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The Optimal Projection Equations for Model 
Reduction  and the Relationships Among the 

Methods of Wilson, Skelton, and Moore 
DAVID C. HYLAND AND DENNIS S. BERNSTEIN, MEMBER, IEEE 

Abstract-First-order necessary conditions  for quadratically optimal 
reduced-order modeling of linear time-invariant systems are derived in the 
form.of a pair of  modified Lyapunov equations coupled by an oblique 
projection which determines the optimal reduced-order model.  This  form 
of the necessary conditions considerably simplifies previous results of 
Wilson 111 and clearly demonstrates the quadratic extremality and 
nonoptimality of the balancing method of Moore [Z]. The possible 
existence of  mulsple  solutions of the optimal projection equations is 
demonstrated and a relaxation-type algorithm is proposed for computing 
these local extrema. A component-cost analysis of the model-error 
criterion similar to the approach of  Skelton [3] is utilized at each iteration 
to direct the algorithm to the global minimum. 

I .  INTRODUCTIOK 

HE problem of approximating a high-order linear dynamical 
T s y s t e m  with a relatively simpler system, i.e., the 
model-reduction problem, has received considerable attention in 
recent years. Among the myriad papers devoted to this problem 
are the notable contributions of Wilson [I], Moore [2], and 
Skelton [3] with which the present paper is concerned. In his 1970 
paper, Wilson proposed an optimality-based approach to model 
reduction which involves minimizing the steady-state, quadrati- 
cally weighted’ output error when the original system and 
reduced-order model are subjected to white-noise inputs. For the 
resulting parameter-optimization problem, he obtained first-order 
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present paper because of i ts  relation to the standard engineering practice of 
I The quadratic error  criterion has been chosen for consideration in the 

stating specifications in terms  of m s  deviation. 

necessary conditions which have the form of  an aggregation (as, 
e.g., [41) and which involve the solution of two Lyapunov 
equations each of order n + n,,,, where n and n,,, are the orders of 
the original and reduced-order models, respectively [5], [6]. 

Some time later, Moore proposed a quite different approach to 
model reduction based  upon system-theoretic arguments as 
opposed to optimality criteria. Using the eigenvalues of the 
product of the controllability and observability gramians (which 
satisfy n X n Lyapunov equations), his method identifies 
subsystems which contribute little to the impulse response of the 
overall system. Such “weak” subsystems are thus eliminated to 
obtain a reduced-order model. This technique, known as balanc- 
ing, has been vigorously developed in the recent literature [7]- 
[ 1 11. Since this approach is completely independent of optimality 
considerations, there is, of course, no expectation that such 
reduced-order models are in any sense optimal. 

A third approach to  model reduction, proposed by Skelton [3], 
[ 121, also utilizes a quadratic optimality criterion as in [ 11. 
However, rather than proceeding from necessary conditions as 
does Wilson, Skelton determines for a given basis the contribution 
(cost) of each state in a decomposition of the error criterion and 
truncates those  with the least value. Although this approach is 
guided by optimality considerations, no rigorous guarantee of 
optimality is possible because of dependence on the choice of state 
space basis. 

The present paper has five main objectives, the first of  which  is 
to show how the complex optimality conditions of  Wilson  can be 
transformed without loss of generality into much simpler and 
more tractable forms. The transformation is facilitated by 
exploiting the presence of an oblique (i.e., nonorthogonal) 
projection which was not recognized in [ 1]* and which arises as a 
direct consequence of optimality. The resulting “optimal projec- 
tion equations” constitute a coupled system of two n X n 

’ The projection was, however, pointed out in [28, p. 291. 
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modified Lyapunov equations [see (2.13), (2.14) or (2.21), 
(2.22)] whose solutions are given by a pair of  rank-n, controlla- 
bility  and observability pseudogramians. The highly structured 
form of these equations gives crucial insight into the set of  local 
extrema satisfying the first-order necessary conditions. 

The second objective of the paper is to show  how the optimal 
projection equations provide a rigorous extremality context for 
Moore’s balancing method  and to clearly demonstrate its qua- 
dratic nonoptimality. Although for some problems the “weak 
subsystem” hypothesis leads to a nearly optimal reduced-order 
model, we construct examples for which the reduged-order model 
obtained from the balancing method is much worse with respect to 
the least-squares criterion than the quadratically optimal reduced- 
order model. In general. all  that  can  be  said is that  the presence of 
a weak subsystem indicates that the reduced-order model obtained 
by truncation in  the balanced basis may  be  in the proximity of  an 
extremal of the quadratically optimal model-reduction problem; 
however, this extremal may very  well  be a global maximum. It 
should be noted  that in a recent paper [13] Kabamba has used 
bounds on the  model error to demonstrate the quadratic nonopti- 
mality of the balancing method. 

The third objective of the paper is to demonstrate via an 
example the mechanism responsible for the existence of multiple 
extrema of  the optimal model-reduction problem. By characteriz- 
ing the optimal projection as  a sum of rank-1 eigenprojections of 
the product of the rank-deficient pseudogramians, it is immedi- 
ately clear that the first-order necessary conditions of the problem 
are ambiguous in the sense that  they fail to specify which n, 
eigenprojections comprise the optimal projection corresponding to 
a solution (i.e., global minimum) of the optimal model-reduction 
problem. Specifically, since the pseudogramians can be rank 
deficient in (:,) = n!/n,!(n - nm)! ways, there may  be precisely 
this many extremal projections corresponding to  an  identical 
number of local extrema. 

The fourth objective of the paper is  to propose a numerical 
algorithm for solving the optimal projection equations by exploit- 
ing their structure and taking advantage of the available insights. 
By expressing the modified Lyapunov equations in the form of 
“standard” Lyapunov equations, an iterative relaxation-type 
algorithm is developed. The crucial aspect of the proposed 
algorithm involves extracting an oblique projection at  each step 
from the product of the solutions of the Lyapunov equations. 
Since (Z,,) rank-n, projections can be extracted from the product 
of two n X n positive-definite matrices, it is quickly evident that 
the criterion by which the n, eigenprojections are chosen 
determines which of the numerous local extrema will  be reached. 
If, for example, the projection is chosen in accordance with the n, 
largest eigenvalues of the product of the solutions of the Lyapunov 
equations, then it should not be surprising in  view  of the previous 
discussion that a global maximum may very  well  be reached. In 
this case, the first iteration of this algorithm involves Lyapunov 
equations whose solutions are the controllability and observability 
gramians and the eigenvalues in question are precisely the squares 

. of the second-order modes [2, p. 241. Thus. the first iteration 
coincides with the (nonoptimal) balancing approach of [2]. 

