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Robust Static and  Dynamic Output-Feedback 
Stabilization: Deterministic and Stochastic 

Perspectives 

Abstmet-Three parallel gaps  in robust feedback control theory are 
examined: sufficiency versus necessity, deterministic versus stochastic 
uncertainty modeling, and stability versus performance. Deterministic 
and stochastic output-feedback control problems are considered with 
both static and dynamic controllers. The static and dynamic robust 
stabilization problems involve deterministically modeled bounded but 
unknown measurable time-varying parameter variations, while the static 
and dynamic stochastic optimal control problems feature state-, control-, 
and measurement-dependent white noise. General sufficiency  conditions 
for the deterministic problems are obtained using Lyapunov’s direct 
method, while necessary conditions  for the stochastic problems are 
derived as a  consequence  of minimizing a quadratic performance 
criterion. The sufficiency tests are then applied to the necessary 
conditions  to determine when solutions  of the stochastic  optimization 
problems also  solve the deterministic robust stability problems. As an 
additional application of the deterministic result, the modified Riccati 
equation approach of Petersen and Hollot  is generalized in the static case 
and extended to dynamic  compensation. 

I. INTRODUCTION 

T HE gain and phase margins of full-state-feedback LQ 
regulators are well known [I],  [2]. Although dynamic 

output-feedback LQG controllers lack such margins [3], consider- 
able effort has been devoted to recovering the full-state-feedback 
properties [4]-[6]. A crucial point discussed in [7]-[9] is  that 
such margins may  be meaningless for guaranteeing robustness 
with respect to arbitrary plant parameter variations. This was 
demonstrated by means of a simple example in [7]. In addition. as 
is  well known, the use of singular value bounds to characterize 
plant uncertainty contributes directly to conservatism with respect 
to real-valued structured parameter variations. 

For the parametric-uncertainty stability robustness problem, 
there exists a considerable body of literature (see. e.g.. [lo]- 
[E]). These results often rely upon Lyapunov’s direct method and 
thus are usually in the form of sufficient conditions. Two factors 
are often lacking, however: a measure of performance beyond 
stability and design considerations involving controller effort.’ 

Performance and controller effort are, of course. the natural 
domain of stochastic optimal control via the cost criterion. In 
addition, parameter uncertainties can be directly incorporated into 
the stochastic model by means of multiplicative white noise [26]- 
[40]. Heuristically speaking, the performance of a quadratically 
optimal feedback controller designed in the presence of such 
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multiplicative disturbances is desensitized to actual constant or 
time-varying parameter variations. It should be emphasized that 
the white noise parameter-uncertainty model is not interpreted 
literally as a physical model. Rather, the multiplicative noise 
model serves as  a device which captures the effect of parameter 
uncertainty on the second-moment matrix, and hence on the 
closed-loop performance. From  a practical point of view, the 
multiplicative white noise  model  is extremely tractable since the 
second-moment equation is closed and the optimal feedback gains 
can  be given explicitly by closed-form expressions involving 
solutions of algebraic equations. For example, the necessary 
conditions derived in [40] for quadratically optimal steady-state 
fixed-order (i.e., reduced-order) dynamic compensation in the 
presence of state-, control-, and measurement-dependent white 
noise involve a coupled system of two modified algebraic Riccati 
equations and two modified algebraic Lyapunov equations. The 
coupling is due to both the optimal projection, which enforces the 
fixed-order constraint [41], and the multiplicative white noise 
terms. Unfortunately, however, stochastic optimal control is 
predicated upon stability of the second moment of the state [42]- 
[47], which  may be weaker than deterministic robust asymptotic 
stability. As a matter of fact, it has been shown, rather 
surprisingly, that a nominally unstable system can be rendered 
stochastically stable by multiplicative white noise interpreted in 
the sense of Stratonovich without actually applying feedback 
control [48].’ Hence, there is no prior guarantee that a second- 
moment stable optimal controller predicated upon a multiplicative 
white  noise model will provide deterministic robust or even 
nominal asymptotic stability. 

