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Abstract: The optimal projection equations obtained in [2,3] for reduced-order, discrete-time state estimation are generalized to 
include the effects of state- and measurement-dependent noise to provide a model of parameter uncertainty. In contrast to the single 
matrix Riccati equation arising in the full-order (Kalman filter) case, the optimal steady-state reduced-order discrete-time estimator is 
characterized by three matrix equations (one modified Riccati equation and two modified Lyapunov equations) coupled by both an 
oblique projection and stochastic effects. 
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1. Introduction 

In  a recent series of papers [1-3] it has been shown that the first-order necessary conditions for optimal 
continuous and discrete-time reduced-order state-estimation can be transformed into coupled systems of  
three matrix equations (one modified Riccati equation and two modified Lyapunov  equations). The 
coupling is due to the presence of an oblique projection ( idempotent  matrix) which arises as a rigorous 
consequence of the stationarity conditions. This formulat ion provides a direct generalization of the 
classical steady-state Kalman filter theory. Specifically, in the full-order case, the projection becomes the 
identity matrix, the additional two modified Lyapunov  equations drop out, and the remaining modified 
Riccati equation reduces to the s tandard observer Riccati equation for the Kalman filter expression. 
Related results in reduced-order estimator design can be found in [4-17]. 

An  additional extension of classical state estimation involves the inclusion of  state- and measurement-  
dependent  disturbances [18-24]. One motivat ion for such a model  is to design estimators which are 
desensitized, i.e., robustified, to actual  parameter  variations [25-31]. For  the continuous-t ime control 
problem this has been justified in [32-38]. 

As shown in [36] for the continuous-t ime case, applying the optimal projection approach to the 
multiplicative white noise model  yields an extended formulat ion of  the optimality conditions for reduced- 
order state estimation. Specifically, the system of three matrix equations characterizing the optimal 
estimator are now coupled by both  the oblique projection and stochastic effects. 
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The purpose of the present paper is to provide a self-contained derivation of the optimality conditions 
for reduced-order state estimation in the presence of both state- and measurement-dependent white noise 
in the discrete-time case. The goal of the development is to present the optimality conditions in a clear, 
concise manner to facilitate the development of numerical algorithms for practical application. 

2. Notat ion and definitions 

R, R r×s, R r, E 
i . ,  ( )T,  ® 

I"_L 
n, m, l, n e, q 
X, X e 

Y, Ye 
A, Ai; C, C; 
A ~ , B , , C , , D e  
k 
o i ( k )  

Wl(k) ,  w 2 ( k )  
re1 

R 
L 

real numbers, r x s real matrices, R *xl, expectation. 
n x n identity, transpose, Kronecker product [39]. 
I , - T ,  v ~ R  "x". 
positive integers, 1 < n¢ < n. 
n, n~-dimensional vectors. 
l, q-dimensional vectors. 
n x n matrices, 1 X n matrices, i = 1 . . . . .  p. 
n e x n~, n e x l, q × n¢, q x l matrices. 
discrete-time index 1, 2, 3 . . . . .  
unit variance white noise, i = 1 . . . . .  p. 
n-dimensional, /-dimensional white noise processes. 
n × n nonnegative-definite covariance of wl(k ). 
l X 1 positive-definite covariance of w2(k). 
n × l cross-covariance of wl(k ), w2(k  ). 
q x q positive-definite matrix. 

i f ( k ) - -  wl(k)  ] 
Bow2(k) ' 

Z(i,j) 
p(z) 
t r Z  
/r, 
~,(¢) 

q × n matrix. 

B,C, , i = 1  . . . . .  p ,  

#= vx v~2"~ ] 
BoV  

L T R L -  LTRDe C - CTDTRL + CTD•RDe C + E C?D[RDeCi 
i l l  

- c : ~  + c : ~ o c  

(i, j )  element of matrix Z. 
rank of matrix Z. 
trace of a square matrix Z. 
square matrix with unity in the (i, i )  position and zeros elsewhere. 
~b Eilk -1 (unit-rank eigenprojection). 

