Associations Between Recent Exposure to Ambient Fine Particulate Matter and Blood Pressure in the Multi-Ethnic Study of Atherosclerosis (MESA)

Amy H. Auchincloss, Ana V. Diez Roux, J. Timothy Dvonch, Patrick L. Brown, R. Graham Barr, Martha L. Daviglus, David C. Goff Jr., Joel D. Kaufman, and Marie S. O'Neill

doi:10.1289/ehp.10899 (available at http://dx.doi.org/)
Online 24 January 2008
Title:

Associations Between Recent Exposure to Ambient Fine Particulate Matter and Blood Pressure in the Multi-Ethnic Study of Atherosclerosis (MESA)

Authors:

Amy H. Auchincloss1, Ana V. Diez Roux1, J. Timothy Dvonch2, Patrick L. Brown3, R. Graham Barr4, Martha L. Daviglus5, David C. Goff Jr.6, Joel D. Kaufman7, Marie S. O'Neill1,2

Author affiliations:

1. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI.
2. Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI.
3. Department of Atmospheric Sciences, School of Engineering, University of Michigan, Ann Arbor, MI.
4. Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY.
5. Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.
6. Department of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC.
7. Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA.

Reprints and correspondence:

Amy H. Auchincloss, Department of Epidemiology, School of Public Health, University of Michigan; 109 Observatory Street, SPH Tower Room 3655; Ann Arbor, MI 48109-2029.
E-mail: aauchinc@umich.edu. Tel: (734)615-9219 Fax: (734)998-0006
Acknowledgments

AHA designed the study, analyzed data, and drafted the paper. AVDR contributed to study design and conceptualization, and edited drafts. JTD assisted with conceptualization and commented on drafts. PLB constructed datasets and commented on the paper. All other authors critically reviewed drafts and are listed in alphabetical order. The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Funding Sources

MESA is supported by contracts N01-HC-95159 through N01-HC-95165 and N01-HC-95169 from the National Heart Lung and Blood Institute. This work was supported by grant R830543 (PI: Diez Roux) from the U.S. Environmental Protection Agency.

Disclaimer: The authors declare they have no competing financial interests.

Running title: Particulate Matter Exposure and Blood Pressure

Key words: air pollution; blood pressure; cardiovascular disease; epidemiology; particulate matter.
Abbreviations:

BMI body mass index
BP blood pressure
CI confidence interval
CO carbon monoxide
DBP diastolic blood pressure
EPA U.S. Environmental Protection Agency
ETS environmental tobacco smoke
MAP mean arterial pressure
MESA Multi-Ethnic Study of Atherosclerosis
NO2 nitrogen dioxide
PM particulate matter
PM2.5 particles less than or equal to 2.5 microns in aerodynamic diameter
PP pulse pressure
SBP systolic blood pressure
SO2 sulfur dioxide
µg/m³ micrograms per cubic meter
ppm parts per million
OUTLINE

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS
 Study sample
 Air pollution and meteorology data
 Clinical measurements
 Statistical analysis

RESULTS

DISCUSSION

LIST OF REFERENCES

TABLES

FIGURE LEGEND

FIGURE
ABSTRACT

BACKGROUND: Blood pressure (BP) may be implicated in associations observed between ambient particulate matter and cardiovascular morbidity and mortality. This study examined cross-sectional associations between short-term ambient fine particles (PM$_{2.5}$) and BP: systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse pressure (PP).

METHODS: The study sample included 5,112 persons aged 45-84 years, free of cardiovascular disease at the Multi-Ethnic Study of Atherosclerosis baseline exam (2000-2002). Data from U.S. Environmental Protection Agency monitors were used to estimate ambient PM$_{2.5}$ exposures for prior 1-day, 2-days, 7-days, 30-days, and 60-days. Roadway data were used to estimate local exposures to traffic-related particles.

RESULTS: Results from linear regression found PP and SBP positively associated with PM$_{2.5}$. For example, a 10 μg/m3 increase in PM$_{2.5}$ 30-day mean was associated with 1.12 mm Hg higher pulse pressure (95% confidence interval [CI] 0.28, 1.97) and 0.99 mm Hg higher systolic BP (CI: -0.15, 2.13), adjusted for age, sex, race/ethnicity, income, education, body mass index, diabetes, cigarette smoking and environmental tobacco smoke, alcohol use, physical activity, medications, atmospheric pressure and temperature. Results were much weaker and not statistically significant for MAP and DBP. Although traffic-related variables were not themselves associated with BP, the association between PM$_{2.5}$ and BP was stronger in the presence of higher traffic exposure.

