MODELING, SIMULATION AND VERIFICATION OF IMPACT DYNAMICS

Vol. 4, Three Dimensional Plastic Hinge Frame Simulation Module

By:

I. K. McIvor
A. S. Wineman
W. J. Anderson
H. C. Wang

Date:

August 25, 1973

Report Status:

Final Report

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle Modeling, Simulation and	Verification of Impact	5. Report Date		
Dynamics - Vol. 4, Three Hinge Frame Simulation M	25 August 1973 6. Performing Organization Code			
7. Author(s) I.K. McIvor, A.S.	8. Performing Organization Report No.			
and H.C. Wang	UM-HSRI-BI-73-4-4			
9. Performing Organization Name and Address	10. Work Unit No.			
Highway Safety Research I				
Applied Mechanics a	11. Contract or Grant No.			
The University of Michigan	DOT-HS-031-2-481			
Ann Arbor, Michigan 4810	2	13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address National Highway Traffic S	Final Report June 28, 1972-Aug. 25, 1973			
Nassif Building, 7th and E Washington, D.C. 20590	14. Sponsoring Agency Code			
15. Supplementary Notes	аны алы жала жала жала кала кала кала кала кала			

16. Abstract

This report describes the development of a computer program for modeling three dimensional large plastic deformation response of general frame structures. It is designed to serve as a preliminary version of a general component module in the overall simulation of vehicle impact. The analysis is based on the extension of the plastic hinge concept to the three dimensional deformation of beams.

The main body of the report covers the theoretical analysis, comparison of theory with basic verification tests, and the qualification study which compares computed results with the results of a crush test of a production vehcile frame. In addition, the Appendix contains a Program User's Guide and a complete listing of the current version of the program.

It was concluded from the study that the development of component modules for advanced simulations is feasible, and recommendations for program improvements are suggested.

17. Kay Words		19 Distribution Statement		
17. Key Words		18. Distribution Statement		
19. Security Classif. (of this report)	20. Security Classif.(o	f this page)	21. No. of Pages	22. Price

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the National Highway Traffic Safety Administration.

١

TABLE OF CONTENTS

Page

Chapter 1	Introduction and Summary	
1.1	Modeling Study	1
1.2	Conclusions and Recommendations	2
1.3	Computer Costs	6
Chapter 2	Analysis	
2.1	Basic Assumptions	9
2.2	Notation	10
2.3	Kinematics of Deformation	15
2.4	Differential Equilibrium of Beam	18
2.5	Incremental Yield Condition	21
2.6	Element Stiffness Matrix	25
2.7	Test Conditions for Plastic Deformation	
	and Elastic Unloading	31
2.8	Global Stiffness Matrix	32
2.9	Boundary Conditions	34
2.10	Solution Procedure	35
Chapter 3	Verification of the Beam-Column Element	
3,1	Introduction	37
3.2	Experimental Goals	37
3.3	Beam Specimens	38
3.4	Loading Configuration	39
3.5	Test Results for Lateral Load	43
3.6	Test Results for Axial Load	50
3.7	Load Relaxation Data	57
3.8	Comparison of Beam-Column Element with	
	Experiment	58

TABLE OF CONTENTS

(Continued)

Chapt	er 4	Qualif	ication Study	
4	.1	Intro	duction	69
4	. 2	Selec	tion of Model From Layout	69
4	. 3	Prepa	aration of Input Data	77
4	.4	Force	e and Displacement Conditions	91
4	.5	Discu	ission of Computed Results	92
Apper	ndix A	- Use	er's Guide	
A	A.1	Input	Information	98
		А.	Preparation of Input Data	99
		в.	List of Program Input Variables	105
		C.	Layout and Format of Input Card Contents	108
		D.	Example of Input Data	110
		E.	Layout and Sample of Output	115
A	A.2	Prog	ram Information	119
		А.	List of Major Program Variables	120
		в.	List of Subroutines	126
		C.	Flow Diagrams	134
Apper	ndix B	- Cor	nputer Program	-
B.1 Program Listing		Prog	ram Listing	145
E	3.2	Subro	outines Listing	154

•

.

LIST OF FIGURES

Figure	Numbers		Page
	29	Comparison of Model with Lateral Displacement	66
	30	Comparison of Model with Axial Displacement	67
	31	Reduced Copy of Blueprints of Frame Tested by	70
		CALSPAN	
	32	Location of Constraints Due to Loading Symmetry	72
		and Support	
	33	Location of Nodes and Their Nodal Numbers	74
	34	Isometric View of Frame Showing Node and Beam	75
		Numbers	
	35	Orientation of Beam Frame Axes	81
	36	Definition of Area Second Moments with Respect to	86
		Beam Frame Axes X_1^{F} and X_2^{F}	
	37	Moment - Curvature Relation for a Rectangular Cross	90
		Section Showing Elastic Perfectly Plastic Idealization	
	38	Force Deflection Curve of Node 1 Along X_2 Axis	93
	39	Final Plastic Hinge Distribution	95
	40	Force Deflection Curve for Pole Barrier Static	96
		Crush Test	
	41	Relation of Beam Frame Axis to Cross Sectional	101
		Dimensions for Rectangular Tubular and Open	
		Channel Cross Sections	
	42	Beam Frame Axis Related to Cross Section Principal	102
		Directions	
	43	Four Bar Example Frame	110

•

LIST OF FIGURES

Figure Numbers		Page
1	Beam Reference Frames	11
2	Beam Equilibrium	18
2A	Global Equilibrium	32
3	Lateral Loading	37
4	Axial Loading	37
5	Two Element Beam Specimen	38
6	Cross Section	39
7	Tensile Test for 1018 Steel	40
8	Lateral Loading Geometry	41
9	Axial Loading Geometry	42
10	Formation of Plastic Hinge Under Lateral Load	44
11	Large Deflection Under Lateral Load	45
12	Rotations Under Lateral Load	46
13	Upper Hinges Leading	47
14	Extreme Position with Upper Hinges Leading	47
15	Lower Hinges "Catching Up"	48
16	Locus of Loading Cycle	49
17	Plastic Hinge in Thin-Walled Channel	50
18	Axial Loading Test - Small Axial Displacement	52
19	Axial Loading Test - Large Axial Displacement	53
20	Axial Loading Test - Small Lateral Displacement	54
21	Axial Loading Test - Large Lateral Displacement	55
22	Axial Loading Test - Hinge Angle	56
23	Axial and Lateral Test Condition	57
24	Comparison of Lateral and Axial Test	59
25	Load Relaxation	60
26	Rate of Load Relaxation in Axial Test	61
27	Beam - Column Element Under Lateral Load	64
28	Modified Models of Beam Under Lateral Load	65

.

LIST OF TABLES

Table Numbers		Page
I	Nodal Coordinates	78
II	Beam-Node Relation	79
	Matrix IELEM (I, J)	
III	Direction Cosines of Beam Frame	83-84
	with Respect to The Global Frame	
IV	Material and Sectional Properties	87-88

.

CHAPTER 1

INTRODUCTION AND SUMMARY

1.1 MODELING STUDY

As originally conceived in the project goals, a modeling exercise was to be conducted on a vehicle component to provide background information for comparing computer simulation with crash testing. As noted in Volume I of this report, it served this purpose. During the course of the investigation, however, the modeling study took an added significance. The state-of-the-art study concluded that only Level 3 simulation capability¹ is currently available. It became evident that the feasibility of advanced simulations is dependent upon the development of self-contained modules which accurately but efficiently model vehicle components. Thus the goal of the modeling study was expanded to the preliminary development of a major simulation module suitable for a Level 4 simulation.

A Level 4 simulation capability requires modeling three dimensional displacements and rotations under a variety of loading conditions. It must compute absorbed energy, relative displacements of major components and the acceleration environment of the passenger compartment with an accuracy comparable to testing. This is to be accomplished with less than three hundred degrees of freedom. It is clear that a general three dimensional frame module would be essential to such a simulation program. Thus a frame module was choosen as the goal of the modeling study.

To develop a general three dimensional, large plastic deformation frame program with the size restriction imposed by Level 4 simulation is a major challenge. From the state-of-the-art study it is clear that a finite element approach based on continuum mechanics is unrealistic for Level 4 simulation. It is also clear that the concept of generalized resistances successfully used in Level 3 simulation is limited to essentially one dimensional motion. The

¹A simulation spectrum is defined in Volume I of this report. Level 3 simulation models overall response and average rigid body accelerations under limited loading conditions.

most promising approach thus appeared to be the extension of the plastic hinge concept to three dimensional response. In carrying out this extension it is necessary to formulate the problem in a manner suitable for use as a module in an overall vehicle simulation. The required flexibility was accomplished here by formulating the problem in a form analogous to a finite element formulation but in which the governing element equations are derived from the concept of an ideal three dimensional plastic hinge.

The basic theory and derivation of equations is given in Chapter 2. A number of experiments designed to verify the basic concept are discussed in Chapter 3. The computer simulation developed was then used to predict the force-deformation curve for a static crush test conducted by CALSPAN on an actual vehicle frame. A discussion of our modeling of the frame and the comparison of computed with experimental results is given in Chapter 4. A brief user's guide for the computer program is given in Appendix A and a complete listing of the current version of the program is given in Appendix B.

Although we do not consider the current version of the program a final product for use as a component module, it is an operating program with most of the essential features. Moreover the modeling cycle was instructive in identifying problem areas. In the remaining sections of this Chapter we summarize the conclusions and recommendations resulting from the study.

1.2 CONCLUSIONS AND RECOMMENDATIONS

The major conclusions resulting from the modeling study are:

 The ideal plastic hinge is a valid concept for three dimensional plastic deformation of beam.

To our knowledge there did not exist at the beginning of the study a general theory of beam deformation based on the plastic hinge concept, earlier work in large deformation being confined

-2-

to planar frames. The theory derived here is self-consistent once the basic assumptions associated with an ideal hinge are postulated. Moreover the validation experiments² verified that the theory adequately models the essential features of actual physical behavior over a large deformation range.

2. The development of vehicle component modules suitable for advanced simulations is technically feasible.

For use as a vehicle module, a component simulation program must adequately model the component behavior, must be internally general, and must be in a form compatible with interaction with other modules. The two latter conditions are satisfied by formulating the program in terms of arbitrarily specified nodal variables. The qualification study demonstrated that the computer simulation could adequately predict the behavior of an actual vehicle frame. Although the study indicated a number of areas that deserve further attention, the basic feasibility of the approach was clearly demonstrated.

In addition to these conclusions which directly bear on the overall project goals, the study brought out a number of points relevant to component modeling. They are:

- Torsional and axial forces can have significant effects on the responses and should be included in the analysis.
- 2. The plastic hinge concept has inherent limitations. Due to its "off-on" character, it cannot model in detail elastic-plastic behavior of a cross section. This has only limited effect on the overall response if the yield function is chosen to give a "good" piecewise

²The validation experiments reported in Chapter 3 indicated that under certain loading conditions plastic extension of the beam which had originally been neglected in the theory was important. This has subsequently been corrected. The theory and computer program given here include this effect.

linear approximation to the actual elastic-plastic behavior. For planer bending this is easily accomplished by choosing an equivalent yield stress to give a yield moment intermediate between initial yield and the ultimate collapse moment. In the general case, however, we need to choose an equivalent yield function. Since the difference between initial yield and fully plastic cross section is different for different modes of deformation, this cannot be accomplished by simple scaling. The functional form of the initial yield function is sufficiently general to permit different scalings for different deformation modes. At the present time, however, our knowledge of the actual elastic-plastic behavior under general conditions is too limited to prescribe this variable scaling in a rational manner. Therefore in the present study a single yield stress was chosen somewhat arbitrarily. In both the verification and qualification studies, the computed results were in general agreement with experiments. It was clear, however, that the choice was not optimum and this topic deserves further attention.

- 3. The theory developed here can adequately account for the effect on the force-deformation characteristics of the structure due to changes in geometry. It cannot account for softening due to joint inefficiency or local deformation of the cross section. The verification study demonstrated that such effects could be significant. It was also shown in the study, however, that joint behavior similiar to that observed could be obtained by changing parameters in the yield function. Although at the present time there is no rational basis for our choice, the result strongly suggests the possibility of defining a "failure function" by relating the parameters in the yield function to actual joint behavior.
- It is also worth noting that our modeling of the vehicle frame in the qualification study required considerable judgment and experience. The choice of the number and location of the plastic

hinges and the choice of structural parameters are not obvious. Thus simulation at this level of approximation requires a background of experimental evidence.

Finally in closing this section we note a number of recommendations for both immediate and long range improvement of the computer simulation program developed here. There are two improvements which can be effected without major effort. They are:

 Extend the formulation to include dynamic effects by adding mass matrix.

The frame simulation program developed here is not intended to include the major inertial masses of the vehicle. In the envisaged modular development, such masses will be handled by a rigid body module that can interact with other structural modules at arbitrary nodes. Nevertheless it is desirable to extend the capability of the program to include the frame inertia since it could be significant for advanced simulations. In any case this capability would be useful in quantifying the importance of frame inertia. Since the present program requires incremental solution, the inclusion of inertial effects does not complicate the solution procedure. The only effort required is to develop and program a mass matrix consistent with the present formulation.

 Develop automatic selection of variable step size based on numerical error control.

The current version of the program obtains the increment step from an input subroutine which prescribes the external forces and displacement constraints for a particular problem. As presently programmed a constant step size is specified in the input subroutine. It is desirable to develop an automatic selection of step size based on a relative error measure. At the present time, we have not had sufficient experience with the program to correlate relative error with total error. In the interest of economy the actual qualification result reported here was run at a relatively large constant step. The relative error in the yield function at some hinges was as high as ten percent for some steps. Nevertheless the overall force deformation curve correlated well with experiment. On the other hand, this step size was too large for accurate computation of the incremental dissipation and continuous loading was assumed. Thus at the present time it is not clear what error measure is the most desirable or what is the effect of step size on various variables of interest. A systematic numerical error analysis is desirable to optimize exercising the program.

Finally we note the need for a research effort in the simulation of joint behavior. As discussed above both the verification and qualification studies indicated that joint inefficiency and local deformation have a measureable effect on the overall force-deformation characteristics. We believe our preliminary "analytical experiments" are strongly suggestive that these effects can be incorporated into a yield function expressed in terms of structural variables. The development of such functions for typical vehicle joints will require, however, a substantial research effort, both analytical and experimental, on the plastic deformation of joints under general loads.

1.3 COMPUTATION COSTS

The qualification study was sufficiently large to give a good assessment of computation costs for the present program. Our experience with exercising the program has demonstrated that the cost is essentially directly proportional to the number of elements. The major program operations are the updating of the element stiffness matrix at each step and the monitoring of the yield hinge switches for each element; the actual inversion of the equations requires almost negligible time in comparison. Since these major operations must be preformed once each step for each element, the run time varies linearly with the number of elements.

Thus it is convenient to express computation cost on a unit base. The following costs are based on exercising the program on the University of Michigan IBM 360-67 computer using the Michigan Terminal System.

-6-

In our experience the average unit cost is eight cents per element for each integration step. For general comparison it is convenient to also express the cost per degree of freedom. For typical frame structures the number of nodes is about 80% the number of elements. (For our qualification study we used 19 elements and 15 nodes.) Each node has six degrees of freedom. Thus in terms of degrees of freedom we have a cost of 1.67 cents per degree of freedom step.

The total cost data for the qualification study is:

No. of Elements	-	19
No. of Nodes	-	15
Total Degrees of Freedo	om -	90
Integration Steps	-	66
Total inches of Crush	-	5.1
Total Cost		\$ 100.00

It should be pointed out that the present program has not been optimized from the viewpoint of cost. In particular the program does not make use of file storage but retains all computed data in core storage. The Michigan Terminal System changes a substantial premium for core storage. Since storage costs account for over half of total run costs, the use of file storage will significantly reduce cost. In addition some reorganization of the program variables (sequential use of same storage locations) can be implemented. In this way, we estimate that run costs can be reduced to one cent per degree of freedom for each integration step.

With a unit cost determined, determining the cost of a given simulation requires estimating the number of integration steps to be employed. In general this requires considerable experience with the program to gain an understanding of the step size-error relationship. As indicated above we used 66 steps to simulate five inches of crush in the qualification study. Although reasonable results were obtained for the overall force-deformation curve, the computed results for dissipation indicated that step size was too large for accurate determination of all variables. We anticipate that five-ten times as many steps may be required. At one cent per degree of freedom for each step the qualification frame study would cost about \$60.00 for five inches of crush. With this an overall Level 4 simulation cost of \$200.00-\$400.00 appears quite reasonable. An increase by a factor of ten, however, would put Level 4 simulation cost into the thousands of dollars range. There are two possibilities for overcoming the need for a large number of steps. The present integration scheme is the simplest possible method, essentially replacing derivatives by first order differentials. It is likely that higher-order integration routines which ultilize data from several previous steps can be developed within the present formulation permitting a considerably larger step size for the same relative error.

The second possibility is more speculative. In the present theory, the plastic structural constitutive equations are essentially expressed in the normality condition. The consequence is that the plastic deformation increments are highly constrained in a manner which may not be compatible with kinematic constraints. This requires elastic readjustment when a new hinge is formed, and we have noted that this is the situation where large relative error is introduced unless a very small step size is employed. It is possible that an alternate formulation of the plastic constitutive equations would relieve this difficulty. Such a reexamination is inherent in any general study of the plastic deformation of joints.

Thus our conclusions with respect to computer costs are somewhat equivocal. The present study has obtained overall force-deformation results comparable to experiment at a cost which makes Level 4 simulation economically feasible. In detail, however, the present results are not completely satisfactory from the viewpoint of accuracy of all variables of interest. There is reasonable expectation that improved integration techniques and better understanding of general structural plasticity can improve this accuracy without significant increase of computation cost.

-8-

CHAPTER 2

ANALYSIS

2.1 BASIC ASSUMPTIONS

3

In this chapter we derive the basic equations for a general beam of arbitrary length which forms the basic element of the frame module. The derivation is directed towards obtaining an "element stiffness matrix". With this the global system of equations for an arbitrary frame can readily be assembled.

The major simplifying assumption in the analysis is that all plastic deformation occurs at ideal hinges. The location of potential hinges must be choosen apriori, and this choice dictates the length of the beam element. Thus plastic deformation occurs only at the nodes of our element. We further assume that the hinge is operative when the appropriate stress resultants lie on a yield surface for the cross section which remains constant as the deformation proceeds.

The physical implications of these assumptions are:

- (i) Plastic zones are confined to localized regions,
- (ii) Material strain hardening may be neglected,
- (iii) Detailed elastic-plastic behavior of the cross section between initial yield and a fully plastic section is not critical to the analysis.

For mild steel, thin walled cross sections, and loading typically experienced by vehicle frames, these appear to be reasonable

-9-

assumptions. The most questionable is the third approximation. For the case of pure bending this is equivalent to replacing the actual moment-curvature relation by an elastic - perfectly plastic approximation which has been successfully used in many structural applications. In the general case, however, there is less evidence for defining a yield surface for an ideal hinge which approximates the actual elastic - plastic behavior. Here we choose the yield surface as that associated with initial yield. The surface can be scaled, however, to better approximate the actual behavior by choosing an "equivalent yield stress" rather than the actual material yield stress. This point is discussed further in the next chapter.

If we were interested only in overall deformation, the assumptions might be extended to neglecting elastic deformation. As a component module, however, we need to determine as accurately as possible the forces transmitted by the component to other modules of the vehicle at each time step. Particularly during the early stage of motion these forces are probably significantly affected by the elastic deformation. From a numerical viewpoint including elasticity is actually beneficial since it removes indeterminancy associated with rigid plastic theory.

2.2 NOTATION

To derive the element stiffness matrix it is necessary to define the configuration of the beam in a general orientation in space and to relate this orientation to the forces acting on the beam. The motion of the beam may consist of elastic deformation, general rigid body motion of its end points, and rigid body motion of the beam itself due to plastic deformation at the hinges.

-10-

The necessary reference frames for a beam element between the i^{th} and j^{th} nodes are shown in Figure 1. The nodes are represented by rigid body masses M_i and M_j . For clarity the beam and masses are shown separated, but the beam end points initially coincide with the center of mass of the nodes.

BEAM REFERENCE FRAMES

In Figure 1, G represents the fixed global reference frame, M_i and M_j are frames attached to the nodal masses at a time t_K (denoting the kth forward step in the incremental process), and F_i and F_j are frames attached to the beam end points at time t_K . The origin of the latter frames is at the shear center of the cross section, the x_3 axis is tangent to the beam axis and x_1 and x_2 are along the principal axis of the cross section ¹. The beam is of length ℓ . A subscript "0" denotes the initial position and orientation of the respective frames.

The position of the ith and jth beam frames with respect to the fixed global system is denoted by \underline{x}^{i} and \underline{x}^{j} respectively. Likewise the position of the ith and jth mass frames with respect to the global frame is denoted by \underline{y}^{i} and \underline{y}^{j} respectively. The orientation of the four frames with respect to the global system is specified by the four direction cosine matrices

$$\mathbf{L}^{\mathbf{M}_{\mathbf{i}}}, \mathbf{L}^{\mathbf{M}_{\mathbf{j}}}, \mathbf{L}^{\mathbf{F}_{\mathbf{i}}}, \mathbf{L}^{\mathbf{F}_{\mathbf{j}}}$$

in which the components of \boldsymbol{L}^{F} are

$$\ell_{ij}^{F} = \frac{F_{e_{i}} \cdot e_{j}}{1}$$
(1)

where \underline{e}_j and $\overset{F}{\underline{e}}_i$ are the base vectors in the global system and the frame F respectively.

¹This implies the beam shear center and the nodal center of mass initially coincides. For a physical rigid body mass this, of course, will not be generally true. In our development, however, actual rigid masses will be handled by a separate module which can interact with the frame module at arbitrary "external" nodes. The nodal masses here represent a discretization of the frame mass and a mass matrix appropriate to the postulated reference frames can be derived.

It is convenient to choose the initial orientation of the mass frames to coincide with the global frame, i.e.

$$L^{MiO} = L^{MjO} = I$$
 (2)

where I is the identity matrix. Also we have F_{io} F_{io}

L

$$io = L^{jo}$$
(3)

In fact we should note that since F_i and F_j are fixed to the beam, differences in their orientation result only from elastic deformation.

In carrying out the derivation we introduce the following vector quantities:

- U displacement
- \underline{F} resultant force vector acting at the beam end point
- \underline{M} resultant moment vector acting at the beam end point
- $\underline{\omega}$ rotation rate of beam force
- $\underline{\theta}$ rotation rate of mass frame

We will use the notation $\stackrel{F}{\underline{v}}^{i}$, where the superscript i denotes the point or frame associated with the vector and the superscript F denotes the frame in which the vector components are expressed. If F is the global frame the superscript will be suppressed, i.e. \underline{v}^{i} is with respect to the global frame.

The location of a coordinate frame F is specified by the position vector \underline{x} and the direction cosine matrix \underline{L}^{F} . Since in general the frame F moves with respect to the fixed global system, we need to define their rate of change with respect to time. We denote the rate of change of the position vector as $\underline{\dot{x}}$. From rigid body dynamics we have

$$\mathbf{\dot{L}}^{\mathbf{F}} = \mathbf{W}\mathbf{L}^{\mathbf{F}}$$
 (4)

where W is the 3 x 3 matrix

Λ

$$\Lambda_{W} = \begin{bmatrix} 0 & F_{\omega_{3}} & -\omega_{2} \\ F_{\omega_{3}} & 0 & F_{\omega_{1}} \\ F_{\omega_{2}} & F_{\omega_{1}} & 0 \end{bmatrix}$$
(5)

Also we note the vector transformation relations

where the superscript T denotes the transpose.

Finally we introduce generalized displacement rate and force rate vectors associated with the point i as

$$\underbrace{\overset{i}{\underline{D}}}_{\underline{D}} = \begin{bmatrix} \overset{i}{\underline{U}} \\ & \overset{i}{\underline{\theta}} \\ & \overset{i}{\underline{\theta}} \end{bmatrix}$$
(7)
$$\underbrace{\overset{i}{\underline{R}}}_{\underline{R}} = \begin{bmatrix} \overset{F}{\underline{F}} \\ & \overset{i}{\underline{M}} \end{bmatrix}$$

From this we introduce the generalized displacement rate and force rate vectors for the beam element as

.

$$\underbrace{\vec{\mathbf{D}}}_{\mathbf{R}} = \begin{bmatrix} \cdot \mathbf{i} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix}$$
(8)
$$\underbrace{\vec{\mathbf{R}}}_{\mathbf{R}} = \begin{bmatrix} \cdot \mathbf{i} \\ \mathbf{R} \\ \cdot \mathbf{j} \\ \mathbf{R} \end{bmatrix}$$

Our immediate goal is to relate \underline{R} to \underline{D} .

In the deviation that follows it is convenient to work with the rate variables introduced above. For numerical computation, however, we will work with increments in the variables between the configuration at time t_{K} and time t_{K+1} . We denote the time

-14 -

increment as Δt , i.e.

$$\Delta t = t_{K+1} - t_{K}$$
(9)

The corresponding increment in the generalized displacement, for example, is

$$\Delta \underline{\mathbf{D}} = \underline{\mathbf{D}} \Delta \mathbf{t} \tag{10}$$

Since all our equations will be homogenous in time, they may be converted to incremental equations by multiplying through by Δt . In effect this means we may obtain incremental equations by replacing rate quantities, (\underline{D} for example) by incremental quantities ($\Delta \underline{D}$).

To complete an incremental formulation we must relate the frame orientation at time t_{K+1} to the orientation at t_{K} . We have

$$L^{F} = \frac{F}{L(t_{K+1}) - L(t_{K})}$$
(11)
$$\Delta t$$

F Solving for L (t_{K+1}) and using (4) gives

 $L^{F}(t_{K+1}) = \begin{bmatrix} \Lambda & I \end{bmatrix} L^{F}(t_{K})$

Thus

where

$$W = \begin{bmatrix} \mathbf{F} & \mathbf{F} \\ \mathbf{1} & \Delta \omega & -\Delta \omega \\ & \mathbf{3} & \mathbf{2} \\ \mathbf{F} & \mathbf{F} \\ -\Delta \omega_{3} & \mathbf{1} & \Delta \omega_{1} \\ \mathbf{F} & \mathbf{F} \\ \Delta \omega_{2} & -\Delta \omega_{1} & \mathbf{1} \end{bmatrix}$$
(13)

where $\Delta \omega_i$ denotes $\omega \Delta t$ and represents the increment in the frame i rotation.

2.3 KINEMATICS OF DEFORMATION

Referring to Figure 1 we can visualize the deformation from the initial state to the configuration at time t_K as a rigid body

motion of the beam frames F_i and F_j plus an elastic deformation. The rigid body motion of the beam frames may be due to both overall rigid body motion of the system and to plastic rotation and extension of the hinges at node i and/or node j.

In the initial configuration we have

$$\underline{x}^{io} = \underline{y}^{io}, \ \underline{x}^{jo} = \underline{y}^{j}$$

$$\underline{x}^{jo} = \underline{x}^{io} + (L^{F_{io}})^{T} \underline{r}$$
(14)
where \underline{r} is the vector $\underline{r} = \begin{bmatrix} 0 \\ 0 \\ \ell \end{bmatrix}$

At time t_K the mass frames are at \underline{y}^i and \underline{y}^j ; the beam frames are at \underline{x}^i and \underline{x}^j where

$$\underline{x}^{j} = \underline{x}^{i} + (\underline{L}^{i})^{T} \underline{r} + \underline{u}^{e}$$
(15)

in which \underline{u}^{e} represents the elastic displacement vector of the end j with respect to the end i referenced to the global system.

The origins of the beam and mass frames may differ by plastic displacements occurring at the hinges.

