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TABLE VI
STATISTICS FOR 800 RANDOM PROBLEM
Upper triangular random problems (500) | Upper quasi-triangular random problems (300)
0<® oy <1 0<® 04D <1
Estimate 0.710"" S 6,;,(Z) < 0.2:107! 0.2107 < 6,,;,(2) $ 0.310"
computed by min mean max min mean max
Bsoive 0.012 0.190 0.600 0.018 0.197 0.571
Bsolvt 0.008 0.191 0.543 0.015 0.214 0.535
Bsolve 0.012 0.225 0.515 0.027 0.328 0.708
Bsolvd 0.012 0.225 0.515 0.024 0.325 0.696

show that there are examples where each one of the four estimators wins
the contest. That our dif~!-estimators do not always compute a good
estimate is illustrated with the following example [2]:

2 0 k -k
0 2 -k k

A= 00 2 o0 B=D=E=1,.
0o 0 0 2

In this example the coefficient matrices of the subsystems (2.5) are all
well-conditioned, but Z in (3.3) is not (||®~'}| = ¢! (Z) is of order O(k)
for k large). The ill-conditioning of Z is due to large off-diagonal
elements of A, and is only mirrored by our estimators if f in (5.5) is
correspondingly large. Here f is O(l) for all subsystems, so our
estimators do not signal the ill-conditioning of Z. The global look-ahead
algorithm (see [9]) would probably resolve this counterexample. Notice
that if we let all nonzero off-diagonal elements of 4 be + &, then o;“‘n Z)
is still of order O(k) for k large, and now the four dif ~'-estimators signal
the ill-conditioning of this problem within a factor 10.

VIII. CONCLUSIONS

We have presented stable algorithms for solving the generalized
Sylvester equation. They are based on orthogonal equivalence transfor-
mations of the original problem. During this work we became aware of
the paper by Chu [3], where he proposes a method similar to our
generalized Schur method. However, he only outlines the main steps of an
algorithm without any perturbation of rounding error analysis. We have
also presented dif~'-estimators [lower bounds for (&' = ¢! (Z)]
that are incorporated into the generalized Schur algorithm, and which
when substituted into the error bound (4.2) produce reliable accuracy
estimates of a computed solution. Our heuristic methods to compute lower
bounds for dif ~! need O(m?n + mn?) flops. This should be compared to
O(10m?*n) flops for computing the exact value of dif (=071 (2)) .

The problem to compute a stable deflating subspace of a matrix pencil
has many applications in systems and control theory (e.g., [9:1], [9:4],
[11], [15]-[16]). Given an upper block-triangular regular matrix pencil M
— AN (1.2) the algorithms and Fortran routines in [10] can be used to
compute a lower bound for dif~!, the quantity that determines the
sensitivity of the deflating subspace of M — AN (1.2) spanned by the first
m columns of the identity matrix 7,,,, ,.
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illustrated by considering the gain margin of both an LQG controller and
a robustified design obtained by Bernstein and Greeley for Doyle’s
example.

I. INTRODUCTION

It is well known that unavoidable discrepancies between mathematical
models and real-world systems can result in the degradation of control-
system performance. Ideally, feedback control systems should be
designed to be robust with respect to uncertainties in the plant
characteristics. Thus, robustness analysis must play a key role in control-
system design. That is, given an existing or proposed control system,
determine the performance degradation due to variations in the plant. The
most fundamental concern in this regard is clearly that of stability. For
linear state-space systems with which the present note is concerned, this
problem has received increasing attention over the past several years (see,
e.g., [11-[2]).

One of the principal techniques used to assess robust stability is based
upon quadratic Lyapunov functions (see [1]-[4], [10]). Quadratic
Lyapunov functions have also been used extensively for robust control-
system synthesis; see [13] for relevant references. The problem of
robust synthesis is, however, beyond the scope of the present note.