Three parallel gaps can thus be perceived between the above 
approaches: sufficiency versus necessity. deterministic versus 
stochastic uncertainty modeling, and stability versus perform- 
ance. In attempting to bridge these gaps we ask the following 
question: When is the solution to a stochastic optimal control 
problem also the solution to a deterministic robust stabilization 
problem? In the present paper we show  that our necessary 
conditions for stochastic optimality become sufficient conditions 
for deterministic robustness when  we include an exponential 
weighting factor in the quadratic cost criterion. As shown in [49], 
the weighting factor eZal leads to replacement of the closed-loop 
dynamics matrices 

A + B K C ,  [ A Bee] 
BCC A‘ 

for static and dynamic controllers, respectively, by the shifted 
dynamics matrices 

When there are no parametric plant uncertainties, a right shift (a 

This phenomenon does not occur,  however, w,ith the Ito interpretation. 
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> 0) yields a prescribed stability margin, i.e., all closed-loop 
poles having real part less than -CY. Unfortunately, a right shift 
alone does not appear to provide guaranteed stability robustness 
levels with respect to arbitrary plant variations. Since multiplica- 
tive white noise also does not ensure robustness, the present 
paper goes beyond previous work by employing the right shift 
in conjunction with multiplicative white noise to guarantee 
robust stability over a specified range of deterministicparame- 
ter variations. In particular, we consider perturbations of A ,  B ,  
and C of the form 

P P P 
A + a i ( t )A i ,   B+   ~ i ( t )B i ,  C+ ai(t)Ci, 

i =  I i =  1 i =  I 

where Ai,  Bi, and Ci denote the pattern of parametric uncertainty 
in A ,  B,  and C and ai( .) are real-valued Lebesgue measurable 
functions satisfying 

I u i ( t ) l r S i ,  i = l ,  - - . , p .  ( 1 . 1 )  

In this formulation the patterns Ai ,  Bi, and Ci are assumed to be 
known while the deterministically modeled uncertain parameters 
q( - )  are known except for the bounds (1.1). Our principal result 
for both static and dynamic controllers states that a solution of the 
necessary conditions for stochastic optimal control with exponen- 
tial weighting and multiplicative white noise provides guaranteed 
robust asymptotic stability for parametric variations satisfying 
( 1 . 1 )  as long as 

where a is the right shift and y i  is the intensity of the noise ui(t) 
multiplying A i ,  Bi, and Ci in  the multiplicative white noise 
formulation of the stochastic optimal control problem. Clearly, 
the rectangular robust stability region [ - Si ,  Si] X . . * X [ - Sp, 
~ 5 ~ 1  in p-dimensional parameter space can be enlarged by 
increasing either CY or yI ,  * e ,  yp. Note that for given values of a,  
yI , * * * , yp (1.2) does not define a unique robustness region when 
p > 1. The robust stability guarantee holds, however, for 
simultaneous parameter Variations u l ( * ) ,  . . e ,  op(*) within each 
region satisfying (1.2). 

The above result is based upon the observation that second- 
moment stability of a stochastic system with multiplicative 
disturbances and right-shifted mean dynamics induces a Lyapunov 
function which guarantees robust stability of a deterministic 
system subject to time-varying parameter variations. This obser- 
vation, which appears to have been previously overlooked in the 
literature, day  be utilized in the context of robustness analysis for 
linear uncertain systems. In the present paper this result is 
developed within the context of robust controller synthesis to 
achieve a unified approach to robust, fixed-order controller design 
consistent with [41]. 

The derivation of our results is quite simple and is based upon 
the standard quadratic Lyapunov function 

where P is given by the modified Lyapunov equation 

P 
O=ATP+PA+~~P+C y i ~ , ? ~ ~ i + R  (1.4) 

i= 1 

where A is the closed-loop dynamics matrix and I? is a closed- 
loop weighting matrix. Note that the third and fourth terms in 
(1.4) correspond to exponential weighting and multiplicative 
white noise, respectively. The result that V(x) 5 -yllxl12, with 

y > 0, follows directly from the inequality 

i =  I i =  1 i =  I 

along with (1.2). Inequality (1.5) follows immediately from 

and a f ( t )  5 6:. 
An alternative approach to guaranteeing robustness of designs 

predicated upon a multiplicative white noise model is to interpret 
the stochastic differential equation according to Stratonovich 
stochastic integration instead of Ito integration [36], [37]. Now the 
closed-loop dynamics matrices become 

where 

1 p  
A s = A + -   y i A ; ,   B s = B + -  yiAiBi, C , = C + -  yiCiAi. 