Thus

$$\underline{\mathbf{x}^{\mathbf{i}}} = \underline{\mathbf{y}^{\mathbf{i}}} + \underline{\mathbf{U}^{\mathbf{i}p}}$$

$$\underline{\mathbf{x}^{\mathbf{j}}} = \underline{\mathbf{y}^{\mathbf{j}}} - \underline{\mathbf{U}^{\mathbf{j}p}}$$
(16)

where \underline{U}^{ip} and \underline{U}^{jp} denote the plastic displacements referenced to the global system. With this (15) becomes $\underline{y}^{j} - \underline{y}^{i} = (L^{Fi})^{T}\underline{r} + \underline{U}^{e} + \underline{U}^{ip} + \underline{U}^{jp}$ (17)

The displacements of the mass frames are introduced as

$$\underline{U}^{i} = \underline{y}^{i} - \underline{y}^{io}, \ \underline{U}^{j} = \underline{y}^{j} - \underline{y}^{jo}$$
(18)

Expressing the second equation of (14) in terms of \underline{y}^{io} and y^{jo} and subtracting from (18) gives

$$\underline{\underline{U}}^{j} - \underline{\underline{U}}^{i} = \left[(\underline{\underline{L}}^{i})^{T} - (\underline{\underline{L}}^{i})^{T} \right] \underline{\underline{r}} + \underline{\underline{U}}^{e} + \underline{\underline{U}}^{ip} + \underline{\underline{U}}^{jp}$$
(19)

We obtain a rate equation by differentiating (19) with respect to time obtaining

$$\underbrace{\overset{j}{\underline{U}}}_{\underline{U}} - \underbrace{\overset{j}{\underline{U}}}_{\underline{U}} = \underbrace{(\overset{j}{\underline{L}}^{\mathrm{Fi}})^{\mathrm{T}}}_{(\underline{L}^{\mathrm{Fi}})^{\mathrm{T}}} \underbrace{\overset{e}{\underline{r}} + \underbrace{\overset{j}{\underline{U}}}_{\underline{U}} + \underbrace{\overset{j}{\underline{U}}}_{\underline{U}} + \underbrace{\overset{j}{\underline{U}}}_{\underline{U}} + \underbrace{\overset{j}{\underline{U}}}_{\underline{U}}$$
(20)

The plastic displacements are due to plastic extension of the beam. Thus the extension rate is always directed along the current x_3 axis of the beam frame. Thus in the local beam frames we have

$$F_{i} i_{j} p = U_{i} i_{j}$$

$$F_{j} i_{j} p = U_{j} i_{j}$$

$$U_{j} p = U_{i} i_{j}$$

$$(21)$$

$$F_{j} i_{j} p = U_{j} i_{j}$$

$$(21)$$

where U and U are the scaler axial plastic extensions and \underline{i} is the vector

$$\underline{i} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

.ip

Transforming to the global system gives

$$\underbrace{\overset{ip}{\underline{U}}}_{\underline{U}} = (\overset{F}{\underline{L}}^{i})^{T} \underbrace{\overset{ip}{\underline{i}}}_{\underline{U}} U$$

$$\underbrace{\overset{jp}{\underline{U}}}_{\underline{U}} = (\overset{F}{\underline{L}}^{j})^{T} \underbrace{\overset{jp}{\underline{i}}}_{\underline{U}} U$$
(22)

It can also be shown that

$$\frac{1}{(\mathbf{L}^{\mathbf{F}\mathbf{i}})^{\mathrm{T}}\mathbf{r}} = (\mathbf{L}^{\mathrm{F}\mathbf{i}})^{\mathrm{T}} \mathbf{E} \mathbf{L}^{\mathrm{F}\mathbf{i}} \underline{\omega}^{\mathbf{i}}$$
(23)

where

$$\mathbf{E} = \begin{bmatrix} 0 & \ell & 0 \\ -\ell & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(24)

Introducing (22) and (23) into (20) gives

$$\underbrace{\mathbf{J}}_{\mathbf{U}} - \underbrace{\mathbf{U}}_{\mathbf{U}} = \mathbf{H}_{\mathbf{R}} \underbrace{\boldsymbol{\omega}}_{\mathbf{U}} + (\mathbf{L}^{\mathbf{L}})^{\mathbf{T}} \underbrace{\mathbf{i}}_{\mathbf{U}} \mathbf{U} + (\mathbf{L}^{\mathbf{L}})^{\mathbf{T}} \underbrace{\mathbf{i}}_{\mathbf{U}} \mathbf{U} + \underbrace{\mathbf{U}}_{\mathbf{U}}^{\mathbf{e}} (25)$$

where

$$H_{R} = (L^{F_{i}})^{T} E L^{F_{i}}$$
(26)

A second vector equation is obtained by recognizing that

Thus the beam rotation rates are related by

$$\underline{\omega}^{j} = \underline{\omega}^{i} + \underline{\omega}^{e}$$
(27)

in which $\underline{\omega}^e$ denotes the elastic rotation rate of the F_j frame with respect to the F_j frame referred to the global frame.

Finally we wish to eliminate the beam frame rotation rates from (25) and (27). The difference in orientation of the mass and beam frames is due to plastic rotation at the hinges. Introducing the plastic rotation rates gives

$$\underline{\omega}^{i} = \Theta^{i} + \underline{\omega}^{ip}$$

$$\underline{\omega}^{j} = \Theta^{j} - \underline{\omega}^{jp}$$
(28)

where the superscript p denotes the hinge rotation rate. Using (28) in (25) and (27) gives

$$\begin{array}{cccc} \cdot \mathbf{j} & \cdot \mathbf{i} & \cdot \mathbf{e} & \mathbf{F} & \cdot \mathbf{ip} & \mathbf{F} & \cdot \mathbf{jP} \\ \underline{\mathbf{U}} & - \underline{\mathbf{U}} & - \mathbf{H}_{\mathbf{R}} \underline{\boldsymbol{\theta}}^{\mathbf{i}} = \mathbf{H}_{\mathbf{R}} \underline{\boldsymbol{\omega}}^{\mathbf{ip}} + \underline{\mathbf{U}} + (\mathbf{L}^{\mathbf{i}})^{\mathrm{T}} & \mathbf{\underline{i}} & \underline{\mathbf{U}} + (\mathbf{L}^{\mathbf{j}})^{\mathrm{T}} & \mathbf{\underline{i}} & \underline{\mathbf{U}} \\ \underline{\boldsymbol{\theta}}^{\mathbf{j}} & - \underline{\boldsymbol{\theta}}^{\mathbf{i}} & = \underline{\boldsymbol{\omega}}^{\mathbf{ip}} + \underline{\boldsymbol{\omega}}^{\mathbf{jp}} + \underline{\boldsymbol{\omega}}^{\mathbf{e}} \end{array}$$

$$(29)$$

The left hand side of equations (29) are expressed in terms of the generalized displacement rate \underline{D} , whereas the right sides involve the elastic deformation of the beam and the plastic deformation occurring at the nodes. It remains to relate these deformation quantities to the generalized forces acting on the beam at the nodes.

2.4 DIFFERENTIAL EQUILIBRIUM OF THE BEAM

The forces and moments acting on the beam in the current state at time t_K are shown in Figure 2. Neglecting elastic deformation the F^i_X

Figure 2

equations of equilibrium can be expressed as

$${}^{F}{}^{i}\underline{R}{}^{i} = A {}^{F}{}^{i}\underline{R}{}^{j}$$
(30)

where

and A is the 6 x 6 constant matrix

$$A = \begin{bmatrix} I & 0 \\ -E & I \end{bmatrix}$$
(32)

We can now obtain a rate equation by differentiating (30) with respect to time. In carrying out this computation we must account for the change in orientation of the F_i frame. This is best done by referencing the generalized force vector to the fixed global system. For this we have the transformation relations

$$F_{\underline{R}} = T^{F} \underline{R}$$

$$\underline{R} = (T^{F})^{T} \underline{F}_{\underline{R}}$$
(33)

where $\textbf{T}^{\textbf{F}}$ is the 6 x 6 matrix

$$\mathbf{T}^{\mathbf{F}} = \begin{bmatrix} \mathbf{L}^{\mathbf{F}} & \mathbf{0} \\ \mathbf{0} & \mathbf{L}^{\mathbf{F}} \end{bmatrix}$$
(34)

where

-20-

(36)

frame gives the global Expressing (30) in

$$T^{I} \underline{R}^{I} = A T^{I} \underline{R}^{J}$$

$$(37)$$

Differentiating gives

to (32) and frame and using (30) Transforming back to the F_1 ate F_1R_1 and \dot{T}^{F_1} . gives and Fi_Ri eliminate

$$\mathbf{F}_{\mathbf{i}} \cdot \mathbf{i} = \mathbf{F}_{\mathbf{i}} \cdot \mathbf{j} + \left[\mathbf{A}_{\mathbf{W}}^{\mathrm{A}} - \mathbf{W}_{\mathbf{A}}^{\mathrm{A}} \right]^{\mathrm{F}_{\mathbf{i}}} \mathbf{j}$$
(39)

identity ဖ × where we have used the fact that $T^{-1}(T^{-1})$ is the 6 shown that can be computation it direct By matrix.

$$\left[\frac{\Lambda}{AW} - \frac{\Lambda}{WA}\right]^{F_{1}} \hat{R}^{j} = J^{F_{j}} \hat{u}^{j}$$

$$(40)$$

matrix က × ဖ theis 5 where

٢

$$\mathbf{J} = \begin{bmatrix} \mathbf{0} \\ \mathbf{\overline{J}} \end{bmatrix} \tag{41}$$

3 matrix × က is the in which J

$$\vec{J} = \ell \begin{bmatrix} F_1 \\ -R_3 & 0 & 0 \end{bmatrix}^j$$

$$\vec{J} = \ell \begin{bmatrix} R_1 & R_2 & 0 \\ R_1 & R_2 & 0 \end{bmatrix}$$

$$(42)$$

gives Introducing (40) into (39)

$$F_{\mathbf{i}} \cdot \mathbf{i} = \mathbf{A} \mathbf{F}_{\mathbf{i}} \cdot \mathbf{j} + \mathbf{J} \mathbf{F}_{\mathbf{i}} \mathbf{i}$$
(43)

to the global frame and then expressed in an alternate We first transform the variables In what follows we will need (43) form.

eliminate the beam frame rotation through (28). After rearranging, the result is

$$(\mathbf{T}^{\mathbf{F}_{\mathbf{i}}})^{\mathbf{T}} \mathbf{J}^{\mathbf{F}_{\mathbf{i}}} \underline{\boldsymbol{\theta}}^{\mathbf{i}} = \underline{\mathbf{R}}^{\mathbf{i}} + (\mathbf{T}^{\mathbf{F}_{\mathbf{i}}})^{\mathbf{T}} \mathbf{A} \mathbf{T}^{\mathbf{F}_{\mathbf{i}}} \underline{\mathbf{R}}^{\mathbf{j}}$$

$$+ (\mathbf{T}^{\mathbf{F}_{\mathbf{i}}})^{\mathbf{T}} \mathbf{J}^{\mathbf{F}_{\mathbf{i}}} \underline{\boldsymbol{\omega}}^{\mathbf{i}p}$$

$$(44)$$

2.5 INCREMENTAL YIELD CONDITION

We must relate the plastic deformation rates in (29) and (44) to the generalized forces acting on the beam. The appropriate relations are derived from considering the yield condition for the cross section. A hinge operates at a node permitting plastic deformation at the node when the current stress resultants lie on the yield surface for the section. We assume that the effect of transverse shear on yield can be neglected. Thus the yield condition at node i, for example, is a surface in the four dimensional space associated with the reduced generalized force vector

$${}^{F}{}^{i}\underline{R}{}^{i}_{R} = \begin{bmatrix} {}^{F}{}_{3} \\ {}^{M}{}_{1} \\ {}^{M}{}_{2} \\ {}^{M}{}_{3} \end{bmatrix}^{i}$$
(45)

Thus we may denote the yield surface at node i by the scaler function

$$f^{i} \left(\frac{F_{i}}{R} \right)^{F} = C_{i}$$
(46)

where C_i is a constant.

Since the yield function must remain constant during the plastic deformation process, we have

In carrying out the chain rule differentiation, it is convenient to express the argument in terms of the nodal forces at the j node expressed in the global system, i.e.

where A_R is the 4 x 6 matrix formed from the last four rows of the matrix A.

With this (47) can be expressed as

$$(\nabla f^{i})^{T} (A_{R}^{T} T^{i} \underline{R}^{j} + A_{R}^{T} T^{i} \underline{R}^{j}) = 0$$
(49)

in which $\underline{\nabla}$ represents the vector gradient. Using (35) and transforming back to the F_i frame through (33) gives

$$(\underline{\nabla} \mathbf{f}^{i})^{T} (\mathbf{A}_{R} \overset{\underline{\Lambda}}{\underline{W}} \overset{\mathbf{F}}{\underline{R}}^{j} + \mathbf{A}_{R} \overset{\mathbf{F}}{\underline{R}}^{i}) = 0$$
(50)

The matrix $\frac{\Lambda}{W}$ involves the beam frame rotation rate $\stackrel{F_{i}i}{\underline{\omega}}$.

As before this can be expressed in terms of $\stackrel{F_{i} ip}{\underline{\omega}}$ and $\stackrel{F_{i} \theta^{i}}{\theta}$. Equation (50) can be reduced to an equation for a single scaler by relating the plastic deformation rate to the yield surface. We assume that incremental plastic deformation vector is normal to the yield surface.² We introduce the plastic deformation rate vector

 $\mathbf{\dot{k}}^{i} = \begin{bmatrix} \mathbf{U}^{1p} \\ \mathbf{F}_{i}^{i} \mathbf{p} \\ \mathbf{\dot{k}}^{i} \end{bmatrix}$ (51)

²For a discussion of the normality condition in structural theories see P. G. Hodge, "Limit Analysis of Rotationally Symmetric Shells",

Then the normality condition is

$$\underline{\dot{\mathcal{K}}}^{i} = \underline{a}^{i} \lambda$$
(52)

where λ is a scaler multiple and \underline{a}^i is the normalized gradient, i.e.

$$\underline{\mathbf{a}^{i}}_{I} = \frac{\nabla \mathbf{f}^{i}}{\left| \nabla \mathbf{f}^{i} \right|}$$
(53)

Using (53) to eliminate the components of $\overset{r}{\underline{\omega}}$ i ip from (50) gives after some algebric manipulation

$$\lambda (\underline{\nabla} \mathbf{f}^{i})^{T} \Delta \mathbf{A}_{R}^{i} \overset{\mathbf{F}_{i}}{\underline{R}}^{j} = -(\nabla \mathbf{f}^{i})^{T} \mathbf{A}_{R}^{i} \overset{\mathbf{F}_{i}}{\underline{R}} - (\underline{\nabla} \mathbf{f}^{i})^{T} \mathbf{B}^{i} \overset{\mathbf{\Phi}}{\underline{\theta}} (54)$$

where

where

$$\Delta A_{R}^{i} = \begin{bmatrix} a_{3} & -a_{2} & 0 & 0 & 0 & 0 \\ \ell a_{4} & 0 & -\ell a_{2} & 0 & a_{4} & a_{3} \\ 0 & \ell a_{4} & -\ell a_{3} & -a_{4} & 0 & a_{2} \\ 0 & 0 & 0 & a_{3} & -a_{2} & 0 \end{bmatrix}^{i}$$

$$F_{i} \begin{bmatrix} -R_{2} & R_{1} & 0 & 0 \\ -R_{3}\ell & -R_{6} & (R_{1}\ell + R_{5}) \\ -R_{3}\ell & -R_{6} & (R_{1}\ell + R_{5}) \\ R_{6} & -R_{3}\ell & (R_{2}\ell - R_{4}) \end{bmatrix}^{j}$$
(55)

0

-R₅ R₄

Solving (54) for λ and substituting into (52) gives for the plastic deformation rate

$$\underline{\mathbf{K}}^{\mathbf{i}} = \mathbf{G}^{\mathbf{i}} \mathbf{R}^{\mathbf{F}} + \overline{\mathbf{G}}^{\mathbf{i}} \mathbf{\theta}$$
(56)

where

$$G^{i} = \frac{-1}{(\underline{\nabla}f^{i})^{T} \Delta A_{R}^{i} F^{i}\underline{R}^{j}} \frac{a^{i} (\nabla f^{i})^{T} A_{R}}{(\underline{\nabla}f^{i})^{T} \Delta A_{R}^{i} F^{i}\underline{R}^{j}} \frac{a^{i} (\nabla f^{i})^{T} A_{R}}{a^{i} (\underline{\nabla}f^{i})^{T} B^{i}}$$

$$\frac{a^{i}}{(\underline{\nabla}f^{i})^{T} \Delta A_{R}^{i} F^{i}\underline{R}^{j}} \frac{a^{i} (\underline{\nabla}f^{i})^{T} B^{i}}{(\underline{\nabla}f^{i})^{T} B^{i}}$$

An analogous analysis may be carried out at the node j. The result for the plastic deformation rate at j is

$$\frac{J}{K}^{j} = G^{j} \frac{F_{j} \cdot i}{R} + G \theta$$
(57)

where

$$G^{j} = \frac{1}{(\underline{\nabla} f^{j})^{T} \Delta A_{R}^{j} F^{j} \underline{R}^{i}} \qquad \underline{a}^{j} (\underline{\nabla} f^{j})^{T} A_{R}^{-1}$$

$$\overline{G}^{j} = \frac{1}{(\underline{\nabla} f^{j})^{T} \Delta A_{R}^{j} F^{j} \underline{R}^{i}} \qquad \underline{a}^{j} (\underline{\nabla} f^{j})^{T} B^{j}$$
(58)

-

in which $f^{j} = C_{j}$ is the yield function at j and

$$\underline{\mathbf{a}}^{\mathbf{j}} = \frac{\nabla \mathbf{f}^{\mathbf{j}}}{|\nabla \mathbf{f}^{\mathbf{j}}|}$$
(59)

$$A_{\rm R}^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & \ell & 0 & 1 & 0 & 0 \\ -\ell & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{\rm j}$$

$$\Delta A_{\rm R}^{\rm j} = \begin{bmatrix} a_3 & -a_2 & 0 & 0 & 0 & 0 \\ -\ell a_4 & 0 & \ell a_2 & 0 & a_4 & -a_3 \\ 0 & -\ell a_4 & \ell a_3 & -a_4 & 0 & a_2 \\ 0 & 0 & 0 & a_3 & -a_2 & 0 \end{bmatrix}^{\rm j}$$
(60)

$$B^{j} = F_{j} \begin{bmatrix} -R_{2} & R_{1} & 0 \\ \ell R_{3} & -R_{6} & (-R_{1}\ell + R_{5}) \\ R_{6} & \ell R_{3} & (-R_{2}\ell - R_{4}) \\ -R_{5} & R_{4} & 0 \end{bmatrix}^{i}$$

2.6 ELEMENT STIFFNESS MATRIX

Equations (29) and (44) represent twelve equations which will relate the elements of \underline{D} and \underline{R} if we can eliminate the elastic and plastic deformation rates. From the previous section we obtain

$$\begin{array}{rcl}
\overset{i p}{U} &= & G_{U}^{i} & \overset{F}{\underline{R}} & + & \overleftarrow{G}_{U} & \overset{F}{\underline{\theta}}^{i} \\
\overset{i p}{\underline{\omega}}^{i p} &= & H^{i p} & \overset{j j}{\underline{R}} & + & \overleftarrow{H} & \underline{\theta}^{i} \\
\overset{j p}{U} &= & G_{U}^{i} & \overset{j \cdot i}{\underline{R}} & + & \overleftarrow{G}_{U} & \overset{F}{\underline{\theta}}_{\underline{\theta}}^{j} \\
\overset{j p}{\underline{\omega}}^{j p} &= & H^{j p} & \overset{i i}{\underline{R}} & + & \overleftarrow{H} & \underline{\theta}^{j}
\end{array}$$
(61)

where

$$H^{ip} = (L^{F_{i}})^{T} G^{i}_{R} T^{F_{i}}$$

$$\overline{H}^{ip} = (L^{F_{i}})^{T} \overline{G}^{i}_{R} L^{F_{i}}$$

$$H^{jp} = (L^{F_{j}})^{T} G^{j}_{R} T^{F_{j}}$$

$$\overline{H}^{jp} = (L^{F_{j}})^{T} \overline{G}^{j}_{R} L^{F_{j}}$$
(62)

in which a subscript "U" on G or \overline{G} denotes the first row of the corresponding matrix and a subscript "R" denotes the bottom three rows.

From elastic beam theory we have relative to the current configuration beam frame ${\rm F}_{\rm i}$

$${}^{F}{}^{i}\underline{D}^{e} = K_{e}^{-1} {}^{F}{}^{i}\underline{R}^{j}$$
(63)

where

in which E is the elastic modulus, G is the shear modulus, I_1 and I_2 are the principal moments of inertia, A is the cross section area, J is the torsional rigidity, and l is the beam length. In (63) the vector on the left hand side represents

where $\underline{\Omega}^{e}$ represents the elastic rotations. We are assuming the elastic deformation is small and hence $\underline{\Omega}^{e}$ may be considered a vector as well as the elastic rotation rate $\underline{\omega}^{e}$. We introduce the rate variable

$$\mathbf{F}_{i.e} \begin{bmatrix} \mathbf{F}^{i}\underline{U}^{e} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{F}_{i.e} \\ \underline{\omega} \end{bmatrix}$$
(66)

In calculating this rate from differentiating (63), we must again account for the rotation rate of the beam frame F^{i} . The procedure is exactly analogous to the differentiation of the equilibrium equation (30). The final result expressed in the global frame is

-28-

$$\underbrace{\mathbf{D}}_{\mathbf{D}} = \left[\left(\mathbf{T}^{\mathbf{F}} \mathbf{i} \right)^{\mathbf{T}} \mathbf{K}_{\mathbf{e}}^{-1} \mathbf{T}^{\mathbf{F}} \mathbf{i} + (\mathbf{KRT}) \right] \underbrace{\mathbf{R}}_{\mathbf{R}}^{\mathbf{j}} + (\mathbf{KRT}) \underbrace{\boldsymbol{\theta}}^{\mathbf{i}}$$
(67)

in which

$$(KRT) = (T^{F_{i}})^{T} (KR)L^{F_{i}}H^{ip}$$

$$\overline{(KRT)} = (T^{F_{i}})^{T} (KR)L^{F_{i}}(I+\overline{H})$$
(68)

j

where (KR) is the $6 \ge 3$ matrix

$$\mathbf{F_{i}} = \begin{bmatrix} K_{7}R_{6} & (K_{3}-K_{1})R_{3} & (K_{1}-K_{2})R_{2}-(K_{7}+K_{8})R_{4} \\ (K_{2}-K_{3})R_{3} & -K_{8}R_{6} & (K_{1}-K_{2})R_{1}+(K_{7}+K_{8})R_{5} \\ (K_{2}-K_{3})R_{2} & (K_{3}-K_{1})R_{1}-K_{7}R_{5} & 0 \\ +K_{8}R_{4} & (K_{3}-K_{1})R_{1}-K_{7}R_{5} & 0 \\ \cdot & K_{8}R_{3} & (K_{6}-K_{4})R_{6} & -(K_{7}+K_{8})R_{1} \\ +(K_{4}-K_{5})R_{5} \\ (K_{5}-K_{6})R_{6} & -K_{7}R_{3} & +(K_{4}-K_{5})R_{4} \\ K_{7}R_{1}^{+} & -K_{8}R_{2}^{+} \\ (K_{5}-K_{6})R_{5} & (K_{6}-K_{4})R_{4} & 0 \end{bmatrix}$$
in which K represents the nonzero elements of K_e^{-1} and are given by

$$K_{1} = \ell^{3}/3EI_{2}, \quad K_{2} = \ell^{3}/3EI_{1}, \quad K_{3} = \ell/AE$$

$$K_{4} = \ell/EI_{1}, \quad K_{5} = \ell/EI_{2}, \quad K_{6} = \ell/GJ \quad (70)$$

$$K_{7} = \ell^{2}/2EI_{2}, \quad K_{8} = -\ell^{2}/2EI_{1}$$

We now partition equation (67) to give

$$\underline{\underline{U}}^{e} = \begin{bmatrix} K_{u} + (KRT)_{u} \end{bmatrix} \underbrace{\underline{R}}^{j} + (\overline{KRT})_{u} \underbrace{\underline{\theta}}^{i}$$

$$\underline{\underline{\omega}}^{e} = \begin{bmatrix} K_{\ell} + (KRT)_{\ell} \end{bmatrix} \underbrace{\underline{R}}^{j} + (\overline{KRT})_{\ell} \underbrace{\underline{\theta}}^{i}$$

$$(71)$$

where the subscripts u and l denote the upper three rows and lower three rows respectively of the corresponding matrices in (67).

Finally we write

where from (61), (6) and (33) we have

$$\begin{array}{l} & \bigwedge_{E_{i}} = (\boldsymbol{L}^{F_{i}})^{T} \underline{i} \boldsymbol{G}_{U}^{i} \boldsymbol{T}^{F_{i}} \\ & \frac{\Lambda}{E_{i}} = (\boldsymbol{L}^{F_{i}})^{T} \underline{i} \boldsymbol{G}_{U}^{i} \boldsymbol{L}^{F_{i}} \\ & \bigwedge_{E_{j}} = (\boldsymbol{L}^{F_{j}})^{T} \underline{i} \boldsymbol{G}_{U}^{j} \boldsymbol{T}^{F_{j}} \\ & \frac{\Lambda}{E_{j}} = (\boldsymbol{L}^{F_{j}}) \underline{i} \boldsymbol{G}_{U}^{j} \boldsymbol{L}^{F_{j}} \end{array}$$

$$(73)$$

.

We now use (61), (71) and (72) to eliminate the elastic and plastic deformation rates from (29) and (44). The resulting system of equations may be expressed in matrix form

$$B \underline{D} = H \underline{R}$$
(74)

where the 12 x 12 matrices B and H are

$$H = \begin{bmatrix} -0 & | & 0 & | & 0 & | & 0 \\ -1 & -\frac{F_{i}}{J}^{T}\overline{J}(I + 0 & 0 & 0 \\ | & \overline{G}_{R}^{i} \rangle^{L} \frac{F_{i}}{I} & | & 1 & 0 \\ - + & \overline{G}_{R}^{i} \rangle^{L} \frac{F_{i}}{I} & | & 1 & 0 \\ - + & \overline{G}_{R}^{i} \rangle^{L} \frac{F_{i}}{I} & | & 1 & 0 \\ | & -H_{R}^{i} + H_{R}^{i} \rangle | & | & 1 & -\overline{E}_{j} \\ | & \frac{I_{i}p \Lambda}{H_{R}^{i} + \overline{E}_{i}} \rangle | & | & 1 \\ - & + & -\frac{I_{i}p \Lambda}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} \\ 0 & | & -(I + \overline{H}^{i}) \rangle | & 0 & | & (I - \overline{H}^{jp}) \\ + (\overline{KRT})_{\ell} \end{bmatrix}$$

$$H = \begin{bmatrix} \frac{I_{i}}{I_{R}^{i} - 1} & 0 & | & -\frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - 1} - \frac{I_{i}}{I_{R}^{i} - I_{i}^{i} - I_{i}^{i} - \frac{I_{i}}{I_{R}^{i} - I_{i}^{i} - I$$

in which G_1 and G_2 denote the first three and and second three columns of G_R^i respectively.

Thus we have the desired result

$$\frac{R}{R} = K \frac{D}{D}$$
(77)

where the element stiffness matrix K is

$$K = H^{-1} B$$
 (78)

2.7 TEST CONDITIONS FOR PLASTIC DEFORMATION AND ELASTIC UNLOADING

In the previous section we derived the stiffness matrix for an elasticplastically deforming beam element. This general expression is valid, however, only if the plastic hinges at the beam nodes are operating. If the hinge is not operating, the plastic contribution to (78) can be eliminated simply by setting the G and \overline{G} matrices associated with the node to zero.

This implies, however, that in addition to the stiffness matrix we must develop a procedure for monitoring the operation of the hinge. Implementing this procedure is basically a programming problem, but we briefly outline here the general considerations involved. For each node we introduce a hinge switch

$$s^{i} = {0 \atop 1} {\text{Plastic Deformation}} {\text{Plastic Deformation}}$$
 (79)

Initially S^{i} is zero. At the end of each forward integration step the value of the yield function f^{i} is computed. If it is less than C_{i} , the computation proceeds to the next step with the G and \overline{G} matrices set to zero. If it exceeds C_{i} , we introduce a scale factor λ such that

$$\mathbf{f}^{i} \left(\lambda \overset{\mathbf{F}}{\underline{\mathbf{R}}} \overset{\mathbf{i}}{\underline{\mathbf{R}}} \right) = \mathbf{C}_{i}$$
(80)

Since the generalized force and generalized displacement vectors are linearly related, scaling the last step size by λ gives a deformation state which just satisfies the yield condition. The switch Sⁱ is then set to unity for the next step and the G and \overline{G} matrices are included in the calculations.

