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CHAPTER 1

INTRODUCTION AND SUMMARY

1.1 MODELING STUDY

As originally conceived in the project goals, a modeling exercise was
to be conducted on a vchicle component to provide background information for
comparing computer simulation with crash testing. As noted in Volume I of
this report, it served this purpose. During the course of the investigation,
however, the modeling study took an added significance. The state-of-the-art
study concluded that only Level 3 simulation capabili‘cy1 is currently available.
It became evident that the feasibility of advanced simulations is dependent upon
the development of self-contained modules which accurately but efficiently model
vehicle components. Thus the goal of the modeling study was expanded to the
preliminary development of a major simulation module suitable for a Level 4
simulation.

A Level 4 simulation capability requires modeling three dimensional
displacements and rotations under a variety of loading conditions. It must
compute absorbed energy, relative displacements of major components and
the acceleration environment of the passenger compartment with an accuracy
comparable to testing. This is to be accomplished with less than three
hundred degrees of freedom. It is clear that a general three dimensional
frame module would be essential to such a simulation program. Thus a frame
module was choosen as the goal of the modeling study.

To develop a general three dimensional, large plastic deformation frame
program with the size restriction imposed by Level 4 simulation is a major
challenge. From the state-of-the-art study it is clear that a finite element
approach based on continuum mechanics is unrealistic for Level 4 simulation.
It is also clear that the concept of generalized resistances successfully used

in Level 3 simulation is limited to essentially one dimensional motion. The

1. . . . . .
A simulation spectrum is defined in Volume I of this report. Level 3
simulation models overall response and average rigid body accelerations under

limited loading conditions.



most promising approach thus appeared to be the extension of the plastic
hinge concept to three dimensional response. In carrying out this extension
it is necessary to formulate the problem in a manner suitable for use as a
module in an overall vehicle simulation. The required flexibility was
accomplished here by formulating the problem in a form analogous to a
finite element formulation but in which the governing element equations are
derived from the concept of an ideal three dimensional plastic hinge.

The basic theory and derivation of equations is given in Chapter 2.
A number of experiments designed to verify the basic concept are discussed
in Chapter 3. The computer simulation developed was then used to predict
the force-deformation curve for a static crush test conducted by CALSPAN
on an actual vehicle frame. A discussion of our modeling of the frame and
the comparison of computed with experimental results is given in Chapter 4.
A brief user's guide for the computer program is given in Appendix A and a
complete listing of the current version of the program is given in Appendix B.

Although we do not consider the current version of the program a final
product for use as a component module, it is an opcrating program with most
of the essential features. Moreover the modeling cycle was instructive in
identifying problem areas. In the remaining sections of this Chapter we
summarize the conclusions and recommendations resulting from the study.

1.2 CONCLUSIONS AND RECOMMENDATIONS

The major conclusions resulting from the modeling study are:
1. The ideal plastic hinge is a valid concept {for three dimensional
plastic deformatior of beam.
To our knowledge there did not exist at the beginning of the
study a general theory of beam deformation based on the plastic

hinge concept, earlizr work in large deformation being confined



to planar frames. The theory derived here is sclf-consistent
once the basic assumptions associated with an ideal hinge are
postulated. Moreover the validation experimcntsz verified that the
theory adequately models the essential features of actual physical
behavior over a large deformation range.

2. The development of vehicle component modules suitable for advanced
simulations is technically feasible.

For use as a vehicle module, a component simulation program
must adequately model the component behavior, must be internally
general, and must be in a form compa{ible with interaction with
other modules. The two latter conditions are satisfied by formu.—
lating the program in terms of arbitrarily specified nodal variables.
The qualification study demonstrated that the computer simulation
could adequately predict the behavior of an actual vehicle frame.
Although the study indicated a number of areas that deserve further
attention, the basic feasibility of the approach was clearly demonstrated.

In addition to these conclusions which directly bear on the overall project
goals, the study brought out a number of points relevant to component modeling.
They are:

1. Torsional and axial forces can have significant effects on the responses

and should be included in the analysis.

2. The plastic hinge concept has inherent limitations. Due to its "of(-

on'" character, it cannot model in detail elastic-plastic behavior
of a cross section. This has only limited effect on the overall

response if the yield function is chosen to give a "good" piecewise

The validation experiments reported in Chapter 3 indicated that under
certain loading conditions plastic extension of the beam which had originally
been neglected in the theory was important. This has subsequently been

corrected. The theory and computer program given here include this effect.



-4.-

lincar approximation to the actual elastic-plastic bchavior.

For planer bending this is easily accomplished by choosing

an equivalent yield stress to give a yield moment intermediate
between initial yield and the ultimate collapse moment. In

the general case, however, we need to choose an equivalent
yield function. Since the difference betwecen initial yield and
fully plastic cross section is different for different modes of
deformation, this cannot be accomplished by simple scaling.
The functional form of the initial yield function is sufficiently
general to permit different scalings for different deformation
modes. At the present time, however, our knowledge of the
actual elastic-plastic behavior under general conditions is too
limited to prescribe this variable scaling in a rational manner.
Thercfore in the present study a single yield stress was chosen
somewhat arbitrarily. In both the verification and qualification
studies, the computed results were in general agreement with
experiments. It was clear, however, that the choice was not
optimum and this topic descrves further attention.

The thecory developed here can adequately account for the effect
on the force-deformation characteristics of the structure due to
changes in geometry. It cannot account for softening due to
joint inefficiency or local deformation of the cross section. The
verification study demonstrated that such effects could be sign-
ificant. It was also shown in the study, however, that joint
behavior similiar to that observed could be obtained by changing
parameters in the yield function. Although at the present time
there is no rational basis for our choice, the result strongly
suggests the possibility of defining a "failure function" by re-
lating the parameters in the yield function to actual joint behavior.
It is also worth noting that our modeling of the vehicle frame in
the qualification study required considerable judgment and

experience. The choice of the number and location of the plastic



hinges and the choice of structural parameters are not obvious.

Thus simulation at this level of approximation requires a

background of experimental evidence.

Finally in closing this section we note a number of recommendations

for both immediate and long range improvement of the computer simulation

program developed here. There are two improvements which can be effected

without major effort. They arc:

1.

Extend the formulation to include dynamic effects by adding
mass matrix.

The frame simulation program developed here is not intended
to include the major inertial masses of the vehicle. In the
envisaged modular development, such masses will be handled
by a rigid body module that can interact with other structural
modules at arbitrary nodes. Nevertheless it is desirable to
extend the capability of the program to include the [rame inertia
since it could be significant for advanced simulations. In any
case this capability would be useful in quantifying the importance
of frame inertia. Since the present program requires incremental
solution, the inclusion of inertial effects does not complicate the
solution procedure. The only effort required is to develop and
program a mass matrix consistent with the present formulation.
Develop automatic selection of variable step size based on
numerical error control.

The current version of the program obtains the increment step
from an input subroutine which prescribes the external forces and
displacement constraints for a particular problem. Aé presently
programmed a constant step size is specified in the input sub-
routine. It is desirable to develop an automatic selection of step
size based on a relative error measure. At the present time,
we have not had sufficient experience with the program to
correlate relative error with total error. In the interest of

economy the actual qualification result reported here was run




at a relatively large constant step. The rclative error in the
yield function at some hinges was as high as ten perccnt for
some steps. Nevertheless the overall force deformation curve
correlated well with experiment. On the other hand, this step
size was too large for accurate computation of the incremental
dissipation and continuous loading was assumed. Thus at the
present time it is not clear what error measure is the most
desirable or what is the effect of step size on various variables
of intcrest. A systematic numerical error analysis is desirable
to optimize exercising the program.

Finally we note the need for a research effort in the simulation of joint
behavior. As discussed above both the verification and qualification studies
indicated that joint inefficiency and local deformation have a measureable
effect on the overall force-deformation characteristics. We believe our
preliminary "analytical experiments' are strongly suggestive that these
effects can be incorporated into a yield function expressed in terms of
structural variables. The development of such functions for typical vehicle
joints will require, however, a substantial rescarch effort, both analytical
and experimental, on the plastic deformation of joints under general loads.

1.3 COMPUTATION COSTS

The qualification study was sufficiently large to give a good assessment
of computation costs for the present program. Our experience with exercising
the program has demonstrated that the cost is essentially directly proportional
to the number of elements. The major program opcrations are the updating
of the element stiffness matrix at each step and the monitoring of the yield
hinge switches for each element; the actual inversion of the equations requires
almost negligible time in comparison. Since these major operations must
be preformed once cach step for each element, the run time varies linearly
with the number of elements.

Thus it is convenient to express computation cost on a unit base. The
following costs are based on exercising the program on the University of

Michigan IBM 360-67 computer using the Michigan Terminal System.



In our experience the average unit cost is eight cents per element for each
integration step. For general comparison it is convenient to also express
the cost per degrce of freedom. For typical framme structures the number of
nodes is about 80% the number of elements. (For our qualification study

we used 19 elements and 15 nodes.) Each node has six degrees of freedom.
Thus in tecrms of degrees of freedom we have a cost of 1. 67 cents per degree
of freedom for each integration step.

The total cost data for the qualification study is:

No. of Elements - 19
No. of Nodes - 15
Total Degrees of Freedom - 90
Integration Steps - 66
Total inches of Crush - 5.1
Total Cost $ 100. 00

It should be pointed out that the present program has not been optimized
from the viewpoint of cost. In particular the program does not make use of
file storagc but retains all computed data in core storage. The Michigan
Terminal System changes a substantial premium for core storage. Since
storage costs account for over half of total run costs, the use of file storage
will significantly reduce cost. In addition some reorganization of the program
variables (sequential use of same storage locations) can be implemented. In
this way, we estimate that run costs can be reduced to one cent per degree
of freedom for each intcgration step.

With a unit cost determined, determining the cost of a given simulation
requires estimating the number of integration steps to be employed. In general
this requires considerable experience with the program to gain an understanding
of the step size-error relationship. As indicated above we used 66 steps to
simulate five inches of crush in the qualification study. Although reasonable
results werc obtained for the overall force-deformation curve, the computed
results for dissipation indicated that step size was too large for accurate

determination of all variables. We anticipate that five-ten times as many

steps may be required.



At one cent per degree of freedom for each step the qualification
frame study would cost about $60. 00 for five inches of crush. With this
an overall Level 4 simulation cost of $200. 00-$400. 00 appears quite
reasonable. An increase by a factor of ten, however, would put Level 4
simulation cost into the thousands of dollars range. There are two possibilities
for overcoming the need for a large number of steps. The present integration
scheme is the simplest possible method, essentially replacing derivatives by
first order differentials. It is likely that higher-order integration routines
which ultilize data from several previous steps can be developed within the
present formulation permitting a considerably larger step size for the same
relative error.

The second possibility is more speculative. In the present theory, the
plastic structural constitutive equations are essentially expressed in the normality
condition. The consequence is that the plastic deformation increments are highly
constrained in a manner which may not be compatible with kinematic constraints.
This requires elastic readjustment when a new hinge is formed, and we have
noted that this is the situation where large relative error is introduced unless
a very small step size is employed. It is possible that an alternate formulation
of the plastic constitutive equations would relieve this difficulty. Such a
reexamination is inherent in any general study of the plastic deformation of
joints.

Thus our conclusions with respect to computer costs are somewhat
equivocal. The present study has obtained overall force-deformation results
comparable to experiment at a cost which makes Level 4 simulation economically
feasible. In detail, however, the present results are not completely satisfactory
from the viewpoint of accuracy of all variables of interest. There is reasonable
expectation that improved integration techniques and better understanding of
general structural plasticity can improve this accuracy without significant

increase of computation cost.



CHAPTER 2

ANALYSIS

2.1 BASIC ASSUMPTIONS

In this chapter we derive the basic equations for a general
beam of arbitrary length which forms the basic element of the
frame module. The derivation is directed towards obtaining an
"element stiffness matrix". With this the global system of
equations for an arbitrary frame can readily be assembled.

The major simplifying assumption in the analysis is that
all plastic deformation occurs at ideal hinges. The location
of potential hinges must be choosen apriori, and this choice dictates
the length of the beam element. Thus plastic deformation occurs only
at the nodes of our element. We further assume that the hinge is
operative when the appropiate stress resultants lie on a yield surface
for the cross section which remains constant as the deformation
proceeds.

The physical implications of these assumptions are:

(i) Plastic zones are confined to localized regions,

(ii) Material strain hardening may be neglected,

(iii) Detailed elastic-plastic behavior of the cross section
between initial yield anﬁ a fully plastic section is
not critical to the analysis.

For mild steel, thin walled cross sections, and loading typically

experienced by vehicle frames, these appear to be reasonable
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assumptions. The most questionable is the third approximation.
For the case of pure hending this is equivalent to replacing

the actual moment-curvature relation by an elastic - perfectly
plastic approximation which has been successfully used in many
structural applications. In the general case, however, there

is less evidence for defining a yield surface for an ideal hinge
which approximates the actual elastic - plastic behavior. Here
we choose the yield surface as that associated with initial yield.
The surface can be scaled, however, to better approximate the
actual behavior by choosing an "equivalent yield stress'" rather
than the actual material yield stress. This point is discussed
further in the next chapter.

If we were interested only in overall deformation, the assumptions
might be extended to neglecting elastic deformation. As a component
module, however, we need to determine as accurately as possible
the forces transmitted by the component to other modules of the
vehicle at each time step. Particularly during the early stage
of motion these forces are probably significantly affected by the
elaséic deformation. From a numerical viewpoint including elasticity
is actually beneficial since it removes indeterminancy associated
with rigid plastic theory.

2.2 NOTATION

To derive the element stiffness matrix it is nccessary to
define the configuration of the beam in a general orientation in
space and to relate this orientation to the forces acting on the beam.
The motion of the beam may consist of elastic deformation, general
rigid body motion of its end points, aud rigid body motion of the beam

itself due to plastic deformation at the hinges.
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The necessary reference frames for a beam element between

the ith and jth nodes are shown in Figure 1. The nodes are

represented by rigid body masses Mi and Mj' For clarity the beam

and masses are shown separated, but the beam end points initially

coincide with the center of mass of the nodes.

M,
jo
M. I,
io ‘
XZ G
A Initial Configuration (t =t )
X o
1
M.
. 1
X3 Fl
\\\~\
\\\\\ F.
. / J
\\\\’/AV
\\» Ldj

Deformed Configuration At t = tK

BEAM REFERENCE FRAMES

Figurc 1
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In Figure 1, G represents the fixed global reference frame, Mi

K

(denoting the kth forward step in the incremental process), and Fi

and Mj are frames attached to the nodal masses at a time t

and Fj are frames attached to the beam end points at time tK'
The origin of the latter frames is at the shear center of the cross

section, the Xy axis is tangent to the beam axis and Xl and x2

are along the principal axis of the cross section 1. The beam
is of length 2. A subscript "0" denotes the initial position
and orientation of the respective frames.

