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The Multivariable Parabola Criterion

for Robust Controller Synthesis:
A Riccati Equation Approach*

Wassim M. Haddadt Dennis S. Bernstein t

Abstract

In 1967 Bergen and Sapiro derived an absolute (frequency do-
main) stability criterion that unifies the classical circle and Popov
criteria. A slightly weaker version of this combined criterion has a
graphical interpretation in the Popov (rather than Nyquist) plane
in terms of a parabola. Our goal in this paper is to reformulate
and generalize the parabola criterion in terms of Riccati equa-
tions. Besides providing a multivariable extension, this formula-
tion clarifies connections to state space bounded real and positive
real theory and provides the basis for robust controller synthesis.

Key words: robust stability and performance, Popov criterion, circle criterion,
parameter-dependent Lyapunov functions

1 Introduction

One of the most basic issues in system theory is the stability of feedback
interconnections. Four of the most fundamental results concerning stabil-
ity of feedback systems are the small gain, positivity, circle, and Popov
theorems. In a recent paper [8],each result was specialized to the problem
of robust stability involving linear uncertainty, and a Lyapunov function
framework was established providing connections between these classical
results and robust stability via state space methods. Furthermore, it was
pointed out in [8] that both gain and phase properties can be simultane-
ously accounted for by means of the circle criterion which yields the small
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gain theorem and positivity theorem as special cases. It is important to
note that since positivity theory and bounded real theory can be obtained
from the circle criterion and vice versa, all three results can be viewed as
equivalent from a mathematical point of view. However, the engineering
ramifications of the ability to include phase information can be significant
[3]. As shown in [8], the main difference between the small gain, positivity,
and circle theorems versus the Popov theorem is that the former results
guarantee robustness with respect to arbitrarily, time-varying uncertainty
while the latter does not. This is not surprising since the Lyapunov func-
tion foundation of the small gain, positivity, and circle theorems is based
upon conventional or fixed quadratic Lyapunov functions which guarantee
stability with respect to arbitrarily time-varying perturbations. Since time-
varying parameter variations can destabilize a system even when the para-
meter variations are confined to a region in which constant variations are
nondestabilizing, a feedback controller designed for time-varying parameter
variations may unnecessarily sacrifice performance when the uncertain real
parameters are actually constant.

Whereas the small gain, positivity, and circle results are based upon
fixed quadratic Lyapunov functions, the Popov result is based upon a
quadratic Lyapunov function that is a function of the parametric uncer-
tainty. Thus, in effect, the Popov result guarantees stability by means
of a family of Lyapunov functions. For robust stability, this situation
corresponds to the construction of a parameter-dependent quadratic Lya-
punov function [9,10]. A key aspect of this approach (see [9,10)) is the
fact that it does not apply to arbitrarily time-varying uncertainties, which
renders it less conservative than fixed quadratic Lyapunov functions (such
as the small gain, positivity, and circle results) in the presence of constant
real parameter uncertainty. An immediate application of the parameter-
dependent Lyapunov function framework of [9,10] is the reinterpretation
and generalization of the classical Popov criterion as a parameter-dependent
Lyapunov function for fully coupled constant linear parametric uncertainty.

The main contribution of this paper is the unification of the circle and
Popov criteria via a parameter-dependent Lyapunov function framework
that yields both results as special cases. The unification of the circle and
Popov criteria per se is not new to this paper. Indeed, a parabola test which
accomplishes this goal was originally developed in [2] and further studied
in [19]. However, these results are confined to SISO systems and rely on
graphical techniques. The present paper thus has four specific goals:

1. to provide a general framework for the parabola test in terms of
parameter-dependent Lyapunov functions in the spirit of (9,10];

2. to obtain a state space characterization of the parabola test via
Riccati equations;
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3. to obtain a multivariable extension of the parabola test for para-
metric uncertainty; and

4. to use these results for robust controller synthesis.

To illustrate how the parabola test unifies the circle and Popov criteria,
consider the plant G in a feedback configuration with uncertainty block
~ as shown in Figure 1. Introducing the multiplier 1 + N s into the loop
yields the configuration in Figure 2. Applying positivity to the transfer
function (1+N s)G(s) now yields the familiar Popov test. Next consider the
equivalent formulation shown in Figure 3 which involves the introduction of
an offset transfer function M1 in parallel with ~ and in feedback about G
[20,21]. The resulting configuration (Figure 4) now involves a shifted ~ (by
M1) and a bilinear transformation of G. Letting M1 =0 recovers the Popov
formulation, while N = 0 yields the circle formulation. The simultaneous
presence of both Nand M1 leads to a slightly stronger version of the
parabola test [2] (see Remarks 4.7 and 4.8 for details).

Since these transformations in general do not commute with controller
optimization techniques, they must be introduced at an early stage prior
to the synthesis procedure. Specifically, if uncertainty in the control and
measurement matrices is considered, then the resulting transformations will
be functions of the controller gains.

