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Sampled-Data Observers with 
Generalized Holds for Unstable Plants 

Wassim M. Haddad, Hsing-Hsin Huang, and Dennis S. Bernstein 

Abstruct- Optimality conditions are derived for reduced-order 
sampled-data estimation satisfying an observation constraint that 
involves a prespecified, possibly unstable, subspace of the system 
dynamics. It is shown that a generalized hold device possessing a 
time-varying exponential intersample profile is essential in order to 
account for the unstable dynamics. In particular, it is shown that with 
a continuous-time quadratic performance measure a zero-order-hold 
device may result in an unbounded (infinite) cost. An additional feature 
of the problem is the utilization of an averaging A/D device within 
the continuous-timeldiscrete-time conversion which results in averaged 
measurements depending upon delayed samples of the state. 

I. INTRODUCTION 

Due to advances in digital computers, discrete-time estimators for 
continuous-time systems have been developed and used in numerous 
applications. It is well known that optimal discrete-time estimates of 
the dynamic states of a continuous-time model are given by a discrete- 
time Kalman filter, which is based on an equivalent discrete-time 
model. Closer inspection of the effects of sampling and reconstruction 
between continuous- and discrete-time operations, however, revelas 
subtleties beyond “naive” (that is, not sampled-data) discrete-time 
estimation theory for an equivalent discrete-time model. Three issum 
need to be addressed, namely, measurements, system dynamics, and 
performance measure. 

The sampling operation, which requires careful treatment of noisy 
measurements, can have ramifications in applying standard sampled- 
data estimation theory [ I]-[3]. Since it is meaningless to sample white 
noise, instantaneous AD devices cannot be used in the presence of 
noisy measurements. Consequently, we utilize an averaging-type A D  
device of the form 
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y(t)  = Cz( t )  + w(t )  (1.2) 

and w(.) is a continuous-time white noise process. The discrete- 
time measurement now involves a discretized noise signal whose 
properties need to be accounted for. Specifically, the resulting aver- 
aged measurements depend upon delayed samples of the state [l] ,  
[2]. In this case, the equivalent discrete-time model can be captured 
by a suitably augmented system involving nonnoisy (discrete-time) 
measurements. The above technique was proposed in [4] and utilized 

In practice, it is often necessary to obtain estimators for plants pos- 
sessing unstable dynamics [7]-[ 101. This leads to the consideration of 
a generalized architecture for the digital filter. Specifically, it is shown 
(see Remark 2.3) that if a standard zero-order-hold reconstruction de- 
vice is used in the presence of unstable dynamics, then the equivalent 
discrete-time least squares performance criterion is unbounded. This 
problem can be circumvented by employing a generalized hold device 
possessing a time-varying exponential intersample profile. Hence, 
we show that a time-varying reconstruction architecture is essential 
for sampled-data estimation of unstable plants. In practice, standard 
procedures for designing sampled-data estimators for unstable plants 
involve extrapolation of the estimator output between measurements 
[ l l ,  pp. 1161191. The results given herein can thus be viewed 
as a formalization of this procedure. In the context of feedback 
control, generalized hold devices were extensively developed in [ 121 
to achieve a variety of effects such as simultaneous pole placement 
and decoupling. Refated results that exploit time-viuying effects can 
be found in [13]-[15]. 

Along with the above-mentioned points, the evaluation of the least- 
squares performance criterion for sampled-data estimation requirs 
special attention. Specifically, the cost functional involves intersample 
behavior and leads to a discrete-time performance criterion having 
a highly complex structure [l]. It should be noted that the resulting 
discrete-time cost does not possess the familiar least-squares structure 
as in the naive discrete-time estimation problem. 

Finally, constraints on implementation complexity often make it 
desirable in practice to design estimators of reduced order. Such low- 
6rder estimators are also motivated by the fact that although a system 
model may $we  many degrees of freedom (such as coloring filter 
states and vibrational modes), it is often the case that estimates of 
only a small number of state variables (e.g., rigid body position and 
rotational modes) are actually required. Hence, in the present note, we 
derive optimality conditions for reduced-order sampled-data observer- 
estimators in which the observation subspace of the estimator is 
constrained a priori to include all of the unstable modes and selected 
stable modes. Hence, the results presented herein generalize the 
results of [7,8] to the sampled-data setting. 

in [11-[31, 151, [61. 

