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SUMMARY

Computational aeroacoustics requires numerical techniques capable of yielding low artificial dispersion
and dissipation to preserve the amplitude and the frequency characteristics of the physical processes.
Furthermore, for engineering applications, the techniques need to handle irregular geometries associated
with realistic configurations. We address these issues by developing an optimized prefactored compact
finite volume (OPC-fv) scheme along with a Cartesian cut-cell technique. The OPC-fv scheme seeks
to minimize numerical dispersion and dissipation while satisfying the conservation laws. The cut-cell
approach treats irregularly shaped boundaries using divide-and-merge procedures for the Cartesian cells
while maintaining a desirable level of accuracy. We assess these techniques using several canonical test
problems, involving different levels of physical and geometric complexities. Richardson extrapolation is
an effective tool for evaluating solutions of no high gradients or discontinuities, and is used to evaluate the
performance of the solution technique. It is demonstrated that while the cut-cell method has a modest effect
on the order of accuracy, it is a robust method. The combined OPC-fv scheme and the Cartesian cut-cell
technique offer good accuracy as well as geometric flexibility. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In computational aeroacoustics (CAA), accurate prediction of sound generation is challenging due
to the requirement for preservation of both the amplitude and frequency contents of the wave
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generation and propagation. Furthermore, suitable numerical schemes need to handle multiple
scales, including long and short wavelengths, as well as nonlinear governing laws arising from
sources, such as turbulence, shocks, interaction between fluid flows and elastic structures, and
complex geometries. It is well recognized (e.g. [1, 2]) that in order to conduct satisfactory CAA
simulations, numerical schemes need to minimize dispersion and dissipation errors. In general,
higher-order schemes are more suitable for CAA because they are less dissipative than lower-order
schemes [3-5].

For waves with long wavelengths relative to the grid size, the formal order of accuracy is
sufficient to indicate the performance of a scheme. However, for waves whose wavelengths are
shorter than or comparable to the grid size, it is known that the leading truncation error terms are
not good indicators [6, 7]. To handle broadband waves, the idea of optimizing scheme coefficients
by minimizing the truncation error associated with a particular range of wavenumbers has been
adopted by many researchers (e.g. [§—15]). As demonstrated by Tam et al. [2], one can optimize
coefficients to satisfactorily resolve waves with wavelengths of 6-8Ax (referred to as 6-8 points
per wave) or shorter. The resulting scheme optimizes the accuracy by simultaneously handling the
wavenumber and frequency characteristics in the range of resolvable scales. Ashcroft and Zhang
[14] have reported a strategy for developing optimized prefactored compact (OPC) schemes,
which splits the central implicit schemes into forward- and backward-biased operators, subject to
a measure of optimality.

The OPC scheme was originally designed based on a finite difference approach. In order to satisfy
the governing physical laws, it can be advantageous to adopt the finite volume approach, which
ensures that the fluxes estimated from different sides of the same surface to be identical. In other
words, no spurious sources or sinks are generated due to numerical treatment. Such a requirement
can be important when nonlinearity is involved. Furthermore, a finite volume formulation can
offer an orderly framework to handle the irregular geometries and moving boundaries. Popescu
et al. [15] have extended the finite difference schemes originally proposed by Tam et al. [2] and
by Ashcroft and Zhang [14] to suitable finite volume forms, and offered systematic assessment of
their performance.

In addition to handling the fundamental characteristics of waves, geometric complexity is another
critical issue. Since practical engineering problems often involve irregularly shaped geometries,
suitable techniques need to be employed in order to maintain the accuracy of high-fidelity com-
putations in such configurations. In this study, a Cartesian cut-cell approach based on the OPC
finite volume (OPC-fv) scheme, aimed at minimizing dispersion and dissipation while offering
geometric flexibility, is proposed and evaluated. This approach has the merit that the burden on
grid generation is lessened and the accuracy of the overall computations between the equation
solver and the geometric resolution are coordinated through the numerical solution techniques.
Specifically, the governing equations in Cartesian coordinates are solved using the OPC-fv scheme
[15]. The low-dispersion and low-dissipation Runge—Kutta (LDDRK) by Hu [16] will be used
for time discretization. For the treatment of boundary condition, we propose a modified perfect
matched layer (PML), which fits better to Navier—Stokes equations. The approach follows the one
developed by Hu [17], who has offered substantial details.

