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ROBUST STABILITY AND PERFORMANCE ANALYSIS FOR
STATE-SPACE SYSTEMS VIA QUADRATIC LYAPUNOV BOUNDS*

DENNIS S. BERNSTEINT AND WASSIM M. HADDAD}

Abstract. For a given asymptotically stable linear dynamic system it is often of interest to determine
whether stability is preserved as the system varies within a specified class of uncertainties. If, in addition, there
also exist associated performance measures (such as the steady-state variances of selected state variables), it is
desirable to assess the worst-case performance over a class of plant variations. These are problems of robust
stability and performance analysis. In the present paper, quadratic Lyapunov bounds used to obtain a simultaneous
treatment of both robust stability and performance are considered. The approach is based on the construction
of modified Lyapunov equations, which provide sufficient conditions for robust stability along with robust
performance bounds. In this paper, a wide variety of quadratic Lyapunov bounds are systematically developed
and a unified treatment of several bounds developed previously for feedback control design is provided.
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1. Introduction. Unavoidable discrepancies between mathematical models and real-
world systems can result in degradation of control-system performance including insta-
bility [1], [2]. Ideally, feedback control systems should be designed to be robust with
respect to uncertainties, or perturbations, in the plant characteristics. Such uncertainties
may arise either due to limitations in performing system identification prior to control-
system implementation or because of unpredictable plant changes that occur during
operation. Thus robustness analysis must play a key role in control-system design. That
is, given an existing or proposed control system, determine the performance degradation
due to variations in the plant.

In performing robustness analysis there are two principal concerns, namely, stability
robustness and performance robustness. Stability robustness addresses the qualitative
question as to whether or not the system remains stable for all plant perturbations within
a specified class of uncertainties. A related problem involves determining the largest class
of plant perturbations under which stability is preserved. Once robust stability has been
ascertained, it is of interest to investigate gquantitatively the performance degradation
within a given robust stability range. In practice it is often desirable to determine the
worst-case performance as a measure of degradation.

The concern for both robust stability and performance can be traced back to the
earliest developments in control theory. Design specifications such as gain and phase
margin have traditionally been used to gauge system reliability in the face of uncertainty.
In the modern control literature considerable effort has focused on rigorous robustness
analysis and design techniques in a variety of settings. Analysis and synthesis results have
been developed for both state-space and frequency-domain plant models to address struc-
tured parameter variations as well as normed-neighborhood uncertainty [3]-[7].

The present paper is concerned solely with the analysis of structured real-valued
parameter uncertainty within the context of state-space models. One motivation for such
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problems is illustrated by the examples given in [1] and [2]. These examples show that
standard linear-quadratic methods used to design either full-state feedback controllers
or dynamic compensators may result in closed-loop systems that are arbitrarily sensitive
to structured real-valued plant parameter variations. A particularly effective technique
for analyzing robust stability is to construct a quadratic Lyapunov function V(x) =
xTPx, which guarantees stability of the system as the uncertain parameters vary over a
specified range. This technique has been extensively developed for both analysis and
synthesis (see, e.g., [8]1-[37]).

Although both robust stability and performance are of interest in practice, most of
the literature involving quadratic Lyapunov functions is confined to the problem of
robust stability. A notable exception is the early work of Chang and Peng [9], which
also provides bounds on worst-case quadratic performance within the context of full-
state-feedback control design. In the present paper, we further extend the approach of
[9] to obtain a series of results for analyzing both robust stability and performance. As
will be seen, these results also provide substantial unification of more recent results per-
taining to robust stability alone.

To illustrate the basis for our approach, consider the system

(1.1) X(1)=(4+AA)x(1)+Dw(r),  t€[0,0), x(0)=0,
(1.2) y(8) = Ex(1),

where x(?) is an n-vector, A4 is an 7 X n matrix denoting the nominal dynamics matrix,
AA denotes an uncertain perturbation of 4 belonging to a specified set %, Dw(¢t) is (for
now ) a white noise signal of intensity ¥4 DD7, and y(¢) is a g-vector of outputs. System
(1.1), (1.2) may, for example, denote a control system in closed-loop configuration.

For the system (1.1) the performance measure involves the steady-state second
moment of the outputs y(¢). In practice the diagonal elements of the second moment
are measures of the ability of the external disturbances Dw(t) to excite specified states.
In the presence of uncertainties A4, it is of interest to determine the worst-case steady-
state values of the second moments of selected states. Thus, we define the scalar perfor-
mance criterion

(1.3) Js(U)4 sup lim sup E{y7(1)y(1)},
AAeU t—> o

where E denotes expectation and lim sup is a technicality to ensure that Jg(%) is a well-
defined quantity even when 4 4+ AA has eigenvalues in the closed right half plane. To
evaluate (1.3) define the second-moment matrix

Q(H)AE[x(1)xT(0)],
which satisfies the Lyapunov differential equation
(1.4) Osa()=(A+AA)Qsa(t)+ Qau()(A+A4)T+V,
so that (1.3) becomes
(1.5) Js()= sup lim sup trQa(?)R,

AAedU t—>

where R 2 ETE. To guarantee both robust stability and performance we consider modified
algebraic Lyapunov equations of the form

(1.6) 0=AQ+ QAT+ QQ)+V,
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where Q( ) is a matrix operator satisfying
(1.7) AAQ+QAAT=Q(Q)

for all A4 € % and all nonnegative-definite matrices Q. The ordering in (1.7) is defined
with respect to the cone of nonnegative-definite matrices. Our results are based on the
following robust stability and performance result (for convenience, assume that V is
positive definite). If there exists a positive-definite solution Q to (1.6), where €( - ) satisfies
(1.7), then 4 + AA is asymptotically stable for all A4 € % and, furthermore,

(1.8) Js(U)=tr OR.

The robust stability result is a direct consequence of Lyapunov theory, while the perfor-
mance bound (1.8) follows from the fact that since 4 + A4 is asymptotically stable,
Qa2 lim,, o, Qa4(2) exists, is independent of O, 4(0), and satisfies

(1.9) 0=(A+AA)Qpa+ Qaa(A+ AT+ V.
Now subtracting (1.9) from (1.6) yields

0=(A+A4)(Q—Qua) +(Q— Qua)(A+A4)"+QQ)—(AAQ+QAAT) +V,
which, by (1.7) and the fact that 4 + A A is stable, implies

(1.10) Qaa=0.

Now (1.5) and (1.10) yield the bound (1.8).

Since the ordering induced by the cone of nonnegative-definite matrices is only a
partial ordering, it should not be expected that there exists an operator Q(-) satisfying
(1.7), which is a least upper bound. Indeed, there are many alternative definitions for
the bound Q(-). To illustrate some of these alternatives, assume for convenience that
AA is of the form

(1.11) AA:UIAI, |01|§51,

where ¢ is an uncertain real scalar parameter assumed only to satisfy the stated bounds,
and 4, is a known matrix denoting the structure of the parametric uncertainty. The
bound Q(-) utilized in [9] and [12] for full-state-feedback design was chosen to be

(1.12) Q) =614.0+047],

where | - | denotes the nonnegative-definite matrix obtained by replacing each eigenvalue
by its absolute value. More recently, the quadratic (in Q) bound

(1.13) NQ)=8[4r4]+ 0A%ARQ]

has been considered, where A;, Ar are a factorization of A4; of the form 4, = AL Ag.
Bound (1.13) was studied in [29] for robustness analysis and in [17], [25], [28], [30],
[33], and [36] for robust controller synthesis. A third bound that has also been considered
is the linear (in Q) bound

(1.14) Q) =d[aQ+a™"4,047],

where « is an arbitrary positive scalar. As shown in [33], bound (1.14) arises from a
multiplicative white noise model with exponential disturbance weighting. Control-design
applications of bound (1.14) are given in [23], [27], [33]-[35]. The principal contri-
bution of the present paper is thus a unified development of bounds (1.12)-(1.14) for
both robust stability and performance analysis. In addition, we present a systematic
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approach that pays careful attention to the structure of the uncertainty set %. For example,
we show that bound (1.12) guarantees stability over a rectangular uncertainty set while
(1.14) is most naturally associated with an ellipsoidal region. Furthermore, to provide a
methodical development, we identify three classes of bounds (Types I, II, and III) that
operate by exploiting, respectively, the symmetry of AAQ + QAA7T, the structure of Q,
and the structure of AA. This approach clarifies the relationships among different bounds
and suggests several new bounds. The principal goal in this regard is to demonstrate the
richness of quadratic Lyapunov bounds to stimulate future developments.

Finally, the present paper also considers an alternative cost functional for robust
performance analysis. Specifically, in place of white noise disturbances, we reinterpret
w(t) in (1.1) as a deterministic L, signal as in H, theory [6]. By imposing an L., norm
on the output y(¢) (rather than an L, norm as in H, theory), the corresponding per-
formance measure is given by (see [38])

(1.15) Jp(%)= sup lim sup Apmax (Qaa(?)R),

AAeU t—~x

in contrast to (1.5). Both performance measures Js(%) and Jp(%) are considered in
the paper.

The contents of the paper are as follows. After summarizing notation later in this
section, the Robust Stability Problem, Stochastic Robust Performance Problem, and
Deterministic Robust Performance Problem are introduced in § 2. In § 3 the basic result
guaranteeing robust stability and performance (Theorem 3.1) is stated. This result is
easily stated and forms the basis for all later developments. A dual version of Theorem
3.1 (Theorem 4.1) provides additional sufficient conditions and clarifies connections to
traditional robust stability results. The bound ©(-) and its dual A(-) are given concrete
forms in § 5. In § 6, the bounds of § 5 are merged with Theorem 3.1 to yield the main
results guaranteeing robust stability and performance (Theorems 6.1-6.5) via modified
Lyapunov equations. In § 7 we analyze the modified Lyapunov equations with regard
to existence, uniqueness, and monotonicity of solutions. Additional bounds are derived
in § 8 by utilizing a recursive substitution technique, while both upper and lower bounds
are obtained in § 9. Finally, illustrative examples are considered in §§ 10 and 11.