In addition to assessing robust stability, it is often desirable to quantify
performance by considering the degradation of a cost functional as the
plant parameters deviate from their nominal values. Although any
robustly stable system over a compact set of parameters possesses a
worst-case performance, it is desirable in practice to actually determine a
bound for the worst-case performance. The concern for both robust
stability and performance goes back to the early work of Michael and
Merriam [14], while more recent references include the work of Chang
and Peng [15], Noldus [16], and Petersen [17]. The results of [15]-[17]
can be shown to depend upon a modified Lyapunov equation of the form

0=AQ+QAT+(Q)+V (1.1
where the operator ((Q) is chosen to bound terms of the form AAQ +
QAAT, where AA is an uncertain perturbation of the dynamics matrix 4.
Since robust performance per se was not discussed in [16], [17], the work
most closely related to the present note is that of Chang and Peng [15].
They essentially show that consideration of (1.1) leads to a bound on
worst-case performance. Although the development in [15] was carried
out for full-state feedback, specialization of their approach to robust
performance analysis is straightforward. A systematic, in-depth treatment
of robust performance analysis involving the approach of [15] as well as
other bounds is given in [18].

The starting point for the present note is the recent paper by Zhou and
Khargonekar [10]. By analyzing the Lyapunov equation they obtain a
series of stability robustness tests which improve significantly upon
earlier work [2]-[4]. In the present note we extend the results of [10] to
obtain, in addition, a bound on worst-case performance. As in (1.1) we
consider a Lyapunov equation of the form

0=AQ+QAT+Q+V 1.2)
where Q@ bounds uncertainty terms of the form AAQ + QAAT. The
principal difference between (1.1) and (1.2) is that Q in (1.2) is a constant
matrix independent of the solution Q. The case considered in [15] in
which Q is a function of Q is discussed in [18].

The cost functional used in the present note to quantify robust
performance is the trace of the output covariance of a system subjected to
white noise disturbances. This measure of performance is identical in
form to the standard performance criterion of LQG theory. Since we also
obtain a bound for the state covariance matrix, our results yield bounds on
the variances (mean square response levels) of system states. Although the
results of [15) were obtained within a deterministic setting, it is easy to see
that the performance criterion of [15] is also of this form.

The contents of the note are as follows. After introducing notation at the
end of this section we consider the robust stability and performance
problems in Section II. In Section III we present the main result (Theorem
3.1) which provides sufficient conditions for robust stability over a set of
parameter variations along with a performance bound. In Section IV we
present a dual result (Theorem 4.1) in terms of the dual matrix P. This
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result serves two purposes. First, it clarifies connections with the previous
literature where results are presented in terms of the quadratic Lyapunov
function V(x) = xTPx. And, second, we show that the dual performance
bound may be much better than the primal bound (and vice versa) for
particular problems. The results of Theorems 3.1 and 4.1 are given in
terms of a robustness set U which is a subset of a maximal set L. Since U
is defined implicitly, we provide explicit characterizations of subsets U in
Section V. Here we restate the principal results of [2]-[4], [10] which, in
our context, correspond to particular characterizations of subsets of 4.
We also introduce an additional subset of U which provides a new robust
stability result. Finally, in Section VI we consider a pair of illustrative
examples. The first example, which was previously considered in [10],
involves two uncertain parameters. It is shown that the new guaranteed
stability region is considerably larger for certain parameter values than the
regions given in [10] (see Fig. 1). Furthermore, we obtain a robust
performance bound, a result which has no counterpart in [10}]. The second
example involves controllers for a second-order open-loop unstable plant
originally considered in [19] to demonstrate the lack of a guaranteed
stability margin for LQG controllers. We apply Theorems 3.1 and 4.1 to
analyze both the LQG design and a robustificd design obtained in [20].
We show that the new robust stability test is effective in the sense that the
guaranteed gain margin for the robustified controller is a factor of 5
larger than the actual gain margin of the LQG design.

NOTATION

Note: All matrices have real entries

R, R™, R, E Real numbers, r X s real matrices, R"*!,
expectation
1, r X ridentity matrix

Matrix with eigenvalues in the open left-
half plane

r X r symmetric, nonnegative-definite,
positive-definite matrices

Z,-Z,EN,Z - Z,€ER, Z),
Z2 € gr

Asymptotically stable matrix
gr’ Nr’ Pr

Z,=22,,Z, > 2,

trZ, Z7, co Trace of Z, transpose of Z, convex hull

Min(Z ), Meax(Z) Smallest and largest eigenvalues of
ZES"

I1Zls Spectral norm

Zi.jy (i, j) element of matrix Z

Z=z2z=20 Z(,-,j)ZO,i,j=l,"',r,ZEE}”"

Z>»0 Z(i,j)>0,i,j=1,"‘,’,Z€lﬂ’x'

1Z1m {1Zipl};-1» Z € R™ (matrix
modulus).