To assess the performance of the resulting numerical technique, we will compute the wave
radiation produced by oscillating baffled pistons using both linearized Euler equations and nonlinear
Navier—Stokes equations. Wave generation from a vibrating circular piston is a classical acoustic
problem, and has been investigated by, among others, Freedmann [18], Lele and Hamilton [19],
Cleveland et al. [20], Williams [21], Blackstock [22], and Cheong and Lee [12].
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In practical applications, not only a single wave radiated from an isolated baffled piston, but
also the interaction between waves from an array of baffled pistons, and radiated wave around
complex geometries are of interest. In order to solve such problems, we will study the wave
radiation from baffled pistons and their interaction with irregular geometries or the interaction
from multiple pistons located at different points in the two-dimensional space. The challenge in
this computation is to capture the characteristics of the waves initiated by the pistons, and wave—
solid wall and wave—wave interactions, in terms of frequency, amplitude and wavenumber. In
order to systematically evaluate the performance of the present numerical schemes, the Richardson
extrapolation technique is employed. We will investigate whether Richardson extrapolation is an
effective tool to improve numerical solution, or assess the order of accuracy of a numerical scheme
for wave computations.

The remaining paper is organized as follows. The governing equations, numerical schemes, and
boundary conditions will be discussed briefly in Section 2. In this section, we will also present the
cut-cell technique and the Richardson extrapolation approach. In Section 3 we present the results
and discussions of the numerical simulation of the baffled pistons for linear and nonlinear cases.
The last section will offer conclusion and remarks.

2. NUMERICAL SCHEMES FOR SPACE AND TIME DISCRETIZATION

2.1. Space discretization—optimized prefactored compact finite volume scheme (OPC-fv)

Consider the first-order, one-dimensional linear wave equation

ou ou

—_—= 1
PR 1

To derive the discretized equation, we employ the grid point cluster shown in Figure 1, focusing
on the grid point i, who has the grid points i — 1 and i 4+ 1 as its neighbors. The dashed lines
define the control volume, and the letters e and w denote the east and west faces of the control
volume, respectively.

To offer a better understanding of the OPC-fv scheme, we first summarize the original finite
difference version of the OPC scheme developed by Ashcroft and Zhang [14], termed OPC-fd. The
factorized compact scheme in the finite difference approach is obtained by defining the forward
and backward operators DIF and DIB such that
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Figure 1. Grid layout and notation for one-dimensional problem.
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The generic stencils for fourth-order forward and backward derivative operators are given by

1
WFDiFJrl + BpDf = E[awwz + bruit1 + cru; + drui—1 + epui—2] 3)
and
1
pgDP + ngDP| = A_x[aBuH-Z + bpuiy1 + cu; +dpu;—1 + epu;_2] “4)

The coefficients are obtained by imposing that: (i) the scheme has a certain order of accuracy; and
(ii) dispersion and dissipation are minimized over a selected window of frequency. As illustrated
in Figure 1, the points i, i 41, etc. are the nodes where the dependent variables are defined, while
e and w define the boundary of a cell centered at point i. The finite volume formulation of the
optimized prefactored scheme is obtained by taking into account Equations (2)—(4), using the idea
that the approximation of function at points e and w should have similar forms. For simplicity, we
consider a one-dimensional problem with unit thickness in the y and z directions

Y ou
/ a dx + c((Au)e — (Au)y) =0 (5)

where (Au), and (Au), are the fluxes across the east and west faces, respectively. Hence, the
discretized wave Equation (1) can be written as

ou
ot

where u is the averaged value of u over the control volume.
Based on the OPC-fd scheme, the value of the function in the center of the face is defined by
the relations

Ax + c((Au)e — (Au)y) =0 (6)

ue =0.5u" + uB)

Fo  Bu (N
Uy =05w ™ +u"")
where uF¢, uB¢, uF¥ and uB" are determined from
nu}:_il + ﬁu,-Fe =bujy — du;
nu}:jr”l + ﬁufw =bu; —du;_ .
BuBe 4+ quPe, = bu; — du;y ®
Bu?w + nu?_wl =bu;_1 —du;
and the coefficients are the same as those in the OPC-fd scheme (see Equations (3) and (4))
N=MNg=7B
B=Pr="Pg ©
b=bp=—dp
d=dr= —bp
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2.2. Time discretization—low dispersion and dissipation Runge—Kutta (LDDRK) method

