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Abstract. One of the major difficulties in designing implementable finite-dimensional controllers for
distributed parameter systems is that such systems are inherently infinite dimensional while controller
dimension is severely constrained by on-line computing capability. While some approaches to this problem
initially seek a correspondingly infinite-dimensional control law whose finite-dimensional approximation
may be of impractically high order, the usual engineering approach involves first approximating the
distributed parameter system with a high-order discretized model followed by design of a relatively low-order
dynamic controller. Among the numerous approaches suggested for the latter step are model/controller
reduction techniques used in conjunction with the standard LQG result. An alternative approach, developed
in [36], relies upon the discovery in [31] that the necessary conditions for optimal fixed-order dynamic
compensation can be transformed into a set of equations possessing remarkable structural coherence. The
present paper generalizes this result to apply directly to the distributed parameter system itself. In contrast
to the pair of operator Riccati equations for the "full-order" LQG case, the optimal finite-dimensional
fixed-order dynamic compensator is characterized byfour operator equations (two modified Riccati equations
and two modified Lyapunov equations) coupled by an oblique projection whose rank is precisely equal to
the order ofthe compensator and which determines the optimal compensator gains. This "optimal projection"
is obtained by a full-rank factorization of the product of the finite-rank nonnegative-definite Hilbert-space
operators which satisfy the pair of modified Lyapunov equations. The coupling represents a graphic portrayal
of the demise of the classical separation principle for the finite-dimensional reduced-order controller case.
The results obtained apply to a semigroup formulation in Hilbert space and thus are applicable to control
problems involving a broad range of specific partial and functional differential equations.
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1. Introduction. One of the major difficulties in designing active controllers for
distributed parameter systems is that such systems are inherently infinite dimensional
while implementable controllers are necessarily finite dimensional with controller
dimension severely constrained by on-line computing capability. As pointed out by
Balas ([1], see also [2]), control design for distributed parameter systems entails the
practical constraints of 1) finitely many sensors and actuators, 2) a finite-dimensional
controller and 3) natural system dissipation. The validity of 2) is apparent from the
fact that processing and transmitting electrical signals by conventional analog or digital
components constitutes finite-dimensional action. Although distributed parameter
devices can also be utilized, their fabrication and implementation can incorporate at
most a finite number of design specifications. Hence, although distributed parameter
systems are most accurately represented by infinite-dimensional models, real-world
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Examples of such components include tapped delay lines and surface acoustic wave devices. Although
acoustoelectric convolvers I-3, p. 465] can perform continuous-time integration, synthesis of the desired
impulse-response kernel can incorporate only finitely many specified parameters. The obvious fact should
also be noted that physical limitations impose an upper bound on the number of design parameters that
can be incorporated in the construction of any device. For an extensive treatment of this subject, see [72].
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constraints require that implementable controllers be modelled as lumped parameter
systems.

Clearly, the above observations effectively preclude the possibility of realizing
infinite-dimensional controllers that involve full-state feedback or full-state estimation
(see, e.g., [4]-[6] and the numerous references therein). Although finite-dimensional
approximation schemes have been applied to optimal infinite-dimensional control laws
([7]-[9]), these results only guarantee optimality in the limit, i.e., as the order of the
approximating controller increases without bound. Hence, there is no guarantee that
a particular approximate (i.e., discretized) controller is actually optimal over the class
of approximate controllers of a given order dictated by implementation constraints.
Moreover, even if an optimal approximate finite-dimensional controller could be
obtained, it would almost certainly be suboptimal in the class of all controllers of the
given order.

Although the usual engineering approach to this problem is to replace the dis-
tributed parameter system with a high-order finite-dimensional model, analogous,
fundamental difficulties remain since application of LQG leads to a controller whose
order is identical to that of the high-order approximate model. Attempts to remedy
this problem usually rely upon some method of open-loop model reduction or closed-
loop controller reduction (see, e.g., [10]-[15]). Most of these techniques (with the
exception of 11 ]) are ad hoc in nature, however, and hence guarantees of optimality
and stability may be lacking.

A more direct approach that avoids both model and controller reduction is to fix
the controller structure and optimize the performance criterion with respect to the
controller parameters. Although much effort was devoted to this approach (see, e.g.,
[16]-[30]), progress in this direction was impeded by the extreme complexity of the
nonlinear matrix equations arising from the first-order necessary conditions. What was
lacking, to quote the insightful remarks of [24], was a "deeper understanding of the
structural coherence ofthese equations." The key to unlocking these unwieldy equations
was subsequently discovered by Hyland in 31] and developed in 32]-[36]. Specifically,
it was found that these equations harbored the definition of an oblique projection (i.e.,
idempotent matrix) which is a consequence of optimality and not the result of an ad
hoc assumption. By exploiting the presence of this "optimal projection," the originally
very complex stationary conditions can be transformed without loss of generality into
much simpler and more tractable forms. The resulting equations (see [36, (2.10)-(2.17)])
preserve the simple form of LQG relations for the gains in terms of covariance and
cost matrices which, in turn, are determined by a coupled system of two modified
Riccati equations and two modified Lyapunov equations. This coupling, by means of
the optimal projection, represents a graphic portrayal of the demise of the classical
separation principle for the reduced-order controller case. When, as a special case,
the order of the compensator is required to be equal to the order of the plant, the
modified Riccati equations immediately reduce to the standard LQG Riccati equations
and the modified Lyapunov equations express the proviso that the compensator be
minimal, i.e., controllable and observable. Since the LQG Riccati equations as such
are nothing more than the necessary conditions for full-order compensation, the
"optimal projection equations" appear to provide a clear and simple generalization
of standard LQG theory.

The fact that the optimal projection equations consist of four coupled matrix
equations, i.e., two modified Riccati equations and two modified Lyapunov equations,
can readily be explained by the following simple reason. Reduced-order control-design
methods often involve either LQG applied to a reduced-order model or model reduction
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applied to a full-order LQG design, and hence both approaches require the solution
of precisely four equations: two Riccati equations (for LQG) plus two Lyapunov
equations (for system reduction via balancing, as in [12], [14]). The coupled form of
the optimal projection equations is thus a strong reminder that the LQG and order-
reduction operations cannot be iterated but must, in a precise sense, be performed
simultaneously. This situation is partly due to the fact that the optimal projection matrix
may not be of the form [ o] even in the basis corresponding to the "balanced"
realization [12], [14]. This point is explored in [37], [37a] where the solution to the
optimal model-reduction problem is characterized by a pair of modified Lyapunov
equations which are also coupled by an oblique projection.

Returning now to the distributed parameter problem, it should be mentioned that
notable exceptions to the previously mentioned work on distributed parameter control-
lers are the contributions of Johnson [38] and Pearson [39], [40] who suggest fixing
the order of the finite-dimensional compensator while retaining the distributed para-
meter model. Progress in this direction, however, was impeded not only by the
intractability of the optimality conditions that were available for the finite-dimensional
problem (as in [16]-[30]), but also by the lack of a suitable generalization of these
conditions to the infinite-dimensional case. The purpose of the present paper is to
make significant progress in filling these gaps, i.e., by deriving explicit optimality
conditions which directly characterize the optimal finite-dimensional fixed-order
dynamic compensator for an infinite-dimensional system and which are exactly
analogous to the highly simplified optimal projection equations obtained in [31]-[34],
[36] for the finite-dimensional case. Specifically, instead of a system for four matrix
equations we obtain a system of four operator equations whose solutions characterize
the optimal finite-dimensional fixed-order dynamic compensator. Moreover, the
optimal projection now becomes a bounded idempotent Hilbert-space operator whose
rank is precisely equal to the order of the compensator.

The mathematical setting we use is standard" a linear time-invariant differential
system in Hilbert space with additive white noise, finitely many controls and finitely
many noisy measurements (thus satisfying the first practical constraint mentioned
above). The input and output maps are assumed to be bounded. Since the only explicit
assumption on the unbounded dynamics operator is that it generate a strongly con-
tinuous semigroup, the results are potentially applicable to a broad range of specific
partial and functional differential equations. The actual applicability of our results is
essentially limited by practical constraint 3). Since we are concerned with the steady-
state problem, we implicitly assume that the distributed parameter system is stabilizable,
i.e., that there exists a dynamic compensator of a given order such that the closed-loop
system is uniformly stable. We note that stabilizing compensators do exist for the wide
class of problems considered in [41] and [42] which includes delay, parabolic and
damped hyperbolic systems. The question of how much damping is required for
stabilizability of hyperbolic systems is a crucial issue in designing controllers for large
flexible space structures [7], [43]-[49a].

