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INTRODUCTION

Various concepts of column behavior at and above the tangent
modulus load are illustrated in Figure 1 for a geometrically perfect
column at a particular slenderness ratio. The '"geometrically perfect"
column is initially straight, of constant cross-section, has friction-
less hinged ends, and the load is applied at the centroidal axis. It is
recognized that in the laboratory such perfection may be approached but
even there cannot be realized; hence the modes of behavior to be dis-
cussed herein can be approached but not precisely duplicated in a column
test, Thé concepts nevertheless permit a better understanding of column
behavior.

For the concepts illustrated in Figure 1, the material is
assumed to have a stress-strain curve similar to that of an aluminum
alloy, as indicated. (Only the upper portions of the stress=-strain curve
and corresponding column load-deflection curves are shown in Figure 1.)
The critical or buckling load in the inelastic range, (1) in Figure 1,

-is the tangent modulus load, Py, as interpreted by Shanleyy(l} and obtained
by substituting the tangent modulus Ef in place of the elastic modulus E

in the Euler formula:

E+I /
Ry

For an infinitesimal amount of axial load above the buckling
load, Shanley showed that bending would commence with no regression in
compressive strain, but that for any finite added increment of load
there would be strain regression, initiated on the convex side and at
the mid-length of the buckled colummn.
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The initial slope of the column load-deflection curve ((L4) in
Figure 1), is termed herein the "inelastic buckling gradient" and (because
there is initially nb strain regression) it is easily determined, as given
for the symmetrical case by Duberg and Wilder,(g) who also determined the
complete load deflection curve for an idealized H-section column (two con=-
centrated areas) for which the material properties could be described by
the Ramberg—Osgood(S) stress-strain curves. In considering an actual
column area, part of the area, varying both along the column and with
applied load, will experience strain regression at the elastic modulus
rate. The remginder of the column area, also. varying along the column
and with column load, introduces the further complication that at any
load finitely above the buckling load the variation in compressive strain
in the cross~section requires a consideration of the changing magnitude
of Et over the column cross-section and along the column. Thus, for
a realistic determination of a load=-deflection curve, such as (6) of
Figure 1, up to the maximum load (7) in Figure 1, a numerical.analysis
at successive increments of load is required, preferably with the aid of
a digital computer. At each successive increment of load the deflected
shape of the column is determined so that the internal resisting moment
at a number of control points along the column is in equilibrium with
the moment‘broduced by the external load at the same locations. Also
shown in Figure 1 is the "reduced modulus load" P, ((2) of Figure 1)

which may be defined as the load at which the inelastic buckling gradient

becomes zero if a column is prevented from buckling above the tangent

modulus. load.
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Some authors, including von Karman, in his discussion of the
Shanley paper,(l) have pointed out that if the tangent modulus remained
constant above the buckling load, the column load-deflection curve
would approach asymptotically the reduced modulus load, as shown by (3)
and (5) on Figure 1. Such an assumption gives a very unrealistic pic-
ture of column behavior, since no true maximum load is reached, and the
"false" reduced modulus load that is being approached is much greater
than the true reduced modulus load which reflects the usual decrease in
tangent modulus with increase in column stress.

It has often been pointed out, since the work of Shanley,
that the reduced modulus load represents an upper bound to the maximum
column load. This is true for the usual non=-ferrous material for which
the tangent modulus decreases monotonically with strain. As a corollary,
it can be said for such a material that the inelastic buckling gradient
together with the reduced modulus load form an upper bound to the column
load deflection curve. Such an upper bound is shown shaded in Figure 1.

The inelastic buckling gradient will be considered herein both
in reference to a continuously strain hardening material, typified by a
structural aluminum alloy, and to the elasto-plastic behavior of struc-
tural steel in combination with an initial residual stress distribution.
Further, for unsymmetrical sections, two different gradients are obtained,
depending on the direction of buckling and suggesting the possibility of

dualistic behavior.



THE INELASTIC BUCKLING GRADIENT FCR A
CONTINUOUSLY STRAIN HARDENING MATERIAL
In Figure 2 is shown as a general case a monosymmetric cross

section with buckling presumed to take place in the plane of symmetry.
The uniform stress level at the tangent modulus load ot = PT/A is
shown and the distribution of the first increment of stress for an in-
finitesimal increase in load i1s shown by the triangular area. é@o
represents the intensity of unit curvature at the mid-length of the
column during the first increment of column buckling. At the buckling
load the resistance to bending will be constant along the column and
the initial buckled shape therefore will be a half-sine wave. Hence,
at the column mid=-length the initial increment of unit curvature will
be