Hu et al. [8] considered time integration using the Runge—Kutta algorithm for the differential
equation

ou
= =Fw (10)

where the operator F is a function of u. An explicit p-stage algorithm advances the solution of
Equation (10) from the nth to the (n + 1)th iteration

u® =y"

KV =AtFu®)

KD =AtF =) (n
uD =u" + ;KD i=1,...,p

uttl =, )

where b, =1.

The c[())efﬁcients of the LDDRK are obtained such that: (i) the scheme has a prescribed order
of accuracy; (ii) the error of the amplification factor of the scheme over the specified phase range
is minimized; and (iii) the amplification factor of the scheme is within the stability limit.

In this work, we use a two-step alternating scheme. In the first step, we use four stages, and
in the second we use six stages. The scheme is fourth-order accurate in time for a linear problem
and second-order accurate for a nonlinear problem [8].

The specific procedure is given below.

1. Four-stage:
KD =AtF@u™)
K@ =AMF@u" + k")
KO =AMF@u" +1Kk@) (12)
KW =AtFu" + 1K)

2. Six-stage:
KD = AtF@u")
K® =AtF@u" +0.17667K D)
K® = ArFu" + 0.38904K @)
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K® =AtF@u" + 1K) (13)
KO =AtF@u" + K@)

KO =AFu" + 1K)

un-i—l = u" + K(6)

In this study, the LDDRK scheme and the OPC-fv scheme are combined. In the context of the
procedures presented above

Fi=—c(uj —u}")/Ax (14)

where

uf =0.5uP® +uf®) and ul =0.5wP” +ul™) (15)

2.3. Boundary treatment

To handle the outflow boundary for nonlinear case, the PML is adopted. The PML was designed
for Euler’s equation by Hu [16]. In order to apply PML to the Navier—Stokes equations, we add
the diffusive term into the original PML equations. This approach was also developed with more
details by Hu [17]. The equations that characterize PML are as follows:

ouy 10p ou* 1
1 X X
L ot =—=—u +——
o0 T pox ox ' Re 0x2
ou ou* 1
2 X _ y
— +oyu —u + —
ot 2 dy ' Re 0y?
6u)17 n y L ou’ . 1 &*w
— +ouy =—u —_——
ot T 0x Re 0x2
y ) 2 5
o dop o 1w
ot i p dy 0y  Re 0y? (16)
op1 ou® ap
— 40 - —yp— —put—=—
or O PIE TP G T oy
ops ou’ op
— 40 = —yp— —ur——
o y D2 ’p dy dy
dpy 0(pu™)
— 4o —
or ox
0pa d(pu”)
L 4 Ggy0y = —
o P2 3y
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Figure 2. Illustration of computational domain with perfect matched layers as outflow boundary.

where «*, u” indicate velocity in the x and y directions, and ¢, and ¢, are defined by the formula:

d\"
0=0y (5> (17

where g, is the maximum value of ¢ (the absorbing coefficient for PML domain), D the width
of the PML domain, d the distance from its interface to the interior domain (see Figure 2). In our
approach, the PML employs the outflow boundary designed by Tam and Webb [23]:

= +cos(9) +sn(9)— +E_O (18)

where i = 1, 2. In our computation, we used 21 points in PML.

2.4. The cut-cell procedure for irregular geometry

The cut-cell method rearranges the computational cells in the vicinity of an interface via sub-
division to conform to the specified boundary shape. Depending on the intersection between the
grid line and the boundary, the subdivided, or cut, cells can remain independent or can be merged
into a neighboring cell in a given direction, e.g. a direction approximately normal to the solid face
as illustrated in Figures 3 and 4 (e.g. [24-29]). Accordingly, the boundary cells are reorganized
along with their neighboring cells to form new cells with triangular, trapezoidal, or pentagonal
shapes.
The flux across the cell boundaries can be approximated by

m

%f-nds% > frnk (19)
k=1

The flux on the cell face is computed based on the multi-dimensional interpolation method [29].