Although from a mathematical point of view the use of shifts and bi-
linear transformations leads to equivalent results [19-21], the use of these
transformations can yield less conservative results in practice [3]. In the
present paper we give a new uncertainty characterization of the form M1 ::;
~ ::; M2, where M1 and M2 are symmetric. The advantage of this new
characterization is that it does not place limitations on the sign of the
model uncertainty. Of particular interest is the special case -M1 = M2,
where M1 is symmetric.

.

Notation

R, Rrxs, Rr
C, Crxs, Cr
t' ,tr, Orxs
:\
1r,( )T,()*

Zl ::;Z2, Zl < Z2
IIZ/lF
IIG(s)lb

real numbers, r x s real matrices, Rrxl
complex numbers, r x s complex matrices, Crx1
expectation, trace, r x s zero matrix
complex conjugate of >.E C
r x r identity, transpose, complex conjugate
transpose
spectral radius, largest singular value
r x r symmetric, nonnegative-definite,
positive-definite matrices
Z2 - Zl E Nr, Z2 - Zl E pr, Zl, Z2 E sr
[tr ZZ*]l/2 (Frobenius matrix norm)
[(1/211") J~oo IIG(Jw)lI~dw]l/2
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2 Robust Stability and Performance Problems

Let U c nnxn denote a set of perturbations ~A of a given nominal dy-
namics matrix A E nnxn. We begin by consideringthe question of whether
or not A + ~A is asymptotically stable for all ~A E U.
Robust Stability Problem Determine whether the linear system

x(t) = (A + ~A)x(t), t E [0,00), (2.1)

is asymptotically stable for all ~A E U.

To consider the problem of robust performance, we introduce an exter-
nal disturbance model involving white noise signals as in standard LQG
(H2) theory. The robust performance problem concerns the worst-case H2
norm, that is, the worst-case (over U) of the expected value of a quadratic
form involving outputs z(t) = Ex(t), where E E nqxn, when the system is
subjected to a standard white noise disturbance w(t) E nd with weighting
DE nnxd.

Robust Performance Problem For the disturbed linear system

x(t) = (A + 6.A)x(t) + Dw(t), t E [0,00),
z(t) = Ex(t),

(2.2)
(2.3)

where w(.) is a zero-mean d-dimensional white noise signal with intensity
Id, determine a performance bound /3 satisfying

J(U) ~ sup limsup £ {lIz(t)lIn :S/3.
~AEU t-oo

(2.4)

As shown in Section 5, (2.2) and (2.3) will denote a control system
in closed-loop configuration subjected to external white noise disturbances
and for which z(t) denotes the state and control regulation error.

Of course, since D and E may be rank deficient, there may be cases in
which a finite performance bound /3satisfying (2.4) exists while (2.1) is not
asymptotically stable over U. In practice, however, robust performance is
mainly of interest when (2.1) is robustly stable. Next, we express the H2
performance measure (2.4) in terms of the observability Gramian for the
pair (A + 6.A, E). For convenience, define the n x n nonnegative-definite
matrices R ~ ETE and V ~ DDT.

Lemma 2.1 Suppose A + ~A is asymptotically stable for all 6.A E U.
Then

J(U) = sup tr P~A V = sup IIG~A(S)II~, (2.5)
~AEU ~AEU

where P~A E nnxn is the unique, nonnegative-definite solution to

0= (A + 6.A? P~A + P~A(A + 6.A) + R, (2.6)
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and

GAA(S) £ E[sI - (A +LlA)]-l D. (2.7)

.'

Proof: See [9,10]. 0

In the present paper our approach is to obtain robust stability as a con-
sequence of sufficient conditions for robust performance. Such conditions
are developed in the following sections.

3 Robust Stability and Performance

ROBUST STABILITY AND PERFORMANCE VIA PARAMETER-DEPENDENT

LYAPUNOV FUNCTIONS

The key step in obtaining robust stability and performance is to bound
the uncertain terms LlAT PAA + PAALlA in the Lyapunov equation (2.6)
by means of a parameter-dependent bounding function il(P, LlA) which
guarantees robust stability by means of a family of Lyapunov functions.
As shown in [9,10), this framework corresponds to the construction of a
parameter-dependent Lyapunov function that guarantees robust stability.
As discussed in [9,10), a key feature of this approach is the fact that it
constrains the class of allowable time-varying uncertainties thus reducing
conservatism in the presence of constant real parameter uncertainty. The
following result is fundamental and forms the basis for all later develop-
ments.

