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1. INTRODUCTION

The present report summarizes the work accomplished under Contract NAS
8-20%357 with the George C. Marshall Space Flight Center for the development
of an acoustic wind measuring technique utilizing the exhaust noise of large
booster rockets. The work is a continuation of earlier work, performed under
Contract NAS8-11054, which investigated the feasibility of an acoustic wind
measuring technique developed at the Space Physics Research Laboratory, The
University of Michigan.

Under the initial contract the acoustic technique was successfully em-
ployed to determine wind profiles over Cape Kennedy from O to 85 km (Bushman,
Kakli, and Carignan, 1965). The method, an extension of the rocket grenade
experiment (Stroud, Nordberg, and Walsh, 1956; Nordberg and Smith, 1964),
utilizes as its sound source the acoustic noise of large rocket engines in-
stead of that of the grenade. In the rocket grenade experiment, discrete
sound events occur at accurately known positions, and the times and the angles
of arrival of these events at a ground-based microphone array are used to de-
termine the atmospheric winds and the temperature in the layers between gre-
nade detonations. When rocket exhaust noise is used as a sound source, be-
cause of its continuous nature, neither the time nor the location of the or-
igin of the sound received at any given instant is known. If, however, the
temperature profile is measured independently and the vehicle trajectory is
known, then for any number of points (noise events), a correspondence can be

established between the sound arrival times at the array and the exact loca-



tion of the sound source. The numerical evaluation of this relationship yields
the average horizontal winds between adjacent noise events. Thus a wind pro-
file is developed in a horizontally stratified model of the atmosphere, giving
the average wind in each layer between selected noise events.

Since its inception in 1965, this technique has been used to compute wind
profiles on 19 rocket firings. The data taken to date have demonstrated the
meteorological usefulness of the method and agree favorably with profiles meas-
ured by other methods. The launches covered were not frequent enough to es-
tablish a seasonal trend, but the system is now operational and all launches
at Cape Kennedy will be recorded as a matter of routine so that seasonal aver-

ages will be readily available.



2. DESCRIPTION OF THE EXPERIMENT

The basic experiment and theory have been well documented in previous re-
ports (Milne, 1921; Groves, 1956; Bushman, Kakli, and Carignan, 1965; Otterman,
1958). Although the basic method of wind computation has not changed, the pro-
grams for calculating the winds have been modified to make the system more ef-
ficlent and to require less computer time. The measurement equipment at Cape
Kennedy has been improved to the point of being a permanent operational system.
New weatherproof wiring has been installed from the blockhouse to the micro-
phone array and all support electronics have been hardwired into the system

(Figures 1, 2, and 3).

2.1. INSTRUMENTATION

A permanently established system for acoustic wind measurements consisting
of a cross-shaped array of nine microphones has been set up on the southeast
point of Cape Kennedy. A minimum of three microphones is required; the addi-
tional six microphones afford increased accuracy through use of statistical
techniques and provide redundancy. The size of the microphone array, shown in
Figure 1, is about 1200 meters along each axis. The size is chosen on the basis
of optimizing two size-dependent error parameters, namely, (1) errors that de-
crease with increasing array-size introduced by finite resolution in measuring
arrival times, and (2) errors that increase with increasing array-size introduced
by the plane wave agsumptions and practical considerations of suitable geography.

The microphones are hot-wire, single chamber Helmholtz resonators tuned



to about L4 Hz.

These microphones, developed at The University of Texas at EL

Paso, have been used extensively in the rocket grenade experiment.

Fach micro-

phone is contained in a concrete canister, recessed so that its top is level

with the ground surface.

to minimize local wind noise.

The microphones are situated in heavily foliated areas

The locations of the microphones have been sur-

veyed to define accurately their geodetic position (see Table I).

The micro-

phones are connected by means of shielded weatherproof cables to a blockhouse

containing support electronics and equipment for recording the microphone out-

puts (Figure 2).

tape recorder and are simultaneously recorded with range timing. T

then digitized and automatically reduced to wind profiles.