Since the optimal projection equations are  a consequence of 
differential (local) properties. it should not  be expected that  they 
alone would possess the inherent ability to identify  the global 
minimum. Moreover, because of the number of local extrema. 
second-order necessary conditions appear to  be useless. Instead. 
we investigate an approach which chooses the eigenprojections 
according to a component-cost analysis of the model-error 
criterion. This technique can lead to a global  minimum by 
effectively eliminating the local extrema which  have considerably 
greater cost than the global minimum. This approach is philosoph- 
ically identical to  the component cost analysis of Skelton [3], [ 121. 
Essentially, then, component cost analysis is utilized at each 
iteration to direct the algorithm to the global minimum. Although 
our application of this technique is admittedly heuristic, it should 
be noted  that it is essentially proposed as a device for efficiently 

“sorting out” the local extrema which satisfy the otherwise 
mathematically rigorous necessag conditions. Hence, we propose 
component cost analysis as a crucial step in bridging the gap 
between local extremality and global optimality. 

It should be pointed out that neither the numerical algorithm 
proposed in this paper nor the iterative algorithm developed in [4] 
and [5] has been proven to be convergent. The principal 
contribution of the present paper, however, is not a particular 
proposed algorithm but rather the revelations concerning the 
structure of the first-order necessary conditions. The prc- 
posed numerical algorithm should be considered but a prelude to a 
full investigation into numerical algorithms for the optimal 
projection equations. It should also be  noted  that  the presence of 
the optimal projection was not exploited in developing the 
iterative algorithms in [4] and [5] (in fact, it  did  not even appear in 
[l]) and hence crucial insight into local extrema was lacking. 

The fifth and last objective of the paper is to point  out the 
connection between fhe optimal projection equations for model 
reduction obtained herein and the first-order necessary conditions 
obtained recently for hvo closely related problems, namely, 
reduced-order state estimation and fixed-order dynamic compen- 
sation. 

The plan of the paper is as follows. Section II begins with 
general notation and definitions followed by the model-reduction 
problem statement and the main theorem which presents the 
optimal projection equations for model reduction. A series of 
remarks considers various aspects of the main theorem and sets 
the stage for discussing connections with [ 11 and [2]. Section 111 
contains a detailed discussion of the sense in  which the optimal 
projection equations simplify the necessary conditions given in 
[l]. and Section IV shows how the approach of [2] is approxi- 
mately extremal. Section V presents a simple example which 
clearly displays the possible existence of multiple extrema 
satisfying the optimal projection equations. This example shows 
that the balancing method  of [2] may  lead to a nonoptimal 
reduced-order model  and suggests a heuristic procedure for 
selecting the eigenprojections comprising the projection corres- 
ponding to the global minimum, i.e., the optimal projection. In 
Section VI. a numerical algorithm for solving the optimal 
projection equations is proposed and applied to an illustrative 
example considered previously in [ l ]  and [2] as well as to some 
interesting examples considered recently by Kabamba in [ 131. 
Related results on reduced-order dynamic compensation and state 
estimation are briefly reviewed in Section VI1 and suggestions for 
further research are given in Section VUI. The proof of the main 
theorem appears in the Appendix. 

11. PROBLEM STATEMENT AKD MAIN RE.SULT 

The following notation  and definitions will  be  used throughout 
the paper: 

Z T  
1, 

Z-T 
P ( Z  ) 
tr Z 
IlZll 
Z ;  . 

stable matrix 

nonnegative-definite 

positive-definite 
matrix 

matrix 

r X r identity matrix 
transpose of vector or matrix Z 
( Z 3 - I  or ( Z - ’ ) r  
rank of matrix Z 
trace of square matrix Z 
[tr Z Z T ]  I;? 

( i ,  j)-element of matrix Z 
r X r diagonal matrix with listed 
diagonal elements 
matrix with  unity  in the ( i ,  i )  
position and zeros elsewhere 
expected value 
real numbers, r X s real matrices 
matrix with eigenvalues in open 
left half plane 
symmetric matrix with 
nonnegative eigenvalues 
symmetric matrix with positive 
eigenvalues 



HYLAND el al.: OPTIMAL  PROJECTION EQUATIONS 1203 

semisimple matrix 

nonnegative 
semisimple matrix 

positive-semisimple 
matrix 

positive-diagonal 
matrix 

n, m, P, nm 
x ,  u, Y ,  x,, Yrn 
A ,  B, C 
A m ,  B m ,  Cm 

matrix similar to a diagonal matrix 
[14, p. 101 
matrix similar to a nonnegative- 
definite matrix 
matrix similar to a positive- 
definite matrix 

diagonal matrix with positive 
diagonal elements 
positive integers, 1 I n, I n 
n, m, E, n,, Pdimensional vectors 
n X n, n x m, E x n matrices 
n, x n,, n, x m, P x n, 
matrices 
P X P, m X m positive-definite 
matrices 

We consider the following problem. 

and observable system 
Optimal  Model-Reduction  Problem: Given the controllable 

find a reduced-order model 

X, = A,x, + B,u, (2.3) 

Y m  = CmXm (2.4) 

which minimizes the quadratic model-reduction criterion3 

J(Am, B m ,  C m )  2;i.lim E [ ( Y - Y ~ ) ~ R ( Y - Y ~ ) I ,  
1- m 

where the input u(t) is white noise with positive-definite intensity 
V .  To guarantee that J is finite, it is assumed that A is stable and 
we restrict our attention to the set of admissible reduced-order 
models 

a 2 { ( A , ,  B,, C,) : A ,  is stable}. 

Since the value of J is independent of the internal realization of the 
transfer function corresponding to (2.3) and (2.4), we further 
restrict our attention to the set 

a, G { (A , ,  B,, C,)E@ : 

. (A,, B,) is controllable and (A,,  C,) is observable}. 

The following lemma is  needed for the statement of the main 
result. 