Since the LDDRK and OPC-fv schemes considered here are fourth-order accurate, it is desirable

to preserve the same order of accuracy around the boundary.
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Figure 3. Example of the Cartesian cut-cell method, which results in mixed structure and unstructured
grid: (a) coarse grid and (b) finer grid.
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Figure 4. Illustration of the interfacial cells and cut-and-absorption procedures: (a) local
situation and (b) cut cells along the interface.

The Cartesian cut-cell approach employs the following steps:

e Locate the intersection of the boundary and the underlying Cartesian mesh.

e Establish the identity of each Cartesian cell. The cells are flagged as solid cells, flow cells,
or boundary cells. The boundary cells are those that either intersect the boundary or have a
face in common with the boundary.

e Determine the geometric characteristics of the boundary cells, such as cell volume, the
direction normal to the boundary, and other information.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
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Figure 5. Modified cut-cell approach for CAA: (a) Cartesian cut-cell approach and (b) detail
around the cut cell.

e Merge cells as necessary. A minimum acceptable cell area Sp;, is specified, and when the
area of a cut cell is smaller than this value, it is merged into a neighboring cell. The choice
for Smin is based on a trade-off between the time step and resolution accuracy.

e Determine the new characteristics of the merged cells.

For the trapezoid ACDE shown in Figure 5, the finite volume approach can be used to approx-

imate the wave equation
0 0E OF
/ (_”+_+_> av =0 (20)
ABCDE \ Ot ~ 0x 0y

where dV is a volume element. Applying Stoke’s theorem to Equation (20), we have

Ouc

Ly S 7{ (Edy — Fdx)=0 @1
Ot ABCDE

The value of the integral can be approximated by

f (Edy—Fdx):/ Edy—i—/ (Edy—Fdx)—i—/ Edy—f Fdx (22
ABCDE AC CcD DE EA
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The functions F' and E can be represented generically by a function f. The fluxes on the faces
AC and DE can be approximated by

/Acfdy=/Adey+/Bcfdy (23)

An approximation of the value of the flux is given by

fdy= fu(ya —yB) + fsw(yB — yc) (24)
AC
The value of the flux at point w is given by the specific formula for the boundary cell. The
value of fs,, is approximated using a fourth-order polynomial in the x and y directions

4 4
fsw=2_ > bijx'y’ (25)
i=0 j=0
where the coefficients b;; are unknown. This interpolation has fourth-order accuracy in the
evaluation of the flux on the cut cells. In this case, the value of the coefficients is obtained
using the values of f at 25 grid points. An example is given in Figure 5 where the value of the
function is approximated using 25 points.
To solve for b;;, we use the following system of equations by expressing the function f at 25
locations:

fi Xyt oxyt o xyieexm oy 1 b
f2 X3ys Xy Xyyeeexa oy 1 by
= _ (26)
Jas X35Yps Xys¥ys Xasvascc-xas yas 1) Ubos
The coefficients b;; from Equation (25) become the coefficients by, b2, ..., bas in Equation (26).

These coefficients can now be expressed in terms of values of f at the 25 points by inverting
Equation (26), i.e.

25
b= 5 anifj, n=1,....25 7)
j=l1

where a,; are the elements of the inverse of the matrix in Equation (26).
After b; is obtained, the value of f at the center of BC is expressed in the form

Fow =b1x5y ¥ + 0225 V8 + b33 oy -+ b23%w + b2aYsw + bos (28)
and using Equation (27), the value of fs,, can be rewritten as
25
fsw= 2 0jfj (29)
j=1

Note that b; are coefficients that depend only on the mesh, the location, and the orientation of
the boundary. Therefore, with a fixed geometry, these coefficients can be computed once at the
beginning of the solution procedure.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
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Now we turn our attention to the calculation of the flux on the immersed face CD of the
cell (i, j). To compute the flux on a solid boundary, we use the reflection boundary condition.
In Figure 5(b), (x;, y;) is the mass center of the boundary cell. We introduce a point across the
boundary that is symmetrical to the center of mass of face CD, and denote it as G. The variable
values at the ghost point G are

PG = PDij

uG =u;; — 2(uij ~n)n

(30)

where n is the normal vector of the solid boundary, the subscripts i indicate the value of variables
at point (x;, y;), and the subscript G indicates the value at a ghost point G. The value of the flux
on face CD is approximated by

PG + Dij

PCD=T
(31)

uG + u;j

ner=T

Following simple algebra, we can observe that Equation (31) assures that the velocity is zero in
the normal direction, and the variation of pressure in the normal direction around the boundary is
Zero.