The outputs pass through variable attenuation to a magnetic

he tape is

The outputs are also

monitored by an oscilloscope for quick look analysis and detection of any anom-

alies in the system.

TABLE T

MICROPHONE COORDINATES

Microphone Longitude Latitude X Y Z
Number (West) (North) (Meters) (Meters) (Meters)

1 80°22'03. 933" 28°27'27. 651" 0 0 0
2 80°31'57.502" 28°27'34. 726" 8. 662 279. 240 224
3 80°31'50. 447" 28°27'43. 438" . 551 608.936 - ho7
L 80°32'21.252" 28°27'39.202" -590. 304 L4k . 061
5 80°32'13. 149" 28°27'33.769" -313.591 - .L86 .518
6 80°31'55.8%6" 28°27'22. 040" 279.886 - 5.370 .152
7 80°31'46.783" 28°27'15.992" 588.645 - 5.827 -. 244
8 80°32'09. 514" 28°27'19. Lo6" 29.813  -291.874 .975
9 80°32'16.857" 28°27'11. 529" 17.857 -607.976 -.213
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Figure 1. Microphone array.
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2.2. REDUCTION OF THE DATA

Since the wavelength of the acoustic disturbance 1s short compared to the
atmospheric scale height, changes in the transmission properties of the atmos-
phere are generally small. Hence, propagation may be treated by geometric acous-
tics. The atmosphere is assumed to be horizontally stratified over the range
of the experiment. The disturbance travels as a wavefront, and an element of
the wavefront will have a velocity which is the sum of the local velocity of the
medium and the local speed of propagation in the direction of the wavefront nor-
mal.

In the absence of local interference and other absorption effects, the wave-
front of a noise event appears essentially the same to each of the separately
located microphones. If the characteristics of the microphones used are iden-
tical, the output waveform of one microphone matches that of another, except for
a time shift. The time shift is a function of the sound arrival angle, the lo-
cal speed of sound, and the location of the microphone. The time of transit of
a sound ray from its source to any given point and its angle of arrival at that
point are functions of the temperature and the winds in the layer traversed.

The technique of ray tracing from the ground back to the sound source is
well documented in the literature (Bushman, et al., 1965), and will be outlined
only briefly in the present report. The assumptions and conditions are that
(1) the temperature is determined independently; (2) the vertical component of
wind can be ignored; and (3) the plane wave assumption is valid for large dis-
tances from the source.

A typical microphone output is shown in Figure 4. Output from three of



the nine microphones is indicated along with the range time. By a method of
cross-correlation which is described in detail in Section 2.2.1, the time dif-
ference for all microphones from the reference microphone is determined at any
point on the record. Since the microphones are placed in a cross-shaped array
defining two horizontal axes x and y, the two characteristic velocities Kx and
Ky can be calculated. For any nolse event, Kx and Ky are constant. Five micro-
phones on both axes permit redundant measurements of these velocities, which

are used to minimize random error and to provide first order corrections to the
plane wave assumption.

Before the wind can be computed in any layer (the jth in Figure 5), the
sound ray is traced through the previous layers where the wind has been calcu-
lated. (All the relevant equations are given by Bushman, et al., 1965.) Even-
tually an interval is reached between the top of the last layer of known wind
and the source of the sound. At this point, conventional ray-tracing proce-
dures must be abandoned since the wind is unknown. However, two independent
requirements are available: (1) the sound ray must intersect the trajectory,
and (2) any intersection will yield a wind value. The correct intersection
must satisfy the criterion that the time of arrival of the noise event meas-
ured from launch is equal to the time of flight to the intersection plus the
time required for the sound to travel from this point to the array. These two
conditions uniquely determine the coordination of the source along the trajec-

tory and the average wind in the layer.



‘qndqno suoydoxotw TeoTdAy § *ff aanStdg

£ [
. -} ¥ R | zig:2ewl.

| uto:nomh_.