2
1 \
A¢ = Ady == 2)
o) So 12 ( J

For the stress distribution in Figure 2 the angle corresponding to the
increment in compressive stress is shown opposite in sense to the angle
representing the curvature Iintensity ﬁQO and the concave side of the
buckled column would be at the left. Drawn this way, the "arrow" formed
by the stress increment points in the buckling direction. The initial

increment of load above the buckling load is:

AP = Er (Afo) [ xd A

A
or, introducing Equation (2)
AP BT (J_-) [ xdn = PTAXo (2)
Le I I
Ao 5 -0 A




or, alternatively

AP

As,

= PrXo (L)
e

5 =0

where r 1s the radius of gyration of the cross section. For the doubly

symmetric case
AP
Ao

_ Pph

5 -0 ore

o~
N
—

which is as introduced by Duberg and W:'leero(g>
A detailed study of the change in stress distribution and
progressive inward movement of strain regression above the tangent

L)

modulus load presented in an earlier paper by the authore(



BUCKLING OF AN ALUMINUM ALLOY TEE SECTION

As a by=-product of the calculation of the inelastic buckling
gradient of an unsymmetrical section, consider now as a specific illus-
trative example the behavior of a structural aluminum alloy tee section,
8 inches x 6 inches, as shown in Figure 3 for which the properties* are

as follows:

Ty = 22.93 in, X A = 9.56 in.2
I,y = 36.76 in.* Ip = 59.69 in. %
ryx = 1.55 in. J = 1.95 in. b

The minimum elastic torsional buckling stress is

Tees are apt to be weak with regard to torsional buckling but since
12k ksi is far greater than the yield strength it may be presumed that
buckling will not be initiated in the torsional mode.

Other dimensions are as indicated in Figure 3. By Equation (L),
1f the buckling deflection is to the right, the inelastic buckling
gradient will be 1.981 Pps, but if the buckling is to the left the gradi-
ent would be 0.516 Pp.  These gradients are shown in Figure 3 for the
particular length L = 62 in., for which L/rxx = 40, The following
gquestion arises: If the initial imperfections in the column are such
that there is an equal tendency for buckling in either direction, would
buckling be to the left, corresponding to the smaller buckling gradient?
If the answer is yes, the most likely buckling would cause increasing com-
pression in the web and regression of compression in the flange, as shown

in Figure 3.

¥ from the "Alcoa Structural Handbook."
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tangent modulus load of 328.1 kips, it is assumed that Et remains at
5636 ksi, the corresponding "false reduced modulus load" for buckling
to the left would be 366.4 kips and the actual tangent modulus of the
material at the corresponding stress is only 1753 ksi. For buckling to
the right, the false reduced modulus load would be 506.4 kips, which is
more than 20 percent above the ultimate strength of the alloy 6061-T6
at which the tangent modulus would have reduced to zero. Thus it 1s to
be noted that in some cases involving inelastic instability, the only
realistic approach to a solution is an incremental one in which the
change in Ei 1s considered as a function of varying increments of
compressive strain both across and along a member.

Again referring to Figure 3, it is possible to suggest quali-
tatively possible modes of postbuckling behavior. If buckling were
initiated to the right, corresponding the the larger buckling gradient,
the flange of the tee section would be subjected to increasing compres-
sive stress with a corresponding diminution of tangent modulus, Em,
whereas larger and larger portions of stem would be subject to strain
regression at the elastic modulus rate. Thus the steam of the tee, being
governed over an increasing area by the elastic modulus, would provide an
increasing contribution to bending stiffness about the xx axis. Contrari-
wise, the flange of the tee section, under increasing compressive stress,
will have a lower and lower tangent modulus as bending proceeds. Since the
moment of inertia about the yy axis is less than twice that about the
xx axis, it may be predicted that before reaching the maximum load for

buckling in the plane of the web, the tee section will reach a new



critical load for buckling normal to the plane of the web, or a still
lower load involving interaction with torsional buckling. In either
event, as soon as biaxial bending is initiated, the section will ex-~
perience torsional moments which will add the consideration of twist
to the problem. The only simplifying aspect of the problem would be
the fact that in the tee section the internal torsional resistance
could.be presumed to be solely due to St. Venant torsion (together with
the inelastic modifications thereof) and warping torsion resistance
could be neglected. For the doubly symmetric wide flange shape, the
direct problem of biaxial bending, including the effects of warping
torsion in the inelastic range, has been solved by an incremental pro-
cedure, using the digital computer, by Birnstiel and Michaloso(6)