11. NOTATION 

Ir, orxs, 0 ,  

( I T ,  tr Transpose, trace. 
E, R, EtTX” 
n,  1,  ne, q 
2, Y, z e ,  Ye 

A ,  c 
A , ,  E,, C,, De 

T x T identity matrix, T x s zero matrix, T x T zero 
matrix. 

Expected value, real numbers, r x s real matrices. 
Positive integers, 1 _< ne 5 n + 1. 
n, I, ne ,  q-dimensional vectors. 
n x n,  I x n matrices. 
ne x n e ,  ne x I ,  q x ne ,  q x 1 matrices. 
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W l r  wz 

Vl 
VZ 
Vl 2 

R 

t ,  k 

n, 2-dimensional zero-mean continuous-time white 
noise processes. 
n x n nonnegative-definite intensity of w1. 
I x I positive-definite intensity of w2. 

n x I cross intensity of w1, wz. 
q x q positive-definite matrix. 

t E [0, CO), discrete-time index, 1, 2, 3 , .  . .. 
L q x n matrix. 

III. SAMPLED-DATA SUBSPACE-OBSERVER PROBLEMAND 
EQUIVALENT DISCRETE-TIME FORMULATION 

In this section, we state the fixed-order sampled-data subspace- 
observer problem. In the problem formulation the sample interval h 
and the estimator order ne are a priori fixed and the optimization is 
performed with respect to the estimator parameters. 
Fixed-Order, Sampled-Data Subspace-Observer Problem: Given the 
nth-order continuous-time system 

Finally, as will be shown, in order to account for the unstable 
dynamics it is necessary to implement an observer with generalized 
hold outputs as characterized by the functions Ce( . )  and D e ( . )  which 
are time-varying over the sample interval [0, h]. As shown below, 
C,(.) is chosen to ensure that 7 is finite while De( . )  is optimized 
in order to minimize the least-squares state-esimation error criterion 
(2.6). 

The first result of this section concerns the propagation of the plant 
and the discretized measurements over one time step. For notational 
convenience in stating the main result define 

Theorem 2.1: For the fixed-order, subspace-observer problem, the 
plant dynamics (2.8), averaged measurements (2.9), and least-squares 
observation-error criterion (2.6) have the equivalent discrete-time 
representations 

k ( t )  A s ( t )  + ~ ( t ) ,  t E [0, m), (2.1) s ( ( k  + 1)h) = A'z (kh)  + w;(kh), (2.10) 

Y(kh) = C's ( ( k  - 1)h)  + W b ( ( k  - l )h) ,  (2.11) with A/D averaged measurements 
k h  

7 ( A e ,  Be, Ce( . ) ,  D e ( . ) )  
ij(kh) '1  y ( t )  dt ,  k = 1, 2, 3 , .  . . , (2.2) 

(k-1)h 

where 

(2.3) 

where design an n,th-order observer 

z,(k + 1) = A , z , ( k )  + B,ij(kh), (2.4) 

with D/A generalized hold output 

y , (kh  + s) = C,(s)z,(k) + D,(s)Y(kh),  s E [0, h], (2.5) 

(2.13) 

(2.14) 

which satisfies the following design criteria: 
1. the observer (2.4), (2.5) is a steady-state asymptotic observer for 

a specified n,-dimensional subspace of the plant (2.1) where 
ne  = n u  + I ;  and 

2. the observer is an optimal estimator that minimizes the least- 

w;(kh) A ~I 'e"("-") l i : , (kh  + s) ds,  (2.15) 

w:((k  - 1)h)  = -C eA("-')wl[(k - 1)h + r ]  d r d s  
squares state-estimation error criterion A lhl' 

l f  + i L h w 2 [ ( k  - 1)h  + s] ds,  (2.16) 
7 ( A e ,  Be, C.e(.), De(*))  )ilE~l [ L ~ ( s )  - y.s(s)]*R 

. [Lz ( s )  - Y ~ ( s ) ]  ds.  (2.6) 