CONCLUSIONS: Higher SBP and PP were associated with ambient levels of PM$_{2.5}$ and the association was stronger in the presence of roadway traffic, suggesting that impairment of blood pressure regulation may play a role in response to air pollution.
INTRODUCTION

Exposure to ambient particulate matter has been associated with increased hospital admissions due to cardiovascular disease, and increased cardiovascular disease mortality (Dockery 2001; Miller et al. 2007). Studies have suggested that vascular, autonomic, endothelial functioning and/or inflammation (Brook et al. 2002; Choi et al. 2007; Diez Roux et al. 2006; Gold et al. 2000; O'Neill et al. 2005) are part of the mechanistic pathway yet much of the evidence has been weak, inconclusive/null, or has come from small studies and/or among persons with pre-existing disease. Thus, much remains to be learned about the underlying mechanisms or pathways of particle-induced mortality and morbidity. Blood pressure (BP) is an established risk factor for cardiovascular disease and may be implicated in the association between ambient particulate matter and cardiovascular morbidity and mortality.

Particles less than or equal to 2.5 microns in aerodynamic diameter (fine particles, PM\textsubscript{2.5}) can be effectively inhaled and deposited in the airways and alveolar surfaces, thus, have the potential to elicit health impacts (U.S. EPA 2004). Inhaled particles may down regulate NO synthase and alter autonomic nervous system functioning (Gold et al. 2000; Haak et al. 1994) -- thus potentially affecting cardiac output, arterial stiffening, vascular function and tone, and wave reflections. Only one study (Zanobetti et al. 2004, a repeated measures study among cardiac patients) has found a positive association between fine particles and BP. Most studies examining fine particles and BP have found inverse (Brauer et al. 2001; Ebelt et al. 2005; Ibald-Mulli et al. 2004) or no (Jansen et al. 2005; Linn et al. 1999; Urch et al. 2005) association. Studies to date have examined PM\textsubscript{2.5} effects among persons with pre-existing disease (chronic obstructive pulmonary disease or cardiac disease) or a small number of healthy individuals participating in an exposure-chamber study. Studies in general population samples are lacking. Furthermore,
prior studies have investigated relatively short lags, ranging from same day to the 5 prior days, with one repeated measures study examining 12-day exposure (Jansen et al. 2005).

We examined the cross-sectional relationship between relatively short-term exposure to PM$_{2.5}$ (prior 1 day to prior 2 months) and BP in a large population-based sample. We hypothesized that recent exposure to PM$_{2.5}$ would be positively associated with BP. We also hypothesized proxies for traffic-related exposure would be associated with BP and would modify the association between background PM$_{2.5}$ and BP because near roadways, PM$_{2.5}$ may be higher and/or more toxic (Sanderson et al. 2005).

MATERIALS AND METHODS

Study sample

Study participants, aged 45-84 years, from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort were free of clinically apparent cardiovascular disease (symptoms, or history of medical or surgical treatment). They were recruited from six U.S. communities (Baltimore City and Baltimore County, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; Northern Manhattan and the Bronx, NY; and St. Paul, MN) using a variety of population-based approaches, including commercial lists of area residents and random digit dialing as previously reported (Bild et al. 2002). The current study used data from the baseline visit occurring between July 2000 and August 2002 (most [52%] participants were enrolled in 2001). The study was approved by each study site’s institutional review boards. All participants provided written informed consent.
Air pollution and meteorology data

Pollutant data were extracted from EPA's Aerometric Information Retrieval System (U.S. EPA 2003). PM$_{2.5}$ concentrations were obtained from 24-hour integrated samplers, which collected data daily or every third-day. For each person, we created a set of PM$_{2.5}$ concentrations representing exposure prior to the clinical exam based on concentrations from the monitor nearest to the person's residence with available data on a given day. Five exposure measures were constructed: prior day; average of the prior 2 days, prior 7 days, prior 30 days, and prior 60 days.

Gaseous pollutants (sulfur dioxide [SO$_2$], nitrogen dioxide [NO$_2$], carbon monoxide [CO]), which are related to PM$_{2.5}$ and potentially related to BP (Bhatnagar 2006), were also included. Ozone was not included due to having incomplete information in the winter. National Weather Service (NCDC 2004) meteorological variables (daily average temperature and sea level barometric pressure) were included because of their strong associations with PM$_{2.5}$ and BP (Woodhouse et al. 1993). (Methods for co-pollutant and meteorologic measures have been reported elsewhere (Diez Roux et al. 2006).) Cumulative exposures for weather and co-pollutants were computed in the same way as PM$_{2.5}$.