The position of the ith and jth beam frames with respect to

the fixed global system is denoted by §1 and §P respectively.
Likewise the position of the ith and jth mass frames with respect

to the global frame is denoted by X} and EP respectively. The

orientation of the four frames with respect to the global systen

is specified by the four direction cosine matrices

M, M, Fi .
LY od, t o
in which the components of LF are
F _F
lij =8485 (1)

where Ej and ng are the base vectors in the global system

and the frame F respectively.

1This implies the beam shear center and the nodal center of
mass initially coincides. For a physical rigid body mass this, of
course, will not be generally true. In our development, however,
adtual rigid masseé will be handled by a separate module which can
interact with the frame module at arbitrary "external" nodes. The
nodal masses here represent a discretization of the frame mass and

a mass matrix appropiate to the postulated reference frames can be

derived.
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It is convenient to choose the initial orientation of the mass

frames to coincide with the global frame, i.e.

LMlO - LMJO - I (2)
where 1 is the identity matrix. Also we have

. F,

; 1o . Jo (3)

In fact we should note that since Fi and Fj are fixed to the

beam, differences in their orientation result only from elastic
deformation.

In carrying out the derivation we introduce the following
vector quantities:

U - displacement

F - resultant force vector acting at the beam
end point

M - resultant moment vector acting at the beam
end point

w - rotation rate of beam force

6 - rotation rate of mass frame

We will use the notation ?X;’ where the superscript i denotes the
point or frame associated with the vector and the superscript F
denotes the frame in which the vector components are expressed.
If F is the global frame the superscript will be suppressed, i.e.

X} is with respect to the global frame.

The location of a coordinate frame F is specified by the
position vector x and the direction cosine matrix LF. Since in
general the frame F moves with respect to the fixed global system,
we need to define their rate of change with respect to time. We
denote the rate of change of the position vector as X. From rigid
body dynamics we have

L = WL (4)

A
where W is the 3 x 3 matrix
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C F F |
w?’ 'wz 1
F F
A - L 0 W,
W =
Fw }; 0 (5)
2 1

Also we note the vector transformation relations

F, _ (Fy (6)

v o= abhT Ty

where the superscript T denotes the transpose.

Finally we introduce generalized displacement rate and force

rate vectors associated with the point i as

- -

. .1
-
8
i '.i:
R - F
.
M

From this we introduce the generalized displacement rate and force

rate vectors for the beam element as

] r.i-
2 = .]2
-J
D

(8)

-
E = ._R_.
- J
R

Our immediate goal is to relate R to D.

In the deviation that follows it is convenient to work with
the rate variables introduced above. For numerical computation,
however, we will work with increments in the variables betwecen

the configuration at time tK and time tyeq- We denote the time



| -15-

increment as At, i.e.
At =t -t (9)

The corresponding increment in the generalized displacement,
for example, is
AD = D At (10)

Since all our equations will be homogenous in time, they may be
converted to incremental equations by multiplying through by At.
In effect this means we may obtain incremental equations by replacing

rate quantities, (D for example) by incremental quantities (AD).

To complete an incremental formulation we must relate the frame

orientation at time t to the orientation at t Ve have

K+1 K’

F F F
L = L (tK+1) - L (tK) (11)

At

F
Solving for L (tK+1) and using (4) gives

F
b (tgeg) =
Thus F
L (tgeq) =
where ~ F
1 Aw
3
F
W= - AwB 1
F F
Aw - Aw
i 2 1
F F

[ %At + I] LF(Hq)

F
WL (ty)
F u——y
- Aw
2
F
huy
1

(12)

(13)

where Awi denotes ® At and represents the increment in the frame

i
rotation.

2.3 KINEMATICS OF DETFORMATION

Referring to Figure 1 we can visualize the deformation from

the initial state to the configuration at time t

as a rigid body
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motion of the beam frames Fi and Fj plus an elastic deformation.
The rigid body motion of the beam frames may be due to both
overall rigid body motion of the system and to plastic rotation

and extension of the hinges at node i and/or node j.

In the initial configuration wc have

10 _ _1o0 Jo _ ]
X =Y X =¥

. . ¥,

jo 10 io T
X X T

(14)

0
where r is the vector r =0
[

.

At time tp the mass frames are at Xl and XJ
i

X" and §J where

; the beam frames are at

. . F,
K =x e @wh e (15)
in which ge represents the elastic displacement vector of the
end j with respect to the end i referenced to the global system.
The origins of the beam and mass frames may differ by

plastic displacements occurring at the hinges.

Thus

Jo.

J EJp (16)

where glp and QJP denote the plastic displacements referenced

to the global system. gith this (15) becomes
XJ _ Xl = (L 1)T£ + ge T Ulp + ng (17)

The displacements of the mass frames are introduced as

i i io j j o)
U=y -y, U=y -y _ (18)
Expressing the second equation of (14) in terms of 110 and
XJO and subtracting from (18) gives
L] ) . . F- 3 .
HJ _ H1 = (L l)T—(L 10)T:]£+ He + Hlp + Egp (19)

We obtain a rate equation by differentiating (19) with respect
to time obtaining



o J L — .e . ip . Jp

U-u o= @ rru o+ +u (20)
The plastic displacements are due to plastic extension of the
beam. Thus the extension rate is always directed along the

current x, axis of the beam frame. Thus in the local beam frames we

3
have
F,, .
i .ip Lip
U = U i (21)
F, . .
J Jp -Jp
U = U i
Jip Jp

where U and U are the scaler axial plastic extensions and i is

the vector

I+
1
o

Transforming to the global system gives

.ip F. .ip
v o=ahiov
.jp Foop o .dp (22)
U o=@l i
It can also be shown that
——— F, Foo
(LFl)l‘E = (L 1)T EL L 91 (23)
where
0 20
E=|-2 00 (24)
0 0O
Introducing (22) and (23) into (20) gives
.J L i F. .ip F. JJjp -
i.T . T . e
U-U = He +@LH 10 +@H 10 +U° 25
where Fi T F.
H, =(L ™" B L? (26)

R

A second vector equation is obtained by recognizing that
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the i and j beam frames differ only due to elastic deformation.
Thus the beam rotation rates are related by
wJ = E)_l + _(Ee (27)

in which ge denotes the elastic rotation rate of the Fj frame
with respect to the Fi frame referred to the global frame.

Finally we wish to eliminate the beam frame rotation rates
from (25) and (27). The difference in orientation of the mass
and beam frames is due to plastic rotation at the hinges.
Introducing the plastic rotation rates gives

Ql - ol + Elp

W = ed o P

(28)

where the superscript p denotes the hinge rotation rate. Using
(28) in (25) and (27) gives ] .
S : . .e FiT .ip FjT -Jp
U -H @ =HTHU (L) P U (L) LT (29)

QJ *ﬁ? = le + P 4 ge

The left hand side of equations (29) are expressed in terms
of the generalized displacement rate é, whereas the right sides
involve the elastic deformation of the beam and the plastic
deformation occurring at the nodes. It remains to relate these
deformation quantities to the generalized forces acting on the

beam at the nodes.

2.4  DIFFERENTIAL EQUILIBRIUM OF THE BEAN

The forces and moments acting on the beam in the current

K
deformation the EJ <

N
%/

state at time t, are shown in Figure 2. Neglecting elastic

Figure 2
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equations of equilibrium can be expressed as

F.. F. .
151 = A 133 (30)
where
F
Fis irpld
Eo= s
M (31)
F i
F, il 13
lE_’J = .Ij.
N

and A is the 6 x 6 constant matrix

(32)

We can now obtain a rate equation by differentiating (30)
with respect to time. 1In carrying out this computation we must
account for the change in oricntation of the Fi frame. This is
best done by referencing the generalized force vector to the
fixed global system. For this we have the transformation

relations
_ F
Fp = T R
(33)
R = (TF)l FE
where TF is the 6 x 6 matrix
- oo
; (34)
o Lf

It also follows that
.F <Q ¥
T = W1 (35)
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eliminate the beam frame rotation through (28). After rearranging,
the result is

F.,.T F, . i F. T F. .j

(r™ gLt e = RrR + (rh ar'Rr (44)

F.T F. .
e BT g teip

2.5 INCREMENTAL YIELD CONDITION

We must relate the plastic deformation rates in (29) and
(44) to the generalized forces acting on the beam. The appropiate
relations are derived from considering the yield condition for
the cross section. A hinge operates at a node permitting plastic
deformation at the node when the current stress resultants lie on
the yield surface for the section. We assume that the effect of
transverse shear on yield can be neglected. Thus the yield condition
at node i, for example, is a surface in the four dimensional space
associated with the reduced gencralized force vector
i o F?s ’
=R M
M
M

o -

1 (45)
2
3

Thus we may denote the yield surface at node i by the scaler function

. F,
'Yy = c. (46)
B i

where Ci is a constant.

Since the yield function must remain constant during the
plastic deformation process, we have

A4Ti

£ Ry

In carrying out the chain rule differentiation, it is convenient

= 0 (47)

to express the argument in terms of the nodal forces at the j

node expressed in the global system, i.e.
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F, ; Fi i
1
= A T 48
Rp = A T K ()

where AR is the 4 x 6 matrix formed from the last four rows of the

matrix A.
With this (47) can be expressed as

- .F, . F,.j
(V)" (ApT R+ AT R) = 0 (49)

in which V represents the vector gradient. Using (35) and transforming

back to the Fi frame through (33) gives

AF, -
W 'R o+aA, R) = 0 (50)

iT
(V) (A R R

R

A F. .
. . B 1 1
The matrix W involves the beam frame rotation rate .

As before this can be expressed in terms of "w ° and iei. Equation (50)
can be reduced to an equation for a single scaler by relating the plastic
deformation rate to the yield surface. We assume that incremental plastic
deformation vector is normal to the yield surface. 2 We introduce the plastic

deformation rate vector

K - (51)

For a discussion of the normality condition in structural theories

sce P. G. Hodge, "Limit Analysis of Rotalionally Symmetric Shells'",
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Then the normality condition is

L i
K- = a\x (52)
where \ is a scaler multiple and 31 is the normalized gradient, i.e.

_ i
at = i (53)

i
| ve'|

Using (53) to eliminate the components of lwlp from (50) gives after some

|

algebric manipulation

F. F
iT i i i T 1) iT i ot
NVE) A R = (v} Ag R -(Vf) B & (54)
where
_ — 1
a, a, 0 0 0 0
la4 0 - a2 0 a4 a3
at o o ] 2 0
R %4 tE3 T3y a
0 0 0 a -a 0
L 3 2 A
- j (55)
F W -
] R, R, 0 0
_ Ji - 2
R, R, R LHR,)
1
B = R6 -R3!Z (Rzﬁ -R4)
i R, R, 0 |
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Solving (54) for X and substituting into (52) gives for the plastic deformation

rate
.1 ;1) 1
K = G R + G
where
Gl = -1
(wiyT anl Fig
-— R —_—
__i
G = -1

(Yfl)T AA;{ Flg]

An analogous analysis may be carried out at the node j.

for the plastic deformation rate at j is

j jTF Fig
K =6 R + G
where

o = 1 vy At
IT o Fia - R

(V)" aal IR

— R —
_ o
¢ - 1 o (veh)" B

(56)

The result

(58)
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in which f’ = Cj is the yield function at j and

J
A
2 = (59)
|v il
. .
0 0 1 0 0 0
0 ¢ 0 1 0 0
-1
A = -{ 0 0 0 1 0
R
0 0 0 0 0 1
— _1J'
a, -2, 0 0 0 0
i
AAR = -4 a, 0 { 2, 0 a, -a, (60)
0 -4 a, ] a, -2, 0 a,
L 0 0 0 a3 -az 0 i
. _i
i -
B = FJ —R2 R] 0
{ R3 —R6 (-Rlﬂ +R5)
R, 4R, (-R0-R)
-R5 R4 0
. —

2.6 ELEMENT STIFFNESS MATRIX

Equations (29) and (44) represent twelve equations which will relate
the elements of D and R if we can eliminate the elastic and plastic deformation

rates. From the previous section we obtain
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.ip ) FlJ i F,
1 - 1.1
U = G, R + Gy 8
. . ] ip
o= HY R + B0
.jp ; joi ) F,
U = G, R + Gy lg) (61)
. .1 _Jp
P = P =R TR o
where 1 F . P
u? - L h G; T !
_ip F, i F.
0 - w HT Gy L (62)
: F. F
- LT Gy T
ip F, j F
— T —
H = (L ) Gy L

in which a subscript "U" on G or G denotes the first row of the corresponding
matrix and a subscript "R'" denotes the bottom three rows.

From elastic beam theory we have relative to the current configuration

beam frame F,

-kt R (63)
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where
lZEI2 0 0 0 _6]5}12 0
2
! 3 {
0 lZEI1 0 6EI1 0 0
3 2
Ji I
K = 0 0 EA 0 0 0 (64)
e =0
!
6
0 El 0 4EIl 0 0
’ 2 i
- 4
6EIZ 0 0 0 EIZ 0
2
’ i
0 0 0 0 0 _CH
I

in which E is the elastic modulus, G is the shear modulus, I1 and I2 are the

principal moments of inertia, A is the cross section area, J is the torsional
rigidity, and { is the beam length. In (63) the vector on the left hand side

represents

= (65)

€ . . . .
where @~ represents the elastic rotations. We are assuming the elastic
N e .
deformation is small and hence @  may be considered a vector as well as

e
the elastic rotation rate w . We introduce the rate variable



(66)

In calculating this rate from differentiating (63), we must again account

for the rotation rate of the beam frame F'. The procedure is exactly

analogous to the differentiation of the equilibrium equation (30). The final

result expressed in the global frame is

.e F, F, .j
D = [_(T 1)TKe'lT 1+(KRT£]

in which F

where (KR) is the 6 x 3 matrix

(KR)

F

KRT) = (T )T (KR)L ‘m'P

F,

F ip

®RT) = (T ) T ®R)L (H )

F,
i

776

(KZ-K3)R3

(KZ-K R

+K R4

(KS-K R

6

K7R1+

(KS-K R

6

(K3-K1)R3

86

(K3-K1)R1_K7R5

(K(,'K4)R6

-K8R2+

(KB-K )R

4

R + (KRT)

' (67)

(68)

(KI-KZ)RZ-(K7+K8)R4

(Kl-KZ)Rl+(K +K )R

7 8°5

-(K7+K )R1

8
+(K4-K5)R5

(K7+K8)R2

+(K4-K5)R4
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-1
in which K, represents the nonzero elements of Ke and are given by
J

3 3
Kl = /3E12, KZ = /3E11, K3 =J /AE
= = = 0
K4 /z/EIl, K5 !Z/EIZ, K6 1/GJ (70)
K -£2/2E1 K. = £2/2E1
7 2’ 8 ~ 1

We now partition equation (67) to give

.e ] .

U - [K + (KRT) | R + (KRT) 6" (71)
— u u | = u—

© . [K +(KRT i{j + (KRT) 6
W® = [ , )E] R+ (KRT), 9

where the subscripts u and { denote the upper three rows and lower three
rows respectively of the corresponding matrices in (67).