To enforce the first condition, partition (2.1) and (2.3) according to 

The partitioned form of the plant dynamics A appearing in (2.8) 
Viz = ~ l h e A " V I H T ( s ) d s C T  + h H ( h ) K 2 ,  1 

lh + F V A l  l h  H T ( s ) d s C T  + FC H ( s ) d s V l z .  

allows us to characterize the two subspaces corresponding to su 
and 5.. The ns x n u  zero matrix in the lower-left block of A is 
needed to achieve asymptotic observation of x u  independently of xs. 
If necessary, the plant dynamics A can be recast in the form (2.8) 
by using a similarity transformation to a modal basis. The coupling 
matrix A,, can be either zero or nonzero. Furthermore, we assume 
that A ,  is asymptotically stable. Finally, the matrix L ,  which is 
partitioned as L L , ] ,  where L ,  and L ,  are q x n u  and Proof: The proof of this theorem is a lengthy but Straightforward 
q x n, matrices, identifies the states or linear combinations of states calculation involving integrals of white noise signals, and hence is 
whose estimates are desired. omitted. U 

1 
h h'2 lh Vi = -VZ + -C H ( s ) V I H T ( s ) d s C T  

[ L ,  
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Remark 2.1: Note that the equivalent discrete-time least squares 
estimation error criterion involves a constant positive offset 6 which 
serves as a lower bound on the sampled-data performance due to the 
discretization process. 

Next, note that due to the upper-block-triangular structure of A 
in (2.8), the equivalent discrete-time dynamics matrix eAh will also 
have an upper-block-triangular structure. Thus, in accordance with 
our earlier partitioning, (2.10) and (2.11) can be represented as 

Note that (2.11), or, equivalently, (2.19), shows that the averaged 
measurements depend upon delayed samples of the state. Thus, by 
augmenting the discretized state equation (2.10) to include these 
measurements and preserving the partitioned form given by (2.18) and 
(2.19), it is possible to represent the original sampled-data problem 
as a discrete-time problem involving nonnoisy measurements. 

Corollary 2.1: With the notation 

the fixed-order sampled-data subspace-observer problem is equivalent 
to the following discrete-time problem. Given the ( n  + Z)th-order 
discrete-time system 

?((k + 1)h) = A?(kh) + G ( k h ) ,  (2.20) 

with discrete-time nonnoisy measurements 

Y ( k h )  = C ? ( k h ) ,  (2.21) 

design an n,th-order observer of the form (2.4), (2.5) that minimizes 

7(&, Be, C ' e ( . ) >  De ( . ) )  
= A 6 + lim E t L h { [ i ( s ) i ( k h )  - y, (kh + 

k - m  

. R[L(s)?(kh)  - y,(kh + s)]} ds. (2.22) 

Remark 2.2: Note that the measurements y(lch) are noise free. 
However, due to the discrete-time setting this singularity is not as 
serious as singular measurement noise in a continuous-time setting 
where the Kalman filter gains are expressed in terms of the inverse 
of the measurement noise intensity. However, as in nonstrictly 
proper continuous-time estimation with nonnoisy measurements this 
formulation leads to a static projection matrix defined below. (See 
[16], [17] for details.) 

Next, to enforce the observation constraint l ) ,  define the error states 

(2.23) A z , (kh)  = 3, (kh)  - z e ( k ) ,  

and require that 

lim z, ( k h )  = 0,  (2.24) 
k - c c  

for all z(0) and ze(0) when wl ( t )  0, and w z ( t )  0. The 
requirement (2.24) implies that zero asymptotic observation error 
for a specified (n, + Z)-dimensional subspace is achieved under 
zero external disturbances and arbitrary initial conditions. Thus, the 
goal of the reduced-order subspace-observer problem is to design a 
reduced-order observer of order ne = nu + I  that observes a specified 
plant subspace and provides optimal estimation of a specified linear 
combination of states. Note that the observation constraint (2.24) can 
be satisfied even if the subspace corresponding to 2 ,  is unstable 
[7]-[9]. Thus we allow A ,  to possess unstable as well as stable 
modes. Of course, the results presented herein remain valid if A, j s  
asymptotically stable. The subscript U ,  however, reminds us that A ,  
is permitted to be unstable. However, since we require that A, be 
continuous-time asymptotically stable this implies that A', is discrete- 
time asymptotically stable. In applications, the matrix A', may include 
the dynamics of all coloring filter states as well as damped vibrational 
modes. 