Finally we must introduce a condition to monitor elastic unloading. During plastic deformation the rate of energy dissipation must be positive. At node i the dissipation rate is

$$\dot{\mathbf{d}} = \begin{pmatrix} \mathbf{F} & \mathbf{i} \\ \mathbf{R} \\ \mathbf{R} \end{pmatrix}^{\mathrm{T}} \underline{\dot{\mathbf{K}}}^{\mathrm{i}}.$$
(81)

The dissipation increment for each time step is computed from (81) whenever S^{i} is equal to unity. If

-32-

the computation proceeds to the next step. If

the switch S^{i} is set to zero which eliminates the G and \overline{G} matrices from the computation. Once S^{i} is zero, of course, it is checked for reloading as discussed above.

2.8 GLOBAL STIFFNESS MATRIX

The global stiffness matrix is obtained by considering the equilibrium of each node. The process of assembling the global matrix is standard and basically a bookeeping operation. Here we briefly outline the basis for the assembly proceedure. Figure 2A shows the beam element LB which connects the nodes i and j. The generalized forces shown are now considered

As vectors in the global system. The minus sign is required at the i end of the beam since the elements of \underline{R}^{i} were defined using the usual beam theory sign convention. Equilibrium of the i and j nodes in rate form gives

.i .ei

$$\underline{R}$$
 (LB) = - \underline{R}
.j .ej
- \underline{R} (LB) = - \underline{R}
(82)

where $\frac{R^{ei}}{e}$ denotes the external force acting on the ith node. We partition the element stiffness matrix

$$K(LB) = \begin{bmatrix} SK^{II} & & \\ SK^{JI} & SK^{JJ} \end{bmatrix}$$

$$(83)$$

where the elements SK are $6 \ge 6$ matrices. Thus we have

$$\begin{bmatrix} \cdot \mathbf{i} \\ \underline{R} \\ \cdot \mathbf{j} \\ \underline{R} \end{bmatrix}^{\mathrm{LB}} = \begin{bmatrix} \mathbf{S} \mathbf{K}^{\mathrm{II}} & \mathbf{S} \mathbf{K}^{\mathrm{IJ}} \\ \mathbf{S} \mathbf{K}^{\mathrm{JI}} & \mathbf{S} \mathbf{K}^{\mathrm{JJ}} \end{bmatrix} \begin{bmatrix} \cdot \mathbf{i} \\ \underline{D} \\ \cdot \mathbf{j} \\ \underline{D} \end{bmatrix}$$
(84)

Introducing into (82) gives

equation

$$SK^{II} \stackrel{i}{\underline{D}} + SK^{IJ} \stackrel{j}{\underline{D}} = -\underline{R}$$

$$-SK^{JI} \stackrel{i}{\underline{D}} - SK^{JJ} \stackrel{j}{\underline{D}} = -\underline{R}$$
(85)

Considering equilibrium of all nodes i = 1, 2...N gives a system of

$$.G .G$$

TK D = - R (86)

The global stiffness matrix TK has dimension $6 \cdot N \ge 6 \cdot N$. It may be considered as consisting of N \ge N elements, each element being a $6 \ge 6$ matrix. In this sense we introduce the N \ge N matrix element matrix

$$TK(LB) = \begin{bmatrix} I & J \\ --SK & II \\ --SK & JI \\ --SK & JI \\ --SK & JI \\ --SK & JI \\ --SK & JJ \\ --SK & JJ$$

in which all other elements are zero. From (85) it is clear that TK(LB) represents the contribution of the LB beam clement to the system of equations (86). Thus we have

$$T\mathbf{K} = \sum_{LB=1}^{M} TK(LB)$$
(89)

when M is the total number of elements.

2.9 BOUNDARY CONDITIONS

Our problem has been reduced to the solution of the system of equations (86) where the right hand side represents the increments in external force applied to the structure. In general this represents the known loading. In addition, however, boundary conditions may be specified on the displacements such as at supports or imposed displacements of certain nodes. Boundary conditions are handled in the present analysis by contraction of the K matrix.

We let TK represent the elements of the TK matrix. Then an alternate ij form for expressing (86) is

We consider a displacement condition

$$D_{K} = \Delta$$
 (91)

The corresponding external generalized force rate R_{K} is now an unknown constraint. Introducint (91) into (90) we have

$$\begin{array}{cccc}
\cdot G & \cdot G \\
\Sigma & TK & D + TK & \Delta = -R & i \pm K \\
i \pm K & ij & j & iK & i \end{bmatrix} (92)$$

$$\begin{array}{c} \cdot G & \cdot G \\ \Sigma & TK & D_{j} + TK & \Delta = -R_{K} \\ j \pm K & Kj & j & KK & K \end{array}$$
(93)

Equations (92) have the form

$$\frac{-\mathbf{G}}{\mathrm{TK}} = -\frac{\mathbf{R}}{\mathbf{Q}}$$
(94)

where \overline{TK} is the matrix obtained by eliminating the Kth row and \overline{G} .G \overline{G} .G \overline{G} .G from \underline{D} and the N-l elements of \underline{R} are

$$\vec{R}_{i}^{G} = \vec{R}_{1}^{G} + TK_{KK} \Delta, \quad i \pm K$$
(95)

When the reduced system (94) is solved, the unknown constraint force can then be computed from (93). With this the vectors $\underline{\dot{D}}^{G}$ and .G <u>R</u> are completely known from which all other variables in the problem can be computed. (For example, the generalized force rate acting on a beam element can be computed from (84)).

2.10 SOLUTION PROCEDURE

The above analysis has been formulated in terms of rate equations and represent a complex set of differential equations. To solve the system numerically we must introduce approximations. Our final set of equations has the form.

$$T \underline{U} = \underline{f}$$
(96)

when the right hand side is known and T is a complicated implicit function of U. We now approximate U (and similarly \underline{f}) by

$$\underline{\underline{U}}(t_{K}) = \underline{\underline{U}(t_{K+1})}_{dt} - \underline{\underline{U}}(t_{K})$$
(97)

Thus

$$\underline{U}(t_{K+1}) - \underline{U}(t_K) = \Delta \underline{U}_{K+1} = \underline{U}(t_K)dt$$
(98)

Introducing into (96) now gives

$$T(t_{K}) \Delta \underline{U}_{K+1} = \Delta \underline{f}_{K+1}$$
(99)

Thus the forward integration is actually accomplished by specifying the next increment in the prescribed vector \underline{f} . The corresponding increment in \underline{U} is then obtained by solving equations (99) using the current value of the matrix T_K . With \underline{AU} known the increment in all variables can be computed, the variables updated to time t_{K+1} , and the matrix T_K updated after carrying out the check procedures outlined in section 2.7. The details of the numerical computation and the corresponding computer program are discussed in the User's Guide contained in the Appendix.

CHAPTER 3

VERIFICATION OF BEAM-COLUMN ELEMENT

3.1 INTRODUCTION

The computer model for the beam-column with hinge must be verified by comparison with experiment. The specific case chosen is the static deflection of a thin-walled, cantilevered beam. A plastic hinge will form at the root of the beam when tip loads become large. Both qualitative and quantitative comparisons are to be made. The behavior of the hinge at large deformation is of greatest interest.

3.2 EXPERIMENTAL GOALS

The experiment is intended to provide information not only to verify the current element model, but also to serve as a standard for future theories. It is hoped to provide a well-defined and simple experiment.

A beam-column is to be subjected to loads acting initially in axial and in lateral directions (Figures 3 and 4).

Figure 4. Axial Loading

Criteria for planning the test include:

- The loads are to be applied in a manner easy to interpret in a global coordinate system, i.e., the verticality of the load must be maintained at very large deflections.
- The geometry of the cross section must be maintained in the regions where external forces act--at the tip and root. This provides reproducible boundary conditions.
- The large deflection, plastic flow region is of more interest than the elastic region.
- Displacements must be controlled so that catastrophic collapse does not occur in softening portions of the load-deflection cycle.

3.3 BEAM SPECIMENS

The test specimens were integrally milled in pairs from cold-rolled 1018 steel bar (Figure 5).

Figure 5. Two-Element Beam Specimen

Two such specimens (a total of 4 beam elements) were tested at the same time in order to maintain symmetry and verticality of loading in the test machine. This same type of specimen can be used for both the dominantly axial and dominantly lateral loadings.

The beam cross section was an open channel with nominal dimensions of h = 1'', b = 1-1/2'' and t = 0.100''.

Figure 6. Cross-Section

Average cross-sectional properties for the lateral test were h = 0.998'', b = 1.498'' and t = 0.102''. For the axial test, h = 1.001'', b = 1.502'', and t = 0.101''. The specimens were accurately machined; the integral machining process is viewed as a success. Each two-element beam specimen required 1-1/2 man days to machine.

Material properties for the 1018 steel were found by a standard tensile test. A 0.5" diameter cylinder was tested with the use of a mechanical extensometer of two inch gage length. The important portion of the stress-strain curve is shown in Figure 7. Modulus of elasticity E is found to be 30.35×10^6 psi and yield stress based on .002 permanent set is 75,000 psi. The stress-strain law can be approximated as elastic-perfectly plastic, with a yield stress of 78,700 psi; this characterization will be used in later comparisons.

3.4 LOADING CONFIGURATIONS

The specimens can be arranged so that the loading is either dominantly lateral or dominantly axial. It has been historically difficult to maintain a rigid boundary at the root of a cantilever. This was accomplished by milling the specimens in pairs with the root at the center so that symmetric loading yields a zero slope condition at the root. Another, more

specialized, requirement for the present test is that the direction of loading remain unchanged even to large rotations of the specimen. This is more difficult than one might imagine, but can be satisfied by using two pairs of specimens in a mirror image type of loading.

For lateral loading, links were used to join the tips of the beams (Figure 8). Four hinges formed as large deformation proceded. The links

Figure 8. Lateral Loading Geometry

were made as short as possible so that the 4 hinges are forced to maintain the same angle. This approach was successful over most of the test range.

For axial loading (Fig. 9), the specimens were constrained at both the root and tip location. The cover plates at the center enforced equality of hinge angles during the entire test. In order to prevent a catastrophic buckling typical of perfect specimens, an imperfection δ_0 was introduced. The small value of imperfection provided, $\delta_0 = 0.039^{\prime\prime}$, allowed a more gradual collapse under load.

In each type of loading, the beam elements act in parallel as well as in series to oppose the load. The notation has been chosen to yield F, P, δ , and β as the appropriate quantities for a single element.

A Tinius Olsen 120,000 lb tensile test machine was used. For each type of loading, special fixtures had to be made to mount the assembly and to prevent slippage. These end fixtures introduced some unwanted flexibility into the system in each case, but this had little effect on the large displacement

Figure 9. Axial Loading Geometry

readings desired. (See results). Loads were read on the large dial of the Olsen machine, calibrated to within 1%. Displacements of the machine's loading surfaces and of the lateral deflection of the beams were read with mechanical dial gages with least count of $0.001^{"}$. Angular rotations at the center of each beam element were measured with a protractor with least count of $1/2^{\circ}$. Accuracy of these angular readings was approximately $\pm 1/2^{\circ}$ with error due to parallax and difficult alignment at times.

The tests were displacement-controlled. The loading surfaces were moved in increments of displacement, and then load, lateral displacement, axial displacement and specimen angles were read. In the softening region of loading, a relaxation phenomenon occurred (see Section 3.7). In all load-deflection curves presented, the loads are for long time, i.e., the "static" case. This often meant waiting 5 minutes before reading the load value. The Olsen machine was rigid enough that displacements did not creep to any extent.

3.5 TEST RESULTS FOR LATERAL LOAD

The results given here will in all cases be presented in terms of loads and deflections for a single beam element. This means that system characteristics such as stiffnesses acting in parallel or series, must be appropriately accounted for. In the lateral loading case, the loads applied to the system are actually 2F, and the displacements read are actually 2δ , but results are always given in terms of F and δ .

As initial reduction and plotting of data progressed, it became clear that certain other system properties, such as support flexibilities, might at times be removed before presenting data for the element. These corrections are small and important only in the elastic range. They will be discussed when they arise.

Load-deflection results for the lateral load case are given in Figures 10-12. The beam was at first loaded in increments of 50 lb (Figure 10. The stiffness of the specimen was found to be 1,083 lb/in, as compared to a theoretical value for an Euler beam of 1,450 lb/in. The difference is attributed to flexibility in the integrally milled center section of the specimen bar and to flexibility of supports. Yielding of the cross section occurred between 250 and 300 lb, whereas the theoretical value for yield at the outer fiber is 321 lb. The limit load for the beam was 500 lb. This provides an experimental shape factor of approximately 1.8 in excellent agreement with the theoretical value of 1.81.

After ultimate load has been reached, the beam unloads as seen in Figure 11. Disregarding the strange ripple in the curve between 2 and 4 inches of tip displacement, one can see that the beam softens to approximately 1/2 its ultimate load carrying capacity. It then becomes more rigid at very large deflections because the load is carried in axial tension.

The ripple occurring in the softening portion of the curve has a rational explanation. It is kinematically possible, because of the way the beams are linked together, to have one pair of hinges operating at a different angle from the other pair. In a softening situation, one pair of hinges will freeze while the other pair operates. This can best be

-43-

discussed in terms of angular rotations in the next paragraphs. One can propose, however, that the dashed line in Figure 11 represents the true curve for a single beam. The energy absorption should be approximately the same regardless of the order of hinge rotation, and so the area under the solid and dashed lines should be equal. Also, the slope of the dashed line should be one half of that of the experimental value when only half of the hinges were operating in the experiment.

Rotation of each beam was measured at the center of the span of the beam. In the elastic region, this angle is not of much interest, but in the plastic region it is approximately the hinge angle. This is particularly true at low values of load where the outboard portion of the beam became essentially straight. Figure 12 has the same general character as the plot of tip deflection except for the softening range.

It was found that the onset of plastic hinge flow was at 7° of beam rotation. The upper two hinges operated first, until their rotations were 27°. At this time, the system was mildly distorted as in Figure 1³. This apparently increased the load needed to operate the upper hinges because of the favorable eccentricity shown in Figure 1⁴. At this point, the lower

Figure 13. Upper Hinges Leading

Figure 14. Extreme Position with Upper Hinges Leading

-47 -

two hinges started to flow and the upper hinges froze. The lower beams rotated from 7° to 27° and all was well again! The loads required to operate the lower hinges were reduced somewhat, apparently due to adverse eccentricity, as in Figure 15.

Figure 15. Lower Hinges "Catching Up"

Details of the locus of the loading cycle are shown in Figure 16. The mean value shown is the suggested true curve for a single beam. The effect of this unusual loading cycle seemed confined to the region of 7° to 27° . At higher rotations, all four hinges acted at the same angles. It is felt, therefore, that the results are rather accurate in spite of this phenomenon.

The flexibility of the integrally milled center section can be accounted for in the data reduction. This flexibility in the experiment causes an apparent reduction of lateral stiffness of the beam specimen in the elastic range. Accounting for displacements and rotations at the root of the cantilever specimen, one has

$$δtrue = δexp - (2.96 x 10-6 + 68.05 x 10-6 cos θ)F$$

This correction yields a lateral stiffness for the beam in the elastic region of 1,179 lb/in, an increase of 10%. This still falls short of the theoretical value of 1450 lb/in and the remaining difference is due to support flexibility. These extraneous sources of flexibility will not be removed from the data because they are not important in the large deflection region.

The hinge, which forms approximately 3/4" from the root of the beam, is characterized by large distortion of the cross section. The specimens have been arranged so that the free edge of the channel is in compression. At the hinge, these free edges buckle outward as plastic flow progresses (Fig. 17). Detailed data of the progressing cross-sectional distortion were not taken. This geometrical effect severely weakens the beam and is responsible for the marked softening of the beam at large deflections.

Fig. 17. Plastic Hinge in Thin-Walled Channel.

3.6 TEST RESULTS FOR AXIAL LOAD

The experimental quantities measured in the axial loading case (Figure 9) were applied load P, lateral displacement δ , axial displacement β and beam rotation θ . Again, no detailed measurements of cross-sectional changes at the hinge were made.

The initial "bow" in the specimens, δ_0 , was 0.039". This permanent set resulted from the machining process. It was smaller than desired but did prove sufficient to reduce the buckling load substantially from the predicted Euler value and made the buckling phenomena a more gradual process.

The test was carried out without incident. Figures 18 and 19 show, at different scales, the load-axial displacement relation. The assembly had some slack initially until all bolts were well seated, and then behaved elas-tically up to 9,000 lbs. The ultimate load of 9,440 lb. will be referred to as the buckling load. As this load was reached, increasingly large lateral

displacements resulted, with simultaneous formation of plastic hinges. It is not possible to tell from the experiment alone what proportion of the softening exhibited by the system near the buckling load is due to geometrical effects and what part is due to material softening. Both apparently play a role. The system shows softening character at all loads above the buckling load.

The axial stiffness of the system in this linearly elastic range (best seen in Figure 18) was 387,000 lb./in. A simple calculation (neglecting the small effect of the bow on axial stiffness) shows an expected speciment stiffness of 832,000 lb./in. This means that the end fixtures, bolts, etc., were responsible for 53 percent of the elastic axial flexibility, and indicates how difficult it is to obtain a perfectly rigid axial support. If desired, this support flexibility can be removed from the 8 measurement by:

$$\beta_{true} = \beta_{measured} - 1.382 \times 10^{-6} P$$

where G is in inches and P is in pounds. This correction will be made later in comparing theory and experiment in the elastic range. The correction is very small and never exceeds 0.013".

Lateral displacement is given in Figures 20 and 21. These figures confirm the axial displacement observations and indicate the softening character of the structure.

The angle of rotation of the specimens is studied in Figure 22. Because of the constraining effect of the cover plates, all four hinges operated at the same angle, $\pm 1/2^{\circ}$. The experiment was terminated at 78° because of mechanical interference. Up to this angle no hardening of the system had occurred; however, this would be expected near 90° as the beam column flattens against loading surfaces.

The present axial loading test can be compared with the previous lateral loading test at one point. When the hinge angle θ is 45° , the two cases have the same bending moment at the root and differ only in the axial force. If the axial force is small, then the loads P required to rotate the hinge should be

-51-

Axial Test

Lateral Test

Fig. 23.

about the same. Figure 24 shows that the loads P and F are equal at an angle of 46° and the difference in P and F at 45° is only 10 lb. This furnishes a remarkable check on the consistency of load and angle measurement.

3.7 LOAD RELAXATION DATA

A load-relaxation phenomena was found in the softening region of hinge rotation. This was noted in both tests, but data were taken only for the axial load case where it seemed more severe. As an increment in compressive axial displacement was made, the load incremented to a new value. For several minutes thereafter, however, the load would creep down to even lower values. This relaxation occurred with no additional axial displacement (demonstrating the rigidity of the test machine) and with zero or very slight lateral displacements.

Figure 25 shows several observations. A straight-line relationship on semi-log paper was found for all eight cases measured. Readings were taken up to eight minutes after the displacement increment. The data presented represents behavior at moderate times after the increment in axial displacement was made. Very short time data were impossible to record from dial gages and would tend to follow some other law. Long time data would surely show the load leveling off because of fixed end displacement (the process cannot extend indefinitely or negative loads result). The slopes of the lines in Figure 25 represent the rapidity of the relaxation. This slope depends on the initial load on the column at the tir \cdot the increment in axial displacement was made. At higher stresses, the relaxation proceeds more quickly. Figure 26 shows the dependence of the relaxation on initial load P₀. For loads up to 5,500 lb., this is of a straight-line character. Combining results of Figures 24 and 26, one obtains an empirically derived equation

 $P - P_0 = const. - 0.0172 P_0 log(t-t_0)$

where P_0 and t_0 are the conditions at the start of the observation, and were read as quickly as possible after the displacement increment. The constant changes from case to case and its dependence on P_0 and t_0 are not known.

The full significance of the load relaxation is not apparent at this time. It occurs at a slow enough time scale to affect measurements which are normally considered static. It is believed that the experimentalist must be aware of this phenomena and carefully record the rates of loading when plastic hinge formation is in progress. This will allow later interpretation of the procedure.

3.8 COMPARISON OF BEAM-COLUMN ELEMENT WITH EXPERIMENT

The computer model of the beam-column element will now be compared with the results from the lateral and axial tests. In general, the results demonstrate the validity of the plastic hinge concept, but suggest a number of refinements to incorporate in a second generation simulation.

Figure 27 shows a comparison of computed results with the lateral test. The lowest computed curve is based on a yield stress of 78,700 psi, which was determined in the uniaxial material test. The model predicts elastic behavior up to 381 lbs. at which time a hinge forms. As deformation proceeds, a gradual hardening occurs due to geometric changes in configuration. For large deformation this hardening becomes marked.

Given the limitations of the plastic hinge concept, the agreement is reasonable. There are two considerations in making the comparison. The first is an inherent feature of plastic hinge theory; the hinge is either preative and fully plastic or no plastic deformation occurs. Thus, a plastic hinge

cannot model elastic-plastic behavior at a cross-section. In the model, the yield condition for hinge operation is based on initial yield. Actually, agreement with the experiment is excellent. The hinge forms at the load for which the experimental result begins to deviate from linearity. The increase in load from 275 lbs. to 500 lbs. in the test is due to elastic-plastic behavior of the cross-section. (For this section the ratio of ultimate moment to moment at initial yield in pure bending can be calculated as 1.81 and was measured as 1.8.)

To account for this elastic-plastic effect, an inflated yield stress may be employed in the yield function. This is demonstrated by the second computed curve which used a yield stress of 90,000 psi. This delays the formation of the hinge until an intermediate load value between actual initial yield and full plasticity of the cross-section.

The second consideration is the marked softening of the structure after the ultimate load is reached. This softening is not predicted by the model. This result demonstrates the importance of local deformation of the crosssection for real structures. In the experiment, changes in cross-section shape were visually observable around the ultimate load. This local deformation became increasingly marked as deformation proceeded. It is clear that if exact detail of the force-deformation curve is required over a broad range of deformation, local deformation must be taken into account.

Within plastic hinge theory there is no rigorous analytical method to incorporate this effect. It is worth noting, however, that the theoretical yield surface can be modified to give a variety of effects. This is illustrated in Figure 28 which again shows the experimental curve and two computed curves. The results are rather dramatic, the model now showing a softening effect very similar to the test. This was achieved by using a yield stress to initiate the hinge at the ultimate load and changing by an order of magnitude one of the parameters in the theoretical yield function. The hardening in the second computed result was achieved by returning this parameter to its original value at an arbitrary point in the computation. It must be emphasized that there is no rational basis for this procedure. Nevertheless, it is interesting

-62-

to speculate that it might be possible to define a "failure function" which would incorporate in an approximate way both plastic and local deformation effects. This possibility merits further study.

The comparison for the axial test is complicated by the fact that the current computer model is limited to slope imperfections θ_0 greater than .02 radians. The experimental imperfection was .003 radians, which is an order of magnitude less than the simulated results. The approach used will be to view θ_0 as a parameter and show families of curves.

Results for axial load vs. lateral deflection are shown in Figure 29. In the initial elastic range the slope of the curve is theoretically inversely proportional to the initial imperfection. This is evident in the figure. The experimental data have not been corrected for support flexibility because this correction is small and important only in the elastic range. Behavior of experiment and model in the plastic range is very similar in character. The model, of course, demonstrates a discontinuity associated with the offon nature of a plastic hinge, whereas the experiment has a gradual transition due to elastic-plastic action of the cross-section. Nevertheless, the model appears to adequately predict the softening character of the column in the plastic range.

In Figure 30 the results for axial load vs. axial deflection are given. For a perfectly straight column the elastic slope of this curve should be the axial stiffness of the rod. This slope, however, is also affected by initial imperfections since axial displacement is induced by bending as well as contraction of the column. As the initial imperfection tends to zero, the slope should approach the axial stiffness of 832,000 lb./in. The experimental results in this case have been corrected to this value of 832,000 lb./in., eliminating the flexibility of supports (as well as the very small imperfection) entirely.

In other respects, Figure 30 confirms our conclusions from the previous figure. There is a marked resemblance between the experimental and computed nature of the softening in the force-deformation curve. Thus, we conclude that the basic theory on which the model is based is adequate for representing force-deformation curves in the large deformation plastic range.

-65-

Fig. 30 Comparison of Model with Axial Displacement

3.9 SUMMARY

The experiment provides useful data for comparing with the plastic hinge model. The specimens were carefully made and tested and excellent consistency found at one coincidental data point. Support flexibility enters into the results in a small way, but is understood and can be completely removed if desired. Future, more advanced theories can also be compared with these tests.

The current computer model for the beam-column element checks out well against the experiment. Several areas of possible improvement have been noted for future development.

CHAPTER 4

QUALIFICATION STUDY

4.1 INTRODUCTION

The specific component selected for testing the threedimensional large deformation elastic-plastic frame model was an automobile frame developed by CALSPAN Corporation. The results of a Pole Barrier Static Crush Test using this frame have been reported by CALSPAN*. This chapter contains the following items:

- A record of the experience and considerations which arose in modeling the test frame. (Sections 1 and 2). For this purpose, this entire frame was modeled.
- Numerical simulation of the crush test (Section 3). Because of the nature of the crush test and for computational economy, a reduced version of the frame model was used.
- 3) Comparison of the simulated force-deflection curve with the experimental force-deflection curve (Section 4).

4.2 SELECTION OF MODEL FRAME LAYOUT

Details regarding the automobile frame were provided by the Contract Technical Manager in the form of blueprints, clearer copies of the photographs of the crush test than which appeared in the above-mentioned CALSPAN report, and some information about material properties of the automobile frame members.

Figure 31 shows a reduced copy of one set of blueprints of the portion of the frame forward of the rear torque box.

A second set of blueprints was provided which contained

Figure 31 Reduced copy of blueprints of frame tested by CALSPAN.

more details regarding dimensions, cross-sectional properties and material properties.

Figure la of reference (*) shows how the frame was supported during the static crush test. A cross beam was welded to the test frame on its side rail just forward of the rear torque box. The cross beam, which is rigidly attached to the loading frame, prevented motion of the frame at its points of attachment. Consequently, the portion of the frame behind this support was never loaded and plays no part in the modeling discussed here. Constraints which could be removed during the test were also attached to the frame at the front wheel supports. Figure ³2 of this discussion shows the location of these constraints on the blueprints and also the point at which load was applied to the test frame by the pole barrier.

The side view of the test frame in Figure 31 shows a channel section which is separated from the first cross member. In the test frame, this separation is provided by a piece of crushable foam. The apparent purpose of this foam-channel section assembly is to model the response of a shock absorbing bumper in low speed impacts. This assembly is ignored in the modeling of the test frame.

Selection of the nodal points was based on an understanding of the deformation mechanism of the test frame by a detailed study of its initial configuration and photographs of the crush test. Nodal points were selected for one or more of the following reasons:

- A nodal point should be placed at the intersection of several frame members.
- Nodal points are placed at a support or loading constraints, or point of frame symmetry.
- Nodes were placed at points where intuition and evidence provided by photographs suggests hinges form.

-71-

71

Figure 32 Location of constraints due to loading, symmetry and support.

 Certain portions of the test frame have a complicated shape which could only be approximated by an equivalent beam structure. Nodal points were selected with the approximation in mind.

The frame model consists of 26 nodes and 34 beams. Figure 33 shows the location of the nodes and their numbers. Figure 34 contains an isometric view showing the nodes and beams of the idealized frame. Unless specified differently in the following discussion, all nodes are located on beam centerlines. The reasons for selecting each node is as follows:

Node NumberBases For Selection1This is placed where the axis of symmetry
intersects the first cross member.

- 2, 3 These are placed where the first cross member is connected to frame members. The first cross member is tapered, being 6" deep at the centerline and 4" deep at the outside rail. Nodes were placed on the inside slanted edge because it was felt that the response of the front structure of the frame would be sensitive to variations in the relative orientation of frame members.
 - 4 Photographs indicate the formation of a plastic hinge at the bend in the frame member.
 - 5 The member begins to curve at this point. Photographs indicate a hinge develops at this location.
 - 6 The frame member changes direction. Photographs indicate the formation of a hinge at this location.
 - 7 Two frame members intersect at this location.

Figure 33 Location of nodes and their nodal numbers.

Bases For Selection Node Number 8 Three frame members intersect at this location. 9 This is placed where the axis of symmetry intersects the second cross member. This part of the frame is a large metal dome 10,11,12,13 with openings in the bottom. Its purpose appears to be to support the front suspension It has no obvious idealization as an system. assembly of beam elements. Node 10 is placed at its apparent center as indicated by the blue-This defines a beam connecting nodes prints. 6 and 10 on the outside part of the frame. Nodes 11 and 13 indicate where beam-like frame members are attached to the wheel support. Photographs suggest that this wheel support behaves as if it were composed of triangular segments 10-11-12 and 10-12-13 sharing a base connecting nodes 10 and 12. During the crush test, these segments rotate about the axis connecting nodes 10-12 so that nodes 10 and 13 approach each other. Node 12 is on the line connecting nodes 11 and 13.