I1. ROBUST STABILITY AND PERFORMANCE PROBLEMS

Let U C [R”*" denote a set of perturbations AA of the nominal
dynamics matrix A. Throughout the note it is assumed that A is
asymptotically stable. We begin by considering the question of whether or
not A + AA is asymptotically stable for all A4 € U.

Robust Stability Problem: Determine whether the linear system

X()=(A+AA)x(1), t € [0, ») 2.1

is asymptotically stable for all AA € U.

The problem of robust performance involves a quadratic form
xT()Rx(t), where R € N”, when the system is subjected to a white
noise disturbance w(¢) with nonnegative-definite intensity ¥. The matrix
R can be viewed as a means for selecting output variables of interest while
the matrix V can be used to specify disturbance levels.

Robust Performance Problem: For the disturbed linear system

HO=(A+AA)x()+w(), €0, ) 2.2)
determine a performance bound 3 satisfying
J(U) £ sup lim sup E[x7(f)Rx(1)] <B. (2.3)
AA€EU 1o
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The system (2.2) may, for example, denote a control system in closed-
loop configuration subjected to external white noise disturbarces (see
Section VI). Such specializations are not required for this development,
however. Note that J(U) represents the worst case (over U) of the
average (over the white noise statistics) of quadratically weighted steady-
state deviations of the state from the origin. Thus, 8 represents an upper
bound on selected output variances. )

Of course, since R and V are only assumed to be nonnegative definite,
there may be cases in which a finite performance bound 3 satisfying (2.3)
exists while (2.1) is not asymptotically stable over U. In practice,
however, robust performance is mainly of interest when (2.1) is robustly
stable. In this case the performance J(‘U) is given in terms of the steady-
state second moment of the state. The following result from linear system
theory will be useful.

Lemma 2.1: Suppose (2.1) is asymptotically stable for all A4 € U.
Then

J(U)= sup tr Qa4R
AAEU

2.4)

where n X n Qas £ lim~e E[x(H)xT(1)] is the unique, nonnegative-
definite solution to

0=(A+AA)Qrs+Qua(A+AA)T+ V. 2.5)

In the present note our approach is to obtain sufficient conditions for
robust stability as a consequence of sufficient conditions for robust
performance. Such conditions are developed in the following sections.

III. SUFFICIENT CONDITIONS FOR ROBUST STABILITY AND
PERFORMANCE

The key step in obtaining robust stability and performance is to replace
the uncertain terms in the Lyapunov equation (2.5) by a bounding matrix
Q. The nonnegative-definite solution Q of this bounding Lyapunov
equation is then guaranteed to be an upper bound for Q4. The
uncertainty set U over which robustness is guaranteed then depends upon
Q. The following easily proved result is fundamental and forms the basis
for all later developments. The hypotheses of this result are of a general

nature and are not intended to be directly verifiable. Suitably verifiable
specializations of the hypotheses are discussed in Section V.
Theorem 3.1: Let @ € N”", let Q € N”" be the unique solution to

0=AQ+QAT+Q+V 3.1
and let U be a subset of
U & {A4 € R™": AAQ+QAAT=<Q}. (3.2)
Then
(A+AA, [V+Q-(AAQ+ QAAT)]'?) is stabilizable, AA € U
3.3)
if and only if
A+ AA is asymptotically stable, AA € U. (3.4
In this case,
Qua=Q, AA €U 3.5
where Qa4 € N” is given by (2.5), and
J(W=tr QR. (3.6)

If, in addition, there exists A4 € 4L such that (4 + AA, [V + @ -
(AAQ + QAAT)]?) is controllable, then Q is positive definite.
Proof: This result is a minor variation of [21, Theorem 3.1} and
hence the proof is omitted. O
To apply Theorem 3.1, one first chooses a nonnegative-definite matrix
Q and then solves (3.1) for Q. Next, as shown in Section IV, one
examines ‘Ul to determine subsets U of perturbations AA over which
robustness is guaranteed. Note that if U, and U, are subsets of U, then so
is the convex hull of their union. (To see this note that Ul is convex.) The
set U is the largest set over which robustness can be guaranteed by
Theorem 3.1 for the particular choice of Q. One may also select several
matrices © and determine subsets of each resulting ‘U as a constructive
approach to determining larger robustness sets. In the next section we
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examine subsets U of U of specified structure. Before doing so, we have
the following observations.