Before continuing it is useful to point out that in the full-order case 
nu = n and hence n, = n+Z. In this case the observer/estimator can 
observe all of P ( k h )  = [ zT(kh)y^T(kh)]T.  Note that the increase in 
plant order from n to n + Z is due to the A D  process. Hence, in this 
context an nth-order observer can be regarded as being of reduced 
order. 

It now folows from (2.3) and (2.20) that 

.,((IC + 1)h) = (A, - B,C,)f,(kh) 
- A e ~ e ( k )  + A , s z s ( k )  + Glu(kh) .  

At this point we make the crucial observation that the explicit de- 
pendence of the error states z ,  ( k h )  on the states ?, ( k h )  (containing 
unstable modes) can be eliminated by constraining 

A,  = A, - Be&, (2.25) 

so that 

z,((k+ 1)h)  = (A, - BeC,)*,(kh) + A u s z s ( k h )  + G l u ( k h ) .  
(2.26) 

Now using the constraint (2.25) it follows from (2.20) and (2.26) that 
the augmented equivalent discrete-time system is given by 

i ( ( k  + 1)h)  = A i ( k h )  + G ( k h ) ,  

where 

Lemma 2.1: A is discrete-time asymptotically stable if and only 
if A ,  is discrete-time asymptotically stable. 
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Pro08 The proof follows by simply noting that 

is upper block triangular and A', is asymptotically stable. 
Next, we show that the explicit dependence of the cost functional 

on the unstable dynamics can be eliminated by employing a special 
choice of the generalized hold function Ce( . ) .  To motivate this choice 
write (2.22) as: 

7(&, Be, Ce(.), De( . ) )  

= s + lim E- {[(Qs) - ~,(s)C)k(kh) 

- C, (s)ze (k)ITR[(L(s)  - De( s ) C ) f ( t h )  
k - m  Lib 

- C e ( s ) z e ( k ) ] }  ds, 

or, equivalently, 

7 ( A e ,  Be, Cc(') ,  De( . ) )  

Pro08 For simplicity of exposition, in the first part of the proof 
we assume that ne = n + Z and D e ( s )  = 0, s E [0, h]. The proof of 
the more general case is similar but requires more extensive algebraic 
manipulations. Assuming Ce(s)  = [LeA" O q x r ] ,  s E [0, h], it follows 
from (2.27) that 

or, equivalently, 

= 5 + lim Etl"( [ ( [ L u e ~ ~ ~ o ]  - De(s)Cu)zu(kh) where z ( k h )  = 2(kh)  - ze(k). Now, since (Ae, Be,  Ce(- ) )  E S it 
follows that limk-m Q ( k h )  exists and 7(&, Be,  Ce(.)) is finite. 
Finally, assuming (Ae ,  Be, Ce( . ) ,  D e ( . ) )  E S it follows from 
Lemma 2.1 that A is asymptotically stable. Now the second-moment 

Remark2.3: As mentioned in the introduction the generalized 

equation (2.31) is immediate (see [18, p. 471]), while (2.29)  follow^ 

hold function C, (.) posses a time-varying exponential intersample 
profile. To see this, assume for simplicity that ne = n+Z and De = 0. 
In this case, it follows from (2.28) that 

k-m 

+ [([LueAuS 01 - D,(s)C,) - ~ , ( s ) ] ~ ~ ( k )  

+ (Lu~seA"(s-r)AuseAsr  dr + L8eABS z s ( k h )  R 

. [([L,eAus 01 - ~,(s)C,)z,(~h) + [ ( [ L , ~ A ~ s  0 1  

- De (s)Cu) - Ce (s)] z e  (k) 

+ (Lu~'eAu("-')AuseA6r dr + L,eASS ) x . ( k h ) ] }  ds. 

by direct verification. 0 1 I T  

c,(s) = [LeAs o q X l ] ,  s E [o, h].  (2.35) 

Alternatively, if we use a D/A zero-order-hold estimate y e ( t )  = 
ceze(k), t E [kh ,  ( k  + i ) h ] ,  with C, = [ L  O q X ~ ] ,  then (2.22) 

(2.27) 