Proxies for traffic-related exposure were: straight-line distance to a highway; total road length around the residence; and NO$_2$, since it is a large component of traffic emissions (Brauer et al. 2002). The roadway file, obtained from Environmental Systems Research Institute Inc., was a modified version of the 1990 Census TIGER/Line™ file. The modifications improved positional accuracy of the line file, eliminated errant segments, and appropriately reclassified/corrected features (GDT and ESRI 2002). Residences within 300 meters of a major road were defined as being 'close to a highway'. Major roads were selected due to being likely to
have diesel (truck) traffic (Brunekreef et al. 1997) and were identified from census feature class codes for primary roads (CFCC= A1 or A2). A distance of 300 meters was chosen for a few reasons: to obtain a reasonable distribution of residences in the two exposure categories, because traffic-related pollutants typically drop off to background levels around 300 meters (Sanderson et al. 2005) and because potential spatial inaccuracies (Wu et al. 2005) in the relative positioning of our roadway data and participant addresses precluded accurate measures of very short distances. Total road length (major plus connecting roads) was calculated for a 400 meter (0.25 mile) area around the residence and used both as a continuous and as a binary variable (total road length ≥3.5 kilometers, top quartile).

Clinical measurements

Information on person-level covariates was obtained during the clinical examination: age, sex, race/ethnicity, income, education, body mass index (BMI), type 2 diabetes (defined by the American Diabetes Association 2003 criteria (Genuth et al. 2003)), cigarette smoking, environmental tobacco smoke (ETS, during past year ≥1 hour/week in 'close quarters' with a person who smoked at home, at work, in a car, etc.), high alcohol use (average weekly drinks was ≥7, top 10th percentile), sodium intake, physical activity, and BP medications. These variables are potential confounders because they are associated with BP outcomes and may be associated with residential location and therefore with PM and traffic exposures. Per capita income was calculated by dividing the interval midpoint of family income (total combined family income for the past 12 months from 13 income categories, dollars) by the number of persons supported. Dietary sodium intake was included in exploratory models (results were very similar) but not included in final models due to a large proportion of missing data. Anti-hypertension medication use was defined as using any of the common classes of antihypertensive
medications: thiazide diuretics, β-blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers, and other α-blockers or peripheral vasodilators. (Results were very similar when medications were separated into classes of medications.)

Resting seated BP was measured three times at 1-minute intervals using an automated oscillometric sphygmomanometer (Dinamap PRO 100 from Critikon, Tampa, FL). The average of the second and third BP measurements was used for these analyses. The mechanisms through which PM exposures may affect BP (and hence the aspect of BP likely to be most sensitive to exposures) are unknown. We therefore examined a variety of BP parameters including systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP, systolic-diastolic), and mean arterial pressure (MAP, [(2 * diastolic) + systolic]/3).

Of the 6814 participants who completed the clinical examination, 6181 participated in the air pollution study. Of these persons, there were exclusions due to address errors (n=149); missing information on BP (n=3), air pollution exposure (n=661), and other covariates (n=256). Therefore, data on 5112 participants were available for analysis. The demographic characteristics of this subset were similar to those excluded (n=1702), except that excluded participants were less likely to be Caucasian (37% vs. 44%), had lower per-capita family income ($21,700 vs. $26,400), were more likely to be from the St. Paul study site (St. Paul had a small number of PM monitors and infrequent data collection) and less likely to be from the Chicago site (8% vs. 21%).

Statistical analysis

Ordinary least squares regression was used to separately estimate associations between BP and a 10 μg/m³ increase in PM₂.₅, using various PM₂.₅ averaging periods before and after
adjustment for confounders: age, sex, race/ethnicity, per capita family income, education, BMI, diabetes status, cigarette smoking status, ETS, high alcohol use, physical activity, BP medication use, meteorology variables and co-pollutants. Adjustment for confounders was performed in stages to identify which confounders had a strong influence on results.

In addition to utilizing variability in particle exposures across different dates, this study also utilizes variability in particle concentration across study sites. Thus, adjustment for study site may reduce our ability to detect an association between particles and blood pressure. Nevertheless, because particle composition may vary by study site and may be associated with blood pressure through mechanisms not already controlled for (Diez Roux et al. 2002; Lakoski et al. 2005), we also examined associations after adjustment for site as well as heterogeneity in associations by site. Associations between BP and traffic-related variables were examined using the same sequential modeling approach used for PM$_{2.5}$.