- 14 This node represents the point of support of the front part of the frame during the first part of the crush test. It is placed on the line connecting nodes 10 and 13 at the same height as the center line of the first cross member.
- 15,16,17 Photographs indicate the large portion of the frame is almost rigid and that hinges form at location 15 and 17. Node 16 is placed where the short cross member is attached.

18,19 Frame members intersect at these locations.

-76-

Node Number	Bases for Selection
20,21,22	The photographs indicate that hinges form at the extremities of the faired region, where nodes 20 and 21 are located. This region appeared to rotate rigidly which suggested placing node 22 on the cross member at the end of the faired region.
23,24	The cross member changes directions at these points.
25	The axis of symmetry intersects the cross men ber at this location.
26	This node was placed at the point of support

on this rear part of the frame.

4.3 PREPARATION OF INPUT DATA

Coordinate System a.

The origin is located directly below node 1 on the line designated on the blueprints as "Level Floor Area." The orientation of the coordinate system can be seen in Figure 33.

Nodal Coordinates b.

The nodal coordinates were measured directly from the blueprints using a scale of 1/4" equals 1". The coordinates are given in Table I.

Beam Numbering с.

The beam numbers are shown encircled in the isometric view of the idealized frame in Figure 34. The members of the test frame all have rectangular tubular cross sections. Only the yield function and gradient for this cross section arises in this model.

Thus for each pair of node numbers I and J, J>I, the beam identification matrix IELM(IJ) has either the value 0 if no beam connects these nodes, or 1 if a beam does connect the nodes. Table II shows the elements of this matrix.

-77-

mem-

TABLE I

NODAL	COORDINATES
-------	-------------

NODE #	* ×1	^x 2	^x 3	N	ODE #	×1	×2	×3
1	0	0	16.75		15	18.5	47	11
2	11	-0.75	16.75		16	17.5	51.75	10.625
3	23	-1.75	16.75		17	27.875	53.625	10.25
4	23	1.15	15.75		18	11.25	51.75	10.625
5	13.25	4.75	15.00		19	11.25	75.00	9.00
6	18.25	14.5	16.50		20	27.875	79.50	9.00
7	11.75	7.25	14.0		21	27.875	90.25	9.00
8	5.5	11.0	12.25		22	21.75	82.00	9.00
9	0	11.0	12.25		23	7.50	72.75	9.00
10	18.0	29.00	18.125		24	2.00	72.75	16.00
11	12.625	26.5	18.75		25	0	72.75	16.00
12	12	29.00	16.125		26	27.875	123.25	9.00
13	11.25	32.25	12					
14	16.5	29.75	16.75					

-78-

TABLE II

BEAM-NODE RELATION MATRIX IELM(I,J)
I = 1,...,NUMP-1; J = I+1, ..., NUMP
All entries for J = I+6 to J = NUMP are zero.

I	I+1	I+2	I+3	I+4	I+5
1	1	0	0	0	0
2	1	0	1	0	0
3	1	0	0	0	0
4	0	1	0	0	0
5	0	1	0	0	0
6	1	0	0	1	0
7	1	0	0	0	0
8	1	0	1	0	0
9	0	0	0	0	0
10	1	1	0	1	1
11	1	0	0	0	0
12	1	1	0	0	0
13	1	0	0	0	1
14	0	0	0	0	0
15	1	1	0	0	0
16	1	1	0	0	0
17	0	0	1	0 :	0
18	1	0	0	0	0
19	0	0	1	1	0
20	1	1	0	0	0
21	1	0	0	0	1
2 2	0	0	0	0	
23	1	0	0		
24	1	0			
25	0				

d. Direction Cosines of Beam Coordinate Frames

For each beam, the i and j ends coincide with the lower and higher nodal members, respectively. At t=0 the beam frames at the i and j ends are parallel. Hence, it is only necessary to specify the beam frame at the i end. The beam frame x_3 axis lies along the length of the beam directed from the lower to the higher node number. The beam frame x_1 and x_2 axes lie along the principal directions of the cross section. Since all beams have rectangular tubular cross sections, the beam frame x_1 and x_2 axes are easy to identify.

From the nodal coordinates, the beam length and the unit vector directed from the lower to the higher nodes number were computed. The components of the unit vector represent the direction cosines of the beam frame x_3 axis with respect to the global system. In order to determine the remaining direction cosines, the beams were placed into three categories:

- the beam frame axes are parallel to the global axes. In this case, direction cosines are determined by observation.
- 2. The beam frame x_3 axis lies in one of the coordinate planes. In this case, the beam frame axes are obtained by a rotation about one of the global axes. All of the direction cosines are known from the components of the unit vector along the beam frame x_3 axis. For example, for beam 1 this unit vector has component (0.99773, -0.06803, 0). The local axes are oriented with respect to the global axes as shown in Figure 35a. The direction cosine matrix for beam 1 is

$$\begin{bmatrix} 0 & 0 & 1 \\ -.06803 & -.99773 & 0 \\ .99773 & -.06803 & 0 \end{bmatrix}$$

- Figure 35. a. Orientation of beam frame axes (X_1^F, X_2^F, X_3^F) for beam 1 with respect to global axes
 - b. Orientation of beam frame axes (X_1^F, X_2^F, X_3^F) for a general beam with respect to global axes

3. The beam frame x_3 axis has a general orientation with respect to the global coordinates. Because of the test frame layout and the fact that the frame members all have rectangular tubular crosssections, one principal direction of the crosssection always lies in the global x_1-x_2 plane. This was selected on the beam frame x_2 axis. The beam frame x_1 axis then lies in the plane formed by the global and beam frame x_3 axis. (See Figure 35b.)

The components of the unit vector in the beam frame give the desired direction cosines. Letting the components of the unit vector along the x_1 , x_2 , x_3 axes be, respectively (x_{11}, x_{12}, x_{13}) , $(x_{21}, x_{22}, 0)$, (x_{31}, x_{32}, x_{33}) , they satisfy the following system of equations where (x_{31}, x_{32}, x_{33}) are considered given:

$$x_{21} x_{31} + x_{22} x_{32} = 0 x_{21} x_{11} + x_{22} x_{12} = 0 x_{11} x_{31} + x_{12} x_{32} + x_{13} x_{33} = 0 x_{11}^{2} + x_{12}^{2} + x_{13}^{2} = 1 x_{21}^{2} + x_{22}^{2} = 1$$

The solution of this system is

$$\begin{aligned} \mathbf{x}_{21} &= \frac{\mathbf{x}_{32}}{\{(\mathbf{x}_{31})^2 + (\mathbf{x}_{32})^2\}^{-1}/2} , \ \mathbf{x}_{22} &= \frac{\mathbf{x}_{31}}{\{(\mathbf{x}_{31})^2 + (\mathbf{x}_{32})^2\}^{-1}/2} \\ \mathbf{x}_{11} &= \frac{\mathbf{A}\mathbf{x}_{22}}{(1+\mathbf{A}^2)^{1}/2} \ \mathbf{x}_{12} &= \frac{-\mathbf{A}\mathbf{x}_{21}}{\{1+\mathbf{A}^2\}^{-1}/2} , \ \mathbf{x}_{33} &= \frac{1}{(1+\mathbf{A}^2)^{1}/2} \\ \mathbf{A} &= \frac{\mathbf{x}_{33}}{\mathbf{x}_{21}} \frac{\mathbf{x}_{32}^{-1} \mathbf{x}_{31}}{\mathbf{x}_{32}} \end{aligned}$$

These equations are easily programmed and the results are given in Table III.

TABLE III

DIRECTION COSINES OF BEAM FRAMES WITH RESPECT TO THE GLOBAL FRAME DCIK

3EAM #

	<u><u>e</u>₁ <u>e</u>₁ <u>e</u>₁</u>	<u>e</u> 1 ^F · <u>e</u> 2	$\underline{\underline{e}_1}^{\mathrm{F}} \cdot \underline{\underline{e}_3}$	$\underline{\underline{e}}_{2}^{F} \cdot \underline{\underline{e}}_{1}$	<u>e</u> 2 ^F • <u>e</u> 2	$\frac{e_2^{F} \cdot e_3}{$	<u>e</u> 3 ^F . <u>e</u> 1	$\underline{e_3}^{\mathrm{F}} \cdot \underline{e_2}$	<u>e</u> 3 ^F • <u>e</u> 3
1	0	0	1	06803	99773	0	.99773	06803	0
2	0	0	1	08306	99668	0	+.99668	08306	0
3	.10697	.26147	.95927	.92555	37864	0	+.36320	.88781	28249
4	-1	0	0	0	.32605	.94555	0	.94555	32605
5	.01772	04980	.99860	.94214	.33522	0	33477	.94087	.05286
6	16680	.27814	.94595	.85761	.51429	0	4867	.81116	32446
7	16488	 18391	.96902	74457	.66754	0	64657	72118	24864
8	.00192	 11133	.99378	.99985	.01724	0	01713	.99363	.11135
9	20019	.12012	.97236	.51450	.85749	0	83378	.50027	23346
10	0	0	1	0	1	0	-1	0	0
11	14871	32352	.93446	.90866	41766	0	.39030	.84908	.35607
12	.09507	.04422	.99449	.42173	.90672	0	.90169	41939	.10485
13	 316	0	.949	0	1	0	949	0	316
14	56709	.28355	.77331	.44721	.89443	0	69156	.34578	63393
15	.01022	.36778	.92986	.99961	.02777	0	.02582	.92951	36793
16	17300	.69201	.70085	.97014	.24254	0	16943	.67972	71370
17	17486	.75769	.62876	.97439	.22487	0	14138	.61263	77757
18	134	022	.991	.166	996	0	.977	.163	.136
19	57118	.27199	.77445	42994	90286	0	.69925	33298	.63266
20	-1	0	0	0	.07 034	.99754	0	.99754	07034

TABLE	III,	continu	led
-------	------	---------	-----

1	01587	.07537	.99703	.97855	.20601	0	20538	.97556	07702
2	.05382	.03824	.99782	.57914	81523	0	.81059	.57589	06519
3	.03498	.00632	.99937	.17784	98406	0	.98351	.17774	03555
4	0	0	1	0	1.	0	-1	0	0
5	-1	0	0	0	.04825	.99884	0	.99884	04825
6	-1	0	0	0	.06972	.99755	0	.99755	06972
7	0	0	1	.55472	83208	0	.83208	.55472	0
8	0	0	1	51452	.85753	0	85753 -	51452	0
Э	-1	0	0	0	0	1	0	1	0
С	0	0	1	.37787	.92579	0	92579	.37787	0
L	0	0	1	80292	.59611	0	59611 -	80292	0
2	-1	0	0	0	0	1	0	1	0
3	78634	0 -	61784	0	-1	0	61784	0	.78634
4	0	0	1	0	1	0	-1	0	0

.

e. Beam Sectional Properties

The sectional properties which must be provided are the base, height, wall thickness, area, second moments of inertia, and polar moment of inertia of each rectangular tubular cross-section. The base, height and wall thickness could be read directly off the second set of blueprints. Sectional properties were computed using the following expressions for this walled cross-section:

 $I_{11} = (6b + 2h)h^{2}t/12$ $I_{22} = (6h + 2b)b^{2}t/12$ A = (2b + 2h)t $J = \frac{2b^{2}h^{2}t}{b + h}$

The relation between the principal axes of the crosssection and b and h is shown in Figure ³⁶. In preparing this input data, it was necessary to orient the principal axes before labeling one of the cross-section dimensions as the base. Table IV shows the complete set of sectional properties.

Many of the test frame members have well defined crosssections which do not vary along their length. In accordance with the beam numbering in Figure 34 these are beams 3, 4, 6, 9, 10, 11, 20, 24, 25, 26, 27, 28, 32, 33, 34. Beams 1 and 2 form the first cross member. Since this member is tapered in the test frame, the reported depth of the cross section is the mean between the end values. The same is true for beams 5 and 7. One end of beam 8 starts from the dome shaped wheel support, while the other half has a length of uniform cross-section section. Sectional properties were chosen for this uniform portion.

 I_{11} = second area moment about X_1^F axis I_{22} = second area moment about X_2^F axis

Figure 36. Definition of area second moments with respect to beam frame axes X_1^F and X_2^F .

TABLE IV MATERIAL AND SECTIONAL PROPERTIES

BEAM	<u># E</u>	G	AJ	AIL	AI2	A	AL	В	H		<u>Yl</u>	<u>Y2</u>	CF	YF
1	¹ 3.D7	12.D6	10.519	9.294	5.567	1.925	11.025	4.0	5.625	.1	1.0	1.0	1.0	5.D4
2	3.D7	12.D6	7.936	5.927	4.767	1.725	12.04	4.0	4.625	.1	1.0	1.0	1.0	5.D4
3	3.D7	12.D6	4.937	2.700	4.160	1.680	6.195	4.0	3.0	.120	1.0	1.0	1.0	3.5D4
4	3.D7	12.D6	6.400	4.267	4.267	1.600	3.067	4.0	4.0	.1	1.0	1.0	1.0	3.5D4
5	3.D7	12.D6	7.624	4.667	5.569	1.70	14.189	4.5	4.0	0.1	1.0	1.0	1.0	3.5D4
6	3.D7	12.D6	4.937	2.700	4.160	1.680	3.082	4.0	3.0	0.12	1.0	1.0	1.0	3.5D4
7	3.D7	12.D6	4.13606	2.567	2.975	1.144	10.053	4.0	3.625	.075	1.0	1.0	1.0	3.5D4
8	3.D7	12.D6	8.889	5.067	7.083	1.800	14.593	5.0	4.0	0.1	1.0	1.0	1.0	3.5D4
9	3.D7	12.D6	4.937	2.700	4.160	1.680	7.496	4.0	3.0	.120	1.0	1.0	1.0	3.5D4
10	3.D7	1 2. D6	4.937	2.700	4.160	1.680	5.5	4.0	3.0	.120	1.0	1.0	1.0	3.5D4
11	3.D7	12.D6	4.937	2.700	4.160	1.680	18.255	4.0	3.0	.120	1.0	1.0	1.0	3.5D4
12	3.D7	12.D6	4.4	2.2	2.2	5.0	5.961	5.0	5.0	1.0	1.0	1.0	1.0	3.5D4
13	5.D7	2.D7	10.0	10.0	10.0	5.0	6.325	1.0	1.0	1.0	1.0	1.0	1.0	5.D4
14	5.D7	2.D7	10.0	10.0	10.0	5.0	2.169	1.0	1.0	1.0	1.0	1.0	1.0	5.D4
15	3.D7	12.D6	7.2000	3.1500	9.000	1.8000	19.365	6.0	3.0	0.1	1.0	1.0	1.0	3.6D4
16	3.D7	12.D6	4.4	2.2	2.2	5.0	3.678	5.0	5.0	1.0	1.0	1.0	1.0	3.5D4
17	3.D7	12.D6	1.0	.52	.52	3.0	5.305	4.0	4.0	1.0	1.0	1.0	1.0	3.5D4
18	5.D7	2.D7	10.0	10.0	10.0	5.0	4.605	1.0	1.0	1.0	1.0	1.0	1.0	5.D4
19	3.D7	12.D6	1.0	.52	.52	3.0	7.508	4.0	4.0	1.0	1.0	1.0	1.0	3.5D4

-87-

TABLE IV, continued

3.6D4 3.6D4 3.6D4 3.6D4 3.6D4 3.6D4 3.6D4 3.6D4 3.6D4 7.D4 7.D4 ΥF 7.D4 7.D4 7.D4 7.D4 CF 1.0 J.0 1.0 Т**.**0 ц. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 X2 1.0 1.0 1**.**0 1**.**0 1.0 1**.**0 1.0 1.0 1.0 1**.**0 1.0 1.0 1**.**0 1.0 Lγ 1.0 1.0 1.0 1.0 1.0 1.0 1**.**0 1.0 1.0 **L.**0 о • Т 1.0 1.0 1.0 р. о .188 .188 FI .12 .12 .12 .12 .12 .12 .12 1.0 1.0 1.0 1.0 г.о **1**.0 1.0 Ξ 2.0 1.0 1.0 2.0 3.0 л. о 4.0 2.0 3.0 1.0 1.0 4.0 3°0 **3.**0 2.0 1.0 1.0 1.0 2.0 2.5 2.0 3.0 **3.**0 **1.**0 2.5 2.0 1.0 Ι.Ο 2.0 ш 6.616 19.548 4.869 **11.504** 10.549 25.905 23.307 12.619 4.373 10.275 8.902 6.25 10.75 AL 33.0 2.0 1.560 l.560 A .96 .96 **l**.44 .96 **1.44** 10.0 10.0 10.0 10.0 10.0 10.0 1.2 1.2 A12 I.813 2.160 2.160 **I.**813 .64 .64 .64 0.88 0.88 10.0 10.O 10.O 10.0 10.0 10.0 AIL • 64 3.680 2.160 2.160 3.680 **I.620 1.620** •64 .64 10.0 10.0 10.0 10.0 10.0 10.0 10.0 3.692 3.240 l.728 **1.728** 3.692 AJ .96 .96. .96 3.24 10.0 10.0 10.0 10.0 10.0 12.D6 0 3.D7 3.D7 3.D7 3.D7 3.D7 3.D7 2013.D7 21 3.D7 23 3.D7 25 3.D7 3.D7 24 3.D7 27 3.D7 29 3.D7 3.D7 ы 22 26 28 30 33 34 31 32

-88-

The properties of the bars forming a structure to approximate the behavior of the wheel support were chosen in accordance with the discussion in Section 4.2. Beams 13-14-18 form a rigid backbone about which the triangles formed by nodes 10-11-12 (beams 12-16-13) and nodes 10-12-13 (beams 17-18-19) could fold. Bars 14 and 18 were made rigid so as to hold fixed node 14, where strong external constraint is applied. Beams 12 and 16 were designed to have high axial stiffness but lower bending resistance as compared to beam 11. These beams were given equal second area moments whose value is 0.8 that of beam 11. Similar comments apply to beams 17 and 19, whose second area moments were .8 that of beam 20.

Beams 21, 22, 23 and 29, 30, 31 model segments of the test frame which appeared to be quite rigid. Their sectional properties were accordingly chosen quite large.

f. Material Properties

Except for beams 13, 14 and 18 all bars were assigned the same tensile and shear moduli. Bars 13, 14 and 18 were given larger moduli in order to increase their stiffness. The first cross member was specified as Hot Rolled 4130 which has a yield stress of at least 50,000 psi. Beams 3 through 12, 15, 16, 17, 19, 20, 28-28, and 32-34 are made of SAE 1020 steel with a yield stress of at least 35,000 psi. The actual yield stress specified in the input data was higher for two reasons: (a) the yield stress was reported to vary in magnitude throughout the test frame (b) the ratio of the fully plastic moment to the maximum elastic moment is about 1.7. As indicated in Figure 37, higher yield stress results in a more reasonable

CURVATURE

- Me . . . elastic limit moment M_p . . fully plastic moment Mo . . . moment in elastic-perfectly plastic idealization
- Figure 37. Moment curvature relation for a rectangular cross-section, showing elastic-perfectly plastic idealization.

elastic-plastic moment-curvature relation. Beams 13, 14, 18, 21, 22, 23 and 29, 30, 31 were given higher yield stresses in accordance with their special functions. The material properties are listed in Table IV.

4.4 FORCE AND DISPLACEMENT CONDITIONS

In order to carry out the numerical simulation of the crush test, a number of reasons led to the decision to use a reduced frame. In the first part of the crush test, the frame was constrained at node 14 as well as node 26. Engineering intuition suggests that the rear part of the frame carries relatively little load because of the constraint at node 14. Also, because of the size of the problem and the number of matrix assembly and plastic hinge test and decision operations, it was felt that computer runs would be fairly expensive. Consequently, it was decided that only the first part of the crush test would be modeled using the portion of the frame model consisting of the first 15 nodes and 19 beams.

The following increments in nodal displacement Δu_i , nodal rotation $\Delta \theta_i$ and nodal force ΔF_i and nodal moment ΔM_i were prescribed.

Node 1	$\Delta u_1 = \Delta u_3$	= 0 , $\Delta u_2 = \Delta$,	to be prescribed
	$\Delta M_1 = 0,$	$\Delta \theta_2 = \Delta \theta_3 = 0$	
Node 9	$\Delta u_1 = 0$	$\Delta F_1 = \Delta F_2 = 0$	
	$\Delta M_1 = 0$	$\Delta \theta_2 = \Delta \theta_3 = 0$	
Node 14	$\Delta u_1 = \Delta u_2$	$= \Delta u_3 = 0$	
	$\Delta \theta_1 = \Delta \theta_2$	$= \Delta \theta_3 = 0$	

For all other nodes, $\Delta F_i = \Delta M_i = 0$, i = 1, 2, 3.

-91-

4.5 DISCUSSION OF COMPUTED RESULTS

A simulated force deflection curve was computed using the following displacement increments:

for K = 1,2,3, $\Delta u_2 = 0.002$ K = 4,5,6,7 $\Delta u_2 = 0.004$ K = 8,9,10,11 $\Delta u_2 = 0.006$ K = 12,13,14,15 $\Delta u_2 = 0.008$ $K \ge 16$ $\Delta u_2 = 0.01$

For these computations KMAX = 66. The above increments were non-dimensionalized by reference length ALR = 10.0.

During the computation, all beams were assumed to undergo continuous loading.

Figure 38 shows the force deflection curve for a crush of 4.64 inches. The curve consists of an initial loading range up to 2.634 inches, where a maximum load of 32,453 pounds was reached, followed by a general softening range.

Within the loading range, all the plastic hinges except one formed within the first 1.334 inches of crush. In this region of formation of plastic hinges, the force-deflection curve oscillates about a general loading trend. For deflections greater than 1.334 inches, when hinges have stopped forming, the curve shows a much smoother monotonic increase. The oscillatory behavior may be due to numerical inaccuracy due to the large step size, or it may be due to temporary softening caused by the formation of various plastic hinges. That softening does occur in certain structures undergoing large deformation elastic-plastic behavior was discussed in the 11th monthly report. In the absence of a detailed numerical error analysis, it is not clear how much of the oscillation of the curve can be attributed to numerical and how much to physical explanation. However, since the force-deflection curve is much smoother when no hinges form, it is reasonable to assume that some of the oscillation is due to softening caused by hinge

-92-

Fig. 38 Force Vs. Deflection of Node 1 Along X₂ Direction

formation. This explanation is further supported by the experimental results quoted in the llth monthly report, which showed a hardening and softening oscillation which arose because plastic hinges did not occur simultaneously.

In support of this latter conclusion, note that during the first oscillation, from a deflection of 0.0322 inches to 0.264 inches, beam 6 has formed hinges at both ends, that is, at nodes 5 and 7. The location of this beam in the forestructure, as seen in Figure 39, suggests that its weakening could lead to some softening. The second oscillation, from .804 inches to .844 inches, corresponds to formation of hinges in beams 4 and 5 at node 4, and beam 1 at node 1. Again as seen in Figure 39, this suggests local weakening. The last dip, from 1.202 inches to 1.334 inches, corresponds to hinges forming in beam 3 at node 5 and beams 2 and 3 at node 2.

In the softening range, following the peak value at 2.634 inches, the only hinge to form occurs at 3.139 inches when the force is 30,995 lbs. The force drops to 23,940 lbs. and then stays reasonably constant until it rises quickly and drops to 23,704 lbs. This last peak is probably due more to accumulated numerical error associated with large increment size than any stiffening of the structure.

Figure 39 shows the distribution of plastic hinges after 4.64 inches of crush. Only the forward part of the structure, which was involved in the computation, is shown.

Figure 40 shows the computed force-deflection curve plotted on the same scale as the pole barrier static crush test data presented in the CALSPAN report. Photos of their test show the front bumper covered with foam and a channel section, which was not included in the model. Because of uncertainty as to how much force was required to crush the foam and channel, it was not clear how to choose the origin for plotting data. Projecting back on the steep part of the curve suggested choosing 2.5 inches as the origin.

-94-

Figure 39. Final Plastic Hinge Distribution

The computed results agree reasonably well with the experimental results. There is a rapid rise in force, a peak value of force and subsequent softening. The slope of the initial rise is comparable with that of the test data. The peak values have comparable magnitude (87,000 lbs. vs 64,906), and occur at about the same deflection. The softening range in the computed results has about the same slope as in the test results, except for the oscillation, whose cause, as discussed above, is uncertain.

APPENDIX A

USERS GUIDE

A.1 INPUT INFORMATION

The following discussion on the preparation of input data is divided into several subsections:

- A. Discussion of Preparation of Input Data
- B. List of Program Input Variables
- C. Layout and Format of Input Data
- D. An Example of Input Data
- E. Layout and Sample of Output

The discussion in section A defines many of the input variables which are listed in section B. The order of data discussed follows that in the table of input card contents in section C.

A. Preparation of Input Data

Node Numbering (See Figure 43.).

After selecting node #1, the nearest node is assigned #2. The number of a node increases with its distance from node #1, as shown in Figure 43. The total number of nodes (mass points) is denoted by NUMP.

Beam Numbering

Consider nodes I and J, where J = I+1, ..., NUMP. If a beam connects I and J, it is assigned the next beam number in sequence. If no beam connects nodes I and J, no beam number is assigned. In Figure 43, the beam numbers are circled. The total number of beams is denoted by NUB.

Basic Input Parameters

The first data card lists the number of nodes or mass points NUMP, the number of beams NUB, the number of time steps KMAX, print out switch control IPS and dissipation switch control IDS. These switch controls are defined in section B.

Specifying the Type of Beam Cross-Section

The type of beam cross-section is specified by assigning to each pair of nodes I and J an integer, denoted by IELM(I,J), as follows:

> IELM(I,J) = 0 If no beam connects nodes I and J = 1 If the beam connecting nodes I and J has cross-section type 1 = 2 If the beam connecting nodes I and J has cross-section type 2

etc.

The program, as currently written, allows for up to four different kinds of cross-sections. For each type of crosssection there are subroutines for calculating the corresponding yield function and the gradient of the yield function. At present, subroutines have been written only for rectangular tubular (type 1) and open channel (type 2) cross-sections.

Reference Values

The next card specifies the reference beam length ALR, reference beam depth DR, reference elastic modulus ER, reference second area moment AIR and allowable error for logic test EPS.

Beam Sectional and Material Properties

For each beam, the following material properties are to be specified: elastic tensile modulus E, elastic shear modulus G, yield stress YF.

In addition to the beam length AL, the required crosssectional properties are: base B, height H, wall thickness T, area A, principal second area moments AI1 and AI2, area polar moment AJ, distance from base of cross-section to centroid Y1, distance from centroid to top of crosssection Y2, and stress concentration factor at base of fillet in closed tubular section CF.

The input data assumes that the beam has either a rectangular or open channel section. The definition of the B, H, AII and AI2 with respect to the principal axes of these cross-sections is shown in Figure 41. In part C, this data is designated set A.

Direction Cosines

The direction cosines with respect to a global reference system of a coordinate frame attached to a beam in its original orientation must be specified. The X_3 axis of the attached frame is directed along the beam from the end with the lowest number node to the end with the highest number node. The X_1 and X_2 axes of the attached frame coincide with the principal axes of the beam cross-section (shown in

Figure 41. Relation of beam frame axes to crosssectional dimensions for rectangular tubular and open channel cross-sections

Figure 42. Beam frame axes related to cross-section principal directions

Figure 42 so as to form a right handed coordinate system.

The direction cosines are denoted by DClK(LB,I,J) which gives the angle between the I axis of the local attached coordinate frame and the J axis of the global frame for beam number LB.

In part C, this set of data is designated set B.

Initial Coordinates of Nodes

The initial coordinates and angles of the mass frames, which are attached to the nodes, with respect to the global reference system must be specified. These are denoted by DISK(LMP,I), where LMP is the mass point number.

DISK(LMP,I) =
$$X_{I}$$
, I = 1,2,3
= θ_{I} , I = 4,5,6

where θ_{I} is the initial angle of the local frame axes with respect to the global frame axes.

In part C, this set of data is designated set C.

Nodal Displacement and Force Increments

The increments in the generalized displacements of the nodes form the components of the vector denoted by DU(I), $I = 1, \dots, 6*NUMP$. The LMPth group of six components correspond to mass point LMP. In each group of six, the first three components represent the components of the displacement increment vector of mass point LMP. The second three components represent the components of the rotation increment vector of mass point LMP.