REVALA

AVIAY )

¢ 3NO

F "\
Al N,J/</ \aJM M H/quj/ w

! : M_ﬂ |
Vool <
y v

w | : ¢ 3NOHAOND! o v , w “
aNaVida¥ 7%57 }
Ve W

10



(Tj,xj,yj.zi)
- w, W WP WS P WS an W G» en .- wpon v cmon oo fus on en o wn am o - 1 R e U S — Zj
EAX‘, J'T" LAYER, Vavg j
Vi= (Viev V) Yy

(Ti-va%j-1 3 ¥je) 22jep) 7.
-1

(J-1) st LAYER, Vavg j-1

zj-z
¥4
y
(0,0,0,%)
T LAUNCH x
SITE MICROPHONE
ARR AY

Figure 5. Geometry of the wind experiment showing time relationships for the
jth noise event.
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z.2.1. Microphone Output Cross-Correlation

Data are received in analog form on magnetic tape, nine channels of micro-
phone data and one channel for range timing. This analog tape is played through
an A-D converter and recorded in digital form on another magnetic tape. The
present sampling rate is 1000 samples/sec/channel. This number is somewhat ar-
bitrary and was chosen, in this case, to maximize resolution on the computer
system currently being used.

Cross-correlation is accomplished using the digital form of the following

function:
/
R(t' = N ¥i(t)¥o(t+t)dt
(£1) = B, Wa(8)(t4t)

where R = magnitude of the cross-correlation function,

t' = a variable time difference parameter,

’
N = a normalization factor,
¥, and ¥ = two time-dependent microphone outputs,
slice = a preset integration time interval.

The computer varies the parameter t' and calculates R for each value. The t'
corregponding to the principal maximum of R is the required time difference be-
tween the two microphones. The digital equivalent of the cross-correlation func-

tion, R, is

N L N
Loxy gk x Loy
i=1 i=1 i=1
R o= | 1/2
N /N YA
le-%in Lye-sl T
i=1 1=1 li=1 i=1

12



where x,l and yi represent samples of individual microphone outputs and N is
the number of sample pairs.

These computations are performed for a preset data time interval (slice),
usually 0.5 sec, which makes N equal to 500 sample pairs/slice. Occasionally
a microphone will not yleld a gcod correlation during a particular slice. This
is usually caused by switching transients, changing attenuation of the incoming
signal, background noise, or wind interference. The computer version of the

cross-correlation computation follows.

PROBLEM: Given a time series

a a
t)jt -=<t <t + =
x )[o 2" 37 2]
for the reference microphone and a time series
y(t) E; -—+t' -e<t <t =+t O+ %]
o) 2 a ;o - 0
and the t' which maximizes the R is given by
—— 3 7 ~ a T = a, e
t +-= t += t +=
o 2 o 2 o 2 T
EIIEIOCED I I NG I IR
t=t -2 =t - | t=t_ -2
R2(41) = == o 2 2 o 2 -

WLx())? - (e ]}{NZ[;Y 01 - Ty (o)) 2l

where N is the number of points of the time series in the interval

and t' ranges over

13



1_ 14
(ta €, &) €)
If RO > .7 then RO is considered a significant peak.

th
INTERPOLATION: A cost-saving option of this program is to read every k  point

off the tape instead of every point. The resolution of the result té is thus
reduced by a factor of k, but this resolution is improved by performing a sec-
ond-order interpolation on the points (t'-1, R-1), (t4, Rg), (ti, Ry) where

t1 = to+tk, and t.; = to-k. It has been found that if the sampling frequency
of the tape is 1000 samples/sec and if k = 5, the interpolation procedure will

provide t; with a resolution very close to 1 msec and the cost of running the

program is cut by a factor of 5.

INPUT PARAMETERS FOR CROSS-CORRELATION PROGRAM

a window
¢ tolerance

t_ table of estimates for to given at selected times during the
flight

k equals 2, 3, 4, etc. depending upon whether every 2nd point is to
be read from input tape or every 3rd, every Lth, etc.