Theorem 3.1 Let ilo: Nn -- sn and Po: U -- sn be such that

LlAT P + PLlA ::; ilo(P)-[(A + LlA)T Po(LlA) + Po(LlA)(A + LlA)),

LlA E U,P E Nn,
(3.1)

and suppose that there exists PENn satisfying

0= ATP + PA + ilo(P) + R (3.2)

and such that P + Po(.6.A) is nonnegative definite for all LlA E U. Then

(A + .6.A,E) is detectable, LlA E U, (3.3)

if and only if

A + .6.Ais asymptotically stable, LlA E U. (3.4)

In this case,
PAA ::;P + Po(LlA), LlA E U, (3.5)
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where P~A is given by (2.6). Therefore,

J(U) ::; tr PV + sup tr Po(~A)V.
~AEU

(3.6)

If, in addition, there exists Po E sn such that

Po(~A) ::;Po, ~A E U, (3.7)

then
J(U) ::; {3, (3.8)

where
£:,. -

{3= tr[(P + Po)V]. (3.9)

Proof: We stress that in (3.1) P denotes an arbitrary element of Nn,
whereas in (3.2) P denotes a specific solution of the modified Lyapunov
equation. This minor abuse of notation considerably simplifies the presen-
tation. To begin, note that for all ~A E nnxn, (3.2) is equivalent to

0= (A + ~A)T P + P(A + ~A) + ilo(P) - (~AT P + P~A) + R. (3.10)

Adding and subtracting (A+~A)T Po(~A)+Po(~A)(A+~A) to and from
(3.10) yields

0= (A + ~A)T(p + Po(.6.A))+ (P + Po(.6.A))(A+ ~A)
+ ilo(P) - [(A + ~A)T Po(~A) + Po(~A)(A + ~A)] (3.11)
- (~AT P + P.6.A) + R.

Hence, by assumption, (3.11) has a sol!ltion PENn for all ~A E nnxn.
If ~A is restricted to the set U then, by (3.1), the expression

ilo(P) - [(A+ ~A)T Po(~A) + Po(.6.A)(A+ ~A)] - (~AT P + P~A)

is nonnegative definite. Thus, if the detect ability condition (3.3) holds for
all ~A E U, then it follows from Theorem 3.6 of [23] that (A + ~A, [R +
il(P, .6.A) - (~AT P + p~A)j1/2) is detectable for all ~A E U, where

il(P, .6.A)~ ilo(P) - [(A+ .6.A)TPo(.6.A)+ Po(.6.A)(A+ ~A)]. (3.12)

It now follows from (3.11) and Lemma 12.2 of [23] that A + ~A is asymp-
totically stable for all ~A E U. Conversely, if A + ~A is asymptotically
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stable for all .6.A E U, then (3.3) is immediate. Now, subtracting (2.6)
from (3.11) yields

0= (A + .6.A)T(P + Po(.6.A)- P~A) + (P + Po(.6.A)- P~A)(A + .6.A)

+ no(p) - [(A+ .6.A)TPo(.6.A)+ Po(.6.A)(A + .6.A)] (3.13)
- (.6.ATP + P.6.A), .6.AE U,.

or, equivalently,since A +.6.A is asymptotically stable for all .6.AE U,

P + Po(.6.A)- P~A = 100 e(A+~A)T t[fl(P, .6.A) - (.6.ATP + P.6.A)]
. e(A+~A)tdt > 0 .6.A E U- , ,

(3.14)
which implies (3.5). The performance bounds (3.6), (3.8) are now an im-
mediate consequenceof (2.5), (3.5), and (3.7). 0
Remark 3.1 If R is positive definite then the detect ability hypothesis of
Theorem 3.1 is automatically satisfied.

Remark 3.2 Theorem 3.1 can be strengthened by noting that the de-
tectability assumption is, in a sense, superfluous. To see this, first note
that robust stability concerns only the undisturbed system (2.1) while R
involves the H2 performance weighting. Hence robust stability is guaran-
teed by the existence of a solution PENn satisfying (3.2) with R replaced
by a1n for some a > O. For this replacement detectability is automatic
(see previous remark). For robust performance, however, P in (3.5) must
be obtained from (3.2).

Note that, with n(p, LlA) defined by (3.12), condition (3.1) can be
written as

(3.15)

where fl(P, LlA) is a function of the uncertain parameters .6.A. For conve-
nience we shall say that fl(., .) is a parameter-dependent bounding function
or, to be consistent with [9,10], a parameter-dependent fl-bound.

Finally, we note that the parameter-dependent fl-bound framework es-
tablishing robust stability given by Theorem 3.1 is equivalent to the ex-
istence of a parameter-dependent Lyapunov function of the form V(x) =
xT(P+Po(.6.A))x which also establishes robust stability. For further details
see [8-10].
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4 Construction and Connections

CONSTRUCTION OF PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS
AND CONNECTIONS TO THE MULTIVARIABLEPARABOLA CRITERION

In this section we assign explicit structure to the set U and the para-
meter-dependent bounding function D(., .). Specifically, the uncertainty set
U is defined by

U ~ {~A E nnxn: ~A = BoFCo, where F E F}, (4.1)

where F is a given subset of the set :t, which is defined by

:t ~ {F E nmoxmo: (F - Ml)T[(M2 - Md-l + (M2- Ml)-T](F - Ml)
~ (F - Md + (F - Ml?}.

(4.2)
In (4.1) and (4.2), Bo E nnxmo and Co E nmoxn are fixed matrices denot-
ing the structure of the uncertainty, F E nmo xmo is an uncertain matrix,
and Mt, M2 are given mo x mo matrices such that (M2 - Md-l exists.

As an aside we simplify the set :t in the case in which F, Ml' and M2
are symmetric and M2 - Ml is positive definite.