2.5. Richardson extrapolation

Richardson extrapolation has attracted interests in the CFD community because of its potential
to improve the quantitative accuracy as well as the order of accuracy of a given computational
technique. It is built upon the concept that by combining two separate discrete solutions, on two
different grids, the leading order error term in the assumed error expansion can be eliminated. The
extrapolation must be used with considerable caution, since it involves the additional assumption
of monotone truncation error convergence in the mesh spacing. The method has a major attractive
feature: it is oblivious to the equations being discretized and to the dimensionality of the problem
and can easily be applied as a postprocessor to solutions on two grids with no reference to the
codes, algorithms, or governing equations that produced the solutions. For the case in which the
order of accuracy of the spatial discretization is p; and the order of accuracy of the time integration
is ¢, the difference between the analytical solution P” and the numerical solution P"(Ax, At)
with grid spacing Ax and time step Az in the nth iteration can be written as follows:

P" — P"(Ax, At) = c1x AxP! + oy AxPVH oo At 4 o At 4 (32)

where ciy, C2x, - -+ Clt, C2t, - .. € N. This can be carried out for every grid point.

For simplicity, consider Ax = Ay, and substitute Ar with the Courant-Friedrichs-Lewy (CFL)-
condition (CFL = cAr/min(Ax, Ay)). Keeping the CFL-number constant, Equation (32) can be
written as follows:

P" — P"(Ax) =CAx? (33)
where p is the order of accuracy and C € ).
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In Equation (33) P", C, and p are unknown and can be determined by writing Equation (33)
for three solutions with three different grid spacings Ax, Ax/2, and Ax /4. After a mathematical
manipulation we obtain

2
(Ax) (Ax)
pr(=)—pn(=
4 2
e (5)-m(3)
o 4 2

= 71 (35)

pn (ﬁ) — P"(Ax)
—2P (34)

From Equation (34) the order of accuracy can be determined in every point of the grid and from
Equation (35) an improved extrapolated solution can be determined, which is based on canceling
the leading truncation error term in Equation (33).

Richardson extrapolation consists of using three grids of the numerical solutions which will not
match, because the solutions are obtained with different grid spacings. Therefore, the numerical
solutions have to be interpolated because Richardson extrapolation method can only be applied
to solutions on a common grid. This interpolation method should not affect the accuracy of the
numerical solution. Therefore, the order of accuracy of the interpolation method must be higher
than the derived order of accuracy of the numerical solutions.

Next, we will present the way in which the interpolation is performed in function of the position
of the point in the domain.

2.5.1. Interior interpolation. In the interior of the domain, interpolation polynomials of fifth degree
in x and y are established by two-dimensional Lagrange polynomials. In order to determine the
interpolation polynomial 36 points are needed, which can easily be determined in a 6 x 6 square
in the interior of the domain. The point to be interpolated is located in the center of this square.
In Figure 6 the square is given with the open dots the cell centers, at which the values of the
numerical simulations are known, and the closed dot the point to be interpolated.

J =5 4] [=] Q
J]": 4 ] [+ ] Q
L ]
J= o ] 4]
=3 =4 i=J

Figure 6. Interpolation square (6 x 6) for Lagrange interpolation used in the cut-cell approach.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
DOI: 10.1002/fid



A FINITE VOLUME-BASED HIGH-ORDER, CARTESIAN CUT-CELL METHOD 1799

The Lagrange interpolation polynomial [30,31] is given by (36).

SN Soox—xx > y—w
Poxe(x,y)= > [1 [] Sxiyj) (36)
i=0j=0 \k=0,k#i Xi — Xk 1=0,1j Yj — VI

where (x;, yj, f(x;, y;)) are the pairs of coordinates and values on the open dots (grid points of
the numerical solution).

So, this can be performed for every point in the interior. However, for points to be interpolated
near the north, east, south, and west boundaries cannot be located in the center of the square.
Therefore, the points will be located closer to the edges of the square.