-LTRCe + CTD[RC¢ 

C:RCo 

symmetric matrix with positive eigenvalues. 
For  arbitrary n X n, Q, Q, % define 

P 
~ v~+ CQC+ E C,(Q+.~:)cL 

i - 1  

P 

~ ~+CQC+ E C,(Q+O.)cL 

P 

Q~AQC~ + v~+ EA,(Q+~:)¢L 
i=1 

P 

iffil 

J l r (Z) ,  9P(Z) null space, range of matrix Z. 
An asymptotically stable matrix is a matrix with eigenvalues in the open unit disk; a normegative-defi- 

trite matrix is a symmetric matrix with nonnegative eigenvalues; and a positive-definite matrix is a 
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3. Problem statement and main theorem 

Reduced-Order State-Estimation Problem. Given the n-th-order observed system 

x ( k + l ) =  A +  Y'~vi(k)A i x ( k ) + w a ( k  ), 
i = 1  

c+  Eo,(k)c, x(k)+w2(k), 
i = 1  

design an ne-th reduced-order state estimator 

xe (k  + 1) = A e x e ( k  ) + Bey(k  ) , 

y e ( k ) = C e x e ( k ) +  DeY(k) ,  

which minimizes the state-estimation error criterion 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

J(Ae ,  Be, C~, De) ,x lim E [ L x ( k ) - y e ( k ) ] T R [ L x ( k ) - y e ( k ) ] .  (3.5) 
k--* oo 

In this formulation the matrix L identifies the states, or linear combinations of states, whose estimates 
are desired. The order n e of the estimator state x e is determined by implementation constraints, i.e., by the 
computing capability available for realizing (3.3), (3.4) in real time. Note that the feedthrough term D e 
permits the utilization of a static least squares estimator in conjunction with the dynamic estimator 
(A e, B e, Ce). Thus, the goal of the Reduced-Order State-Estimation Problem is to design an estimator of 
given order that yields quadratically optimal (least squares) estimates of specified linear combinations of 
states. 

To guarantee that J is finite assume that A is asymptotically stable and consider the set of 
asymptotically stable reduced-order (i.e., fixed-order) estimators 

5 p& {(A e, B e, C e, De): A e is asymptotically stable). 

Since the value of J is independent of the internal realization of the transfer function corresponding to 
(3.3) and (3.4), without loss of generality we further restrict our attention to the set of admissible 
estimators 

,5 p+ ~ ( (Ae ,  Be, Ce, De) ~SP: (Ae, Be) is controllable and (A e, Ce) is observable}. 

The following factorization lemma is needed for the statement of the main result. 

Lemma 3.1. Let r ~ R "x". Then 

,i -2  = q ' ,  

if and only if there exist G, I" ~ R "~x" such that 

G T F = r ,  

FG T = I.o. 

Furthermore, G and F are unique to a change of basis in R ''° 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Proof. See [3]. [] 

For convenience, call G and F satisfying Q.8) and (3.9) a projectivefactorization of r. Furthermore, for 
n × n nonnegative-definite matrices Q and P, define the set of contragrediently diagonalizing transforma- 
tions 

• .@(Q,/3) __a { + ~  r , x , , :  q - 1 0 q - T  and q,T/3~k are diagonal}. 

It follows from Theorem 6.2.5, p. 123 of [40], that ~ ( Q , / 3 )  is always nonempty. This set does not, 
however, have a unique element since basis rearrangements and sign transpositions may be incorporated 

^ ^ 

into ~k. Further nonuniqueness arises if QP has repeated eigenvalues. 