We investigate heterogeneity in the association between PM$_{2.5}$ and BP by levels of traffic-related exposures (living close [\leq300 meters] to a highway, surrounded by a high density of roads, high NO$_2$ exposure), and for levels of SO$_2$ and CO, and weather variables. ("High" levels were defined as the top quartiles of these variables.) Heterogeneity of effects was also examined by age, sex, type 2 diabetes, hypertensive status, and cigarette use. Older persons, women (Kunzli et al. 2005; Miller et al. 2007), diabetics (O'Neill et al. 2005), and hypertensives may be more vulnerable to air pollution effects; and direct inhalation of PM from cigarettes may overwhelm any effects due to ambient particle exposure. Heterogeneity of effects was tested by stratification and by including interaction terms in regression models.

Because BP medications potentially have a strong influence on continuous BP, medication use was controlled for; heterogeneity of effects by medication use was examined; and
secondary analyses used log binomial models to fit a binary hypertension outcome (any of the following: SBP ≥140 mm Hg, DBP ≥90 mm Hg, self reported history of hypertension, use of hypertensive medication) (Chobanian et al. 2003).

Non-linear covariate-adjusted relationships between all independent variables and BP outcomes were assessed (Hastie 1992). There was no evidence of strong threshold/non-linear effects for PM2.5 although non-linearity was evident among co-pollutants, thus, ordinary least squares regression was fit with piecewise linear functions as appropriate.

We confirmed that multivariable regression variance inflation factors (VIF) do not diagnose high collinearity; VIF=10 was used to define high multicollinearity (Belsley et al. 1980; Kleinbaum et al. 1998).

Because seasons vary by our study sites, primary analyses used temperature and barometric pressure to adjust for seasonality. Sensitivity analyses evaluated whether there was seasonal residual confounding or autocorrelation not accounted for by weather variables. Main results were stratified by season. Results were also examined before and after adding a smoothing spline (in generalized additive models (Hastie 1992)) for season. Autocorrelation among regression residuals was assessed via autoregressive generalized estimation models (Littell et al. 1996), by examining the Durbin-Watson statistic in ordinary least squares regression (Durbin and Watson 1951), and plotting residuals against time (time represented as blood pressure collection year-month and also season).

Sensitivity analyses also evaluated the robustness of results to exposure misspecification. Analyses using PM2.5 were repeated (a) restricting analyses to participants living relatively close (20 kilometers) to PM2.5 monitors; and (b) stratifying results by the years the participant lived at the address and the amount of time each week spent within that neighborhood. We also repeated
analyses for proximity of highways using continuous distance to highways and an alternate binary measure (≤400 meters of a highway).

RESULTS

Mean age in the study sample was 63 years, approximately half were female, mean BMI was 28 kg/m², 45% had hypertension, and 38% were taking BP medications (Table 1). Prior 30-day mean PM₂.₅ was highly correlated with prior 60-day mean PM₂.₅ (Spearman r=0.87) but more weakly correlated with other time periods (r=0.67, 0.48, 0.41, for prior 7-, 2-, and 1-day(s), respectively, see Supplemental Material for more correlations). Mean 30-day PM₂.₅ was highest in Los Angeles (21.8 μg/m³) and lowest in St. Paul (10.3 μg/m³), and 29% of the sample lived close to a highway. Mean PM₂.₅ was much higher where NO₂ was high (19.9 vs. 15.7 μg/m³) but PM₂.₅ levels varied little with other traffic-related variables. (Patterns were similar for prior 1-, 2-, 7-, 60-day exposures, not shown.)

Table 2 shows associations of PM₂.₅ with blood pressure outcomes. We only present results for PP and SBP. None of the DBP results were statistically significant. Results for MAP were similar to SBP though weaker and generally not statistically significant. Results for DBP and MAP are shown in Supplemental Material (note that results for DBP can be derived by subtracting PP from SBP shown in Table 2). PP and SBP were generally associated with individual-level covariates in the expected direction and meteorology variables (temperature and atmospheric pressure) were positively associated with BP (data not shown). Adjusted for age, sex, race/ethnicity, income, education, BMI, diabetes, cigarette smoking, alcohol use, physical activity, BP medication, and meteorology variables – a 10 μg/m³ increase in PM₂.₅ was associated with 1.12 mm Hg higher PP (CI: 0.28, 1.97) and 0.99 mm Hg higher SBP (though confidence intervals included the null value [CI: -0.15, 2.13], model 2). Results were noticeably
stronger after adjustment for gaseous co-pollutants (per 10 μg/m³ increase in PM₂.₅, PP was 2.66 higher [CI: 1.61, 3.71] and SBP was 2.80 higher [1.38, 4.22], model 2a); the impact was greatest after adding NO₂ to the models (Supplemental Material shows regression estimates for the co-pollutants). Adding site to model 2 had no effect on PP but strengthened the SBP results while widening confidence intervals (per 10 μg/m³ increase in PM₂.₅ there was a 1.32 [CI: -0.18, 2.82] increase in SBP, model 3a).