SF sampling frequency of the tape
start time

t stop time

At increment for to

n number of microphones to be compared with reference microphone

14



COMPUTER INPUT DATA FOR CROSS-CORRELATION PROGRAM

1. o min’ Yo max’ Mor &0 €3 FORMAT (5F8.L4)
2. n, M, REFERENCE MIC, ROW, k; FORMAT (3I1, 2I3%)
3.  FILE, SF, HOUR, MIN, SEC; FORMAT (Il, F4.1, 2I2, F7.3)
4. MICy, MICoyeoen.. ,MIC,; FORMAT (9I1)
5. t; table of the form:
time mic; mics, micgeeec.vn... micg; FORMAT (10F8.L)
| 5+ROW
where

n number of microphones on tape (including the reference
microphone)

REFERENCE MIC number of the reference microphone
ROW number of cards containing t; table
FIILE file number on tape where time series are found
HOUR
MIN ¢ reference time of the flight
SEC
th .
MIC, number of the jJ microphone to be compared with the refer-
ence microphone. For example, if microphones 8, 9, 4, 2,
are to be compared (in that order) with the reference micro-

phone, then card 4 would read: 8942

mic estimate of té for microphone number j at the time given on
the first field of the card.

15



Figure 6 shows the variation of the cross-correlation coefficient with
the time difference for a typical microphone pair. Figure T gives the general
flow of the program and Figure 8 gives the algorithm for finding t;. All time

parameters are given in seconds after reference time.

16
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R0 ave, )

t'g table -
to min, to max
Aty ,n
- LF o] READ TAPE FOR
REFERENCE MICROPHONE
x(t) ON THE INTERVAL
[to-0/2, t4+a/2]
PRINT AND PUNCH
) ]
t,',R, FOR 1st T
MICROPHONE --+- - - i=1
nth MICROPHONE
irn
READ TAPE FOR ith F T
. e |
COMPUTE t'R MICROPHONE y(t)

oo
FOR i th MICROPHONE

=f——— ON THE INTERVAL
[to- /2 t15-etra/2e43t¢]

INTERPOLATE 14\Rq
USING t,,Ry AND

THE POINT ON
EITHER SIDE

Figure 7. General flow of the cross-correlation program.
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RO = r (td)
RI = r(td+g)
Sw=0

DEFINE ¢=K-SF

R°= Ri-g
to = to'+ i-g

i>€

‘ - izitg

r zr(fa+i)

@—— SW=SW+1

T
. izl F
i>e
[ ™ izi+g
F
R >7
- titg
@ Ro® R-i+g -
to' :fa -i+g

Figure 8. Algorithm for finding té.
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2.2.2. Wind Computation
The solution for winds has been programmed for the IBM 360/67 computer in
Fortran IV language. Figure 9 shows the flow diagram for the wind computation.
The temperature profile (or the equivalent speed of sound profile) is ob-
tained from radiosonde and rocketsonde measurements up to about 60 km. Above

that altitude the temperature is obtained from the Patrick AFB Reference Atmos-

phere (Smith and Weidner, 1964). For the computer input the temperature pro-
file is piecewise linearized into a number of straight line segments correspond-
ing to layer thickness,

V = ¢z +4d
where ¢ and d are coefficients for the segment corresponding to the altitude Z.

t
The average speed of sound for the j b layer, Vavg , 1s defined as

Z
/ /
\ = ———— J.J V(Z)dZ
. Z .
j-1

where the top of the layer is at Zj and the bottom at Z, The vehicle posi-

J-1
tional data are known at half-second intervals. These data are corrected for
the position of the noise source, which is considered to be a point located at
the nozzle of the engine or at a known distance behind the nozzle along the
flight path.