1 p   1 p  

2 2 i = l  i =  I 
2 

i =  I 

The closed-loop Stratonovich correction evident in A,, B,, and 
C,, which can negate the so-called “uncertainty threshold 
principle” [50], [51], appears to be crucial for designing 
vibration-suppression controllers for flexible structures [37], [38], 
[52]. Because of inherent damping, such systems are usually 
nominally open-loop stable with nondestabilizing uncertainties so 
that robust stability is less 0f.a challenge than robust performance. 
Although conditions under which the Stratonovich model yields 
robust controllers are beyond the scope of the present paper, it 
should be noted that the differences between the two models are 
far from trivial. For  example,  for frequency uncertainties the 
Stratonovich correction, which corresponds to a variable left shift 
rather than a uniform right shift, automatically induces a positive- 
real controller for the high-frequency, poorly modeled flexible 
modes. Since quadratic Lyapunov functions do not appear to be 
adequate for guaranteeing the robustness of such designs, the 
majorant Lyapunov function has been developed [53]. 

Inasmuch as deterministic robust stability of stochastically 
optimal controllers is guaranteed by right shifthultiplicative 
white noise modifications to the closed-loop Lyapunov equation, a 
natural question which arises is the following: Do there exist 
alternative modifications to the closed-loop Lyapunov equation 
which guarantee robust stability? One possibility which immedi- 
ately suggests itself is to replace the bound (1.5) by 

i = l  i =  I 

where Ai = DiEi. Carrying out full-state-feedback control design 
with (1.7) leads to an alternative generalization of the standard 
algebraic regulator Riccati equation. Indeed, a version of this 
modified Riccati equation has already been developed by Petersen 
and Hollot [23], [25] as a means for designing robust static and 
dynamic controllers. A fourth-order aircraft example considered 
in [25] shows the practical potential of their approach. In the 
present paper we extend the results of [23], [25] to more general 
problem formulations encompassing a wider class of parametric 
uncertainty structures within the context of static output feedback 
and reduced-order dynamic compensation. Most interestingly, the 
results we obtain are completely analogous to the static and 
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dynamic compensation results obtained using a multiplicative For the following definitions, let Q, P ,  0, P E Rnxn:  
white noise model with quadratic cost. This raises the following 
interesting question: Does there exist an optimization problem P 

whose necessary conditions coincide with the Petersen-Hollot- Ra P R2+ y;BTPB;, 
type equations? Indeed, our results were obtained by optimizing 
over the class of closed-loop Lyapunov equations modified (Le.. 
robustified) in the sense of Petersen and Hollot. Full justification P 

for this technique is developed in [54], [55] where robust P, P B ~ P + R ; , + ~  y i ~ , T ~ ~ , ,  
performance bounds are obtained. i =  I 

i =  1 

n. NOTATION AND DEFNITIONS 

Note: all matrices have real entries. 

P r  
z1 I z, 
21 > z2 
asymptotically  stable 

matrix 
n ,  m, 1, P ,  n,, n;, 
A, ri;  

A ,  A;;  B, Bi; C,  C; 
x,  u, Y .  x, 

V 

real  numbers, r x s real  matrices, R r x l  
r X r identity  matrix,  transpose 
Kronecker sum, Kronecker product [561 
r X r symmetric  matrices 
r x r symmetric  nonnegative-definite 
matrices 
r X r symmetric  positive-definite  matrices 
ZL - 2, E H', ZI, z, E S' 
ZI - z2 E ?', ZI, z2 E $3' 
matrix  with  eigenvalues  in  open  left-half 
plane 
positive integers, i = 1, * * e ,  p 
n + n,, n + n;, i = 1, " - , p  
n,  m, I, n,-dimensional vectors 
n X n matrices; n X m matrices, I X n 
matrices; i = 1, - - - , p  
rn X lmatrix 
A + BKC,Ai + B;KC, i = 1, * - - , p  
n, x n,, n, x I, rn x n, matrices 

Lebesgue measurable function on 
[0, w), i = 1, " * , p  
positive number, i = 1, * * ,  p 
real number- 

state weighting  matrix  in $ I n  

control  weighting  matrix  in Pm 
n X rn cross  weighting  matrix  such  that R l  

A + urn, A + dn, A + 

- Rl2R;'RL 2 0 
Rl + RlzKC + ( K C ) T R f 2  + 
( K C )  'R2KC 

n-dimensional Wiener process 
incremental covariance of w, in R" 
n-dimensional Wiener process 
I-dimensional Wiener process 
incremental covariance of wIt in $In 
incremental covariance of w,, in 2' 
n X I incremental cross-covariance of 
Wit, W2r 

mutually uncorrelated scalar Wiener 
processes, i = 1, * * e ,  p 
incremental covariance of ui f ,  yi > 0, 
i = 1, . - - , p  
expected value 