Now, suppose that buckling does commence in the most probable
direction, to the left, for the smaller inelastic buckling gradient.
Strain regression now will occur over an increasing amount of the flange
area, whereas the stem will be under increasing compressive stress with
corresponding decrease in tangent modulus. Thus the relative bending
stiffnesses of the tee section for bending will be such as to increase
the resistance against buckling out of the plane of the web and increase
the tendency to continue bending in the plane of the web as originally
initiated. Thus, if the tee section buckles in the most likely direc-
tion it will be increasingly stable within that plane and bending will
proceed out to the maximum load capacity with no torsion and no tendency
to buckle out of the plane of the web. (It is here assumed that the
lowered Ep of the web is not sufficient to induce inelastic lateral-
torsional buckling, which will be true of the tee sections similar to

the one used herein for illustrative purposese)



BUCKLING OF STEEL COLUMNS WITH RESIDUAL STRESS

Attention is now turned from the behavior of an aluminum
alloy column to the case of the steel column in which there exists
initial residual stresses that result either from welding or from
the initial cooling of hot steel immediately after rolling. Although
now well known, the essentials of this problem will be reviewed. The
typical stress-strain diagram for steel is indicated in Figure 4, with
negr linearity between stress and strain up to the yield point, and
in comparison, the dashed line shows the average stress-strain curve
that will result if a short stub column is tested in compression.

The stress distribution in the column is shown at three successive
stages, first at zero applied load, second at a load for which the
average applied stress plus the compressive residual stress exactly
equals the yield point (which therefore corresponds to the proportional
limit on the average stress-strain diagram) and finally, at an inter-
mediate point for which two segments of the cross section have gone
into the plastic range.

The research on this aspect of column behavior was commenced
in 1949 through the Committee on Research of the Column Research Council,
resulting in a general study of the residual stress effect by Osgood(7)
and the initial Lehigh study(8) which was followed by much additional
research that is still under way at this time as summarized by Beedle
and Tall.(9> In Reference 8 it was shown that the initial buckling
load could be determined by use of the EBuler stress formula simply by

substituting the moment of inertia of the portion of the cross section
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still elastic at any given stress level, Ie, in place of I. This sub-
stitution, of course, involves the same basic reasoning that underlies
the Shanley interpretation of the tangent modulus load; i.e., if bend-
ing commences with a simultaneous increase in load it can do so without
any strain reversal and thus the Shanley-type bifurcation is attained.
However, should any finite increment of load be added, there would have
to be some strain regression at the extreme fibers on the convex side
of the buckled column, just as in the case of the continuously strain
hardening material.

Referring to the average stress-straln curve in a stub column
(Figure 4), above the proportional limit, ops, the apparent tangent modu-
lus from the stub column test, Et, 1s related to the elastic modulus E
in the proportion Ae/A. Hence, the term T which modifies E to give
an apparent Ey 1is equal to Ae/A° This is readily shown as follows

for op < op < oy

dP = AeE de = .A.d(javg
A0 4+ A

Bt =——2 =E (=) =Er (6)
de A

The buckling load for a steel column, for a bl-symmetric

cross section containing a bi-symmetrical distribution of residual

8)

stress, is given( by
2
1=Ele
P, =
v =I5 (7)
Alternatively, since
-t (fe) = £(n) (8)
I A }
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we may express Equation (7) as follows

ot = Py EEE_.f(T) (9)
A (b

Equation (9) is convenient in obtaining directly a steel
column strength curve in the inelastic range if the results of a stub
column test are available., Only the pattern of residual stress need
be known, its actual distribution can be parabolic, linear or any other
distribution, provided it will be such that the plastic zones will de-
velop as shown by the shaded areas in Figure 5.

Examples of the calculation of Ie | (t) for Equation (9)

I

are shown below for differeﬁt patterns of residual stress.

The first two of these were given in the paper by Yang, Beedle,
and the author(8) and the third was developed by A. Nitta in 1960,(10511)
Reference 11 provides a very complete study of case 3, including forma-
tion of initial residual stress, triaxial effects, etc., The additional
function of T (Case 4) for the less usual situation where the residual
stress is tension at the location of maximum bending strain is introduced
here to illustrate the effect of such a distribution on the inelastic
buckling gradient.

If stub column test results in the form of a plot of ogyg VS.
strain are available, any point on the inelastic portion of the column

strength curve (plot of maximum column strength against slenderness ratio)

may be calculated readily as follows:

(1) For any value of Ogvgs determine T .
Ef(7)
Ogvg

el =

(2) For each value of Ogyvgs calculate
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If no stub column test is available, for an assumed residual
stress distribution,
Ae

(1) Choose various values of T = T between zero and one.