Finally we write

F. .ip A -] A
T 0
(L) iU - E,R +E ¢
(72)
F .jp A -1 A
wHliv -E R +E, €
where from (61), (6) and (33) we have
A F. F,
i, T, 1 i
E1 =(L ") iG UT
A Fie 2F
(73)
A . .
_ 1HhT. ) J
Ej (L ) 1_GUT
AF o oE
E; = (L DiG L
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We now use (61), (71) and (72) to eliminate the elastic and plastic

deformation rates from (29) and (44). The resulting system of equations

may be expressed in matrix form

B D=H R (74)

where the 12 x 12 matrices B and H are

o | 0 lo ! o
— ._.l.__ —_— — — - -
F, |
0 | (L 1)T3(1+| 0 0
e L
gy
_ 1 2 - LR
| | 2
B o .1l -(Hp + I -EJ_ (75)
| pA | |
lHRH +E,) |
: I
| +E®RT). |
___1____.,,__1_____1_._ o
Y Jp
LO | (I+H ) | 0 (I -H )
+(R—R_T)£ -
- | '
I 0 I 0
o = = == ==
| Fopw. | Fim
o |1 | (L |-1+(L).
) _ F _F, ,
H = ‘, | To)L’ ! TG,L " (76)
- 5= - -—‘——m—— ~—ip N
EJ_ | KU+HR—H T E,
_\_. HERT)
T . .
H? | K, +HP
l + (KRT)
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in which Gr1 and G2 denote the first three and and second three columns of
GIR respectively.

Thus we have the desired result

R=K D (71)
where the element stiffness matrix K is
-1
K=H B (78)

2.7 TEST CONDITIONS FOR PLASTIC DEFORMATION AND ELASTIC

UNLOADING

In the previous section we derived the stiffness matrix for an elastic-
plastically deforming beam element. This general expression is valid, however,
only if the plastic hinges at the beam nodes are operating. If the hinge is not
operating, the plastic contribution to (78) can be eliminated simply by setting
the G and G matrices associated with the node to zero.

This implies, however, that in addition to the stiffness matrix we must
develop a procedure for monitoring the operation of the hinge, Implementing
this procedure is basically a programming problem, but we briefly outline
here the general considerations involved. For each node we introduce a hinge

switch
i 0 No Plastic Deformation
"1 Plastic Deformation

S (79)

. i, . .
Initially S is zero. At the end of each forward integration step the value
1
of the yield function f is computed. If it is less than Ci, the computation
proceeds to the next step with the G and Gmatrices set to zero. If it exceeds

Ci’ we introduce a scale factor A such that

i i

f (A Bﬂ = Ci (80)
Since the generalized force and generalized displacement vectors are linearly
related, scaling the last step size by A gives a deformation state which just
satisfies the yield condition. The switch Si is then set to unity for the next
step and the G and Gmatrices are included in the calculations.

Finally we must introduce a condition to monitor clastic unloading.

During plastic deforimation the rate of energy dissipation must be positive.

At node i the dissipation rate is
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. F. .

d=( R) K (81)
The dissipation increment for each time step is computed from (81) whenever
s is equal to unity. If

d >0,
the computation proceeds to the next step. If

d <0,
the switch S’ is set to zero which eliminates the G and Gmatrices from the
computation. Once s is zero, of course, it is checked for reloading as

discussed above.

2.8 GLOBAL STIFFNESS MATRIX

The global stiffness matrix is obtained by considering the equilibrium
of each node. The process of assembling the global matrix is standard and
basically a bookeeping operation. Here we briefly outline the basis for the

assembly proceedure. Figure 2A shows the beam element LB which connects

the nodes i and j. The generalized forces shown are now considered

ej

| =

GLOBAL EQUILIBRIUM

Figurce 2A
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As vectors in the global system. The minus sign is required at the i end
i .
of the beam since the elements of R were defined using the usual beam

theory sign convention. Equilibrium of the i and j nodes in rate form gives

i .ei
R (LB) = -R
. . 82
. j . €] (82)
-R (LB) = -R

ei
where R . . s
= denotes the external force acting on the ith node. We partition the

element stiffness matrix

I1 LB
SK 1J
K{(LB) = K
J
SK I St JJ
where the elements SK are 6 x 6 matrices. Thus we have
.4 LB - . -
F .1 [" 7 ol
; s |5
) = ) (84)
+J J1 37 -
R SK”T SK D
Introducing into (82) gives
i .J . €j
1J .
SKH 9_ + SK P = -B
(85)

o1 .j . €]
-SKJIB —SKJJ D =-R

Considering equilibrium of all nodes i =1,2...N gives a system of

equation

lG .G
TK _12 = - B (86)
where .1 ] i el ]
.G _12 .G R
9 = .2 R = .e2 (87)
D R
*“N % eN
3 R
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The global stiffness matrix TK has dimension 6N x 6°N. It may be considered
as consisting of N x N elements, each element being a 6 x 6 matrix. In this

sense we introduce the N x N matrix element matrix

- -

I J

S ,
TKLB) = |~ --sk % — - - = s!W o o]

| ' (88)

- l I —
in which all other elements are zero. From (85) it is clear that TK(LB)

represents the contribution of the LB beam element to the system of equations

(86). Thus we have

M
TK = I TK(LB) (89)

LB=1
when M is the total number of elements.

2.9 BOUNDARY CONDITIONS

Our problem has been reduced to the solution of the system of equations
(86) where the right hand side represents the increments in external force
applied to the structure. In general this represents the known loading. In
addition, however, boundary conditions may be specified on the displacements
such as at supports or imposed displacements of certain nodes. Boundary
conditions are handled in the present analysis by contraction of the K matrix.

We let TK represent the elements of the TK matrix. Then an alternate

1)
form for expressing (86) is

6°N .G .e
X TK,. D. = -R, i=1,2...6"N (90)
j=1 ij ] i

We consider a displacement condition
» G
= A ’
D . (91)

The corresponding external generalized force rate RK is now an unknown

constraint. Introducint (91) into (90) we have
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.G .G
> TK.. D. +TK. A= -R, i+K (92)
4K 1j ] iK i

.G .G
> TK . D. +TKKKA: —RK (93)

I

Equations (92) have the form
B =G =G
D = -R (94)

K

where TK is the matrix obtained by eliminating the Kth row and

=G .G
Kth column from TK, D is the vector obtained by eliminating DK

.G =G
from B and the N-1 elements of g are

rRY - &Y + TR A (4K (95)

When the reduced system (94) is solved, the unknown constraint

-G
force can then be computed from (93). With this the vectors ]2 and

.G
R are completely known from which all other variables in the problem

can be computed. (For example, the generalized force rate acting on a
beam element can be computed from (84)).

2,10 SOLUTION PROCEDURE

The above analysis has been formulated in terms of rate equations
and represent a complex set of differential equations. To solve the system
numerically we must introducc approximations. Our final set of equations
has the form.

TU = f (96)
when the right hand side is known and T is a complicated implicit

function of U. We now approximate U (and similarly {) by

- 'K 7 ——tK-H = K. (97)
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Thus

- Ny o= ] = . o
p.(tK+1) p_(tK/ A_[_’K.}.l p_(tK)dt ( 8)
Introducing into (96) now gives

T(tg) MUy, = Af (99)

—K+1

Thus the forward integration is actually accomplished by specifying
the next increment in the prescribed vector f. The corresponding
increment in U is then obtained by solving equations (99) using

the current value of the matrix T,. With AU known the increment

K

in all varialles can be computed, the variables updated to time tK+1’

and the matrix TK updated after carrying out the check procedures
outlined in section 2.7. The details of the numerical computation
and the corresponding computer program are discussed in the User's

Guide contained in the Appendix.



CHAPTER 3

VERIFICATION OF BEAM-COLUMN ELEMENT

3.1 INTRODUCTION

The computer model for the beam-column with hinge must be
verified by comparison with experiment. The specific case chosen is the
static deflection of a thin-walled, cantilevered beam. A plastic hinge will
form at the root of the beam when tip loads become large. Both qualitative
and quantitative comparisons are to be made. The behavior of the hinge

at large deformation is of greatest interest.

3.2 EXPERIMENTAL GOALS

The experiment is intended to provide information not only to verify
the current element model, but also to serve as a standard for future theories.
It is hoped to provide a well-defined and simple experiment.

A beam-column is to be subjected to loads acting initially in axial and

in lateral directions (Figures 3 and 4).

: |

/ v
/ ]
/ (Before) '\\ T
(Before) I,P
(Hinge )~
\
(After) (After)

Figure 3. Lateral Loading Figure 4. Axial Loading
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Criteria for planning the test include:

The loads are to be applied in a manner easy to interpret in a global
coordinate system, i.e., the verticality of the load must be maintained
at very large deflections.

The geometry of the cross section must be maintained in the regions
where external forces act--at the tip and root. This provides repro-
ducible boundary conditions.

The large deflection, plastic flow region is of more interest than the
elastic region.

Displacements must be controlled so that catastrophic collapse does

not occur in softening portions of the load-deflection cycle.

3.3 BEAM SPECIMENS

The test specimens were integrally milled in pairs from cold-rolled

1018 steel bar (Figure 5).

o T T T TTT""Tlooi T T~ TTTT7T~" 1o
| | 1 ]
]
le 12 3]

Figure 5. Two-Element Beam Specimen

Two such specimens (a total of 4 beam elements) were tested at the same

time in order to maintain symmetry and verticality of loading in the test

machine. This same type of specimen can beused for both the dominantly
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axial and dominantly lateral loadings.
The beam cross section was an open channel with nominal dimensions

ofh=1" b=1-1/2"and t = 0.100".

— T

LLL L L L

—
o
Y

Figure 6. Cross-Section

Average cross-sectional properties for the lateral test were h = 0,998",
b =1.498" and t = 0.102". For the axial test, h = 1.001", b = 1.502",
and t = 0.101". The specimens were accurately machined; the integral
maéhining process is viewed as a success. FEach two-element beam
specimen required 1-1/2 man days to machine.

Material properties for the 1018 steel were found by a standard
tensile test. A 0.5'" diameter cylinder was tested with the use of a
mechanical extensometer of two inch gage length. The important portion
of the stress-strain curve is shown in Figure 7. Modulus of elasticity E
is found to be 30.35 x 100 psi and yield stress based on . 002 permanent set
is 75,000 psi. The stress-strain law can be approximated as elastic-
perfectly plastic, with a yield stress of 78,700 psi; this characterization

will be used in later comparisons.

3.4 LOADING CONFIGURATIONS

The specimens can be arranged so that the loading is either
dominantly lateral or dominantly axial. It has been historically difficult
to maintain a rigid boundary at the root of a cantilever. This was accom-
plished by milling the specimens in pairs with the root at the center so that

symmetric loading yields a zero slope condition at the root. Another, more
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specialized, requirement for the present test is that the direction of loading
remain unchanged even to large rotations of the specimen. This is more
difficult than one might imagine, but can be satisfied by using two pairs of
specimens in a mirror image type of loading.

For lateral loading, links were used to join the tips of the beams

(Figure 8). Four hinges formed as large deformation proceded. The links

Figure 8. Lateral Loading Geometry

were made as short as possible so that the 4 hinges are forced to maintain
the same angle. This approach was successful over most of the test range.
For axial loading (Fig. 9), the specimens were constrained at both the root and
tip location. The cover plates at the center enforced equality of hinge angles
during the entire test. In order to prevent a catastrophic buckling typical
of perfect specimens, an imperfection 60 was introduced. The small
value of imperfection provided, 60 = 0.039", allowed a more gradual
collapse under load.
In each type of loading, the beam elements act in parallel as well
as in series to oppose the load. The notation has been chosen to yield ¥, P, 5,
and B as the appropriate quantities for a single element.
A Tinius Olsen 120, 000 1b tensile test machine was used. For each
type of loading, special fixtures had to be made to mount the assembly and to
prevent slippage. These end fixtures introduced some unwanted flexibility

into the system in each casc, but this had little effect on the large displacement
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Figure 9. Axial Loading Geometry

readings desired. (See results). Loads were read on the large dial of

the Olsen machine, calibrated to within 1%, Displacements of the machine's
loading surfaces and of the lateral deflection of the beams were read with
mechanical dial gages with least count of 0.001'". Angular rotations at the
center of each beam element were measured with a protractor with least
count of 1/2°, Accuracy of these angular readings was appro:;;imately
+£1/2° with error due to parallax and difficult alignment at times.

The tests were displacement-controlled. The loading surfaces
were moved in increments of displacement, and then load, lateral dis-
placement, axial displacement and specimen angles were read. In the
softening region of loading, a relaxation phenomenon occurred (see Section
3.7). In all load-deflection curves presented, the loads are for 16ng time,
i.e., the "static' case. This often meant waiting 5 minutes before reading
the load value. The Olsen machine was rigid enough that displacements

did not creep to any extent.
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3.5 TEST RESULTS FOR LATERAL LOAD

The results given here will in all cases be presented in terms of
loads and deflections for a single beam element. This means that system
characteristics such as stiffnesses acting in parallel or series, must be
appropriately accounted for. In the lateral loading case, the loads applied
to the system are actually 2F, and the displacements read are actually 29,
but results are always given in terms of ¥ and é.

As initial reduction and plotting of data progressed, it became clear
that certain other system properties, such as support flexibilities, might
at times be removed before presenting data for the element. These
corrections are small and important only in the elastic range. They will
be discussed when they arise.

Load-deflection results for the lateral load case are given in Figures
10-12. The beam was at first loaded in increments of 50 1b (Figure 10. The
stiffness of the specimen was found to be 1,083 1b/in, as compared to a
theoretical value for an Euler beam of 1,450 1b/in. The difference is
attributed to flexibility in the integrally milled center section of the speci-
men bar and to flexibility of supports. Yielding of the cross section
occurred between 250 and 300 1b, whereas the theoretical value for yield
at the outer fiber is 321 Ib. The limit load for the beam was 500 1b, This
provides an experimental shape factor of approximately 1.8 in excellent
agreement with the theoretical value of 1,81.

After ultimate load has been reached, the beam unloads as seen in
Figure ll. Disregarding the strange ripple in the curve between 2 and 4
inches of tip displacement, one can see that the beam softens to approxi-
mately 1/2 its ultimate load carrying capacity. It then becomes more
rigid at very large deflections because the load is carried in axial tension,

The ripple occurring in the softening portion of the curve has a
rational explanation. It is kinematically possible, because of the way the
beams are linked together, to have one pair of hinges operating at a
different angle from the other pair. In a softening situation, one pair of

hinges will freeze while the other pair operates. This can best be
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discussed in terms of angular rotations in the next paragraphs., One
can propose, however, that the dashed line in Figure 1l represents the
true curve for a single beam., The energy absorption should be approxi-
mately the same regardless of the order of hinge votation, and so the
area under the solid and dashed lines should be equal. Also, the slope
of the dashed line should be one half of that of the experimental value
when only half of the hinges were operating in the experiment.