Notation. Note: All matrices have real entries.

R,R"™¥S R",E  real numbers, r X s real matrices, R"%!, expectation,

I, r X r identity matrix,

asymptotically matrix with eigenvalues in open left half plane,
stable matrix

S’ r X r symmetric matrices,

N7 r X r symmetric nonnegative-definite matrices,

P’ r X r symmetric positive-definite matrices,

VAR Z —Z,eN,Z,,7Z,€S’,

Z,> 27, Zl—ZZGP’,Z|,22€§’,

trZ,Z7 trace of Z, transpose of Z,

M(Z) eigenvalue of matrix Z,

Amax (Z) maximum eigenvalue of matrix Z having real spectrum,
-1l Euclidean vector norm,

I lls spectral matrix norm (largest singular value),

I ll# Frobenius matrix norm.
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2. Robust stability and performance problems. Let % < R"*" denote a set of per-
turbations A4 of a given nominal dynamics matrix 4 € R"*", Throughout the paper it
is assumed that A4 is asymptotically stable and that 0 € %. We begin by considering the
question of whether or not A + A4 is asymptotically stable for all A4 € %.

ROBUST STABILITY PROBLEM. Determine whether the linear system

(2.1) x(t)=(4+AA4)x(1), te[0, ),

is asymptotically stable for all Ad e %.

To consider the problem of robust performance it is necessary to introduce external
disturbances. In this paper we consider both stochastic and deterministic disturbance
models. The stochastic disturbance model involves white noise signals as in standard
LQG theory, whereas the deterministic disturbance model involves L, signals as in H,
theory [6]. By defining an appropriate performance measure for each disturbance class
it turns out that we can provide a simultaneous treatment of both cases.

We first consider the case of stochastic disturbances. In this case the robust perfor-
mance problem concerns the worst-case magnitude of the expected value of a quadratic
form involving outputs y(z) = Ex(t), where E € R?*", when the system is subjected to
a standard white noise disturbance w(¢) € R with weighting D € R"*?,

STOCHASTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system

(2.2) X(1)=(4 + AA)x(t)+Dw(t), te[0,00), x(0)=0,
(2.3) y(t) = Ex(1),

where w(+) is a zero-mean d-dimensional white noise signal with intensity /,, determine
a performance bound (g satisfying

(2.4) Js(“ll)éAiuQ” lifn sup E{[ly(2)lI3} =Bs.

The system (2.2), (2.3) may denote, for example, a control system in closed-loop
configuration subjected to external white noise disturbances for which y(¢) may be the
state regulation error. Such specializations are not required for this development, however.

Of course, since D and E may be rank deficient, there may be cases in which a finite
performance bound (s satisfying (2.4 ) exists while (2.1) is not asymptotically stable over
% . In practice, however, robust performance is mainly of interest when (2.1) is robustly
stable. In this case the performance Jg(%) is given in terms of the steady-state second
moment of the state. The following result from linear system theory will be useful. For
convenience define the n X n nonnegative-definite matrices

RAETE, VADDT,
LEMMA 2.1. Suppose A + AA is asymptotically stable for all AA € U . Then
(2.5) Js(W)= sup tr QsaR,

AAeU
where the n X n matrix Qa4 2 lim,,. o, E[x(£)x7(2)] is given by

(2.6) QAA=fwe(A+AA)lVe(A+M)Tt dt,
0

which is the unique, nonnegative-definite solution to
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To state the Deterministic Robust Performance Problem some additional notation
is required. For a measurable function z: [0, co) — R define

© 1/2
(2.8) uz(->u2,2é[ [ECTE dz} :

which is an L, function norm with a Euclidean spatial norm, and define

lz(-)lwo2ess. sup [z(2)l,
te[0,00)

which is an L., function norm with a Euclidean spatial norm. We now reconsider (2.2)
with w(-) interpreted as a square-integrable function. In this case the robust performance
problem concerns the worst-case L., norm of the output y(t).

DETERMINISTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system
(2.2), (2.3), where |w(-)[l22 = 1, determine a performance bound 3 satisfying
(2.9) ()2 sup  sup  [ly()1%2=6p.

Ade |w(-)llpaS 1
The performance measure Jp(%) in (2.9) is given by the following result.
LEMMA 2.2. Suppose A + AA is asymptotically stable for all AA € U. Then

(2.10) Jp(WU)= Sup Amax (QaaR),
AdeuU

where Qa4 is the unique, nonnegative-definite solution to (2.7).

Proof. The result is an immediate consequence of Theorem 1(b) of [38]. O

Remark 2.1. Although Js(%) and Jp(%) arise from different mathematical settings
they are quite similar in form. Note that in general Jp(%) = Js(%), and Jp(%) =
Js(%) if rank R = 1.

Remark 2.2. In Lemma 2.2 Qa4 can be viewed as the controllability Gramian for
the pair (4 + AA, D) rather than the state covariance. Note that O, 4 is independent of
x(0) and Q4 4(0).

Remark 2.3. The stochastic performance measure Jg(%) given by (2.5) can also
be written as

(2.11) Js(U) = supf | Ee4+adtp|Z dt,
AAed JO

which involves the L, norm of the impulse response of (2.2), (2.3). This stochastic
performance measure can thus also be given a deterministic interpretation by letting
w(t) denote impulses at time ¢ = 0. For details of this formulation see [46, p. 331].

In the present paper our approach is to obtain robust stability as a consequence of
sufficient conditions for robust performance. Such conditions are developed in the fol-
lowing sections.

3. Sufficient conditions for robust stability and performance. The key step in ob-
taining robust stability and performance is to bound the uncertain terms AAQ + QAAT
in the Lyapunov equation (2.7) by means of a function Q(Q). The nonnegative-definite
solution Q of this modified Lyapunov equation is then guaranteed to be an upper bound
for Q4. The following easily proved result is fundamental and forms the basis for all
later developments. The result is based on Lyapunov function theory as applied to linear
systems. For our purposes, a suitable statement of this result is given by Lemma 12.2 of
[39]. Essentially this result states that if the matrix equation 0 = ®F + F®” + SS7 has
a solution F = 0 and (®, S) is stabilizable, then ® is an asymptotically stable matrix. Of
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course, (@, S) is stabilizable (regardless of ®) if S has full row rank, and we note (see
[39, Thm. 3.6]) that if (®, S) is stabilizable then so is (®, [SST + H]'/?) for all non-
negative-definite matrices H.

THEOREM 3.1. Let Q : N" = N" be such that

(3.1) AAQ+QAATZQ(Q), AAe¥, QeN"
and suppose there exists Q € N" satisfying

(3.2) 0=A4A0+ 047+ Q)+ V.

Then

(3.3) (A + AA, D) is stabilizable, AAecU,
if and only if

(3.4) A+ AA is asymptotically stable, AA€WU.
In this case,

(3.5) 020, AAecU,

where Qa4 € N" is given by (2.7), and

(3.6) Js(U)=tr OR,

(3.7) Jp(U) = Amax (OR).

In addition, if there exists AA € AU such that (A + AA, D) is controllable, then Q is
positive definite.

Proof. We stress that in (3.1), Q denotes an arbitrary element of N”, whereas in
(3.2) Q denotes a specific solution of the modified Lyapunov equation. This minor abuse
of notation considerably simplifies the presentation. Now note that for all A4 € R"*",
(3.2) is equivalent to

(3.8) 0=(A+AA4)Q+Q0(A+AA)T+QQ)—(AAQ+QAATY+ V.

Hence, by assumption, (3.8) has a solution Q € N” for all A4 € R"*" If AA is restricted
to the set % then, by (3.1), Q) — (AAQ + QAAT) is nonnegative definite. Thus if
the stabilizability condition (3.3) holds for all A4 € %, then it follows from Theorem
3.6 of [39] that (4 + AA4,[V+ QQ)— (AAQ + QAAT)]'/?) is stabilizable for all
AA €. It now follows from (3.8) and Lemma 12.2 of [39] that 4 + AA is asymp-
totically stable for all A4 €. Conversely, if A + AA is asymptotically stable for all
AA €9, then (3.3) is immediate. Next, subtracting (2.7) from (3.8) yields

0=(A+A4)(Q~Qsa) +(Q— Qaa)(A+A4)T+AQ)—(A4AQ+QAAT), Adeq,
or, equivalently, since 4 + AA is asymptotically stable for all A4 € %

(3.9) Q—QAA=Lwe‘A+AA)’[Q(Q)—(AAQ+ QAAT)]eU+ad™ gr=>, AAe,

which implies (3.5). The performance bound (3.6) is now an immediate consequence
of (2.5) and (3.5). To prove (3.7) we note that if 0 = M, = M, then Ay (M) =
Amax (M>) (see, e.g., Corollary 7.7.4 of [40]). Thus
JD(%)= sup Amax(QAAR)= sup )\max (EQAAET)
AAdeu AAdeu
(3.10)
= Amax (EQET) = Amax (QR).
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Finally, it follows from (3.8) that if (4 + A4, D) is controllable for some A4 € %, then
the controllability Gramian Q for the pair

(A+AA,[V+AQ)—(AAQ+ 0AAT)]'?)

is positive definite. O

For convenience we shall say that Q(:) bounds % if (3.1) is satisfied. To apply
Theorem 3.1, we first specify a function Q(-) and an uncertainty set  such that Q(-)
bounds %. If the existence of a nonnegative-definite solution Q to (3.2) can be determined
analytically or numerically and (3.3) is satisfied, then robust stability is guaranteed and
the performance bounds (3.6), (3.7) can be computed. We can then enlarge %, modify
Q(-), and again attempt to solve (3.2). If, however, a nonnegative-definite solution to
(3.2) cannot be determined, then % must be decreased in size until (3.2) is solvable. For
example, Q(-) can be replaced by £Q(-) to bound ¢%, where ¢ > 1 enlarges % and ¢ < 1
shrinks %. Of course, the actual range of uncertainty that can be bounded depends on
the nominal matrix 4, the function Q(:), and the structure of %. In § 5 the uncertainty
set % and bound Q(-) satisfying (3.1) are given concrete forms. We complete this section
with several observations.