Lem-Ea 2.1: Suppose Q, p E Rnxn are nonnegative definite. 
Then QP is nonnegative semisimple. Furthermore, if p(QP) = 
n, then there exist G, r E W n m  and positive-semisimple M E 
,?Y"' x n m  such that 

Q P =  G T I W ,  (2.5) 

rGT= I.,. (2.6) 

Proof: By [14, Theorem 6.2.5, p. 123j, there exists n x n 
invertible 6 such that the nonnegative-definite matrices D o  2 
&Q&' and Dp & & - 'P& -: _are  bo*  diagonal,Hence, DQD? is 
nonnegative definite and QP = @ -ID&@ is nonnegatwe 
semisimple. Next introduce n X n orthogonal U to effect a 
rearrangement of basis if necessary so that 

simply, as the ''cost." 
' J will  occasionally be referred to as the "model-reduction error" or, 

where @ A &U and n, X n, A is positive  diagonal.  Hence, for all 
n, X n, invertible S ,  

QP=+ [ ;] (S-'AS)[S-' O ] + - '  

and thus, (2.5) and (2.6) hold  with G = [ S T  O]aT, M = S-IM 
and r = [S - '  01a-I. rn 

For convenience in stating the main theorem, we shall refer to 
G, I' E R'm and positive-semisimple M E x n m  satisfying 
(2.5) and (2.6) as a (G, M ,  r)-factorization of Q p .  Also, define 
the positive-definite controllability and observability gramians 

W, 2 [ eAIBVBTeAT1 dt, 
a: 

0 

W,, & eATtCTRCeAi  dt, 
. O  

which satisfy the dual Lyapunov equations 

O=AW,+  W,Ar+BVBr, (2.7) 

0 = A  'W, + W,,A -t CTRC. (2.8) 

Main Theorem: Suppose (A,, B,, C,) E a + solves the 
optimal model-redycti_on problem. Then there exist nonnegative- 
definite matrices-Q, P E P X n  such that, for some (G, M ,  r)- 
factorization of QP, A,,  B,, and C, are given by 

A ,  = I'AG ', (2.9) 

B, = rB, (2.10) 

c, = CGT, (2.1  1) 

and such that, with r & GTr,  the  following  conditions are satisfied: 

p(Q)=p(P)=p(QP)=nm, (2.12) 

O=T[A$+QA'+BVB~],  (2.13) 

O=[AT1'+pA+CTRC]r.  (2.14) 

Several comments are in order.  First, note that the main 
theorem consists of necessary conditions in the form of two 
modified Lyapunov equations (2.13) and (2.14) plus rank condj- 
tions (2.12) which must possess nonnegative-definite solutions Q2 
P when an optimal reduced-order model exists. We shall call Q 
and P the controllability and observabili'ty pseudogramians, 
respectively, since they are analogous to W, and W,, and yet have 
rank deficiency. The modified Lyapunov equations are coupled by 
the n X n matrix 7 which is a projection (idempotent matrix) since 

r2=GTGT=G'In,I'=T. 

Note that, in general, r is an oblique projection and  not 
necessarily an orthogonal projection since it may  not be symmet- 
ric. We shall refer to a projection r corresponding to a solution 
(i.e., global minimum) of the optimahodel-reduction problem as 
an  "optimal projection. ' I  It should be stressed that the form of the 
optimal reduced-order model (2.7)-(2.9) is a direct consequence 
of optimality and not  the result of an a  priori assumption on the 
structure of the reduced-order model. 

Since the optimal projection equations are first-order necessary 
conditions for optimality, they may possess multiple solutions 
corresponding to various local extrema such as local maxima, 
local minima, saddle points, etc.  The following definition will 
prove useful. 

Definition 2. I :  Nonnegative-definite Q, p E R n x  are 
extrema1 if (2.12)-(2.14) are satisfied. (Am,  B,, C,) E @ +  is 
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extremal if there exist extremal 8, such that (A,, B,, C,) i s  
given by (2.9)-(2.11) for some (G, M ,  r)-factorization of QP. 
The corresponding projection 7 is an extremal  projection. 

Proposition 2. I :  Suppose (A,, B,, C,) is extremal. Then the 
model-reduction error is given by 

J(A,, B,, Cm)=2tr [(@- W,W,)A]. (2.15) 

Proof: The proof is given at the end of Appendix A. 
Remark 2.1: Noting the identities 

-2tr [W,W,A]=tr  [CTRCWc]=tr [BVB'W,],  (2.16) 

which follow from (2.7) and (2.8), (2.15) can  be written for 
extremal (A,, B,, C,) as 

J(A, ,  B,, C,)=2tr [@Al+tr [C'RCW,] 

=2tr [ Q A ] + t r  [BVBTW,].  (2.17) 

For convenience in the following discussion, let Q, p ,  G, M ,  
r, and 7 correspond to some extremal (A,,  B,,  C,). Now 
observe that if x, is replaced by Sx,, where S is an arbitrary 
nonsingular matrix, then an "equivalent" reduced-order model  is 
obtained with (A,, B,, C,) replaced by (SA,S- l ,  SB,, 
C,S-I). Since J(A,, B,, C,) = J(SA,S-' ,  SB,, C,S-I), one 
would expect the main theorem to apply also to (SA,S-l, SB,, 
C',,S-'). Indeed, the following result shows that  this trans-fqrma- 
tion corresponds to the alternative factorization Q P  = 
(S-TG)T(SMS-l)_(ST) and, moreover, that  all (G, M ,  r)- 
factorizations of Q P  are related by  an invertible transformation. 

Proposition 2.2: If S E 3% is invertible, then G = 
S T G ,  j? = ST and A?l = SMS-' satisfy 

Q p = p m ,  (2.5) ' 

rGT= I.,. (2.6) ' 

Conversely, if G, F E R"m and invertible A?l E R n m  x "m 

satisfy (2.5)' and (2.6)', then there exists invertible S E R n m  
such that G = S - T G ,  F = SI' and A? = SMS-I. 

Proof: The first part is immediate. The second part follows 
by taking S 2 A?l-'j?GTM, no_ting S-l = mGT$f-l and using 
the identities FG TmGT = M and mGT = I'G T M .  rn 

The next result shows that there exists_a_similarity transforma- 
tion  which simultaneously diagonalizes QP and T .  

Proposition 2.3: There exists invertible E W n x n  such  that 

Q=Q-'[ 0- 0 '1 P = Q T [  0 0  '1 Q ,  (2.18) 

@ = + - I  [ A 0  0 ]  Q, T = Q - I  [Inrn '1 Q, (2.19a, b) 
0 0  

where AQ, Ap E are positive diagonal, A and 
the diagonal elements of A are the eigenvalues of M .  Conse- 
quently 7 

$ = T o ,  P = P r .  (2.20) 

Proof: By [14, Theorem 6.2.5, p. 1231, and  by (2.12), there 
exists n X n invertible 9 such that (2.18) holds and  thus (2.19a) 
also holds. Define 

G=[I, ,  O]+-', A?=A and r=[Znm 019 

so that (2.5)' and (2.6)' are satisfied. By the second part of 
Proposition 2.2 there exists invertible S E R n m  such that G = 

V and VI. 
' The expressions (2.15)-(2.17) and (2.23)-(2.24) will be used in Sections 

S T G ,  M = S-IA?lS and r = S-lj?. Now (2.19b) follows from 
r 

It is useful  to present an alternative form of the optimal model- 
reduction equations (2.13) and (2.14). For convenience, define 
the notation 

71 2 In-?. 