Lemma 4.1 Let F, Ml, M2 E smo and M2 - Ml E pmo. Then (F -
Md(M2 - Ml)-l (F - Md ~ F - Ml if and only if Ml ~ F ~ M2.

Proof: The proof followsas in the proof of Lemma 4.4 of [9,10]. 0
Thus, suppose that Ml' M2 are symmetric and M2 - Ml is positive

definite. Then the set of symmetric matrices F in :t is given by

(4.3)

If, furthermore, F in :t is constrained to have the diagonal structure
diag[Fl, F2'.'. , Fmo], then Mli ~ Fi ~ M2i' i = 1,..., mo, where Ml =
diag[Mll, Ml2,..., Mlmo] and M2 = diag [M2l, M22,..., M2mo].More gen-
erally, F may consist of those matrices having repeated elements and/or
blocks on the diagonal of the form diag [Fl' Fl, Fl , F2' . . . , Fmo]. As shown
in [7,8] the uncertainty set U involves a magnitude and phase constraint
on the uncertainty unlike small gain or structured stability radii type un-
certainty structures [12,13] which only involve a magnitude constraint on
the uncertainty of the form FT F ~ ,I.

For the structure of U satisfying (4.1), the parameter-dependent bound
fl(.,.) satisfying (3.12) can now be given a concrete form. Since the ele-
ments ~A in U are parameterized by the elements F in F, for convenience
in the following results we shall write Po(F) in place of Po(~A). Fur-
thermore, we introduce a key definition that will be used in subsequent
developments.
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Definition 4.1 Let MI,M2,N E nmoxmo. Then F and N are compatible
if (F - MdT N is symmetric for all F E F. Furthermore, F and N are
strongly compatible if, in addition, (F - MdT N is nonnegative-definite for
all F E F.

Proposition 4.1 Let M1, M2, N E nmoxmo be such that F and N are
compatible, M2 - M1 is positive definite, and

.0

Then the functions

ilo(P) = [Co+ NCo(A + BoM1C) + BJ p]T

. [(M2- Md-1 - NCoBo+ [(M2- M1)-1- NCoBo]T]-l

. [Co+ NCo(A + BoM1C) + BJP] + PBoM1CO

+ C'[ M{ BJ P, (4.5)

Po(F) = C'[(F - MdT NCo, (4.6)

satisfy (3.1) with U given by (4.1).

Proof: Sinceby (4.4) (M2-Ml)-1-NCoBo+[(M2-Md-l-NCoBo]T >
o and by (4.2)F-M1 +(F-MdT -(F-MdT[2(M2-M1)-1](F-M1) 2:0,
it followsthat

O:S [[Co+ NCo(A + BoM1CO)+ BJ P]

-[(M2 - Md-1 - NCoBo + (M2 - Md-1 - NCoBo?](F - MdCo]T

. [(M2 - Md-1 - NCoBo + ((M2 - Md-1 - NCoBo)T]_l

. [[Co + NCo(A + BoM1CO)+ BJ P] - [(M2- Md-1 - NCoBo

+ ((M2 - Md-1 - NCoBo)T](F - M1)CO]

+ C'[ [(F - M1) + (F - MdT - (F - MdT

. [2(M2 - Md-1](F - Md] Co

=ilo(P) - PBoM1CO- C'[M{ BJ P

- [Co+ NCo(A + BoM1CO)+ BJ p]T

. (F - MdCo - CJ(F - MdT[Co + NCo(A + BoM1CO)+ BJ P]

+ CJ(F - MdT[(M2 - Md-1 - NCoBo + ((M2 - Md-1 - NCoBo)T]

. (F - MdCo + CJ[(F - Md + (F - MdT

- (F - MdT[2(M2 - Md-1](F - M1)]CO
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=Do(P) - ATCJNT(F - MdCo - CJM'[BJCJNT(F - M1)CO

- PBoFCo - CJ(F - MdT NCoA - CJ(F - MdT NCoBoM1CO

- CJFTBJP - CJ(F - MdTNCoBo(F - MdCo

- CJ(F - M1)TBJCJ NT(F - MdCo

=Do(P) - [(A + ~A)T Po(F) + Po(F)(A + ~A)] - [~ATP + P~A],

which proves (3.1) with U given by (4.1). 0
Remark 4.1 Note that by setting M1 = 0,one recovers the parameter-
dependent .a-bound consideredin [9,10]whichcorresponds to a generalized
multivariable version of the Popov criterion for fully coupled linear uncer-
tainty.

Remark 4.2 Note that, unlike the results of (9,1O], Po(0) =
-CJ' Ml NCo =1=0 and Do(P) is not necessarilynonnegative definite. See
[4]for further discussionon indefinite parameter-dependent D-bounds re-
sulting in indefinite RiccatijLyapunov type equations.

If M2 - M1 is positive definite, then we have the following norm bound
inequality on F - M1 for all F E P.
Lemma 4.2 Let F, M1, M2 E nmo xmo and assume that M2 - M1 is
positive definite. Then

(4.7)

Proof: The proof is a slight generalization of the proof of Lemma 4.1 of
[10] and hence is omitted. 0

If F and N are compatible and M2 - M1 is positive definite, then it
follows from Lemma 4.2 that there exists a matrix J.LE Nmo such that
(F - MdT N ~ J.Lfor all F E F.