This procedure gives the two-dimensional Lagrange interpolation polynomial, which matches
the values at the given points.

2.5.2. Complex boundary. For interpolation near an irregular geometry, in general, 36 surrounding
points or conditions have to be found. The system that has to be solved can be cast as Equation (37).

[ xfyf Xf)’f cooxrooy V] rer T [ fe,yD) T
xy) o oxyt o x| 2 fx2, y2)
= : 37
x§5y§5 x§5y§'5 ceox35 y35 1 €35 f(x35, ¥35)
_X§6y§6 x§6y§6 <o x36 y36 1| LC36 L f(x36, ¥36)

where (xx, vk, f(xx, yr)) are the pairs of coordinates and values on the grid points. Points on the
wall and symmetrical opposites of the mass centers are used in the simulation, which can also be
used for the interpolation.

This approach can lead to ill-conditioned matrices and large round-off errors, because the
coordinates of the points can be very close to each other. In order to avoid this, several adaptations
have been made in this approach:

e In order to improve the conditioning of the matrices row scaling has been applied. This leads
to a decrease in the condition numbers.

e The coordinates of the 36 conditions used for determining the systems have been shifted to
around the origin.

e Choosing the points for interpolation is very important. Because the pressure is interpolated,
the pressure part of the wall condition can also be used. Using the wall condition, the mass
center and four cell centers per row give a much better conditioning of the matrices.

The final choice of the interpolation points in the vicinity of the wall can be seen in Figure 7.
The gray dot is the point to be interpolated. For i =1, ..., 6, on the open squared dot the wall
condition is used, furthermore, the black dot and four cell centers east of the black dot are used,
in order to have 36 conditions.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
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Figure 7. Interpolation area in the vicinity of the wall.

il r T -
10-4 r 1
'y b -
w® E -
-7
10
. w* E 4
=
L "
w A
10"k 3
W'“r g |
w'E 4
-13 L .
10 3 -1 0
10 10 10
Ax

Figure 8. The error versus grid size for the proposed Lagrange interpolation
scheme used for interpolation to the common grid.

2.5.3. Testing the interpolation method. The interpolation method has been tested with the ana-
lytical function, Equation (38), which satisfies the wall condition dp/dn =0:

f()=Cicos(x) (38)

where x’ is the orthogonal distance to the wall and C| € i.

This function is interpolated from different grids to the common grid. The common grid has
grid spacing Ax =0.025 and C; =103,

From Figure 8, it appears that the order of accuracy of interpolation method is about 6, which
is satisfactory to match the order of accuracy of the numerical scheme for the governing wave
equation, which is 4.
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3. RESULTS AND DISCUSSION

Five test cases have been selected to assess the performance of the presented approach: (i) radiation
from a baffled piston in an open domain: linear and nonlinear model; (ii) reflection of an acoustic
pulse on an oblique wall; (iii) a wave generated by a baffled piston and reflected from an oblique
wall: linear model; (iv) wave generated by a piston and reflected by an elliptical solid object; and
(v) array of baffled piston.

3.1. Radiation from a baffled piston

A uniform circular piston in an infinite rigid baffle is a good starting point for investigating the
radiation of sound from a boxed loudspeaker. The physical problem is to find the sound field
generated by a vibrating piston surrounded by a rigid baffle. In this paper, we will present the
two-dimensional case. This problem is chosen to evaluate the field equation solver in the absence
of the rigid wall.

The origin of the coordinate system will be chosen in the center of the piston, as shown in
Figure 9. We use the following dimensionless variables with respect to the following scales:

Length scale = diameter of piston, 2a;
Time scale =2a/c;

Velocity scale = speed of sound, c;
Density scale = undisturbed density, p;
Pressure scale = pyc?;

Frequency scale =c/2a.

3.1.1. Two-dimensional linear baffled piston. The linear Euler equations are as follows:

(Z_u +Vp=0
! (39)

0
—p+V-u=O
ot

The initial conditions are set as follows:
ui(x,y)=0
uj(x,y)=0 (40)
p(x,y)=0

For this problem, two boundary conditions are used, at the wall, and in the far field. The boundary
conditions at the wall with the piston are

Vo cos(wt), (x,0) € piston
u;j(x,0,1) = ) 41)
, otherwise

where o is the angular frequency of the piston and Vj is the amplitude of the displacement. For
low-amplitude signals, the solution can be obtained using the linear equation. Therefore, the value
of Vp influences only the amplitude of the solution, and none of the other wave parameters. For
this reason we can make Vj equal to 1.
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Figure 9. Radiation from a baffled piston: (a) general description and (b) boundary condition.