P 

VM A v2+ i =  I r;C;(Q+ Q)CT, 

2 A,- BR ;lpd, 

AQ, 2 A ,  - Qd vG1c. 
III. STATIC OUTPUT FEEDBACK 

A .  Static  Robust  Stabilization  Problem:  Deterministic 
Sufficiency  Theory 

Consider the following problem. 
Static  Robust  Stabilization  Problem: Determine K E R m X i  

such that the closed-loop system consisting of the controlled plant 

P 

u ( f )  , tE[O, 03) , (3.1.1) 

measurements 

Y ( t )  = c x w  , (3.1.2) 

and static output-feedback law 

u ( 0  = KY ( 0  (3.1.3) 

is asymptotically stable for all measurable (a,, - - a ,  ap): [0, 03) + 

a p  satisfying 

l u ; ( t ) \ ~ 6 ~ ,  t € [ O ,  m), i = l ,  * * - , p .  (3.1.4) 

Remark 3.1.1: The  nominal  stabilization  problem, i.e., the  case 
in which parameter uncertainties are absent, can be recovered by 
setting A ,  = 0 and Bi = 0. All of the results in this paper can 
readily be specialized to this case.  For brevity, however, the 
details are omitted. 

Remark 3.1.2: The symmetric bounds (3.1.4) are  for conven- 
ience only. The constraints 

p;So;( t )S6; ,  t € [ O ,  CQ), i =  1, * ,  p (3.1.4)' 

can be recast in the form (3.1.4) by redefining A and B.  Further 
notational simplification is possible by scaling Ai and Bi so that 6; 
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= 1, i = 1, * * e ,  p .  For clarity, however, we choose not to do 
this. 

Remark 3.1.3: Standard existence theory guarantees that the 
absolutely continuous solution x( .) of (3.1.1) exists on [O, 03) for 
all K E Bmxl  and for all measurable (a,, * ,  up) satisfying 
(3.1.4). 

The robustness results are based upon the following easily 
proved theorem which concerns the construction of a Lyapunov 
function for robust stability. 

Theorem 3.1.1: Let K E R m x l  and assume there exist 

@:P,"-+sn, (3.1.5) 

P E P ,  (3.1.6) 

Mi, NiEanix", i=  1 ,  * . . ? P  (3.1.7) 

such that 

MTNi+NTMi=ArP+PAi,  i= 1 ,  - - . ,  p ,  (3 .1.8)  

O = A T P + P A + @ ( P ) ,  (3.1.9) 

6i(M"i + NTNJ < 9 ( P )  . P 
(3.1.10) 

i =  1 

Then K solves the static robust stabilization problem. 

.*., P, 
Proof: Using (3.1.8), compute for t E [0, 03) and i = 1, 

O ~ [ 6 f / 2 M i - ~ , ~ 1 / 2 u i ( t ) N i ] 7 [ 6 f / 2 M I - 6 , ~ ~ ' 2 a i ( t ) N ~ ]  

= s ; M ~ M ; + S ; ' u f ( t ) N ~ N , - u ; ( t ) [ M ~ N i + N ~ M i ]  

5 6i[MTMi+ NTNi] - ui(t)[Airp+  PAi] . 

Thus, 

~ , ( ~ ) [ A ~ P + P A ~ ] ~ ~ ~ ( M ~ ~ M + + T N ~ ) ,  

t € [O ,  03), i = l ,  * * * , p .  (3.1.11) 

Defining the Lyapunov function 

V(X) g XTPX 

its derivative along solutions x( t )  of (3.1.1)-(3.1.3) is given by 

P(x(t))=a(t)T~~(t)+x(t)7px(r) 

=x(t)T[ATP+  PA]x(t)  

+x(t)T [; Ui(t)(ATP+PA1)  x(t). 1 

[ i =  I 1 
Using (3.1.9) and (3.1.11) yields 

P 
P ( x ( t ) ) s   - x ( t ) T   @ ( P ) - c  &(MTM1+NTNi)  x(t) . 

By (3.1.10), there exists y > 0 such that P(x(t))  I -yllx(t)l12, 
t E [0, m), as required. 0 

Remark 3.1.4: As will be seen in later sections, this result is 
applied by choosing Mi and Ni to satisfy 

NTMi = PAi (3.1.12) 

so that (3.1.8) holds. The bound 9 is then constructed to satisfy 
(3.1.10). 