Theorem 3.1. Suppose A is asymptotically stable and (Ae, Be, C e, De) e 5  a+ solves the Optimal Reduced- 
Order State-Estimation Problem. Then there exist n × n nonnegative-definite matrices Q, Q and P such that 
Ae, Be, C e and D e are given by 

ao = r (  A - Qs lc T, (3.10) 

B e -- rQ.J~2s 1, (3.11) 

C e = ( L  - DeC)G r,  (3.12) 

De = LQCTI,"~2~ I, (3.13) 

and such that Q, Q_. and/3  satisfy 

P 
Q = A Q A T  + E A i ( Q + r O _ r T ) A T  + VI z T ^ T - QsV'~2~ Qs + % O r ± ,  (3.14) 

i=1 

0 = A r O  rTAT q" 1 T (3.15) 

/3 = ( A - QsV~2szc)TrT/3r( A -- QJ~2slC) + ( L -  D e c ) T R (  L -  DEC), (3.16) 

where 

?1 c 

A 

r =  E Iri(~) (3.17) 
i = l  

for some ~k ~ ~ (0 . ,  /3) such that (1~-10/3~)(i,i) ~ O, i = 1 . . . . .  n e, and some projective factorization G, F of  
r. Furthermore, the minimal cost is given by 

s ( ao, Be, Co, Do)= tr[ ( L O S  -- Do  D[ ) R ] . (3.18) 

Remark 3.1. It is useful to note that (3.10) can be replaced by 

A e = FA G T - BeCG T. (3.10) 

Remark 3.2. Because of (3.9) the n x n matrix r which couples the three equations (3.14)-(3.16) is 
idempotent, i.e., r 2 =  r. In general, this 'optimal projection' is an oblique projection (as opposed to an 
orthogonal projection) since it is not necessarily symmetric. It should be stressed that the form of the 
optimal reduced-order estimator (3.10)-(3.13) is a direct consequence of optimality and not the result of 
an a priori assumption on the structure of the reduced-order estimator. 

Remark 3.3. To specialize the result to the strictly proper (no feedthrough) case, merely ignore (3.13) and 
set D e = 0 wherever it appears. 
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Remark 3.4. Replacing x e by Sxe, where S is invertible, yields the 'equivalent '  estimator 
(SACS -1, SB e, CeS -1, 1),) with J(SAeS -1, SB e, CeS -1, De)=J(Ae ,  Be, Ce, De). Note that transforma- 
tion of the estimator state basis corresponds to the alternative factorization "r = (S-TG)T(SF).  

Remark 3.5. Note  that for the optimal values of A e and B e the estimator dynamics (3.3) assume the usual 
observer form 

xe( k + 1) = FAGVxe + FQsV~2sl( y - cGrxe ). (3.19) 

By introducing the quasi-full-state estimate ~ & Grxe ~ R ~ so that "r~ = ~ and x e = / ' 2  ~ R "o, (3.19) can 
be written as 

:~(k + 1) = zA,2 + TQy~a~l( y - C2 ). (3.20) 

Although the implemented estimator (3.19) has the state x e ~ R "o, (3.19) can be viewed as a quasi-full-order 
estimator whose geometric structure is entirely dictated by the projection ~- and the stochastic effects. 
Specifically, error inputs Qy~2sX(y- C2) are amaihilated unless they are contained in [.A/'(,r)] .L = #t(~.r). 
Hence, the observation subspace of the estimator is precisely ~(~.T). 

Speciallzing Theorem 3.1 to the noise-free case A i = 0, C i = 0, i -- 1 . . . . .  p ,  yields Theorem 2.2 of [2,3]. 
Alternatively, specializing Theorem 3.1 to the full-order case n e = n reveals that the Lyapunov equation for 
/3 is superfluous. In this case it follows from Remark 3.4 that G = / "  --- 1 n without loss of generality. 

Corollary 3.1. Assume n e = n, A is asymptotically stable and (Ae, B e, C e, D o ) ~ 5  a+ solves the Optimal 
Full-Order State-Estimation Problem. Then there exist n × n nonnegqtive-definite matrices Q and Q. such that 
Ae, B e, C e and D e are given by 

Ae=A-O.s lC, 

Be = 

G = L - D e C ,  

D e = LQCTI~2s 1, 

and such that Q and Q satisfy 
p 

Q = A Q  AT + E A , ( Q + Q )  AT+ vx - QsIT'~2slQ T, 
i=1  

 =AOA T + 

Furthermore, the minimal cost is given by 

:(Ae, Bo, Ce, Z'e) = tr[(LQLT-- Z'o sD:)R]- 

Remark 3.6. To recover the standard Kalman filter result 

(3.21) 
(3.22) 
(3.23) 
(3.24) 

(3.25) 

(3.26) 

(3.27) 

from Corollary 3.1 set A t - -0 ,  C i=  0, 
i = 1 . . . . .  p ,  so that (3.25) and (3.26) are decoupled and (3.26) is superfluous. Since the standard Kalman 
filter is strictly proper, set D e = 0 as in Remark 3.3. 