Associations between PM₂.₅ and BP became stronger with longer PM₂.₅ averaging periods up to 30-days. For example, per 10 μg/m³ difference in PM₂.₅ adjusted for covariates in model 2, the difference in PP (mm Hg, CI) was -0.38 for 1 day (-0.76, 0.00); -0.22 for 2 days (-0.65, 0.21); 0.52 for 7 days (-0.08, 1.11); 1.12 for 30 days (0.28, 1.97); and 1.08 for 60 days (0.11, 2.05). This pattern held true for other person-level adjustments and for SBP, so only results for the 30-day mean differences are shown (see Supplemental Material for the 60-day averages).

Comparable models were examined for traffic-related exposures. Associations with BP were opposite expectation (negative) and generally statistically significant (see Supplemental Material for results). After adjustment for study site, the magnitude of the associations decreased and most confidence intervals included the null value. Results were similar when adjusted for ambient PM₂.₅ exposure.

The associations of PM₂.₅ with BP were not modified by age, sex, diabetes, cigarette use, study site, high levels of CO or SO₂, season, nor residence ≤400 meters of a highway (tests for interaction all \(p \geq 0.2 \)). Figure 1 shows variables for which interactions were \(p \leq 0.1 \) for either PP or SBP (see Supplemental Material for all heterogeneity analyses). Associations between PM₂.₅ and BP were stronger for persons on medications, with hypertension, during warmer weather, in
the presence of high NO₂, residing ≤300 meters to a highway, and surrounded by a high density of roads.

Sensitivity analyses that examined results restricted to persons who lived relatively close (≤20 kilometers) to their PM₂.₅ monitors found similar (though stronger) results and inference generally remained the same. Results were insensitive to the number of years spent living in the residence and the percentage of time during a week spent in the neighborhood. (On average participants lived 15 years in their neighborhood and spent 75% of their time within their neighborhood).

There was no strong evidence of seasonal residual autocorrelation: the Durbin-Watson statistic was normal and plots of residuals against time (time represented season and as blood pressure collection year-month) did not show strong patterning. Results were very similar when a smoothing spline for season was added to the model and in autoregressive models where time was specified as the blood pressure collection month (see Supplemental Material).

Secondary analyses that replaced the continuous blood pressure outcome with binary hypertension (using log binomial models) found results that were mostly positive though somewhat weaker and often included the null value (not shown).

DISCUSSION

In this cross-sectional study, PP and SBP were positively associated with recent ambient levels of PM₂.₅ at the participant's residence. Associations between PM₂.₅ and PP persisted after adjustment for individual level confounders, as well as other environmental variables. PP was 1.12 mm Hg higher (CI: 0.28, 1.97) for each 10 μg/m³ increase in prior 30-day mean PM₂.₅ adjusted for person-level confounders, atmospheric pressure, and temperature. A 10 μg/m³ increase was approximately equivalent to the difference in prior 30-day mean PM₂.₅ between the
90th and 10th percentile. Associations between PM$_{2.5}$ and SBP were generally weaker except when gaseous co-pollutants were also adjusted for: SBP was 2.80 mm Hg higher (CI: 1.38, 4.22) per 10 μg/m3 increase in prior 30-day mean PM$_{2.5}$. In addition, associations between particles and BP were stronger in the presence of traffic-related measures.

Our results (for SBP, model 2a) were roughly comparable to the only other study that found a positive association between PM$_{2.5}$ and BP: Zanobetti et al.'s (2004) repeated measures study among cardiac patients which derived exposure from prior 5-day mean PM$_{2.5}$, and controlled for age, sex, BMI, number of visits, hour of the day, and weather. An advantage of our study over prior work is improved generalizability. Our sample was large; geographically and demographically diverse; and participants were generally healthy. All (non-chamber) studies examining fine particle effects on BP were among persons with pre-existing disease, and nearly all studies used a single geographic area (Brauer et al. 2001; Ebelt et al. 2005; Ibald-Mulli et al. 2004; Jansen et al. 2005; Linn et al. 1999; Zanobetti et al. 2004) (except Ibald-Mulli et al.'s study of three cities in northern Europe (Ibald-Mulli et al. 2004)). Most previous work examining the relationship between BP and PM$_{2.5}$ has investigated relatively acute exposures. We found stronger effects from longer (30- and 60-day) averages of ambient PM$_{2.5}$ exposure compared to shorter (1-, 2-, 7-day) averages, as has been found for other health outcomes (Diez Roux et al. 2006). Accumulated exposure may have a greater impact on health, or smoothing across wide fluctuations in PM levels may reduce noise and hence yields better estimates of (even recent) true background exposure.