Now note that the dependence of 7 on 2,  (or, equivalently, ze 
which may contain unstable states) can be eliminated by constraining 

C,(s) = [LueAUs O q x l ]  - De(s)Cu, s E [0, h] .  (2.28) becomes 

7 ( A e ,  Be,  C,) = 6 + limk,,]E- {[LeA" O]&(kh) tdh With this choice the cost can now be expressed in terms of the 
augmented second-moment matrix. First, however, to guarantee that 
7 is finite, consider the set of asymptotically stable reduced-order 
estimators 

S 

- [ L O ] ~ , ( ~ ) } ' R { [ L ~ ~ " O ] P ( ~ ~ )  
- [LO]z,(k)} ds,  

{(Ae, Be,  Ce( . ) ,  D e ( . ) )  : A, = A, - Be& is discrete-time 

so that A is discrete-time asymptotically stable. Of course, S is 

Proposition 2.1: The equivalent discrete-time cost functional 
nonempty if (A,, C,) is detectable. 

(2.22) is finite if Ce(.) is given by (2.28). In this case (2.22) is 
given by 

7 ( & ,  Be,  Ce ( . ) ,  D e ( . ) )  = + tr QR, (2.29) 

- [ (eAs  - I )  o ] ~ , ( ~ ) } ~ L ~ R L  
. {[eA8 O]z(kh) - [ (eAS - I )  O]ze (k ) }  ds. 

(2.36) 

where the steady-state covariance 

(2.30) Note that in this case the explicit dependence of the unstable modes 
contained within f ( k h )  or, equivalently, x,(k) may drive I(.) to 
infinity as k --t m. 

Next, we present a simple example that explicitly shows that 
employing a DIA zero-order-hold reconstruction architecture may 

Q k lim 1 ~ [ 5 ( k h ) 2 ~ ( k h ) l  
k-m 

exists and satisfies the algebraic Lyapunov equation 

Q = A Q A ~  + v ,  (2.3 

where 

- . ~  

lead to an unbounded state estimation error criterion. Specifically, 
we consider a rigid body revolving about an axis of symmetry 

fi ~ ~ ' [ ~ ( , )  - D ~ ( ~ ) C I T R [ L ( ~ )  - D , ( ~ ) C I  d s .  (2.32) with mass moment of inertia I = 1 under a standard white noise 
disturbance. The system dynamics is modeled as a simple inertia, 
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i.e., I i ( t )  = w ( t ) ,  so that the state-space model is given by and such that Q and P satisfy 

Q = AQAT + V - AuQuTAT + p l A u Q v T A T p T ,  (3.5) 

Next, assuming perfect estimation, i.e., z,(k) = z( kh),  L = R = I z ,  P = ( A  - p A v ) T P ( A  - ,Au) + R, (3.6) 
and ne = n it follows from (2.27) with C,(s) = L = I 2  and 
D e ( s )  = 0, s E [O, h] ,  that where 

, Pu > 0, (3.7) 
1 

7 ( A e ,  Be,  C,) = 6 + limk,,IE- h 

where A = [i i] .  Next, noting that eAh = [i  11 and assuming 
z(0) = [z] it follows from (2.37) that 

h2 
3 

7 ( A e ,  Be,  C,) = 5 + l i m ~ , ~ - l E [ z ~ ( k h ) ] ~ .  (2.38) 

Finally, computing the (2,2) element of the solution to Q(kh)  = 
IE[z(kh)zT(kh)]  given by 

Q ( ( k  + 1)h) = eAhQ(kh)eATh + V ' ,  

where 

we obtain 

Q z ( ( k + l ) h ) = Q z ( k h ) + h ,  k = l ,  2 , 3 , . . .  . (2.39) 

Noting that (2.39) implies Qz(kh)  = kh and that IE[zz(kh)lz = 
Q z ( k h )  it follows from (2.38) that 7 is unbounded. Alternatively, 
using a generalized hold architecture, it follows from (2.27) that in 
this case 

7 ( A e ,  Be,  C,(.)) = 6+limk,,lEh zT(kh)eAT"eA"z(kh)ds .  