In applying Theorem 3.1 it may be convenient to replace condition
(3.3) with stronger conditions which are easier to verify in practice. The
following result is immediate.

Proposition 3.1: Consider the conditions

V>0 3.7

(A+AA, V'?) is stabilizable, AA € U, (3.8)
AAQ+QAAT<Q, A4 € U, 3.9)
AAQ+QAAT<Q+V, AA € U. (3.10)

Then 3.7) = (3.8) = (3.3), 3.7) = (3.10) = (3.3), and (3.9) = (3.10)
= (3.3).

If only robust stability is of interest, then the noise intensity ¥ need not
have physical significance. In this case one may either set V = ¢l,,, where
e > 0 is small to satisfy (3.7), or set ¥ = 0 and confine U to
perturbations AA for which (3.9) holds. This is the case in [3], [4], [10]
where V = 0, Q@ = 2[,, and the parametric robustness sets are
characterized by strict inequality.

Remark 3.1: Since A is asymptotically stable, Q is given by

Q=S e (Q+ Vyer dt=S e Qet T df + Q, @3.11)
0 0
where Qy € N” is given by

0=AQo+ QAT+ V. 3.12)

Note that Qy < Q and that the nominal performance is given by tr QyR.
Remark 3.2: Using (3.11) it is also useful to note that the bound for
J(U) given by (3.6) can be written as

tr QR=tr S eM(Q+ V)er T diR=tr P+ V) (3.13)
0
where Py € N" is given by
0=ATP,+P,A+R. (3.14)

The bound tr Po(Q + V') can be viewed as a dual formulation of the
bound tr QR since the roles of A and AT are reversed. Dual bounds are
developed in the following section. Note that tr QuR = tr Py V.

IV. DUAL SUFFICIENT CONDITIONS FOR ROBUST STABILITY AND
PERFORMANCE

As noted in Remark 3.2, the performance bound tr QR given by (3.6)
can be expressed equivalently in terms of a dual variable P, for which the
roles of A and AT are reversed. Using a similar technique, additional
conditions for robust stability and performance can be obtained by
developing a dual version of Theorem 3.1. A prime motivation for
developing such dual bounds is to draw direct connections with previous
results in the literature relating to robust stability. Traditionally, the use of
the quadratic Lyapunov function V(x) = x7Px for robust stability leads
naturally to the dual formulation. In addition, the dual bounds may, for
certain problems, be much sharper than the bounds introduced in the
previous section. This point is illustrated at the end of this section by
examining an extreme case and in Section VI by means of numerical
examples. We note, in addition, that robust performance bounds are more
difficult to motivate within the dual formulation without first developing
the primal results. The following result is immediate.

Lemma 4.1: Suppose (2.1) is asymptotically stable for all A4 € U.
Then

J(U)= sup tr Py V

AAEU

@.1
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where n X n P,4 is the unique, nonnegative-definite solution to
0=(A+AA)TPys+Pss(A+2A)+R. 4.2)

The dual of Theorem 3.1 can now be stated.
Theorem 4.1: Let A € N”, let P € N" be the unique solution to

0=ATP+PA+A+R 4.3)
and let U be a subset of
4’ 2 {AA € R™": AATP+PAA=A}. (4.4
Then
({R+A—(AATP+PAA)}?, A+AA) is detectable, A4 € U, (4.5)
if and only if
A+ AA is asymptotically stable, AA € U. (4.6)
In this case,
Py <P, AA €U 4.7)
where P4 € N" is given by (4.2), and
J(UW)=<tr PV. 4.8

If, in addition, there exists AA € 41’ such that (R + A — (AATP +
PAA)'2, A + AA) is observable, then P is positive definite.