The magnitude of the particle-BP associations we found were roughly equivalent to a cross-sectional increase in PP and SBP associated with aging 1.5 to 3.5 years in our sample. While associations of this magnitude are relatively small, they nevertheless provide some
evidence that BP (or pathways controlling vascular homeostasis) might play a mediating role in the association already observed between particles and cardiovascular morbidity and mortality. There has been growing interest in the role of PP as a risk factor for cardiovascular disease (especially among older adults) (Assmann et al. 2005; Benjo et al. 2007) and we found that among BP-related outcomes, associations between PM$_{2.5}$ and PP tended to be strongest and/or statistically significant. This may suggest that, in our adult/older sample, PM$_{2.5}$ relates more to pulsatile stress of large-artery stiffness and impairment of vascular tone than to other mechanisms in BP disorders (O'Rourke and Mancia 1999). Although still positive, our weaker results for SBP may suggest cardiac ejection is a less important mechanism in comparison to vascular distensibility and tone. Particles' potential impairment of vascular tone is supported by prior work suggesting particle inhalation may trigger endothelial dysfunction (Brook et al. 2002; O'Neill et al. 2005; Tornqvist et al. 2007).

A key mechanism by which particles could trigger vascular dysfunction is by downregulating NO synthase. For example, inhalation of particles via cigarette smoking inhibits endogenous nitric oxide production (Bhatnagar 2006; Malinovschi et al. 2006). While reduced bioavailability of NO contributes to alterations in BP related functions (endothelial function, activation of the sympathetic system, platelet functioning, etc. (Bhatnagar 2006; Haak et al. 1994; Rajagopalan et al. 2005)) reductions in NO also increase the instability of BP which is itself a risk factor for cardiovascular disease (Mancia et al. 2001; Stewart et al. 1994). Thus, measures of short-term intra-individual BP variability could reveal effects that our measures at a single point in time do not. Future work could extend this study to a repeated measures design permitting improved control for person level factors and examination of within person variability of BP.
Like previous population-based studies examining associations between BP and air pollution (Harrabi et al. 2006; Ibald-Mulli et al. 2001), our study included persons taking BP medications. Medication use is presumably both a predictor of lower BP and predicted by BP (medication is prescribed when pressure is elevated), thus, potentially participates in a recursive feedback mechanism which is impossible to model accurately using traditional statistical methods (Wang 2006). Our results were robust to adjustment for medication use and other related variables (age, race/ethnicity, income, and education), and when hypertension was used as an outcome variable. The stronger association between particle exposure and BP among hypertensives and medication users may suggest that these persons are more vulnerable to air pollution effects, as found in previous studies (Frank and Tankersley 2002; O’Neill et al. 2005).

We found no evidence of a main local traffic association with BP though local traffic exposures modified the association between background PM$_{2.5}$ and BP. The lack of an association with BP may have been due to traffic exposure measurement error. We were not able to assess closer roadway exposure (few participants resided within 50 or 100 meters of highways and there were potential spatial inaccuracies in the relative positioning of our roadway data and participant addresses (Wu et al. 2005)) nor differentiate traffic sources most toxic (e.g., diesel (Brunekreef et al. 1997)). The stronger association between background PM$_{2.5}$ and BP in the presence of greater exposure to traffic may have been due to compositional differences in PM$_{2.5}$ near roadways -- including a more toxic mixture of pollutants. A greater proportion of particles near roadways are ultrafine (<0.1 um) (Sanderson et al. 2005) which are most detrimental to health (Nemmar et al. 2002; U.S. EPA 2004). In addition, non-PM$_{2.5}$ pollutants from roadways may potentiate the PM$_{2.5}$-BP effect: we found stronger associations in the presence of high NO$_2$. Differences in particle composition may have also contributed to stronger
(positive) associations between PM$_{2.5}$ and BP during moderate/warm weather (as was seen in a previous study of PM$_{10}$ and BP (Choi et al. 2007)). Photochemical conditions can increase certain copollutants (e.g., ozone is highest during warm weather) and pollution sources may seasonally vary (e.g., vehicular traffic or types of fuel being burned) (U.S. EPA 2004). In addition, in moderate/warm weather, participants may increase their exposure to ambient PM due to time spent outdoors and indoor ventilation from open windows (Zeka et al. 2006).

Associations between PM$_{2.5}$ and BP were positive and then became much stronger after adjustment for SO$_2$, NO$_2$, and CO. Though studies have generally found an unchanged or weakened effect of PM$_{2.5}$ on health after adjustment for copollutants (Zanobetti et al. 2004), a slightly strengthened effect has been found in some studies (Miller et al. 2007). Our results were likely strengthened due to strong negative confounding by NO$_2$ and (to some extent) by SO$_2$. An alternate explanation is that the PM$_{2.5}$ effect after co-pollutant adjustment was upwardly biased due to strong negative correlations among copollutant measurement errors (Zeger et al. 2000).