It is important to point out that the results of this paper can immediately be
specialized to finite-dimensional systems by requiring that the Hilbert space characteriz-
ing the dynamical system be finite-dimensional. Then all unboundedness considerations
can be ignored, adjoints can be interpreted as transposes and other obvious sim-
plifications can be invoked. The only mathematical aspect requiring attention is the
treatment of white noise which, for general handling of the infinite-dimensional case,
is interpreted according to [6].2 For the finite-dimensional case, however, the standard
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classical notions suffice and the results go through with virtually no modifications.
The contents of the paper are as follows. Section 2 contains preliminary notation

in addition to particular results for use later in the paper. Section 3 presents the optimal
steady-state finite-dimensional fixed-order dynamic-compensation problem and the
Main Theorem gives the necessary conditions in the form of the optimal projection
equations (3.15)-(3.18). We then develop a series of results which serve to elucidate
several aspects of the Main Theorem. Section 4 is devoted to the proof of the Main
Theorem. The reader is alerted to the two crucial steps required. The first step involves
generalizing to the infinite-dimensional case the derivation of the necessary conditions
in their "primitive" form (see (4.27)-(4.29) and (4.48)-(4.53)). The derivation in
[31]-[33], [36] involving Lagrange multipliers is invalid in the infinite-dimensional
case due to the presence of the unbounded system-dynamics operator. Instead, we use
the gramian form of the closed-loop covariance operator to obtain a dual problem
formulation and then proceed to derive the primitive necessary conditions by means
of a lengthy, but direct, computation (Lemma 4.7). The second crucial step involves
transforming the primitive form of the necessary conditions to the final form given in
the Main Theorem. This laborious computation was first carried out in [31], [32] and
was subsequently facilitated in [33], [36] by means of a judicious change of variables
(see (4.32), (4.33)). Finally, some concluding remarks are given in 5.

2. Preliminaries. In this section we introduce general notation along with basic
definitions and results for use in later sections. Our principal references are [6], [50]
and [51].

Throughout this section let , ’ and " denote real separable Hilbert spaces
with norm I1" and inner product (.,.) and let (, ’) denote the space of bounded
linear operators from into ’. For L (, ’), LII is the norm of L, (L) is the
range of L, A;(L) is the null space of L, p(L) is the rank of L (set p(L)=c if L does
not have finite rank), L- is the inverse of L when L is invertible, i.e., when L has a
bounded inverse, L* is the adjoint of L and L-* & (L*)-. Recall that IILII IIt*ll and
that p(L) p(L*) [50, p. 161]. Now suppose that =’ so that L ()&(, ).
If LL*= L*L then L is normal and if L L* then L is selfadjoint. If L is selfadjoint
and (Lx, x)>= O, x , then L is nonnegative definite. Note that the selfadjointness
assumption is included in the definition since the Hilbert spaces are assumed real. If
L is nonnegative definite then L/2 denotes the (unique) nonnegative-definite square
root of L. Call L semisimple (resp., real semisimple, nonnegative semisimple) if there
exists invertible S () such that SLS- is normal (resp., selfadjoint, nonnegative
definite). This implies that SLS-1 has a complete set of orthonormal eigenvectors and,
in the real-semisimple or nonnegative-semisimple cases, has real or nonnegative eigen-
values.

Recall that if L() is compact then L has at most a countable number of
eigenvalues and all nonzero eigenvalues have finite multiplicity. Hence, for L
(, ’) compact, let {ai} be the (at most countable) sequence of eigenvalues of
(LL*) 1/2 with appropriate multiplicity and a1>=c2=>...>0 [50, p. 261]. Then
(, ’) denotes the set of trace class (or nuclear) operators, i.e., the set of compact

Alternatively, we could have adopted the white noise formulation of [4]. The main difference between
the two white noise formalisms is that Balakrishnan works with finitely additive rather than countably
additive measures. Strictly speaking, then, even in finite dimensions Balakrishnan’s white noise is different
from the standard notion (see [6, pp. 307, 315]).
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L Yd (Y(, Yg’) for which i ai < [50, p. 521]. 1(, ’) is a Banach space with norm

A

If Yi a2i<c then L 2(, ’), the set of Hilbe-Schmidt operators, which is a
Banach space with norm

IlLll=

Note that Iltll Iltll= Iltl], Iltll IIZ*[I, Iltll IIt*ll and IILIl=: IIL*II=, If = ’,
then we write 1() and () for (, ) and (, ), respectively. Note that
if nonnegative-definite L() then L/ ().

If L(, ’) and S (’, ") then

and hence SL(, ’). Similarly, under suitable hypotheses,

and

IILSII,. IISII Iltll,

IlSZlll
LEMMA 2.1. Suppose L 31(Yg) and let {hi} denote the nonzero eigenvalues of L

with appropriate multiplicity. Then [51, p. 89]

Z Ix,l-<- IILII,.

If L is selfadjoint then [50, p. 522]

If L is nonnegative definite then

Let L l(Y(). Then define [50, p. 523] the trace functional tr: ()R by

tr L a__ E (L6,, 6i),

where the summation is independent of the choice of oahonormal basis {}. The trace
satisfies tr L tr L*, tr SL tr LS for all S (), tr ST tr TS for all & T ()
and tr(aT+BS)=a(tr T)+#(tr S) for all a,#R and & T ().

LZMM 2.2. Suppose L() and let {A} denote the nonzero eigenvalues of L
with appropriate multiplicity. en [51, p. 139]

tr L=A

and hence (by Lemma 2.1)

Itr L[ 1Lll.
If L is nonnegative definite then

tr L LII,.
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COROLLARY 2.1. For each S (Y() the linear functionals
Ltr SL: l(oqa) "-) 1,

Ltr LS" I(Y()

are continuous. For each L 1() the linear functionals
Str LS" Y() - ,Str SL: Y() -are continuous.

Although showing that a bounded linear operator is trace class, is slightly more
involved than the above characterizations of I(Y(), the following result will suffice
for our purposes (see [52, p. 96], or [52a, p. 171]).

LEMMA 2.3. Let L Y() be nonnegative definite. Then

Z (L4,,

whetherfiniteor infinite, is independent of the orthonormal basis {bi}. The summation is

finite if and only if L (().
Many of the operators introduced in the following section have finite-dimensional

domain or range space and hence are degenerate, i.e., have finite rank. Recall that
degenerate operators are necessarily trace class. The following result, which generalizes
[53, Thm. 2.1, p. 240] in certain respects, will be fundamental in decomposing finite-rank
operators.

LEMMA 2.4. Suppose L,..., Lr B(, ;’) have finite rank. Then there exists a
finite-dimensional subspace t c such that Li+/-= 0, 1,. ., r. Furthermore, if

Y(’ then can be chosen such that L c, 1,. , r.

Proof It suffices to consider the case r= 1. Writing L for L1, note that since
p(L*) < oo, (L)+/- (L*) [50, p. 155] and W(L) is closed, the first statement holds
with =(L)+/-. When =’ set =(L)+/-+(L) and note that t+/-=

(L)f) (L)+/- c (L) and Lt c (L)= t. [3

The following generalization of Sylvester’s inequality [54, p. 66] will be used
repeatedly in handling finite-rank operators.

LEMMA 2.5. Let L Y(, Y(’) and S Yd( Y(’, "). Then

(2.1) p(SL) <= min {p(S), p(L)}.

If dim ’= v < oo, then

(2.2) p(s) + p(L) <= p( SL).