The usefulness of Theorem 4.1 resides in the fact that it provides
stability and performance bounds which are generally different from those
given by Theorem 3.1. Hence, depending upon  and A either bound
(3.6) or bound (4.8) may be better for a particular problem. To illustrate
how dual bounds can improve estimates of robust performance, consider
the case in which V' = 0, i.e., plant disturbances are absent. In this case
Qa4 = O satisfies (2.5) and thus J(U) = Oaslongas A + AA is stable
for all AA € U. The performance bound tr QR given by (3.6) may,
however, be arbitrarily large depending upon R since Q may be nonzero
due to Q. Hence, this performance bound may be arbitrarily conservative.
The dual bound (4.8), on the other hand, is zero in this case, which
completely eliminates the conservatism.

V. CHARACTERIZATION OF SUBSETS OF Ul AND 1’

To apply Theorems 3.1 and 4.1 it is necessary to explicitly characterize
subsets U of U and U’ over which robustness is guaranteed. In this
section we provide several such characterizations by collecting together
and extending known results from the literature.

For the following result let @ = wl,, where w > 0, let W € R"™*", W
> 0, and let 4,, -+, A, € R"*" be arbitrary. Furthermore, for Q €
P " satisfying (3.1) define fori = 1, ---, p:

o & Nin(A:Q+QAT),  Bi & Mun(A:Q+QAT),
9; & (=, x) =3=0,
£ (-, w/B), @20, 3;>0,
& (w/ay, ), <0, 8;<0,
L (w/ay, w/B), <0<

Finally, let e denote the ith column of the p X p identity matrix.
Proposition 5.1: Let Q € P 7 satisfy (3.1) with @ = wl,, where w >
0. Then the following sets are subsets of U which also satisfy (3.9):

- w
U, & {AA € R : |1AA||X<5 IIQIII'} ,

U, & {24 € R : |AA | < 0| W(Qln+ QL W7 W},

»
U, & {AA € R™": A=Y 6iA;, (01, =+, 0,)T € m}

i=1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 7, JULY 1989

where ® is one of the following regions in R7:

®, & {(0,,

P
{(o., T, 0p) E 0 <w?
i=1

,
La): Y ol IIA,-Q+QA,"\Is<w} :

i=1
3 tA,Q+QA7,,,“ o

=1
i=1, } .

P}

®, &

}i(A,QwA,’V

i=1

®, 2 {(a,, c o) ol <w

Ry & co {oelP g, €9, i=1,

For the dual case we set A = A\I,, where A > 0, and define the dual
sets ‘fll’, ‘1-12’, ‘1—13’, g/, ®R;, ®R,, ®,, and R in an analogous fashion.

Remark 5.1: The proof of Proposition 5.1 is omitted since the results
are either known or are immediate. Specifically, U, can be found in [2]
while U, appears in [3], (4]. The sets R, &, and & are given in
[10]. The set ® ; has not appeared previously in the literature although the
result is immediate. It is only necessary to diagonalize ATP + PA, by
means of an orthogonal transformation and compare diagonal elements to
obtain 9. Taking the convex hull over the intervals 9 thus yields & .
Of course, the required eigenproblem entails additional computation.

Remark 5.2: Although most of the dual of Proposition 5.1 has
appeared previously, the primal result Proposition 5.1 has not been
discussed in the literature. For robust stability this result can be obtained
by considering the stability of A7 in place of A. As will be shown in
Section VI, the primal and dual results lead in general to different robust
stability regions and performance bounds. It should also be stressed that
although most of the dual of Proposition 5.1 has appeared previously, the
present note extends its applicability to the problem of robust performance
in addition to robust stability.

Remark 5.3: As mentioned previously, the convex hull of the union of
any collection of subsets of U is also a subset of ‘U since U is convex.
This observation applies to U; in the sense that if U5 is a subset of U with
regions ® = ® and ® = & separately, then U, is also a subset with ®
equal to the convex hull of the union of ® and ®. Note that these
observations follow from the convexity of Ul and do not contradict the fact
that the set of asymptotically stable matrices is not convex.

Remark 5.4: The requirement that Q be of the form w/, is not a
constraint in applying Proposition 5.1. Indeed, it is only required that Q be
positive definite. To see this let invertible ¢ € R™*" be such that ¢Q¢ ™
= 1,. Then Proposition 5.1 can be applied with suitable transformations
of AA, Q, W, and A,.