B. Static Optimal Control Problem: Stochastic Necessity 
Theory 

We now turn to the static optimal control problem with state- 
dependent and controldependent white noise and exponentially 
weighted quadratic cost. 

Static Optimal  Control  Problem: Determine K E R m x l  such 
that, for the closed-loop system consisting of the controlled plant 

P +E Biulduit+e-ardwr,  t€[O, a), (3.2.1) 
i =  1 

measurements 

y ,=  cx ,  3 (3.2.2) 

and output-feedback law 

the performance criterion 

is minimized. 
Remark 3.2. I: The exponential time weighting of the distur- 

bance noise in (3.2.1) is required to balance the exponential 
weighting in the cost (3.2.4). It has no physical significance as 
such. 

To develop necessary conditions for this problem, K must be 
restricted to the set of second-moment-stabilizing gains 

P 
+ yiAi @ Ai is  asymptotically  stable . 

i =  I 3 
For the shifted plant dynamics. The requirement K E S, implies 
the existence of the steady-state nonnegativedefinite covariance 
Q 2 lim,+= iZ[e2"rxrxfl. Furthermore, Q is the unique solution to 
the modified Lyapunov equation 

An additional technical assumption is that K be confined to the set 

S,i P {KES,:CQCT>O, where Q satisfies (3.2.5)) 

The positive definiteness condition holds, for  example, when Q is 
positive definite and C has full row rank. 

Theorem 3.2.1: Suppose K E S + solves the static optimal 
control problem. Then these exist P ,  8 E $!In such that K is given 
by 

K =  - R ; ' P ~ Q c T ( c Q c T ) - ~  (3.2.6) 

and such that P and Q satisfy 

P 
o = A ; P + P A , + ~   Y ~ A ; P A ~ + R ,  

i =  I 

(3.2.7) 
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O=(A,-BR,'Ps. i )Q+Q(A,-BR GIPS?)' 

P +x y i ( ~ i - ~ l ~ ; ' p s . i ) ~ ( ~ i - ~ i ~  ;IpS;)r+ v (3.2.8) 
i- I 

where 

.i L QCr(CQCr)-lC, .i, g Zn- . i .  (3.2.9) 

Proof: First note that from [49] it follows that the exponen- 
tial factors in (3.2.1) and (3.2.4) are equivalent to replacing A by 
A,. From [57, Theorem 8.5.5, p. 1421. it follows that the state 
covariance Q(t )  & Z[e2"'x,x:] satisfies 

P 

Q(t)=A,Q(t)+  Q(t)A,7+ yiAiQ(t)A'+ V. 
i =  I 

Since K E S,, Q 2 lim,+,,, Q(t )  exists, is nonnegative definite, 
and is the unique solution to (3.2.5). Note that 

J,(K) = tr QI?. 

Now define the Lagrangian 

P 

L(Q,  K )  i;l. tr X Q I ? + ( A , Q + Q A L + ~  ~,A,QAT+ V I P  1 i =  I 1 
with multipliers X 2 0 and P E R"" ", and compute 

P 
aL/aQ=A,7P+PA,+Z y iA ,?~Ai+~- .  

i =  1 

Setting aL/aQ = 0, X = 0 implies P = 0 since K E S,. Hence, 
without loss of generality set X = 1 so that 

P 

O=A:P+PA,+C  Y,ATPAi+R. (3.2.10) 
i =  1 

Since P is the (unique) steady-state covariance of the dual system, 
it is nonnegative definite. Also, since S,' is open. evaluating aL/ 
aK = 0 yields 

O=R&CQC'+PsQCr. 

Since K E S:, CQCT is invertible, and hence (3.2.6) holds. 
Finally, (3.2.8) is equivalent to (3.2.5) and, performing some 
algebraic manipulation, (3.2.7) is equivalent to (3.2.10). 0 

Remark 3.2.2: Because Rh 2 R2, and thus R 5 R ;  I ,  the 
gain K in (3.2.6) leads to a net decrease in controller authoity due 
to the control-dependent noise. For problems which are open-loop 
stable and which remain stable under plant variations, this is an 
intuitively expected consequence of parameter uncertainty. 

Remark 3.2.3: Theorem 3.2.1 generalizes and unifies several 
previous results. In particular, the noise correlation and output 
feedback constraint constitute generalizations of [26]-[33]. Fur- 
thermore, because of the presence of multiplicative noise, the 
results of [58], [59] are extended. The role of the oblique 
projection .i has been discussed in [58], [59]. Connections with the 
oblique projection T arising in the dynamic-compensation problem 
[14] are discussed in [60]. 