(2) Determine, for each T

P =Apo, + [ odaA
Ae
hence
(A -A.) o 1
Ae

and, as before

L’.zﬂ: Eﬁﬁl
r Oavg

Examples of four column strength curves, for assumed parabolic

residual stress distribution, with maximum compressive residual stress
equal to 0.3 Oy, are plotted in terms of dimensionless parameters in
Figure 6 for the four cases tabulated in Figure 5. Cases 2 and 3 yield
the same curve. Note that it is not necessary to actually calculéte
the ratio Ie/I since it is given by the function f(t) appropriate
to the particular cross section and residual stress pattern that is in-
volved. In the fourth case, where it is assumed that in some way ten-
sion residual stress can be produced in the outer fibers, the column
strength curve reaches its closest approach to the upper limit of
strength determined either by the yield point or the Fuler buckling
stress, whichever is the lesser. However, it is to be noted that in
the case of steel columns, residual stress, no matter how distributed,

has an adverse effect on the buckling strength.



BUCKLING GRADIENT FOR A STEEL COLUMN WITH RESIDUAL STRESS

As 1in the case of the continuously strain hardening material,
a simple formula for the initial slope of the load deflection curve can
be determined at the instant of buckling for the steel column containing
residual stress, The discussion is limited to bi-symmetric sections
and bi-symmetric residual stress distributions. Two cases will be con-
sidered:

Case (1) Compressive residual stress at extreme fibers in plane of
bending (See Figure 7)

The shaded region represents the portion that is fully
plastic and at the yield stress level, the unshaded region
is still elastic, and the solid region represents the change
in stress during an infinitesimal initial bending at the
buckling load.

The initial increment of load for a differential initial
mid-length curvature (A¢o) is

CE(ABG)Acd
AP&fX(ASZﬁO)EdA:LL—Q—)—-’e—
Ae 212

(11)

From Equation (11) the buckling gradient may be expressed in
very simple form in terms of the Euler load ©Pe that would be

developed by the same column if it were elastic.

AP PgTd
As,  2r2 (12)

where T 1is as defined by Equation (6).

=]t
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Case (2) Tensile residual stress at extreme fibers in plane of bending

Since the external fibers are still elastic at the buckling
load, and since the initial increment of load and initial in-
crement of internal resisting moment will be a minimum, there
will be strain regression during the initial infinitesimal
increment of load, as indicated in Figure 8.

Equation (11) will not apply since the apex of the triangles
determining the stress distribution will be at the Jjuncture of
the plastic and elastic regions. Let Xe now represent the
distance from the extreme fiber in to the extreme range of the

plastic region. The initial increment of load will be

AP = [ (x - %) (MB)E d A (13)
Ae
AP = [ x(M)E QA - [ x (MP)E A A (1)
Ae Ae
Ap - TOE(8%0)Ae [@ ] ] (15)
1.2 o €

From which the buckling gradient 1s determined

AP Per | d
—~z—-§-—[§=xe‘l (l6)

If X = % (elastic buckling limit), the buckling gradient is
zero, as for Euler buckling, If xg = O, Equation (16) becomes
the same as Equation (12). Such a limit takes on physical

meaning for the initial residual stress pattern indicated by

Figure Tb.



SUMMARY

The "inelastic buckling gradient" is defined in relation to the
behavior of a geometrically perfect column, considering both the
continuously strain-hardening material and structural steel in
the presence of residual stress.

For a material that is continuously strain-hardening and for a
column of monosymmetric cross section, buckling in the plane of
symmetry may be initiated in either direction, but the inelastic
buckling gradient will have different values for buckling in the
alternative directions.,

In the case of the tee section buckling with the flange on the
convex side (with the lesser buckling gradient) will become in-
creasingly stable with respect to lateral buckling out of the

plane of symmetry, provided the section is one for which inelastic

lateral-torsional buckling does not develop. Contrarily, buckling

with the flange on the concave side, will lead to inelastic lat-
eral and torsional instability before reaching the maximum load
that would be realized if lateral and torsional support were

present.

Formulas for the inelastic buckling gradient of structural steel

columns with initial residual stresses are developed, and are shown

to differ, depending on whether compressive or tensile residual

stress i1s present initially at the extreme fiber.
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COLUMN LOAD OR CORRESPONDING STRESS
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Tangent Modulus (Buckling) Load Pp

Double Modulus Ioad, PR, Based on ET2 and E

False Double Modulus Load (Pgp) Based on
ETl and E

(::)Inelastic Buckling Gradient (éz—)
A5,

Toad Deflection Curve for Constant Epy
Above Pp
<::>Actual (Typical) Load Deflection Curve

(::)Maximum (Shanley) ILoad

Upper Portion of Column Load Deflection Curve

Upper Portion of
Stress~Strain
Curve (Scaled for
Equivalence with
Corresponding
Average Column
Stress)

LATERAL

> DEFLECTION

- STRAIN

Figure 1. Concepts of Behavior At and Above the Tangent Modulus
Ioad, Illustrated for a Geometrically Perfect Column At

a Particular Slenderness Ratio.
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