The outflow boundary condition is based on the acoustic radiation condition of Tam and
Webb [23]:

0
0 0 0 (52
p p op . p
— 4+ —cosf+ —sinf+ — =
o + E cos 0 + 3y sin +2R 0

where R is the distance from the origin of the x-axis (center of the piston) to the point (x, y). The
analytical solution is given by the Rayleigh integral [21, 22].

The piston behavior is presented in terms of the Helmholtz number, ka, where k is wavenumber,
and a is the radius of the piston

wa
ka=— (43)
c
Next, we take a closer look at the wave behavior by studying the directivity factor. The directional
characteristic of a source is described by the amplitude directivity factor D, defined as the pressure

at any angle to the pressure on the angle of maximum pressure:

D(0) = M (44)
p(R, m/2)
where the pressure is computed at any arbitrary time ¢. It is clear that the radiation will be strongest
on the y-axis. This is the reason for which we took maximum pressure at § = /2. The directivity
factor indicates how effectively the source concentrates its available acoustic power into a preferred
direction.

In case that ka is low, the piston’s dimension is small compared with the wavelength of the
wave, and in this case the behavior of a piston is like a point source, the directivity pattern does
not have a preferred direction. When ka>>1, the directive function has nulls, and between the nulls
are secondary radiation maximum, of monotonically decreasing prominence. The number of nulls
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Figure 10. Radiation from a baffled piston: beam patterns |D(0)|—two-dimensional linear
piston: (a) ka=2 and (b) ka =8.

and secondary maximum are determined by the size of ka, where a is the radius of piston, and
ka =2na /2. In other words, the number of lobes increases with the value of ka. In our calculation,
we compare the analytical and numerical values of beam pattern for two cases, ka =2 and 8. As
shown in Figure 10, the numerical solution compares favorably with the analytical beam pattern.

3.1.2. Two-dimensional nonlinear baffled piston. The governing equations are as follows:

dp | (puj) _0
ot 6xj
dpui)  dpujuj) dp 0Ot
A 45
ot + 6xj + 0x; ﬁxj @
ap op Ou j
i it —L =0
at + u] axj + 'YP ax]
where
1 (Oui Ouj
= — 46
Tij Rp (@Xj+an> o

where Rp =2ac/v is the Reynolds number based on the diameter of the piston, v is the kinematic
viscosity of the fluid, and y is the ratio of specific heat.
The initial conditions are as follows:

p=1
p=1/y “
u=0
v=0

The boundary conditions at the wall with the piston are given in Equation (41).
For outflow boundary, we use PML, given by (16) that is finished with the outflow boundary
condition designed by Tam and Webb [23] (Equation (18)).
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No exact solutions exist in this case. To help assess the performance of our approach we will
evaluate the solution of the small amplitude case, which can be approximated by the linear model.
We will present the results for two scenarios: low frequency (ka =2), and high frequency (ka =8).

3.1.2.1. Low frequency (ka =2). The computation is done in a domain (x, y) € [—5, 5] x [0, 10]
and a grid 161 x 161. The time step is based on CFL =0.2, where

CFL = At
= “min(Ax, Ay)

First, we present a solution for which Vj is small. In this case, the linear model can approximate
the solution. The solution and contour plot for Vo =0.01c¢ are presented in Figure 11(a) and (b).
We can see that the solution is very close to the linear approach. This is expected because we
have the case of a small signal, when the solution can be approximated very well with the linear
behavior.