Proof If either S or L does not have finite rank then (2.1) is immediate. If both
S and L have finite rank then the standard arguments [54] used to prove the finite-
dimensional version of (2.1) remain valid. To prove (2.2), note that Lemma 2.4 implies
that there exist orthonormal bases for and ’ with respect to which L has the matrix
representation [ 0], where P. Similarly, there exist orthonormal bases for ’and W’ with respect to which $ has the matrix representation [], where q.
Since the two cited bases for ’ may be different, let orthogonal U be the matrix
representation (with respect to either basis for ’) for the c.hange in orthonormal basis
[6, p. 100]. Hence SL has the matrix representation [govt o] and (2.2) follows from
the known result [54, p. 66]. [3

As in the proof of Lemma 2.5, we shall utilize the infinite-matrix representation
of an operator with respect to an orthonormal basis. All matrix representations given
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here will consist of real entries since the Hilbert spaces involved are real. When the
orthonormal bases are specified and no confusion can arise, we shall not differentiate
between an operator and its matrix representation. We shall use the infinite identity
matrix Io interchangeably with the identity Ie on .

When dealing with finite-dimensional Euclidean spaces the notation and ter-
minology introduced above will be utilized with only minor changes. For example,
bounded linear operators will be represented by matrices whose elements are deter-
mined according to fixed orthonormal bases and hence we identify Rm" (R",
Note that if L (", ) and S(, rn) then SL is an m x n matrix which is
independent of any particular orthonormal basis for . The transposes of x
and Mm, are denoted by xr and Mr and M-T a-- (M7")-1. Let I, denote the n xn
identity matrix.

To specialize some of the above operator terminology to matrices, let M "".
We shall say M is nonnegative (resp., positive) diagonal if M is diagonal with
nonnegative (resp., positive) diagonal elements. M is nonnegative (resp., positive)
definite if M is symmetric and xrMx >-0 (resp., xrMx> 0), x g". Recall that M is
symmetric (resp., nonnegative definite, positive definite) if and only if there exists
orthogonal U e R"" such that UMU7" is diagonal (resp., nonnegative diagonal, positive
diagonal). M is semisimple [55, p. 13], or nondefective [56, p. 375], if M has n linearly
independent eigenvectors, i.e., M has a diagonal Jordan canonical form over the
complex field. M is real (resp., nonnegative, positive) semisimple if M is semisimple
with real (resp., nonnegative, positive) eigenvalues. Note that M is real (resp., nonnega-
tive, positive) semisimple if and only if there exists invertible S R"" such that SMS-1

is diagonal (resp., nonnegative diagonal, positive diagonal). Alternatively, M is real
(resp., nonnegative, positive) semisimple if and only if there exists invertible S
such that SMS- is symmetric (resp., nonnegative definite, positive definite).

LEMMA 2.6. The product of two nonnegative- (resp., positive-) definite matrices is

nonnegative .(resp., positive) semisimple.
Proof. If S, LR"" are both nonnegative (resp., positive) definite then by [55,

Thm. 6.2.5, p. 123] there exists invertible bR"" such that Dsa-qb-’Sd?- and
DLa-4-qbTLqb are nonnegative (resp., positive) diagonal. Hence, SL=bDsDLdp-’ is
nonnegative (resp., positive) semisimple, as desired. Alternatively, if either S or L is
positive definite, then the result follows from SL= L-I/2(L’/2SL/2)L/2 if L is positive
definite or SL= S’/2(SI/2LS’/)S-/2 if S is positive definite. [3

3. Problem statement and the Main Theorem. We consider the following steady-
state fixed-order dynamic-compensation problem. Given the dynamical system on
[0, )

(3.1) ( t) Ax( t) + Bu( t) + H, w( t),

y( t) Cx( t) + H2w( t),

design a finite-dimensional fixed-order dynamic compensator

(3.3) c(t) Acxc(t)+ Bcy(t),

(3.4) u(t)=Cxc(t)

which minimizes the steady-state performance criterion

(3.5) J(Ac, B, C) a-- lim _[(R,x(t), x(t))+u(t)rR2u(t)].
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The following data are assumed. The state x(t) is an element of a real separable
Hilbert space and the state differential equation is interpreted in the weak sense
(see, e.g., [6, pp. 229, 317]). The closed, densely defined operator A: (A)c ’generates a strongly continuous semigroup eat, >= O. The control u(t) R", B
(Rm, ) and the operator RI l(ff( and the matrix R2.rnxrn are nonnegative
definite and positive definite, respectively, w(. is a zero-mean Gaussian "standard
white noise process" in L2((0, oo), ’) (see [6, p. 314]), where ’ is a real separable
Hilbert space, HI 2(’, ), HE (’, t) and ":" denotes expectation. We assume
that HIH*2 0, i.e., the disturbance and measurement noises are independent,3 and
that V2 & HEH is positive definite, i.e., all measurements are noisy. Note that
V a_ HH*I () is nonnegative definite and trace class.4 The initial state x(0) is
Gaussian and independent of w(. ). The observation y(t) and C (, R). The
dimension of the compensator state Xc(t) is of fixed, finite order nc--< dim and the
optimization is performed over Ac s "c"c, Bc s "c and Cc 1mnc.

To handle the closed-loop system (3.1)-(3.4), we introduce the augmented state
space -a 0), which is a real separable Hilbert space with inner product (;, 2) __a

T =a(xl, x2)+xcxc2, i (xi, xci). An operator L() has a "decomposition’ into
operators L1 (), L12 (R", ), L2 (, ,c) and L2 "" in the sense that
for a__ (x, xc) , L (Lx + L2xo L2x + L2xc), or, in "block" form,

[L, L,2]L=
L2 /-.]"

For later use note that

IILII IIZ, / IIL,=II / IIL=,II / Ilz==ll
and

We can similarly construct unbounded operators in . Hence, define the closed-
loop dynamics operator ," ()c --> on the dense domain ()_a_ (A)
by (Ax + BCxo BcCx + Ac). Since can be represented by

[ A ] [A0 ] [ 0 BCc], BCc_ +
BcC Ac J BcC Ac J

and since the closed-loop operator

generates the strongly continuous semigroup

[eatO ] t>--O,
0 t_.’

it follows from [50, Th.rn., p. 4.97] that A is also closed and generates a strongly
continuous semigroup eAt (ff’), _-> 0. To guarantee that J is finite and independent

3This assumption and its analogue, the lack of a cross-weighting term x(t).l2u(t in (3.5), are for
convenience only. See 5.

4 We must require that R and V be nuclear since covariance operators in the white noise formulation

of [6] are not necessarily trace class as they are in the formulation of [4].
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of initial conditions we restrict our attention to the set of admissible stabilizing
compensators

M & {(Ao Bo C)" eA’ is exponentially stable}.

Hence if (A,, Bo Co) M then there exist cz > 0 and/3 > 0 such that

(3.6) ea’ll <- a e-s’, >= O.

Since the value of J is independent of the internal realization of the compensator, we
can fuher restrict our attention to

M+ & {(Ao B, Cc) M" (Ac, B) is controllable and (C, A) is obseable}.

The following lemma is required for the statement of the Main Theorem.
LeMMA 3.1. Suppose Q, P () have finite rank and are nonnegative definite.

en O is nonnegative semisimple. Furthermore, if p(O)= n then there exist G,
F (, ") and positive-semisimple M "" such that

(3.7) 0= G*MF,

(3.8) rG* .,.
Prooy Lemma 2.4 there exists a finite-dimensional subspace M such that

OM c M, QMx =0, #M c M and #Mx =0. Hence there exists an ohonormal basis
for with respect to which and # have the infinite-matrix representations

0 0

where , 1 rxr are nonnegative definite and r dim . Since by Lemma 2.6 there
exists inveible eN such that=-1 is nonnegative diagonal, we have

P= o o o ’which shows that 0 is nonnegative semisimple. If, fuhermore, 0(0)= n then it
is clear that can be chosen (i.e., modified by an ohogonal matrix) so that

where A eN is positive diagonal. Hence,

-1

o I I’

which shows that (3.7) and (3.8) are satisfied with

,7- 0
M=S-1AS, F=[[S-1 0] 0G=[[S 0] 0

0 Lo’ L’
for all invertible S

We shall refer to G, F e N(, R"c) and positive-semisimple M e N"" satisfying
(3.7) and (3.8) as a (G, M, F)-factorization of. For convenience in stating the Main
Theorem define

BRB*, C*VC.
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MAIN THEOREM. Suppose (Ac, Be, Cc)E M+ solves the steady-state fixed-order
dynamic-compensation problem. Then there exist nonnegative-definite Q, P, Q, P ()
such that Ac, Bc and Cc are given by

(3.9) Ac=F(A-QE-,P)G*,

(3.10) Bc=FQC*V1,

(3.11) Cc -RIB*PG*,

for some (G, M, F)-factorization of Off, and such that, with z a-- G’F, the following
conditions are satisfied"
(3.12a, b)

(3.13a, b)

(3.14a, b, c)

(3.15)

(3.16)

(3.17)

(3.18)

Q" (A*) - (A), P- (A) (A*),

0" (A), /5: (A*),

(O) (P) (QP) .,
O= (A-zQ)Q+ Q(A-zQ)* + v + QQ*,

0 (A- EPr)*P + P(A-EPr)+ R, + r*PEPr,

0= [(A-EP)O + Q(A-EP)* + QQ]r*,
0 [(A- Q)*fi+ fi(A- Q) + PEP]r.