Let i, YZ and i be the given position at the time T (the reference point

is generally the center of gravity of the rocket). The coordinates of the

noise source X, Y, Z, are

20



/

ax
R———.
A aT

V- )

and similarly for Y and Z. AR is the estimated distance between the center of

’
X = X -

gravity of the rocket and the noise source (Dyer, 1959).
.th . . . .

For the j noise event, the sound is heard at the time 7 from lift-off
at the microphone array and the characteristic velocities Kx and Ky are deter-
mined. The characteristic velocities are defined as the velocities of inter-
action of the wavefront with the X and Y axes. Before the wind can be computed
. .th . .
in any layer (the j ), the sound ray is traced through the previous layers
where the wind has been found. The components of the sound velocity of the

th th
J  noise event in any previous layer (the i ') are

Vo
Vv = -
X, K -W -W (K /K )’
i . X y. X' ¥
Jd 1 1 J J
K
*]
= V —
Vyi Xi Ky ’
J
1
IR
i & % Yy
The coordinates of the point of penetration at Zj 1 (Figure 5) can then be cal-
culated:
J-1 J-1 J-1
ZAtK, ZAXK, ZAYK.
K=1 K=1 K=1

21



In order to calculate the wind in the top layer, a reasonable value for Tj
must be selected, based upon the velocity of sound and winds in the lower layers.
This value determines the coordinates Xj’ Yj’ and Zj along the trajectory, and
the three components of the speed of sound Vk, Vy’ and VZ in the top layer. The
criterion for choosing Tj correctly is that the average value of the speed of
sound in the top layer thus calculated should agree with the value derived from
the given speed of sound profile. In this way the true position of sound emit-

tance is found and the wind in the top layer is determined:

> -> ->
W = P-V (Bushman, et al., 1965)
> > >
where W is the wind vector, P is the propagation velocity vector, and V is the
velocity of sound vector.
N . th .
Instead of estimating the time of the j nolse event measured along the

).

trajectory of the vehicle (Tj>’ it is easier to estimate BTJ (equal to TJ.-TJ,_l
Initial estimates of STJ need be only very approximate for the convergence of
the solution. The better these estimates, the less time the computations will

take. Newton's method of solving equations is used for fast convergence rather

than using small increments in Tj'

£(T1)

T, o= T - —o

J o £(Tl)

J

where Té = assumed value,
f(Té) = value of given function at Tj,
f’(Tj) = value of first derivative of function at Tj,
Tj = second approximation to the root.

22



Tj may be substituted for Té in this formula to obtain a third approximation
to the root. A tolerance of about one m/sec between v, and vavg (e1) is ac-

J
ceptable.

23
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3. WIND PROFILES

Wind profiles have been generated for all Apollo (Saturn) Series launches,
as well as for flights of Atlas Agena C, Titan IIIC-5, and Thor Delta 63. Some
wind profiles for the Apollo (Saturn) do not extend as high as 85 km because
the trajectory becomes quite flat above 60-65 km and the data are no longer
useable. The profiles of the Thor and the Atlas class vehicles are as good as
those of the Saturn vehicles and, in some cases, even better because of the more
vertical trajectory common to the smaller class rockets.

Acoustic wind measurements have been made for a total of 19 rocket firings
(see Table II). The first of these measurements was for the Saturn (SA-6), the
first Apollo Flight Model, launched on 29 May 1964, which is not shown in Table
II. Only three microphones were used in this flight and their sites were not
accurately surveyed. The purpose of the SA-6 launch measurements was to test
the microphone performance and to determine whether the exhaust noise record-
ings for different microphones could be cross-correlated and meaningfully in-
terpreted. The data were significant, but the wind measurements derived from
this launch were questionable because of the lack of redundancy in the measure-
ment and because of survey errors.

The first successful attempt to derive a wind profile was for the SA-9
launch. Data from all subsequent flights have been analyzed except for the
Minuteman and Titan IIIC-5 flights. In the case of the Minuteman flight, no
trajectory information was available. For the Titan IIIC-5, the range times

could not be read from the magnetic tape, and analysis of the data was not
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possible. A strip chart recording of this flight will be made to determine
the reason for the difficulty.