C. Sufficiency  Meets  Necessity: A Marriage of the 
Deterministic and Stochastic 

We  now answer our main question: Can a feedback law 
predicated on a stochastic multiplicative noise model provide 
guaranteed deterministic robust asymptotic stability? The answer 
is "yes" provided the exponential is  of sufficient magnitude. 

Theorem 3.3.1: Suppose there exists P E 2" and Q E $ I n  

satisfying CQC' > 0, (3.2.7)-(3.2.9) and 

P 
0<(2cr-C Gj /y i )P t I?  (3.3.1) 

i =  I 

where K in l? is given by (3.2.6). Then K solves the static robust 
stabilization problem. 

Proof: In Theorem 3.1.1 define 

P 

@ ( P ) = Z f f P + x  y;A'PA;+I?, 

Mi=(yi/6i)1/p/2Ai,  N,=(h I / YI .)I/Zpl:2* 
I =  I 

Note that (3.1.5)-(3.1.8) hold. Furthermore, because of the 
equivalence of (3.2.10) and (3.2.7), it follows that (3.1.9) is 
equivalent to (3.2.7). Finally, (3.1.10) is a consequence of 
(3.3.1). 0 

Remark 3.3.1: Note that (3.2.7)-(3.2.9) serve to construct a 
Lyapunov function guaranteeing robust stability. Hence, it  is  not 
necessary to actually verify that K E Si. 

By strengthening (3.3.1) the following simplification is imme- 
diate. 

Corollary 3.3.1: Suppose there exists P E 2" and Q E FJn 
satisfying CQC' > 0, (3.2.7)-(3.2.9) and 

(3.3.2) 

Then K given by (3.2.6) solves the static robust stabilization 
problem. 

It is interesting to note that the feedback gain given by 
Corollary 3.3.1 may  be  an extremal,  i.e., local minimum, local 
maximum, etc., and  not necessarily a solution of the static optimal 
control problem. The result is valid, however, for all extremals of 
the optimization problem. By specializing Corollary 3.3.1 to a 
solution, i.e., global minimum, of the optimal control problem, 
we can bridge the gap between sufficiency and necessity. 

Corollary 3.3.2: Suppose K E S,' solves the static optimal 
control problem where CY satisfies (3.3.1), and suppose that the 
corresponding solution P of (3.2.7) is positive definite. Then K 
also solves the static robust stabilization problem. 

Iv. DYNAMIC  OUTPUT FEEDBACK 

A .  Dynamic  Robust Stabilization Problem:  Deterministic 
Sufficiency  Theory 

Consider the following problem. 
Dynamic Robust Stabilization Problem: Determine (A,, B,, 

C,) such  that the closed-loop system consisting of the controlled 
plant (3.1. l ) ,  measurements 

(4.1.1) 

and dynamic output-feedback law 

~~ , ( t )=Acxc (o+&Y( t )  3 (4.1.2) 

u (1) = ccxc ( t )  (4.1.3) 

is asymptotically stable for all measurable (al, * a ,  op): [0, m) -+ 

W satisfying (3.1.4). 
Remark 4.1.1: Note that the problem statement places no 

restriction on the order n, of the dynamic compensator. Also, we 
now permit uncertainties in the observation matrix C by including 
perturbations ui(t)Ci in (4.1.1). 
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The following result is completely analogous to Theorem 3.1.1.  
Theorem 4.1.1: Given (A,, B,, C,) asstime there exist 

ql:pli+jli, (4.1.4) 

BE v ,  (4.1.5) 

f i i ,  NiEsiiiXA, i =  1, . . . , p (i.1.6) 

such that - - 
A ? ~ N ~ + N ~ ~ ; ~ ~ = , T T F + F , ~ ~ ,  i= 1, e . . ' ,  p ,  (4.1.7) 

o= X7P+&+$(B), (4.1.8) 

s;(f i l fn;r ,+Npi)<ql(P) .  (4.1.9) 
P 

i =  1 

Then (A,, B,, C,) solves the dynamic robust-stabilization 
problem. 

B. Dynamic Optimal  Control  Problem:  Stochastic  Necessity 
Theory 

We now consider the dynamic optimal control problem with 
state-, control-, and measurement-dependent white noise and 
exponentially weighted quadratic cost. The optimization is per- 
formed over the class of dynamic compensators of fixed order n, 
I n. 