Next, using Theorem 3.1 and Proposition 4.1 we have the following
immediate result.

Theorem 4.1 Let M1,M2,N E nmoxmo be such that F and N are
strongly compatible, M2 - M1 is positive definite, and (4.4) is satisfied.
Furthermore, suppose there exists a nonnegative-definite matrix P satisfy-
mg

o = (A + BoMl Co)TP + P(A + BoMl Co)

+ [Co+ NCo(A + BoM1CO)+ BJ P]T[(M2- Md-1

- NCoBo + {(M2 - Md-1 - NCoBo)T]-l

. [Co+ NCo(A + BoM1CO)+ BJ P] + R. (4.8)
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Then

(A + D.A,E) is detectable, D.A E U, (4.9)

if and only if

A + D.A is asymptotically stable, D.A E U. (4.10)

In this case,

J(U) ~ tr PV + sup tr Cl(F - MdT NCo ~ tr[(P + cl JLCo)V].(4.11)
FEF

Proof: The result is a direct specialization of Theorem 3.1 using Propo-
sition 4.1. We only note that Po(D.A) now has the form Po(F) = C;r(F-
MdT NCo. Since by the strong compatibility assumption (F - M1)T N ~ 0
for all FE F it follows that P+Po(F) is nonnegative definite for all FE F
as required by Theorem 3.1. 0

Note that asymptotic stability in Theorem 4.1 is guaranteed by the
parameter-dependent Lyapunov function

Remark 4.3 The condition that (F - MdT N = NT(F - M1), FE F,
represents an intimate relationship between the matrix N and the structure
of the matrices F in F. In fact, this relationship is analogous to the com-
muting assumption between the D-scales and D. blocks used in JL-analysis
and synthesis and serves to explicitly enforce structure in the uncertainty
F. It is easy to see that there always exists such a matrix N even if
FE F is neither diagonal nor symmetric. For example, if F = FoImo, and
M1 = MoImo, where Fo and Mo are scalars, then N can be an arbitrary
nonnegative-definite matrix. Alternatively, if N = NoImo, then F - M1
may be nondiagonal. Of course, F - M1 and N may have more intricate
structure, for example, they may be block diagonal with commuting blocks
situated on the diagonal.

As discussed later in this section, generalizations of the classical para-
bola criterion apply only to decoupled multivariable nonlinearities. Al-
though limited to linear uncertainty, the set U, however, allows a richer
class of multivariable uncertainty inasmuch as F may represent a fully pop-
ulated uncertain matrix. To see how such multivariable uncertainty may
be useful in practice, consider the multiple degree of freedom vibrational
system

Mox(t) + Cox(t) + (Ko + D.K)x(t) = 0,
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where Mo, Co, and Ko denote generalized mass, damping, and stiffness
coefficients, respectively, and where b..K denotes stiffness uncertainty. In
state space form this system can be written as

where z(t) = [xT(t) xT(t)]T. In accordance with (4.1), a representation of
the uncertain component of the system dynamics is thus given by

Assuming the stiffness uncertainty satisfies the bounds M1 ~ b..K ~ M2,
which with F = b..K, is precisely the condition considered in Lemma 4.1.

Next, we establish connections between the parameter-dependent
bounding function formed by (4.5) and (4.6) and the classical parabola
test [2,19]. Furthermore, by exploiting results from positivity theory it
is possible to guarantee the existence of a positive-definite solution to
(4.8). First, however, we present additional notation and definitions and
a key lemma concerning strongly positive real transfer functions. Let

G(s) "" [~ I ~] denote a state space realization of a transfer function
G(s), that is, G(s) = C(sI _A)-l B+D. The notation ,,~n"denotes a min-
imal realization. Furthermore, an asymptotically stable transfer function is
a transfer function each of whose poles is in the open left half plane.

A square transfer function G(s) is called positive real [1, p. 216] if 1)
all poles of G(s) are in the closed left half plane and 2) G(s) + G*(s) is
nonnegative definite for all Re[s] > O. A square transfer function G(s) is
called strictly positive real [16,22] if 1) G(s) is asymptotically stable and
2) G(jw) + G*(jw) is positive definite for all real w. Finally, a square
transfer function G(s) is strongly positive real if it is strictly positive real
and D + DT > 0, where D ~ G(oo).

Lemma 4.3 The transfer function G(s) ~n [~ I ~] is strongly positive
real if and only if D + DT > 0 and there exist positive-definite matrices P
and R such that

0= ATp+ PA+ (C - BTp)T(D + DT)-l(C - BTp) +R. (4.12)

Proof: See [7]. 0
Remark 4.4 Lemma 4.3 is a special case of the Kalman-Yakubovich-
Popov lemma (KYP) [1,18]. Specifically,it followsfrom the KYP lemma
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that G(s) is positive real if and only if there exist matrices P, L, W, where
P is positive definite, such that

O=ATp+PA+LTL,

0= BTp-C+ WTL,
0= D+DT - WTW.