Proposition 2.4: Equations (2.13) and (2.14) are equivalent, 
respectively, to 

O = A Q + ~ A T + B V B ~ - T , B V B ' ; : ,  (2.21) 

O=ATP+PA+CTRC-r~CTRCrl .  (2.22) 

Proof:By (2.20), (2.21) = (2.13) + (2.13)T + (2.13)rand 
(2.13) =7(2.21). Similarly, (2.14) and (2.22) are equivalent. 

Remark 2.2: Noting the identities 

-2  tr [QpA]=tr [CTRCQ]=tr [BVBTP], (2.23) 

which follow from (2.20)-(2.22), (2.17) can be written for 
extremal (A, ,  B, , C,) as 

J(A,, B,,, C,)=tr [CTRC(Wc-Q)]=tr [BVBT(Wo-P)] .  

(2.24) 

To facilitate the discussion in the following sections, we 
consider the change of basis 2 2 Qx, where Q is  given by 
Proposition 2.3. Writing (2.1) and (2.2) as 

i = & + B u ,  (2.25) 

y = (3, (2.26) 

where 

A 2 QAQ-1, B p QB, e 2 CQ-1, 
(2.9)-(2.11) become 

A, = PA&, (2.27) 

B, = fB, (2.28) 

C, = C G T ,  (2.29) 

where 

f 4 rQ-1, G 2 G+T 

satisfy 

Note that (2.30) implies 

f = [ S  01, G = [ S - T  01, (2.31) 

for some n,, X n, invertible S .  Partitioning 

whereZ,€ Rn~andA^, ,B,and~,aren ,  X n,,n, X mand 
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t‘ X n,, respectively, (2.27)-(2.29) and (2.31) yield 

A,=SA,S-’ ,  B,=SB,,  C,=C,S-‘. 

This shows that the optimal reduced-order model (modulo a state 
transformation) can be obtained by truncating the last n - n, 
states of the origin$ syste-m when it  is expressed in the basis with 
respect to which Q and P have the diagonal forms 

1205 

[? :] and [? :] . 

Since the optimal projection 7 has the simple form 

[ 1.m 01 
0 0  

in  this basis, we shall refer to (2.25) and (2.26) as an optimal 
projection realization of (2.1) and (2.2). Note  that  when (2.21) 
and (2.22)  are expanded in an optimal projection basis (i.e., a 
basis corresponding to an optimal projection realization) they 
assume the form 

o=A,A,+A,A;+B,vB;, (2.32) 

0 =AzrnAO + B 2  VB;, (2.33) 

O = A ~ p + A p A m + C S C m ,  (2.34) 

0 = Ap4,2 + ezC2. (2.35) 

If 9 in Proposition 2.23 is replaced by 

which corresponds to a change of basis for the reduced-order 
model obtained by truncation, then AQ and Ap are both replaced 
by ( A Q A ~ ) ~ : ~  and hence this can be called a balanced  optimal 
projection basis, utilizing the terminology of [2]. Thus, in a 
balanced optimal projection realization, AQ and Ap appearing in 
(2.32)-(2.35)  are equal. 

The next result provides an interesting closed-form characteri- 
zation of an $$rema1 proje_ction  in terms of the Drazin gen_er_alized 
invgrze of QP. Since ( QF12 = G r M 2 r ,  and hence p(  QP)2  = 
p(QP) ,  the “index” of QP (see [15, p. 1211) is 1. In this case, 
the Drazin inve_rse is traditionally called the group inverse and- is 
denoted by ( Q P ) #  [15, p.  1241. Since, as is easily verified, ( Q P ) ”  
= GTM-lI’, (2.6) leads to the following result. 

Proposition 2.5: An extremal projection 7 is  given by 

7 =  QP(QP)#. (2.36) 

An alternative representation for an extremal projection will 
prove useful for developing a numerical algorithm for solving 
(2.21) and (2.22). If Q ,  P E R r x r  are nonnegative definite then 
by Lemma 2.1 QP is nonnegative semisimple and thus there exists 
invertible E R r x r  such that 

QP= ‘3- ‘Q’3, 

where = diag (a1, * * , a,) and mi 2 0 are the eigenvalues of 
QP. Now define the ith eigenprojection [16, p. 411 

ni[QP] P\k-’Ei9, 

which  is a rank-1 oblique projection. Note that QP has the 
decomposition 

r 

QP=  w~II;[QP]. 
i =  I 

Proposition 2.6: An extremal projection 7 is given by 

7= rI,[QP], 
n, 

(2.37) 
i =  I 

where the ith eigenprojecjion I&[@[ corresponds to the ith 
nonzero eigenvalue hi of QP. 

In. RELATIONSHIP TO WILSON’S FORM OF THE NECESSARY 
CONDITIONS 

The optimal model-reduction problem considered in the pre- 
vious section is identical to the problem considered by Wilson in 
[l] with the minor exception that he sets R = I, .  In [l] G and I’ 
are denoted by eland 01,  (2.6) appears as (15), and (2.9)-(2.11) 
are given by (14a, b). Note that in [ 13, O and O2 depend upon the 
solutions of a pair of (n  + n,) X (n + n,) Lyapunov equations 
[see (7), (9) of [l] or (A.2),  (A.3) of the present paper] whose 
coefficients and nonhomogeneous terms depend in turn on A, ,  
B,, and C, [see (A.lO)-(A.l5j]. The advantage of the n X n 
optimal projection equations (2.21) and (2.22) over the form of 
the necessary conditions given in [ l ]  [see (A.  lO)-(A.l5)] is that 
the optimal projection equations are independent of A,,  B, , and 
C, . Hence, this permits the development of numerical algorithms 
which avoid the need to choose starting values for A,,  B, , and 
C, . To see this, note that although the unknowns A, ,  B,, and 
C, appear explicity in (A.IO)-(A.l5), all data in the optimal 
projection_equati_ons (2.13) and (2.14)  are known except for the 
solutions Q and P .  Moreover, the optimal projection 7, which  was 
not recognized in [ 11, can be seen to  play a fundamental role by 
coupling the modified Lyapunov equations (2.21) and (2.22) and 
determining (since 7 = G T r )  A,,  B,, and C, in (2.7)-(2.9). 