The increments in the generalized forces of the nodes form the components of the vector denoted by DR(I), I = 1, ...,6*NUMP. The LMPth group of six components correspond to mass point LMP. In each group of six, the first three components represent the components of the force increment vector of mass point LMP. The second three components represent the components of the moment increment vector of mass point LMP. At each mass point, either a displacement increment component or the corresponding force increment component is known. Also, either a rotation increment component or a moment increment component is known. However, input data requires a value for each displacement and rotation increment. If a displacement or rotation increment is unknown, its value is specified as 100. If a force or moment increment is unknown, its value can be specified arbitrarily.

Rotation increments are specified in radians, displacement increments are non-dimensionalized by the reference length ALR, forces are non-dimensionalized by the expression $(ER)(AIR)/(ALR)^2$ and moments are non-dimensionalized by the expression (ER)(AIR)/ALR.

Nodal force and displacement increments are not specified by preparing input data cards as is the above data. Because of the large number of increments and nodal conditions, it is usually easier and more efficient to specify these by means of an increment program. A different program is necessary for each problem and set of increment conditions. A sample increment program is presented in Section D.

B. LIST OF PROGRAM INPUT VARIABLES

A	beam area
AIR	reference moment of inertia
ALR	reference beam length
AJ	beam polar moment of inertia
AI1	beam moment of inertia about 1st principal axis
AI2	beam moment of inertia about 2nd principal axis
AL	beam length
В	beam cross-section width dimension
CF	beam cross-section torsional stress concentra- tion factor
DC1K(LB,I,J)	direction cosine matrix for the initial configu- ration of beam member LB

(LB = 1, ..., NUB; I = 1, 2, 3; J = 1, 2, 3)

.

DISK(LMP,I) Initial coordinates of mass point LMP $DISK(LMP,I) = X_{I}, I = 1,2,3$ $DISK(LMP,I) = \theta_{I}, I = 4,5,6$ $^{\theta}\text{I}$...initial angle of mass frame axes with global frame axes (LMP = 1, ..., NUMP; I = 1, ..., 6)DR reference beam depth DR(I) nodal generalized force increment vector (I = 1,..., 6*NUMP) The LMPth group of six components correspond to mass point LMP. In each group of six, the first three components are those of the force increment vector of mass point LMP. The second three components are those of the moment increment vector of mass point LMP. DU(I)Nodal generalized displacement increment vector $(I = 1, \dots, 6*NUMP)$. The LMPth group of six components correspond to mass point LMP. In each group of six, the first three components are those of the displacement increment vector of mass point LMP. The second three components are those of the rotation increment vector of mass point LMP. E beam material elastic modulus EPS allowable error for logic test ER reference elastic modulus G beam material shear modulus H beam cross-section height dimension

-106-

IDS dissipation switch control IDS = 0no unloading at a negative dissipation increment if the dissipation increment is IDS = 1negative, the program allows unloading IELM(I,J)..... type of beam relation between node I and node J (I = 1, ..., NUMP-1; J = I+1, ..., NUMP)IELM(I,J) = 0 if no beam connects I & J = L if beam connecting I & J has cross-section type L IPS.....print out switch control IPS = 0 standard print out 1 print out yield function at each beam end 2 full optional output KMAXmaximum number of time steps NUB number of beams NUMP number of mass points T beam wall thickness Yl distance from bottom of beam cross-section to centroid Y2 distance from top of beam cross-section to centroid

YF yield stress for beam material

C. LAYOUT AND FORMAT OF INPUT CARD CONTENTS

CARD #	Col. 1-4	Col. 5-8	Col. 9-12	Col.13-16	Col.17-20	
1	NUMP	NUB	KMAX	IPS	IDS	
CARD #	Col. 1-2	Col. 3-4	Col. 5-6			Col.79-80
2	IELM(1,2)	IELM(1,3)				IELM(1,NUMP)
3	IELM(2,3)				IELM(2, NUMP-1)	
	1 1 1					
NUMP	IELM(NUMP-1, NUMP)					

THE ABOVE INPUT DATA ARE ${\mathbbm N}$ I FORMAT

THE FOLLOWING INPUT DATA ARE IN D FORMAT

	Col. 1-8	Col. 9-16	Col. 17-24	Col. 25-32	Col. 33-40	Col. 41-48	Col. 49-56	Col. 57-64	
NUMP+1	ALR	DR	ER	AIR	EPS				
NUMP+2	E	G	AJ	AII	AI2	·A	AL	В	
NUMP+3	Н	Т	Yl	¥2	CF	YF			SET A TOTAL
t t t									2×NUB CARDS
NUMP+ 2xNUB	Е	G	AJ	AIl	AI2	A	AL	В	
NUMP+1 +2xNUB	Н	Т	Yl	¥2	CF	ΥF			-

-108-

			SET B	TOTAL	3XNUB CARDS			-10	9-			SET C	TOTAL . NUMP	CARDS
Col. 51-60												DISK(1,6)		DISK (NUMP, 6)
Col. 41-50												DISK(1,5)		DISK (NUMP, 5)
Col. 31-40												DISK(1,4)		DISK (NUMP,4)
Col. 21-30	DC1K(1,1,3)	DC1K(1,2,3)	DC1K(1,3,3)									DISK(1,3)		DISK (NUMP , 3)
Col. 11-20	DC1K(1,1,2)	DC1K(1,2,2)	DC1K(1,3,2)									DISK(1,2)		DISK (NUMP,2)
Col. 1-10	DC1K(1,1,1)	DC1K(1,2,1)	DC1K(1,3,1)	DCIK(2,1,1)	DC1K(2,2,1)	DC1K(2,3,1)	-		DC1K (NUB, 1, 1)	DCIK(NUB, 2, 1)	DCIK (NUB, 3, 1)	DISK(1,1)		DISK (NUMP,1)
CARD #	NUMP+2 +2XNUB										NUMP+1 +5XNUB	NUMP+2 +5XNUB		2 XNUMP+1 +5 XNUB

D. EXAMPLE OF INPUT DATA

A simple example has been selected to illustrate the preparation of input data.

The initial configuration of a structure is defined as shown in Figure 43.

Figure 43. Four bar example frame

The structure is planar and consists of four node points, numbered as shown, connected by four beams, whose numbers are encircled. Node point 4 is fixed for all time. The prescribed conditions at node point 1 are:

- a. displacement increments in the X2 direction are known
- **b.** there is no external force in the X_1 and X_3 directions
- c. there is no external moment

At nodes 2 and 3 there are no external forces or moments. At node 4, the mass point is fixed.

All four beams have the same dimensions. These are: 2" square cross-section tube with wall thickness of 0.25 inches, lengths are 12 inches. Beams 1 and 2 have the same material, with properties

Beams 3 and 4 have the same material, with properties

The input data is given in the order shown in section C.

The displacement increments have been non-dimensionalized using reference length ALR = 12 inches. The increment program for this example is given at the end of the input data. NUMP=4 NUB=4 KMAX=20 IELM(1,2)=1 IELM(1,3)=1 IELM(1,4)=0 IELM(2,3)=0 IELM(2,4)=1 IELM(3,4)=1

$$ALR=12$$
 $DR=1$ $ER=30\times10^{6}$ $AIR=1$ $EPS=.005$ $E=30\times10^{6}$ $G=12\times10^{6}$ $AJ=1$ $AII=1$ $AI2=1$ $A=1$ $AL=12$ $B=2$ $BEAM$ $H=2$ $T=0.25$ $YI=1$ $Y2=1$ $CF=1$ $YF=60,000$ $YI=2$ $BEAM$ $H=2$ $T=0.25$ $YI=1$ $Y2=1$ $CF=1$ $YF=60,000$ Z $E=20\times10^{6}$ $G=12\times10^{6}$ $AJ=1$ $AII=1$ $AI2=1$ $A=1$ $AL=12$ $B=2$ $BEAM$ $H=2$ $T=0.25$ $YI=1$ $Y2=1$ $CF=1$ $YF=45,000$ Z Z $E=20\times10^{6}$ $G=12\times10^{6}$ $AJ=1$ $AII=1$ $AI2=1$ $A=1$ $AL=12$ $B=2$ $BEAM$ $H=2$ $T=0.25$ $YI=1$ $Y2=1$ $CF=1$ $YF=45,000$ $Y=4$ Z

$$DClK(1,I,J) = \begin{bmatrix} 0 & 0 & 1 \\ .707107 & .707107 & 0 \\ -.707107 & .707107 & 0 \end{bmatrix} DClK(2,I,J) = \begin{bmatrix} 0 & 0 & 1 \\ .707107 & .707107 & 0 \\ .707107 & .707107 & 0 \end{bmatrix}$$
$$DClK(3,I,J) = \begin{bmatrix} 0 & 0 & 1 \\ .707107 & .707107 & 0 \\ .707107 & .707107 & 0 \\ .707107 & .707107 & 0 \end{bmatrix}$$

DISK
$$(1,I) = [0,0,0,0,0,0]$$

DISK $(2,I) = [-4.242642, 4.242642, 0,0,0,0]$
DISK $(3,I) = [4.242642, 4.242642, 0,0,0,0]$
DISK $(4,I) = [0,8.485284,0,0,0,0]$

DU(1)=0	DU(2)=.002	DU(3)=0	DU(4)=100	DU(5)=.01	DU(6)=100
DR(1)=0	DR(2) = 0	DR(3) = 0	DR(4) = 0	DR(5) = 0	DR(6) = 0
DU(7)=100	DU(8)=100	DU(9)=100	DU(10)=100	DU(11)=100	DU(12)=100
DR(7) = 0	DR(8)=0	DR(9)=0	DR(10)=0	DR(11)=0	DR(12)=0
DU(13)≒100	DU(14)=100	DU(15)=100	DU(16)=100	DU(17)=100	DU(18)=100
DR(13)=0	DR(14)=0	DR(15)=0	DR(16) = 0	DR(17)=0	DR(18) = 0
DU(19)=0	DU(20)=0	DU(21)=0	DU(22)=0	DU(23)=0	DU(24)=0
DR(19)=0	DR(20)=0	DR(21)=0	DR(22)=0	DR(23) = 0	DR(24) = 0

.

.

DU(I), DU(J) ARE THE SAME FOR EACH TIME STEP.

MICHIG	IN TERMINAL	SYSTEM FORTRAN G(41336 TEST)	INCRE	08-30-73	14:12.25	PAGE POOL
1000		SUBRDUTINE INCRE (M. DU. DR.K)			5.000	
2000		REAL #8 DU, DR			6.000	
F000		DIMENSION DU(I), DR(I)			000-1	
9000		M6=446			8.000	
2000		01 10 1=1,W6			9.000	
0000					10.000	
7000		00°-001=11100 01			11.000	
νυσα		9°1=1 91 Lu			12.000	
6000		16 PULT 1=0.00			13.000	
0100		n'1{2}=0.000500			14.030	
1100		nii (5) = 7 • 00259 0			15.000	
0012		nn 15 I=19,46			16.000	
5100		15 DU(1)=0.DO			17.000	
4100		RETUPN			18.000	
0015					19-000	
100*	HE NI SNCL.	FFCT* ID.FBCDIC.SJURCE.LIST.NJJEC	K,LOAD,NJMAP			
≉ U P T	HE NI SHUL	FECT* NAME = INCRF , LINECNT =	57			
* 5 T A	VTTSTECS*	ShijaCe STATEMENTS = 15, PRO	IGRAM SIZE =	586		
*STA	*11 STI CS*	VU NIAGMISTICS GENERATED				
40 ERRUR	S IN INCRE					

•

NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS.

.

.

E. LAYOUT AND SAMPLE OF OUTPUT

The program output consists of a standard output and two optional outputs. The standard output lists forces, moments and displacements for beams and masses with respect to the global reference system. The first optional output lists the yield function values at the beam ends. The second optional output also lists the forces and moments at the beam ends relative to the local beam reference frames.

The choice of output is selected at input by the print out switch control:

IPS = 0 standard print out
1 standard print out plus yield
function values at beam ends
2 standard print out, yield
function values and local
forces and moments

Samples of these outputs are shown at the end of the following discussion.

Standard Output

The first line gives the step number K and the minimum value SCFA of all loading scale factors in this step.

The output consists of two subsets, the first providing information about the masses and the second providing information about the beams. In the first line of the first output subset, labelled FORCE, columns 1-3 contain global force components F_1 , F_2 , F_3 and columns 4-6 contain global moment components M_1 , M_2 , M_3 . In the second line, labelled COORD, columns 1-3 give the new coordinates and columns 4-6 give the accumulated rotation.

In the second set of output, columns 1-3 give the global force components F_1 , F_2 , F_3 and columns 4-6 give the global moment components M_1 , M_2 , M_3 of the beam at the mass number

stated on that line. Each line also contains the switch setting SW, the loading scale factor SCFP and the accumulated dissipation.

First Optional Output (IPS = 1)

Lines are labelled YF I J. The first number gives the yield function value at the mass I end of the beam connecting masses I and J and the second number gives the yield function value at the mass J end.

Second Optional Output (IPS = 2)

The explanation for lines labelled YF I J was given above. In lines labelled LF @ IJ, the first six columns correspond to the local beam frame at end I and the second six columns correspond to the local beam frame at end J. The first three columns of each set of six give the local force and the second three columns give the local moment.

K= 5 SCFA	= 0. 65000								
	1	~	£	4	5	6	в.	SCFP	DI 55P
	0.197237 02 0.0	0.86968D 04 0.27900n-01	-0.493110 01 0.0	-0.16675D 03 0.0	0.375170 05 0.116250-01	-0.11692D 03 0.0			
4455 2 F17CF CJRD	0.16957n-10 0.949670	-0.239830-10 0.849987 01	-0.22569 <u>0</u> -11 0.556070-01	0.551850-11 -0.340350-02	0.254490-10 0.631460-32	-0.36524D-11 0.45033D-03			
MASS 3 Fracf Ford	-0.14986n-13 0.849680 01	-0.225480-10 0.849970 01	0.143710-11 -0.555700-01	-0.396590-11 0.340261-02	0.16984D-10 0.68232D-02	0.395060-11 -0.410140-03			
×255 4 Firce Firce	-0.19723N 02 0.0	-0.869680 04 0.169719 02	0°0,493110 01 0.0	0.83439D 02 0.0	-0.375040 05 0.0	-0.21907D 03 0.0			
	FORCF & WOMEN	T UN FACH BFAM E	Suns						
1 e 1 m b	-0.210840 03	40 L06254.0-	-0.170320 04	-0.15951n 05	-0.187420 05	0.203960 05	0	1.00000	0.0
८ с 1 мв	-0.210A40 03	-0.43409D 04	-0.170320 34	-0.18392D 04	-0.427429 04	-0.182240 05	0	00000.1	0.0
1 EZ NH	0.191120 03	-0.435600 04	0.170829 04	0.161187 05	-0.187750 05	-0.202790 05	0	1.00000	0.0
5 F C 75	0.191127 03	-0.43560D 04	0.170970 04	0.196530 04	-0.426601 04	0.183020 05	0	1.00000	0-0
5 GE NB	-0-210847 03	-0.4340aD 04	-0.170320 04	-0.183920 04	-0.427420 04	-0.182240 05	0	1.00000	0-0
5 SE 19	-0.21084n 03	-0.434090 04	-0.170327 04	0.129180 05	-0.187360 05	0.168057 05	0	0.67700	0.0
Bw 43 3	0.191120 03	-0.435600 04	0.170825 04	0.196530 04	-0.426600 04	0.183020 05	0	1.00000	0.0
5 E5 Ma	0.191120	-0.435600 04	0.170820 04	-0.128340 05	-0.187680 35	-0-170240 05	1	0.65000	0.0

YIELD FUNCTION & LOCAL FORCES AT FACH BEAM END s ×

4

2 0.64681 00 0.199657 00
2 0.64681 00 0.199657 00
3 0.1710 04 0.3200 04-0.2950 04 0.1830 05 0.4270 04-0.1670 04
3 0.1710 04 0.370437 00 0.9988370 00
3 -0.1720 04 0.3220 04-0.2950 04 0.1830 05 0.2240 05-0.4110 04
3 -0.1720 04 0.3220 04 0.1680 05 0.2240 05-0.4110 04
4 0.374130 00 0.9999270 03
4 0.1720 04-0.3220 04-0.3220 04 0.1830 05-0.4270 04 0.1710 04 0.1710 04-0.2940 04-0.3220 04-0.1700 05-0.2230 05-0.4200 04 1 0.64671n 00 0.189109 00 -0.1710 04-0.3209 04-0.2939 04 0.2020 05-0.2478 05-0.1810 04 -0.1728 04-0.3218 04-0.2923 04-0.1838 05-0.4198 04-0.1768 04 2 0.64681n 00 0.193659 00 LF284 1 YF2848 VF 3 MB VF 9 4B Υ ਸ਼ੁਲੂ ਅਧ NBC3 1 LEARW LFAGM

A.2 PROGRAM INFORMATION

The discussion concerning the program is divided into several subsections

- A. List of Major Program Variables
- B. List of Subroutines and Switches
- C. Flow Diagrams
 - (i) Main Flow Diagram
 - (ii) Assembling Global Stiffness Matrix
 - (iii) Solving for Unknown Nodal Force and Displacement Components

A. List of Major Program Variables

All equation numbers refer to Chapter 2, Analysis

Program Listing Notation	Analysis Notation	Description
AJF(I,J)	J	matrix in equation (42) I = 1,2,3; J = 1,2,3
DClK(LB,I,J)	^F i L _k	direction cosine matrix at end l(i) of beam LB at end of step K. LB = l;.,NUB; I = l,2,3; J = 1,2,3
DC1KP1(LB,I,J)	$L_{k+1}^{F_{i}}$	direction cosine matrix at end l of beam LB at end of step K+1. LB = 1,,NUB; I = 1,2,3; J = 1,2,3
DC2K(LB,I,J)	$\mathbf{L}_{\mathbf{k}}^{\mathbf{F}}$ j	direction cosine matrix at end 2(j) of beam LB at end of step K. LB = 1,,NUB; I = 1,2,3; J = 1,2,3
DC2KP1(LB,I,J)	L ^F j k+l	direction cosine matrix at end 2 of beam LB at end of step K+1. LB = 1,,NUB; I = 1,2,3, J = 1,2,3
DDK(LB,I)	∆d _k	accumulated plastic energy dissipa- tion at beam LB, end I at end of step K. LB = 1,,NUB; I = 1,2
DISK(I)	$\begin{bmatrix} x_i \\ \theta_i \end{bmatrix}_k$	<pre>location and orientation of mass point LMP in global system at end of step K. I = 1,,6 *NUMP</pre>
DISKPl(I)	$\begin{bmatrix} x_{i} \\ \theta_{i} \end{bmatrix}_{k+1}$	<pre>location and orientation of mass point LMP in global system at end of step K+1. I = 1,,6*NUMP</pre>
DISSK(LB,I)	• d _{k+1}	<pre>increment of plastic energy dissipa- tion at beam LB, end I at end of step K+1. LB = 1,,NUB; I = 1,2.</pre>

-120-

Program Listing Notation	Analysis Notation	Description
DR(I)		nodal generalized force increment vector in global system. (I = 1,, 6*NUMP). The LMPth group of six components correspond to mass point LMP In each group of six, the first three components are those of the force increment vector at LMP. The second three components are those of the moment increment vector at mass point LMP.
DRN(LB,I)		matrix in which the elements of row LB are the components of the generalized force increment DRS acting on beam LB, LB = 1,,NUB; I = 1,,12
DRS(I)	• R	<pre>generalized force vector increment acting on a beam, I = 1,,12. (Eq(8))</pre>
DU(I)		nodal generalized displacement incremen vector in global system. (I = 1,, 6*NUMP) The LMPth group of six components correspond to mass point LMP In each group of six, the first three components are those of the displace- ment increment vector of mass point LMP. The second three components are those of the rotation increment vector of mass point LMP.
DUP(I)	к ^і	plastic deformation rate vector $I = 1, \dots, 4$ (Eq (51))
DUS(I)	• D	<pre>generalized displacement increment acting on a beam, I = 1,,12. (Eq(8))</pre>
EBI(I,J) EBJ(I,J)	Ê Ê j	<pre>{ matrices defined in Eq(67),I = 1,2,3; J = 1,,6.</pre>
EBHI(I,J) EBHJ(I,J)	Êi Êj	<pre>{matrices defined in Eq(67), I,J = 1,2,3.</pre>

.

-122-

-

Program Listing Notation	Analysis Notation	Description
FK(LB,I)		matrix in which the elements of row LB are the values of the yield function at the ends of beam LB at step K. LB = 1,,NUB; I = 1,2.
FKP1(I)		yield function at the two ends of a beam, $I = 1, 2$
FRK(I)	F _{iRi} FiRj k	generalized force vector on beam ends in local frames at end of step K. I = 1,,12
FRKL(I)		<pre>temporary storage for force vectors at beam ends in local frames, I = 1,,12.</pre>
FRKP(I)	F _{i_Ri Fj_Rj k+1}	generalized force vector on beam ends in local frames at end of step K+1, I = 1,,12.
Gl(I,J) G2(I,J)	g ⁱ g ^j	<pre>{ matrices for i & j ends of a beam, appearing in Eq(55)-(58). I = 1,,4; J = 1,,6.</pre>
GlRJ(I,J)	J. _R	product of matrix AJF and the lower three rows of Gl, (see Eq(69)) I = 1,2,3; J = 1,,6
GlS(LB,I,J) G2S(LB,I,J)		$\begin{cases} \text{matrices } G^1 \text{ and } G^2 \text{ of } Eq(55)-58) \\ \text{corresponding to beam LB, } LB = 1, \dots, \\ \text{NUB}; I = 1, \dots, 4; J - 1, \dots, 6. \end{cases}$
GBI(I,J) GBJ(I,J)	й Ğj	$\begin{cases} matrices for i & j ends of a beam \\ appearing in Eq(59-(58), I = 1,,4; \\ J = 1,2,3. \end{cases}$
GBIT(LB,I,J) GBJT(LB,I,J)		matrices \overline{G}^{i} and \overline{G}^{j} of Eq(55)-(58) corresponding to beam LB, LB = 1,, NUB; I = 1,,4; J = 1,,3.

•

.

Program Listing Notation	Analysis Notation	Description
GRF(I)	٧f	gradient of yield function (Eq(49)), I = 1,,4.
HBIP(I,J) HBJP(I,J)	Hip Πjp	<pre>{ matrices for i and j ends of a beam appearing in Eqs(60) and (61). I,J = 1,2,3</pre>
HBIPT(LB,I,J) HBJPT(LB,I,J)		matrices \overline{H}^{ip} , \overline{H}^{jp} of Eqs(60) and (61) corresponding to beam LB, LB = 1,,NUB; I,J = 1,2,3.
HP1(I,J) HP2(I,J)	н ^{ір} Н ^{јр}	<pre>{ matrices for i and j ends of a beam appearing in Eqs(60) and (61) I = 1,2,3; J = 1,,6.</pre>
HPlS(LB,I,J) HP2S(LB,I,J)		matrices H ^{ip} ,H ^{jp} of Eqs(60) and (61) corresponding to beam LB, LB = 1,,NUB; I,J = 1,2,3
HR(I,J)	^H R	matrix defined by Eq(26) $I,J = 1,2,3$
IELM(I,J)		<pre>type of beam relation between node I and node J I = 1,,NUMP-1; J = I+1,,NUMP.</pre>
KRT(I,J) KRTB(M,N)	KRT KRT	<pre>{ matrices appearing in Eq(68) [I,J = 1,,6; M = 1,,6; N = 1,2,3</pre>
P(I,J)	$(T^{i})^{T}A(T^{i})$	<pre>matrix appearing in Eq(44), using A defined by Eq(32),I,J = 1,,6</pre>
RK(I)		<pre>vector of force and moment components with respect to the global system at end of step K, I = 1,,NUMP*6.</pre>

The LMPth group of six components correspond to mass LMP. In each group of six, the first three components are those of the force vector on mass point LMP. The

second three components are those of the moment vector on mass point LMP.

-124 -

Program Listing Notation	Analysis Notation	Description
RKPl(I)		<pre>vector of force and moment components with respect to the global system at end of step K+1, I = 1,,6*NUMP. See definition of RK(I) for component definition.</pre>
RNK(LB,I)	R _i R _j k	<pre>matrix in which the elements of row LB are the global components of the generalized force vector on beam LB at step K, LB = 1,,NUB; I = 1,,K.</pre>
RNKP(I)		global components of the generalized force vector on a beam at step K+1, I = 1,,12
RNKP1(LB,I)		<pre>matrix in which the elements of row LB are the global components of the generalized force vector acting on beam LB at step K+1, LB = 1,,NUB; I = 1,,12</pre>
SCFA		minimum value of set of scaling factors SCFP.
SCFD(LB,I)		<pre>scaling factor at end I of beam LB due to unloading, LB = 1,,NUB; I = 1,2.</pre>
SCFP(LB,I)		scaling factor at end I of beam LB due to loading from the elastic to the plastic state. LB = $1, \ldots, NUB;$ I = $1, 2$
SK(LB,I,J)		matrix H ⁻¹ B defined by Eq(72) for beam LB; LB = 1,,NUB; I,J = 1,,12
STIF1(I,J)		<pre>matrix defined by Eq(65),I,J = 1,,6</pre>

-125 -

Program Listing Notation	Analysis Notation	Description
STK(I,J)	$K = H^{-1}B$	matrix defined by Eq(72) $I,J = 1, \ldots, 12$.
SW(LB,I)	s ⁱ	<pre>switch setting for end I of beam LB, defined by Eq(73),LB = 1,,NUB, I = 1,2.</pre>
TK(I,J)		global stiffness matrix; I,J = 1,,6*NUMP.

-126 -

B. List of Subroutines and Switches

List of Subroutines

1. DISSP(G,GB,DR,DU,N,AL,DUP,DC)

Purpose: to compute the dissipation

Input quantities:

G,GB =	= Gl,GBI or G2,GBJ
DR:	nodal force increment vector
DU:	nodal displacement increment vector
N:	N = 1 is beam end i 2 is beam end j
AL:	beam length
DC:	direction cosine

Output quantity

DUP: plastic displacement vector

2. DMAX(A,B,NUB)

Purpose: to determine the maximum component of a vector

Input quantities:

A: input array

NUB: number of beams

Output quantity

- B: maximum element of A
- 3. DMIN(A,B,NUB)

Purpose: to determine the minimum component of a vector

Input quantities:

- A: input array
- NUB: number of beams

Output quantity

B: minimum element of A

4. FRKS(RKP1, DC1KP1, DC2KP1, FRKP1)

> to compute force and moment components with respect Purpose: to local coordinates.