The content of the Main Theorem is clearly a set of necessary conditions which
characterize the optimal steady-state fixed-order dynamic compensator when it exists.
These necessary conditions consist of a system of four operator equations including
a pair of modified Riccati equations (3.15) and (3.16) and a pair of modified Lyapunov
equations (3.17) and (3.18). The salient feature of these four equations is the coupling
by the operator r E () which, because of (3.8), is idempotent, i.e., r2 r. In general,
r is an oblique projection and not an orthogonal projection since there is no requirement
that - be selfadjoint. Additional features of the Main Theorem will be discussed in
the remainder of this section. For convenience, let G, M, F, r, Q, P, Q and P be as
given by the Main Theorem and define A-a diag (A,..., A,c) where A=>A2 ->.. .=>
A, > 0 are the eigenvalues of M.

We begin by noting that if xc is replaced by Sxc, where SR"c" is invertible,
then an "equivalent" compensator is obtained with (AoBc, Co) replaced by
(SACS-’, SBo CoS-l).

PROPOSITION 3.1. Let (Ao Be, Co) +. If S ’* is invertible then
(SACS-, SBo CoS-) M+ and

(3.19) J(Ac, Be, C)= J(SAcS-’, SBo CS-’).

Proof. Although the result is obvious from system-theoretic arguments, we shall
prove it analytically by utilizing elements of the development in 4. Define

e ()

and note that replacing (Ac, Be, Co) by (SAcS-l, SBc, CoS-) is equivalent to replacing
*, I7’ and/ by -, Q* and -*/g-, respectively. If a,/3 > 0 satisfy (3.6) then
a straightforward application of the Hille-Yosida theorem [57, pp. 153-5] shows that

(3.14a) refers to p(0)= no etc.
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the strongly continuous semigroup generated by ;;-1 satisfies
Ilgll I1-11 e-m, which proves the first assertion. Since g eatg-1, >= O, is also a strongly
continuous semigroup with generator -1, it follows that e"-= eg-l’. Hence

ea-’(gfg*) e(g’g-’)*’ dt gOg*

and (3.19) follows from tr /=tr (g(*)(-*/-l). lq

In view of Proposition 3.1 one would expect the Main Theorem to apply also to
(SACS-, SBo CS-). Indeed, it may be noted that no claim was made as to the
uniqueness of the (G, M, F)-factorization of (/3 used to determine Ao Bc and C in
(3.9)-(3.11). These observations are reconciled by the following result which shows
that a transformation of the compensator state basis corresponds to the alternative
factorization /3= (S-rG)r(SMS-)(SF) and, moreover, that all (G, M, F)-factoriz-
ations of QP are related by a nonsingular transformation. Note that - remains invariant
over the class of factorizations.

PROPOSITION 3.2. IfS " is invertible then a__ S-rG, . a__. SF and lffl a__ SMS-
satisfy

(3.7)’ (/3 (*hr,
(3.8)’ (* I,.
Conversely, if d, ’(,) and invertible lffl satisfy (3.7)’ and (3.8)’, then
there exists invertible S such that S-rG, ’ SF and 1QI SMS-.

Proof. The first part of the proposition is immediate. The second part follows by
taking S a--I-I’G*M-, noting S-=M’(*/r- and using the identities
G’MrO* and Mr* r*.

The next result shows that there exists a similarity transformation which simul-
taneously diagonalizes 0/3 and .

PROPOSn’ON 3.3. There exists invertible do (g() such that

(3.20a, b) ( do_[A0 ;] do-* /3 do* [A0
(3.21a, b) QP do- do, z do-

0
do,

0

where AO, AORncn are positive diagonal and AoAp= A. Consequently,

(3.22a, b) r, /3 fir.

Proof. Proceeding as in the proof of Lemma 3.1, choose an orthonormal basis for
with respect to which

O= 61 0
and /3= P1

0 0 0

where 01, 1ERrxr are nonnegative definite. By [55, Thm. 6.2.5, p. 123], there exists
Tinvertible Rr such that 0 a17- and =-p-i are nonnegative

diagonal. Because of (3.14), it is clear that can be chosen so that

and o=
0
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where A0, A#eR "c"c are positive diagonal. Thus (3.20) holds with

From (3.20) it follows that

Now define G=[I, 0]-*, M AoA and F =[I-c 0] so that (3.7)’ and (3.8)’ are
satisfied. By the second part of Proposition 3.2 there exists invertible S e R "c"c such
that G Sr, M S-lhrS and F S-1. Since M and hr have the same eigenvalues,
M A (modulo an ordering of the diagonal elements) and thus (3.21a) holds. Finally,
(3.21b) follows from

r= G*F= *=-’[
Remark 3.1. Proposition 3.3 shows that A,..., A,c are the positive eigenvalues

of QP.
Remark 3.2. The simultaneous diagonalization in (3.20) has been effected by a

contragredient transformation [55], [58]. For applications of this type of transformation
to model reduction and realization problems see [12], [59]-[61]. Simultaneous

diagonalization of operators is discussed in [53., p. 181].
The following result validates the precise handling of the unbounded operator A

in (3.9), (3.17) and (3.18).
PROPOSITION 3.4. The following relations hold"

(3.23a, b, c) p(G) p(F)= p(

(3.24a, b) r: Y(- (A), z*"- (A*),

(3.25a, b) G* "" (A), F*’" (A*).

Proof From (3.8) and (2.1) it follows that n p(FG*)_-<min {p(F), p(G*)}. Since

p(F)<- no p(G)= p(G*) and p(G) <- n, (3.23a) and (3.23b) hold. To show (3.23c)
either note (3.21b) or use (3.143) and (3.22) to obtain

O) p( <-

To prove (3.24a) note that (3.22a) implies (0) 9() and thus p())= p(m) implies
(t) (z), and similarly for (3.24b). Finally, (3.25) follows from (3.23), (3.24), the
definition z G*F and the fact that z*= F* G.

Since the domain of A may not be all of , expressions involving A require special
interpretation. First note that because of the range condition (3.25a), the expression
(3.9) indeed represents an nc x nc matrix (see, e.g., [6, p. 80]). Similarly, because of
(3.25b), A is given by

(3.26) A G(A* ,Q PX)F*.

With regard to (3.15), note that because of (3.12a), the right-hand side of (3.15) is a

linear operator with domain (A*). Since 19 & -zQ,Q- Q,Qz* + v1 + zQ,Qz* is

continuous on (A*), AQ+ QA* has a continuous extension on given precisely by
-19. Similar remarks apply to (3.16). Analogous domain conditions were obtained in

[5] for a deterministic infinite-dimensional linear-quadratic control problem with
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full-state feedback. Finally, because of (3.24) the right-hand sides of (3.17) and (3.18)
denote bounded linear operators on all of .