In all the rocket flights, analysis of the data was made up to the alti-
tudes of the firsgt stage burnout. For the SA- Series firings, the trajectory
was relatively steep and the staging occurred at an altitude of 85 km and a
slant distance of about 106 km. In the case of the AS- Series firings, the
trajectory was flatter, the staging altitude was about 63 km, and the slant
distance was about 110 km. The wind profiles in Figures 10-25 show that the
wind determination was carried out to higher altitudes for the SA- Series than
for the AS- Series. Whenever rawinsonde and rocketsonde measurements taken at
approximately the same time as the rocket launch were available, they were in-

cluded on the figures.
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., FAR-FIELD ACOUSTIC WIND MEASUREMENT

G. V. Groves has developed a generalized method of geometric ray acoustics
and has shown that the characteristic velocities appear in the ray equation as
constants of integration. Thus, they do not need to be converted into the di-
rection of arrival of the wavefront and neither is there a requirement for an
independently determined temperature or speed of sound profile. This analysis
permits wider microphone spacing with the advantages that the difference be-
tween sound ray travel times is increased and the effective timing accuracy is
improved. Furthermore, the microphones can be placed randomly rather than posi-
tioned along two axes. In order to obtain accurate results at higher altitudes
the microphones must be farther apart than they are in the present array. This
distance should be increased to about 8-12 km. This method allows for complete
generalization of microphone positions provided the deviations from a horizontal
plane are quite small compared to the height of the noise source. Variations in
height of the microphones are taken into account in the first order analysis.
Second and higher order effects arising from supersonic velocity and refraction
effects are also taken into account.

In Figure 26, x, y, and z are the coordinates of a noise event that occurred
at time T sec after launch; X5 Vi and z, are the coordinates of the ith micro-
phone and TS is the total elapsed time from lift-off to the sound arrival at the
ith microphone; v is the speed of sound; and wk, wy, and Wé are wind components

considered constant in a layer.
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Wy NOISE EVENT (X,Y,Z,T)
N

N
' Wy e z
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) o Y

LAUNCH COMPLEX iTH MICROPHONE

COORDINATES (X{ ,Y; ,Z;.T;)

Figure 26. Incoming acoustic wavefront.

Groves has derived expressions for a case of propagation velocity of dis-
turbance, vM(T), where M(T) is the Mach number of shock wave rapidly tending to
unity and also taking into account the refraction effects. Integrated values

of three wind components and speed of sound are defined:

z z z z
W = - dz W = - dz = ' 3 = . .
, {) w dz ; , {) wy z WZ 4) wydz ;v 4) vdz (4.1)

Groves has shown that

X, 23 z Y22 2 zi 2
2(1+ = tw + +lw +lw + )
v-{1te) X Ti-T y Ti- Z Ti-T (4.2)

where X, = x - X,,
i i

Yj_ = y = yi)

Zi = Z-Z,

m
fl

second and higher order effects.
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If equation (4.2) is considered only to the first order, ¢ may be ignored.

The error, by meking ¢ = O, is less than one percent. Expanding (4.2) gives

V2 oW2 - WR - w2 = oW S =)
X N Z xT,-T T, -T,
1 A
YiZi 1Z1 Y
toaw T,-T T,-T
Y i i
72 74
i i
+ W + . .
o, Ti-T (Ti-T)2 (.3)

If all microphones are essentially in a horizontal plane,.zi = 03 and

since wind components and speed of sound are assumed constant in a layer,

;5 W= wz3; Vo= vz. (h. L)

x-xi y—y y-y /2 Z \
Ve owl -w? -wd = 2w +ow . (L.5)
X 'y oz X Ti—T y'Ti— z Ty —T - T —T \T T