Remark 3.1. If only robust stability is of interest, then the noise intensity ¥ need
not have physical significance. In this case we may set D = I, to satisfy (3.3).

Remark 3.2. Since A is asymptotically stable, Q satisfying (3.2) is given by

(3.11) Q=f0°°ef“[sz(Q)+ Viet™ dt,
or, equivalently,

(3.12) Q=f0°°ef"_Q(Q)eA" dt+ Qo
where Qp € N” is defined by

(3.13) QoéLwe’"VeAT’ dt

and satisfies
(3.14) 0=AQy+ QAT+ V.

Note that Qy = Q and that the nominal performances Js({0}) and Jp({0}) are given
by tr QoR and M. (QoR), respectively.

Remark 3.3. Using (3.11) it is also useful to note that the bound for Jg(%) given
by (3.6) can be written as

(3.15) tr OR =trf e [QUQ)+ V]eAT’ diR=1tr P [ Q)+ V],
0
where P, € N” is defined by
(3.16) Poéf e*" Re™ dt
0

and satisfies

(3.17) 0=ATPy+PyA+R.
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The bound tr Po[Q(Q) + V'] can be viewed as a dual formulation of the bound tr QR
since the roles of 4 and A7 are reversed. Dual bounds are developed in the following
section. Note that tr QR = tr PyV.

Remark 3.4. If Q(+) bounds % then clearly Q(-) bounds the convex hull of %.
Hence, only convex uncertainty sets % need be considered. Next, we shall later use the
obvious fact that if Q’(-) bounds %’ and Q"(-) bounds %", then Q'(-) + Q’(-) bounds
U’ + U". Hence if % can be decomposed additively then it suffices to bound each com-
ponent separately. Finally, if Q(-) bounds % and there exists ' : N” — N” such that
QUQ) = Q'(Q) for all Q € N”, then Q'(-) also bounds %. That is, any overbound Q'(-)
for Q(-) also bounds %. Of course, as we shall see, it is quite possible that an overbound
() for Q(-) may actually bound a set %' that is larger than the “original” uncertainty
set U.

4. Dual sufficient conditions for robust stability and performance. As noted in Re-
mark 3.3, the performance bound tr OR given by (3.6) can be expressed equivalently in
terms of a dual variable P, for which the roles of 4 and AT are reversed. Using a similar
technique, additional conditions for robust stability and performance can be obtained
by developing a dual version of Theorem 3.1. A prime motivation for developing such
dual bounds is to draw connections with previous results in the literature relating to
robust stability. Specifically, we shall show that traditional robust stability techniques
based on the quadratic Lyapunov function ¥ (x) = xTPx correspond to dual conditions.
Robust performance bounds within the dual formulation, however, are difficult to mo-
tivate without first developing the primal performance bounds as was done in the previous
section. In addition, the dual bounds may, for certain problems, yield larger stability
regions and sharper performance bounds than the primal bounds.

LEMMA 4.1. Suppose A + AA is asymptotically stable for all AA € U . Then
(4.1) Js(all)= sup tr PAAI/,

AAdeU
where Pa, € R"*" is the unique, nonnegative-definite solution to
(4.2) 0=(A+AA) Py s+ Prs(A+AA)+R.
Proof. It need only be noted that

o0
tr QauR=1tr f A+ AN+ AT R —tr PV,
0
where

[ee]
PAAéf e(A+AA)TtRe(A+AA)t dt
0

satisfies (4.2). O

The proof of Lemma 4.1 relies on the fact that tr Q. R = tr P,4V. However,
it is not necessarily true that Aya (QasR) = Amax (Pa4V) even when A4 = 0. For ex-
ample, if

then

S
~
Il
—
Wl —
B

] and PyV= [

PN
NN
—
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and thus Amax (QoR) = (15 + V145)/24 and Amax (PoV) = (5 + V17)/8.Thus to obtain
a suitable dual version of Jp(%) we need to define a dual deterministic cost Jp(%),
which is distinct from Jp(% ). This can be done if the disturbance signals are taken to
be integrable rather than square integrable. Thus, for measurable z : [0, c0) = R” define

43) Izl [ 1201 a.

vyhich is an L, function norm with a Euclidean spatial norm. The dual deterministic cost
Jp(4) is thus defined by

(4.4) Jp(@)a sup  sup [y(-)|3..

Aded |lw()lhz2=1

The following dual result follows from Theorem 1(a) of [38].
LEMMA 4.2. Suppose A + AA is asymptotically stable for all AA € %U . Then

(4.5) I(U) = Nax (PsaV),

where Py, € R"™" s the unique, nonnegative-definite solution to (4.2).
The dual version of Theorem 3.1 can now be stated.
THEOREM 4.1. Let A : N* — N”" be such that

(4.6) AATP+PAASA(P), AAeWU, PeN"
and suppose there exists P € N" satisfying

(4.7) 0=ATP+PA+A(P)+R.

Then

(4.8) (E,A+ AA) is detectable, AAeU,
if and only if

(4.9) A+ AA is asymptotically stable, AAcU.
In this case,

(4.10) Pys=P, AA€U,

where P, 4 is given by (4.2), and

(4.11) Js(U)=tr PV,

(4.12) ID(U) = Mnax (PV').

In addition, if there exists AA € U such that (E, A + AA) is observable, then P is positive
definite.

Proof. The proof is completely analogous to the proof of Theorem 3.1. O

Remark 4.1. Note that Jp(%) < Js(%) and that J(%) = Js() if rank V = 1.
Combining this fact with Remark 2.1, it follows that Jp(%) = Jp(%) if both rank R = 1
and rank ¥ = 1. In general, however, we should not expect that J,(%) = Jp(%).

It is quite possible that the bounds tr QR and tr PV for Js(%) given by (3.6) and
(4.11) may be different in spite of the fact, as shown in the proof of Lemma 4.1,
that tr Qo 4R = tr Po4V. That is, depending on Q(-) and A(-) either bound (3.6) or
bound (4.11) may be better for a particular problem. In general, we have the following
result.
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PROPOSITION 4.1. Let Q(-), A(+), Q, and P be as in Theorems 3.1 and 4.1, and let
Qo and P, be given by (3.13) and (3.16), respectively. Then

(4.13) tr QoA(P) <tr PyQ(Q)<>tr QR>tr PV,
(4.14) tr QoA(P)=tr Py Q)<>tr QR=tr PV,
(4.15) tr QoA(P)>tr PyQ(Q)<tr QR <tr PV.

Proof. Note that
tr QR = J:O e[UQ)+ Vet dt R=1tr Po(Q)+1r J:o eVe" dt R
and
tr PV=tr J:o e"T‘[A(P) + Rle™ dt V=1tr QoA(P)+tr J:o e"Re? di V

so that
tr OR—tr PV =tr PoQ(Q)—tr QoA(P),

which yields (4.13)-(4.15). O

Remark 4.2. To draw connections with traditional Lyapunov theory, let R and V
be positive definite and assume that there exists a positive-definite solution to (4.7).
Then V' (x) & x7Px satisfies ¥ (x(t)) < 0 for x(+) satisfying (2.1) and for all A4 € %.
Thus V() is a Lyapunov function for (2.1) that guarantees robust asymptotic stability
over %.

5. Construction of the bounds @(-) and A(-). Asdiscussed in § 1, we consider three
distinct classes of bounds () denoted by Type I, Type II, and Type III. Roughly speaking,
these bounds exploit, respectively, the symmetry of the Lyapunov terms A4Q + QAA7,
the structure of Q, and the structure of A4. The dual bounds A() can be constructed
similarly by replacing Q and A4 by Pand A4 7. Hence these bounds will not be discussed
separately. For convenience in discussing the set %, we shall use the terms rectangle and
ellipse to refer to closed regions bounded by such figures in multiple dimensions. As
usual, a polytope is the convex hull of a finite number of points.