It is useful to present an alternative form of the optimal projection equations
(3.15)-(3.18). For convenience define the notation

I-.
PROPOSITION 3.5. Equations (3.15)-(3.18) are equivalent, respectively, to

(3.27) 0 AQ+ QA* + V1 Q,Q+ z+/- Q,Qz,
(3.28) 0 A*P + PA+ R1- PEP+ rP,P’_,
(3.29) 0= (A-,P)O+ O(A-EP)* + Qf,Q-rQ$,Qr*,,

(3.30) 0 (A Q,)* fi + (A- Q,) + PEP z*, PEP’+/-.

Proof. The equivalence of (3.27) and (3.28) to (3.15) and (3.16) is immediate.
Using (3.22a) in the form Q= Qz*, we obtain (3.17) (3.29) z*. Conversely, from
(3.22a) and [(A-EP)0]* Q(A-Xp)* (see, e.g., [6, p. 80]) it follows that (3.29)=
(3.17)+(3.17)*-z(3.17). Similarly, (3.18) and (3.30) are equivalent. F1

The form of the optimal projection equations (3.27)-(3.30) helps demonstrate the
relationship between the Main Theorem and the classical LQG result when dim n <. In this case we need only note that the (G, M, F)-facrization of 0/3 in the
"full-order" case n n is given by G F I, and M QP. Since -= I,, and thus
z 0, (3.27) and (3.28) reduce to the standard observer and regulator Riccati equations
and (3.9)-(3.11) yield the usual LQG expressions. Furthermore, note that in the
full-order case

(3.31) Ac=A+BC-BC
and (3.29) and (3.31) can be written as

(3.32) O (A + BcC)O. + O(A + BcC)T + BcV2BTc
(3.33) 0 (Ac BCc)r+ (Ac BCc)+ CfR2Cc.
Since, as is well known, the stability of A corresponds to the stability of A+ BC
A+ BcC and A-BcC A- BC, it follows from standard results (e.g., [62, pp. 48,
277]) that the positive-definiteness conditions (3.14a, b) are equivalent to the assump-
tion that (Ac, Be, C) is controllable and observable.

To obtain a geometric intepretation of the optimal projection we introduce the
quasi-full-state estimate

( t) a-- G*xc( t)

so that ’:(t)= :(t) and x(t)= F:(t). Now, the closed-loop system (3.1)-(3.4) can be
written as

(3.34) :(t) Ax( t) BCc’X( t) + HI w(t),

(3.35) c( t) -(A +B cC)’( t) + Zc(Cx( t) + H2w( t)),

where (3.35) is interpreted in the sense of (3.34) since (t) and where

j a__ QC, Vfl Cc / *P.-RB
It can thus be seen that the geometric structure of the quasi-full-order compensator is
entirely dictated by the projection z. In particular, control inputs ’:(t) determined by
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(3.35) are contained in (r) and sensor inputs zBcy(t) are annihilated unless they are
contained in [(z)]+/-=(z*). Consequently, (-) and (z*) are the control and
observation subspaces, respectively, of the compensator. Since r is not necessarily an
orthogonal projection, these (finite-dimensional) subspaces may be different.

From the form of (3.35) it is tempting to suggest that the optimal fixed-order
dynamic compensator can be obtained by projecting the full-order (infinite-
dimensional) LQG compensator. However, this is generally impossible for the following
simple reason. Although the expressions for Ac, Bc and C in (3.9)-(3.11) have the

form of a projection of the full-order LQG compensator, the operators Q and P in
(3.9)-(3.11) are not the solutions of the usual LQG Riccati equations but instead must
be obtained by simultaneously solving all four coupled equations (3.15)-(3.18). This
observation reinforces the statement made in 1 that the optimal fixed-order dynamic
compensator cannot in general be obtained by LQG followed by closed-loop controller
reduction as in [14] and [15].

We now give an explicit characterization of the optimal projection in terms of Q
and/3. Since QP has finite rank, its Drazin inverse (QP) exists (see [63, The;, 6, p.
108]) and, since ((/3)2 G.M2F, and hence p(0/3)2= p(QP), the "index" of QP (see
[63], [64]) is 1. In this case the Drazin inverse is traditionally called the group inverse
and is denoted by ((/3)# (see, e.g., [64, p. 124] or [65]).

PROPOSITION 3.6. The optimal projection r is given by

(3.36) QP(QP)#.

Proof. It is easy to verify that the conditions characterizing the Drazin inverse
[63] for the case that 0/3 has index 1 are satisfied by G*M-1F. Hence (0/3)# G’M-IF
and (3.8) implies (3.36).

We now give an alternative characterization of the optimal projection by introduc-
ing the following notation from [51, p. 73]. For b,
() by

(4,(R),)x -(x, 4,)4,, xe,
and note that p(4(R)@) 1 if b and @ are both nonzero and (b(R)q)* @(R)b. Using
this notation, (3.21a) can be written as

(3.37) QPcb- i=1

where {i}i is an orthonormal basis for . In terms of the Riesz bases (see e.g., [52,
p. 309])

(3.37) is equivalent to

(3.38) QP hb,(R) ,,
i=1

which can be regarded as a specialized spectral decomposition of a semisimple operator.
We emphasize that, in contrast to the singular value decomposition for compact,,
nonnormal operators (see, e.g., [50, p. 261]), the A in (3.38) are eigenvalues of QP
(see Remark 3.1), not singular values. Moreover, although {bi}1 and {}o= are bases
for , they are not necessarily orthogonal. They are, however, biorthonormal, i.e.,
(bi, @j)= 8ij, and hence (iQcli is a rank-one projection and (tiQcli)()jQrlj)--0, #j.
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Since z is a rank-no projection, it is not surprising that z is given precisely by

(3.39)
i=l

The following result summarizes the above observations.
PROPOSItiON 3.7. There exist biorthonormal linearly independent sets

(A) and {i}%1c (A*) such that (3.38) and (3.39) hold. Furthermore, if the
(G, M, F)-factorization of QP is chosen such that M A, then, for all x

Ox ((x, q,>, (x,

rx ((x, 6),""", (x,

Remark 3.3. Note that/3( and z* are given by

PQ E A,0, (R) 6,, r* Z 0, (R) b,,
i=1 i=1

and, for all y a___ (Yl," ",Y-c) r R,o, G* and F* satisfy

G*y=y,,, F*y= y,,.
i=1 i=1

4. Proof of the Main Theorem. We state and prove a series of lemmas which allow
us to compute the Frechet derivatives of J with respect to Ac, B and C. Requiring
that these derivatives vanish leads to the necessary conditions in their "primitive"
form. A transformation of variables then leads to the form of the necessary conditions
(3.9)-(3.18).

Let "u-lim" denote the uniform limit (i.e., limit in operator norm) for bounded
linear operators [50, p. 150] and, for strongly continuous S(t) (), t-> 0, interpret
the strong integral jt S(t) dt according to tt2 S(t)z dt, z [50, p. 152]. Also recall

tl
the standard fact [6, p. 186] that (e’t)*= e"a*t and similarly for A. Throughout this
section let (A, B, Co) M+ and let a,/3 > 0 satisfy (3.6).

To begin, note that the closed-loop system (3.1)-(3.4) can be written as

(4.1)

where

: : + IYtw( ),

/=a[ H’ ] )’
BH2

3:,( 1).

For convenience define the nonnegative-definite operator

e ,().
0 nCvn

In terms of the augmented state (t), the performance criterion (3.5) becomes

(4.2) J(Ac, B, C)= lim :(/(t), 2(t)),
t->oO

where the nonnegative-definite operator/ is defined by

/ [R= 0 ]0 C[R2C ’()"
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To write (4.2) in terms of the covariance of ;(t), recall [6, p. 308] that the
covariance "z[(-zs)(s-)*]" of a Hilbert-space-valued weak random variable
is defined to be the nonnegative-definite operator S which satisfies

(Sy, z)= [E(-[Es, y)(-[E, z)

for all y, z in the Hilbert space. Hence define [6, p. 317]

0(t) :[((t) -:(t))((t) -:( t))*].

LEMMA 4.1. 0 a_ u-lim,__, O(t) exists and is given by

(4.3) 0 ea’ Qe*’ dt.

Furthermore,

(4.4) J(Ao Bo C)= tr (/.

