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ABSTRACT

Ionization calorimeters, or total absorption
spectrometers, have enjoyed widespread use by cosmic
ray physicists as energy-sensitive detectors for
hadron events. We have successfully employed
similar detectors of smaller scale 1in experiments
on neutron total cross sections at particle
accelerators. A description of these detectors

and a discussion of other applications is presented.






I. Introduction and Background

The ionization calorimeter, or total absorption spectro-
meter, is a device for the determination of energies of hadrons.
Consisting of alternate layers of absorbers and ionization de-
tectors, it has been used over the last decade primarily in
cosmic ray experiments in the energy range of 100 - 1000 GeV.
Gas-filled ionization chambers and proportional counters have
been used as ionization detectors in many calorimeters designed
for cosmic ray research, although several calorimeters have been
constructed using liquid or plastic scintillators. The most
commonly used absorber material is iron. The calorimeter may
be used to determine the energy whether or not an incident
hadron suffers a nuclear interaction before entering the calori-
meter, so long as all of the energy of the hadron or its reaction
products is dumped in the calorimeter. In principle the ionization
calorimeter is very analogous to corresponding counters of lead
and scintillator which have commonly been used in electron and
photon energy-sensitive counters. An excellent review paper
has appeared recently by Murzinl summarizing and referencing the
extensive cosmic ray literature in this field.

In operation, the sum of the pulse heights of the sampling
ionization detectors is proportional to the kinetic energy
of the incident hadron to an uncertainty of about +20%. An
incident hadron interacts in the absorber producing a cascade
of (predominately) pions which propagate generally in the

direction of the incident particle. In each generation, about



one third of the pions are neutral and initiate electro-
magnetic showers. Most of the energy of the incident hadron
thus is dissipated through e.m. showers ultimately, and thus
lost by ionization of the electrons.

In order to appreciate the magnitudes of parameters in-
volved, consider a calorimeter with layers of ionization detectors
spaced by t g cm_2 of absorber. The average (not the minimum)
~lonization of a relativistic particle in the absorber corres-
ponds to (dE/dt) MeV gt em®. If the i®! detector detects n,

relativistic particles, the energy of the hadron is given simply

by

N
E= ) n; xt, x (dB/dt). (1)
i=

The pulse height (or perhaps area) is generally calibrated with
muons, so that n; = Vi/vo where Vo is the average pulse height

voltage for a relativistic muon in the detector. Hence,

N
g = (4BA8) Y y ¢ (2)
v 171
© i=1 |

If all absorbers ti are the same,

o)

N
E = !dE/dt}t z Vj_ (3)
v i=1

and the summed voltage output is directly proportional to the
energy. These convenient expressions are modified in practice
by several smaller factors. First the absorber thickness ti
should be taken centered on the ionization detector rather than

between two detectors. Second if the total thickness of the
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calorimeter is less than several attenuation mean free paths
% (the mean free path in iron is 200 g cm-e) the last detector
output should be weighted by a factor reflecting the energy

dissipated beyond; e.g.,

N ©
E =K ZVi+IVN€t/>‘ aty
i=1 o}

N-1
E=K zvi+xVN. (4)

i=1
Third, the "visible energy" seen by the ionization detectors is
an underestimate because (1) some energy is used to overcome
nuclear binding (8 MeV/nucleon) in heavier nuclei and some
escapes the calorimeter as muons and neutrinos, (ii) the detector
(e.g., plastic scintillator) usually has an atomic number signi-
ficantly different than the absorber so that the development of
e.m. showers 1s quite different therein, and (iii) if the de-
tector 1s a plastic scintillator, slower, more heavily ionizing
nucleons produce pulses less than proportional to their energy
loss relative to relativistic particles. Each of these effects
may be about 10% for incident hadrons of about 100 GeV, sco that

Equation (3) should be multiplied by a coefficient of about 1.3.

IT. Cosmic Ray Experience

It 1s important to note that no direct calibration of an
ionization calorimeter has been published. Huggett2 has carried
out calibration runs at the Brookhaven A.G.S. in momentum analyzed

beams up to 30 GeV/c with a small calorimeter.
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In 1966-67 our group employed a calorimeter of 1065 g em™ 2
in a cosmic ray search for quarks, and a separate study of the
properties of that calorimeter has been reported.3 The calori-
meter is illustrated in Figure 1. The main conclusions are
noted below.