Now, it can be shown that in the case where G(s) is strongly positive
real the above three equations are equivalent to the single Riccati equation
given by (4.12). For further details see [8,9].

Next, using Lemma 4.3 we obtain a sufficient condition for the existence
of a solution to (4.8).
Theorem 4.2 Let

Then g(s) is strongly positive real, if and only if there exist positive definite
matrices P and R satisfying (4.8).

Proof: The proof is an immediate consequence of Lemma 4.3. 0

Remark 4.5 Note that the frequency domain condition in Theorem 4.2 is
similar in principle to the frequency domain condition given by Hinrichsen
and Pritchard [12,13] in terms of an Hoostability radius of a transfer func-
tion associated with A, Bo, and Co. However, the Lyapunov function that
establishes robust stability of the uncertain system in [12,13]is a fixed Lya-
punov function in contrast to the parameter-dependent Lyapunov function
that establishes robust stability in Theorem 4.2.

Next, we show that Theorem 4.1 is a generalization of the classical para-
bola test [2] for the case in which the loop sector-bounded nonlinearity is
used to represent uncertainty. First, however, we provide a generalization
of the parabola criterion for multivariable systems with diagonal nonlin-
earity structure. Specifically, we define the set ~ characterizing a class of
sector-bounded memoryless time-invariant nonlinearities. Let M1, M2 and
M2 - M1 be given positive-definitediagonal matrices and define

if?~ {<fJ:nmo -t nmo: (<fJ - M1y)T[(M2- Md-1(<fJ- M1y) - y] ~ 0,

Y E nmo, and <fJ(y)= [<fJl(yd,<fJ2(Y2),... , <fJmo(Ymo)]T} .

In the scalar case mo = 1, the sector condition ~ is equivalent to the more
familiar condition
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For notational convenience in stating the multivariable generalization of

the parabola criterion we define M1 ~ diag[m1, m2, . . . ,mmo] and N ~
diag[N1, N2"." Nmo]'

Theorem 4.3 (The Multivariable Parabola Criterion) If there exists a
nonnegative-definite diagonal matrix N such that (M2 - Md-1 + (I +

N s)(I +G(S)Ml)-lG(S) is strongly positive real, where G(s) ~n [~ I ~J,
then the negative feedback interconnection of G (s) and 4>(-)is asymptoti-
cally stable for all 4>(-)E ip.

Proof: First note that the negative feedback interconnection of G(s) and
4>(,)has the state-space description

x(t) =Ax(t) - B4>(y(t)),

y(t) =Cx(t).

(4.13)

(4.14)

Now, noting that [I + G(S)Ml]-lG(S) corresponds to a plant G(s) with
negative feedback gain M1, it follows from feedback interconnection ma-
nipulations that a minimal realization for [I + G(s)Md-1G(s) is given by

[I+ G(s)M1]-lG(S)~n [A - ~M1C KJ.

Similarly,noting that sG(s) '" [~ J ' it follows that (M2-Md-1+CATCB
(I + Ns)(I + G(s)Md-1G(s) has a minimal realization given by

[

A-BMIC
C + NC(A - BM1C)

Now it followsfrom Lemma 4.3 that, since (M2 - Md-1 + (I + Ns)(I +
G(s)Md-1G(s) is strongly positive real, there exist positive-definitema-
trices P and R such that

0= (A - BM1C)T P + P(A - BM1C)
+ [C+ NC(A - BM1C) - BTp]T[(M2 - Md-1

+ NCB + ((M2 - Md-1 + NCB) T]_l

. [C+ NC(A - BM1C) - BTp] + R. (4.15)

Next, for 4>E ip define the Lyapunov function candidate

m Yi

V(x) = xT Px + 2?= f[4>i(U) - miu]Nidu. (4.16)
~=l 0
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The corresponding Lyapunov derivative is given by

Next, using (4.15), noting that iJ= CAx - CB4J,and adding and subtract-
ing 2(4J- M1y)T(M2 - Ml)-I(4J- M1y), 2(4J- M1y)Ty, 2xTCTM1NCB4J,
2xTATCTNM1Cx, 2xTCTM1BTCTN4J, and 2xTCTMIBTCTNMICX to
and from (4.17), it follows(after some algebraic manipulation) that

where

z £: [(M2- Md-l + NCB + ((M2- Md-l + NCB) T]-1/2
. [C+ NC(A - BM1C) - BTp]x

- [(M2- Md-l + NCB + ((M2 - Md-l + NCB) Tp/2[4J- M1Cx].