Dynamic  Optimal  Control Problem: Determine (A,,  B,, C,) 
such that, for the closed-loop system consisting of the controlled 
plant 

dx, = Ax,dt + Aix,du;, + Bu,& 
i =  1 

P 
+ Biu,dvif + e-"'dwIf, t E  [0, 45) (4.2.1) 

I= 1 

measurements 
P 

dy, = Cx,dr + CiXrdu;, + e -ardlvzt (4.2.2) 
i =  1 

and dynamic output-feedback law 

d ~ , , = A , ~ , , d t + B , d y , ,  (4.2.3) 

ut = G X c r  (4.2.4) 

the performance criterion 

J,(A,,  B,,  C,) 2 lim Ze"'[x:Rlx, 
f-m 

+ ~ X : R ~ ~ U ~ + U ~ R ~ U , ]  (4.2.5) 

is minimized. 

set 

9, 2 (A=,,  B,, c , ) : ~ ,  g~-,+$ y j z i  c~ zi is 

To develop necessary conditions we restrict (A,,  B,, C,) to the 

I i =  1 

asymptotically  stable and (A,,  Bc, C,) is  minimal 1 
and invoke the technical assumption 

[B;#O*Ci=O] , i = l ,  . . .  , P. (4.2.6) 

The following lemma w i l l  be needed. 

Lemma 4.2. I: If Q, P E $1" and rank QP = n,, then there 
exist G, r E W f l c x n  and invertible M E 3 " c " " c  such that 

Q P =  G%fr, (4.2.7) 

rcT= I.,. (4.2.8) 

Furthermore, G, M ,  and I' are unique modulo a change of basis in 
~;1"c""c .  

Proof: The result is an immediate consequence of [61, 
Theorem 6.2.5: p. 1231. G 

Note  that because of (4.2.8), the n x n matrix 7 = G rl' is 
idempotent, i.e., r2 = 7 .  Since 7 is  not necessarily symmetric, it 
is an oblique projection. 

Theorem 4.2. I: Suppose (4.2.6) holds and (Ac, B,, C,) E a>, 
solves $e dynamic optimal control problem. Then there exist Q, 
P ,  Q, P E Hfl such that A, ,  B,, C, are given by 

Ac=r(A-BR2d'Pd-QdV2d'C)GT, (4.2.9) 

o=A~,P+PAea+pdrR,-,'pd-r~pdrR2711Pd71 , (4.2.15) 

rank &=rank  P=rank @=n, (4.2.16) 

(4.2.7) and (4.2.8), where 

7 P GrI', r1 2 I , , - ? .  (4.2.17) 

Proof: As in the proof of Theorem 3.2.1 we note that the 
exponential factors in (4.2.1),  (4.2.2), and (4.2.5) are equivalent 
to replacing A and A ,  by A + d,, and A ,  + d,,, respectively. 
Theorem 4.2.1 now follows immediately from [40, Theorem 
2.31. It need only be noted that (4.2.9) follows from 

A,+cuIn,,=r(A,-BRZd1Pd-QdV2dlC)Gr 

and the fact that rA,GT = rAGT + aInc because of (4.2.8). 

C. Sufficiency Meets Necessity: The Dynamic  Case 

We now bridge the gap between sufficiency and necessity for 
dynamic controllers. 

TheoIe? 4.3. I :  Assume (4.2.6) holds and suppose there exists 
Q, P,  Q, P E Nfl satisfying (4.2.12)-(4.2.17),  (4.2.7),  (4.2.8), 

P + P  -PGT ,o - G p  GPGT 1 (4.3.1) 
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where i: is given by (3.2.9) and K in I? is given by 

(4.3.2) 

Then (A,, B,, C,) given by (4.2.9)-(4.2.11) solves the dynamic 
robust stabilization problem. 