The attenuation mean free path of the ionization was 200 g cm'2
in iron, and within statistics was not a function of incident
energy from 75 to 750 GeV. This figure is not the interaction
mean free path of hadron in iron (which is about 100 g cm_g).
From this attenuation length, approximate values for the initial
ionization can be deduced. Assuming an ionization build-up in

less than 200 g cm_2, Equation (1) can be written

o]

n (dE/dt) | exp (-t/x)at,
O

E

I

E = an_(dE/at).
. -1 2
For iron, dE/dt = 1.7 MeV g ~ cm”, so that

n, = E (GeV) / 0.34.

As an example, a 200 GeV proton beam entering an iron wall

would produce an ionization of about 600 x the ionization of

the protons at a depth of the order of 100 g cm-2 in the iron.

(This corresponds to an energy release of about 8 GeV cm_l per

proton or about 1000 joules per cm for a beam of 1012 protons.)
Our experience also confirmed the observations of Murzin and

others that the ionization profile for particular events fluctuates



guite wildly. Examples of several events are given in Figure
2. It is thus very misleading to take the ionization from only
one or two detectors under a fixed absorber as a significant
index of energy. By way of contrast, the average pulse

height of the counters at different depths for collections of
events. of similar energy are shown in Figure 3.

On the other hand, for events of greater than 100 GeV, it
appears that detectors spaced closer than about 1/3 A do not
materially improve the energy resolution. It does seem plausible
that much closer spacing of detectors is desirable at low energies
(e.g.s 10 GeV) where the number of nuclear interactions becomes
statistically small. In this case spacings of 1 to 3 radiation
lengths (15 - 40 g em™%of iron) may be optimal, so as to sample
each e.m. shower adequately.

It is clear that the calorimeter operates as well for
hadrons over a range of incident angles, as long as the elements
(absorbers and detectors) are parallel planar. The only limitations
are the overall lateral extent, and the poorer sampling of a
cascade when the real pathlength through the absorber becomes
comparable to or greater than ).

The lateral spreading of an energetic cascade 1is reportedl
to be +1.8 cm (r.m.s.) so that most of the ionization would be
contained in a cylinder about 10 cm diameter.

The relative resolution of the calorimeter 1s expected to
be better at higher energies for at least two reasons: (1) there

are statistically a larger number of hadronic interactions so
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that the sampling is better, and (ii) the fraction of the
energy golng into nuclear binding and into slow nuclear frag-
ments decreases.

In spite of this, we have successfully utilized a calori-

meter at current accelerator energies.

ITT. Accelerator Experience

In an experiment on neutron total cross sections at the
Brookhaven Alternating Gradient Synchrotron, a small ionization
calorimeter was built as the neutron detector.LL This experiment
is shown schematically in Figure 4. The total calorimeter thick-
ness was about~4OO g crn-2 of iron in the form of bricks
5.08 x 10.16 x 20.32 cm3. There were originally 10 counter
layers, each about 25 cm high and wider than the iron with each
‘pair spaced by a wall of iron bricks 30.5 cm wide and higher
than the counters. Thus the total effective area of the calori-
meter was about 25 x 30 cm2 normal to the beam and the total
length along the beam axis was about 70 ecm. In practice, alternate
counters were connected in parallel on either side of the apparatus,
however one set proved to be unstable and was disconnected
leaving 5 counters spaced by about 80 g cm_2 of iron between
each pair as noted in Figure 4. No loss of resolution was
apparent on making this change. Only the incident neutrons
interacting in the initial 5 cm slab of iron were counted, and

a requirement that the pulse height in the counter S, (following

1
the iron) be at least 3 times minimum was set. The energy

discrimination of the system (involving the A.G.S. neutron
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spectrum as well as the calorimeter response) was empirically
determined from integral discriminator curves taken at different
peak proton energies. The system was typilcally operated at

a point on the discriminator curve where a drop in the A.G.S.
proton energy (effectively the peak neutron energy) of 4 GeV
(14%) decreased the calorimeter counting rate relative to an
energy insensitive neutron monitor by a factor of 4 to 6. At
this point on the discriminator curve the neutron counting rate
was 2% to 5% of its plateau value. While an absolute efficiency
was not determined, the 40 g cm_2 converter should have con-
verted between 30% and 40% of the incident neutrons, so that the
overall neutron detection efficiency for maximum energy neutrons
probably lay between 1% and 10%. (The neutron spectrum from

the A.G.S. had been determined separately from a small-angle
elastic scattering experiment and was known to be peaked near
the A.G.S. proton energy.) The calorimeter used in this experiment
is seen in a photograph in Figure 5.