Remark 5.5: As in [2]-{4], [10], the sets U, U,, &, R,, and R; are
defined in terms of strict inequalities. In this case U, U,, and U; consist
of elements of U satisfying AAQ + QAAT < Qso that (3.9) is satisfied.
Thus, by Proposition 3.1, the stabilizability condition (3.3) is automati-
cally satisfied without reference to V.

Remark 5.6: In the special case p = 1 it is clear that ®, = ®,.
Furthermore, in this case R; is always a subset of ® | and ®,, and hence
leads to a more conservative stability region. The largest possible set of
perturbations AA of the form 0;4; contained in U is given by R,.

Remark 5.7: It is shown in [10, Remark 2.12] that U, can be obtained
as a consequence of U; with ® = &5 and a suitable choice of A;. Hence,
U, need not actually be considered separately. Our assumption that W >
0 (and not W = = 0) is for convenience only.

Remark 5.8: Note that all of the subsets of U given by Proposition 5.1
are symmetric except for U; with ® = ®,. When the actual stability
region is highly asymmetric, it follows that a symmetric robust stability
region is necessarily highly conservative. This observation is illustrated
by an example in Section VI.

Remark 5.9: The regions given by &, ®,, and ®; correspond,
respectively, to l-norm 2-norm, and oe-norm neighborhoods. These
results can easily be extended to include more general regions. For
example, in the definition of R, replace o; by o;/a; and A;,Q + QAT by

755

a,(A;Q + QA ,.T), where a; is an arbitrary positive constant, / = 1, * -,
p. With this modification ®, corresponds to an elliptical robust stability
region. Detailed investigation of such regions is beyond the scope of this
note.

Remark 5.10: When each interval J; is finite, or when only a finite
interval is of interest, ®,4 can be expressed as the convex hull of a finite
number of points. Specifically, letting 9, = [a;, ], i = 1, -+, p, it
follows that

- ) (
®Ry=co {a,el", b,e‘]F’, , ape;”’, bpep"’}.

This set is illustrated by means of an example in the next section.

VI. EXAMPLES

As a first example we adopt Example 2 of [10]. This example, which
involves two uncertain parameters, was used in [10] to illustrate the robust
stability regions ® [, ® ;, and ® ;. The problem was originally cast in the
form of a static output feedback controller with uncertain gains. Here for
convenience in discussing robust performance we reformulate the
example to involve uncertainty in the control input matrix. Hence,
consider the control system

X(t)=Aox(t)+ Bou(1), 6.1)
y(1) = Cox(1), 6.2)
u(t)=Ky(1) (6.3)
where
SRR E R P
0 0 -3 11

and the uncertainty AB, in By is given by

- 0
ABy= 0 -0
-0 -0

The closed-loop dynamics matrix is then given by

—2+a 0 —1+a
A+AA= 0 -3+0; 0
—14+0 —-1+4+0, —4+0

where AA = 0,4, + 0,4, and A,, A; have the evident definitions. It
can easily be shown that the exact stability region is given by 0; € (— o,
1.75) and 0, € (—oo, 3). Thus, the nominal dynamics matrix
corresponding to oy = g, = O lies in the upper right-hand corner of the
exact stability region so that, as noted in Remark 5.8, a high degree of
conservatism can be expected using symmetric robustness regions. To
consider robust stability alone, set ¥ = R = Oand w = N = 2. In this
case regions ® [, ®,, and & ;, as computed in [10], are shown in Fag. 1.
Region ® ; for this problem is given (see Remark 5.10) by

e {(90)- () () ()

which accounts somewhat better for the asymmetry of the stability region.
The regions ®,, ®,, and ®; were found to be smaller than the
corresponding dual regions, while R, is given by

e {(3)(15)- () (25))

which yields slight improvement in o,.
To evaluate robust performance replace (6.1) by

X(1)=Aox (1) +Bou(t)+w(t) 6.4)
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and define

J=1im B[xT()R,x(£) +uT(£)Rou(t)]

which corresponds to (2.3) with R = R, + CIK"R,KC,. Hence, setting
R, = L and R, = I yields

2 01
R=10 2 0
1 0 2
We also set V' = ;and w = N = 2. The resulting stability region for

these values of ¥ and R is given by

R/ ={(01, 03) : |0,|/0.70+ |, |/1.46 < 1},
®;={(01, 03) : I +02<(0.70)2},
®R;={(01, ) : |0;| <0.68, i=1, 2},

w7 (2)-( ) (2]