Proof. First compute (as in [6, p. 317])

(( t))7, ) [E(Y(t) ea’zY(O), )7)((t) ea%;(O),

</o’ ></o
+(0(0) e*t, e*t)

+ (ea’0(0) ea*’, )

(e(’- Pe*(’-% as + (e’0(o e*’, ,
which shows that ((t) is given by

O(t) e’O(O) ea*’ + eas ea*s ds.

Clearly, (4.3) makes sense as a strong integral since

IlOll IleA’eA*’ll dt =11 11 e-=t3’ dt<o.

To demonstrate uniform convergence it need only be noted that

lid- ((t)ll sup

sup e
IIll=
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Next, let {bi}i=l be an orthonormal basis for and use Parseval’s equality to obtain

J(Ac, Be, C) lim l[[/l/2(t)[I 2 lim : (R1/2(t), i)2.
too too i=1

Since

f,(t) a-- . (I/2;(t), b,)2, t->0,
i=1

is nonnegative for each n and is increasing in n for each with limit (R;(t), (t)),
monotone convergence permits expectation-limit interchange. Hence using (t)=
ea’:5(O) we have

J(Ao Bo C)= lim Z :(;(t), R1/Eb,)2
t-o i=1

lim Z [(O(t)/2qb,,//2b,)+(e’’:;(0),
too i=1

lim {tr [1/20(t)1/2]+
t---,

which by Corollary 2.1 yields (4.4). [3

We shall also require the "dual" of Q given by

(4.5) P= e e dt.
J0

Since Q and / are nonnegative definite it is readily seen that ( and /3 are also
nonnegative definite.

Lzua 4.. 0, 1().
Proof. It suffices to consider Q only since the situation for P is exactly analogous.

Since Q is nonnegative definite, Lemma 2.3 can be used. Letting {b}= be an
orthonormal basis for , we have

i=1 i=1

lim Ve’*t b,, ea*t)i dt.
i=1

Let fn(t) denote the above integrand. Since Q is nonnegative definite, {fn(.)} is a
mon.otoni.cally increasing sequence of nonnegative functions such that f,(t)
tr eAt leA-t, >= O. Hence, by monotone convergence and Lemma 2.2,

tr ( tr e’t Qea-t] dt

e"t Qe’*’ll dt < a 211 f’lll e -23t dt <.
LZMMh 4.3. With 0 and given by (4.3) and (4.5) it follows that

(4.6) tr (/ =tr ,/3.
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Proof For any orthonormal basis {bi} i1 of e we have

)i=1

lira ( e e*’,, 4,} dr.
n i=1

Lettingf (t) denote the above integrand it follows thatf(t) tr ea’ Pea*’, t O, and

If(t)[ E [<eA’ re’*tti, ti)l < 2[[ 11 e-" E
i=1 i=1

If {} is chosen to be the set of ohonormal eigenvectors of then Lemma 2.1
implies E,= 11,11:1111 and thus If(t)l is bounded on [0,) by an integrable
function. Hence by dominated convergence,

Io Io iotr 0= tr[ ea’Qea*’] at= tr [ea*’ ea’Q] dt= E (Vi, ea*t ea’) dt.
i=1

And again using dominated convergence,

iotr QR E (V,, e ,) dt E %,, e*’ e’, dt tr fi.
i=1 i=1

The next result is impoant in that it allows us to treat and as solutions of
dual algebraic Lyapunov equations. For a similar result involving groups rather than
semigroups see [50, pp. 555-557].

LEMMA 4.4. 0 is given by (4.3) and only () satisfies

4.7 . A* A,
4.8 o= AO+ 0A* + ,
where (4.8) holds in the sense discussed in 3. Furthermore, is given by (4.5) if and
only if P 3 ) satisfies

(4.9) /3. () ._> (.),
(4.10) 0 A*/3 +/3, +/.

Proof We consider 0 only. To prove necessity let t’> 0. Then for all [0, t’)
and (A*) we can write

Hence,

ea’ O. ea*" e(’+) "ea*(’’+); ds

d at t,:= f(4.11) d-’- e ( eA* e

eA’QeA* eg*(t’-);

AZeA* eA*("-’)A*:do’--eA’’reA* X,

which shows that eA’O eA*’’ is strongly differentiable with respect to for all [0, t’).
In particular, setting =0 it follows that ( e’*t’ () for all (*) (see, e.g.,
[6, p. 173] or [50, p. 485]). Performing the differentiation on the left-hand side of
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(4.11) and setting 0 yields

(4.12) ,t e’*" e’Qe* e’*"A* do’-

Now fix (A*). Then for {ti},, ti>0, t,0, we have

( ea*’, e (), i=1,2,3,...,

eA*t-’-l t’Now consider the sequence {AQ xl=. Letting t in (4.12) and using dominated
convergence to interchange limit and integration (A* is a fixed element of ), it
follows that

(4.13)

Since , is closed, t (). This proves (4.7). Also, since A is closed we have

which with (4.13) implies

and hence

as desired.
To prove sufficiency let ; (A). Then ea*’; (A*), >=0, and hence

Thus

d ei,t) ea., ea,(,t + (A*)
dt

ea’( ea*t t= eS(,O+ O,g,*) e’*s ds, (*).

Extending 0+* to all of we obtain

ea’O ea*’ 0 e
a, Qea* ds, .

Letting yields (4.3). U
We now introduce some notation which will prove to be most convenient in the

following results. For (A, B, C)-,,c x-, xm, define

’-B, cAC-CA Ac, a B

and

Fuhermore, let A’, V’ and R’ denote A, V and R with (A, B, C) replaced by
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(A’, B’, C’) and define

x,_i= [ 0

f,_ f,= [o
0

(_ A_ fi’__ fi
0 C T T TcR2 cR2tcc + t Cc + R2tcc

We shall also write 0’,/5, for 0, ,5 as given by (4.3) and (4.5) with , ,/ replaced
by .’, Q’,/’ and define

LEMMA 4.5. M is open.
Proof. Let (Ao B,, Cc) M be arbitrary and consider the open set

Bc1
A J’

o ]TB,V25 + 8BcV2BT + 5sV3s

(4.14) Na--((A’,B’, c’) n"o"o xn"o’ xn’"o:

where y--a max {1, Ilnll, IICIIL Then, since ’=+ax and aa() it follows from
Theorem 2.1, p. 497 of [50], that for all (A, B’,, C) N and >= 0,

Ilea"ll
Hence, N M, as desired.

LEMMA 4.6. ere exists c > 0 such that

(4.15)

(4.16)
% c II(Ac, (Bc, tCc)ll,

for all (A’, B’, C’c) N, where N c M is the open neighborhood of (Ao Bo C,) defined
by (4.14).

Proof. We consider (4.15) only. Since Ilea"ll-<_ e-’/’-, t>0,= (A’, B’, C’) N, it
follows that

io-<- {llea"ll ’11 ex’*’- ea*’ll + eX"ll Ilall eX*’ll + liex’’- ea’ll 1111eX*’ll dt

(4.17) (11 11 + I111) ea*+**’- ea*’ll e-’/ dt

+ =llall e-3’/=dt+llll Ile(a+a)’-eX’ll e-m/2 dt

2a2
(21 11 + I111) liea+’- eX’lle-’/d+ I111.

From [50, p. 497], k follows that the peaurbed semigroup ea+a has an expansion

e (a+aa)t ext + , Ui(t), >- O,
i=1
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where Ui(t) (), _--> O, satisfy the estimates

Hence, for all (A’, B’, C’)e N,

(4.18)

-#tti/i[.

lie </w,_ e,ll E U,(t)ll ae-m[e ’llxlt’- 1].
i=1

From (4.17), (4.18) and the relations I111 11(, , )11 < fl/2a and

[e 1111’- 1] e-3m/2 at <fl- 1l(6Ac, 6Be, c)ll

it follows that

2t3y
I1oll--< "3= (211 11 + IIII)II(A, , c)ll

212+ 3---(211nV=ll I111 + V.ll

which yield.s (.4.15). F1
Since Q, P e () we can write

Q=
Q*2 Q2J’ Pl*2 P2.]’

where Q1 (), Q12 E ([nc, fits), Q2 R"x"c and similarly for P1, P12 and P2. Note
that Q1, Q2, P1 and P2 are nonnegative definite. Also, define the notation

where

[z, l
Z21 Z2J’

Z A. P1 Q1 -I- P12Q,*2,

Z21 P*2Q, + P2Q*2,

and, for (A’, B’, C)e , let

Z2= P1Q12+ PiEQ2,

Z2 _a_ P*EQ12+ PEQ2,

(4.19)

where

(4.20)

and

(4.21)

tJ(tAc, (Bc, 6c) a--J(A’c,B’, Cc)-J(Ac, Bc, Cc).