IV. RELATIONSHIP TO MOORE’S BALANCING METHOD 

In contrast to Wilson’s method for model reduction which is 
based on optimality principles, the approach due to Moore [2] 
relies on system-theoretic ideas. The main thrust of this approach 
“is to eliminate any weak subsystem which contributes little to the 
impulse response matrix” [2, p. 261. The concept of a “weak 
subsystem” is defined by means of a dominance relation [2, p. 281 
involving similarity invariants called second-order modes. Moore 
evaluates reduced-order models obtained in this way  by comput- 
ing  the relative error in the impulse response given for  MIMO 
systems by [2, p. 291 

where H,(t) P H(r) - H,(t), H(r) 2 RL/2CeArBV1/2 and H,(t) 
k R I/2C,eAm‘B,V1/2. To  discuss  this  approach in the  context  of  the 
optimal  model-reduction  problem, we  assume  that V = I, and R = 
- 

I f .  
Proposition 4.1: Suppose (A,,  B,n, C,) E a. Then 

€ ( A m ,  B m ,  C m ) = [ - - J ( A m ,  B m ,  C,)/tr ( w c w ~ A ) I ’ / ~  
1 
2 

=[ . / (A , ,  B,, C,)/tr (CTRCWc)]’/2 

= [J (A , ,  B,, C,)/tr (BVBTWo)]1/2. (4.1) 

Proof: The result follows from (A.I),  (A.8), and (A.9) 
which  hold  without regard to either optimality or extremality. 

Note that Proposition 4.1 shows that the relative error in the 
impulse response is minimized precisely when J(A, , B,, C,) is 
minimized. Actually, this result is to be expected since, as shown 
in [I], J can. be obtained alternatively by taking u(t) to be an 
impulse at t = 0. 

To draw interesting comparisons with the results of [2], choose 
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n x n invertible such that q W,qT and \E - T  W , q  - I  are both 
diagonal and hence 

W,W0=\k-’C2‘k, (4.2) 

where C P diag (al, . . -, an) and  the second-order modes ai (Le.? 
the  positive  square  roots of the  eigenvalues  of W,  W,) satisfy u1 2 a2 

(2.1),  (2.2) by 
2 ... 2 an > 0. This  transformation  corresponds  to  replacing 

i = A i + B u ,  (4.3) 

y = ci, (4.4) 

where 

2 9 ‘kx, A 5 B P ‘kB, (? B (X-’. (4.5) 

The transformed system (4.3), (4.4), called a principal axis 
realization [17], can further be chosen so that 

‘kW,‘kT=‘k-TW,‘k-~=Z, (4.6) 

i.e., the balanced realization. Using ( 4 . 3 ,  (2.7) and (2.8) become 

O=AZ+ZAT+BVBT, (4.7) 

O=A%+ZA+ 

The model-reduction procedure 
partitioning 

P R C .  (4.8) 

suggested in [2] involves 

where X, E R“’ and A,,, , B,,,, and E,,, have corresponding 
dimension, and extracting the reducedlorde-r mcdel (A,, B,, c,). Hence, the reduced-order model (A, ,  B,, C,) is extracted 
from (4.3), (4.4) in essentially the same way the optimal reduced- 
order model (A,, ,  B,, C,) is extracted from (2.25),  (2.26). To 
see how the optimal-projection realization compares to a princi- 
pal-%xis  realization, first note  that (2.13) and (2.14) are satisfied 
by Q = W, and P = W, when the rank conditions (2.10) are 
ignored. Indeed, since W, and W, are positive definite, the rank 
conditions (2.12) do not hold. If, however, the system (2.1).  (2.2) 
is expressed in the balanced coordinate system (4.3), (4.4) (so that 
W, = W, = E), then  the assumption a,,, s unm- I implies that 
p( W,), p (  W,) and p (  W, W,) are “approximately” equal to n, 
and thus, in this sense, condition (2.10) is satisfied. This 
observation leads to the suggestion that  when a,, %- an,,,+ I ,  W, 
and W, are approximations to solutions Q and of the optimal 
projection equations and the reduced-order model (A,, E,, c,) 
of Moore is an approximation to some extremal (A,,  B,, C,). 
There is no guarantee, of course, that  any particular extremum 
corresponds to  the global minimum, or even to a local minimum. 

v. EXISTENCE OF MULTIPLE EXTREMA AND  COMPONENT-COST 
RANKING 

In this section, we show by means of a simple example that the 
optimal projection equations may possess nonunique solutions 
corresponding to multiple extrema, e.g., local minima or max- 
ima. We also show how decomposing the cost can identify the 
global minimum from among the numerous extrema. To begin, let 
m = P =  n , R  = V =  Zn,  

A 2 diag ( - a I ,  . . ., -a,,), 

where a; > 0, i = 1 ,  . * . , n, and suppose B and C are such that 

BBr=diag (PI, . - e ,  &), CTC=diag (yl, . I . ,  yn) ,  

where Pi > 0, y~ > 0, i = 1,  - e ,  n. Hypothesizing diagonal 
solutions Q and P of (2.21) and (2.22) leads to 

where each Ai,  i = 1, - * e ,  n is either zero or one and exactly n, 
of the Ai’s are equal to one. Hence 7 = diag (A1, . . . , An). Note 
that there are (:,,,) such s:lutions of the optimal projection 
equations corresponding to ( n m )  local extrema. 

Since 

1 1 
2 2 

W - --A-’BB’, W,= -- A-‘CTC, $=7Wc,   P=rW0 C- 

and A ,  W,, and W, commute, (2.15) becomes 

1 
J(A,,  B,, C,)= -- tr r1A-IBBTCrC. 

2 

Hence, 

where 

To minimize J,  it  is clear that Ai should be chosen to be unity for 
the largest n, elements of the set { li};= and zero otherwise. 
Although this choice is not necessarily unique, it does yield a 
global minimum. Note that choosing Ai = 1 is equivalent to 
selecting a particular eigenprojection Hi[ W, W,] corresponding 
to the eigenvalue Piyi/4a,?. 

Remark 5.1: The expression in (5.1) can be regarded as a 
decomposition of the cost in t e r n  of the state variables. The idea 
of deleting states based on their “component costs” is precisely 
the “component cost analysis” approach of Skelton [3], [12]. 

Using the example, it is easy to see that the balancing method of 
[2], which selects eigenprojections based  upon  the magnitude of 
the eigenvalues of W,  W,,  i.e., the (squares of the) second-order 
modes, may  yield a grossly suboptimal reduced-order model. To 
this end. let 

q = l ,  a2=106, & = l ,  &=106, y1=l ,  y2=103 

so that 

P I  = 0.5, = 500. 

Clearly, J is minimized ( J  = Cl) by choosing A I  = 0, A2 = 1, 
which corresponds to truncating the first state variable. If, 
however, the method of  [2]  is utilized, then judging by the second- 
order modes 

a1 =0.5, ~ ~ = ( 2 . 5 ) ” ~  . 10-220.012, 

the second state variable should be deleted. This, however, 
corresponds to choosing A I  = 1 , A 2  = 0 with the higher cost J = 
5;. The fact that the balancing approach of [2] fails to determine a 
solution of the optimal model-reduction problem should not be 
surprising in view of the fact that the error criterion plays no role 
in the balancing technique. 