Rotation of each beam was measured at the center of the span of
the beam. In the elastic region, this angle is not of much interest, but in
the plastic region it is approximately the hinge angle, This is particularly
true at low values of load where the outboard portion of the beam became
essentially straight. Figure 12 has the same general character as the plot
of tip deflection except for the softening range.

It was found that the onset of plastic hinge flow was at 7° of beam
rotation., The upper two hinges operated first, until their rotations were
27°, At this time, the system was mildly distorted as in Figure 13, This
apparently increased the load needed to operate the upper hinges because

of the favorable eccentricity shown in Figure 14. At this point, the lower

v
Figure 13, Upper Hinges Leading

2F

Figure 14. Extreme Position with Upper Hinges Leading
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two hinges started to flow and the upper hinges froze. The lower beams
rotated from 7° to 27° and all was well again! The loads required to
operate the lower hinges were reduced somewhat, apparently due to

adverse eccentricity, as in Figure 15,

Yor

Figure 15, Lower Hinges "Catching Up"

Details of the locus of the loading cycle are shown in Figure 16,
The mean value shown is the suggested true curve for a single beam,
The effect of this unusual loading cycle seemed confined to the region of
7° to 27°, At higher rotations, all four hinges acted at the same angles,
It is felt, therefore, that the results are rather accurate in spite of this
phenomenon,

The flexibility of the integrally milled center section can be
accounted for in the data reduction, This flexibility in the experiment
causes an apparent reduction of lateral stiffness of the beam specimen in
the elastic range. Accounting for displacements and rotations at the root
of the cantilever specimen, one has

-6 -6
=9 - (2,96 x 10  +68,05x10 cos O)F
true exp

This correction yields a lateral stiffness for the beam in the elastic region
of 1,179 1b/in, an increase of 10%. This still falls short of the theoretical
value of 1450 1b/in and the remaining difference is due to support flexibility.

These extraneous sources of flexibility will not be removed from the data

becausec they are not important in the large deflection region.
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The hinge, which forms approximately 3/4'" from the root of the beam,
is characterized by large distortion of the cross scction. The specimens
have been arranged so that the free edge of the channel is in compression.

At the hinge, these free edges buckle outward as plastic flow progresses
(Fig. 17). Detailed data of the prograssing cross-sectional distortion were
not taken. This geometrical effect severely weakens the beam and is respon-

sible for the marked softening of the beam at large deflections.

Fig. 17. Plastic Hinge in Thin-Walled Channel.

o

3.6 TEST RESULTS FOR AXIAL L.OAD

The experimental quantities measured in the axial loading case (Fig-
ure 9) were applied load P, lateral displacement 5, axial displacementf
and beam rotation 6. Again, no detailed measurements of cross-sectional
changes at the hinge were made.

The initial "bow" in the specimens, By Was 0.039". This permanent
set resulted from the machining process. It was smaller than desired but
did prove sufficient to reduce the buckling load substantially from the pre-
dicted Euler value and made the buckling phenomena a more gradual process.

The test was carried out without incident. Figures 18 and 19 show, at
different scales, the load-axial displacement relation. The assembly had
some slack initially until all bolts were well seated, and then behaved elas-
tically up to 9,000 lbs. The ultimate load of 9, 440 1b, will be referred to as

the buckling load. As this load was reached, increasingly large lateral
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displacements resulted, with simultaneous formation of plastic hinges. It is
not possible to tell from the experiment alone what proportion of the softening
exhibited by the system near the buckling load is due to geometrical effects
and what part is due to material softening. Both apparently play a role. The
system shows softening character at all loads above the buckling load.

. The axial stiffness of the system in this linearly elastic range (best
seen in Figure 18) was 387,000 1b. /in. A simple calculation (neglecting the
small effect of the bow on axial stiffness) shows an expected speciment stiff-
ness of 832,000 1b. /in. This means that the end fixtures, bolts, etc., were
responsible for 53 percent of the elastic axial flexibility, and indicates how
difficult it is to obtain a perfectly rigid axial support. If desired, this sup-
port flexibility can be removed from the 8 measurement by:

6

B = A -1.382x 10 P
true measured

where 8 is in inches and P is in pounds. This correction will be made later
in comparing theory and experiment in the elastic range. The correction is
very small and never exceeds 0. 013",

Lateral displacement is given in Figures 20 and 21. These figures con-
firm the axial displacement observations and indicate the softening character
of the structure.

The angle of rotation of the specimens is studied in Figure 22, Because
of the constraining effect of the cover plates, all four hinges operated at the
same angle, + 1/2°. The experiment was terminated at 78° because of
mechanical interference. Up to this angle no hardening of the system had
occurred; however, this would be expected near 900 as the beam column
flattens against loading surfaces.

The present axial loading test can be compared with the previous lateral
loading test at one point. When the hinge angle 6 is h50, the two cases have
the same bending moment at the root and differ only in the axial force. If the

axial force is small, then the loads P required to rotate the hinge should be
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.
{ F

\

45° 45°

|
//7///"7/ [ 77777777
Axial Test Lateral Test

Fig. 23.

about the same. Figure 24 shows that the loads P and F are equal at an angle
of ,6° and the difference in P and F at l;50 is only 10 1b. This furnishes a

remarkable check on the consistency of load and angle measurement.

3.7 LOAD RELAXATION DATA

A load-relaxation phenomena was found in the softening region of hinge
rotation. This was noted in both tests, but data were taken only for the axial
load case where it seemed more severc. As an increment in compressive
axial displacement was made, the load incremented to a new value. For sev-
eral minutes thereafter, however, the load would creep down to even lower
values. This relaxation occurred with no additional axial displacement
(demonstrating the rigidity of the test machine) and with zero or very slight
lateral displacements.

Figure 25 shows several observations. A straight-line relationship on
semi-log paper was found for all eight cases measured. Readings were taken
up to eight minutes after the displacement incrermnent. The data presented
represents bechavior at moderate times after the increment in axial displace-
ment was made. Very short time data were impossible to record from dial
gages and would tend to follow some other law. Long time data would surely
show the load leveling off because of fixed end displacement (the process can-

not extend indefinitely or negative loads result).
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The slopes of the lines in Figure 25 represent the rapidity of the relax-
ation. 1his siope depends on the initial load on the column at the tir - the
increment in axial displacement was made. At higher stresses, the relaxa-
tion proceeds more quickly. Figure 26 shows the dependence of the relaxa-
tion on initial load PO. For loads up to 5, 500 1b., this is of a straight-line

character. Combining results of Figures 24 and 26, one obtains an empiri=

cally derived equation

P-P, = const, -0.0172 P_ log(t-t

0 0 )

0
where PO and tO are the conditions at the start of the observation, and were
read as quickly as possible after the displacement increment. The constant
changes from case to case and its dependence on PO and to are not known,
The full significance of the load relaxation is not apparent at this time.
It occurs at a slow enough time scale to affect measurements vwhich are nor-
mally cousidered static. It is believed that the experimentalist must be aware

of this phenomena and carefully record the rates of loading when plastic hinge

formation is in progress. This will allow later interpretation of the procedure.

3.8 COMPARISON OF BEAM-COLUMN ELEMENT WITH EXPERIMENT

The computer model of the beam-column element will now be compared
with the results from the lateral and axial tests. In general, the results
demonstrate the validity of the plastic hinge concept, but suggest a number
of refinements to incorporate in a second generation simulation.

Figure 27 shows a comparison of computed results with the lateral test.
The lowest computed curve is based on a yield stress of 78,700 psi, which
was determined in the uniaxial material test. The model predicts elastic
behavior up to 381 lbs. at which timne a hinge forms. As deformation proceeds,
a gradual hardening occurs due to geometric changes in configuration. For
large deformation this hardening becomes marked.

Given the limitations of the plastic hinge concept, the agreement is rea-
sonable. There are two considerations in making the comparison. The first
is an inherent feature of plastic hinge theory; the hinge is either operative

and fully plastic or no plastic deformati-.n occurs. Thus, a plastic hinge
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cannot model elastic-plastic behavior at a cross-section. In the model, the
yield condition for hinge operation is based on initial yield. Actually, agree-
ment with the experiment is excellent. The hinge forms at the load for which
the experimental result begins to deviate {rom linearity. The increase in
load from 275 lbs. to 500 1bs. in the test is due to elastic-plastic behavior

of the cross-section. (For this section the ratio of ultimate moment to
moment at initial yield in pure bending can be calculated as 1.81 and was
measured as 1.8.)

To account for this elastic-plastic effect, an inflated yield stress may
be employed in the yield function. This is demonstrated by the second com-
puted curve which used a yield stress of 90,000 psi. This delays the forma-
tion of the hinge until an intermediate load value between actual initial yield
and full plasticity of the cross-section.

The second consideration is the marked softening of the structure after
the ultimate load is reached. This softening is not predicted by the model.
This result demonstrates the importance of local deforination of the cross-
section for real structures. In the experiment, changes in cross-section
shape were visually observable around the ultimate load. This local defor-
mation became increasingly marked as deformation proceeded. Itis clear
that if exact detail of the force-deformation curve is required over a broad
range of deformation, local deformation mwust be taken into account.

Within plastic hinge theory there is no rigorous analytical mecthod to
incorporate this effect. It is worth noting, however, that the theoretical
vield surface can be modified to give a variety of effects. This is illustrated
in Figure 28 which again shows the experimental curve and two computed
curves. The results are rather dramaltic, the model now showing a softening
effect very similar to the test. This was achieved by using a yield stress to
initiate the hinge at the ultimate load and changing by an order of magnitude
one of the parameters in the theoretical yicld function. The hardening in the
second computed result was achieved by returning this parameter to its original
value at an arbitrary point in the computation. It must be emphasized that

there is no rational basis for this procedure. Nevertheless, il is inleresting



to speculate that it might be possible to define a "failure function" which
would incorporate in an approximate way both plastic and local deformation
effects, This possibility merits further study.

The comparison for the axial test is complicated by the fact that the
current computer model is limited to slope imperfections 90 greater than
.02 radians. The experimental imperfection was , 003 radians, which is an
order of magnitude less than the simulated results. The approach used will
be to view 00 as a parameter and show families of curves.

Results for axial load vs. lateral deflection are shown in Figure 29.
In the initial elastic range the slope of the curve is theoretically inversely
proportional to the initial imperfection. This is evident in the figure. The
experimental data have not been corrected for support flexibility because
this correction is small and important only in the elastic range. Behavior
of experiment and model in the plastic range is very similar in character.
The model, of course, demonstrates a discontinuity associated with the off-
on nature of a plastic hinge, whereas the experiment has a gradual trapsition
due to elastic-plastic action of the cross-section. Nevertheless, the model
appears to adequately predict the softening character of the column in the
plastic range.

In Figure 30 the results for axial load vs. axial deflection are given.
For a perfectly straight column the elastic slope of this curve should be the
axial stiffness of the rod. This slope, however, is also affected by initial
imperfections since axial displaccment is induced by bending as well as con-
traction of the column., As the initial imperfection tends to zero, the slope
should approach the axial stiffness of 832,000 1b. /in. The experimental re-
sults in this case have been corrected to this value of 832,000 1b. /in.,
eliminating the flexibility of supports (as well as the very small imperfection)
entirely.

In other respects, Figurc 30 confirms our conclusions from the previous
figure. There is a marked resemblance between the experimental and compu-
ted nature of the softening in the force-deformation curve. Thus, we conclude

that the basic theory on which the model is based is adequate for representing

force-deforrmation curves in the large deformation plastic range.
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3.9 SUMMARY
The experiment provides useful data for comparing with the plastic
hinge model. The specimens were carefully made and tested and excellent
consistency found at one coincidental data point. Support flexibility enters
into the results in a small way, but is understood and can be completely
removed if desired. Future, more advanced theories can also be compared
with these tests.
The current computer model for the beam-column clement checks out
well against the experiment. Several areas of possible improvement have

been noted for future development,
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CHAPTER 4

QUALIFICATION STUDY

4.1 INTRODUCTION

The specific component selected for testing the three-
dimensional large deformation elastic-plastic frame model was
an automovile frame developed by CALSPAN Corporation. The
results of a Pole Barrier Static Crush Test using this frame
have been reported by CALSPAN*. This chapter contains the

following items:

1) A record of the experience and considerations which
arose in modeling the test frame. . (Sections 1 and

2). For this purpose, this entire frame was modeled.

2) DNumerical simulation of the crush test (Section 3).
Because of the nature of the crush test and for com-
putational economy, a reduced version of the frame

model was used.

3) Comparison of the simulated force-deflection curve
with the experimental force-deflection curve (Section
4).

4.2 SELECTION OF MODEL FRAME LAYOUT

Details regarding the automobile frame were pro§ided by
the Contlract Technical Manager in the form of blueprints,
clearer copies of the photographs of the crush test than which
appeared in the above-mentioned CALSPAN report, and scme infor-

mation about material properties of the automobile frame members,

Figure 31 shows a reduced copy of one set of blueprints
of the portion of the frame forward of the rear torque box.

A second set of blueprints was provided which containcd

¥ Production Feasibility-Crashworthiness Structure,
Full Size Cars (Phase 1), Seventh Progress Report
Contract NO. DOT-HS-053-2-487
Project No. ZM-5177-V
CALSPAN Corporation
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Figure 31

Reduced copy of blueprints of frame tested by CALSPAN.
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more details regarding dimensions, cross-sectional properties

and material properties.

Figure la of veference (*) shows how the frame was sup-
ported during the static crush test. A cross beam was welded
to the test frame on its side rail just forward of the rear
torque box. The cross beam, which is rigidly attached to the
loading frame, prevented motion of the frame at its points of
attachment. Consequently, the portion of the frame behind
this support was never loaded and plays no part in the model-
ing discussed here. Constraints which could be removed during
the test were also attached to the frame at the front wheel
supports. Figure32of this discussion shows the location of
these constraints on the blueprints and also the point at which

load was applied to the test frame by the pole barrier.

The side view of the test frame in Figure 31 shows a
channel section which is separated from the first cross member.
In the test frame, this separation is provided by a piece of
crushable foam. The apparent purpcse of this foam-channel
section assembly is to model the response of a shock absorb-
ing bumper in low speed impacts. This assembly is ignored in

the modeling of the test frame.

Selection of the nodal points was based on an under-
standing of the deformation mechanism of the test frame by a
detailed study of its initial configuration and photographs
of the crush test. Nodal points were selected for one or more
of the following reasons:

1) A nodal point should be placed at the intersection

of several frame members.

2) Nodal points are placed at a support or loading

constraints, or point of frame symmetry.

3) Nodes were placed at points where intuition and
evidence provided by photographs suggests hinges
form.
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4) Certain portions of the test frame have a compli-
cated shape which could only be approximated by
an equivalent beam structure. Nodal points were

selected with the approximation in mind.

The frame model consists of 26 nodes and 34 beams. Figure 33
shows the location of the nodes and their numbers. Figure 34
contains an isometric view showing the nodes and beams of the
idealized frame. Unless specified differently in the follow-
ing discussion, all nodes are located on beam centerlines.