Input quantities:

RKPl: global components of generalized force vector on a beam DClKP1: direction cosine matrix at i end (end 1) DC2KP1: direction cosine matrix at j end (end 2)

Output quantity

FRKP1: generalized force vector on a beam in local frame

5. GHP (DC, AL, G, HP, FRK, GRF, N, HB, EBH, GB)

Purpose: to find the G, HP, HB, EBH, GB matrices at each node point

Input quantities:

AL:	beam length		
DC:	direction cosine		
FRK:	local generalized force vector		
GRF:	gradient of yield function		
N :	N = 1 if beam end is i 2 if beam end is j		
it quantities			

Outpu

If $N =$	l: Gl		If	Ν	m	2:	G2
	HPl						HP2
	HBIP]	HBJP
	EBHI]	EBHJ
	GBI						GBJ

6. GMPRD (A, B, R, N, M, L)

Purpose: matrix multiplication

Input quantities:

A: NXM matrix

B: MXL matrix

Output quantity

R: NXL matrix

7. GRYF1 (LB, FRK, GRF, N)

Purpose: to find gradient of the yield function for the rectangular tube section

Input quantities:

Output quantity

GRF: gradient vector at end N

8, <u>HINVB</u>(ST1F1,P,HR,HIP,HJP,AJF,DC1,ST1F, EBI,EBJ,GRB1,HBIP,HBJP,EBHI,EBHJ)

Purpose: to find the matrix $K = H^{\dagger}B$ for a beam

Input quantities:

~

P AJF HR	matrices	defined	in	List	of	Program	Variables.
HIP HJP.}	matrices	HP1,HP2	in	List	of	Program	Variables
EBI EBJ HBIP HBJP EBHI EBHJ ST1F1	matrices	defined	in	List	of	Program	Variables
GRBI DCl	lower the direction	cee rows n cosine	of mat	GBI r crix	nati	cix	

STIF: matrix H^IB, local stiffness matrix

9. INCRE (M, DU, DR, K)

Purpose: to read in the increment of displacement and force

Input quantities:

- M: mass point number
- K: step number

Output quantities

- DU: displacement increment vector
- DR: force increment vector

10. INPUT (M, NEN, IELM)

<u>Purpose</u>: to read in the initial position, forces and switch setting and material properties of each beam

Input quantities:

- M: mass point number
- NEN: beam number
- IELM: relation between mass points I and J

11. INV(M,N,A,IM,L,B)

(Library Subroutine, University of Michigan Computing Center)

Purpose: matrix inversion

Input quantities:

- A: matrix to be inverted
- M: size of matrix A
- N: maximum size of matrix A
- IM: 2M dimension vector

Output quantity

B: matrix A⁻¹

12. SUBROUTINE KR1 (DC, HIP, HB1P, FL, LB, AL, KRT, KRTB)

Purpose: to comput the matrices KRT and KRTB in the H and B matrices

Input quantities:

DC: direction cosine HIP: H^{ip} HBIP: H^{ip} FC: force at local frame (12 elements) LB: beam number AL: beam length

Output quantity

- KRT: KRT KRTB: KRT
- 13. KUKL (DCI, ST1F1, P, HR, G1RJ, LB, AL)

Purpose: to find the elastic stiffness matrix and associated matrices P and HR

Input quantities:

- DCI: direction cosine
- GlRJ: matrix from list of variables
 - LB: beam number
 - AL: beam length

Output quantities

STIFI P HR

matrices defined in List of Program Variables

14. NEWDC (HIP, HJP, DR, DD, DCI, DCJ, D1, D2, HBIP, HBJP)

Purpose: to compute new direction cosines

Input quantities:

~

HIP,HJP: matrices HPl,HP2 in List of Program Variables HBIP,HBJP: matrices in List of Program Variables DCI,DCJ: direction cosine matrices at I and J ends DR: increment in generalized force vector DD: increment in generalized displacement

Output quantities

Dl: new direction cosines at $i \\ j$ ends

15. OUTP(K,IELM,RK,DISK,RNKP1,SW,SCF,SCF1, SCFA,IPS,NUMP,NUB,FK1,FRK1)

Purpose: to print out the final force components and coordinates

Input quantities:

1

RK:	total force at each mass
RNKP1:	total force at each beam end
К:	step number
IELM:	type of beam relation between mass points I and J
DISK:	location and orientation of mass points
SW:	switch setting
NUMP:	number of mass point
NUB:	beam number
SCF:	loading scale factor
SCF1:	unloading scale factor
SCFA:	minimum loading scale factor
SCFB:	minimum unloading scale factor
IPS:	print out switch control
FKl:	yield function values at beam ends
FRK1:	beam end force vector in local frame

- 16. SCFS1 (FRKP1, FR, D, N, I, LB)
 - <u>Purpose</u>: to scale displacement increment so that resulting force stays on the yield surface

Input quantities:

- FRKP1: local force vector at step K+1
 - FR: local force vector at step K
 - N: beam end i or j
 - LB: beam number

Output quantity

- D: scaling factor
- J: number of iterations

17. YFCT1 (LB, FR, FK)

<u>Purpose</u>: to compute the yield function for the rectangular tube section

Input quantities:

- LB: beam number
- FR: local force vector

Output quantity

FK: value of yield function

List of Control Switches

1. IDS dissipation switch control

Purpose: to allow choice of loading or unloading at a negative dissipation increment

- IDS = 0 at a negative dissipation increment, switch SW stays = 1
 - 1 at a negative dissipation increment, switch SW is set = 0 causing unloading
- 2. IPS print out switch control

Purpose: to select amount of print out

IPS = 0 standard print out

- l standard print out plus yield function values at beam ends
 - 2 standard print out, yield function values and local forces and moments

call INPUT

call INCRE

call GHP

- C. Flow Diagrams (i) Main Flow Diagram Start Read beam geometry and material data, frame initial geometry data Set K = 0100 -----Set K = K+1Read nodal force and displacement input data at current step K Generate local stiffness matrices Do loop LB = 1, ..., NUB; I = 1, 2YES is SW(LB,I) = 0NO If If If Ιf I = 1I = 2I = 1I = 2SET COMPUTE Gl = 0G2 = 0Gl G2 GBI = 0GBJ = 0GBI GBJHBIP = 0HBJP = 0HBIP HBJP HP1 = 0HP2 = 0HPl HP2 EBHI = 0EBHJ = 0EBHI EBHJ EBI = 0EBJ = 0EBI EBJ Generate call HINVB, KUKL STK
 - CONTINUE

-135 -

CONTINUE

CONTINUE

-138-

(ii) Assembling Global Stiffness Matrix

APPENDIX B

B.1 PROGRAM LISTING

PAGE POOL							
17:44.30	6.0000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.000000 6.0000000000	22.000 23.000 24.000 25.000 25.000 25.000	26.030 27.030 000-85	0000 0000 0000 0000 0000 0000 0000 0000 0000	8.000 8.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	74444444444444444444444444444444444444	52 52 52 52 52 52 52 52 52 52 52 52 52 5
08-29-73	<pre>S £20 BEAMS), DISKP1(90), SCF0(20,21,0C1(3,3), SCF0(20,21,0C1(3,3), SCF0(20,21,0C1(3,3), SCF0(20,21,0C1(3,5),), DISK(20,31,0C1(3,5), 0,3,6),612(3,5), 0,3,6),612(3,6), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),612(2,12), 0,3,6),7,12,12, 0,3,6),7,12,12, 0,3,6),7,12,12, 0,3,6),7,12,12, 0,3,6),7,12,12, 0,3,6),7,12,12, 0,3,6),7,12,12,12, 0,3,6),7,12,12,12,12,12,12,12,12,12,12,12,12,12,</pre>	4.31,HBIT(20,3,3), 11P(3,31,4BJP(3,3),	Ŀ		ЕАСН ВЕАМ	, NUMP, NUB, FK, FRK)	
MAIN	<pre>3 MAXIMUM 15 MASSE 3 * * * * * * * * * * * * * * * * * * *</pre>	2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	<pre><, DDK, RK, FRK, DISK, A vts & bfams</pre>	IPS, IDS EFWEEN MASSES I & J	.NUMP) VITIAL POSITION OF	RK, SW, SCFP, DD<, 1., C 2.1 X	ACH BEAM 2 200
TEM FORTRAN G(41336 TEST)	MPLICIT RFAL *3 (A-H, P-Z) HIS PROGRAW HIS PROGRAW CAN PROGRAW NTEGER SW, SMT ANTEGER SW, SMT FAL *8 MI0, MZO, M30 MFNSIDN ACRT(5,6), PRRT(5,6) MFNSIDN ACRT(5,6), PRRT(5,6) FRK(20,12), FRAP(70,12), SR(12,0) FRK(20,12), FRAP(12,0), STIFI AJT(3,3), GIRJ(3,6), STIFI SX(20,12,12), PRAP RMMF(12), PRAV(20,10,0)	<pre>Import 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)</pre>	DMMANICOMFIDCLK, NC2K, SW, F HMMNICOMFISCFO, SCFP FAD IN NUMBER DF MASS POI	TAN 1 1 10000 00 0000 00 0000 00 0 0 0 0 0 0 0 0		ALL DUTP(K, LFLM, 2K, 015K, F 0 40 1=1, NU9 0 40 1=1, 12 NK(1, J) = FRK(1, J) EAD IN INGPEMENTS = K+1 = K+1 ALL INGPEMENTS ALL INGPE(NUMP, DU, DR, K) ALL INGPE(NUMP, DU, DR, K) ALT INGPE(NUMP, DU, DU, DR, K) ALT INGPE(NUMP, DU, DU, DU, DU, DU, DU, DU, DU, DU, DU	K(I,J)=0.00 FWFRATE THE K MATRIX OF E 0.200 I=1,NWPMI 0.210 J=L,NWPMI 1.200 J=L,NUMP F (IELW(I,J) .EQ. 0) GO T B=1R+1 B=1R+1 0 131 JJ=1.3
TERMINAL SYS	UU HIHACO HAWAWAFCC	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ບບ <i>ະ</i> ບ		0.1 21 21 20 21 20 20 20	00662440F66	oorororo s o
MICHIGAN	0001 00002 00003 00004 00005	0006 0007	0009 0009	00100 0013 0013 0013	0015 0016 0017 0018 0019	00221 00221 00222 00223 0025 0025 0027	0028 000332 000332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00332 00000000

-146 -

MICHIGAN 1	FERMINAL SYSTEM FORTRAM G(41336 TEST)	NIV	08-29-73	17:44.30	PAGE POOZ
0037 0038	131 DC1(11,JJ)=DC1K(LB,11,JJ) ^n 136 11=1,3			61.000 62.000	
0039	DO 136 JJ=1,3 136 DC2(11,JJ)=9C2K(LB,II,JJ)			63.000 64.000	
0041	רי 105 M=1,12 105 F¤kl(M)=FRk(LB,4)			65.000 66.000	
6400	C CHECK THE HINGE SWITCHES FOR EACH	BEAM AND COMPUTI	G,4P	67.070 68 000	
4400	IF(SU(L8,N) .EQ. 0) GO TO 125			000 • 6 9	
0045 0046	IX=IFL4(I,J) Gn TO (111,112,113,114,115),IX			70.000	
0047	III CALL GRYFI(13, FRKL, GRF, N)			72.000	
0049				74.000	
0750	113 GD TD 130 114 CD TO 130			75.000	
0052	115 GJ TN 130			77.000	
0053	125 IF (V.FQ. 2) GO TO 127			78.000	
0055	01 I26 II=1++ D∩ I26 JJ=1+5			80,000	
0056	61(11.JJ)=0.D0			81.000	
0057	IF(II -EQ- 4) GO TO 126 HPI(II-JJ)=0.DO			82.000 83.000	
0759				84.000	
0060	[F (JJ .6F. 4) 60 TO 126 EAHITI 11-0 NO			85.000 a.c. 000	
0052				87.000	
0063	126 CANTINUE D'7 116 IT=1.6			88,000 83,000	
0065				000.00	
0066	116 GRI (11, JJ)=0, DO			91.039	
0048				000-26	
0069	1=1 P			000.799	
00 7 0	52{11,JJ)=0.JO IE(II - En - 4) GO IO 128			95,000 91,000	
0072	HP2(II,JJ)=0.00			000-16	
1200	FRJ([[,JJ])=0.70			93.000	
00.75	IT (JJ • • • • • • • • • • • • • • • • • •			100.000	
C076 2077	HRJP([[,JJ)=0.n0			101.07)	
0078	DO 129 11=1,4			103.600	
670	ε 1=1 621 Uu			104.000	
00900	129 53J([[,JJ]=0.DO Gn rn 14n			105.070	
0047	130 IF (N. FO. 2) GJ TO 135			107.010	
0084 0084	GU TO 149 GU TO 149	r, 1, 18 17, EBH 1, 6	317	109.000	
0085	135 CALL GHP(DC2, AL(LD),G2,HP2,FRKL,GR 140 CONTINUE	F.2, HBJP, EBHJ, GI	(15	110.000	
0000	C STOPE THE CALCULATED MATRICES			112.000	
0087 0038	DO 142 II=1,3 DO 142 JJ=1.6			113.000	
0089	HP1S(LB+[1,JJ]=HP1(11,JJ)			115.000	

~)

PAGE PO03	
17:44.30	
08-29-73	180 , G281, HBIP, HBJP,
NIW	IX AL(LB) AL(LB) AL(LB) ACT BEAM ACT
V G(41336 TEST)	UJ)=HP2([1,J]) 4) 60 TO 142 1)=62([1,J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1],J]) 5] (1[1,1]) 5] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1[1,1]) 6] (1
SYSTEN FORTRA	HP255168.11. HP255168.11. HP31716.11. HP31716.11. HP31716.11. HP3171.
TERMINAL	
MICHIGAN	00000000000000000000000000000000000000

·

MICHIGAN TERMINAL	SYSTEM FORTRAN G(41336 TEST)	NIVW	08-29-73	17:44.30	PAGE P004
0142	I E = 1 * 6			171.000	
0143	JS={J-1}*6+1			172.000	
0144	Jr= J*6			173.000	
0145	I K = 0			. 174.000	
0146	Dri 162 11=15,1E			175.000	
10147	JK=0			176.009	
0143	[X = [X +]			177.000	
0149	01 161 JJ=IS,IE			178.000	
0150				179.000	
0151 16	<pre>1 TK(II,JJ)=STK(IK,JK)+TK(II,JJ)</pre>			180.000	
0152	ng 162 JJ≠JS+JE				
0153				182,000	
0154 16	2 TK(II,JJ)=STK(IK,JK)+TK(II,JJ)			183.000	
5510 515	U'' [64]=JS•JE IV-IV-1				
	0.1 163 1.1=15.1F			187.000	
0159				188.000	
0160 16	3 [K([1,.])]=STK([K,.]K)+TK([[.,]])			189.000	
0161	DD 164 JJ=JS, JE			190.000	
0162	JK= JK+1			191.000	
0163 016	4 TK([[',JJ)=STK([K,JK)+TK([[,J]])			192.000	
0164 20	0 CONTINUE			193,000	
0165	1R=0			194.000	
0166	. DO 410 [=1,M5	•		195.000	
0167	IF (nu(() .LT. 1.92) GO TO 410			196.000	
0163	[R=[R+]			197.000	
0169	J.0 ≠ 0 J.0 = 0			198.000	
0110	FR(IR)=UR(I)			199.000	
110	חים 409 J=1,M5 בד יבווויים - בריים			200.000	
0172	TF (NU(J) .LT. L.D2) GO TO 408				
0173					
	8 FK[]Y]#FK[]X]- K ,J]*UU(J) 0 fontinge				
				2021000	
	CALL TWV/TR.OD.RKR.IMDERM.QD.RKRI	-			
0180	CALL GWPRDI(PKBI.+E8,DUR,IR,IR,IR,I)	•		209.000	
1810	JC = 0	-		210.000	
0182	DO 420 I=1,M6			211.000	
0183	<pre>IF (nu(1) .LT. 1.02)60 T0 420</pre>			212.000	
0184				213.030	
0185				215 000	
0186 42				000 12	
2	CALL GWURDI(IK+DU+DK+M6+M6+M6+1) Kowanie jus kore verioù ai saru	NODE BOINT		212 000	
	A STEALT LET PORCE VECTOR AT EACT 3 STEALT DO				
0189 20				219.000	
610	IMAMN, I=1 005 CU			220.030	
1610	IS=(I-1)*6			221.000	
0192				222.000	
5610 5010	DU 300 JEL,NUMP I' I'I' HII I' FO A' FO IO 200			2000	
	IT \IELM\I∳0\ •C4• 0\ 60 -0 300 JS±(1-1)☆A			225.000	
1 . 4 . 2				r h k h L 3 3	

MICHIGAN TERMIN	AL S	'STEM FORTRAN G(41336 TEST) MAIN	08-29-73	17:44.30	PAGE P005
194					
0300	012	703/11+0/=10/03+11/ 15 /2664 /1 0 0000000/ 50 10 315			
		IF 136FA +LI+ 0+33333007 60 10 213 An 213 11-1 13			
		00 212 11±1.12 00 212 11±1.12			
	C 1 C	CTK (T T _ 1 1)=C < (D _ T T _ 1 1)			
0204	1 - L	CALL GMPRD(STK-DUS-DRC.12.12.1)			
0205		DD 214 M=1.12		235,000	
0206	214	DRN (LR, M) = DRS (4)		236.000	
0207		IF (SCFA .GT. 0.9999900) GD TO 217		237.000	
0208	215	DO 216 M=1,12		238,000	
02.09	216	DuS(M)=DAN(LB,M)*SCFA		239.000	
0120	217	70 218 M=1,12		240.000	
0211	218	RNKP(M)=RNK(LB,M)+DRS(M)		241.000	
0212		11 − 220 11 = 1 + 3		242.000	
0213		n1 220 JJ=1,5		243.000	
0214		НРІ(II,JJ)=HРІS(LR,II,JJ)		244 .000	
0215	270	HP2([[[,JJ])=HP2S(LB,I[,JJ)		245.000	
0716		1 222 11=1+3		246.030	
0217		n 222 JJ=1,3		247.000	
0218		HRIP([[,JJ)=HBIT(L9,I],JJ)		248.000	
6160		ЧЧЈР([[,JJ)=НВЈТ(LR,I],JJ)		249.000	
0220		DC1(II.JJ)=DC1K(LP,II,JJ)		250,000	
9221	222	DC2(11,JJ)=9C2K(L9,II,JJ)		251.000	
		COMPUTE THE NEW DIRECTION COSINES AND	FJRCES AT LOCAL FRAME JF	252.000	
		EACH NONE POINT		253.000	
0272		CALL VEWPC(HP1,HP2,PRS, DUS, DC1,DC2,DC1)	P1,DC2P1,HB1P,HBJP)	254.000	
				000.4652	
5270 5770		DA 230 JJ=1+3		256.000	
5775 5225	020			256,000	
02.20		1.2.2.2.2.1.1.2.2.1.1.2.2.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.2.2.2		2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		01 232 Malil2		260-000	
02.2C		AVKPITIA, MI=RNKP(M)			
05 20	232	FPKP(IR.V)=FRKP1(M)		262-200	
	1	EVALUATE THE VIELD FORCE AT 1 S. J TH FI		263,000	
0231		IX=IFLM(1.J)		264-000	
0232		Gn IJ (241,242,243,244,245),IX		265.000	
0233	241	CALL YFCTI(LB, FRKPI, FKP1)		266.000	
0234		GD TD 260		267.070	
0235	242	GO TP 260		268.000	
0735	243	GN TN 263		269.000	
7820	544	GO TO 260		210-000	
0738	245	G1 TD 260		271.000	
0239	260	CUNTINUE		272,000	
0240		201 N 202 N = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		213.000	
0241	262	FKI([R+N]=FKPI(N] •		274.000	
0242 C		IF (SCFA -LI, 0.9999900/ GU IU 300 Check the Hinge switches and determine	THE SCALING FACTOR	276-000	
0243				277.000	
0244		IF (SW(LB+N) +EQ. 1) GO TO 289	-	278.000	
0245		IF (FKP1(N) .GT. 1.DO) GO TO 265		279.000	
0246		SCFP(LB,N)=1.D0		280.000	

-150-

MICHIGAN TERMINAL	SYSTEM FORTRAN G(41336 TEST) · MAIN	08-29-73 17:44.30	PAGE POO6
1 4 5 0	CD 10 300	281.000	
26	5 IF (FK(IB.N) _IF_]_DO) GO TO 270	282.000	
0749	TE (EK(18.N) _GT_ EKP1(N)) GO TO 289	283-000	
0250	SW(LR+N) = 1	234.000	
0251	SCFP(L.B.N)=0.D0	285.000	
0252	GJ TO 290	286.000	
0253 27	0 [X=IFL4(I,J)	287.000	
0254	Gn Tn (271,272,273,274,275),1X	288.000	
0255 27	<pre>1 CALL SCFSI(FRKP1,FRK,ALAMDA,N,NI,LB)</pre>	289.000	
0,756	IF (NI .GT. 100 .DR. ALAMDA .EQ. 0.DD .DR. ALAMD/	A .GE. 1.DO) CO TO 290.000	
	1 1001	262 000	
0257	GO TA 208	000 • 262	
0258 27	2 GJ TJ 288	294.000	
0259 27	3 GU TU 288	000-462	
0260 27	4 CU IU 288	295.000	
0261 27	5 GU TU 288		
02.62 28	8 SCFP(LB,N)=ALAMDA		
0263			
0764 28	9 SCFP(LB,N)=1.D0		
0265 29			
02 46 30			
0267	JE (SEFA .LT. 0.9399900) GU 1U 320	302 000	
U	DETERMINE THE MIN. SCALING FACIUS		
0268	CALL PHINISCEP, SCEA, NUB)	304 . 000	
0269	IF [SCEA . E. 0.0000100) GO TO 50	30.0.00	
0270	IF (SCFA .GT. 0.9999900) GO TO 320	306.000	
1220	n1 310 T=1,46	307.000	
0272	DR(1)=DR(1)*SCFA	108.000	
16 6273	0 ()(([])+0()([])*5CFA	309-000	
0274	CU IN 201	310-000	
0275 32	0 CONTINUE	311.000	
0276 32	1 Dr 322 M=1,M6	312.000	
0277	RKP1(M)=RK(M)+DR(M)	313.000	
J278 32	2 DISKPI(M)=DISK(M)+DU(M)	314.000	
0279	IF (SCFA .GT. 0.9999990) GO TO 325	315.000	
0280	Dri 305 I=1, NUB	316.200	
0281	00 305 N=1,2	317.000	
0282	IF (SCFP(I,N) .GT. SCFA+0.0100) 53 TO 305	318.000	
0283	IF (SCFP(1,N) .EQ. 1.00) GO TO 305	319.000	
0284	SW(I.•V)=I	320.000	
02.85 30	5 CUNTINUE	321.000	
0296 32	5 CALL DWAXI(SW,SWT,NUB)		
0787	SCF9=1.00	373,000	
0289	IF (SWT .FQ. 0) GO TO 500	324.000	
U	CHECK THE DISSIPATION	000.475	
0289	1=0	326.000	
0620	DU 370 MI=1.VMPM1	0.001/28	
1620	[S=[w[-])*6	328.000	
0292		0.00 • 4.26	
0293	DU 370 MJ=L+VUMP	000.025	
0294	IF (IELM(MI,MJ) .EQ. 0) GO TO 3/0	000-266	
2620	1 = 1 = 1 1 = 1 M = 1 1 + 4	333-000	
07.98		334.000	
0298		335.000	

MICHIGAN TERMI	NAL SYSTEM FORTRAN G(41336 TEST)	MAIN	08-29-73	17:44.30	PAGE P007
6620	330 TUS (11+6)=DU(JS+11)				
0100	1) 334 M=1+12				
1050	334 UKS (M)=UFN(1,M)				
2060					
				341-000	
	IF (N . FQ. 2) GD TD 340			347.000	
0306	DU 335 [1=1.4			343.000	
1050	nn 335 JJ=1,3			344.000	
0108	335 GRI(II, JJ)=GRIT(I, II, JJ)			345.000	
0309	DO 336 11=1,4			346.030	
0310	רח 3⊐ל JJ=1,5			347.000	
1120	336 61(11, JJ) = 615(1, 11, JJ)			348.000	
0312	00 337 11=1.3			349.030	
6160	nn 337 JJ=1,3			350-000	
0315	337 UCI(II+JJ)=UCIK(I+II+JJ) CALL STEERED FOR DOE DUE 1 ALT			2010 - 1 C C	
	CALE 0133719140340737003414411 CA TA 359		•	353.000	
				354.000	
0318				355.000	
0319	341 GRJ(11,JJ)=GRJT(1,11,JJ)			356.000	
0350	D() 342 []=1,4			357.000	
0321	342 JJ=1+5	•		358.000	
. 2220	342 62(11, JJ)=625(1, 11, JJ)			359,000	
0323	Drn 343 [1=1,3			360.030	
9324	nn 343 JJ=1,3			361.000	
0125	343 0C2(11,JJ)=0C2K(1,11,JJ)			362.000	
0326	CALL PISSPIG2, GBJ, DRS, DUS, 2, ALI), DUP, DC2)		363.000	
1250	350 M= [N-1] * 6+2			364.000	
0328 6326	00 351 J=1,4			369.000	
	ASI DISSELLIDING NI=DISSELLINI+EI*DHD(1)			367.000	
1550	. IF (105 - F0. 0) GO TO 360			363.000	
0332	IF (DISSK(1, V) . GF. 0. DO) GD TD	360		369.000	
0333	Sw(1, N) = 0			370.000	
0334	359 CONTINUE			371.000	
0375	360 0nk([,~V)=nISSK([,N)+DDK([,N)			372.000	
0336	370 CUNTINIF				
0337	500 CALL JULP (K+IELM+KKPI+UISKPI+KNK 1 FV1.FPVD1		DON & JWON & CAI + PAD	375.000	
0338	IF (K .GF. KMAX) GO TO 1000			376.000	
0339	00 505 I≠1, ⁴ 6	-		377.000	
0340	RK (1) = RKP] (])			378-000	
0341	505 015K(1)=015K01(1)			319.000	
2450 5450				381,000	
1 4 5 D	508 FX[1.N]=FX]{1.N]			382.000	
545	nn 510 J=1,12			383.000	
0346	FRK([,,])=FRKP[[,])			384.000	
247	510 RVK(1.J)=RNKP1(1,J)			385.000	
0348	DO 515 [[=1,3			386.000	
0349	00 515 JJ=1+3			000-185 000-388	
0351				389-000	
0352	520 CONTINUE			390.000	

-152 -

-

MICHIGAN TE	RMINAL SYSTEM FORTRAN G(41336 TEST) MAIN	08-29-73	17:44.30	PAGE POO8
0353	GD TD 50		391.000	
0354 ·	1001 WRITE (6,1002) NI,ALAMDA		392.000	
0355	1002 FORMAT ('TRY',14,' TIMES LAMDA=',D15.5)		393.000	
0356	1000 CONTINUE		394.000	
0357	1101 FORMAT (1H1, 'K= ', I3)		395.000	
0358	1108 FORMAT ('L F a', 213, 12010.3)		396.000	
0359	1109 FORMAT ('YF ',213,2015.5)		397.000	
0360	1110 FORMAT (//'K=',I3,'ISCF=',I3/)		398.000	
0361	END		399.000	
OPTIONS	IN EFFECT ID, FBCDIC, SDURCE, LIST, NODECK, LOAD, NOMAP			
OPTIONS	IN EFFECT NAME = MAIN , LINECNT = 57			
STATIST	ICS SOURCE STATEMENTS = 361, PROGRAM SIZE =	272822		
STATIST	ICS NO DIAGNOSTICS GENERATED			
NO FORODE IN	1 16 4 7 51			

NO EPRORS IN MAIN

J

NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS.

.

.

•

.

.

.

APPENDIX B

B.2 SUBROUTINE LISTING

.

MICHIGAN	TERMINAL S	YSTEM FURTRAN G(41336 TEST)	IVPUT	08-29-73	19:03.44	PAGE POOL
1000	Ċ	SUBROUTINE INPUT(M,NEN,IELM) INPUT DATA & INITIAL PUSITION			6.000 7.000	
0002 0003	•	INPLICIT REAL *8(A-H, P-Z) REAL *8 MI0, 420, M30			8.000 9.000	
0004 0005		INTEGER. SW DIMENSION AL (20) + YI (20) + (20) + (CF(2), MIO(20), M20	(20), M30(20),	10-000	
		2 26(20), DCIK(20, 3, 3), DC2K(20, 3), 3) & R(40), F8K(20, 12), DISK(90), IEI		,2),DDK(20,2), SCFD(20,2),	13.000	
90026		4 SCFP(20,2) COMMON/COMA/24, 26, 211, 212, 221, 23	22,231,232		15-000	
7000 9008		CCNMON/CCMB/MI0,MZ0,M30,PU,YL,Y CCMMON/COMC/AMR,FR,ALR/CUMD/EPS	2. CF		18.000	
6000		COMMON/COME/OCLK,DC2K,S4,FK,DDK	, RK , FRK , DI SK , AL		19-000	
0100	U	READ IN REFERENCE UNITS			21.000	
0011		REAN(5,12) ALR, DR, ER, AIR, EPS BB= A(3,700			22•000 23•000	
0013		AMR=E3*AIR/ALR			24.000	
0014		FR= ΔVR/ ΔLR Δ R= Δ18 / Ω R / DR			26.000	
0016					27.000	
2100		1-1-11			28.000	
0018		00 20 I=I+MI			30.000	
0200		00 20 J=L+M			31.000	
0021		IF (IELM([,J) .EQ. 0) GO TO 20			32.000	
0023		LNB (L8) = I ELM([, J)			34.000	
0024	20	CONTINUE			35.000	
	υd	READ IN MATERIAL PROPERTIES, D NOTATALNSTONAL QUANTITIES	IMENSIUNS OF EA. M	EM. AND CAL.	36.000	
0025	,	DO 1 1=1.NEN			38.000	
0126		REAU(5,10) E, G, AJ, AIL, AI2, A, AL(I),8,H,T,Y1(I),Y2(I),CF(I),YF	39.000	
0727					40°000 41°000	
00000					42.000	
0100		A1 1 = 41 1 / A1 R			43.000	
1600		A12 = 412/A1R			44 • 000	
0032		$A = A / A^{R}$			45.000 45.000	
2800 2800		AL(1)=AL(1)/ALK A=A/79			0.0.04	
0035					48.000	
0036		$T = T / O^{12}$			49.000	
0037 0038		YI(I)=YI(I)/UR Y2(I)=Y2(I)/UR			51.000	
0039		YFEYFJER			52.000	
00040		IF (IN9(1) .EQ. 1) GO TO 21			53.000	
1400		MI0(I)=2*00*4IL*YF*KK/H M20(I)=2*D0*4I2*YF*R7B			55.000	
0043		N30([])=2.00%A*T*YF*RK/1.73200			56.000	
0044		60 T0 22			58.000	
0046	17	MI0(1)=2.00*411*1F*KK/A M20(1)=2.00*412*YF*KR/8			59.000	
0047		M30(I)=2.00*A*T*YF*RR/1.73200			000.00	

-155 -

.