Although the above solutlon exploited the simple structure ot 
this example, it is clear that choosing the global minimum from 
among the local extrema involves an eigenprojection decomposi- 
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tion of the cost J.  To extend this idea  to more general systems, we 
invoke the following heuristic approximation. 

Approximation 5.1: Let \k define the balanced basis as in 
(4.6). Then \k also approximately defines a balanced optimal 
projection basis, i.e., 

q i Q \ k 7 = \ k - T f i - ' = f C 2 ,  (5.2) 

where extremal 

7 2 \k.r\k--'=diag (61, ..., 6,) ( 5 . 3 )  

and 
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n 

& E ( O ,  I } ,  6;=n,. 
;= I 

Proposition 5.1: If Approximation 5.1 holds for extremal 
(Am, B,, C,) then, with ?I 2 I, - 7. 

J(A, ,  B,, C,)= -2tr [ i l C 2 A ]  

n 

= 2 - U f A i j ( l  - s i ) .  (5.4) 
i= 1 

Remark 5.2: From (4.7) and (4.8), it follows that (5.4) can be 
written either as 

J(Am,  B,, C,)=tr [71CBVBT] 

or 

n 
= Cg(t?'RC)ii(l - 6;). (5 5 )  

i =  I 

Hence, Approximation 5.1 leads to the following component-cost 
ranking (again, in  the sense of Skelton [3], [12])  of the (I,) 
extrema satisfying the optimal projection equations. 

Component-Cost Ranking: Assume Approximation 5.1 is 
valid  and choose the eigenprojections comprising extremal 7 such 
that 

6;= 1, if - u i  is  among  the n, 
largest  elements of  the  set { - u:A,} := I ;  

6i = 0, otherwise. 

For comparison purposes, we shall also consider the following 
ranking of the eigenprojections based upon the eigenvalues of 
W, W, (i.e., second-order modes). 

Eigenvahe Ranking: Choose the eigenprojections comprising 
extremal 7 such that 

6;= 1, if -ufAi;  is among  the n, 

largest  elements of  the  set { - ur}:= 

6i= 0, otherwise. 

Remark 5.3: The observation that the second-order modes 
alone may be a poor guide to determining an optimal reduced- 
order model has recently been made in [ 131 where bounds on the 
model-error criterion were given involving both the second-order 
modes and suitable weights called balanced  gains. It  can be seen 

from Proposition 5.1 that the role of balanced gains in our 
approach is played by the elements - ajA ;; when Approximation 
5.1 holds. It can also be seen that the balanced gains of  Kabamba 
yield bounds  on the component costs of Skelton. 

VI. NUhlERlCAL SOLUTION OF THE OPTIMAL PROJECTION 
EQUATIONS 

Insofar as the ultimate aim of .any model-reduction technique is 
to permit the development of numerical procedures for reducing 
high-order models, the optimal projection equations, comprising a 
coupled system of modified Lyapunov equations, appear promis- 
ing  in this regard. Therefore, we present an iterative computa- 
tional algorithm that exploits the structure of these equations and 
the available insights. The reader is strongly reminded that the 
proposed algorithm is but a first attempt at solving these new 
equations and alternative algorithms may  yet  be devised. The 
basis of this algorithm is the ability to write the modified 
Lyapunov equations (2.21),  (2.22) in the form of  "standard': 
Lyapynov equations (6. l), (6.2) such that the pseudogmians Q 
and P a r e  extracted at the final step (6.6). It follows from (2.32)- 
(2.35) that (2.21),  (2.22)  are indeed equivalent to (6.1),  (6.2) 
(with k = 03) and (6.6). 

Algorithm: 
Step 1) Initialize = 1,. 
Step 2 )  Solve for Q(", Ij(&) 

O=(A-7(k)A7':))Q(k)+Q'k'(A-7(X.)A7(:))T+BVBT, (6.1) 

0 = ( A  - T ( : ) A T ( ~ ) ) ~ $ ~ ) +  6 ( k ) ( A  - T ' , ~ ) A T ( ~ ) )  + CTRC. (6.2) 

Step 3) Balance 

~(k)Q(k)(~(k))7=(~(k))-T~(k)(@(~))-I ,E(&), ( 6 . 3 )  

C ( k )  = diag ( ~ ( k ) ,  . . . , q ) ,  u(k)>u(k)>  . > a f f ' r O .  
I 2  

Step 4) If k > 1 check for convergence 

ek 2 . (6.4) 

If I ek - ek - I I < tolerance then go to step 8); else continue; 
Step 5) Select n, eigenprojections 

[ tr (CTRCW,) - tr ( c ~ R c T ( ~ ) Q ( * ) ( ~ ( ~ ) ) T )  1 : ~  

tr (CTRCW,) 1 
n,, [ Q ( k ) $ ( k ) ] ,  . . . , n;".J Q ( k ) p ( k ) ] ,  

- -  
n i [ Q ( k ) p ( k ) ]  p - @ ( k ) E . ( @ ( k ) ) - l .  

Step 6) Update 

n, 
&+ 1) ";, [ Q ( k ) j h ] ,  (4.5) 

r =  1 

Step 7 )  Check for convergence; if not, increment k and return 

Step 8) Set 
to Step 2). 

Q=7( - )Q(T (4 )T ,  p = ( 7 ( m ) ) T p 7 ( = ) .  (6.6) 

For convenience, we shall adopt the notation (A:), BE), C:)), 
where k > 0, to denote the reduced-order model obtained as a 
result of applying the projection T ( ~ ) ,  and  we define (see Section 
IV) 

Ek g €(A:),  BE),  cy'), 
Le., the relative error associated with ( A  $), BE), C:)). Note that, 
in general, E& # ek since el, denotes the relative error only for an 
extremum, i.e., when convergence has been reached. 
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It should  be clear from the discussion in the previous section 
that the crucial step of the algorithm is Step 5)-the choice of  the 
eigenprojections. For the examples which follow, we shall invoke 
consistently at Step 5) either the component-cost ranking based 
upon Approximation 5.1 or the eigenvalue ranking. 

Remark 6.1: Note that in the special ca;se R = Z,,, and V = Zf, 
the first iteration of the algorithm yields Q0) = W,, PC0) = W 
If, at Step 5), we choose i, = r ,  r = 1, - - , n,, i.e., the 
eigenprojections are selected according to the eigenvalue ranking, 
then ( A t ) ,  BZ), C:)) is precisely the reduced-order model 
obtained from balancmg. 

We shall first consider the following example which  was treated 
by both Wilson and Moore. In this example, and those that follow, 
assume R = I, ,  I/ = I t .  