Over these combined regions the performance bound was computed to be
tr PV = 2.26. The primal result produced the regions

-20.5
0

0.70
0

0
-13.7

0
1.46

®Ri={(01, 03) : |01]/1.09+ |0, |/1.75< 1},
®Ry={(01, 02) : 0?+02<(1.08)%},
Rs={(0y, 02) : |o:| < 1.0, i=1, 2},

wee {(97)-(9)- () ()}

Over these regions the performance bound was computed to be tr QR =
3.18. Contour plots of actual performance for perturbed values of ¢, and
o, are shown in Fig. 2. Note that when determining robust performance
Theorems 3.1 and 4.1 yield performance bounds over robust stability
regions which are generally smaller than the robust stability regions
determined with R = 0 and V = 0. This mechanism represents the

-20.8
0

1.09
0

0
-6.93

0
1.75

Luetanyl

2.

natural tradeoff between stability and performance. In general, to
determine the largest stability regions, ¥ and R should be set to zero
initially.

As a second example we consider the control system given in [19] to

demonstrate the lack of a guaranteed gain margin for LQG controllers.
Hence, consider

Xo(#)=Aoxo(t) + Bou() + wy (1), 6.5)
Y(1)=Coxo(t)+ wy (1) (6.6)
with controller
X (8)=Ax A1)+ By (1), 6.7)
u(1)=Cex(t) (6.8)
and performance
J=1lim E[x] ()R xo(£) + uT()Ru(1)]. 6.9)
The data are
11
Ap= [0 1] , Bo= I:(l):l , Co=[1 0],

where V; and V; are the intensities of w;(r) and w,(?), respectively.
Uncertainty AB, in B, is thus represented by o, B;, where B, = [0, 1]7.
Thus, the closed-loop system corresponds to

_ Ay B,C. _ 10 BC.
A‘[cho A, ] ’A‘[o 0 ] ’
R o _|w 0
R‘[o 0] ’V‘[o BCVZBCT]

where the zero in the (2, 2) block of R denotes the fact that we are
considering the robust performance bound for the state regulation cost
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only. Choosing p = 60, it follows that the LQG gains are given by
10

-9 1
A= [_20 _9] , B.= [10] , Ce=[-10 —10].

For this controller the actual stability region corresponds to o, € (— 0.07,
0.01) (see Fig. 3). Applying the results of Section V with V = R = 0 (for
robust stability only) and @ = N = 2, we obtain

&, =R, =®R;=(-0.000242, 0.000242), R,=(-0.000242, 0.000728),
R =& =(-0.0000247, 0.0000247), &, =(—0.0000219, 0.0000219),
®, =(-0.0000247, 0.0000265).

Note that although the primal results are better than the dual results by an
order of magnitude, they are conservative by two orders of magnitude
with respect to the actual gain margin. For robust performance we again
setw = N\ = 2 and, using R and V given above, we obtained the bound tr
QR = 7633 over the stability region ®4 = (—0.000192, 0.000613). The
nominal performance was given by tr QuR = tr PyV = 4875, while the
dual performance bound was tr PV = 10510 over ® ; = (—0.0000222,
0.0000238).

Robustified controllers for the example of [19] were obtained in [20]
using the approach discussed in [13]. As shown in Fig. 3 (see also [20]),
the closed-loop system with the controller

-10.69 1 11.69

A= [_32_97 _5'295] s B.= [26‘67] , C.=[—6.245 —6.245]

is stable over the range o, € (—0.28, 0.21). Hence, we wish to
determine whether the robust stability tests are capable of detecting this
increase in gain margin. Applying Theorems 3.1 and 4.1 withw = A = 2
and V' = R = 0 yields stability for o, in the regions ®; = R, = ®; =
(-0.0115, 0.0115) and R, = (-0.0115, 0.057). This guarantee of
stability is two orders of magnitude greater than the guarantee for the
LQG design but is still an order of magnitude conservative with respect to

the actual stability region for this controller. Note, however, that for o, >
0 the guaranteed gain margin for the robustified design given by ®, (i.e.,
0.057) is greater than the actual gain margin of the LQG design (0.01).
Hence, the robustness test given by the ®, was able to detect a factor of 5
stability augmentation provided by the robustified design compared to the
LQG controller. Finally, the robust performance bound for this controller
was computed to be tr QR = 11185 over the region ®, = (—0.00165,
0.00493), while the dual bound was found to be tr PV = 11223 over ® ‘
= (—0.000724, 0.00123). For this problem the nominal performance is
tr QoR = tr PV = 9997.
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Robustness of Pole-Assignment in a Specified Region