The reasons for selecting each node is as follows:

Node Number Bases For Selection

1 This is placed where the axis of symmetry

intersects the first cross member.

2, 3 These are placed where the first cross mem-
ber is connected to frame members. The first
cross member is tapered, being 6" deep at the
centerline and 4" deep at the outside rail.
Nodes were placed on the inside slanted edge
because it was felt that the response of the
front structure of the frame would be sensi-
tive to variations in the relative orientation

of frame members.

4 Photographs indicate the formation of a plas-—

tic hinge at the bend in the frame membher.

5 The member begins to curve at this point.
Photographs indicate a hinge develops at this
location.

6 The frame member changes direction. Photographs
indicate the formaticn of a hinge at this

location.

7 Two frame members intersect at this location.
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Node Number

8
9

10,11,12,13

14

15,16,17

18,19
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Bases For Selection

Three frame members interscect at this location.

This is placed where the axis of symmetry in-
tersects the second cross member.

This part of the frame is a large metal dome
with openings in the bottom. Its purpose ap-
pears to be to support the front suspeansion
system. It has no obvious idealization as an
assembly of beam elements. Node 10 is placed
at its apparent center as indicated by the blue-
prints. This defines a beam connecting nodes
6 and 10 on the outside part of the frame.
Nodes 11 and 13 indicate where beam-like frame
members are attached to the wheel support.
Photographs suggest that this wheel support
behaves as if it were composcd of triangular
segments 10-11-12 and 10-12-13 sharing a base
connecting nodes 10 and 12. During the crush
test, these segments rotate about the axis
connecting nodes 10-12 sothat nodes 10 and 13
approach each other. ©Node 12 is on the line

connecting nodes 11 and 13.

This node represents the point of support of
the front part of the frame during the first
part of the crush test. It is placed on the
line connecting nodes 10 and 13 at the same

height as the center line of the first cross

member.

Photographs indicate the large portion of the
frame is almost rigid and that hinges form at
location 15 and 17. Node 16 is placed where

the short cross member is attached.

Frame members intersect at these locations.
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Node Number Bases for Sclection

20,21,22

23,24

25

26

The photographs indicate that hinges form at
the extremities of the faired region, where
nodes 20 and 21 are located. This region
appeared to rotate rigidly which suggested
placing node 22 on the cross member at the

end of the faired region.

The cross member changes dirvectious at these
points.
The axis of symmetry intersects the cross mem-

ber at this location.

This node was placed at the point of support
on this rear part of the frame.

4.3 PREPARATION OF INPUT DATA

a.

Coordinate System

The origin is located directly below node 1 on the
line designated on the blueprints as '"Level Floor
Area." The orientation of the coordinate system can

be seen in Figure 33.

Nodal Coordinates

The nodal coordinates were measured directly from
the blueprints using a scale of 1/4" ecquals 1". The

coordinates are given in Table I.

Beam Numbering
O

The beam numbers are shown encircled in the isometric
view of the idealized frame in Figure 34. The members
of the test frame all have rectangular tubular cross
sections. Only the yield function and gradient for

this cross section arises in this model.

Thus for each pair of node nuwmbers I and J, J>I, the
beam identification matrix IELM(IJ) has either the
value 0 if no beam connects these nodes, or 1 if a
beam does connect the nodes. Table II shows the

elements of this matrix.



NODE #

10

11

12

13

14

X

11

23

23

13.25

18.25

11.75

18.0

12.625

12

11.25

16.5

-0.75

-1.75

1.15

4,75

14.5

7.25

11.0

11.0

29.00

26.5

29.00

32.25

29.75
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TABLE I

NODAL COORDINATES

3

16.75

16.75

16.75

15.75

16.50

14,0

12.25

12.25

18.125

18.75

16.125

12

16.75

NODE #

15

16

17

18

19

20

21

22

23

24

25

26

18.5

17.5

27.875

11.25

11.25

27.875

27.875

21.75

27.875

47

51.75

53.625

51.75

75.00

79.50

90.25

82.00

72.75

72.75

72.75

123.25

10.625

10.25

10.625

9.00

9.00

9.00

2.00

9.00

16.00

16.00

9.00
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II

TABLE

BEAM~NODE RELATION MATRIX IELM(I,J)

LR & NUP/IP

.

I+1,
I+6 to J = NUMP are zero.

J

.. ,NUMP"l;

I=1,.
All entries for J =

I+5

I+4

I+3

I+2

I+l

<3t

10

11
12

13
14

15

16

17

18

19

20

21

22

23
24

25
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Direction Cosines of Beam Coordinate TFrames

For each beam, the i and j ends coincide with the
lower and higher nodal members, respectively. At

t=0 the bean frames at the i1 and j ends are parallel.
Hence, it is only necessary to specify the beam frame
at the i end. The beam frame Xq axis lies along the
length of the beam directed from the lower to the
higher node number. The heam frwnexl and % axes

lie along the principal directions of the cross
section. Since all beams have rectangular tubular
cross sections, the beam ﬁ%mmexl and X, #Xes are easy

to identify.

From the nodal coordinates, the beam length and the
unit vector directed from the lower to the higher
nodes number were computed. The components of the
unit vector represent the direction cosines of the
beanlfrmnexg axis with respect to the global system.
In order to determine the remaining direction cosines,

the beams were placed into three categories:

1. the beam frame axes are parallel to the global
axes. In this case, direction cosines are deter-

mined by observation.

2. The beam frame Xg axis lies in one of the coor-
dinate planes. 1In this case, the beam frame axes
are obtained by a rotation about one of the global
axes. All of the direction cosines are known from
the components of the unit vector along the beam
frame Xq axis. For example, for beam 1 this unit
vector has component (0.99773, -0.06803, 0). The
local axes are orienfed with respect to the global
axes as shown in Figure 35a. The direction cosine
matrix for beam 1 is

0 0 11
-.06803 -.99773 0

. 99773 -.06803 0O
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for beam 1 with respect to global axes
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. . - b
b. Orientation of beam frame axes (X, ,X
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3. The beam frame Xq axis has a general orientation
with respect to the global coordinates. Because
of the test frame layout and the fact that the
frame members all have rectangular tubular cross-
sections, one principal direction of the cross-
section always lies in the global Xq=Xg plane.

This was selected on the beam frame X, axis. The

2
beam frame Xy exis then lies in the plane Tormed
by the global and beam frane x, axis. (See Figure

3
35b.)

The components of the unit vector in the beam frame
give the desired direction cosines. Letting the com-

ponents of the unit vector along the x axes

17 *20 %3
110 F120 ¥13)0 (gp¥pp,0) (x
they satisfy the following system of

be, respectively (x 31
oL,

X390 *33)
equations where (XSI’ Xo0s x33) are considered given:

X91 X371 T Xgg X39 =0
Xo1 X971 T ¥gg ¥ =0
X11 %31t Xyg ¥gp T X3 X35 =0
2 5 2
X117 t X t Xy 1
2 2
Xgp t Xggo =1
The solution of this system is
X, = 732 . = 31
21 53 I/2, oo 5 ECRTE
{(x31) + (A32) } {(XSl) + (x32)}
o - oM 1
’ «
117 gz M2 T /e Y T LEIT
X
A = 33 —_—

X291 %397 *31 *a22

These equations are easily programmed and the results

are givea in Table III.
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10
11
12
13
14
15
16
17
18

19

20
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TABLE III

DIRECTION COSINES OF BEAM FRAMES
WITH RESPECT TO THE GLOBAL FRAME

DCIK
i F F F F F F F F
181 51 % & 83 £ 5 £ -2 & .83 &3 -8 83 -8y &3 -E3
0 0 1 |-.06803 [-.29773 | 0 .99773{-.06803 | 0
0 0 1 |-.08306 |-.99668 | 0 |+.99668|-.08306| 0
.10697| .26147|.95927 | .92555 {-.37864 | 0 |+.36320| .88781 |-.28249
-1 0 0 0 .32605 |.94555 0 .94555 |-, 32605
.01772} -.04980|.99860 | .94214 |.33522 | 0 |-.33477| .94087| .05286
~.16680( .27814|.94595 | .85761 |.51429 | 0 |-.4867 | .81116 |-.32446
~.16488| -.18391|.96902 |-.74457 | .66754 | 0 |-.64657|-.72118 |-.24864
.00192| -.11133}.99378 | .99985 |.01724 | 0 |-.01713| .99363| .11135
~,20019] .12012|.97236 | .51450 |.85749 | 0 [-.83378| .50027 |-.23346
0 0 1 0 1 0 -1 0 0
~.14871| -.32352|.93446 | .90866 [-.41766 | 0 .39030| .84908 | .35607
.09507| .04422(.99449 | .42173 |.90672 | 0 .90169{~.41939 | .10485
-.316 0 ].949 0 1 0 |-.949 0 |-.316
-.56709| .28355{.77331 | .44721 |.89443 | 0 |-.69156| .34578 |-.63393
.01022) .36778(.92986 | .99961 |.02777 | 0 |.02582 | .92951 |-,36793
~.17300| .69201|.70085 | .97014 |.24254 | 0 F.16943 | .67972 |-.71370
-.17486| .75769|.62876 | .97439 |.22487 | 0 }.14138 | .61263 |-.77757
-.134 | -.022 |.991 166 +.996 0 |.977 .163 | .136
-.57118| .27199(.77445 |-.42994 }.90286 | 0 |.69925 |-.33298 | .63266
-1 0 0 0 07034 |.99754f 0 .99754 |-.07034




-.01587
.05382

.03498

.07537
.03824

.00632

.99703
.99782

.99937

e 61784
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TABLE III, continued

. 97855
.57914
.17784

0

0

0
.55472
-.51452

0
.37787
-.80292

0

0

.20601
. 81523
-, 98406
1
.04825
06972
-.83208

.85753

.92579

.59611

.99884

.99755

-.20538
.81059
.98351

~1

0

0
.83208
~-.85753

0

-.92579

—-.59611

0

—-.61784

-1

. 97556
.57589
17774
0
.99884
.99755

.55472

+.51452

1

.37787

17.80292

~-,07702
-.06519
-.03555
0
-.04825

-.06972

.78634
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Beam Sectional Properties

The sectional properties which must be provided are
the base, height, wall thickness, area, second
moments of inertia, and polar moment of inertia of
each rectangular tubular cross-section. The base,
height and wall thickness could be read directly off
the second set of blueprints. Sectional properties
were computed using the following expressions for

this walled cross-—section:

1., = (6b + 2n)h%t/12
2
Ip, = (6h + 2b)b%t/12
A = (2b + 2n)t
;. 2v%n’t
b+ h

The relation between the principal axes of the cross-
section and b and h is shown in Figure 36. In prepar-
ing this input data, it was necessary to orient the
principal axes before labeling one of the cross-section
dimensions as the base. Table IV shows the complete

set of sectional properties.

Many of the test frame members have well defined cross-
sections which do not vary along their length. In
accordance with the beam numbering in Figure 34 these
are beams 3, 4, 6, 9, 10, 11, 20, 24, 25, 26, 27, 28,
32, 33, 34. Beams 1 and 2 form the first cross member.
Since this member is tapered in the test frame, the
reported depth of the cross section is the mean be-
tween the end values. The same is true for beams 5
and 7. One end of beam 8 starts from the dome shaped
wheel support, while the other half has a length of
uniform cross-section section. Sectional properties

were chosen for this uniform portiomn.
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F
J\X2

Ill = gecond area moment about XlF axis

F .
second area moment about X2 axis

Figure 36, Definition of area second moments

with respect to beam frame axes XlF and XZF.



BEAM

10
11
12

13

12.D6

12.D6

12.D6

12.D6
12.D6
12.D6
12.D6
12.D6
12.D6
12.D6
12.D6

12.D6

12.D6
12.D6

12.D6

AJ ATl
10.519 9.294
7.936 5.927
4,937 2.700
6.400 4,267
7.624 4.667
4.937 2.700
4,13606 | 2.567
8.889 5.067
4.937 2.700
4,937 2.700
4,937 2.700
4.4 2.2
10.0 10.0
10.0 10.0
7.2000} 3.1500
4.4 2.2
1.0 .52
10.0 10.0
1.0 .52

MATERIAL

AIZ2

5.567
4.767
4.160
4.267
5.569
4.160
2.975
7.083

4,160

10.0
10.0
9.000
2.2
.52
10.0

.52

TABLE IV

AND SECTIONAL PROPERTIES

1.8000

5.0

AL

11.025
12.04
6.195
3.067
14,189
3.082
10.053
14.593
7.496
5.5
18.255
5.961
6.325
2.169
19.365
3.678
5.305
4.605

7.508

T Y1l Y2 CF YF
.111.0 1.0 (1.0 5.D4
.111.0 1.0 (1.0 5.D4
.120 | 1.0 1.0 (1.0 3.5D4
.1 {1.0 1.0 (1.0 3.5D4
0.1 ]1.0 1.0 1.0 3.5D4
0.12 } 1.0 1.0 ;1.0 3.5D4
.075 { 1.0 1.0 1.0 3.5D4
0.1}]1.0 1.0 1.0 3.5D4
.120 { 1.0 1.0 (1.0 3.5D4
.120 t 1.0 1.0 1.0 3.5D4
.120 } 1.0 1.0 (1.0 3.5D4
1.0 1.0 1.0 (1.0 3.5D4
1.0 (1.0 1.0 1.0 5.D4
1.0} 1.0 1.0 (1.0 5.D4
0.1 l.b 1.0 1.0 3.6D4
1.0 (1.0 1.0 (1.0 3.5D4
1.0} 1.0 1.0 1.0 3.5D4
1.0 1 1.0 1.0 (1.0 5.D4
1.0 1.0 1.0 t1.0 3.5D4

-18-
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The properties of the bars forming a structure to
approximate the behavior of the wheel support were
chosen in accordance with the discussion in Section 4.2,
Beams 13-14-18 form a rigid backbone about which the
triangles formed by nodes 10-11-12 (beams 12-16-13)

and nodes 10-12-13 (beams 17-18-19) could fold.

Bars 14 and 18 were made rigid so as to hold fixed

node 14, where strong external constraint is applied.
Beams 12 and 16 were designed to have high axial stiff-
ness but lower bending resistance as compared to

beam 11. These beams were given equal second area
moments whose value is 0.8 that of beam 11. Similar
comments apply to beams 17 and 19, whose second area
moments were .8 that of beam 20.