Now, noting that z (kh)  = 0 since z e ( k )  = z ( k h ) ,  we obtain 
7 ( A e ,  Be,  C,(.)) = 6 which is clearly finite. 

lh 

(3.10) 

Furthermore, the minimal cost is given by (2.29). Conversely, if there 
exist ( n  + I) x (n  + I) nonnegative-definite Q and P satisfying 
(3.5) and (3.6), and such that CQCT > 0, then Q satisfies 
(2.31) wjth-(A,, Be,  Ce(.), D e ( - ) )  given by (3.1H3.4). Further- 
more, (A, V 1 I 2 )  is stabilizable if and only if A, is asymptoticdly 
stable. In this case ( A e ,  C,(-)) is completely observable over the 
sample interval. 

Proof: The proof is similar to the proof given in [7] and hence 
is omitted. 0 

Remark 3.1: Note that with B, given by (3.2), the expressions 
(3.1) and (3.3) for A, and C, are equivalent to the constraints (2.25) 
and (2.28). 

Remark 3.2: Note that the gains C,(.) and De(.) are matrix 
functions over the finite interval [0, h] .  This of course is consistent 
with our generalized hold architecture. 

Next, we specialize Theorem 3.1 to the full-order case nu = n + I .  
As discussed in [7], [8], this case corresponds to = F = p = In+i 

without loss of generality. To develop further connections with 
standard Kalman filter theory, we also assume 

A b & C T ( C & C T ) - l C ,  ul = - 

D e ( s )  = 0, s E [O, h] .  (3.1 1) 

Iv. NECESSARY CONDITIONS FOR THE 
EQUIVALENTDISCRETE-TIME PROBLEM 

for optimality 
that characterize solutions to the optimal reduced-order sampled- 
data subspace-observer problem. For nondegeneracy we restrict our 
attention to the set of admissible estimators 

Corollary 3.1: Let ne = n + I ,  assume (3.11) is satisfied and 
suppose (Ae, Be,  C,(.)) solves the optimal sampled-data reduced- 
order subspace-observer problem. Then there exists ( n  + 1 )  X (n  4- I )  
nonnegative-definite matrix Q such that 

this section, we obtain necesssary 

A, = A u ~ ,  (3.12) 

S' {(Ae, Be,  Ce( . ) ,  D e ( . ) )  E S :  (Ae, C,(.)) 
is completely observable over the sample interval}. 

B, = A & C T ( C & C T ) - l ,  (3.13) 

Theorem 3.1: If (Ae, Be,  C e ( . ) ,  D e ( . ) )  E S' solves the op- C,(s) = [LeA" O p x i ] ,  E [O, h] ,  (3.14) 
timal sampled-data reduced-order subspace-observer problem with 
constraints (2.25) and (2.28), then there exist (n  + I) x (n  + I) 
nonnegative-definite matrices Q and P such that 

where Q satisfies 

Q = AQAT - AuQuTAT + V .  (3.15) 
A, = @AUL F T ,  (3'1) 

Furthermore, the minimal cost is given by 

B, = aA&CT(C~CT)- ' ,  (3.2) 7 ( A e ,  Be,  C,(.)) = 6 + trQR, (3.16) 

C,(s) = [ i ( s )  - D e ( s ) C ] F T ,  s E [O, h] ,  (3.3) where 

De(s )  = L ( s ) Q C ~ ( C Q C ~ ) - ~ ,  s E [O, h] ,  (3.4) 
R = ;-I'[LeA' Oqx/ITR[LeA" OqX, ]ds .  
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v. NUMERICAL EVALUATION OF INTEGRALS 
INVOLVINGMATRIX EXPONENTIALS 

To evaluate the exponentialhntegral expressions appearing in The- 
orem 2.1, we utilize the approach given by [19]. This approach 
eliminates the need for integration by computing the matrix exponen- 
tial of appropirate block matrices. For details on numerical matrix 
exponentiation see [20]. For simplicity of exposition, we assume 
De = 0. 

Proposition 4. I :  Consider the following partitioned matrix expo- 
nentials of order (3n + I )  x (3n + I )  and (3n) x (3n) ,  respectively: 

On On A 

F25 F26 F21 

o n  0, F30 

Then 
1 1 
h h 

C‘ = -FF,  6 = - t r ( L T R L F z F ~ 2 ) ,  A’ = FF, 

Pm08 The proof involves straightforward manipulations of 
0 matrix exponentials and hence is omitted. 