5.1. Type I bounds. We begin by constructing bounds Q(-) that exploit only the
symmetry of the Lyapunov terms A4Q + QAA”. First we require the following well-
known definition of a function of a symmetric matrix as an extension of a real-valued
function (see, e.g., [40, p. 300]). Specifically, if f: R — R, then (with a minor abuse of
notation) f: §” = S” can be defined by setting

f(S)aUf(DYUT,

where § = UDUT, U is orthogonal, D is real diagonal, and f( D) is the diagonal matrix
obtained by applying f to each diagonal element of D. Note that if f is the polynomial
S(x) = Zi-o aix" then f(S) = 2!y a;S". Note also that if f(x) = | x| then f(S) =
(S%)'/2, where (-)!/? denotes the (unique) nonnegative-definite square root. As in [41,
p. 262], we use the notation | S| to denote (S?)!/2. Finally, note that if /: R - R and
g: R — R are such that f(x) = g(x), x €R, then f(S) = g(S5), S S"

As a concretization of the uncertainty set %, consider the set

p
(5.1) %1A[AAGR”X”:AA= > 0idi o £8;,i=1, -+ ,p],

i=1
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where, fori =1, -+, p: A;€ R"*"is a given matrix denoting the structure of the para-
metric uncertainty, o; is a real uncertain parameter, and §; denotes the range of parameter
uncertainty. Clearly, the multidimensional set of uncertain parameters (o4, - - , 0,) is
the rectangle [—6;, 6,] X -+ X [—,, §,] and %, is a symmetric polytope of matrices
in R"*". Note that the symmetry of the uncertainty interval [—§;, §;] entails no loss of
generality since the nominal value of 4 can be redefined if necessary. Furthermore, it is
also possible, without loss of generality, to define 6; = 1 by replacing A4; by §;4;. For
clarity, however, we choose not to employ this scaling. We begin by considering the
bound utilized by Chang and Peng in [9].
PROPOSITION 5.1. The function

p
(5.2) ()2 T 6| 4,0+ 04T |
i-1
bounds U, .
Proof. Fori=1,--- pand |o;| =6,

0/(A;Q+0A])= [0:(4;0+04])| = |0;| | 4,0+ QA | =6;| 4,0+ QAT |.
Summing over i yields

p p
AAQ+QAAT= 3 0/(A4:;0+ QA= T 6| 4,0+ 04T,
i=1 i=1
which implies (3.1) with Q(-) = Q;(-)and % = U,. [
Remark 5.1. Tt is tempting to prove Proposition 5.1 by writing

p p

> 0i(A4;0+ 04N S| Y 0i(4;0+04])|= % lo:(A4:0+047)].

i=1 i=1 i=1

However, counterexamples show that the inequality | M, + M,| = | M,| + | M,;| is not
generally true for arbitrary symmetric matrices M, M.

Remark 5.2. Because of its simplicity it is tempting to conjecture that Q,(-) is the
best bound for A4Q + QAAT over the set %,. To show that this is not the case, let
Q0=4L,p=1,4,=[%],and 6, = 1. Then o,(4,Q + QA7) = 6,| 4,0 + 04T | = L,
|oy| = 1. However, it is also true that

3
2

2
al(f.nQ+QAT)é[2

, loy| =1
!

Neither bound, however, is an overbound for the other. This is a consequence of the fact
that the nonnegative-definite matrix ordering is only a partial order.

As mentioned earlier, an overbound for ©,(-) will also bound % . The following
result is immediate.

LEMMA 5.1. Fori=1, -, p,let f;: R = R satisfy

(5.3) fix)= | x|, x€eR.
Then the function

p
(5.4) %(0)2 2 §6if(4:Q+0A47)

i=1

is an overbound for Q,(+) and hence also bounds U .
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One particular choice of f; satisfying (5.3) will be considered here, namely,
the polynomial

(5.5) Jix)=4Bi+ 7' x%,

where $3; is an arbitrary positive constant. Thus Q,(-) has the following specialization.
COROLLARY 5.1. Let By, - -+, B, be arbitrary positive constants. Then the function

(5.6) Qs(Q)A 2 8iBily+ 2 (B )(A 0+04])’

1—1 i=1

is an overbound for Q,(-) and hence also bounds U, .

Although overbounding Q,(-) by Q3(-) results in a looser bound for %, it turns
out that Q;(-) actually bounds a set that is larger than %,. Specifically, in place of
%, consider

P P2
(5.7) %zé{AAeR”x”:AA= > 0idi, 2 'zé }
i=1 i=1%i

where a1, - - -, o, are given positive constants. Note that (5.7) replaces the rectangle of
uncertain parameters (o, - - - , ,) by an ellipse. Thus the set %, of matrix perturbations
is an ellipse of matrices in R"*" in contrast to the polytope %,. Of course, %, = U, if
p=1and a; = 6,. Again it is possible to take o; = 1 without loss of generality by replacing
A; by a;4;. We again choose not to do this, however. The following result provides
a convenient characterization of the relationship between the rectangle %, and the
ellipse %,.

PROPOSITION 5.2. Suppose %, is defined by the positive constants 8,, -+ + , §,, and
let U, be characterized by

\1/2
(5'8) ai:(%éi) ) i= 11 LD,

where o is defined by

(5.9) a= é 0:8;

i=1

and By, - -+ , B, are arbitrary positive constants. Then the ellipse
p
[(ala'..sa—p 2_2—'<=
i= aj

circumscribes the rectangle { (o, *+ - , 0,): |o;| £6;,i=1, -+, p} and thus U, contains
Y ,. Furthermore, Q3(+) actually bounds %U,.
Proof. If |o;| £6;,i=1, -+, p, then it follows from (5.8) and (5.9) that

P 2 P g2 »
2 2’5._.“—1 > Biot Sa' Y Bidi=1.
= l

i=1 0; i=1
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Thus the ellipse contains the rectangle. If, in addition, (g, -+ , 0},) is a vertex of the
rectangle, ie., |o;| =6, i =1, -+, p, then 2%-| 6?/a? = 1, which corresponds to a
point on the boundary of the ellipse. To show that Q3(-) actually bounds %, note that

p 1/2 . . 2
2[2( "’)In—(a"f',z)(AiQ+QA,~T)]

II/\

Q;

i

%2( )1 Fam'S aX(40+ QAT — (AAQ+ QAAT).

i=1

Since 2¢_, 6?/a? = | in %,, it follows that

p
AAQ+ QAATé%I,,-I-a" > a2(4;0+ 042
i=1
Utilizing (5.8) and (5.9) to substitute for « and «; yields (3.1) with Q(-) = Q;(+) and
U =U 2. O
Proposition 5.2 shows that each choice of constants 8, ---, 8, > 0 leads to a
particular ellipse %, that contains the polytope % ,. Furthermore, Q3(-), which by Cor-
ollary 5.1 bounds %, actually bounds the larger set %, . For convenience, we now dispense
with the constants B3, - - -, §, that relate the rectangle %, to the ellipse %, and we
characterize Q;(-) entirely in terms of o, oy, - - -, .
COROLLARY 5.2. Let a be an arbitrary positive constant. Then the function

(5.10) Sh(Q)é%InJrofl i a}(4;0+047)?
i=1

bounds U, .

Remark 5.3. Within the context of Corollary 5.2, the positive constant « plays no
role in defining the set %,, although Q4(-) is guaranteed to bound %, for all choices of
«. It can be expected, however, that certain choices of a provide better bounds than other
choices. This will be seen by example in § 10.

The following variation of Q4(-) was suggested by D. C. Hyland.

PROPOSITION 5.3. Let o be an arbitrary positive constant. Then, for Q > 0,

a !
(5.10) Qu(Q)a3 Q+— 2 af[A]Q+A;QAT+ QAT Q7' 4,0+ Q4F"]
i=1
bounds U .
Proof. Note that

Oéﬁ[l("‘”z )Q‘” (‘sz)(AiQ+QA?)Q"'/2]

i=1 2 Q;

2.
X[_;.(a_l/fg‘_)Ql/Z ( l/2)(A Q+ QAT)Q—-l/z]

o

p 2 p
22 (-Z—;)QJra”' 3 a}(4,0+04T)Q7 (4,0 + Q4]) - (A4Q+0A4T),
i=1 \&i =
which yields the desired result. O

Remark 5.4. The bound Q4-(Q) is of interest since it involves terms that arise from
a multiplicative white noise model with a Stratonovich correction. Specifically, the term
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A;QAT arises from an Ito model [33], whereas the terms 4?Q and Q4?7 can be viewed
as the shift 4 > A4 + 1 Z7_, A% due to the Stratonovich interpretation of stochastic in-
tegration [43]. These terms have interesting ramifications in designing controllers for
flexible structures [23].

5.2. Type II bounds. We now consider additional bounds for % that exploit the
structure of Q. For these bounds the natural uncertainty set is given by %,.

PROPOSITION 5.4. Let a be an arbitrary positive number and, for each Q € N", [et
0, € R"™™ and Q, € R™*" satisfy

(5.11) 0=00,.
Then the function

(5.12) 2%(0)20QI 0+ ' S a?4,0,0TAT

i=1

bounds U, .
Proof. Note that

P 1/2 ) /2 ) T
i=1 i i

i=

IIA

p 0.12 _ p p
= 2 (%010t o' 3 02400747~ 3 ai4i0+Q47),
i=1 i i=1 i=1
which, since 247-; ¢?/a? < 1, yields (3.1) with Q(+) = Qs(+) and % = U,. O
We consider three specializations of Qs(-). Specifically, we set m = n and define

(5.13) 0:=0, O,=1,,

(5.14) 01=0,=0'?,

(5.15) O1=1,, 0=0.

COROLLARY 5.3. Let o be an arbitrary positive number. Then the functions

14

(5.16) Q(Q)2al,+a™' > a?4;0%47F,
i=1
14

(5.17) 0(Q)2aQ+a™' Y af4;04],
i=1

D

(5.18) Q(Q)2aQ?+a™ D a?4;4T
i=1

bound U, .

Remark 5.5. Note that the term A4;Q%47 appearing in Q4(-) also appears in Q4(*).
Furthermore, both Q4(-) and Q¢(+) involve a term proportional to I,,. Despite these
similarities, neither bound Q4(+) nor Q4(-) is an overbound for the other. Furthermore,
the term A;QA7 appears in both Q,(-) and Q4-(-). However, neither Q,(-) nor Q4-(+) is
an overbound for the other.

Remark 5.6. The bound Q,(-) given by (5.17) has the distinction that it is linear
in Q. This bound was originally studied in [27] for systems with multiplicative white
noise and was shown to yield robust stability and performance in [33] and [35]. A
similar bound was studied in [34].
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Remark 5.7. By using (5.11) additional bounds can be developed. For example,
by setting

(5.19) 0,=0'*, =0

Qs(-) becomes

p
(5.20) W(Q)=aQ*+a™' 3 aid,Q'?AT.

i=1
Remark 5.8. When p = 1 and « is replaced by aa;, 2;(+) becomes
Q5(Q)=a;[aQ+a™'4,04T].