4. Proof of the main theorem 

Using the notation of Section 2 the augmented system (3.1) and (3.3) can be written as 

P 

(4.1) 
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where ~(k) & [xT(k), xT(k)] T. To analyze (4.1) it is useful to define the second-moment matrix 

Q(k)  = E[ X(k);~T(k)]. (4.2) 

It follows from (4.1) and (4.2) that Q(k) must satisfy 

P 

0 ( k +  1) = A 0 ( k ) A ' r +  Y~..,4,0_(k)A7+ #. (4.3) 
i = l  

Lemma 4.1. A~ is asymptotically stable if and only if 

P 

i = 1  

is asymptotically stable. 

ProoL The result follows from properties of the Kronecker product applied to partitioned matrices. See 
[36] for details. [] 

Hence ~¢ stable assures 

QA lira E[~(k)~T(k)]  
k--+ ao 

exists. Furthermore, Q and its nonnegafive-definite dual /3 are the unique solutions of the modified 
Lyapunov equations 

P 

O. = AO.A "r + E £,0_A7 + #, (4.4) 
i ~ l  

P 

/3 = A'v/3,~ + E ,47~X, + ~. (4.5) 
i = 1  

Partition (n + ne) × (n + n,) Q,/3 fiato n x n, n x n., and n, X n~ subblocks as 

and define the n X n nonnegative-definite matrices 

Q A QI - QI2Q21QT2, ~ A QI2Q21QT2, p A PI - PI2P; IPT , ~ =" P,2PfZP~, 

*AO.4T + Q~XQL /3 "= (A - Q~C)T3(,4 - Q~C) + (L-DoC)~R(L "- DoC), 

where cQ'r T is replaced by ~ in Qs and V2s and the n~ × n, n~ × he, n~ × n matrices 

G & Q21Q~2, M ~ Q2p2, FA -p21p T. 

To minimize .(3.5) subject to the constraint (4.4), form the Lagrangian 

[ ( )] .~(A°, Bo, co, Do, O,/3, x) -"-tr xJ(A°, Bo, co, Do)+ ~r~A'T+ E ~,~AV+ ¢ - 0  /3, 

where the Lagrange multipliers X >i 0 and/3 ~ N (~÷'o~x("+"*~ are not both zero. Setting ~.~/aQ = O, X -- 0 
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implies/5 = 0 since (Ae, Be, Ce, De) ~ 5  °+. Hence, without loss of generality set ?t = 1. Thus the stationar- 
ity conditions are given by 

~ -- ~ P 

- -==AQA + Y~AiOA7 + I ? - Q = 0 ,  (4.6) 
OP /=1 

p 

O~ _ A-r/5.~ + E A-r, fi-g, + k - /5  = 0, (4.7) 
a0  i=1 

~A e = P~AQtz + P2BeCQa2 + P2AeQ2 = 0, (4.8) 

~B e - P~Q, + P.~BeVzs = 0, (4.9) 

a.£/" 
aCe = -RLQt2 + RDeCQ~2 + RCeQ2 = 0, (4.10) 

OD e = De~ s - LQC T = 0. (4.11) 

Expanding (4.6) and (4.7) yields 
p 

A ( Q + ~ ) A  T+ Z A , ( Q + ~ ) A T +  V , - Q - ~ = O ,  (4.12) 
i= l  

[A~A T + QsV~-~IQ~- d I F  T= o, (4.13) 

F[ A~A T + QsV~ 'O:-  ~] F T= 0, (4.14) 

[( A -- QsV~2slc)T/~(A - QsV2slC) -1- ( L -  D e C ) T R (  L -  DeC ) - /~] GT = 0, (4.15) 

-Qs½~ c )  P ( A - Q y L ' C ) + ( L - D o C ) T . R ( L - D o C )  /g]GT=0. (4.16) 

Note that the (1, 1) subblock of equation (4.7) which characterizes P1 has been omitted from the above 
equations since the estimator gains are independent of P1. 