We assigned PM$_{2.5}$ exposure using the monitor nearest each participant's residence. Our method is likely an improvement over using a central-city or health clinic monitoring site – which are often-used in air pollution studies (Ibald-Mulli et al. 2004; Zanobetti et al. 2004). Results were generally insensitive to participant distance to monitors, likely due to high within-site correlation of background PM$_{2.5}$ and that the majority of participants spent much of their time near their home. Nevertheless, we acknowledge that our exposures did not account for within-day exposure variability (e.g., while commuting, at the workplace) nor indoor particulate levels in general. In defense of the measures we used, in the US, ambient PM$_{2.5}$ originating from outside sources appears to be more toxic to health than PM$_{2.5}$ originating from indoor sources.
(Ebelt et al. 2005). Moreover, our results were adjusted for smoking and ETS, which are likely major contributors to indoor exposures in the population we studied.

In summary, recent exposure to PM$_{2.5}$ was positively associated with PP and the association was stronger for residents with higher exposure to traffic-related measures. Our results suggest that BP -- particularly arterial stiffness and reductions in vascular tone -- may play a mediating role in associations already observed between particles and cardiovascular morbidity and mortality. Given the distal pathway between environmental exposures and their potential pathological effects, it is noteworthy that we found even a modest association. Because ambient air pollution is ubiquitous, small effects have the potential to substantially impact public health. This study provides supportive evidence that reducing population-level exposures to ambient pollution can potentially improve population health.
LIST OF REFERENCES

U.S. EPA. 2003. AIRS (Aerometric Information Retrieval System) [database]
Agency, Office of Air Quality Planning and Standards.

2003 Contract No. 68-D-02-065. Work Assignment No. 2-01. Research Triangle Park, North Carolina:
U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; Emissions,
Monitoring, and Analysis Division.

U.S. EPA. 2006. National Ambient Air Quality Standards U.S. Environmental Protection Agency

responses in healthy adults during controlled air pollution exposures. Environ Health Perspect
113(8):1052-1055.

Wang C. 2006. Invited commentary: beyond frequencies and coefficients--toward meaningful descriptions

Woodhouse PR, Khaw KT, Plummer M. 1993. Seasonal variation of blood pressure and its relationship to

Wu J, Funk TH, Lurmann FW, Winer AM. 2005. Improving spatial accuracy of roadway networks and

error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect

Zeka A, Zanobetti A, Schwartz J. 2006. Individual-level modifiers of the effects of particulate matter on
Table 1. Demographic characteristics, blood pressure, and environmental characteristics, (n= 5112) Multi-Ethnic Study of Atherosclerosis, 2000-2002.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>PM$_{2.5}$ prior 30 days, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years, mean (SD)</td>
<td></td>
<td>62.3 (10.0)</td>
</tr>
<tr>
<td>Female (%)</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Race/ethnicity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>African American</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Per capita income, per $1,000, mean (SD)</td>
<td></td>
<td>27 (21)</td>
</tr>
<tr>
<td>No college education (%)</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Body mass index, kg/m2, mean (SD)</td>
<td></td>
<td>28.2 (5.4)</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes or impairment</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Impaired glucose tolerance</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Smoking status (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Former</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Environmental tobacco smoke (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 hour per week</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>High alcohol use (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (top 10th percentile, ≥7 drinks per week)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Physical activitya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Taking medications for blood pressure (%)</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg, mean (SD)</td>
<td></td>
<td>126.5 (21.0)</td>
</tr>
<tr>
<td>Dystolic blood pressure, mmHg, mean (SD)</td>
<td></td>
<td>72.0 (10.2)</td>
</tr>
<tr>
<td>Pulse pressure, mmHg, mean (SD)</td>
<td></td>
<td>54.4 (16.9)</td>
</tr>
<tr>
<td>Mean arterial pressure, mean (SD)</td>
<td></td>
<td>90.2 (12.4)</td>
</tr>
<tr>
<td>Hypertensiveb (%)</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Environmental Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter 2.5 (PM$_{2.5}$), µg/m3, mean (SD)c</td>
<td>Prior day</td>
<td>17.0 (10.5)</td>
</tr>
<tr>
<td></td>
<td>Prior 2 days</td>
<td>16.8 (9.3)</td>
</tr>
<tr>
<td></td>
<td>Prior 7 days</td>
<td>17.0 (6.9)</td>
</tr>
<tr>
<td></td>
<td>Prior 30 days</td>
<td>16.8 (5.0)</td>
</tr>
<tr>
<td></td>
<td>Prior 60 days</td>
<td>16.7 (4.4)</td>
</tr>
<tr>
<td>Study site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA</td>
<td></td>
<td>22%</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td></td>
<td>17%</td>
</tr>
<tr>
<td>St. Paul, MN</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>Forsyth, NC</td>
<td></td>
<td>16%</td>
</tr>
<tr>
<td>Northern Manhattan & Bronx, NY</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>Traffic-relatedd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close to a highway (%)</td>
<td>No</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>29%</td>
</tr>
<tr>
<td>Surrounded by a high density of roads (%)</td>
<td>No</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>25%</td>
</tr>
<tr>
<td>Nitrogen dioxide, prior 30 days (%)</td>
<td>Low</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>25%</td>
</tr>
</tbody>
</table>