SinceR is positivedefiniteand (4J-Mly)T[(M2 - Md-1(4J-MlY) -y] :::; 0,
it follows that V(x) is negative definite. 0

Remark 4.6 A similar proof for the case where M1 = ° is given in [18]
using the three equation form of the KYP lemma given in Remark 4.4.
This case corresponds to the multivariable Popov criterion [8,17,18].
Remark 4.7 Theorem 4.3 provides a multivariable generalization of the
classical parabola test [2]. To see this, consider the SISO case, assume
M1M2 > 0, and let G = x + JY. Next, note that Theorem 4.3 requires
1/(M2 - Md + Re[(1 + N s)G(s)/(1 + M1G(s))] > 0, Re[s] > 0, or, equiva-
lently,

[

1+M2G(S)
]Re 1 + M1G(s) (1 + Ns) > 0, Re[s] > 0. (4.18)

Now, (4.18) implies that M1M2x2 + (M1 + M2)x + 1> N(M2 - Mdwy-
M1M2y2. Since M1M2 > 0, a slightly weakerversionof the above inequal-
ity is (MIX + 1)(M2x + 1) > N(M2 - Mdwy which provides an absolute
frequency domain stability condition with a graphical interpretation in the
Popov plane in terms of a parabola [2,19]. It is important to note that
in the linear parametric uncertainty case, the Riccati equation formula-
tion provides a stronger and hence less conservative result since we do not
require that M1M2 > 0.

Remark 4.8 Note that for the symmetric sector case with -M1 = M2
which corresponds to the shifted Popov criterion, it follows from (4.18) that

(4.19)
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or, equivalently,

(4.20)

Equation (4.20) involves a frequency domain stability criterion in the
Nyquist plane (rather than the Popov plane) in terms of a family of fre-
quency dependent off-axis circles [11,14,15]. The circle centers vary as a
function of the phase of the Popov multiplier, but each has the same real
axis intercepts at :!:M;l. This criterion is reminiscent of the classical off-
axis circle criterion of [5], where a single bounding circle is employed as op-
posed to a family of frequency dependent ones. This frequency dependent
off-axis circle interpretation along with its connection to real parameter
uncertainty if further discussed in [11, 14].

Remark 4.9 The authors in [11, 14] also discuss connections between
the frequency domain stability condition for the symmetric shifted Popov
criterion and the upper bounds for real-JLdiscussed in [6,24]. It is shown
that the Popov multiplier corresponds to a particular parameterization of
the frequency dependent scaling matrices in mixed-JLtheory. By consider-
ing other classes of nonlinear models of the uncertainty, Haddad et al. [11]
extend these frequency domain criteria to include more refined classes of
nonlinear functions, and, as a result, more general forms of the stability
multipliers, which consequently provide a general parameterization of the
D, N scales for mixed-JLanalysis and synthesis.

In order to specialize the result of Theorem 4.3 to robust stability with
constant linear parameter uncertainty, consider the system

x(t) = (A + ~A)x(t), (4.21)

where ~A E U and U is definedby

U ~ {~A: ~A = - BFC, F = diag[Fl,F2'... ,Fmo],
mi::; Fi::; mi, i = 1,...,mo}.

It now follows from Theorem 4.3 by setting <jJ(y) = Fy = FCx that A + ~A
is asymptotically stable for all ~A E U.

It has thus been shown that in the special case that F and N are
diagonal nonnegative-definite matrices, Theorem 4.1 (with Bo replaced by
- Bo) specializes to the multivariable parabola criterion when applied to
linear parameter uncertainty. This is not surprising since in this case the
Lyapunov function (4.16) that establishes robust stability takes the form

(4.22)
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or, equivalently,

(4.23)

and thus is a special case of the parameter-dependent Lyapunov function
discussed earlier. Note that the uncertain parameters are not allowed to be
arbitrarily time-varying, which is consistent with the fact that the classical
parabola criterion is restricted to time-invariant nonlinearities.

Finally, we note that in the case in which M1 = 0, Theorem 4.3 spe-
cializes to the multi variable Popov criterion considered in [9,10]. Alter-
natively, retaining M1 and setting N = 0 yields a strongly positive real
requirement on (M2 - Md-1 + (I + G(s)Md-1G(s) or, equivalently, on
(I +G(s)M2)(1 +G(s)M1)-1 whichcorresponds to the multivariable circle
criterion considered in [8] with the restrictions that MI, M2 be diagonal
and positive definite.

5 Dynamic Output Feedback Controller Synthesis

In this section we introduce the Dynamic Robust Stability and Performance
Problem. For simplicity we restrict our attention to controllers of order
nc = n, that is, controllers whose order is equal to the dimension of the
plant. This problem involves the set U C 'R,nxn of uncertain perturbations
~A of the nominal system matrix A.

Dynamic Robust Stability and Performance Problem Given the
nth-order stabilizable and detectable plant with constant structured real-
valued plant parameter variations

x(t) = (A + ~A)x(t) + Bu(t) + D1w(t), t 2: 0,
y(t) = Cx(t) + D2W(t),

where u(t) E 'R,m,w(t) E 'R,d, and y(t) E 'R,l, determine an nth-order
dynamic compensator

(5.1)

(5.2)

xc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t),

(5.3)
(5.4)

that satisfies the following design criteria:
i) the closed-loop system (5.1)-(5.4) is asymptotically stable for all

~A E U; and
ii) the performance functional
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is minimized.