Let v2 wi -w2-w® = @ for simplicity and
v oz

i a
T.-T i’
y yi .
T.-T i’

i
7-7,
i
= C.
T.-T i’
i
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wy = v,
W= W
Z
Equation (L4.5) becomes
Q-2a.u-2bv-2cw = a°+b2+ 2, (L.6)
i i i i i i

For a number of microphones, N, equation (4.6) is to be solved for unknowns Q,

u, v, and w such that

N N N N N N 2
F =4NQ -2u L a.-2v & b.-2w L c.- |2 a,+ L b.+ 2 c.
. i . i . i ] i i,
i=1 i=1 i=1 i=1 i=1 i=1
(L.7)
is a minimum. Let
f. = Q-2au-2bv-2,w-a®-1b°-c%,
1 1 1 1 1 1 1
SO
F = l—Zf]z,
‘_l
then
OF
&L 4.8
) (4.8)
gives
Xf, = 0 5
1
OF
n -
gives
£ = :
Zaii 03 (k. 9)



W 0
gives
Zbifi = 0 ; (4.10)
and
gives
Zcifi = 0. (4.11)

Equations (4.8), (4.9), (4.10) and (4.11) can be written as

NQ - 2wa, - 2vib, - 2wlc, = 2a2 + 21bZ + Xe2 (k. 12)
1 1 1 1 1 1

Qa, - 2wa® - 2vla.b, - 2wa.c, Y22 + Ya b2 + Ya c2 (4.13)
1 1 11 11 1 1 1 11

il

@b, - 2wa. b, - 2wbZ - 2wkb,c, Ya2b, + Xb2 + Xb.c? (Lo 1h)
1 1 1 1 1 1 1 1 1 11

Qec. - 2wa.c. - 2vlb.c. - 2wies Yalc, + 2c.b® + ve3 . (4.15)
1 11 1 1 1 11 1 1 1

Equations (4.12), (4.13), (4. 14), and (4.15) are linear simultaneous equations
with unknowns Q, u, v and w.

Initially, we choose a value of T, which gives x, y, and z from the tra-
jectory. Thus, knowing ai, bi’ and c., we can solve for Q, u, v, and w. Then
we choose another T and determine Q, u, v, and w again. We repeat the solution

with a small increment in T until we find Q, u, and v with w = 0. This will be

the ~orrect solution within our assumptions,
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v = VQﬂFﬂ#ﬂF.
In this way the average speed of sound (and thus the average temperature) and

two wind components are determined in a layer.
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5.  SUMMARY

The acoustic wind measurement system is now fully operational and capable
of acquiring data on all large rocket launches at Cape Kennedy. The wind pro-
files determined by this system are in agreement with other simultaneous meas-
urements, thereby establishing the wvalidity of the Pechnique. On the basis of
an extensive error analysis (Bushman, Kakli, and Graves, 1968), the maximum
error was found to average about 10 m/sec in each component. These errors are
attributed principally to inaccuracies in determining sound arrival times.
These errors could probably be reduced by more sophisticated measurement and
data reduction techniques. At this time it is not felt that the increased com-
puter time and costs can be justified by the error reduction that would be
achieved.

The measurement system as it stands now could be significantly improved
by the addition of far-field sites discussed in Section 4. This addition would
eliminate the requirement for separate determination of speed of sound profiles.
New acoustic microphones have been developed with more sensitivity and with a
flat response over a wider frequency range. Implementation of these microphones
would also improve the system. These microphones have all the required elec-
tronics self-contained and would eliminate the need for any additional equip-
ment with the exception of recorders. By using the new acoustic microphones,
the system would essentially be entirely portable. The output of one of these
new microphones was recorded during the launch of AS-505 (Apollo 10) to deter-
mine whether it would be compatible with the present system. The results were
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not available in time to include in this report but will be included in a sup-
plementary report containing the results of AS-505 (Apollo 10) and AS-506
(Apollo 11).

Since its inception in 1965, the acoustic wind measuring technique has
been developed and tested and the system has been improved to the point of be-

ing a fully operational and essentially automatic system.
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