26
a Reported total physical activity classified based on the lowest and highest quartiles: low <9 hrs/day, medium 9-16 hrs/day, high >16 hrs/day.
b Hypertension was defined by having any of the following: DBP ≥90, SBP ≥140, self reported history of hypertension, use of hypertensive medication (Chobanian et al. 2003).
c The 2006 National Ambient Air Quality Standards for PM$_{2.5}$ 15 μg/m3 for annual mean and 35 μg/m3 for 24-hour mean (U.S. EPA 2006).
d Close to a highway was ≤300m of a major road. Surrounded by a high density of roads was defined as ≥3.5 km (top quartile) of road length within 400m of the residence. High nitrogen dioxide (NO$_2$) was defined as 0.0325 ppm (top quartile). For reference, this cut-point for NO$_2$ is much lower than the annual NAAQS is 0.053 ppm.
Table 2. Adjusted mean differences (with 95% confidence intervals) in pulse pressure (mm Hg) and in systolic blood pressure (mm Hg) per 10 μg/m³ in PM$_{2.5}$ (averaged for the prior 1-30 days) (n= 5112), Multi-Ethnic Study of Atherosclerosis, 2000-2002.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Adjustment variables</th>
<th>Pulse Pressure</th>
<th>Systolic Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean difference</td>
<td>95% CI</td>
</tr>
<tr>
<td>1</td>
<td>Person-level covariatesa</td>
<td>1.04</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>Person-level covariatesa, weatherb</td>
<td>1.12</td>
<td>0.28</td>
</tr>
<tr>
<td>2a</td>
<td>Person-level covariatesa, weatherb, gaseous co-pollutantsc</td>
<td>2.66</td>
<td>1.61</td>
</tr>
<tr>
<td>3</td>
<td>Person-level covariatesa, study site</td>
<td>0.93</td>
<td>-0.04</td>
</tr>
<tr>
<td>3a</td>
<td>Person-level covariatesa, study site, weatherb</td>
<td>1.11</td>
<td>0.01</td>
</tr>
<tr>
<td>3b</td>
<td>Person-level covariatesa, study site, weatherb, gaseous co-pollutantsc</td>
<td>1.34</td>
<td>0.10</td>
</tr>
</tbody>
</table>

a Person-level covariates: age, sex, race/ethnicity, per capita income, education, BMI, diabetes status, cigarette smoking, ETS, alcohol use, physical activity, medications.

b Weather variables: prior 30-day mean for temperature and sea-level pressure.

c Gaseous co-pollutant: prior 30-day mean for NO$_2$, SO$_2$, and CO. Adjusted relationships between blood pressure and temperature and SO$_2$ were fit using piecewise linear splines due to being positive for lower values and negative for higher values (breaks at 45 °F. for temperature and 0.004 ppm for SO$_2$).
FIGURE LEGEND

Figure 1. Stratified estimates of the difference in pulse pressure (PP) and systolic blood pressure (SBP) per 10 μg/m³ PM₂.₅ prior 30-day average, adjusted for model 2 covariates (except the stratification by temperature which was adjusted for model 1 covariates). All tests for interactions were $p<0.09$ except for Close to a highway: $p<0.3$ for SBP. Lines represent 95% confidence intervals.
Pulse pressure, mm Hg

-4 -3 -2 -1 0 1 2 3

Blood pressure medications, no

yes

Not hypertensive

hypertensive

Temperature, cool (<50 F.)

moderate (50-<62 F.)

warm (≥62 F.)

NO₂ <median (0.0325 ppm)

≥median

Close (300m) to a highway, no

yes

High density of roads (≥3.5 km road length within 400 m), no

yes

Systolic Blood Pressure, mm Hg

-4 -3 -2 -1 0 1 2 3 4 5