Ŀ

5

MICHIGAN	I TERMINAL	SYSTEM FORTRAN G(41336 TEST)	INPUT	08-29-73	19:03.44	PAGE PO02
0048		22 P()(1)=A*YF*RR*RR				
0049		Z11(1)=A (1)/(F*A1))				
00200		712(1)=A(1)/(F*A12)				
0051		Z21(1)=A1(1)*A1(1)/(2,D0*F*A1)				
0052		Z22 [1] = AL [1] + A[1] [1] / (2 CO + F + A12)				
0053		Z31(I)=AL(I)*AL(I)*AL(I)/(3-D0*F*/	4113			
0054						
0055		ZA(I)=^L(I)/(A*E)/RR/RR				
0056		$1 \ 26(1) = AL(1)/(6*A_1)$				
	J	READ IN INITIAL POSITION AND FORCE	S FOR FIEMENT	END S. SET 1.C.		
0057		DD 2 I=1.NEN				
0058		00 2 J=1,3			72 -000	
0054		READ(5,12) (DCIK(I,J,K),K=1,3)			73.000	
0400		DO 2 K=1,3			74-000	
1400		2 DC2K([,J,K)=DC1K([,J,K)			75,000	
00062		M6= N +6			76.000	
0063		DC 3 I=1,M				
0024		J=([-1) #6+1	-		78-000	
0065		L=[*6				
0066		3 READ (5,12) (DISK(N), N=J,L)				
7400		DO 6 I=1,NEN			81 - 000	
CC 58		DO 4 J=1+2				
0059		SW(I,J)=0			83-000	
00 10		FK([,J]=0.D0			84 - 000	
C 0 7 I		SCFP(1,J)=1.00			85-000	
0072		SCFD(1,J)=1.DO			86.000	
0073		4 DDK { [] = 3 . DQ			87.000	
0014		DO 5 J=1,12			88 000	
5100		5 FRK([,J)=0.00			000.68	
0076		6 CONTINUE			000 06	
0077		00 7 J=1, M6			91.000	
8100		7 RK(J)=0.00			92.000	
6200		0 FORMAT (8010.0)			93.000	
0100	•	Z FORMAT(6010.0)			94.000	
1600	-	4 FURMAT(5010.0,13)			95.000	
CC 82		RETURN			96.000	
CCRJ		END			97.000	
I 1 dC *	ONS IN EFF	ECT* ID, EBCDIC, SOURCE, LIST, NODECK, L	JAD, NOMAP		-	
	UNS IN EFF	ECT* NAME = INPUT , LINECNT =	57			
1 7 1 7 1		SOURCE STATEMENTS = 83, PROGRA	M SIZE =	2532		
ND FRADRS		IU UIAGNUSIICS GENEKALED				

.

.

Σ.	I CHIGAN	TERMINAL	SYSTEM F	ORTRAN G(4)	1336 TEST1		GRYFI	08-	29-73	19:04-(5
	1000		SUBROU	JTINE GRYFI	(LB,FKK,GF	(F.N)				36	3.000
		ں	COMPUT	E THE GRAD.	. OF YIELC	D FUNCTI	NO			56	9.000
	0002		IMPLIC	IT REAL *8 (A-H, P-Z)					1 0(0000.0
	0003		REAL *	48 ML0, M20,	M30, M1, M2,	em,				101	1.000
	0034		DIMENS	10N FRK(1)	, GRF(1), A	(4),8(4)	.M10(20) *	120(20), M30	(20),	102	000.5
			1 PC(2	(07) Y1(20)	YZ (20), CF ((20)				1 01	3.000
	00 J 5		COM YON	I/CUMB/MIO	M20,M30,PC	0, Y1, Y2,	СF			10	000
	0006		MI = MIO	11181						10,	6.0CO
	0007		M2= 20	(())(())						100	5. UOO
	0008		M3=M30	0(LB)						10	7.000
	6003		D=PC(L	.8.)						1 08	3.000
	0100		2) = W.	1-1) + 6 + 2						10,	000.6
	1100		00 10	1=1,4						110	0000.0
	0012		10 V (1)	= 2.00 * D	ABS (FRK((1+W)				11	1.000
	0013		00 15	1=1,4						11	2.000
	0014		IF (F	RK(M+I)) 1.	2,13,14					11	3.000
	C015		12 B(1) =	-1.00						11	••000
	0016		60 10	15						11	5.000
	0017		13 B(I) =	• 0						110	5 . 000
	8100		60 10	15						. 11	7.000
	0100		14 o([) =	1.DO						118	3.000
	0020		15 CONTIN	IUE						110	000.6
	0021		GRF (1)	= 8(1)*(A(1)/P /P	+ A(2).	+ d/ 1W/	A(3)/M2 /P	~	12(0.000
	0022		GRF (2)	= B(2)*(/	A(2)/M1 /V	11 + A(:	3)/ML /M2	+ A(1)/M1	/ b)	12	1.000
	0023		GRF (3)	= 0(3)*(A(31/M2 /	12 + A(.	21/M1 /M2	+ A(1)/M2	(d/	123	2.000
	0024		GRF (4)	= B(4)*A(4	4)/M3 /M3					12:	3.000
	0025		RETURN							12/	• • 000
	0026		END							12	5.000
	OLL dO*	NS IN EF	FECT* 10	, EBCUIC, SO	URCE, LIST,	, NUDECK .	LOAD, NCMAP	•			
	OI 1 dU*	NS IN EF	FECT * NA	ME = GRYFI	+ LINEC	NT =	57				
	STATI	STICS	SOURCE	S T AT EMENT S	#	26, PROGR	AM SIZE =	576			
	STATI	STICS	ND UIAGNO	ISTICS GENEI	RATED						
2 Z	ERRORS	IN GRYFL									

PAGE POOL

-157 -

.

.

.

-

MICHIGAN TE	RMINAL SY	STEM	FURTRAN	G(41336	TEST)	YFCT1	08-29-73	19:04.08	PAGE POOL
0001		SUBRO	UTINE Y	FCT1(LB,	FR,FK)			126.000	
	С	TEST	YIELD C	JNDITIGN				127.000	
0002		IMPLI	CIT REA	L*8(A-H,	P-2)			128.000	
0003		REAL	*9 M10,	M20,M30,	M1, M2, M3			129.000	
0004		DIMEN	SICN FR	(12), FK(2),M10(20), M20(20), M30((20),PO(20),	130.000	
	1	Y1(20), 72(20),CF(2	0)			131.000	
00:05		COMMO	NICCMBI	M10,M20,	M30,P0,Y1	,Y2,CF		132.000	
0005		M1=M1	0(LB)					133.000	
0007		M2= M2	O(LB)					134.000	
0008		M3=M3	O(LB)					135.000	
0009		P=PO(LB)					136.000	
0010		A1= C A	BSIFR(3)/P)				137.000	
0011		42=D4	BS1FR14)/M1)				138.000	
0012		A 3 = C A	BS(FR(5	1/M2 1				139.000	
0013		14 = C 4	BS(FR(6)/M3				140.000	
0014		A5=0 1	BS(FR(9)/P }				141.000	
C 0 1 5		46=CA	85(FR(1	0)/M1)				142.000	
0016		A7 = C A	BS(FR11	1)/M2)				143.000	
0017		A8=DA	US(FR(1	21/43)				144.000	
0019		FK(1)	=A1*A1+	A2*A2+A3	*A3+A4*A4	+2.D0*A2*A3+2.	D0*A1*A2+2.D0*A1*A3	145.000	
0019		FK(2)	= 15 * 15 +	46* 46 + 47	* 47+48*48	+2.00*A6*A7+2.	U0*A5*A6+2.D0*A5*A7	146.000	
0020		RETUR	N					147.000	
6021		END						148.000	
*OPTIONS	IN EFFEC	T≁ I	D,EBCDI	C,SOURCE	+LIST +NOD	ECK, LOAD, NOMAP	,		
OPTIONS	IN EFFEC	T N	AME = Y	FCT1 ,	LINECNT	= 57			
STATIST	ICS S	JURCF	STATEM	ENTS =	21,P	RUGRAM SIZE =	796		
STATIST	ICS NO	DIAGN	OSTICS	GENERATE	D				
NO ERRORS IN	YFCT1								

.

,

.

•

1

MICHI	GAN TERMIN	AL SYSTEM F	URTAN GI	41336 TEST	-	NIWO	08-29-73	19:04.10	PAGE POOL
000		SUBROU FIND D	TINE OMIN	V (SCF, S, NUB	() DE AN ARP	V SCE (20-2)		149.000	
000	2	REAL *	B SCF, S, X	(*)				151.000	
		NIMENS	IDN SCF (2	20,2)				152.000	
	יז ג		1 SCF 1 , 1	(),SCF(1,2)	~			153.000	
000	5		1 (SCF (1 - 1	1.SCF(1.2)	-			1 24 - 000	
000	17	10 X=DMIN	1 (X,Y)		•			156-000	
000	8	S = X						157_000	
000	5	RETURN						158-000	
100	0	END						159-000	
口 (* ·	INI SNOILd	EFFECT * 10	+ EBCUIC . S	OURCE . LIST	. NDDECK 1	.DAD,NOMAP			
_' ' ' *	NI SNOLLdu	EFFECT* NA	ME = DMIN	LINE -	CNT =	57			
0000 # # 0 0 2	TATISTICS*	SOURCE NO DIAGNO	STATEMENT	rs = ierated	10.PR0GR/	1M SIZE =	524		
		~							

-

•

.

.

•

.

.

•

.

_

MICHIGA	N TERMINAL	SYSTEM FURTRAN G(41336 TEST)	GMPRD	08-29-73	10:04-11	PAGE POOL
1000		SUAROUTINE GMPRD(A,B,R,N,M,L)			160.000	
0002	•	RFAL*8 A, 8, K			161.000	
0003		DIMENSION A(1), B(1), R(1)			162.000	
0004		I R = 0			163.000	
0002		X = - 2			164.000	
0000		DG 10 K=1,L			165.000	
1000		【K=【X + M			166.000	
0038		. DO IO J=I,N			167.000	
6000		[k=[2+]			168.000	
0100					169.000	
0011		I R = I K			170.000	
0012		R(IR)=0.00			171.000	
0013		DC 10 I=1,M			172.000	
4100					173.000	
0015		IB = IB + I			174.000	
9100		10 R(IR)=R(IR)+A(JI)*B(IB)			175.000	
2100		RETURN			176.000	
0018		END			177-000	
1 dD *	IONS IN EF	FECT* ID, EBCDIC, SOURCE, LIST, NODEC	K.LJAD,NOMAP			
T dC ≉	TONS IN EF	FECT* NAME = GMPRD , LINECNT =	57			
*STA	TISTICS	SOURCE STATEMENTS = 18, PRO	GRAM SIZE =	674		
* STA	TI STICS*	VD DIAGNOSTICS GENERATED				
NO ERRUR	S IN GMPRD					

•

.

MICHIGAN	TERMINAL	SYSTEM FORTRAN G(41336 TEST)	FRKS	.08-29-73	19:04.13	PAGE POOL
1000	L	SUBPOUTINE FRKS (RKP1, DCIKP1, DC2KP	1,FRKP1)		178.000	
2000	د	UCHTOLE THE RESULTANT FURCE AT LU IMPLICIT REAL#8(A-H.P-Z)	CAL COUR.		180.000	
0003		DIMENSION RKPI(12) , DC1KP1(3,3), DC	2KP1(3,3),FRKP1	(12),SRKP1(12),	181-000	
		I F(3), FM(3), FL(3), FML(3)			182.000	
0004		DQ 50 M=1,12,6			183.000	
00 35		DO 40 [=1,3			184.000	
0000		N=M+[-]			185.000	
0001		F(1)=RKP1(N)			186.000	
8000	-	40 FM(I)=RKP1(N+3)			187.000	
60 00		IF (M .GE. 7) GO TO 45			188.000	
0100		CALL GYPRD(DCIKP1, F, FL, 3, 3, 1)			189.000	
1100		CALL GMPRU(DCIKP1,FM,FML,3,3,1)			190.000	
0012		GO TO 45			191.000	
0013		45 CALL GMPRD(DC2KP1, F, FL, 3, 3, 1)			192.000	
4100		CALL GYPRD(OC2KP1,FM,FML,3,3,1)			193.000	
0015		46 DU 47 I=1,3			194.000	
9100					195.000	
2100		FRKPL(N)=FL(I)			196.000	
8100		47 FRKP1(M+3)=FML(1)			197.000	
6100		50 CCNTINUF			198.000	
0200		CONTINUE			159.000	
0021		RETURN			200.000	
0022		END			201-000	
11dC*	JAN IN EF	FECT* ID,EBCDIC,SOURCE,LIST,NODECK, EECT* NAME - COVE , INCENT -	LOAD, NCMAP			
10-04 10	1511C5*	DUDIAGOSTICS GENERATED		***		
	DULL NT					

م

-161-

MICHIGAN TERMINAL	SYSTEN FORT	XAN G[4]336 TEST)	бнр	08-29-73	19:04.15	PAGE POOL
1000	SUBROUT IN	E GHP (DC + AL + G + HP + FRK + G	KF•N•H8•E8H•G8)		202.000	
0002 C		46 G AND HP MATRICES 8FA1 *81A-H.P-71			203.000	
0003	DIMENSION	DC (3,3),G(4,6),HP (3,6), R(6), GRF (4), A(4)	T(6,6),GR(3,6),	205-000	
000	DIMENSIUN	FK(121,513,31 BI(4,3),GT(1,3),GB(4,	3),HB(3,3),GBR(3,3	, EBH(3,3),	207.000	
1000	1 HT(3,3)				208.000	
0000	CIM~UN/CU	4U/EPS			210.000	
1000	DC 10 I=1	• 4			211-000	
0008	10 X=X+3RF(I) *GRF(1)			212-000	
0010		• 4			214.000	
1100	12 A(1)=GRF(215.000	
0012	N=(N-1)*6	~			216.000	
0014	13 3(1)=FRK(/	ر • ۲ • ۲)			218.000	
0015	IF (M .10.	01 63 13 19			219.000	
0016	R(4)=FRK(10)-4L*FRK(8)			220.000	
10018	X (5) = FXX (P (6) = FDX (11)+AL *FKK(/) 10)			222,000	
0019	06 = 6RF(1)	*{A(3) *R(1)-A(2) *R(2))	+GRF (2)*(-AL*A(4)*	<pre>(1)+AL*A(2)*R(3)</pre>	223.000	
	1+4(4)*K[5)-A(3)*R(6))+GRF(3)*(-	AL *A (4) *R (2)+AL *A.	3)*R(3)-A(4)*R(4)	224.000	
	2 +A(2)*R(6))+GRF(4)*(A[3)*R(4)-	A(2)*R(5))		225.000	
00200	IF (CABS (D)	G) .LE. EPS) DG=DSIGN(all)	EPS, DG)		226 • 000	
0022	B(1.2)=P(1)			228.000	
0023	B(1,3)=0.	00			229.000	
0024	B(2,1)=R(3)*AL			230.000	
67 DD	HI(2,2)=-	<[5] 2 (1) ★Δ1 +R [5]			232.000	
0027	BI(3.1)=R	(6)			233.000	
0.028	B1(3,2)=R	(3)*AL			234.000	
0029	BI(3,3)=	R (2)*VL-R(4)			235.000	
0600	BI (4.1)=-	(2) (4)			237_000	
0032	BI(4,3)=0	0(1)			238.000	
0033	CALL GMPPI	D{GRF,BI,GT,1,4,3}			239.000	
0034	CALL GMPR	D(A, GT, GB, 4, 1, 3)			240.000	
00 36	DD 15 J=1	1 (n)			242 • 000	
0037	15 GB(I,J)=C	B(1, J)/DG	_		243.000	
0038		1 1 1 4 C D C C 3 7 4 4 1 7 C C			245,000	
0040	G(I, I) = -A	1] * 6K 7 3 4 A L / UG 1) * 6 R F (2) * A L / DG			246.000	
0041	G(1,3) = A(I)*GRF (1)/DG			247.000	
0042	G(I,4)=G(1,21/21			248.000	
0043 0046	6(1,5)=-6 17 6(1,6)=A((1,1)/AL 1)*GPF(4)/DG			250.000	
0045	60 TO 21				251.000	
0046	19 R(4) = FRK(4+4)+AL*FRK(M+2)			252.000	
0047 0048	x (v) = F X () x (4) = F R X ()	4+5)-41~FKK(X+1/ X+4)			254.000	
0040	DG=GRF(1)	* (A(3) *R(1)-A(2)*R(2))	+GRF (2) * (AL *A (4) *R	[1)-AL *A(2)*R(3)	255.000	
	1 +A(4)*R(5)-A(3)*K(6))+GRF(3)*(AL*A(4)*R(2)-AL*A(3) #R (3)-A (4) #R (4)	256.000	

MICHIGAN	TERMINAL	SYSTEM FORTRAN G(41336 TEST)	GHP	08-29-73	19:04.15	PAGE POO2
		2 +A(2)*R(6))+GRF(4)*(A(3)*R(4	4)- A(2)*R(5))		257.000	
0050		DG=-DG			258.000	
0051		IE (DABS(DG) ALEA EPS) DG#DS	IGN (EPS.DG)		259-000	
0052		BI(1,1) = -R(2)			260-000	
0053		BT(1,2) = R(1)			261 - 000	
0054		BI(1,3)=0.00			262.000	
0055		$BI(2, 1) = D(3) \times A1$			262.000	
0056		BI(2,2) = -0.161			203.000	
0057		$D_1(2+2) = P(1) + A(+P(E))$			264.000	
0058		$\frac{\partial 1}{\partial 1} \frac{2}{\partial 1} \frac{\partial 1}{\partial 1} \frac{\partial 1}$			269.000	
0059		$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} + $			200.000	
0.060		$\frac{\partial \Gamma}{\partial r} \frac{\partial \Gamma}{\partial r} \partial $			201.000	
0061		$\frac{\partial \left(\frac{\partial \left(\left(\frac{\partial \left(\frac{\partial \left(\left(\frac{\partial \left(\left(\left(\frac{\partial \left(\left(\right) \right)} \right) } \right(\left(\left(\left(\left(\left(\left(\left(\left(\right) \left(\left(\left(\left(\left(\left(\left(\right) \left(\left(\left(\left(\left(\left(\left(\left(\right) \left(\left(\left(\left(\left(\left(\right) \right)} \right) \left($			268.000	
0061		$\frac{B}{A} = \frac{B}{A} = \frac{B}$			269.000	
0052		01(4)(2) = R(4)			270.000	
0063		B1(4,3) = 0.00			271.000	
0064		CALL GMPRO(GRF, BI, GI, I, 4, 3)			272.000	
0065		CALL GMPRD(A,GT,GB,4,1,3)			273.000	
0055		00 19 1=1,4			274.000	
0057		DC 13 J=1,3			275.000	
0358]	18 GB([,J)=GB([,J)/DG			276.000	
0059		DO 20 I=1,4			277.000	
0070		G(I,1)=A(I)*GRF(3)*AL/DG			278.000	
0071		G(I,2) = -A(I) * GRF(2) * AL/DG			279.000	
0072		G(1,3)=A(1)*GRF(1)/DG			280.000	
0073		G(I,4) = -G(I,2) / AL			281.000	
0074		G(I,5)=G(I,1)/AL			282.000	
0075		20 $G(1,6) = A(1) * GRF(4) / DG$			283.000	
0076		21 DO 22 I=1.3			284.000	
0077		$00 22 J = 1 \cdot 3$			285.000	
0078	2	22 T(I,J) = DC(I,J)			230.000	
0079	_	10 24 1=4.6			287.000	
0030		$DD = 24 J = 4 \cdot 6$			288.000	
0091	;	24 T(1, J) = D((1-3, J-3))			289.000	
0092	-	00.25 I=1.3			240-000	
0093		DO 25 J=4.6			291-000	
0084	-	25 T(1 - 1) = 0 - 00			262 000	
0045	•	100 - 26 = 4.6			293 000	
0086		00 - 26 - 1 = 1 - 3			294 000	
0097	-	$26 \pm (1 - 1) = 0$			224.000	
0083		40 00 41 1 = 1.3			295.000	
0030	-				298.000	
0030	,	(1) 4 = 0 = 1 + 0	1		297.000	
0000	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			298.000	
0023					299.000	
0092		DU = 50 = 1 + 5			300.000	
0075					301.000	
0034	-				302.000	
0075		CALL CAPRULE, AUX, HP, 3, 3, 61			303.000	
0095					304.000	
0097		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			305.000	
0098	e	SU GBR(1,J)= $GB(1+1,J)$			306.000	
0099		CALL GMPRD(GBR, DC, HT, 3, 3, 3)			307.000	
0100		CALL GMPRD(8, HT, HB, 3, 3, 3)			308.000	
0101		DC 70 J=1,3			309.000	
0102		EBH(1,J)=0.00			310.000	
0103		EBH(2, J) = 0.00			311.000	

J

MICHIGAN TER	MINAL SYSTEM FORTRAN G(41336 TEST)	GHP	08-29-73	19:04.15	PAGE POO3
0104	70 EBH(3,J)=GB(1,J)			312.000	
0105	CALL GMPRD(EBH, DC, HT, 3, 3, 3)			313.000	
0106	CALL GMPRD(B,HT,EBH,3,3,3)			314.000	
0107	RFTURN			315.000	
0108	END			316.000	
OPTIONS	IN EFFECT ID, EBCDIC, SCURCE, LIST, NODE	CK,LOAD,NOMAP			
CPTIONS	IN EFFECT NAME = GHP , LINECNT =	= 57			
STATIST	ICS SOURCE STATEMENTS = 108,PF	ROGRAM SIZE =	4364		
*STATIST	ICS * NO DIAGNOSTICS GENERATED				
NO ERRORS IN	GHP				

.

.

MICHIGAN TE	RMINAL SYSTEM FURTRAN G(41336 TEST)	GMPRDI	08-29-73	19:04.28	PAGE POOL
0001	SUBROUTINE GMPRDI(X,Y,Z,IRX,JC	X, JCY)		317.000	
	C MATRIX PROD.			318.000	
0002	REAL*8 X,Y,Z			319.000	
0003	DIMENSION X(90,90), Y(1), Z(1)			320.000	
0004	DO 20 I=1, IRX			321.000	
0005	Z(I) = 0.00			322.000	
0005	DC 10 J=1, JCX			323.000	
2007	$10 Z(I) = Z(I) + X(I,J) \neq Y(J)$			324.000	
0008	20 CONTINUE			325.000	
0009	RETURN			326.000	
0010	END			327.000	
OPTIONS	IN FFFECT ID, EBCDIC, SOURCE, LIST, NODE	CK,LOAD,NOMAP			
OPTIONS	IN EFFECT NAME = GMPRDI , LINECNT =	57			
STATIST	ICS SOURCE STATEMENTS = 10,PH	ROGRAM SIZE =	522		
STATIST	ICS NO DIAGNOSTICS GENERATED				
NO ERRORS IN	GMPRDI				

,

•

.

.

•

.

3

.

MICHIGAN TERMIN	AL SYSTEM	FURTRAN G(41336 TEST)	אניא	08-29-73	19: 04.29	PAGE POOL
J . 1000	S UB 2 C FN C	JUTINE KUKL(DCI,STIFI,P,HR, RATE THE FLASTIC STIFFNESS	,GIKJ,LB,AL) Matrix		328.000	
0002	IwpL	ICIT REAL *8 (A-H, P-Z)			330.000	
00:03	DIME 1 ZL	VSION DCI(3,3),STIFI(6,6),F I(20),ZIZ(20),ZZI(20),ZZ2(2	2(6,6),HR(3,3),ZA(2 20),Z31(20),Z32(20)	0),ZG(20), ,GIRJ(3,6)	331.000 332.000	
0034	COMY	CN/COMA/ZA, ZG, ZLL, ZL2, Z21, Z	222, 231, 232		333.000	
	7=17				334.000	
0000	23=27	51 L 5 1 1 1 (L B)			336.000	
5C-00	2=42	12(LB)			337.000	
0000	7=57	21(LB)			338.000	
0100	7=97	22(L3)			339.000	
0012	1=17	211 L 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			340-000	
0013	D0 2	0 1=1,3			342.000	
0014	1 00 1	0 J=I+3			343.000	
0015	LO STIF	[[];J]=0C[[];])*0C[[],J]*Z8 2[[3.[]*0C[[3.J]*Z]	3 + DCI(2,I) + DCI(2,J	+ 22*(344 - 000 345 - 000	
0016	~ DC	J=4+6			346.000	
2100	20 STIF	[[[,]]=DCI(I,I)*DCI(2,J-3)*	×26 -DCI(2,1)*DCI(1	•J-3]*25	347.000	
CJ18) [=4,6			348.000	
070	STIF	/ 3 = 1 + 0 1 ([• .]) =')[[(] • 1 − 3) *∩[[(] • .] − 3	3)*73 +001(2-1-3)*0	C1 (2 - 1-3) #/ ++	350-000	
	1001	3, I-3) *DCI(3, J-3) *Z2			351.000	
0021	30 CONT	INUE			352.000	
0022	00) J=1.5			353.000	
					504 COO	
0025	40 STIF	1 (1 • .) = STIF1 (.1 • 1)			100.000 150.000	
0026	00 2(0 1=1,3			357.000	
0027	00 5.) J=1+3			358.000	
0028		•EQ.J) GO TO 45			359.000	
07070		/ 1)=-(((Z+1)* (1+ 1)- (])) ちの	1 (T • 1) * NC 1 (Z •])] * AL		360.000	
0031	45 HR [1.				362 - 000	
0032	50 CONT				363.000	
0033	00 61	0 1=1,3			364.000	
C034	00 0) J=1•6 50 - 10 50 =0 =0			365.000	
0335		• 4.4. J) 60 TO 59			366,000	
20037					368,000	
CC38	59 P(I,	00.1=(1			369.000	
0039	60 CONT.	INUE			370.000	
0040	000) [=4,6			371.000	
		J J=L+O]=GIR [[-3]]			372.000	
0043	p (4	$2) = -\Delta(1 + P(4, 2))$			374.000	
0044	p (* *)	t)=1.00+P (4.44)			375.000	
0045	P (5 ,	[]=AL+P(5,1)			376.000	
0047	010	<pre>/ < f <</pre>			378-000	
0048	RETU				379.000	
ADDIIONC IN F	EFFCT*	LO - ERCOTC - S CHRCE - LIST - NODEC			380.000	
NI SNCILdO*		VAME = KUKL · · LINECNT =	57			

-166-

· ·

PAGE E002	
19:04.29	
08-29-73	1748
צנ) אטאר	49, PROGRAM SIZE =
SYSTEM FORTRAN G(41336 TE	SOURCE STATEMENTS = No diagnostics generated
MICHIGAN TERMINAL	*STATISTICS* *STATISTICS* NO ERRORS IN KUKL

MICHIGAN	TERMINAL SYSTEM FORTRAN G[4]336 TEST)	DMAXI	08-29-73	19:04.34	PAGE P001
001	SUBROUTINE DMAXI(SW+SWT+NUB)			381.000	
0002	INTEGER SW.SWT			382.000	
0003	DIMENSION SW(20.1)			383.000	
0004	I = M AXO(SW(I,1), SW(1,2))			384.000	
0005	00 I 0 M= 2, NUB			385.000	
9000	U=MAXO(SH(M,1), SH(M,2))			386.000	
2000	10 I=MAXO(I,J)			387.000	
00 38	SWT=I			388.000	
6000	RETURN			389.000	
0100	GND			390.000	
01 1d0	NS IN EFFECT* ID, EBCDIC, SOURCE, LIST, NODEC.	K,LOAD,NCMAP		1	
011d0 ★	NS IN EFFECT NAME = DMAXI . LINECNT =	57			
* STATI	STICS* SOURCE STATEMENTS = 10, PRO	GRAM SIZE =	508		
STATI	STICS NO DIAGNOSTICS GENERATED				
NO ERRORS	IN DMAXI				

-168 -

.