0 ’  

Example 6. I :  

0 0 0 -150 

A = [  A 1;:; 1 ,  B= [ i ] ,  C = [ O O O  I]. 
0 0 1 -19 

Table I summarizes the results obtained for the three cases n, 
= 3, 2, 1 utilizing the eigenvalue ranking. In each case, the 
proposed algorithm converged linearly in less than eight iterations 
and, in each case, improvement is evident over previously 
published results. As pointed out in [2], Wilson’s result seems to 
imply a lack  of final convergence. For this example, the balancing 
approach yields a reduced-order model close to the global 
minimum. 

We  now turn to a pair of interesting examples considered in 

Example 6.2: 
~ 3 1 .  

Table I1 summarizes the results obtained using the eigenvalue 
ranking and Table 111 gives the results when the component-cost 
ranking is used. It is clear that the former method directs the 
algorithm to the global maximum whereas the latter approach 
yields the global minimum. 

Example 6.3: 

Table IV reports the results obtained using either the compo- 
nent-cost ranking or the eigenvalue ranking which agree for this 
example. If the alternative eigenprojection is selected then, as 
expected, the algorithm converges to a global maximum (see 
Table V). The interesting aspect of this example, as discussed in 
[ 131, is that the error E ,  = 0.5245 (see [ 131) for the reduced-order 
model obtained by either eigenprojection ranking is actually 
greater than e l  = 0.3849 obtained by choosing the alternative 
reduced-order model. This situation seems to indicate that proper 
eigenprojection selection based upon a cost decomposition is able 
to direct the algorithm to the global minimum  in cases for which 
the starting values are not nearby. 

VII. THE OFTIMAL PROJECTION EQUATIONS FOR FIXED-ORDER 

ESTIMATION 
DYNAMIC COMPENSATION  AND  REDUCED-ORDER  STATE 

We briefly discuss the relationship between the optimal 
projection equations for model reduction and analogous results for 
reduced-order control and estimation problems. 

Fixed-Order  Dynamic-Compensation  Problem: Given the 
controlled system 

, ? = A x + B u + ~ l ,  (7.1) 

y =  cx+ w2, (7 .2) 

TABLE I 
RELATIVE ERROR e ,  = E ,  

Optimal Projection 
Order n, Wilson [ l ]  Moore [2] Equations 

- 0.001311  0.001306 

- 0.4321  0.4268 

3 
2  0.04097  0.03938 0.03929 
1 

TABLE Il 
EXAMPLE 6.2 WITH FJGENVALUE  RANKING 

k e* 

1 0.9950371897 
2 0.9950371691 
3  0.9950371690 

TABLE tU 
EXAMPLE 6.2 WITH COMPONENT-COST RANKING 

k ek 

1 
2 

0.0995037 
0.0995449 

3 
4 

0.0995924 
0.0996520 

5  0.0997346 
6  0.0998648 
7 
8 

0.1001125 
0.1007724 

9  0.1054569 
10 0.0982006 
11 0.0975409 
12 0.0975342 
13 0.0975330 
14 0.0975329 

TABLE IV 
EXAMPLE 6.3 usrnrG EITHER RANKING 

k ek 

1 0.646996 
2 C.418341 
3  0.220994 
4  0.177276 
5 0.1 76576 

TABLE V 
EXAMPLE 6.3 WITH THE  OPPOSITE  RAhXING 

k ek 

1 0.7624928516 
2 0.9999999961 
3 0.9999999975 

29 0.9999999999 
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design a fixed-order dynamic compensator 

Xc=A$c+B,~,  (7.3) 

u = CJ, (7.4) 

which minimizes the performance criterion 

J(A, ,  B,, C,) 2 lim P[xTRIx+urR~u] ,  (7.5) 

where u E am, x, E R n c ,  n, I n, w1 is  white disturbance noise, 
w2 is nonsingular white observation noise, R ,  is nonnegative 
definite, and R2 is positive definite. 

Necessary conditions characterizing optimal (Ac, B,, C,) have 
been developed in  [18]-[22] along the same lines as the main 
theorem. These conditions, called the optimal projection equa- 
tions for fixed-order dynamic compensation, consist of four 
matrix equations (two modified Riccati equations and two 
modified Lyapunov equations) coupled by a projection. The 
modified Riccati equations, not surprisingly, are similar in form 
to the covariance and cost Riccati equations of LQG theory and 
the modified Lyapunov equations are similar to the optimal 
model-reduction equations (2.13) and (2.14). Hence, while the 
modified Riccati equations govern optimal estimation and optimal 
control, the additional modified Lyapunov equations characterize 
“optimal reduction.” The important fact that all four equations 
are coupled supports the view that optimal fixed-order dynamic 
compensators cannot, in general, be designed by means  of a 
stepwise procedure, e.g., by either open-loop model reduction 
followed by LQG or LQG followed by closed-loop model 
reduction. 

Midway  between the model-reduction and fixed-order dy- 
namic-compensation problems lies the following problem. 

Reduced-Order  State-Estimation  Problem: Given the ob- 
served system 

1 - a  

X=Ax+ WI, (7.6) 

y =  c x +  w 2 ,  (7.7) 

design a reduced-order state estimator 

Xe=Ae-G+BeY, (7.8) 

Ye = Ce-G (7.9) 

which minimizes the estimation criterion 

J(A,,  Be, C,) 2 lim E[(Lx-Y,)~R(Lx-Y,)] ,  
1-m 

where x, E 2”’, L E Z ’ x n e  and L identifies the states, or linear 
combinations of states, whose estimates are desired. The  order ne 
of the estimator state x, is determined by implementation 
constraints, Le., by the computing capability available for 
realizing (7.8) and (7.9) in real time. 

In view of the results already given, it should not  be surprising 
(see [23]) that the optimal projection equations for reduced-order 
state estimation form a system of three matrix equations (a pair of 
modified Lyapunov equations along with a single modified Riccati 
equation) coupled by a projection which determines the gains of 
the optimal reduced-order estimator. This intrinsic coupling 
between the “operations” of optimal estimation (the modified 
Riccati equation) and optimal model reduction (the pair of 
modified Lyapunov equations) stresses the fact that reduced-order 
estimators designed by means of either model reduction followed 
by “full-order” state estimation or full-order estimation followed 
by estimator reduction will generally not be optimal for the given 
order. 

VIII. DIRECTIONS FOR FURTHER RFSWRCH 

The most important area of research involves the further 
development of algorithms for solving the  optimal projection 
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equations. Although proving local convergence of the proposed 
algorithm appears possible, the more important problem is 
achieving global optimality via the component cost approach. 
Although the global minimum was attained for all examples 
attempted by the authors, it remains to treat considerably more 
complex systems. 