ACKNOWLEDGMENT 

The authors wish to thank Professor Steven R. Hall for pointing 
out the relevance of [ 111 to their results, Professor Pierre T. Kabamba 
for several helpful discussions, and the reviewer for pointing out an 
error in an earlier version of the note. 

REFERENCES 

[l] W. M. Haddad, D. S. Bemstein, H.-H. Huang, and Y. Halevi, “Fixed- 
order sampled-data estimation,” In?. J. Contr., vol. 55, pp. 129-139, 
1992. 

[2] S. Shats and U. Shaked, “Exact discrete-time modelling of linear 
systems,” In?. J. Contr., vol. 49, pp. 145-160, 1989. 

[3] -, “Use of approximate discrete-time modeling in filtering and 
regulation of continuous-time processes,” In?. J. Contr., vol. 50, pp. 
1297-1313, 1989. 

[4] K. J. Astrom, Introduction to Stochastic Control Theory. New York: 
Academic, 1970. 

[5] M. E. Polites and G. 0. Beale, “Modelling and designing digital control 
systems with averaged measurements,’’ In?. J. Contr., vol. 48, pp. 
161-177, 1988. 

[6] D. S. Bemstein, L. D. Davis, and S. W. Greeley, “The optimal projection 
equations for fixed-order sampled-data dynamic compensation with 
computation delay,” IEEE Trans. Automat. Contr., vol. 31, pp. 859-862, 
1986. 

[7] D. S. Bemstein and W. M. Haddad, “Optimal reduced-order state 
estimation for unstable plants,” In?. J. Contr., vol. 50, pp. 1259-1266, 
1990. 

[8] W. M. Haddad and D. S. Bemstein, “Optimal reduced-order subspace- 
observer design with a frequency domain error bound,” Adv. Contr. 
Dynam. Syst., vol. 31, C. T. Leondes, ed. New York Academic, pp. 
23-38, 1990. 

[9] W. M. Haddad and D. S. Bemstein, “Optimal reduced-order observer- 
estimators,” AIAA J. Guidance Contr. Dyn., vol. 13, pp. 1126-1 135, 
1990. 

[lo] S. Shats, B. Z. Bobrovsky, and U. Shaked, “Discrete-time state estima- 
tion of analog double integrators,” IEEE Trans. Aero. Elec. Syst., vol. 
24, pp. 67G677, 1988. 

[l 11 A. Gelb et al., Applied Optimal Estimation. Cambridge, MA: M.I.T. 
Press, 1974. 

1121 P. T. Kabamba, “Control of linear systems using generalized sampled- 
data hold functions,” IEEE Trans. Automat. Contr., vol. AC-32, pp. 
772-783, 1987. 

[13] B. D. 0. Anderson and J. B. Moore, “Time varying feedback laws for 
decentralized control,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 

[I41 S. H. Wang, “Stabilization of decentralized control systems via time- 
varying controllers,” IEEE Trans. Automat. Contr., vol. AC-27, pp. 
741-744, 1982. 

[I51 W. Sun, K. M. Nagpal, and P. P. Khargonekar, “H,-control and 
filtering for sampled-data systems,” preprint. 

[I61 W. M. Haddad and D. S. Bemstein, “The optimal projection equations 
for reduced-order state estimation: The singular measurement noise 
case,” IEEE Trans. Automat. Contr., vol. 32, pp. 1135-1 139, 1987. 

1171 Y. Halevi, “The optimal reduced-order estimator for systems with 
singular measurement noise,” IEEE Trans. Automat. Contr., vol. 34, pp. 
777-781, 1989. 

[18] H. Kwakemaak and R. Sivan, Linear Optimal Control Systems. New 
York: Wiley, 1972. 

[19] C. F. Van Loan, “Computing integrals involving the matrix exponential,” 
IEEE Trans. Automat. Contr., vol. 23, pp. 395404, 1978. 

[20] C. Moler, and C. F. Van Loan, “Nineteen dubious ways to compute the 
exponential of a matrix,” SIAM Rev., vol. 20, pp. 801-836, 1978. 

1133-1139, 1981. 