A sum of such terms with «; = §; can be used to bound the smaller rectangular set %,.
Similar remarks apply to Q¢(-), Qs(+), and Qq(+).

5.3. Type III bounds. We now consider bounds that exploit the structure of AA4
itself. It turns out that these bounds permit consideration of an uncertainty set % that
is larger than %,. Specifically, define

(5.21) U3 A {AAER™ " AA=AL Ap, ALAT =M, AZAr =N},

where A7 € R"*"and A € R"*" are uncertain matrices, r is an arbitrary positive integer,
and M, N € N” are given uncertainty bounds. The bound Q,¢(-) for %3 is given by the
following result.

PROPOSITION 5.5. Let « be an arbitrary positive constant. Then the function

(5.22) Q(Q)2a™' M+ aQNQ

bounds U .
Proof. Note that

0=[a 24, —a'?QAR[a™ 24, — a'?Q4} )T
=o'A AT+ aQARARQ — [ALARQ+ Q(ALAR)T]
Sa'M+aQNQ—-(AAQ+ QAAT),

which yields (3.1) with Q(+) = Qio(-) and % = U;. O

Remark 5.9. The bound Q,(-) was developed in [29] for robust analysis and in-
dependently in [25] and [28] for robust full-state feedback. Applications to fixed-order
dynamic compensation are given in [36].

Remark 5.10. Without loss of generality we can set & = 1 in (5.22) by replacing M
and N by o' M and aN, respectively. Again for clarity we choose not to employ this
scaling.

Note that Qg(-) is of the form Q(-) with M = 2., a?4;4T and N = I,. Thus
Qg(+) also bounds %; for this choice of M and N. It turns out in this case that %, is
actually larger than %,. To see this consider the more general case in which M and
N satisfy

p
(5.23) > a?4;AT=M, I,=N.
i=1
In this case Q;0(-) is an overbound for Qg(-) and thus bounds %,. As in the case of Q3()
overbounding ©,(-), we should not be surprised to find that Q,0(-) with (5.23) actually
bounds a set that is larger than %, . Indeed, we now show that %, is actually a very special
subset of %; when M and N defining %, satisfy (5.23).
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PROPOSITION 5.6. If M and N satisfy (5.23) then U, is a subset of U . Hence Q ()
also bounds U, .

Proof. If AA€U,then AA = 27| 0;A;, where 27_ | 6?/a? =< 1. Alternatively, we
can write A4 = A; Ar, where r = pn and

(o1/ o)1,
(5.24) Ar=Tlon Ay - -apApl, Ag= : .

(Up/‘ap)ln

Note that with M and N satisfying (5.23) and 4; and Ay defined by (5.24), it follows
that 4, AT < Mand A%A4r < N. Thus AA4 € %U;. O
The following result provides further conditions under which Q,¢(-) bounds %,.
PROPOSITION 5.7. Suppose A; = D;E;, i =1, -+, p, where D; e R"*" and E; €
R™*" and suppose that

lIA

p p
(5.25) > aiD,DT=M, > ETE;=N.
i=1

i=1
Then U, is a subset of U5 and thus Q,o(+) also bounds U, .
Proof. The result follows as in the proof Proposition 5.6. O
Remark 5.11. Whenp =1, 4, = DE,, M = o?D,D¥, and N = ETE,, it is con-
venient to replace a by a«a; so that ©,o(-) becomes

(5.26) Q0(Q)=ar[a™' D\ D{ + aQE{E\Q].

In certain situations it is desirable to consider subsets of %3 of special structure. For
example, define

Uy {AAER™": AA=DyALAREy, | ALl =1, || ARl =1},

where Dy € R"*™ and E, € R"*” are known matrices denoting the structure of the
uncertainty, and 4; € R™*” and Az € R"*" are uncertain matrices [28]. Finer structure
can be included within %, by replacing DyMNE, by a sum of terms D;M;N;E;, where
D;, E; are known and M;, N; are uncertain [36]. Note, however, that even though %, is
a proper subset of %3, the form of the bound Q,((-) does not change. Thus such refinements
render the bound Q,(+) conservative with respect to %, since the /arger uncertainty set
%5 is actually being bounded.

6. Robust stability and performance via modified Lyapunov equations. We now
combine the principal results of §§ 3, 4, and 5 to obtain a series of conditions guaranteeing
robust stability and performance. In particular, we focus on bounds Q,, Q4, Q¢, Q7, and
Q0. For simplicity we shall frequently assume that V is positive definite so that (3.3) is
satisfied. In this case it follows that the solution Q of (3.2) is positive definite. Our first
result is a corollary of Theorem 3.1 with Q(:) = Q,(-) and % = %,.

THEOREM 6.1. Let VeP" §;, -+, 8,> 0, and suppose there exists Q € P" satisfying

14
(MLEI1) 0=AQ+QA™+ 3 5] 4,0+04] | +V.
i=1
Then A + AA is asymptotically stable for all AA € U, and
(6.1) Js(U,)=tr OR,
(6.2) Jp(%U 1) = Amax (OR).
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For the next result define

(6.3) AaéA+gI,,

and
2

(6'4) ’Yié&s l.=1, LD,
o

Setting Q(+) = Q4(+), Q(+), Q,(+) and % = U, yields the following corollary of Theo-
rem 3.1.

THEOREM 6.2. Let Ve P" «a, a4, -+, o > 0, and suppose there exists Q € P"
satisfying either
(MLE2) 0= 40+ 04T+ S vi( A0+ QA,-T)2+%I,1+ v,
i=1
(MLE3) 0=A4AQ+ 04T+ i vid;iQ*AT+al, +V,
i=1
or
(MLE4) 0=A4,0+04I+ é vi4;QAT+ V.

i=1

Then A + AA is asymptotically stable for all AA € U,, and
(65) Js(ollz)étr QR,

(6.6) Ip(WU2) = Nnax (OR).

Next we set Q(+) = Qo(+) and % = U;.
THEOREM 6.3. Let VeP", a>0, MeN", and NeN", and suppose there exists
Q € P" satisfying

(MLES) 0=A0+ QAT+ aQONQ+a M+ V.
Then A + AA is asymptotically stable for all AA € U, and
(6.7) Js(%U3)=1r OR,

(6.8) Ip(WU3) = Nnax (QR).

Remark 6.1. Note that (MLES5) is a Riccati equation. This is precisely the equation
studied in [29].

Additional sufficient conditions can be obtained by considering “mixed” bounds.
That is, we can construct modified Lyapunov equations by combining two or more
different bounds. Although mixed bounds will not be considered further in this paper,
we present one such result for illustrative purposes.

THEOREM 6.4. Let VeP” a, 8y, -+, 0,>0, M eN" and N € N", and suppose
there exists Q € P" satisfying

p
(MLEL, 5) 0=AQ+ QAT+ > 6;| 4,Q+ QAT | + aQNQ+a "M+ V.

i=1
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Then A + AA is asymptotically stable for all AA € U, + U5, and
(6.9) Js(01l1+all3)§tl‘ OR,
(6.10) Jp(%U\+%U3) = Anax (OR).

As noted previously, the bound A(-) can readily be constructed by replacing AA by
AAT in the definitions of Q,(-) through Q,o(+). Denote these bounds by A;(+) through
Ayo(+), respectively. For illustration we state the dual of Theorem 6.1 involving A,(-).
The dual versions of (MLE1)-(MLES5) will be denoted by (MLED1 )-(MLEDS).

THEOREM 6.5. Let ReP", 6y, -+ ,8,> 0, and suppose there exists P € P" satisfying

14
(MLED1) 0=ATP+PA+ 3 6;|ATP+ P4;| +R.
i=1
Then A + AA is asymptotically stable for all AA € U,, and
(6.11) Js(U,) =tr PV,
(6.12) Jp(U 1) = Nmax (PV).

It is reasonable to expect that the sufficient conditions given by Theorems 3.1 and
4.1 are generally different. For example, the modified Lyapunov equations and their
duals need not both possess a solution, while the bounds tr QR and tr PV need not be
equal. An exception is the case in which Q(-) = Q;(-) and A(+) = A;(-). Note that the
dual of (MLE4) is given by

p
(MLED4) 0=ATP+PA,+ D viATPA;+ V.
i=1

PROPOSITION 6.1. Let a, oy, -+ + , a, > O and assume there exist Q, P e N” satisfying
(MLE4) and (MLED4). Then

(6.13) tr QR=tr PV.
Proof. Note that

D
tr OR = —tr Q(A§P+ PA+ S 7,-A,-TPA,~)

i=1
p
=—tr P(AaQ+ A+ 3 ‘YiAiQAiT)
i=1
=tr PV. O
Remark 6.2. By setting Q(-) = Q,() and A(+) = A,(-) it follows from (4.14) that

(614) tr Qo(aP+ 5: ’Y,A,TPA,)ZU' P()(OZQ+ i ‘y,A,QA,T)

i=1 i=1

7. Existence, uniqueness, and monotonicity of solutions to the modified Lyapunov
equations. It is important to stress that the sufficient conditions for robustness given by
Theorems 6.1-6.5 assume only that there exist nonnegative-definite solutions Q, P sat-
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isfying the modified Lyapunov equations. Indeed, no explicit assumptions on the problem
data 4, V, R, and % were utilized for assuring robust stability and performance. In
applying Theorems 6.1-6.5 to specific problems it thus suffices to show that a nonnegative-
definite solution Q exists in order to obtain robust stability, while, for robust performance,
the bounds (6.1), (6.2), (6.5)-(6.8) require explicit knowledge of Q. Thus, any com-
putational method that yields a nonnegative-definite solution will suffice to guarantee
both robust stability and performance.