An interesting extension of the main theorem involves the case 
in which the original system (2. l), (2.2) is a distributed parameter 
system, e.g., a partial differential equation or a functional 
differential equation. This generalization, which has been referred 
to as the “ultimate reduced-order problem” [24], may  lead to the 
efficient generation of high-order discretizations for such systems. 
All  of the mathematical machinery required to generalize the main 
theorem to this case has already been applied to fixed-order 
dynamic compensation in [25]. 

IX. CONCLUSION 

First-order necessary conditions for quadratically optimal 
reduced-order modeling of a linear time-invariant plant are 
expressed in the form of a pair of n X n modified  Lyapunov 
equations coupled by an oblique projection. This form of the 
necessary conditions considerably simplifies the original form 
given  by Wilson in [ 11 and clearly reveals the possible presence of 
numerous extrema. The balancing method of Moore given in [2] 
is shown to yield a reduced-order model  that  is “close” to an 
extremal given by the necessary conditions. A numerical example 
shows, however, that this extremal may very  well  be the global 
maximum rather than the desired global minimum. An algorithm 
is proposed which exploits the presence of the optimal projection 
and computes the various local extrema by the choice of 
eigenprojections comprising the projection. A component-cost 
ranking of the eigenprojections, which  is  very  much in the spirit of 
Skelton’s method  in [3] and [12], is  used  to direct the algorithm to 
the global optimum. 

It should be pointed out that Moore’s balancing appears to have 
strong ties with the L ,  reduction problem via the Hankel norm 
[29]. Alternative settings for the Hankel operator, however, seem 
to indicate connections to the quadratic problem [30]. Finally, the 
robustness problem for reduced-order modeling, estimation, and 
control in a quadratic setting is discussed in [31]. 

APPENDIX 

PROOF OF THE MAIN THEOREM 

Introducing the augmented system 

k=Af+Bu,  

y =  (3, 
where 

leads to the expression 

J(A, ,  B,, C,)= tr Qi?, (A. 1) 

where & cTRc and  the nonnegative-definite  steady-state 
covariance Q of 2 is  given  by  the (unique)  solution of 

o=AQ+ Q A T +  v, (A.2) 

with P 2 BVBT. To minimize (A. 1) subject  to  the  constraint (A.2), 
form the  Lagrangian 

L(A,, B,, C,, Q) 2 tr [hQi?+(AQ+QAT+ i7)p] 
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with multipliers X 2 0 and E R ( n T n m ) x ( n + n n z ) .  Since a- is an 
open set, the standard Lagrange multiplier rule can  be applied. 

Using formulas for computing partial derivatives [26], it 
follows that 

o=LQ=Av+FA+XR-. 

Since X = 0 implies P = 0 (recall A-is stable), we can take X = 1 
without loss of generality. Hence, P is the (unique nonnegative- 
definite) solution of 

O=ATP+PA+R. (A.3) 

Again using formulas from [26] and performing some manipula- 
tion, it follows that 

O = L A , , , = Q : ~ P I ~ + Q Z P ~ ~  (A.4) 

0 = L g ,  = 2( Pr2B + PzB,) V,  (A .3  

O = L C , = ~ R ( C ~ Q ~ - C Q I ~ ) ,  (A. 6) 

where Q and P have been partitioned as 

Since (as  will be seen shortly) Qz and P2 are positive definite, 
define 

G L Q;’QL, r P - P z l P L ,  (A.8) 

so that (A.4)-(A.6) become (2.6), (2.10) and (2.1 l), respectively. 
Next, define the nonnegative-definite matrices 

Q P QI2Q;IQr2, P 2 P l 2 P - ‘ P L  (A.9) 

and note  that (A.4) implies that (2.5) holds with M Q2P2. Since 
Q2P2 = P;  1’2(P:/2Q2P:/2)PY2, A4 is  positive semisimple.  The rank 
conditions (2.12) follow from Sylvester’s  inequality.  Expanding 
(A.2) and (A.3) yields 

O = A Q ~ + Q , A T + B V B T ,  (A. 10) 

O=AQ12+Ql2AL+BVBL, (A. 11) 

O=AmQ2+Q2Ai+B,VBi,  (A. 12) 

0 = A  ‘PI +PIA + CTRC, (A. 13) 

O=ATP~2+Pl~A,-CTRCm,  (A. 14) 

O = A ~ 2 + P 2 A m + C ~ C m .  (A.15) 

Since A ,  is stable and (A, ,  B,) is controllable, standard results 
(e.g., [27, p. 2771) imply  that Qz is positive definite. Similarly, P2 
is positive definite. 

It is easy to see at this point  that A,,  B,, and C, are 
independent of Ql and PI and thus (A.lO) and (A.13) can be 
ignored. Now, substituting (2.10),  (2.11) and  the identities 

0 1 2  = QrT, Pl2= -PCT,  (A.16) 

Qz = r Qr ’, P2 = GPG ’, (A. 17) 

into (A. l l ) ,  (A.12),  (A.14), and (A.15) yields 

o = A & r T + Q r 7 A ; + B m T T ,  (A.18) 

o=A,rQrT+rQrTA’A+rBVBTrT, (A.19) 

o = A T P G ~ + P G T A , + c T R c G T ,  (A.20) 

O=A;GPGT+GPGTA,+GCTRCG~. (A.21) 

Computing (A.  19)-r(A. 18) implies 

A,n=rAQrT(rQrT)-* 

which, since I’QrT = Q2, yields (2.9). Alternatively, (2.9) can 
be obtained from (A.21)-G(A.20). 

If  we  now substitute (2.9) into (A. 18)-(A.21) and  use the easily 
verified relations (2.20), it follows that (A.19) = r(A.18) and 
(A.22) = G(A.21), and thus (A.19) and (A.21), are redundant. 
Finally, GT(A. 18) and (A.20)r yield (2.13) and (2.14), respec- 
tively. Note that these last multiplications entail no  loss of 
generality since p(G) = p ( r )  = n ,  . 

To show that the optimal proje+o_n equations entail no loss of 
generality over (A.2)-(A.6), let Q, P be  extrema1  and define Q12, 
Q2, PI?,   P2 by (P.16) and (A.17) for some (G, M ,  r)- 
factorization of Q P ,  and  let Q , ,  P i  satisfy (A.lO) and (A.13). 
Then it  is straightforward to reverse the steps taken in the proof to 
arrive at (A.2)-(A.6). m 

Proof of Proposition 2.1: Extremal Q, leads to Q, P as 
in (A.7) satisfying (A.2)-(A.6). Computing 

J(A,, B,, C,) =tr (Q,CTRC-2Qt2CiRC)+ tr (Q2CiRCm) 

= tr [ C ~ R C (  w,- Q)], 

noting that (2.13),  (2.14) are equivalent to (2.21),  (2.22) because 
of (2.20) and  using (2.23), leads to (2.15). 
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