For each uncertain variation ~A E U, the closed-loop system (5.1)-(5.4)
can be written as

i(t) = (A + ~A)x(t) + Dw(t), t ~ 0, (5.6)

where

-
(t) ~

[

X(t)
]

A- ~
[

A
x - Xe(t) , - BeG

and where the closed-loop disturbance Dw(t) has intensity V = DDT,
- L:>

[

DI

]

- L:>

[

VI 0

]
T T

where D = BeD2 ,V = 0 BeV2B; ,VI = DIDI , V2= D2D2 . The
closed-loop system uncertainty ~A has the form

where
- L:>

[

Bo

]

- L:>

[/'I ]Bo = 0 ,Go = vO OmoXno .
no x mo

Finally, if A + ~A is asymptotically stable for all ~A E U and for
a given compensator (Ae, Be, Ge), then the performance measure (5.5) is
given by

(5.7)

where PD.Asatisfies the 2n x 2n algebraic Lyapunov equation

- -T- - - - -
0= (A + ~A) PD.A+ PD.A(A+ ~A) + R, (5.8)

where

To apply Theorem 4.1 to controller synthesis we consider the perfor-
mance bound (3.9) in place of the actual worst-case H2 performance as in
Theorem 4.1 with A, R replaced by A and R to address the closed-loop
control problem. This leads to the following optimization problem.

Auxiliary Minimization Problem Determine (Ae,Be,Ge) that mini-
mizes

.J(K) ~ tr[(.P +cl J.£Co)V] (5.9)
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where P E ,N2n satisfies

and such that (Ae, Be, Ce) is minimal and :Fand N are strongly compatible.
It follows from Theorem 4.1 that the satisfaction of (5.10) along with

the detect ability condition (.A+~.A, E) leads to closed-loop robust stability
along with robust H2 performance.

Next, we present sufficient conditions for robust stability and perfor-
mance for the dynamic output feedback problem. For arbitrary P, Q E
Rnxn define the notation

Ro ~ (M2 - Md-1 - NCoBo + ((M2 - Md-1 - NCoBo)~
6 T T T -1 - 6 rt rt

(
rt

)R2a=R2+B CoN Ro NCoB, C= vo+Nvo A+BoMlVO,
6 T T C T T -1

(C
- T

) A 6
A rt B -I C

-
Pa = B P + BoN Ro + Bo P, p = + BoMl 1..10+ oRo ,

- 6 T -1 6 - -1 T
E = C V2 C, AP = Ap - QE + BoRG Bo P.

Theorem 5.1 Assume Ro > 0 and assume that:F and N are strongly
compatible. Furthermore, suppose there exist n x n nonnegative-definite
matrices P, Q, P satisfying

(5.11)

(5.12)
(5.13)

and let Ae, Be, Ce be given by

Ae = Ap - Q~ + BoRiJ1BJ P - (I + BoRiJ1NCo)B~~l Pa,

Be = QCTV2-1,

Ce = - R2a1Pa.

(5.14)

(5.15)
(5.16)

Then (A + ~A, E) is detectablefor all ~A E U if and only if A + ~A is
asymptoticallystablefor all ~A E U. In this case, the performance of the
closed-loopsystem (5.5) satisfies the bound
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Proof: The proof follows as in the proof given in [9]. 0

Remark 5.1 Note that if the uncertainty in the plant dynamics is deleted,
that is, Bo = 0, Go = 0, then Theorem 5.1 specializes to the standard LQG
result.

Theorem 5.1 provides constructive sufficient conditions that yield dy-
namic output feedback controllers for robust stability and performance.
These conditions comprise a system of three modified algebraic Riccati
equations in variables P, Q, and P, respectively. When solving (5.11)-(5.13)
numerically, the matrices Ml' M2 and N and the structure matrices Bo and
Go appearing in the design equations can be adjusted to examine tradeoffs
between performance and robustness. To further reduce conservatism, one
can view the multiplier matrix N as a free parameter and optimize the H2
performance bound J with respect to N. In particu\ar, OJ IoN is given
by

oJ - - -T -1 - - - - - -T- -
oN = J.LCoVCo + Ro [Go+ NGo(A + BoMl Go) + Bo P]Q

- - - - 1 - - - - - -T- T-T. [(A + BoM1CO)+ BoRo (Co+ NCo(A + BoM1CO)+ BoP)] Co,

where Q satisfies

- - - - -1 - -T- -
° =[A + BoMl Go + BoRO (C + Bo P)]Q

- - - - - 1 = -T - T -
+ Q[A+ BoM1CO+ BoRo (G+ BoP)] + V,

and -6 - - - - -
C = Co + NGo(A + BoM1GO).

Now, the basic approach is to employ a numerical algorithm to design the
optimal controller and the multiplier N simultaneously, thus avoiding the
need to iterate between controller design and optimal multiplier evaluation.
For details see [10,11].
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Figure 1: Uncertain Feedback System
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Figure 2: Uncertain Feedback System with Popov Multiplier
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Figure 3: Uncertain Feedback System with Loop Transformation
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Figure 4: Transformed Uncertain System
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