MICHIGAN TERM	AINAL SYSTEM FORTRAN G(41336 TEST)	DMAXF	08-29-73	19:04.35	PAGE POOL
0001	SUBROUTINE DMAXE(A.B.N)			391.000	
0002 .	REAL *8 A.B.X.Y			392.000	
0003	DIMENSION A(20.1)			393.000	
0004	X = DMAX1(A(1,1),A(1,2))			394.000	
0005	DO = 10 I=2.N			395.000	
0006	$Y = DMAX1 (A (I \cdot 1) \cdot A (I \cdot 2))$			396.000	
0007	$10 X = 0 M \land X = (X, Y)$			397.000	
0003	B=X			398.000	
0003	RETURN			399.000	
0010	END			400.000	
*OPTIONS *OPTIONS *STATISTIC *STATISTIC	IN EFFECT* IC,EBCDIC,SOURCE,LIST,NODI IN EFFECT* NAME = DMAXF , LINECNT = CS* SOURCE STATEMENTS = 10,PF CS* NU DIAGNOSTICS GENERATED	ECK,LOAD,NOMAP = 57 Rogram SIZE =	524		
NO ERRORS IN	DMAXF				

1

ι.

.

.

•

MICHIGAN	TERMINAL	SY STEM FORTR	AN 61 41336 TESI		KRI	08-29-73	19:04.37	PAGE POOL
1000		SUBR JUTINE SUBR JUTINE	KRI(DC, HIP, HB)	P.FL.LB.	AL,KRT8)		401-000	
0003		DIMENSION	221 (20) - 722 (20)	.731(20)	.3).FL(12).ZA(20), ZG(20), Z11(20)	• 404 • 000	
		2 TR(6,3),	TKR (6,3),HB (3,3), KRT (6,	61.KRTB(6,3)		405.000	
000 1		CUMMUN/CUM K11=2321L3	A/ ZA, ZG, ZII, ZI	7771774;	, 634,632		4024 000	
0000		K15=Z22(LB	-				4 C8 . 000	
2000		K2Z=Z31(LB K24=-771 (1	() B)					
0000		K33=ZA(L8)					411.000	
0010		K44=2111LB					412.000	
1100		K55=Z12(L9)	-				413.000	
0013		DO 10 10 1=1.					414 • UUU 415 • DOD	
0014		10 R(1) = FL(1)	•				416.000	
0012		R (4) = F L (4)	+FL(2)*AL				417.000	
0015		R(5)=FL(5)	-FL(1)*AL				418.000	
0013		KR(1.1)=K1	5*8(6)				419.000	
0019		KR(1,2)=(K	33-K11)*R(3)				421.000	
0020		KR (1,3)=(K	(11-K22) *R (2)-(H	(15+K24)*	R (4)		422.000	
1200		XX(2,1)=(X XD/2 2)/	22-K33)*K(3)				423.000	
2200		XX (2 , 2) = 1 X XX (2 , 3) = 1 X	.24 *X (0) 1 1 - X 2 2) *X (1) + ()	(15+K24)*	0 (S) 0		424.000	
0024		KR(3,1) = (K)	22-K33)*R(2)+K2	4 * K (4)			426.000	
0025		KR(3,2)=(K	33-K11)*R(1)-K	5*R(5)			427.000	
0026		KK(3,3)=0.	C O				428.000	
0027		XX(4,1)=X2	4 #R (3)				429.000	
		KK (4 • 2) = / K KK (4 • 3) = - (-	、00-K44-kK~0~ K-E+K 04-kK~) + ((55 X-25 X	#8(5)		430.000	
0030		KR (5,1)=(K	(50-K00) *R (5)				432 • 000	
1500		KR (5, 2) =-K	.15*R(3)				433.000	
0032		KR(5,3)=(K	.15+K24)*R(2)+(I	144-X00)*	R(4)		434.000	
0033		KR (6, I) =KI	5*R(1)+(X55-K66	•)*R(5)			435.000	
00 34 0035		KK (0 • 2) = - K KB (4 · 3) + 0	.24*R(2)+(K66-K4	+4)*K(4)			436.000	
0036							000-154	
2600		00 27 J=1,	1 m				439.000	
CO 38		1) JU=(['1])=DC((,,)				440.000	
0039		00 25 J=4,	6				441-000	
				-			000 294	
0042		00 30 J=1.	c ~				000 • 4 4 4	
0043		10. U=(L, 1)1 0	0				445.000	
0044		DO 35 J=4.	6				446.000	
0045		35 T(I,J)+901	[-3,]-3]				447.000	
0040		CALL GMPRD	(T, KK, TK, 6, 6, 3)				448.000	
0043 0043		CALL GMPRD	ITKR HIP KRT 6	19.5			450,000	
0040		DD 40 I=1,	3				451.000	
0050		DO 40 J=1.	3				452.000	
0051		IF (I . EQ.	J) GO TO 39				453.000	
2600 0053			[[]]]				454 000 455 000	
1							0000 11	

MICHIGAN TE	RMINAL SYSTEM FURTRAN G(41336 TEST) KI	31	08-29-73	19:04.37	PAGE POO2
0054 0055 0056 0057	39 AB(I,J)=HBIP(I,J)+1.D0 40 CONTINUE CALL GMPRD(TKR, HB,KRTB,6,3,3) RETURN END			456 000 457 000 458 000 459 000	
*UPTIONS *OPTIONS *STATIST *STATIST *STATIST NO ERRORS IN	IN EFFECT** ID,EBCDIC,SUURCE,LIST,NODECK,LU, IN EFFECT** NAME = KRI * LINECNT = ICS** SOURCE STATEMENTS = 58,PROGRAM ICS** NO DIAGNOSTICS GENERATED KRI	AD,NOMAP 57 SIZE =	2570	4 0 0 0 0	

+-

.

.

.

.

MICHIGAN 1	ERMINAL	SYSTEM FURTRAN G(41336 TEST)	HINVB	08-29-73	19:04.44	PAGE POOL
0001		SUBROUTING HINVB(STIFL,P,HA,HIP 1 HRIP,HRJP,FRHI,FRHJ,AKRI,FKRI	• HJP , AJF , DC1, STIF ,	EBI, EBJ, GRBI,	461.000 462.000	
0002		IMPLICIT REAL *8 (A-H, P-Z)	-		463.000	
0003		DIMENSION STIFL (6, 6), P(6, 6), HR(1 DCL(3, 3), STIF(12,12),	(3,3),HIP (3,6),HJP (0CIT(3,3),PI(3,3),	3,6),AJF(3,3), P2(3,3),HT(3,3),	464 • 000 465 • 000	
		2 H7(3,3),H8(3,3),H(12,	12), HINV(12,12), HK	R(3,6),IM(24),	466.000	
		3 RENEION EDUILS 2) 600 (243) 01 (12	(+3) Jeto(3 2) Jub (0(3 2)	CPR113.31.	467.000	
		1 810(3,3), 814(3,3), 816(3,3)			469.000	
0002		DIMENSION EBI(3,6), EBJ(3,6)			470.000	
0006		DIMENSION AKRT(6,6), BKRT(6,3)			471.000	
0001					472.000	
0000 0000		00 10 J=1,3			4 13 000	
6000		UCTITIOJ=UCTIO+T			475,000	
0011	1(0 P2(1,J)=P(1+3,J+3)			476.000	
2100	ł	CALL GMPRD (PI, DCI, HT, 3, 3, 3)			477.000	
0013		CALL GMPRU (DC1T, HT, H7, 3, 3, 3)			478.00C	
0014		CALL GMPRU (P2,0C1,HT,3,3,3)			479.000	
6100 9012		CALL GMPRD (DC11,HT,H8,3,3,3)			480.000	
					481.000	
		TE (1 'FU' 1) CU TU 19			483 - 000	
6100					484.000	
0000		60 1-3 20			485.000	
0021	1) H(I,J)=1.DO			486.000	
0022	S	D CONTINUE			487.000	
0023					488.000	
4700 4700	ŗ	04 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1			484.000	
0026	N	DU 30 1=10,12 DU 30 1=10,12			000-02-16-7	
0027					492.000	
0023	ř,	(C.9-1)4(H=(L.1)H (493.000	
0029	•	DO 40 I=1,3			4 94 • 000	
CC30	•	DC 40 J=7.12			495.000	
1500	Ŧ	J H(I, J) = 0+1J H(I, Z) = -1 D.J			496.000	
2000 8800						
4000		H(3,9)=-1.00			000 • 65 4	
0035		CALL GMPRD (HR, HIP, HRR, 3, 3, 6)			500.000	
0035		DO 53 I=4,6			501.000	
0037		DG 45 J=1•a	_		502.000	
0033	4	5 H(I,J)=-F7(I-3,J-6)			503.000	
0039	ŭ	00 50 J=10,12			504 000 FOF 000	
	ñ	1 H (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			50%-000	
0042					507.000	
6400	6 6) !!(I+6,J+6)=STIF1(I,J)+HRR(I,J)+	+EBI(I.J)+AKRT(I.J)		503.000	
0044		D() 70 I=10,12			509.000	
0045	ř	DO 70 J=7,12			510.000	
	<u> </u>	J H([+ J) = 2 [F [- 0 + J - 0 + H F [- 9 + J - 9 + J - 4 + 1 + 2 + 2	10101011114410-1		512.000	
0048		DO 72 [=1.3			513.000	
6400		DO 72 J=1.3			514.000	
0050		IF (I .NE. J) GO TO 71			515.000	

-172-

-

•
MICHIGAN TERMINAL	SYSTEM FURTRAN G(41336 TEST)	HINVB	08-29-73	19:04.44	PAGE P002
				E14 000	
0052	B14([])=-(1.00+HB1P(1.]))-BKRT(1+3.1)		517.000	
0053	B16([.J]=1_D0-HB.IP([.J]			518-000	
0054	G0 1J 72			519-000	
0055	71 P1([,J)=GR81([,J)			520.000	
0056	BI4([.J)=-HilP(I.J) - EKRT([+3.J)			521-000	
0057	B16(1,J)=-HBJP(1,J)			522.000	
0058	72 CONTINUE			523.000	
0059	CALL GMPRD(AJF, PI, P2, 3, 3, 3)			524.000	
0060	CALL GMPED(P2,UC1,HT,3,3,3)			525.000	
0061	CALL GMPRD(DCIT, HT, B6, 3, 3, 3)			526.000	
0062	CALL GMPRD(HR, HBIP, PI, 3, 3, 3)			527.000	
0063	00 74 1=1,3			528.000	
0064	DO 74 J=1,3			529.000	
0065	74 310(I,J)=-(HR(I,J)+P1(I,J)+EBHI(I,J))-BKRT(I,J)		530,000	
0066	00 100 1=1,12			531.000	
1005				532.000	
8400	44 511F(1, J1=-HINV(1, J+6)			533.000	
				534 COO	
	DO FONTINUE				
				5 20 • CCO	
				550 000 550 000	
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	04 011+01-0011-0101 00 104 1-2 0				
	A BIT H-BIAT-A H				
0030	08 B(1 • 1)=014(1-4•1)				
1800				546,000	
C C 92	10 CONTINUE			547.000	
0083	CALL 6"PRD (HINV.B.BT.12.12.3)			548-000	
0084	DO 120 I=1,12			549.000	
0085	DD 120 J=1,3			550.000	
C086 1	20 STIF(I,J+3)=BT(I,J)			551.000	
0697	DO 130 J=1,3			552.000	
0073	DO 122 I=1.6			553.000	
0039 1	22 B(I,J)=0.D0			554.000	
0500	ng 123 I=7,9			555.000	
00.91	23 d(1,J)=-E8HJ(1-6,J)			556.000	
0032	DO 124 T=10,12			557.000	
	24 B([,J)=B16(]-9,J)			558 CCO	
	SU CUNINUT MALE CHORDALINY D DT 13 13 31			554 CCC	
	UALE GTPRUININV (0) 01 (120 120 2) 00 140 1-1 12			200.000	
10037				562,000	
0098	40 STIF(1, J+4)=BT(1, J)			563.000	
00 ac	RETURN			564 COO	
0100	END			565.000	
LU NI SNOILdO*	FECT* ID, EBCDIC, SOURCE, LIST, NODECK	+LUAD,NOMAP			
	FECT* NAME = HINV6 J LINEON # Source statements + 120.0000		14.0		
ドリンゴーフィーさークトサイレートレート	NO DIALDICIN V		100		
NO ERRORS IN HINVE					

15-

• •

MICHIGAN TERM	IINAL SYSTI	EM FURTRAN G(41336 TEST)	DISSP	08-29-73	10:02:01	PAGE
1000	SUE	3ROUTINE DISSP(G,GB,DR,DU	1, N, AL, DU P, DC)		566.000	
	00 00	APUTE DISSIPITION			567.000	
0002	IW1	PLICIT REAL*8(A-H,P-Z)			568.000	
0003	110	HENSION DR(12), DU(12), G(4	.,61,GB(4,3),DUP(4),	DUPI(4),FDR(6)	569.000	
0004	4IC	JENSION DC(3, 3), RF(3), RM(3), DUSG(3), RFL(3), R	ML(3)	570.000	
0005	10	AENSICN DUS (3)			571.000	
600V	ΗΣ	l 2-6*N			572.000	
0001	=	[N-1]*6+3			573.000	
80.00	00	5 [=1,3			574.000	
6000	RF	[])=DR(M+])			575.000	
0100	24	(1)=CR (M+3+1)			576.000	
1100	5 DU3	26(I)=D()()+I)			577.000	
0012	CAL	L GMPRU(DC, RF, RFL, 3, 3, 1)			578.000	
0013	CAL	-L GMPRDIDC, RW, RML, 3, 3, 1)			579.000	
C 314	CAL	L GMPRU(DC, DUSG, DUS, 3, 3,	1)		580.000	
0015	00	10 I=1,3			581.000	
0015	FUF	<pre><(I)=RFL(I)</pre>			582.000	
0017	10 FUR	((I+3)=RML(I)			583-000	
0018	30 CAL	L GMPRD(G,FDR,DUP,4,6,1)			584.000	
6100	CAL	L GMPRD(GB, DUS, DUP1,4,3,	1)		585.000	
0020	00	40 1=1,4			586.000	
0021	40 DUF	<pre>(I)Idn0+(I)dn0=(I)</pre>			587.000	
0022	REI	URN .			588.000	
0023	ENC				589-000	
I SNCIId0*	N EFFECT*	ID, EBCDIC, SOURCE, LIST, N	ODECK, LOAD, NOMAP		3 3 9 1	
SNC11dC*	N EFFECT*	NAME = DISSP , LINECN	T = 57			
STATISTIC	S SOUF	(CE STATEMENTS = 23	• PROGRAM SIZE =	1180		
STATISTIC	S NO DIL	GNDSTICS GENERATED				
NO ERRORS IN D	I S S P					

-

P001

-174 -

•

•

٠

.

MICHIGAN TER	MI NAL S	YSTEM FURTRAN G(41336 TEST)	NEWDC	08-29-73	19:05.03	PAGE
1000	Ĺ	SUBROUTINE NEWDO	C(HIP, HJP, DR, DD,	0C1+0CJ+01,02,+	18IP,48JP)	590.000	
0002	ر		DIRECTION COSIN	Ľ		507 000	
0003		DIMENSION HIP (3,	61.HJP(3,61.DR(12),00(12),001	(3,3),0CJ(3,3),	593.000	
		LDWI (3) + DWIP(3	3), OWJP(3), U1(3,	31,02(3,31,WI(3	3,3),WJ(3,3),DWJ(3)	594.000	
0000		DIMENSION HBIP(3,31,48JP(3,3)			595.000	
6005		70 14 I=1,3				596.000	
0006		DWIP(I) = 0.00				597.000	
0001		0MJP(1) = 0.00				598.000	
0000		DC 10 J=1,6				599.000	
6000	•			* DK (6+))		600.000	
0100	FO	UNJP (1) = UNJP D(1 20 1=1 3	(0 ,1) 404 + (1)	* DK (7)		601.000 603 000	
0012						603-000	
0013		+(I)dIMO=(I)dIMO	+HBIP(I,J)*UD(3+	(1		604.000	
0014	20	(I) drm()=(I) drm()	+HBJP(I,J)*UD(9+	()		605.000	
0015	100	UC 110 1=1.3				606.000	
0016		$DMIP \{I\} = UU \{ \}$	(I) + DWIP (I)			601.000	
2100	110	(1) = (1) dfmn	(I) drmg - (I+)			608.000	
0018		CALL GNPRD (DCI, C	WIP, DMI, 3, 3, 1)			603.000	
0019		CALL GMPRD (DCJ, D	11.6.6.LMO.4PMO		-	610.000	
						611.000	
1200			CO TO 130			000 219	
0025						000 719	
6200 70 74						615 000	
0025	120	CONTINUE				616.000	
0026	 	WI (1,2) = DMI (3)			617.000	
1200		W_{J} (1,2) = D_{WJ}	3)			618.000	
0.02.8		WI = (1,3) = -0WI	(2)			619.000	
0029		WJ (1,3) = -0WJ	(2)			620.000	
00 30		WI (2,3) = DWI	11			621.000	
10031		WJ [2.3] = DMJ	1)			622.000	
0032		WI (2,1) = -WI (1,2)			623.000	
0033			1,2)			624.000	
			1 J J J J J J J J J J J J J J J J J J J			000 429	
						000 229	
2100		1 M = - (2 C) I M	(2.2)			628-000	
		CALL GMPRULAJ, UC	1-11-2-2-2-31-1-1-1-1-1-1-1-1-1-1-1-1-1-			000 029	
0040		RETURN				631-000	
0041		END				632.000	
* CPTIONS I	N EFFE	T* ID, EBCDIC, SC	URCE, LIST, NODECH	<pre><.LOAD,NOMAP</pre>			
SVCITC:*		T* NAME = NEWDO	= LINECNT = 41.PRO	57 28.04 517F =	1412		
* STATI STIC	S* NO	DIAGNOSTICS GENE	RATED	1	2 0 0		
NO EPRORS IN N	TEMDC						

-175 -

1004

5

.

MICHIGAN TERMINAL S	SYSTEM FORTRAN G(41336 TEST)	S C F S I	08-29-73	19:05.08	PAGE POOL
J 1000	SUBRUUTINE SCFSI(FRKPI,FR,D,N,J	,L8) Decranciu an Tunc	101 F U 20 - 23 0 40	633.000	
0002	IMPLICIT REAL *8(A-H, P-Z)	KELLANGULAR 1000		635.000	
0003	REAL *8 MI0,420,M30			636.000	
0004	DIMENSION FRKPI(12), FRK(12), A (4 1 M17(20), M27(20), M30(20), P0(20), DA(4),ACA(4),B	(4),C(4),R(4), E(20),ER(20,12)	637-000 638-000	
0035	DIMENSION AA(4)			639.000	
0006	COMMON/CCMB/MI0,M20,M30,P0,Y1,Y	2,CF		640.000	
2002	M=(N-1)*6+2			641.000	
0008	Q(1)=PO(L0)			642.000	
	K(Z) = w10(L8)			643.0C0	
	R(4)=M30(18)			645.000	
0012	00 5 I=1,12			646.000	
0013	5 FRK(I)=FR(LB,I)			647.000	
0014	00 10 I≈I 01 00			648.000	
0015	A(I)=FRK(M+I)/R(I)			649.000	
\$100				650°000	
	UALIJ=FKKFL(K+LJ/K(L)+#(]) V ACALTV+CABSCCAVIV)			000 237	
	J 404 (1 = 0 403 (04 (1)) 5 5 - 1 4 4 1) 1 4 4 1 3 1 4 4 2 1 4 4 7 4	****			
	- FE-144111494(2)444(3)/442444(4) 	1 + 1 + 1 + + + + + + + + + + + + + + +		654,000	
1200	D=0.00	•		655 000	
0022				656.000	
C023	X = 1 0 • DO			657.000	
0024	5 D=D+1.DU/X			658.000	
0025				659,000	
0026	IF (D. GT. 1.DO) RETURN			660.000	
1200	IF (J .GI. LOO) KETURN			661.000	
	00 20 1#1,44 0 8/11-048514/11-0404/11)			662.000	
	J 011/-0403/441/F0F0441// F= (811)48/2148/31/##248/6) * 8 (7)			
C031	IF (F -1_00) 30.35.40			665-000	
0032 30) IF (DARS(F-1.) .LE. 0.000400) G	0 TO 35		666.000	
0033	FL = F			667,000	
0034				668.000	
- S - S - S - S - S - S - S - S - S - S				669.000	
0037 40	KETUKA) IF (EABS(F-1.) .IF. 0.000400) G	0 TJ 35		671_000	
0038		1))		672-000	
0039	0.00*X=X			673.000	
0040	GO TO 15			674-000	
10041) RETURN			675.000	
0042	END		-	676.000	
OPTIONS IN FEFE	ECT ID+EBCDIC+SOURCE+LIST+NODEC SCT* NAME = SCFSI - IINEINT =	K,LOAD,NOMAP 57			
STATISTICS	SOURCE STATEMENTS = 42, PRU	GRAM SIZE = 1	480		
STATISTICS NC) DIAGNOSTICS GENERATED				
17472 NI AURAR CA					

-176-

MICHIGAN	TERMI NAL	SYSTEM FURTRAN G(41336 TEST	001P	08-29-73	19:0	05.12	PAGE
1000		SUBR JUTINE OUTP (K, IELM, RK	DISK, RNKP1, SW, S	CF,SCFL,SCFA,IPS,NUMP,	NUB	677.000	
	ບ	L +FKL+FKKP) Print out the results				678.000 679.000	
0002	I	IMPLICIT REAL *8(A-H, P-Z)				680.000	
0003		INTEGUR SW				681.000	
*000		UIMENSIUN IELM(14,1),RK(1 2 SCF1(20,1),R(6),U(6),D(9,015K(1),KNKP1(4),D15P(20,2)	20+1), SW(20+1)+SCF(20,	. 1) .	682.000 683.000	
00.05		UIMENSIUN FKI (20.1), FRKP	20.1)			684 - 000	
0036	•	CCMPON/COMC/AMR, FR, ALR				685.000	
0007		WRITE(6,1) K, SCFA				686.000	
00.08 2020		WRITE(6,2)(J, J=1,6)				687.000	
4000		MI=NUWP-I				688.000	
0100		JU 11 1=1,003P WRITE(6,3) I				689.000	
0012						691.000	
0013		[F= S+3				692.000	
0014		€ 1=× C1 D0				693.000	
4100 4100		R(M)=RK(IS+4)#FR				694.000	
0017		N (■ 1 N 1 N 1 N N N N N				699.000 696.000	
0018		10 U(M+3)=DISK(IE+M)				647.000	
6100		WRITE(6,4) (R(M),M=1,6)				698.000	
0020		LI WRITE(6, 5) (U(M), M=1,6)				699.000	
1200		HRITE (6,7)				700.000	
2200		LB=0 DO 100 Y=1 41				701.000	
0024							
0025		UC 100 J=L.NUMP				764 .000	
0026		IF (IELM([,J] .EQ. 0) GO	ru 100			765.000	
2200		L ß = L ß + L				706.000	
0028		00 15 N=1,2				707-000	
0010	•	15 0152(L3,N)≠SCF1(L8,N)*AMR no 21 k+1.3				769.000	
0032						711 000	
0033							
00 34		R(M)=P\KP1(L3,X)*FR				713.000	
0035		R (M3) = RNKP 1 (L B , M3) * A4R				714.000	
0036		0(M)=XNKP1(L8,M6)*FR				715.000	
0037	- 4	20 D(M3)=PNKP1(LB,M9)*AMR				716.000	
0000		WKITE(0:01 LB.I.(K(M),M=L	OLASM(L8+1)+SCF	(L8,1), UISP(L8,1)		000-111	
	1	MATINICOPOL COPOLO(M) MAL	01+2M(CB+21+2CF	(18,21,0157118,21		719 200	
0041	Ĩ	IF (IPS .FO. 0) 60 70 100				720.000	
C042		IF (IPS .E0.2) GO TO 500				721.000	
0043		WR.ITE (6,101) K				722.000	
0044		DQ 200 I=1,NUB				723.000	
0045	2(00 WRITE (6,102) I,FK1(I,1),	:KI(I,2)			724.000	
0044	5	6.7 1.1 1.000 00 48115 (6.103) K				000 327	
0048	Ś	DD 300 [=1,NUB				727.000	
0049		WRITE (6,102) I,FKI(I,1),	:K1(1,2)			728.000	
0050		DC 290 M=1+3				729.000	
1400 0052		Mu= R+ 3 Mo= X+6				730.000	

P001

 \Box

MICHI	GAN TERMINA	L SYSTEN I	FORTRAN 6(41336	TEST	0UTP	08-29-73	19:05.12	PAGE PO02
002	3	+ n = 6 M	6				000 622	
002	4	R (M) =	FRKP(I.4)*FR				722 000	
002	5	R(M3)	=FRKP(I,M3)*AMR				726 000	
005	6	I= (W) 0	FRKP(1, M6) *FR					
002	~	290 D(M3):	=FRKP(I.M9)*AMR				2000 VC-	
002	8	300 ARITE	(6,104) I. (R(J)	(r)().(9.1=r.	(9.1=f)			
002	9	I FORMAN	T (1H1, K=, 13,	SCFA= F8 5				
005	0	2 FORMA	T (3X,6(14X,11)	10X SW 4X	SCFP . 5X . 10155	P• 1		
900	1	3 FORMA	T (2X, MASS, 13)			•		
600 0 0 0	2	4 FORMA	T (3X . FORCE. 2)	(•6015.5)				
009	٠ د	5 FORMA	T (3X, COORD, 2)	6015 5/1				
005 0	•	6 FURMAI	T (3X, 3M, 12, 12	1.12.6015.5	3X-12-1F10-5-01	5 . 5) 		
000	5	7 FURW1	T (//13X, FORCE	E MOMENT ON	ACH REAV FNDS			
006	\$	101 FUR 441	T (1H1, K=', I3, 2	X. YIELD FUNC	CTION AT FACH B	FAM FND ()	745 000	
900	7	102 FORMA	T ('YF @ M3'.13.	2015-51			744 000	
005	8	103 FORMA1	T (1H1, K= , 13, 2	X. YIELD FUNC	CTION & LOCAL F	ORCES AT FACH BEA		
		L END.			-		748-000	
004	6	104 FCRMAI	T ('LF@BM', I3, 1X	. 6010.3.1X.6[010-3)			
0010	0 1	DOD RETLRA	Z					
001	1	O N ^L						
10 *	PILONS IN EI	FFECT* IC	D, EBCDIC, SOURCE,	LIST.NODECK.L	JAD.NOMAP			
์ 7 *	TIUNS IN EN	FFECT* NA	AME = 0JTP .	LINECNT =	57	-		
S ∳	TATISTICS*	SOURCE	STATEMENTS =	71, PROGR	AM SIZE = 3	396		
\$ *	TATISTICS*	NO DIAGNO	OSTICS GENERATED					
NO EPRI	ATUO NI SAC							

ž

-178 -

•

MICHIGAN TERMINAL	SYSTEM FORTRAN G(41336 TEST)	I NCRE	08-29-73	19:05.18	PAGE POOL
				152,000	
1000					
0002	REAL #9 DU, DR			000.641	
0003	DIMENSION DU(1), DR(1)			754.000	
4000	M6 = N ±6			755.000	
0005	00 IO I=I.M6			756.000	
0000	DR [] = 0 • 00			757.000	
0007	10 UU(1)=100.03			758.000	
003	00 16 I=1,6			759.000	
0000	16 DU(1)=0.DO			760.000	
0010	100(2) = 0.00200			761.000	
0011	DU(5) = 0.0100			762.000	
0012	00 15 I=19.M6			763.000	
0013	15 CU(I)=0.00			764.000	
0014	RETURN			765.000	
0015	OND			766.000	
* OPTIONS IN EF	FECT* ID, EBCDIC, SOURCE, LIST, NODECK	, LOAD, NCMAP			
OPTIONS IN FE	FEGT NAME = INCRE , LINECNT =	57			
STATISTICS	SUURCE STATEMENTS = 15, PROG	RAM SIZE =	586		
STATISTICS	NO DIAGNOSTICS GENERATED				
NU EKKUKA IN INCKE					
NO STATEMENTS FLAG	GED IN THE ABOVE CCMPILATIONS.				

•

-179-

. ·

.

.

.

٠

•