Beams 21, 22, 23 and 29, 30, 31 model segments of the
test frame which appeared to be quite rigid. Their
sectional properties were accordingly chosen quite
large. V

Material Properties

Except for beams 13, 14 and 18 all bars were assigned
the same tensile and shear moduli. Bars 13, 14 and 18
were given larger moduli in order to increase their
stiffness. The first cross member was specified as
Hot Rolled 4130 which has a yield stress of at least
50,000 psi. Beams 3 through 12, 15, 16, 17, 19, 20,
28-28, and 32-34 are made of SAE 1020 steel with a
yield stress of at least 35,000 psi. The actual yield
stress specified in the input data was higher for two
reasons: (a) the yield stress was reported to vary in
magnitude throughout the test frame (b) the ratio of
the fully plastic moment to the maximum elastic

moment is about 1.7. As indicated in Figure 37,

higher yield stress results in a more reasonable
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Bending

Moment

v

CURVATURE

Me . . . elastic limit moment

MP « o« o fully plastic moment

Mo . . . moment in elastic-perfectly
plastic idealization

Figure 37. Moment curvature relation for a rectangular
cross-section, showing elastic-perfectly

plastic idealization.
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elastic-plastic moment-curvature relation. Beams 13,
14, 18, 21, 22, 23 and 29, 30, 31 were given higher
yield stresses in accordance with their special
functions. The material properties are listed in
Table 1V.

4.4 FORCE AND DISPLACEMENT CONDITIONS

In order to carry out the numerical simulation of the crush
test, a number of reasons led to the decision to use a reduced
frame. In the first part of the crush test, the frame was con-
strained at node 14 as well as node 26. Engineering intuition
suggests that the rear part of the frame carries relatively little
load because of the constraint at node 14. Also, because of the
size of the problem and the number of matrix assembly and plastic
hinge test and decision operations, it was felt that computer
runs would be fairly expensive. Consequently, it was decided
that only the first part of the crush test would be modeled using
the portion of the frame model consisting of the first 15 nodes

and 19 beams.

The following increments in nodal displacement Aui, nodal

rotation Aei and nodal force AFi and nodal moment AMi were

prescribed.
Node 1 Aul = Au3 =0, Au2 = A, to be prescribed
M = = =
AAl 0, A82 ABB 0
Node 9 Au1 =0 AF1 = AF2 =0
AM1 =0 A82 = AGS =0
Node 14 Aul = Au2 = Au3 =0
Ael = A62 = A63 =0
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4,5 DISCUSSION OF COMPUTED RESULTS

A simulated force deflection curve was computed

using the following displacement increments:

for X =1,2,3, Au2 = 0.002
K =14,5,6,7 Au2 = 0.004
K = 8,9,10,11 Au2 = 0.006
K =12,13,14,15 Au2 = 0.008
K > 16 Au2 = 0,01

For these computations KMAX = 66. The above increments

were non-dimensionalized by reference length ALR = 10.0.

During the computation, all beams were assumed to undergo

continuous loading.

Figure 38 shows the force deflection curve for a crush
of 4.64 inches. The curve consists of an initial loading range
up to 2.634 inches, where a maximum load of 32,453 pounds was

reached, followed by a general softening range.

Within the loading range, all the plastic hingés except
one formed within the first 1.334 inches of crush. In this
region of formation of plastic hinges, the force-deflection
curve oscillates about a general loading trend. For deflections
greater than 1.334 inches, when hinges have stopped forming,
the curve shows a much smoother monotonic increase. The
oscillatory behavior may be due to numerical inaccuracy due to
the large step size, or it may be due to temporary softening
caused by the formation of various plastic hinges. That
softening does occur in certain structures undergoing large
deformation elastic-plastic behavior was discussed in the 11lth
monthly report. 1In the absence of a detailed numerical error
analysis, it is not clear how much of the oscillation of the
curve can be attributed to numerical and how much to physical
explanation. However, since the force-deflection curve is much
smoother when no hinges form, it is reasonable to assume that

some of the oscillation is due to softening caused by hinge
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38 Force Vs. Deflection of Node 1
Along X2 Direction
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formation. This explanation is further supported by the experi-
mental results quoted in the 1lth monthly report, which showed
a hardening and softening oscillation which arose because

plastic hinges did not occur simultaneously.

In support of this latter conclusion, note that during
the first oscillation, from a deflection of 0.0322 inches to
0.264 inches, beam 6 has formed hinges at both ends, that is, at
nodes 5 and 7. The location of this beam in the forestructure,
as seen in Figure 39,suggests that its weakening could lead to
some softening. The second oscillation, from .804 inches to
.844 inches, corresponds to formation of hinges in beams 4 and
5 at node 4, and beam 1 at node 1. Again as seen in Figure 39,
this suggests local weakening. The last dip, from 1.202 inches
to 1.334 inches, corresponds to hinges forming in beam 3 at

node 5 and beams 2 and 3 at node 2.

In the softening range, following the peak value at
2,634 inches, the only hinge to form occurs at 3.139 inches
when the force is 30,995 lbs. The force drops to 23,940 lbs.
and then stays reasonably constant until it rises quickly and
drops to 23,704 lbs., This last peak is probably due more to
accumulated numerical error associated with large increment

size than any stiffening of the structure.

Figure 39 shows the distribution of plastic hinges after
4,64 inches of crush. Only the forward part of the structure,

which was involved in the computation, is shown.

Figure 40 shows the computed force-deflection curve
plotted on the same scale as the pole barrier static crush
test data presented in the CALSPAN report. Photos of their
test show the front bumper covered with foam and a channel
section, which was not included in the model. Because of
uncertainty as to how much force was required to crush the foam
and channel, it was not clear how to choose the origin for
plotting data. Projecting back on the steep part of the curve

suggested choosing 2.5 inches as the origin.
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The computed results agree reasonably well with the
experimental results. There is a rapid rise in force, a
peak value of force and subsequent softening. The slope of
the initial rise is comparable with that of the test data.
The peak values have comparable magnitude (87,000 lbs. vs
64,906), and occur at about the same deflection. The
softening range in the computed results has about the same
slope as in the test results, except for the oscillation,

whose cause, as discussed above, is uncertain.
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APPENDIX A

USERS GUIDE

A.l INPUT INFFORMATION

The following discussion on the preparation of input

data is divided into several subsections:

. Discussion of Preparation of Input Data
. List of Program Input Variables
. Layout and Format of Input Data

. An Example of Input Data

Mmoo Q W »

. Layout and Sample of Output

The discussion in section A defines many of the input
variables which are listed in section B. The order of data
discussed follows that in the table of input card contents

in section C.
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Preparation of Input Data

Node Numbering (See Figure 43)).

After selecting node #1, the nearest node is assigned
#2. The number of a node increases with its distance from
node #1, as shown in Figure 43. The total number of nodes

(mass points) is denoted by NUMP,

Beam Numbering

Consider nodes I and J, where J = I+1, ..., NUMP. If
a beam connects I and J, it is assigned the next beam
number in sequence. If no beam connects nodes I and J, no
beam number is assigned. In Figure 43 , the beam numbers
are circled. The total number of beams is denoted by NUB.

Basic Input Parameters

The first data card lists the number of nodes or mass
points NUMP, the number of beams NUB, the number of time
steps KMAX, print out switch control IPS and dissipation
switch control IDS. These switch controls are defined in

section B.

Specifying the Type of Beam Cross-Section

The type of beam cross-section is specified by assigning
to each pair of nodes I and J an integer, denoted by IELM(I,J),
as follows:

IELM(I,J) =0 If no beam connects nodes I and J
=1 If the beam connecting nodes I
and J has cross-section type 1
= 2 If the beam connecting nodes I
and J has cross-section type 2
etc.

The program, as currently written, allows for up to four
different kinds of cross-sections. For each type of cross-

section there are subroutines for calculating the corresponding
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yield function and the gradient of the yield function.
At present, subroutines have been written only for
rectangular tubular (type 1) and open channel (type 2)

cross-sections.

Reference Values

The next card specifies the reference beam length ALR,
reference beam depth DR, reference elastic modulus ER,
reference second area moment AIR and allowable error for
logic test EPS.

Beam Sectional and Material Properties

For each beam, the following material properties are
to be specified: elastic tensile modulus E, elastic shear

modulus G, yield stress YF.

In addition to the beam length AL, the required cross-
sectional properties are: base B, height H, wall thickness T,
area A, principal second area moments AIl and AI2, area
polar moment AJ, distance from base of cross-section to
centroid Y1, distance from centroid to top of cross-
section Y2, and stress concentration factor at base of

fillet in closed tubular section CF.

The input data assumes that the beam has either a
rectangular or open channel section. The definition of the
B, H, AIl and AI2 with respect to the principal axes of
these cross-sections is shown in Figure 41 . 1In part C,

this data is designated set A.

Direction Cosines

The direction cosines with respect to a global reference
system of a coordinate frame attached to a beam in its
original orientation must be specified. The X3 axis of the
attached frame is directed along the beam from the end with
the lowest number node to the end with the highest number
node. The X, and X, axes of the attached frame coincide

1 2
with the principal axes of the beam cross-section (shown in
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Figure 41. Relation of beam framec axes to cross-

sectional dimensions for rectangular

tubular and open channel cross-sections
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i end

Figure 42, Beam frame axes related to cross-section

principal directions
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Figure 42 so as to form a right handed coordinate system.

The direction cosines are denoted by DCIK(LB,I,J) which
gives the angle between the I axis of the local attached
coordinate frame and the J axis of the global frame for

beam number LB.
In part C, this set of data is designated set B.

Initial Coordinates of Nodes

The initial coordinates and angles of the mass frames,
which are attached to the nodes, with respect to the global
reference system must be specified. These are denoted by
DISK(LMP,I), where LMP is the mass point number.

DISK(LMP,I) = XI , I =1,2,3
= 0 = 5
1 I 4,5,6
where ©_ is the initial angle of the local frame axes with

I
respect to the global frame axes.

In part C, this set of data is designated set C.

Nodal Displacement and Force Increments

The increments in the generalized displacements of the
nodes form the components of the vector denoted by DU(I),
I1=1,..., 6*xNUMP. The LMPth group of six components
correspond to mass point LMP. In each group of six, the
first three components represent the components of the
displacement increment vector of mass point LMP. The second
three components represent the components of the rotation

increment vector of mass point LMP.

The increments in the generalized forces of the nodes
form the components of the vector denoted by DR(I),I = 1,...
6*NUMP. The LMPth group of six components correspond to
mass point LMP. In each group of six, the first three
components represent the components of the force increment
vector of mass point LMP. The second three components
represent the components of the moment increment vector of

mass point LMP.
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At each mass point, either a displacement increment
component or the corresponding force increment component
is known. Also, ecither a rotation increment component or
a moment increment component is known. However, input data
requires a value for each displacement and rotation incre-
ment. If a displacement or rotation increment is unknown,
its value is specified as 100. If a force or moment

increment is unknown, its value can be specified arbitrarily.

Rotation increments are specified in radians, displace-
ment increments are non-dimensionalized by the reference
length ALR, forces are non-dimensionalized by the expression
(ER)(AIR)/(ALR)2 and moments are non-dimensionalized by
the expression (ER)(AIR)/ALR.

Nodal force and displacement increments are not
specified by preparing input data cards as is the above
data. Because of the large number of increments and
nodal conditions, it is usually easier and more efficient
to specify these by means of an increment program. A
different program is necessary for each problem and set
of increment conditions. A sample increment program is

presented in Section D.
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LIST OF PROGRAM INPUT VARIABLES

2 beam area

AIR ... .. reference moment of inertia

ALR ............ reference beam length

Al ... .. beam polar moment of inertia

3 beam moment of inertia about 1lst principal axis
AI2 ... ......... beam moment of inertia about 2nd principal axis
AL ............. beam length

B ....oooiit beam cross-section width dimension

CF ............. beam cross-section torsional stress concentra-

tion factor

DCI1K(LB,I,J) ... direction cosine matrix for the initial configu-

ration of beam member LB

(LB =1,...,NUB; I =1,2,3; J=1,2,3)



DISK(LMP,I)

DISK(LMP,I)

DISK(LMP,I)

°
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Initial coordinates of mass point LMP

Il

XI’ I1=1,2,3

6., I =4,5,6

it

..initial angle of mass frame axes with

global frame axes

(LMP = 1,...,NUMP:I = 1,..,6)

-------------

------------

.............

ooooooooooooo

reference beam depth

nodal generalized force increment vector (I =1,...

6*NUMP) The LMPth group of six components
correspond to mass point LMP. 1In each group of
six, the first three components are those of
the force increment vector of mass point LMP.
The second three components are those of the

moment increment vector of mass point LMP.

Nodal generalized displacement increment

vector (I = 1,...,6*¥NUMP). The LMPth group

of six components correspond to mass point LMP.
In each group of six, the first three components
are those of the displacement increment vector
of mass point LMP. The second three components
are those of the rotation increment vector

of mass point LMP.

beam material elastic modulus
allowable error for logic test
reference elastic modulus
beam material shear modulus

beam cross-section height dimension
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IDS sevevenennns dissipation switch control

IDS = 0 no unloading at a negative
dissipation increment

IDS = 1 if the dissipation increment is
negative, the progranm allows
unloading

IETM(I,J)eeen.nn type of beam relation between node I and node J
(I =1,...,NUMP-1; J = I+1,...,NUP)
IELM(I,J) = 0 if no beam connects I & J

Il

L if beam connocting I & J has
cross~section type L

) 2 .print out switch control

IPS = 0 standard print out
1 print out yield function at each beam end

2 full optional output
KMAX ............maximum number of time steps
NUB .vveveeeee.. number of beams
NUMP ........... number of mass points
T vvevseeescsss. beam wall thickness

¥l ..vvveeeeeeos.. distance from bottom of beam cross-section
to centroid

Y2 ...... eeesee. distance from top of beam cross-section to
centroid

YF ievenesesss. yield stress for beam material
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LAYOUT AND FORMAT OF INDPUT CARD CONTENTS

C.
CARD # Col. 1-4 | Col. 58 | Col. 9-12 {Col.13-16|Co0i.17-20
1 NUMP NUB KMAX IPS IDS
CARD # Col. 1-2 | Col. 3-4 | Col. 56 Co1.79-80
2 IELM(1,2)] IELM(1,3) IELM(1,NUMP)
5 IELM(2,3) IELM(2,
NUMP-1)
1
NUMP  [ELM(NUMP-1,
NUMP)
THE ABOVE INPUT DATA ARE N I FORMAT
THE FOLLOWING INPUT DATA ARE IN D FORMAT
Col. | Col. | Col. | Col. Col. | Col. Col. | Col.
1-8 0-16 | 17-24 | 25-32 | 33-40 | 41-48 | 49-56 | 57-64
NUMP+1| ALR | DR ER | AIR EPS
NUMP+2 E G AJ | A1 AI2 A AL B
SET A
NUMP+3 H T Y1 Y2 CF | YF
TOTAL
1]
' 2xNUB
]
CARDS
NUMP+ }
2 NUB E G AJ | AIl AI2 A AL B
NUMP+1
+9%NUB H T Y1 Y2 CF | YF
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D. EXAMPLE OF INPUT DATA

A simple example has been selected to illustrate the prepara-

tion of input data.

The initial configuration of a structure is defined as shown

in Figure 43.