Using (4.8)-(4.11) we obtain (3.10)-(3.13). Using (4.12)+ GTF(4.13)G - (4.13)G-((4.13)G)) T and 
GTF(4.13)G - (4.13)G - ((4.13)G)) T + (4.13) - (4.13) yields (3.14) and (3.15). Using FTG(4.15)F - (4.15)F 
- ((4.15)F)) T + (4.15) - (4.15) yields (3.16). Finally, /'(4.13)-(4.14) or G(4.15) - (4.16) yields FG T = I,,°. 
[] 

References 

[1] D.S. Bernstein and D.C. Hyland, The optimal projection equations for reduced-order state estimation, IEEE Trans. Automat. 
Control 30 (1985) 583-585. 

[2] D.S. Bernstein, L.D. Davis, S.W. Greeley and D.C. Hyland, The optimal projection equations for reduced-order, discrete-time 
modelling, estimation and control, Proc. 24th 1EEE Conf. Decision and Control, Fort Lauderdale, FL (Dec. 1985) pp. 573-578. 

[3] D.S. Bernstein, L.D. Davis and D.C. Hyland, The optimal projection equations for reduced-order, discrete-time modelling, 
estimation and control, J. Guid. Control Dyn. 9 (1986) 288-293. 

[4] C.S. Sims and J.L. Melsa, A survey of specific optimal techniques in control and estimation, lnternat. J. Control 12 (1971) 
299-308. 

[5] T.E. Fortman and D. Williams, Design of low-order observers for linear feedback control laws, 1EEE Trans. Automat. Control 
17 (1972) 301-308. 

[6] C.S. Sims, An algorithm for estimating a portion of a state vector, 1EEE Trans. Automat. Control 19 (1974) 391-393. 
[7] R.B. Asher, K.D. Herring and J.C. Ryles, Bias variance and estimation error in reduced-order filters, Automatica 12 (1976) 

289-600. 



388 W.M. Haddaa[ D.S. Bernstein / Optimal projection.equations for state estimation 

[8] J.I. Galdos and D.E. Gustafson, Information and distortion in reduced-order filter design, IEEE Trans. Inform. Theory 23 
(1977) 183-194. 

[9] F.W. Fairman, Reduced-order state estimators for discrete-time stochastic systems, IEEE Trans. Automat. Control 22 (1977) 
673-675. 

[10] F.W. Fairman, On stochastic observer estimators for continuous-time systems, IEEE Trans. Automat. Control 22 (1977) 
874-876. 

[11] C.S. Sims and R.B. Asher, Optimal and suboptimal results in full and reduced-order linear filtering, IEEE Trans. Automat. 
Control 23 (1978) 469-472. 

[12] C.S. Sims and L.G. Stotts, Linear discrete reduced-order filtering, Prec. IEEE Conf. Decision and Control (1979) pp. 
1172-1177. 

[13] D.A. Wilson and R.N. Mishra, Design of low order estimators using reduced models, Internat. J. Control 23 (1979) 447-456. 
[14] F.W. Falrman and R.D. Gupta, Design of multifunctional reduced-order observers, lnternat. J. Systems Sci. 11 (1980) 

1083-1094. 
[15] U.V. Dombrovskii, Method of synthesizing suboptimal filters of reduced order for digital linear dynamic systems, Automat. 