LEMMA 4.7. Let (A’, B’c, C’) M. Then

8J(SAc, 8Bc, 8Cc)= (Sac, 8Bc, 8Cc )1- O(]](Sac, 8Be, c)ll),

.(tAc tBc Cc)-- 2 tr [Z.SA] +2 tr[(V_BrP2+ CZ2*I)S]
+2tr[Q2CTR2+ Z*EB)Sc]

lim II(’A, ., ac)ll-’o(ll(a, .o, )11)-- o.
A,ac,Cc -0

Proofi Combining (4.8) and (4.10) with (4.6), J can be written as

J(A, B, C) tr [t/ +/I7’] +1/2 tr [( el (,,/3 +/3/) +/3 cl (,0+ t/*)],
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and likewise for (A’, B’, C’), where "cl" denotes closure (i.e., extension) of a bounded
operator to all of . Now using the identity

tr [ (’/’ +/5, I7"] tr [ t/ +/317"] tr [(8+/3] + tr [60/’ + 6
we can compute

8j(6a, 8,, 6Cc)= tr [06 +/56,] +1/2 tr[0 cl (.(/3 + 8) + (/3 + 6)’)]
+1/2 tr [60 el (,./3, +/3,,,)]
+1/2tr [/3 el (’(0+60)+(0+60),’*)
+1/2 tr [6 el (,’t’ + 0’/’*)]
-1/2 tr[0 cl (,./3 +/3,) +/3 cl (,O+ 0,*)]
+ tr 60/’+ 6 I7’].

Using ’= ,+ 6a and combining the second, fourth and sixth terms yields

tj Ac, tBc, tCc A+1

where

and

A & tr [(6 +/36e] +1/2 tr 0(6,/3 +/36a) +/3(6a0 +
tr [Q6 + P6] + 2 tr[6,QP]

fl -a-- 1/2 tr [( cl ("6+ 6{’) +/3 cl ({’60+ 60’*)]
+tr [60 cl (’*’+ #’’)+ 6 cl (’O’+O’’*)]+tr[6o’+6OQ’].

Computing

tr Q6k + P6] 2 tr V2B
and

2 tr [6aO#] 2 tr [Z26A]+ 2 tr [CZ6n]+ 2 tr [Z2B6c]
and retaining first-order terms, we obtain (4.20).

To evaluate fl, use (4.8) and (4.10) to replace R’ and V’ in the last term in and
write ’ + 6A, to obtain

fl =tr[O cl (’6+6)+ cl (60+ 60*)]
(4.22) - tr [60 cl (’*fi’ + ’’) +6 el (’O’ + O’’*)].

(4.23) tr[t cl (’6+*)] tr [6 cl (,( + 0*)].
To see this we observe that by arguments similar to those used in the proof of Lemma
4.4 and the fact that 6" ({)--> (,*) it follows that

=- ea*’ cl (’6+) e’t dt.

Now, using the technique of Lemma 4.3 with the role of/ played by -cl (*g0 + 6),

Next we note that
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we see that

tr [( cl (*+,)] -tr[ I7’] tr[ el (0+ 0,*)].
Similarly, it can be shown that

(4.24) tr[t5 el (0+ 0,*)] =tr[0 cl (,./5 +/3,)].
Now substitute (4.23) and (4.24) into (4.22) and rearrange the second term in (4.22)
so that

= tr [O cl (*+)+ cl (0+ *)]
+} tr [O(+a)+(aO+ O)]- tr [O cl (’*fi’ + fi’’) + cl (’0’+ 0’’*)]

=- tr [0 cl (’*p+’)+ cl (’0+ 0’*)].
Using (4.8) to obtain

and (4.10) to obtain a similar relation involving , we have
," ,

tr 80(SaP + fi$x + )]+ tr [0+ 08a+ 8)]-

Restricting (A’, B’, C’) to N (see (4.14)), using Lemma 4.6 and noting that A and
$ have finite rank, it follows that there exists c > 0 such that

(4.25)

Combining ll with the second-order terms in A yields the desired result.
LEMMA 4.8. M+ is open.
Proofi From the "generic" property of controllability and observability [62, p. 44]

there exists an open neighborhood of (Ac, Be, C) each of whose elements is minimal.
Combining this fact with Lemma 4.5 yields the desired result.

LEMMA 4.9. Q2 and P2 are positive definite.
Proof. First note that expanding the R"c"c-component of the Lyapunov equation

(4.8) yields (4.50) below. By a minor extension of results from [66] or [67], (4.50) can
be rewritten as

0 (A + BCQ,2Q-)Q2+ Q2(A + BcCQ,2Q-) + BV2Br,
where Q- is the Moore-Penrose or Drazin generalized inverse of Q2. Next note that
since (A, Be) is controllable then so is (A + BcCQ12Q, BV/2). Now, since Q2 and
BcV2B are nonnegative definite, it follows from [62, Lemma 12.2] that Q2 is positive
definite. Similar arguments show that P2 is positive definite.

Having established Lemmas 4.1-4.9, we can now proceed with the proof of the
Main Theorem. Let (A, Be, C) M/ be as in the Main Theorem and consider (4.19)
with (A’, B’, C’) confined to +. Because : R"cnc x"ct x""--> is a bounded
linear functional and M/ is open, the convergence in (4.21) implies that is precisely
the Frechet derivative of J with respect to (A, Be, Co). Since M+ is open, the optimality
of (A, B, C) implies

(4.26) (Ac, Bc, Cc) 0

for all (A, B, Cc)" Clearly, (4.26) is equivalent to

(4.27) Z2=0,
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(4.28)

(4.29)

Thus, Bc and Cc are given by

(4.30)

(4.31)

vfP+ cz* 0,

Q2CrR2 + Z*:B

B -PZ:C*V,
C -RIB*Z2Q.

Although Bc and Cc are now determined in terms of t and/3, A remains to be
found. Moreover, ( and /3 themselves depend (via (4.8) and (4.10)) on Be and C.
Hence our task now is to consolidate and simplify (4.7)-(4.10), (4.27), (4.30) and (4.31)
to obtain the more tractable conditions (3.9)-(3.18). To this end let us define new
variables

(4.32a, b) Q a--Q-Q2QQ*2 P a=P-P2PP*2,

(4.33a, b) Q Q2Q Q2, PEP P2.
lerly, and fi are nonnegative definite and have finite rank. Since by Lemma 4.2
Q, P (), it can be seen that Q, P1 (), which implies Q, P (). To show
that Q and P are nonnegative definite, note that Q is the ()-component of the
nonnegative-definite operator* (), where

A [I _QQI]
Similarly, P is nonnegative definite.

From the domain conditions (4.7) and (4.9) it follows that

(4.34a, b) Q" (A*) (A), P "(A) (A*),

(4.35a, b) Q"" (A), P2" "" (A*),

which lead to (3.12) and (3.13).
Next note that (4.27) is equivalent to (3.8) with

(4.36a, b) G QIQ:, F g -PP:
and that (3.7) holds with

(4.37) M & Q2P:.

Since Q2 and P2 are positive definite, Lemma 2.6 implies that M is positive semisimple.
We can also define z= G*F which, by (3.8) satisfies z2= . It is helpful to note the
identities

(4.38a, b)

(4.39a, b)

(4.40a, b)

(4.41a, b)

Q Q,2G G* Q*2, /3 -P,:r -r*P*2,

0 o*0_a, r*Pr,

"rG* G*, F’r F,

Q= ,rQ, /3=

(4.42) 0/3 Q2P*2.