Before considering the numerical solution of the modified Lyapunov equations,
several relevant issues require discussion. For example, before seeking to compute solutions
to (MLEI1)-(MLES) it would be desirable to determine a priori whether these equations
actually possess nonnegative-definite solutions. For example, it may be useful to obtain
sufficient and/ or necessary conditions for the existence of nonnegative-definite solutions.
Thus, if the sufficient conditions are satisfied then existence (and hence robustness) is
assured, whereas if the necessary conditions are not satisfied then existence is ruled out.
If, on the other hand, either the sufficient conditions are not satisfied or the necessary
conditions are satisfied, then nothing can be surmised. Finally, such conditions need to
be easily verifiable and reasonably nonconservative since otherwise it would be more
prudent to attempt to numerically solve the modified Lyapunov equations themselves.

It is quite possible that at least some of the modified Lyapunov equations possess
multiple nonnegative-definite solutions. In this case we may seek the minimal solution
(i.e., the smallest with respect to the nonnegative-definite matrix ordering) to minimize
the performance bounds. If multiple solutions exist, none of which is minimal, then the
best bound would depend on the matrix R.

Since the matrix Q determines the performance bound, it is reasonable to expect Q
to be monotonic in % . That is, if % decreases in size, then the solution Q is more likely
to exist while decreasing in the nonnegative-definite matrix ordering. For example,
consider %', characterized by 6}, where 6; = 6;,, i = 1, - -+, p. Then we might expect
Q' = Q, where Q' is the solution to (MLE1 ) with §; replaced by é;. Finally, monotonicity
with respect to V' should also be expected. Because of linearity, the analysis of bound
Q,(-) is simplest and it is possible to obtain necessary and sufficient conditions for the
existence of solutions to (MLE4). The basic tool required is the Kronecker matrix algebra
[42]. For convenience, define

14
(7.1) ',Q{—QAO,@A“'F 2 ‘)/iAi@Ai,

i=1

where ® denotes the Kronecker product and 4, ® 4,24, ® I, + I, ® A, is the Kro-
necker sum.

PROPOSITION 7.1. If V € N" and of is asymptotically stable, then there exists a
unique Q € R"*" satisfying (MLE4), and Q = 0. Conversely, if for all V e N" there exists
0 = 0 satisfying (MLEA4), then £ is asymptotically stable.

Proof. Since (MLE4) is equivalent to

(7.2) QO=-vec ! [ vec V],

existence and uniqueness hold. Here, vec and vec™ denote the column-stacking operation
[42] and its inverse. To prove that Q is nonnegative definite, we rewrite (7.2) as

(7.3) Q=J:o vec ! [e” vec V] dt
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and show that the integrand is nonnegative-definite for all # € [0, c0). (Note that the
following argument for fixed ¢ = 0 does not require that </ be stable.) Using the exponential
product formula, ! the exponential in (7.3) can be written as

1 1 p k

(7.4) e”'= lim [exp [%(Aa(DAa)t] exp [% D 7,»(A,~®A,)t” .
> i=1
For convenience, let S and N be r X r matrices with N = 0. Since (see [42])
(7.5) vec ' [(S®S) vec N]=SNST=0
and
(7.6) (S®S)k=5k® sk,
it follows that
(7.7) vec™' [e5®Svec N]= 3 (k!)'SKNST =z 0.
k=0

Furthermore,
(7.8) vec ! [e59% vec N]=vec™" [(5® e5) vec N]=eSNeS = 0.

Applying (7.7) and (7.8) alternately with (7.4) and using induction on k, it follows that
the integrand of (7.3) is nonnegative definite. To prove the converse, note that it follows
from (MLE4) that Q satisfies

t

(7.9) Q=vec ' [e” vec Q]+J; vec ™! [e”* vec V] ds, t€[0,0).
Since the integral term on the right-hand side of (7.9) is nonnegative definite, is bounded
from above by Q, and Ve N"is arbitrary, it follows that .o/ is asymptotically stable. O

We now show that if .o/ is asymptotically stable then actually A4, (and thus 4) is
asymptotically stable. This shows that the assumption that .o/ is asymptotically stable is
consistent with the original hypothesis that 4 is asymptotically stable.

PROPOSITION 7.2. Assume < is asymptotically stable, let ;€ [0, a;],i=1, - -+
p, and define

b

P2
A'BADA+ D (—’—)A,@Ai.

=1\ &

Then o' is also asymptotically stable. In particular, A, and A are asymptotically stable.
Proof. Let Ve N"be arbitrary and let Q be the unique, nonnegative-definite solution
of (MLE4). Equivalently, Q satisfies

p 12
0=4,0+047+ > (5’—)A,~QA?+ v,
i=1\ &

where

D
V'a S a N a?—a?)4;,04T+ V.

i=1

! The exponential product formula is essential to the proof here since (1) A, ® A4, cannot be expressed as
a Kronecker product S ® S, and (2) 4, ® 4, and T, v:4; ® 4; do not generally commute.
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Since V' € N", the stability of /' now follows as in the proof of the converse of Proposition
7.1. Finally, if V is chosen to be positive definite then 27_, (a/?/a)4;047 + V' is also
positive definite and it follows from Lemma 12.2 of [39] that 4, and hence A4, is asymp-
totically stable. O

Hence it follows from Proposition 7.2 that a necessary condition for o/ to be asymp-
totically stable is that

(7.10) a<2 max Re)\(A4).
i=1,-,n

We now have the following monotonicity result.

PROPOSITION 7.3. Let U5 < U,, where U is defined as in (5.7) with o; replaced
by aj € [0, a;], i = 1, -+, p. Furthermore, let V € P", assume &/ is asymptotically
stable, and let Q € P" satisfy (MLEA4). Then there exists Q' € P" satisfying

(7.11) 0=4,0'+Q'4T+ f: (%)A,Q'A,T+ v,
i=1

and, furthermore,

(7.12) Q'=0Q.

Consequently,

(7.13) tr Q'R=tr QR,

(7.14) Amax (Q'R) = Amax (OR).

Proof. Subtracting (7.11) from (MLE4) yields

P 12
0=4.0-0)+(Q-@)+ 2 (% |ac0-@1a7+v"
i=1

where V' is defined in the proof of Proposition 7.2. Since, by the converse portion of
Proposition 7.1, /' is asymptotically stable, Q — Q' = 0, which yields (7.12) and thus
(7.13) and (7.14). 0

Returning now to the existence question, Proposition 7.1 shows that a solution to
(MLE4) exists so long as «;, - * - , a, are sufficiently small such that &/ remains asymp-
totically stable for some o > 0. To this end we can treat this as a stability perturbation
problem and apply results from [3]. Within our modified Lyapunov equation approach
we have the following related result. For this and the following result let | - || denote an
arbitrary vector norm on R”* and the corresponding induced matrix norm.

PROPOSITION 7.4. If

P
(7.15) “ (A@A)_'(ozl,,z-l-ofl D a,zAi@A,-) “ <1,
i=1

then for all V e N" there exists Q € N” satisfying (MLE4) and hence of is asymptotically
stable.
Proof. Define { Oy} ¥~ o where Qy satisfies (3.14) and Oy . | satisfies

0=AQk+1+ Ok 1 AT+ (Q)+ V.
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Note that O, 2 0, k=1, 2, - - - . Hence it follows that

vec Qx4+ —vec Qx=—(A®A) ™' [vec Q;(Qx) — vec Q1(Qk-1)]
and thus

V4
Ivec O s —vee Q4 = || (A@A>—‘(a1,,z+a-* » a%Ai®A,~) Ivec O~ vee Qr_1 .

i=1

Using (7.15) it follows that Q A limy., ., Ok exists. Thus Q = 0 and satisfies (MLE4).
Finally, by the converse of Proposition 7.1, </ is asymptotically stable. O

Since (MLES5) is nonlinear, a slightly different approach is required for existence.
For the following result let x, 3 > 0 satisfy

(7.16) le|=ke™®,  tz0,

where || - || denotes an arbitrary submultiplicative matrix norm that is monotonic on N”,
and define p 2 28/«>.
PROPOSITION 7.5. Suppose V € N" and

(7.17) da|Nllla "M+ V| <p?

Then there exists Q € N" satisfying (MLES5).
Proof. Consider the sequence {Qi}¥-o where Q, satisfies (3.14) and Q4 is
given by

O=AQk+|+Qk+1AT+anNQk+a"M+ V.

Clearly, 0,20, k=0, 1, - - - . Next we have

(7.18) Qk+,=f e aQENQi+ a ' M+ V]eAT’ dt,
o

which yields

(7.19) 10k+ il =ap  INIIQkI*+ o7 o™ M+ V.

Similarly, from (3.14) we obtain
1ol = IVI=p~tla™'M+VI.
Now suppose that
10kl =2p7 la™ M+ V]
Then (7.17) and (7.19) imply
1Qk+ il Sap INI20  la™ M+ VI +p o™ M+ V|
<2 MatM+V|.
Thus Okl £ 207 a™'M+ V|,k=0, 1, - - . Next, (7.18) yields

Ok+1 —Qk=6¥f0 e[ QNQ— Q- | NQy -, Je*™ dt

=aJ(‘)°° e[ QuN(Qk— Q= 1) +(Qx— Q- 1)NQy— 1 1™ dt
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and thus

10k 1= Ol = ap™ NI Qill + 11 Q=1 N1 Q= Q-1 |
<4ap Nl M+ V1 Qk— Q-1

Sell Q= Qr 1,

where ¢ 2 4ap 2| N||le "M + V||. Since by (7.17) e < 1, lim _. ., O exists, is nonnegative
definite, and satisfies (MLES). O

8. Additional upper bounds via recursive substitution. In this section we obtain
additional upper bounds for Js(% ) and Jp(% ) by utilizing a recursive substitution tech-
nique. The main idea involves rewriting (2.7) as

(8.1) Qsa=—vec™ {(A®A) " (AA® AA) vec Quy} + Do

and substituting this expression into the terms A4AQx, + QasAAT appearing in (2.7).
This technique yields an equation that is, as expected, equivalent to (2.7) but that permits
the development of additional bounds. As will be seen, the ability to develop new bounds
exploits the fact that the substitution technique leads to terms that are quadratic in AA.
We begin the development with the following technical result that does not require that
A be asymptotically stable.