Remote Control 43 (1982) 1483-1489. 
[16] T. Hinamoto and F.W. Fairman, Reduced order observer design for a linear map of the state, J. Franklin lnst. 314 (1982) 

95-108. 
[17] C.S. Sims, Reduced-order modelling and filtering, in: C.T. Lenndes, Ed., Control and Dynamic Systems Vol. 18 (Academic Press, 

New York, 1982) pp. 55-103. 
[18] P.J. McLane, Optimal linear filtering for linear systems with state-dependent noise, Internat. J. Control 10 (1969) 41-51. 
[19] Y. Sunahara and K. Yamashita, An approximate method of estimation for non-linear dynamical systems with state-dependent 

noise, Internat. J. Control 11 (1970) 957-972. 
[20] D.E, Gustafson and J.L. Speyer, Linear minimum variance filters applied to carrier tracking, IEEE Trans. Automat. Control 21 

(1976) 65-73. 
[21] R.B. Asher and C.S. Sims, Reduced-order filtering with state dependent noise, Prec. Joint Amer. Control Conf. (1978). 
[22] C.S. Sims, Discrete reduced-order filtering with state-dependent noise, Prec. Joint Autam. Control Conf. (1980). 
[23] H.V. Panossian and C.T. Leondes, Observers for optimal estimation of the state of linear stochastic discrete systems, lnternat. J. 

Control 37 (1983) 645-655. 
[24] M.J. CnSmble, Wiener and Kalman filters for systems with random parameters, IEEE Trans. Automat. Control 29 (1984) 

552-554. 
[25] H. Heffes, The effect of erroneous models on the Kalman filter response, 1FEE Trans. Automat. Control I1 (1966) 541-543. 
[26] J.A. D'Appolito and C.E. Hutchinson, Low sensitivity filter for state estimation in the presence of large parameter uncertainties, 

IEEE Trans. Automat. Control 14 (1969) 310-312. 
[27] D.G. Lainotis and F.L. Sims, Sensitivity analysis of discrete Kalman filters, lnternat. J. Control 12 (1970) 657-669. 
[28] J.M. Morris, The Kalman filter: A robust estimator for some classes of linear quadratic problems, IEEE Trans. Inform. Theory 

22 (1976) 526-534. 
[29] C.J. Masreliez and R.D. Martin, Robust Bayesian estimation for the linear model and robustifying the Kalman filter, IEEE 

Trans. Automat. Control 22 (1977) 361-371. 
[30] M. Toda and R.V. Patel, Bounds on estimation error of discrete-time filters under modelling uncertainty, IEEE Trans. Automat. 

Control 25 (1980) 1115-1121. 
[31] R.T. Stefani, Reducing the sensitivity to parameter variations of a minimum-order reduced-order observer, lnternat. J. Control 

35 (1982) 983-995. 
[32] D.S. Bernstein and D.C. Hyland, The optimal projection/maximum entropy approach to designing low-order, robust controllers 

for flexible structures, Prec. 24th IEEE Conf. Decision and Control, Fort Lauderdale, FL (Dee. 1985) pp. 745-752. 
[33] D.S. Bernstein, L.D. Davis, S.W. Greeley and D.C. Hyland, Numerical solution of the optimal projection/maximum entropy 

design equations for low-order, robust controller design, Prec. 24th IEEE Conf. Decision and Control, Fort Lauderdale, FL (Dee. 
1985) pp. 1795-1798. 

[34] D.S. Bernstein and S.W. Greeley, Robust controller synthesis using the maximum entropy design equations, IEEE Trans. 
Automat. Control 31 (1986) 362-364. 

[35] D.S. Bernstein and S.W. Greeley, Robust output-feedback stabilization: Deterministic and stoeliastic perspectives, Prec. Amer. 
Control Conf., Seattle, WA (June 1986) pp. 1818-1826. 

[36] D.S. Bernstein and D.C. Hyland, The optimal projection equations for reduced-order modelling, estimation and control of linear 
systems with'Stratonovieh multiplieative white noise, submitted. 

[37] D,S. Bernstein, Robust static and dynamic output-feedback stabilization: Deterministic and stochastic perspectives, submitted. 
[38] D.S, Bernstein, Robust stability and performance via the extended optimal projection equations for fixed-order dynamic 

compensation) submitted. 
[39] J.W. Brewer, Kroneeker products and matrix calculus in System theory, 1FEE Trans. Circuits and Systems 25 (1978) 772-781. 
[40] C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and lts Applications (John Wiley and Sons, New York, 1971). 


