.8). Hence, with the stabilizability assumption (6.4), Proposition 6.1 implies robust 
stability and performance. [] 

7. Decentralized design algorithm 

To illustrate the preceding theoretical development it is worthwhile outlining the steps involved in 
applying the results to the decentralized design problem. These steps constitute the following algorithm for 
designing robust decentralized static output feedback controllers. 

Algorithm 7.1. To apply Theorem 6.2, carry out the following steps: 
Step 1. Specify a decentralized feedback structure of the form (3.4), (3.5). 
Step 2. Specify performance weights Ro, Roi and R i as well as noise intensities V0, V0j, and Vj. 
Step 3. Specify the uncertainty set q/ in terms of the uncertainty structure matrices Ak, Bik, qk and 
bounds a k. 
Step 4. Choose a > 0. 
Step 5. Numerically solve the design equations (6.9) and (6.10). 
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S tep  6. Evaluate  the feedback  gains  (6.7) and  (6.8). 
Step  7. Verify that  ( ,4 + A ~ ,  1~1/2) is s tabi l izable  for all var ia t ions  in q / o r ,  equivalent ly ,  that  ,4 + A.~ is 
a sympto t i ca l ly  s table  for all var ia t ions  in q/. 
Step  8. Evaluate  the robus t  pe r fo rmance  b o u n d  (6.17). 

We  note  that  in cer ta in  cases Step 7 can be  omit ted .  F o r  example ,  if V 0 is posi t ive  def in i te  then so is 1, 7 
and  ( . ~ +  A.4, 1,71/2) is cont ro l lab le  for  all A.~ (see R e m a r k  4.2). Step 7 essent ia l ly  ensures that  the 
c losed- loop  system does  not  possess  h idden  uns tab le  modes .  

The  crucial  step in A lgo r i t hm 7.1 is, of  course,  the numer ica l  so lu t ion  of  (6.9), (6.10) in Step 5. F o r  the 
decent ra l ized  p rob l em in the absence of  pa r ame te r  uncer ta in ty ,  the numer ica l  so lu t ion  of  (6.9), (6.10) was 
cons idered  in [12] where several i tera t ive  a lgor i thms were developed.  W h e n  p a r a m e t e r  unce r t a in ty  b o u n d s  
are  present ,  the add i t iona l  terms involving Q and  P in (6.9) and  (6.10) mus t  be  inc luded  in the i terat ion.  
N o  add i t iona l  diff icul ty  is entai led,  however,  since the l inear i ty  of  these terms permi t s  a N e w t o n - K l e i n -  
m a n  type i tera t ive  schem [7]. 

I f  a numer ica l  solut ion canno t  be ob ta ined  in Step 5 then the p r o b l e m  da t a  can be  modif ied .  This  can 
be done  sys temat ica l ly  by  means  of (1) changing  the a rb i t r a ry  cons tan t  p a r a m e t e r  ct in Step 4; (2) 
decreas ing the bounds  a k a n d / o r  modi fy ing  the uncer ta in ty  s t ructure  matr ices  A k ,  Bik, and  ~ k  in Step 3; 
(3) modi fy ing  the pe r fo rmance  weight ings and  noise intensi t ies  in Step 2; and,  finally, a l ter ing the 
decent ra l ized  contro l ler  s t ructure  in Step 1. 
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