> X

Figure 43, TFour bar example frame

The structure is planar and consists of four node points,
numbered as shown, connected by four beams, whose numbers are
encircled. Node point 4 is fixed for all time. The prescribed

conditions at node point 1 are:

a. displacement increments in the X, direction are known

b. there is no external force in the X, and X, directions

1 3

c. there is no external moment
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At nodes 2 and 3 there are no external forces or moments. At

node 4, the mass point is fixed.

All four beams have the same dimensions. These are: 2"
square cross-section tube with wall thickness of 0.25 inches,
lengths are 12 inches. Beams 1 and 2 have the same material,

with properties

E

30x10%psi

6

G = 12X10°psi

YF = 60,000psi

Beams 3 and 4 have the same material, with properties

20x10°%psi

12x10%psi

E

1l

G

YF = 45,000psi

The input data is given in the order shown in section C.

The displacement increments have been non-dimensionalized
using reference length. ALR = 12 inches. The increment progran

for this example is given at the end of the input data.
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NUMP=4 NUB=4 RKMAX=20

il

IELM(1,2)=1 TELM(1,3)=1 IELM(1,4)=0

TELM(2,3)=0  IELM(2,4)=1

IELM(3,4)=1

6

ALR=12 DR=1 ER=30X10 AIR=1 EPS=.005
m=30x10° G=12x10° AJ=1 ATl=1 AI2=1 A=1 AL=12 B=2 é BEAM
H=2 T=0.25 vl=1 v2=1 CF=1  YF=60,000 1
E=30x10°  G=12x10° AJ=1 AIl=1 AI2=1 A=l AL=12 B=2 % BEAM
H=2 T=0.25 y1=1 y2=1 CF=1  YF=60,000 2
E=20x10° @=12x10° AJ=1 ATi=1 AI2=1 A=1 AL=12 =2 i BEAM
H=2 T=0. 25 y1=1 vy2=1 Cr=1  YF=45,000 3
r=20x10°  G=12x10° AJ=1 ATl=1 AT2=1 A=1 AL=12 B=2 € BEAM
H=2 T=0.25 yI=1 y2=1 CF=1  YF=45,000 4
0 0 1 0 0 Bl
DCIK(1,I,3)=| .707107 .707107 0 DCIK(2,I,3)= |.707107 -.707107 0
~.707107 .707107 0 .707107 707107 O
0 0 1 0 0 1
DC1K(3,TI,J)=| 707107 -.707107 0 DCIK(4,1,3)= | .707107 .707107 0
.707107 .707107 0 -.707107 .707107 0|
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DISK(1l,I)=[0,0,0,0,0,0]
DISK(2,I)=[-4.242642, 4.242642, 0,0,0,0]
DISK(3,I)=[4.242642, 4.242642, 0,0,0,0]

DISK(4,1)=[0,8.485284,0,0,0,0]

DU(1)=0 DU(2)=.002 DU (3)

0 DU{4)=100 pu({5)=.01 DU{6)=100

DR(1)=0 DR(2)=0 DR(3)

1l
[en]

DR(4)=0 DR(5)=0 DR(6)

11
o

DU(7)=100 DU (8)=100 DU(9)=100 DU(10)=100 DU(11)=100 DU(12)=100

DR(7)=0 DR(8)=0 DR(9)

it
<

DR(10)=0 DR(11)=0 DR(12)=0

DU(13)=100 DU(14)=100 DU(15)=100 DU(16)=100 DU(17)=100 DU(18)=100

DR(13)=0 DR(14)=0 DR(15)=0 DR(16)=0 DR(17)=0 DR(18)=0
DU(19)=0 DU(20)=0 DU(21)=0 DU(22)=0 DU(23)=0 DU(24)=0
DR(19)=0 DR(20)=0 DR(21)=0 DR(22)=0 DR(23)=0 DR(24)=0

DU(I), DU(J) ARE THE SAME FOR EACH TIME STEP.
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E. LAYOUT AND SAMPLE OI" OUTPUT

The program output consists of a standard output and two
optional outputs, The standard output lists forces, moments
and displacements for beams and masses with respect to the
global reference system. The first optional output lists the
yield function values at the beam ends. The second optional
output also lists the forces and moments at the beam ends

relative to the local beam refercnce frames,

The choice of output is selected at input by the print out

switch control:

standard print out

0
1 standard print out plus yield
function values at beam ends

2  standard print out, yield
function values and local
forces and moments

Samples of these outputs are shown at the end of the

following discussion.

Standard Output

The first line gives the step number K and the minimum

value SCFA of all loading scale factors in this step.

The output consists of two subsets, the first providing
information about the masses and the second providing informa-
tion about the beams. 1In the first line of the first output
subset, labelled FORCE, columns 1-3 contain global force

17 For F3 and columns 4-6 contain global moment
1! MZ’ M3. In the second line, labelled COORD,
columns 1-3 give the new coordinates and columns 4-6 give

components F

components M

the accumulated rotation.

In the second set of output, columns 1-3 give the global

force components F F, .and columns 4-6 give the global

17 Far B3
moment components Ml' My, Mg of the beam at the mass number
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stated on that line. Each line also contains the switch
setting SW, the loading scale factor SCFP and the accumulated

dissipation.

First Optional Output (IPS = 1)

Lines are labelled YF I J. The first number gives the
yield function value at the mass I end of the beam connecting
masses I and J and the second number gives the yisld function

value at the mass J end.

Second Optional Output (IPS = 2)

The explanation for lines labelled YF I J was given above.
In lines labelled LF @ IJ, the first six columns correspond to
the local beam frame at end I and the second six columns
correspond to the local beam frame at end J. The first three
columns of each set of six give the local force and the

second three columns give the local moment,
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A2 PROGRAM INFORMATION

The discussion concerning the program is divided into

several subsections
A. List of Major Program Variables
B. List of Subroutines and Switches
C. Flow Diagrams
(1) Main Flow Diagram

(1i) Assembling Global Stiffness Matrix

(iii) Solving for Unknown Nodal Force and
Displacement Components




A.

List of Major Program Variables

All equation numbers refer to Chapter 2, Analysis

Program
Listing Analysis
Notation Notation
AJF(I,J) J
Fy
DC1K (LB, I,J) L,
By
DC1KP1 (LB, I,J) L1
F.
DC2K (LB, I,J) Lk3
F.
DC2KP1(LB,I,J) Lkil
DDK (LB, T) Aék
DISK (I) x17
8
S k
DISKPL (I) 'ig‘
eiJ k+1
DISSK(LB,I) Ay

Description

matrix in equation (42)
1=1,2,3; J=1,2,3

direction cosine matrix at end 1(i)
of beam LB at end of step K.
IB = i;.,NUB; I =1,2,3; J =1,2,3

direction cosine matrix at end 1
of beam LB at end of step K+l.
mB=1,...,NUB; I =1,2,3; J=1,2,3

direction cosine matrix «t end 2(3j)
of beam LB at end of step K.
IB=1,...,N0B; I =1,2,3; J=1,2,3

direction cosine matrix at end 2
of beam LB at end of step K+l.
IB=1,...,NU0B; I =1,2,3, J=1,2,3

accumulated plastic energy dissipa-
tion at beam LB, end I at end of
step K. -

IB=1,...,NUB; I =1,2

location and orientation of mass
point LMP in global system at end
of step K.

I=1, ...,6UMP

location and orientation of mass
point LMP in global system at end
of step K+1.

I=1,...,6*NUMP

increment of plastic energy dissipa-
tion at beam LB, end I at end of
step K+1.

IB=1,...,NUB; I =1,2.



Program

Listing Analysis

Notation Notation
DR(I)
DRN (LB, I)
DRS (I) R
DU(I)
DUP (1) -
DUS (I) D
EBI(I,J) Ei
EBJ(I,J) .

J

EBHI(I,J) Ei
EBHJ (I,J) £

-121.

{
{

Description

nodal generalized force increment
vector in global system. (I = 1,...,
6*NUMP). The LMPth group of six
components correspond to mass point LMP
In each group of six, the first three
components are those of the force
increment vector at L!MP. The second
three components are those of the
moment increment vector at mass

point LMP,

matrix in which the elements of row LB
are the components of the generalized
force increment DRS acting on beam LB,
IB=1,...,NUB; I =1,...,12

generalized force vector increment
acting on a beam, I =1,...,12. (Eq(8))

nodal generalized displacement incremen
vector in global system. (I = 1,...,
6*NUMP) The LMPth group of six
components correspond to mass point LMP
In each group of six, the first three
components are those of the displace-
ment increment vector of mass point
LMP. The second three components

are those of the rotation increment
vector of mass point LMP.

plastic deformation rate vector
I=1,...,4 (Eg (51) )

generalized displacement increment
acting on a beam, I =1,...,12.
(Eq(8))

matrices defined in Eq(67),I = 1,2,3;
J=1,...,6.

matrices defined in Eq(67),
I,J= 1,2,30



Program
Listing Analysis
Notation Notation
FK (LB, I)
FKP1 (1)
FRK (I) FiR_
1
F.
iR,
- 3k
FRKL (I)
FRKP (I)
Gl(1,J) ct
G2(I,J) Gl
GIRJ(I,J) 3-glR
G1S(LB,I,J)
G2S (LB, I,J)
GBI(I,J) Gt
GBJ(I,J) GJ
GBIT(LB,I,J)
GBJT (LB, I,J)

-1z22.

Description

matrix in which the elements of
row LB are the values of the yield
function at the ends of beam LB at
step K.

IB=1,...,NUB; I =1,2.

yield function at the two ends
of a beam, I = 1,2

generalized force vector on beam
ends in local frames at end of
step K. IT =1,...,12

temporary storage for force vectors
at beam ends in local frames,
I = l,.no,lZ.

generalized force vector on beam
ends in local frames at end of step
K+1, I =1,...,12.

matrices for i & j ends of a beam,
appearing in Eq(55)-(58).
I=l’too,4;J:l’000'6i

product of matrix AJF and the lower
three rows of Gl, (see Eqg(69))
I1=1,2,3;y J=1,...,6

matrices Gl and G2 of Eq(55)-(8)
corresponding to beam LB, LB = 1,...,
NUB}. Izl,cco,4;J-l,...,6o
matrices for i & j ends of a beanm
appearing in Eg(55-(59, I = 1,...,4;
J=1,2,3.

matrices G and 379 of Eq(55)-(58)
corresponding to beam LB, LB = 1,...,
NUB; I =1,...,4; J=1,...,3.
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Program
Listing Analysis
Notation Notation Description
GRF({I) VE gradient of yield function (Eq(49)),
I = l,.l‘,40
HBIP (I,J) np {matrices for i and j ends of a beam
=Jjp 4 appearing in Egs(60) and (61).
HBJP (I,J) H Ig =1,2,3
HBIPT (LB, I,J) matrices AP, HI® of Egs(60) and
(61) corresponding to beam LB,
HBJPT (LB, I,J) IB =1,...,NUB; 1,3 = 1,2,3.
HP1(I,J) g'P { matrices for i and j ends of a beanm
ip appearing in Egs(60) and (61)
P2 (1,9) i I=1,2,33=1,...,6.
HP1S (LB, I,J) matrices H'P,HIP of Eqs(60) and (61)
corresponding to beam LB,
Hp25 (LB, 1, J) IB=1,...,NUB; T,J = 1,2,3
HR(I,J) HR matrix defined by Eq(26)
1,3 =1,2,3
IELM(I,J) type of beam relation between
node I and node J
I=1,...,NUMP-1; J = I+1,...,NUMP.
KRT (I,J) KRT {’matrices appearing in Eq(63)
KRTB(I/I,N) 'I‘('ﬁ I,J= l,ooo,6; P}I: l,oc., ; N= 1’2,3
Fi T Fi
P(I,J) (T 7) A(T ™) matrix appearing in Eq(44), using
. A defined by Eq(32),1,7 =1,...,6
RK(I) ' vector of force and moment components

with respect to the global system
at end of step K, I =1,...,NUMP*6.
The LMPth group of six components
correspond to mass LMP. In each
group of six, the first three
components are those of the force
vector on mass point LMP. The
second three components are those of
the moment vector on mass point LMP.



Program
Listing
Notation

Analysis
Notation

RKP1 (L)

RNK (LB, I) i

RNKP (I)

RNKP1 (LB, I)

SCFA

SCFD (LB, I)

SCFP (LB, I)

SK(LB,I,J)

'd
AN

STIF1(I,J)
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Description

vector of force and moment components
with respect to the global system

at end of step K+1, I =1,...,6*NUMP.
See definition of RK(I) for
component definition.,

matrix in which the elements of
row LB are the global components
of the generalized force vector on
beam LB at step K, IB = 1,...,NUB;
I=1,...,K.

global components of the generalized
force vector on a beam at step K+1,
I=1,...,12

matrix in which the elements of row LB
are the global components of the
generalized force vector acting on
beam LB at step XK+1, LB = 1,...,NUB;
I=1,...,12

ninimum value of set of scaling
factors SCFP.

scaling factor at end I of beam LB
due to unloading, LB = 1,...,NUB;
I=1,2.

scaling factor at end I of beam LB
due to loading from the elastic to
the plastic state. ILB =1,...,NUB;
I=1,2

matrix H'B defined by Eq(72) for
beam ILB; IB = 1,...,NUB; I,J =1,...,1:

matrix defined by Eg(65),I,J =1,...,6



Program
Listing
Notation

STK(I,J)

SW(LB,I)

TK(I,J)

Analysis
Notation
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Description

matrix defined by Eq(72)
I'J = 1,000,120

switch setting for end I of beam LB,
defined by Egq(73),1.B = 1,...,NUB,
I=1,2.

global stiffness matrix;
I,J=1,...,6*%NUMP.
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B. List of Subroutines and Switches

List of Subroutines

1. DISSP(G,GB,DR,DU,N,AL,DUP,DC)

Purpose: to compute the dissipation

Input quantities:

G,GB = Gl1,GBI or G2,GBJ
DR: nodal force increment vector
DU: nodal displacement increment vector

N: N =1 is beam end i
2 is beam end j

AL: beam length
DC: direction cosine

Output quantity

DUP: plastic displacement vector

2. DMAX(A,B,NUB)
Purpose: to determine the maximum component of a vector

Input quantities:

A: input array

NUB: number of beams

Output quantity

B: maximum element of A

3. DMIN(A,B,NUB)

Purpose: to determine the minimum component of a vector

Input quantities:

A: input array

NUB: numher of beams

Output quantity

B: mninimum elecment of A
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FRKS (RKP1,DC1KP1,DC2KP1l,FRKP1)

Purposc: to compute force and moment components with respect
to local coordinates.