PROPOSITION 8.1. Suppose A ® A is invertible and let AA € R"*". If Q4 satisfies
(2.7), then Qu 4 also satisfies

0=AQ0ss+QusAT—vec ' [(AADAAYADA) (AA® AA) vec Qs
+(AADAA)(AB®A)  vec V]+ V.
Conversely, if Qa4 satisfies (8.2) and (A — AA) ® (4 — AA) is invertible, then Q4 also
satisfies (2.7).
Proof. To obtain (8.2) substitute (8.1) into (2.7) as noted above. Conversely, adding

the zero term (A4 ® AA)(A® A) ' (A ® A) vec Qps — (AA D AA) vec Qpqt0 (8.2),
it follows that (8.2) can be written as

(8.2)

0=[(A—AA)O(A—AA)NABA) ' [(A+AA)D(A+ AA) vec Qp s+ vec V],

which, under the invertibility assumption, implies that Q, 4 satisfies (2.7). O

The following result is analogous to Theorem 3.1. We shall say that % is symmetric
if A4 € % implies —AA € %U.

THEOREM 8.1. Suppose U is symmetric, let Qy € N" satisfy

(8.3) AAQy+ QpAAT=Qy, AAdeuU,
where Qo satisfies (3.14), let Q : N* — N” satisfy
(8.4)
—vec™ [(AA®AA)A®A) (AA® AA) vec Q] =NQ), Ade¥U, QeN*,
and suppose there exists Q € N" satisfying
(8.5) 0=A0+0A47+ Q)+ Q0+ V.
Then
(8.6) (A+ AA,D)isstabilizable, AA€U,
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if and only if

(8.7) A+ AA is asymptotically stable, AAeU.
In this case,

(8.8) Qs4=0, AAdeu,

where Qx4 satisfies (2.7), and

(8.9) Js(U)=tr QR,

(8.10) Jp(U) = Anax (OR).

Proof. The equivalence of (8.6) and (8.7) follows from (8.5) as in the proof of
Theorem 3.1. Next (8.8) follows by comparing (8.5) and (8.2) while using (8.3) and
(8.4). Since % is assumed to be symmetric, it follows from (8.7) that 4 — A4 is asymp-
totically stable, A4 € %, and hence (4 — AA) ® (4 — AA) is invertible, A4 € %. Thus,
the converse portion of Proposition 8.1 implies that Q, 4 satisfying (8.2) also satisfies
(2.7). Thus, the bound (8.8) can be used to obtain (8.9) and (8.10). O

The principal difference between (8.4) and (3.1) is that AA appears linearly in
(3.1), whereas it appears quadratically in (8.4). By exploiting this structure we can
obtain new bounds for Qs ,4. To simplify matters, we now consider the bound in (8.4)
in two special cases. In the first case we set % = %, and p =1 so that A4 = 5,4,,
|oy| = 6,. In this case (8.4) becomes

(8.11)
—o3vec! [(4,0A4,)(A®A)71(4,®4;) vec Q]=X(Q), o | £6;, QeN™

One choice of () that immediately suggests itself can be obtained by defining the matrix
function |- |+ on the set of symmetric matrices by

(8.12) |S1+23(S+(SD),

which effectively replaces the negative eigenvalues of S by zeros. We shall thus utilize
the fact that

(8.13) o1§=61Sl.,  lal =4,

for all symmetric S.
COROLLARY 8.1. Let VeP", % =4%U,,p = 1, let Qo € N" satisfy (8.3), and suppose
there exists Q € N" satisfying

(8.14) 0=AQ+QAT+83|-vec ' [(4,®4,)(ADA) ' (A4,®4;) vec Q]|+ + Qo+ V.

Then (8.7)-(8.10) are satisfied.
For the next specialization we shall assume that

(8.15) (AA)A=A(AA), AAdeu,

which holds, for example, for modal systems with frequency uncertainty (see § 10). It
thus follows that (4 ® 4)"1(A4 ® AA4) = (A4 ® AA)(A ® A)~! and thus (8.4) can
be rewritten as

(8.16) AA’Q+2AA0AAT+0AAT=Q), AAde@U, QeN”,
where O € N” satisfies

(8.17) 0=40+047+0Q.
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Assuming in addition to (8.15) that A4 = ¢,4,, |o,| = 6;, (8.14) becomes
(8.18) 0=AQ+ QA7+ 6}| A30+24,04T+ 0437 |, + Qo+ V.

Remark 8.1. 1t is interesting to note that the left-hand side of (8.16) is of the same
form as Q,(-). Specifically, the term A4%Q + QAA*" is analogous to 47Q + 04"
whereas 2AAQAAT is similar to 4,QAT.

9. An alternative approach yielding upper and lower bounds. In this section we
develop a variation on the results of § 3 that has the additional benefit of yielding both
upper and lower performance bounds. The basic approach was suggested by results ob-
tained in [44]. To simplify the presentation we assume as in the preceding section that
 is symmetric. This symmetry assumption of course holds for all of the uncertainty
sets considered in previous sections. The underlying idea involves bounding the deviation
of Qx4 from Q, rather than bounding Q, 4 directly.

THEOREM 9.1. Let Qy € N” satisfy

(9.1) AAQy+ QoAAT=Q,, AAeU,

let Q:N" — N" be such that (3.1) is satisfied, and suppose there exists A2 € N”" satisfying

9.2) 0=AA2+A24T+QA2)+ Qo.

Then

(9.3) (A+ AA,QY?)isstabilizable, AA€U,

if and only if

(9.4) A+ AAisasymptotically stable, AA€U.

In this case,

(9.5) Qo—A2=0,a=0Qp+ A2, AA€U,

where Qa4 is given by (2.7), and

(9.6) tr(Qo+A2)R=Js(U)Str (Qo+ A2)R,

(9.7) Amax [(Qo—~ AZ2)R]= Jp(U) = Anax [(Qo + A2)R].
Proof. Define

(9.8) AQ2Qna— 0o

and subtract (3.14) from (2.7) to obtain

9.9) 0=(A4+AA)AQ+AQ(A+AA)T+AAQy+ QpAAT.

Now rewrite (9.2) as
(9.10) 0=(A4+AA)A2+A2(A+AA)T+QUA2)—(AAA2+ A2AAT)+ Q.

Using (9.10), the equivalence of (9.3) and (9.4 ) is immediate as in the proof of Theorem
3.1. Next, subtracting (9.9) from (9.10) yields

0=(A+AA4)(A2—-AQ)+(A2—-AQ)(A+AA)T+Q(A2)
—(AAA2+ A2AAT)+Qy— (AAQy+ QoAAT).
Using (3.1) and (9.1) it follows from (9.11) that
A2—-AQ=0,

(9.11)
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or, equivalently,

(9.12) Oaa=Qp+A2.

To obtain the lower bound rewrite (9.9) as

(9.13) 0=(A+AA4)(—AQ)+(—AQ)(A+AA)—(AAQy+ QoAAT).

Also, note that because of the assumed symmetry of %, (9.1) holds with A4 appearing
in the inequality replaced by —AA. Hence it can be shown similarly that

A2+ AQ=0,
or, equivalently,

(9.14) Qo—A2=Qpa4.-

Finally, (9.6) and (9.7) follow from (9.5). O
Remark 9.1. To compare the upper bound in (9.5) with (3.5), rewrite (9.2) as

(9.15) 0=A(Qo+A2)+(Qp+A2)AT+UA2)+ Qo+ V.

IfQUAZ2) + Qo = UQp + A2) then (9.15) has the same form as (3.2) and thus the two
upper bounds are identical. This will be the case, for example, if Q(+) = Q,(+) and Qg is
chosen to be Q,(Qy) since Q,(-) is linear. If, however, Q(AZ2) + Qp < U Qp + A2) then
the upper bound in (9.5) will be sharper. In any case it is clear that the individual
treatment of A2 and Q, yields potentially new upper bounds.

Remark 9.2. Theorem 9.1 does not guarantee that the lower bound Q, — A2 for
Qa4 1s nonnegative definite. However, Qa4 is always nonnegative definite and thus the
lower bound in (9.5) may be of limited usefulness. Nevertheless, if Qy — A2 is indefinite
then, depending on R, the lower bounds in (9.6) and (9.7) may still be positive and thus
be meaningful lower bounds.

10. Analytical examples. In this section we consider simple analytical examples
that illustrate the principal results of the paper. These examples also provide insight into
the individual characteristics of different bounds as a prelude to numerical examples
considered in the following section.

To begin we consider the simplest possible example. Set n =1, 4 <0, R> 0,
V>0,4,=1,and % = {AA: |AA| = 6,}. For 6; < —A, Qaa = V/2(| 4] — AA)
and Jg(%) = Jp(%)= RV/2(| A| — &,), where this worst-case performance is achieved
for AA = 6,. Solving (MLE1) yields Q = V/2(| A| — é,), which is a nonconservative
result for both robust stability and performance. The same result is obtained from
(MLE4) by setting a = a; = 8;. To apply (MLES), set 8, = VMN. Choosing a =
28,(| A| — 6;) NV again yields the nonconservative result. Finally, the same result follows
from Theorem 8.1.