Remark  4.3.1: Note that is always at least nonnegative 
definite since 

P =  [; ;] + [ [ T 2 0 .  (4.3.3) 

Proof of Theorem  4.3.1: As shown in [40], (4.2.6)- 
(4.2.17) are equivalent to 

K= - R ;'PaQCT(CQCT)-' . (5.1.5) 

Proofi In Theorem 3.1.1 define 

P 
+ ( P ) = R + C  6i[(E;+F;KC)T(Ei+F;KC)+PDiD,'P], 

i=  I 

M; = E; + F;KC, Ni = DTP 

so that (3.13-(3.1.8) hold. Note that (5.1.2) and (5.1.3) are 
equivalent to (3.1.9). Finally, because of (5.1.4),  (3.1.10) is 
satisfied. 0 

Remark 5.1.1: Theorem 5.1.1 generalizes [25, Theorem 3.31 
in four distinct ways. First, in [25], the uncertainties A and B are 
assumed to be independent. In our  setup this corresponds to the 
additional condition that Ai # 0 implies Bi = 0. In this case 
(5.1.1) is satisfied with either E; = 0 or F, = 0 for each i .  
Second, in [25], A i  and Bi are confined to have unit rank. This 
would  be the case if we required ni = 1 in (5.1.1). Third, in [25], 
R12 = 0. And, fourth, the results of [25] apply only to the state- 
feedback case, Le., C = I,. In this case (5.1.3) is superfluous and 
F = r,. 

where B. Dynamic  Output  Feedback 

The result now follows from Theorem 4.1.1 as in the proof of 
Theorem 3.3.1. 0 

We now extend the Petersen-Hollot approach to reduced-order 
dynamic compensation. Our only constraint is that we do not 
permit uncertainty in the observation matrix. Define 

A, L A - BR ;'pa, A~ g A - o, v ; ~ .  

be replaced by the stronger condition (3.3.2). 
Remark 4-3*2: As in Corollv 3.3. the (4-3.2) can Theorem 5.2. C1 = . . . = C, = 0 and suppose 

there exist Q, P ,  Q,  P E Hn satisfying 

v. THE PETERSEN-HOLLOT APPROACH TO ROBUST STASIUZATION 0 = [A + D ( p  + p ) ]  Q + Q[A + D ( p +  p ) ]  T 

A .  Static Output Feedback + v l - Q a V ; L Q ~ + ~ l Q a V ~ l Q , T ~ : ,  (5.2.1) 

The deterministic Riccati equation approach of Petersen and 
Hollot is based upon factoring Ai and Bi as 

Ai=DiE;, B;=DiFi, i= 1 ,  * * * . P  (5.1.1) 

where Di E E l n x n ; ,  E; E anix", and Fi E W n i x m .  Obviously, such 
a factorization may not be unique, and the nonuniqueness is an 
element of the suffkiency test. To state the  suffkiency condition 
we shall require the notation 

P P 
Rh P R2 + &F,'Fi, Pa P BTP+ R T2 + GiFTEi, 

;= I i =  I 

P P 

Qa= QCT+ 1/12, D A &DiDT, E AiE'Ei . 
i =  1 i =  I 

Theorem 5.1.1: Assume there exist P E ?" and Q E PIn 
satisfying CQCr > 0, 

O=ATP+PA+R~+E+PDP-P;R;~P,+~;P;R;~P~T~, 

o = ( A , + D P ) Q + Q ( A , + D P ) ~ + Q ~ v ~ ~ Q ; - T ~ Q ~ ~ ; ~ Q ; ~ ~ ,  

(5.2.2) 

(5.2.3) 
o=(A~+DP)~P+B(A,+DP)+PDP 

+ P:R ;'Pa- r;P;R ;'ParL, (5.2.4) 

(4.2.7),  (4.2.8),  (4.2.16),  (4.3.1), and 

[ R1 - Rl2R ;'PUGT 
- GP;R ;'R & GPTR G I R ~ R  ; I P ~ G T  ] >o. 

Then (A,, B,, C,) given by 

A , = I ' ( A - Q a V ; L C - B R ~ l P a + D P ) G T ,  (5.2.5) 

B,=I'QaV2-L, (5.2.6) 

O=ATP+PA+PDP+R~+E-PTR;~P,+~:P:R;'P,~,, C,= -R;'PaGT (5.2.7) 

(5.1.2) solves the dynamic robust stabilization problem. 
Pro0 f: In Theorem 4.1.1 define 

O=(A+DP-BR;'P,?)Q+Q(A+DP-BR;~P,~)T+ v 
(5.1.3) & ( P ) = R + i  6;(BTEi+PE;ETF), &&=Ei ,  N;=E,'P, 

i =  I 

and 

R>O (5.1.4) 
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ReEazk 5.2.1: Theorem 5.2.1 was discovered by optimizing J 
= tr PV subject to 

O=iTp+PA‘+R’+i  C ~ ~ [ E T ~ ~ + & , D T ~ ]  (5.2.9) 

and using the techniques of [40], [41]. As shown in [54], this 
approach also yields robust performance bounds. 

i =  1 
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