Input quantities:

RKP1: global components of generalized force
vector on a beam

DC1KP1l: divection cosine matrix at i end (end 1)

DC2KPl: direction cosine matrix at j end (end 2)

Output quantity

FRKP1: generalized force vector on a beam in local frame

GHP (DC,AL,G,HP,FRK,GRF,N,HB,EBH,GB)
Purpose: to find the G,HP,HB,EBH,GB matrices at each node point

Input quantities:

AL: Dbeam length

DC: direction cosine
FRK: local generalized force vector
GRF: gradient of yield function

N: N =1 if beam end is i

2 if beam end is j

Output quantities

If N=1: Gl If N=2: G2
HP1 HP2

HBIP HBJP

EBHI EBHJ

GBI GBJ




6. GMPRD(A,B,R,N,M,L)
Purpose: matrix multiplication

Input quantities:

A: NXM matrix
B: MXL matrix

Output quantity

R: NXL matrix

7. GRYF1(LB,FRK,GRF,N)

Purpose: to find gradient of the yield function

for the rectangular tube section

Input quantities:

LB: beam number
FRK: generalized force vector on beam ends in local frams
N: N =1 if end I
= 2 if end j

Output quantity

GRF: gradient vector at end N

8, HINVB(ST1Fl,P,HR,HIP,HJP,AJF,DC1,STLF,
EBI,EBJ,GRBL,HBIP,HBJP,EBHI,EBHLJ)

Purpose: to find the matrix K = H'B for a beam

Input quantities:

P B
AJF‘S matrices defined in List of Program Variables.
HR .

HiPp } matrices HP1,HP2 in List of Program Variables
HJP .

EBI
EBJ
HBIP Y
HBJP matrices defined in List of Program Variables
EBHI
EBHJ
ST1F1

GRBI lower three rows of GBI matrix
DC1 direction cosine matrix
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Output quantity

ST1F: matrix ﬁJB, local stiffness matrix

9. INCRE(M,DU,DR,K)
Purpose: to read in the increment of displacement and force

Input quantities:

M: mass point number

K: step number

Output quantities

DU: displacement increment vector

DR: force increment vector

10. INPUT (M,NEN,IELM)

Purpose: to read in the initial position, forces and switch

setting and material properties of each beam

Input quantities:

M: mass point number

NEN: beam number

IELM: relation between mass points I and J

11. 1INV(M,N,A,IM,L,B)
(Library Subroutine, University of Michigan Computing Center)

Purpose: matrix inversion

Input quantities:

A: matrix to be inverted

M: size of matrix A

N: maximum size of matrix A

IM: 2M dimension vector

Qutput quantity

B* matrix A—l
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12. SUBROUTINE KR (DC,HIP,HBLP,FL,LB,AL,KRT,KR1B)

Purpose: to comput the matrices KRT and KRTB in the
H and B matrices

Input quantities:

DC: direction cosine

HIP: H'P

HBIP: P
FC: force at local frame (12 elements)
LB: beam number

AL: Dbeam length

Output quantity

KRT: KRT
KRTB: KRT

13. KUKL(DCI,ST1Fl,P,HR,GlRJ,LB,AL)

Purpose: to find the elastic stiffness matrix and
associated matrices P and HR

Input quantities:

DCI: direction cosine
GlRJ: matrix from list of variables
IB: beam number

AL: beam length

Output quantities

ST1F1

P Y matrices defined in List of Program Variables
HR

14. NEWDC (HIP,HJP,DR,DD,DCI,DCJ,D1,D2,HBIP,HBJP)

Purpose: to compute new direction cosines
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Input quantities:

HIP,HJP: matrices HP1,HP2 in List of Program Variables
HBIP,HBJP: matrices in List of Program Variables
DCI,DCJ: direction cosine matrices at I and J ends

DR: increment in generalized force vector

DD: increment in generalized displacement

Output quantities

D1l:

. : . i
pp. new direction cosines at ] ends

15. OUTP(K,IELM,RK,D1SK,RNKP1,SW,SCF,SCF1,
SCFA, IPS,NUMP,NUB,FK1l,FRK1)

Purpose: to print out the final force components and coordinates

Input guantities:

RK: total force at each mass
RNKPl: total force at each beam end
K: step number
IELM: type of beam relation between mass points I and J
D1SK: location and orientation of mass points
SW: switch setting
NUMP: number of mass point
NUB: beam number
SCF: loading scale factor
SCFl: unloading scale factor
SCFA: minimum loading scale factor
SCFB: minimum unloading scale factor
IPS: print out switch control
FKl: yield function values at beam ends

FRKl: beam end force vector in local frame
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16. SCFS1(FRKP1,FR,D,N,I,LB)

Purpose: to scale displacement increment so that resulting

force stays on the yield surface

Input quantities:

FRKPl: 1local force vector at step K+l
FR: local force vector at stép K
N: beam end i or j

I.LB: beam number

Output quantity

D: scaling factor
J: number of iterations

17. YFCT1 (LB,FR,FK)

Purpose: to compute the yield function for the

rectangular tube section

Input quantities:

ILB: beam number

~FR: 1local force vector

Output guantity

FK: value of yield function
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List of Control Switches

1. 1IDS dissipation switch control

Purpose: to allow choice of loading or unloading at

a negative dissipation increment

IDS = 0 at a negative dissipation
increment, switch SW
stays = 1
1 at a negative dissipation

increment, switch SW is set = 0
causing unloading

2. 1IPS print out switch control
Purpose: to select amount of print out

IPS = standard print out

0
1 standard print out plus yield
function values at beam ends

2 standard print out, vield function
values and local forces and moments



C. Flow Diagrams

(i) Main Flow Diagram
Start

Y

Read beam geometry and material data,

call INPUT|

frame initial geometry data

Y
[set Kk = 0]
0 Y
10 Y
| Set K = R+1]
Y
Read nodal force and displacement input call INCRE
data at current step K
 Generate local stiffness matrices
Y
N Do loop B=1,...,NUB; I =1,2
YES J-e—] is sw(1B,1) = 0 f—s—-fn0 |
i V) Y
If If If If
I =1 I =2 I =1 I =2
SET COMPUTE
Gl =0 G2 =0 Gl G2 e _
GBI = 0 GBJ =0 GBI GBJ  f~lcall GHP|
HBIP = 0 HBJP = 0 HBIP HBJP
HPL = 0 HP2 = 0 HP1 HP2
EBIHI = 0 EBHJ = 0 LBHI EBHJ
EBI = 0 EBJ = 0 EBI EBJ
1 \ i i
r Y
Y
Cenerate call HINVB,KUKL |
STK
e
B

CONTINUE
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Y

Assemble global stiffness matrix

See subsection (ii) far! more detailed flow diagram)

Do loop I =1,...,NUMP-1; J = I+l,...,NUMP |

YES w2 is IELM(I,J) = 0 |

Compute LB value

Y

Partition STK(LB,I,J) into 6X6 submatrices to be

associated with nodes I and J

————s

A . srrtt srrtY
Y | STK = JI 33
TK STK™ "}
Y
Set I J
S
I {
1
TK = TK + 1 sttt - s
{ !
l i
| |
J —srrIt L —mgrrTT e o
|
el a -
where I,J refer to I or Jth set of six columns or rows

}. /
\/

L
T~

—w-a-_.mn--—m-—-—-—m—-n—-—-—--n-._—_—-mm—nnu—-—--—_-—-———-—.———-_——r—-——

CONTINUE Y
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Y

———-——_——-——-——--——n—n-———-
m—— pa——

Solve for unknown nodal force

See subsection (iii) for

\

ment MEPE B4 PRSNGSR WA LACEE BN Buesi EMRGN UGS TATAN WIEEE BN (MMIE SN ROSCE Meadt Dl NS M

and displacement components

detailed flow diagram)

r———~%>4-Do loop I =1,.

.. ,6*NUMP |

Y

[is DU(I)<100 (known) } t%fﬁé} 7

— [
Reduce TK to TK by \

removing Row I and Column I

J#L

Construct reduced force vector

DR(J) = DR(J) - TX(J,I)DU(I)

- Y
b

-

-

Solve reduced problem for
reduced displacement

—_— —_—l
DU = [TKIDR

Construct DU

from DU

[

Compute DR = [TK]DU J

[ as—————— S DR S il L R R

S

CONTINUE
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Y

v

Do loop LB = l,...,NUBI

Y

Compute

pDUS from DU

\

Compute
DRS = [STK]DUS

1

Set
RNKP1 = RNK+DRS

Y

Compute

e Call NEWDC |

DC1KP, DC2KP

Y

Compute

\/

Compute

FKP1

A

CONTINUE

rogp | |——1_Call FREKS |

 Call YFCT1 |
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i

[Do loop 1B = 1,...,NUB;I = 1,2 pe
) [yEs is SW(LB,I) = 0|—>4no }
\
| YESj&—is FRP1>1 N} =
Y \
[ is 1Ds = 0 ] vEg > set
SCFP (LB, I) =
[
\
[Gs Fol f—s {0 ——
Y
1 te
[i%él Compute L I 11 scrsi|
' SCFP
, \
lis Fr>FRPL | YES
Y
(o]
[set SW(LB,I) = 1|
set SCFP = 0 f ;ﬁ,a
‘;>~
set SCFA = MIN(SCFP(LB,T))
LB = 1,...,NUB;T = 1,2 call Dl
Y,
[vms =< tis SCFA = 0 |
\4
go to NO
100
2\
set
SW(LB,I) = 1 for all LB,I with

|sw(LB, I)-scral £ 0.01

|

CONTINUE
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Y

'YES% < is SCFA = 1
Y \
Go to Eﬁﬂ
500
Y
> DO loop B =1,...,NUB
/ ¥
et
«&— DRS = SCFA*DRS
DUS = SCFA*DUS
Y
Set
DR = SCFA*DR
DU = SCFA*DU
v Y
>4 Do loop IB = 1,...,NUB; I = 1,2
Compute DUD] I'call DISSD]
ComputeJDISSKl
y
[is 1ps = o]—>{xoJ
{
[iﬁé] /
[lole{is pissr<of=ives|
\
set
SW(LB,T) = 0

A

Y \

DDX = DDK+DISSK

!

B

CONTINULG

:Ei

A
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Y
500 -
7
/
Set
DISKP1 = DISK+DU
RFP1 = RK+DR
Y
Do loop LB =1,...,NUB p—<
\ A
Set -
7
RNKP1l = RNK+DRS
| Print out | Call OUTPI
4
YES ] is K = KMAX_|
Y.
o
Stop LI\LQJ
Y
Set
RK = RKP1
DISK = DISKP1
A
| Do loop 1B = l,...,NUBPﬂél

Set DC2K = DC2KP
DC1K = DCI1KP

RNK = RNKP1

FK = FKP1

b e

Y
| Go to 100




(i1)
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Assembling Global Stiffness Matrix

~—> Do loop I = 1,NUMPMI1

\/
Set L = I+I]

\ 4

— —-->4 DO loop J = L,NUMP |

v

| Is 1ELM(I,J) = 0}

-

v T

Compute the local beam stiffness matrix,[STK]IJ,

which connects mass I and mass J

l

Set IS = (I-1)*6+1
IE = :[7'(6
JS = (J-1)*6+1
JE = J%*6
\
[ set 1K = 0]
Y
.—-—-—-—-———‘--»v}-—j Do ]_OOp I1 = IS,IEI
Y
Set JvJK = 0
IK = IK+1
1 \ .
~$>{ Do loop JJ = IS,IE]
A i
[ Set JK = JK+1 |
| 7
|
Y
;~4 Do loop JJ = JS,Jr |
l ' 7
| Set JK = Jx+1|
¥
l{ TR(1T,J9) = STK(IK,JK)+TFR(TT, JT)

< "*“‘\l('

CONTINUR CONTINUE
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CONTINUL

Y

Do

[ 0K = Jr+1]

Y

— TR(1I,3J)

=-STK (TK,JK)+TK(II,JJ) |

S o

loop JJ = JS,JE |

Y
| JK = JR+1 |

L TK(IT,JJ)

=-STK(IK,JK)+TK(IT,JJ)|

4

j\ A

CONTINUE

<
Y o~

3
A}

CONTINUE
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(iii) Solving for Unknown Nodal Force and Displacement
Components
N S
[Set TR = 0f
X {
7——1 Do loop I = 1,NUMP*{ |
Y 3 T
| Ts DU(I) <100} S —
F
[ IR = IR+1]|
Y
FB(IR) = DR(I)
.
[oc = q]
. y }
A ———————-b~———} Do loop J 3 1, NUMP*6]
| Is DU(J) <100 |
F \\\ T
A /! 3
[3C= JCTI * | FB(IR) = FB(IR)-TK(IJ) *BU (J]]
V
|_RKB (IR, JC) ="TK(T,J7]
< \/
Y
= 4 e -
\f
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Y
-1
RKBI(IR,JC) = RKB(IR,JC)
‘ <
DUB(IR) = RKBI * FB(IR)
JC =0
Y
$>— Do loop I = 1,NUMP*G
T
| Is DU(I) <100 >
A VF
JC = JC+1 3
¥
DU(I) = DUB(JC)
¥

{DR_=[1%] U]
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APPENDIX B

B.1 PROGRAM LISTING
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MICHIGAN TERMINAL SYSTEM FORTRAN G(41336 TEST) MATN 08-29-73 17:44.30 PAGE P0OOS8

0353 GO 10 S0 391.000
0354 - 1001 WRIYTF (6,1002) NI,ALAMDA 392.000
03585 1002 FNRMAT ('TRY',14,' TIMES LAMDA=',D15.5) 393.000
0356 1000 CONTINUE 394.000
0357 1101 FORMAT (1H1,'K= 'h13) 395,000
0358 1108 FORMAY ('L F a'4213,12D10.3) 396.000
0359 1109 FIORMAT (*YF 'y 213,2D15.5) 397.0G0
0360 1110 FORMAT (//'K=1',13,'1SCF=",13/) 398.000
0361 END 399.000
*OPTIONS IN EFFECT%x ID,FRCNIC+SOURCE,LLIST,NONDECK,LOAD,NOMAP

*0PTIONS [N EFFECT® NAME = MAIN ¢ LINECNT = 57

*STATISTICS* SOCURCE STATEMENTS = 361, PROGRAM SIZE = 272822

*STATISTICS* NO NIAGNOSTICS GFNERATFD
NO ERRDORS IN MAIN

NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS.

Teal
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MICHIGAN TERMINAL SYSTEM FORTRAN G{ 41336 TEST) YFCT1 08-29-73

0001

0002
0003
0004

0025
0026
0097
00728
0en9
Q010
0011
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co15
CClh
0C17
©c0l8
COo19
0Cc20
ce21

SUBRAUTINF YFCT LILB,yFRyFK)

TEST YIELO CAINDITIGN

IMPLICIT REAL*8{A-H,P=2)

REAL %3 MIQO,M204M30,M1sM2,M3

DIMENSICN FRI12},FK(2)+M10(20),M20(20),M30(20),P0(20),
1 YI(20),Y2(20),(F(20)

CCHMON/CCMR/M10 4M204M304P0yY1leY2,CF

MI=M10(LB)

M2=r20(LR)

M3=M30(LB)

P=p0O(LR)

AL=CARSIFR(3)/P )

A2=CABS(FR(4)/M1 )

A3=LCABS(+R(5) /M2 )

A4=CABS(FR(6)/13 )

AS=DADSIFR(3)/P 1}

AL=CABSIFR(1Q)/M]1 )

AT=CABS(FRI1L1)/ M2 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>