From (3.8) and (2.1) it follows that

(4.43a, b) p(G) p(F)= n,

(4.44a, b) p(Q2) p(P2)= n.
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Hence, (2.2) and (4.38) imply nc p(QI2) + P(G) nc <- p(Q) <- p(Q12) no, which
yields (3.14a). Similarly, (3.14b) holds and (3.14c) follows from (2.2) and (4.42).

Using (4.38) and (4.39), the components of ( and/3 can be written in terms of
G, F, Q, P, ( and/3 as

(4.45) Q, Q + Q, P1 P + P,

(4.46) Q12 Qr, P12 -fiG*,
(4.47) Q2 rot*, P GG*.
Now (3.10) and (3.11) can be obtained by substituting (4.45)-(4.47) into (4.30) and
(4.31).

Expanding the (), (,c, ) and R "c"c components of (4.8) and (4.10) yields

(4.48) 0 AQ + QA*+ BCQ*2+ Q2(BC)* + V,

(4.49) 0- AQ12+ QIEA+ BCQ2+ QI(BC)*,

(4.50) 0- AcQ2/ QEA+ BcCQ12/ Q*E(BC)* / BV2BT
(4.51) O=A*P+P1A+(BC)*P*z+PEBC+R,

(4.52) 0= PIEAc/A*PE+(BC)*P2+ P1BC,

Ac P+PA/ (BCc)*P12/ P*EBC + CRECc.(4.53) 0 7-

Substituting (4.45)-(4.47) into (4.48)-(4.53), using the identities

BcC FQ,, BC -,PG*,

BV2BT FQQF*, CTRCc GP,PG*,
and defining

we obtain

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

Ao a--A-Q,, ApAA-EP,

0= AQ + QA* + AeO+ QAp + V,

0 [ApO + Q,Q + 0(r’ActO+ Q)]r*,

0= F[G*AcF( + Q,O + Q,Q+ O(F*ATG +Q)]F*,
0 A*P+ PA+ AoP+ fiAo + RI,

0 -[A+ PEP+ (G*Ar+ZP)] G*,
0 G[F*ArGfi+ PXfi + PEP+ (G*AF+ ZP)] G*.

We are now in a position to determine A by computing (4.56)-F(4.55) which
yields (3.9). Alternatively, Ac can be obtained by computing (4.59)+G(4.58). As
mentioned in 3, (3.9) is valid since G*’N" (A) and Ar is given by (3.26).

Next we substitute the expressions for A and Ar into (4.55), (4.56), (4.58) and
(4.59) and compute the relations (4.55)G, G*(4.56)G, -(4.58)F and F*(4.59)F to
obtain, respectively,

(4.60)

(4.61)

(4.62)

(4.63)

0 [ApO. + O.A*p + Q,O]’r*,

0 r[Ap( + (A*+ Q,Q]’r*,

0 [A+Ao + PEP]z,

0 "r*[A+Ao + P,P]’r.
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Note that (4.60)-(4.63) are equivalent to (4.55), (4.56), (4.58) and (4.59) since G and
F have full rank. Since (4.61)= ’(4.60) and (4.63)= ’*(4.62), (4.61) and (4.63) are
superfluous and can be omitted. Thus we have derived (3.17) and (3.18).

To obtain (3.15) and (3.16) we need only compute the relations (4.54)+ -(4.60)-
(4.60) (4.60)* and (4.57) + -*(4.62) (4.62) (4.62)* and use (4.41).

Finally, to show that the preceding development entails no loss of generality in
the optimality conditions we now use(3.9)-(3.18) to obtain (4.7)-(4.10) and (4.27)-
(4.29). Let Ac, Bc, Cc, G, F, -, Q, P, Q, P be as in the theorem statement and define
Q1, Q12, Q2, P, P2, P by (4.45)-(4.47). Note that (3.12) and (3.13) imply (4.34) and
(4.35) and hence (4.7) and (4.9). Using (3.8), (3.10), (3.11) and (3.22) it is easy to
verify (4.27)-(4.29). Finally, substitute (4.32), (4.33) and (4.36) into (3.15)-(3.18),
reverse the steps taken earlier in the proof and use (3.9)-(3.11) to obtain (4.8) and
(4.10), which completes the proof.

5. Concluding remarks. This paper has considered the problem of quadratically
optimal, steady-state, fixed-order dynamic compensation for linear infinite-dimensional
systems. The Main Theorem presents the stationarity conditions of the optimization
problem in a highly simplified and rigorous form. The "optimal projection equations"
(3.15)-(3.18) (or, equivalently, (3.27)-(3.30)) of the Main Theorem reveal the essential
structure of the first-order necessary conditions and display the central role played by
the optimal projection ’. The relationship of the Main Theorem to the standard
finite-dimensional steady-state LQG problem can be demonstrated by replacing " with
the identity matrix and noting that (3.27) and (3.28) reduce immediately to the familiar
pair of operator Riccati equations and that (3.29) and (3.30) yield the controllability
and observability gramians of the controller.

Inasmuch as the Main Theorem is a fundamental generalization of classical
steady-state LQG theory, a number of issues must be reexamined. Hence, in conclusion
we should like to point out some possible extensions of the Main Theorem along with
directions for further research.

1. Sufficiency theory. Although sufficient conditions for the existence of an optimal
compensator were not investigated in this paper, auxiliary conditions based upon the
structure of (3.15)-(3.18) could perhaps be imposed upon Q, P, 0 and/3 to single out
the global optimum from amongst the local minima. This would be similar to the
situation in LQG theory where, under stabilizability and detectability hypotheses,
optimal stabilizing Q and P are identified as the unique nonnegative-definite solutions
of the pair of algebraic Riccati equations.

2. Stabilizability. Just as in the full-order LQG problem, one would expect a
natural relationship between the structure of the optimal solution and stabilizabil-
ity/detectability hypotheses. The results of [41], [42] and [68] could serve as a starting
point in this regard.

3. Numerical algorithms. In practical situations, the distributed parameter system
would be replaced by a high-order discretized model for which the matrix version
(rather than the operator version) of the optimal projection equations could be solved
numerically. A numerical algorithm for solving the matrix version of the optimal
projection equations has been developed in [32] and [34]. The proposed computational
scheme is fundamentally quite different from gradient search algorithms [17], [18],
[21], [22], [24], [25], [28], [30] in that it operates through direct solution of the optimal
projection equations by iterative refinement of the optimal projection.

4. Convergence. One of the principal uses for the optimal projection equations
will be to understand the relationship between fixed-order dynamic-compensator
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designs which are optimal with respect to approximate models and the optimal
fixed-order dynamic compensator for the distributed parameter system itself. By con-
sidering a sequence of nth-order approximate models which converge to the distributed
parameter system, conditions would be sought guaranteeing that the sequence of
fixed-order compensators based on each approximate model approach the optimal
dynamic compensator based upon the distributed parameter system (see [38]-[40]).
This approach is analogous to the convergence results obtained in [7], [8] with the
major difference being that the optimal projection equations permit the order of the
compensator to remain fixed in accordance with real-world implementation constraints
whereas in [7]-[9] the order of the compensator increases without bound.

5. Unbounded control and observation. An important generalization of the problem
considered in this paper involves the case in which the input and output operators B
and C are unbounded. The mathematical details for this problem are considerably
more complex (see, e.g., [69]).

6. Singular observation noise/singular control weighting. As pointed out in [22],
[33], [36] the assumptions of nonsingular control weighting and nonsingular observa-
tion noise preclude the use of direct output feedback as in

(5.1) u(t) Ccxc( t) + Dcy( t)
since J is undefined unless

tr[DrR2DV2] 0(: R2DV2 0).

Although with due attention to (5.1) direct output feedback can be used in the singular
case, the nature of the problem forebodes all of the difficulties associated with the
singular LOG. problem. Note that the deterministic output feedback problem [70],
when viewed in this context, is highly singular.

7. Discrete-time system/discrete-time compensator. Digital implementation can be
modelled by a discrete-time compensator with control of a continuous-time system
facilitated by sampling and reconstruction devices. See [71], [73] for results in this
direction.

8. Cross weighting/correlated disturbance and observation noise. This extension is
straightforward and entirely analogous to the LQG case (see, e.g., [18, p. 351]).
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