For the second example we consider nondestabilizing uncertainty in the imaginary
component of an uncertain eigenvalue, i.e., frequency uncertainty, in contrast to uncer-
tainty in the real part considered in the previous example. Let n = 2,

A=[_V w]’ v>0, w=0,
—p

—w

V=R=5L,and % = {AA: AA = 0,4;, |o1| = 6,}, where

)

4
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Obviously, 4 + AA remains asymptotically stable for all values of o, since AA affects
only the imaginary part of the poles of A4. The question then is whether the robustness
tests are able to guarantee this robustness. Note also that because of the choice of ¥,
Oaa = Qo = (2v)"'I, for all A4 € %. For this example we note that (MLE1 ) is satisfied
by Q = (2v)"'I,, which is independent of 6,. Thus (MLE1) possesses a nonnegative-
definite solution for all 6, > 0, which shows that (MLE1) is nonconservative with respect
to robust stability and performance. Since 4(AA) = (AA)A, it can also be seen that the
same result holds for (8.18). The situation is considerably different for (MLE4) and
(MLES). To analyze (MLE4) note that & has an eigenvalue —2» + « + §,. (This can
be shown by diagonalizing 4 and 4, and thus «.) Since, by Proposition 7.1, .&/ must be
asymptotically stable, we require 6; < 2». This is, of course, an extremely conservative
result, especially when the damping v is small. For (MLES) we can factor A, = D, E|.
Thus, let D; = I, and E; = A4, and define M = 631, and N = I,. Assuming that Q is a
multiple of I, it follows that Q is nonnegative definite only if 6; = », which is again an
extremely conservative result. The reason for this conservatism becomes clear by noting
that M and N as given above will also serve as bounds for perturbations of the form o, 1,
for which the range of nondestabilizing o, is | o;| < 8,. This will also be the case for all
factorizations D, E, of 4, since D; DT and ETE, must be positive definite and thus will
also serve as bounds for destabilizing perturbations such as ¢ /I,.

Finally, we consider a nondestabilizing uncertainty affecting the interaction of a pair
of real poles. Letn =2, A = -5, V=R=DL,and % = {AAd: A4 = 01 4,, | 01| = b},

where
0 1
A1= .
o of

Obviously, 4 + AA remains asymptotically stable for all values of o, since A4 does not
affect the nominal poles. Note that

0 _[U%/‘H'% 01/4]
Ve

o/4 %

and Jg(%) = 167 + 1, where this worst-case performance is achieved for ¢, = ;. In this
case (MLE1) has the solution Q = (2 — §,)"'I,, which is valid only for §; < 2, an
extremely conservative robust stability result. Furthermore, the corresponding perfor-

mance bound tr QR = 2(2 — §;) ! is conservative with respect to the actual worst-case
performance 482 + 1. In contrast, (MLE4) has the solution

_ (2—ad) " +a 6 (2—ad)? 0

Q 0 2—ad)™')

which is nonnegative definite for all §, so long as a < 2/6,. Hence (MLE4) is noncon-
servative with respect to robust stability. For robust performance,

trQR=2(2—ad;) '+ a7 16;(2—ad;)

which can be shown to be an upper bound for 167 + 1. Choosing, for example, o =
67! yields tr QR = 83 + 2. The parameter « can also be chosen to minimize tr QR,
although this is somewhat tedious to carry out analytically. Finally, (MLES5) has
the solution

C[H1+a7s)) 0

¢ 0 [1—(1—ab))'"?)/ab, |’
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which exists so long as o = 1/6,. Hence (MLES5) is also nonconservative with respect
to robust stability. Choosing a = 1/, yields tr QR = 4? + 3, which lies above the
nonconservative bound 467 + 1. Again, « can be chosen to minimize tr QR.

11. Numerical examples. In this section we consider additional examples illustrating
the results developed in earlier sections. In contrast to the analytical examples considered
in § 10, however, we consider more complex examples by numerically solving the modified
Lyapunov equations. Here we focus on (MLE4) and (MLES), which are the easiest to
solve numerically. Specifically, we solved (MLE4) by using the representation (7.2)
(although this may not be practical when # is large), and we solved (MLES5) by means
of a standard Riccati package. To simplify matters we consider only uncertainties A4 of
the form o,4;. Evaluation and presentation of robust stability and performance results
for multiparameter uncertainty can be fairly complex and thus are deferred to a future
numerical study.

Since both robustness tests (MLE4) and (MLES5) depend on an arbitrary positive
constant q, it is desirable to determine the value of « that yields the tightest (i.e., lowest)
performance bound for each robust stability range. To this end we performed a simple
one-dimensional search to determine the best such «a. Although analytical techniques
may assist in determining optimal values of a« more efficiently, the search technique
proved to be adequate for the examples considered here.

As a first example we consider the control system given in [1] to demonstrate the
lack of a guaranteed gain margin for LQG controllers. Hence consider

(11.1) Xo(t) = Aoxo(t)+ Bou(t)+ wy (1),
(11.2) (1) = Coxo(t) +wa(t),

with controller

(11.3) X ()= Acxc(2) + Bey(1),

(11.4) u(t) = Cex(1),

and performance

(11.5) J=tlir12° E[x§ ()R xo(t) +uT () Ryu(t)].
The data are

1 1 0
A0=[ ]5 Boz[l], C0=[1 O]’

11

, Va=Ry=1,
1 l] 2= Ry

where V|, and V, are the intensities of w;(¢) and w,(¢), respectively. Uncertainty AB,
in By is thus represented by o, B, where B, = [0 1]7. Thus the closed-loop system corre-

sponds to
A B,C, 0 B,C,
A = 0 0%-¢ , Al - 1 ,
B.Cy, A, 0 0

r|Ri O L
0o o) 0 BJV,BT|
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where the zero in the (2, 2) block of R denotes the fact that we are considering the robust
performance bound for the state regulation cost only. Choosing p = 60, it follows that
the LQG gains are given by

A= 2 1 p=[" C,=[-10 —10]
“l-20 -9 7 [ '

For this controller the actual stability region corresponds to o, € (—.07, .01) so that the
largest symmetric region about o, = 0 is |g;| < .01. The worst-case performance over
each stability region |o,| < 8, is denoted by the solid line in Fig. 1, whereas the perfor-
mance bounds obtained from (MLE4) and (MLES5) are shown for several values of §;.
For (MLES) we set D; = [0 1 0 0] and E, = [0 0 C.]. Note that (MLES) yields
considerably tighter estimates of worst-case performance, particularly as 8, approaches
.01. For (MLE4) optimal values of a were in the range .0012 to .0058, whereas for
(MLES5) (with Q9/(+), see (5.26)) o« was in the range .0143 to .0020.

As a second example we consider a pair of nominally uncoupled oscillators with
uncertain coupling. This example was considered in [45] using the majorant Lyapunov
technique. Let

-V W 0 0 0 0 10
|- —v 0 0 _10 0 0 1

A=V 0 0 = w|> AT|1 00 0
0 0 —w =-v 01 0O

v=.2, w;=.2, w=18 R=V=I,,
and, for (MLES), define D, = A, and E, = I,. We consider bounds on Js(%) only.

r
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Figure 2 illustrates the exact worst-case performance along with performance bounds
obtained from (MLE4) and (MLES5). For (MLE4) optimal values of « ranged from .036
to .141, whereas for (MLES) optimal « was between .361 and .096. Although (MLE4)
was slightly less conservative than (MLES5), both bounds were able to guarantee robust
stability only for 6, = .15, whereas the largest stability region is actually 6, = .54. It is
interesting to contrast this result with [45] where the majorant Lyapunov technique
yielded a robust stability range of 6; = .4 for a richer class of off-diagonal blocks having
maximum singular value less than ;.

12. Conclusion. A variety of quadratic Lyapunov bounds have been developed for
both robust stability and performance. It seems clear, however, that no single quadratic
Lyapunov bound is superior to the others. Although the conservatism of each bound is
problem dependent, it is desirable to better understand the nature of the conservatism
in order to utilize the bounds in an effective manner. In addition, the issue of necessity
remains to be addressed. That is, if a system is robustly quadratically stable (i.e., robustly
stable with a corresponding Lyapunov function), then is such a Lyapunov function
necessarily given by one of the modified Lyapunov equations given in this paper? Fur-
thermore, a better understanding is needed of the gap between robust stability and robust
quadratic stability.

Acknowledgment. We thank A. W. Daubendiek for producing the numerical results
in§ 11.

Note added in proof. (1) The assumption x(0) = 0 in (2.2) is stronger than necessary
for the treatment of (2.4). If x(0) # 0, then Lemma 2.1 remains unchanged since the
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effect of x(0) vanishes as t = oo. If, however, x(0) = 0, then Q,4(¢) is increasing on
[0, c0) and (2.4) is equivalent to

Js(U)= sup sup E{[y(0)l3}=0ps.
Ade¥ te[0,00)

For Jp(), x(0) = 0 is essential since || y(+)]l».2 involves the supremum over [0, o).
If x(0) # 0, then the analysis can possibly be redone by considering the supremum over
[t, c0) and letting ¢ = oo to eliminate the effect of the initial condition.

(2) A relationship between the linear bound Q;( - ) and the quadratic bound Q¢(*)
can be seen as follows. If A4 = 614,, | 0| = 6;, then factor A4 = A; Ag as in % according
toA;, = 0,4,0"?and Ag = Q7' with bounds M = 634,047 and N = Q~'. The unusual
feature here is that the “splitting” of A4 is Q-dependent. Then, by (5.22),

Qo(Q)=a7'614,041 +aQ,
which has the form of Qs(Q).
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