YAU-TARNG JUANG, ZUU-CHANG HONG, AND
YI-TARNG WANG

Abstract—This note deals with the analysis of pole-assignment for
systems under linear time-invariant perturbations. Based upon the
Lyapunov approach, new techniques to calculate allowable element
bounds for highly-structured perturbations are presented. Under these
allowable perturbations, both stability robustness and certain perform-
ance robustness will thus be ensured. Examples are given to illustrate
proposed methods.

NOTATION
[ M| l-norm for M € ©"*", i.e., the maximal singular value of
M* The complex conjugate transpose of M
My 4 (M + M%)/2, the Hermitian part of M
|M| {lmyl}, for M = {my} e G"*"
My<M, my,<myz, Vi,j = 1,2,, n, M, M; € R™".

I. INTRODUCTION

For maintaining stability of uncertain systems, allowable perturbations
are discussed in [1]-[5]. These results are concerned only with stability
robustness, they do not deal with the robustness analysis for maintaining a
certain performance. References [6] and [7] have considered locating the
poles of a system in a specified region, a vertical strip or a circular region,
to shape the dynamic response. However, quantitative measures for the
allowable perturbations have not been given in [6] and [7].
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In this note, we propose new methods to analyze the pole-assignment
robustness of dynamic systems under linear time-invariant highly-
structured perturbations. Assigning eigenvalues of systems under pertur-
bations in a specified region will not only ensure stability robustness but
also achieve certain performance robustness in the linear time-invariant
case. Based on the Lyapunov approach, the upper bounds on perturbations
are obtained to retain system eigenvalues located within an arbitrarily-
chosen region in the complex plane. In Section II, the main results are
developed. Illustrative examples are given in Section III. Conclusions are
given in Section IV.

II. MAIN RESULTS

This section presents the criteria to calculate the allowable bounds on
highly-structured perturbations for maintaining the poles of a system in a
specified region. Consider a line L which separates the complex plane
into two open half-planes, namely H and H as shown in Fig. 1. The line L
intersects the real axis at (o, 0) and makes an angle 8 with respect to the
positive imaginary axis, where 0 is assumed positive in a counterclock-
wise sense and —w<f=<m.

Lemma 1: All the eigenvalues of a constant matrix A e @"*" lie in the
H region if and only if the matrix e~/? (4 — o) is stable.

Proof: That the constant matrix e~/? (4 —aJ) is stable means the
eigenvalues of the matrix e /° (4 — o) lie in the open left-half complex
plane. And after rotation and translation, this also means the eigenvalues
of the matrix A lie in the H region. Q.E.D.

Theorem 1: If all eigenvalues of a constant matrix A lie in the H region
as shown in Fig. 1, then all eigenvalues of the matrix A + A4 will
remain in the H region if

‘Aﬂ.’j‘ 1 A
—< =
ey (PIEM]

(¢))

where E is a nonnegative matrix representing the highly-structured
information for the additive perturbation AA, and P is the unique positive
definite Hermitian solution of the equation

e’A*P+e /" PA—2aP cos 0= —21. )

Proof: Since the eigenvalues of matrix A lie in the H region, by
Lemma 1 we know e~/® (4 — af) is stable. From the Lyapunov theorem
[8], we know the equation

[e-/*(A—al)]*P+Ple *(A-al)]=-21 3)
has a unique positive definite Hermitian solution P. Because (3) is
equivalent to (2), the unique positive definite Hermitian solution of (2)
always exists. Now, consider the system

X={e#(A+AA—al)} X “@
and choose V' = X*PX as a Lyapunov function for the system described
by (4), where P is the solution of (2). Then after some manipulations we
have
V=X*(-2I+e/?AA*P+PAAe %) X.

0018-9286/89/0700-0758%01.00 © 1989 IEEE