A second calorimeter has been made for the neutron Ccross
section and small-angle elastic scattering angular distribution
experiment at the Lawrence Radiation Laboratory Bevatron. The
calorimeter for this experiment employs 14 scintillators each
sbaced by 30 g c:m_2 of iron, with an overall .length of 70 cm and
an area of 60 x 85 cm2. The neutron converter and particle
position detector are 25 x 50 cm2, allowing at least 17 cm for
lateral development of cascades from the converter.

In the A.G.S. experiment the neutron positions were determined

by 7.0 and 12.1 cm diameter counters behind the converter and coaxlal



with the smaller neutron beam. In the Bevatron experiment
optical time-of-flight of light in plastic scintillators

will be used to locate particle positions to about 2 cm in

a plane normal to the neutron beam, a resolution comparable to
the diameter of the collimated neutron beam.

5

Earlier experiments on np forward elastic scattering” have
used iron plate spark chambers with interspersed scintillators
to locate neutron vertices, however the scintillator was not
used to define neutron energies as in a calorimeter.

Obviously such spark chamber-scintillator combinations
could be used to both locate the position and (qualitatively)
the direction of the interacting neutron, and to measure its
energy. This is being done in a cosmic ray experiment currently
being performed by our group in an experiment to determine total
éross sections in the 100 - 1000 GeV energy range.6 Here a
10-gap spark chamber with 20 g cm_2 of iron between gaps
has scintillators located at the 40, 120, and 200 g cm_2 levels.

Below this are a further 900 g cm_2 of iron (about 75 tons,

2.5 x 2.5 m2) interspersed with 7 more layers of scintillator.

IV. Other Applications

As accelerator energies climb toward lOll eV and beyond
it is plausible for experimentalists at these facilities to
borrow from the technology which has been developed for cosmic
ray research at comparable energies. Thus the ilonization
calorimeter provides an energy-sensitive detector for hadrons

which, combined with position definition, can find application
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in research with accelerators.

The examples of neutron total cross section measurements
and small-angle neutron elastic scattering are accelerator
experiments where simple calorimeters are already employed.

Experiments to study energetic K5 (above 10 GeV) might
also use calorimeters. Thus a K°p scattering or total cross
section experiment might employ a high-momentum KT beam incident
on material to produce a monochromatic K°beam by charge exchange.
The K% could then be detected with the lonization calorimeter as
in the neutron experiments.

Neﬁtrons produced by diffraction dissociation of nucleons
could be detected in this manner. TFor example a proton beam of
70 - 200 GeV incident on a target could produce a final state
n+n; the 7t could be analyzed by a Cherenkov counter-magnet-
épark chamber system while the neutron energy (roughly) and
direction (more precisely) could be ascertained by a spark
chamber-calorimeter system.

A calorimeter could be used to trigger a magnet—spark
chamber system on rare final states. For example a calorimeter
behind a magnet-spark chamber analysis system and to the side of
a beam path could detect elastic or inelastic final states of
iarge transverse momentum. The spark chamber analysis would
subsequently reveal the details of the final state.

The ultimate development of the ionization calorimeter may
be represented by a homogeneous crystal device being tested

7

by Hofstadter. Although expensive, it should have significantly
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better energy resolution than the sampling type of calorimeter
discussed above. In principle the addition of image intensifiers
to Hofstadter's large crystals could give us a combined calori-
meter and triggered luminescent chamber combining all of the
desired features of spatial and energy resolution.

It is a pleasure to acknowledge the contributions and dis-
cussions of ideas presented herein with M. J. Longo, M. N.

Kreisler, P. V. Ramana Murthy, D. E. Lyon, and A. Subramanian.
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FIGURE CAPTIONS

Figure 1. A schematic drawing of the ionization calorimeter
used in a cosmic ray search for quarks.

Figure 2. Individual event shower development in the ionization
calorimeter showing the wide variation in the energy
deposition profiles. The X's are the recorded
ionizations at specific depths and the smooth curves
are drawn only to guide the eye.

Figure 3. Average shower development for some selected energy
bins.

Figure 4. Schematic representation of the ionization calorimeter
and other experimental apparatus in the A.G;S. ex-
periment on np total cross sections.

Figure 5. A photograph of the calorimeter shown schematically

in Figure 4.
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