Blackstock [22] shows that in the plane of progressive waves, the speed of sound can be ap-
proximated by ¢ + fu, where f is the coefficient of nonlinearity. Not all points on the wave move
at the same speed. At the point with u =0, the wave essentially moves at the speed of sound c.
However, at the peak, where u has its greatest value due to nonlinear effects, the wave travels the
fastest. At the trough, where u is the lowest, the wave is slowest. Consequently, the peak tends
to catch up with the trough, as shown in sketches (a), (b), and (c) in Figure 12. The multi-valued
waveform is physically impossible. The effects of viscosity and heat conduction prevent actual
multi-values. Dissipation is important whenever any segment of the waveform becomes very steep,
or when shocks are formed. The computational results show that when Vj increases the solution
becomes steeper and the dissipation becomes very important because the speed of the sound is
bigger (¢ + Pu). This is illustrated in Figure 13(a)—(c), where the linear solution is plotted to
emphasize that dissipation increases as the initial amplitude grows. In Figure 13(d), we present

Numerical
| - - - - Analitical
0.72 + (linearsolution)
0.715 |
& B E
0.71 C
0.705 [
1 1 P PRI I J
2 4 6 8 10 0
(a) y ()

Figure 11. Nonlinear baffled piston: =12, CFL =0.2, V5 =0.01¢p; ka = 2: (a) axial solution and
(b) contour plot solution.
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Figure 12. Cumulative distortion of a plane progressive wave.
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Figure 13. Axial solution: t = 12; ka =2, CFL = 0.2—Nonlinear baffled piston: (a) Vo =0.1co;
(b) Vo =0.3cp; (c) Vo =0.5¢p; and (d) three-dimensional contour plot, Vo =0.5¢.

the contour plot of a dissipative solution. We can see that the boundary condition assures again a
negligible reflection from the boundary.

3.1.2.2. Highfrequency (ka=8). The computation is performed in a domain (x, y)€[—2.5, 2.5] x
[0, 5] and on a grid system of 251 x 251 nodes. The time step is based on CFL =0.2. In this
case, we use a finer grid to be able to capture the behavior of high frequency. As shown in
Figure 14, for the case of weak signals (Vp=0.01), the solution is well approximated with a
linear behavior, except that the nonlinear computation captures the detailed behavior around the
piston, namely, the diffraction because of the discontinuity around the edge of the piston (see
Figure 14(b)). In the case of a high frequency, wave radiated from a baffled piston dissipates faster
than in the case of low frequency. This happens because the speed of a high-frequency wave is
larger, hence the speed of the sound (¢ 4 fu) is higher, and the diffusion becomes more powerful.
This phenomenon is observed in our computation (see Figure 15(a)). Again, we notice that the
actual boundary condition yields a negligible reflection also in this case (see Figure 15(b)).

3.2. Array of baffled pistons

The problem consists of solving the radiation interference from more than one piston. This is
shown in Figure 16, where three pistons are considered. The challenge of the numerical solution
will consist of capturing the behavior of the new waves, particularly the range of wavenumbers.
Again the exact solution cannot be obtained; hence, we cannot make a quantitative evaluation of the
results and the qualitative evaluation will demonstrate the correctitude of our results. The proposed
approach is solved using the Navier—Stokes equations, where the wall boundary conditions and
piston source characteristics for wall-embedded pistons, Equations (15)—(16), and the outflow
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Figure 14. Solutions of nonlinear baffled piston: =12, CFL=0.2: Vp=0.01co; ka =8: (a) pressure
profiles along the axial direction and (b) pressure contour plot.
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Figure 15. Radiation wave from a baffled piston: t =12, Vy =0.5¢p; ka = 8; nonlinear baffled piston:
(a) pressure profiles along the axial direction and (b) pressure contour plot.

boundary conditions are handled using the PML and acoustic radiation conditions of Tam and
Webb [23], Equations (16) and (18).

Next, we study the interference of the waves of three sources when the source is characterized
by low frequency (ka =2) and high frequency (ka =8).

3.2.1. Low frequency (ka=?2). In case of the low frequency, the source is characterized by the
directivity pattern without nulls and maxims; in other words, the radiated waves do not have a
preferred direction. With weak signals (e.g. Vo =0.01) the interference propagates largely along
the radial directions from the sources (see Figure 17(a) and (b)). As signals strengthen, the waves
dissipate quickly, and the maxima and minima follow the directivity pattern of the sources (see
Figure 17(c) and (d)).
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Figure 17. Radiated wave from array of the three baffled pistons: t =12; ka=2: (a) Vp=0.01,
d=2; (b) Vo=0.01, d=4.5; (c) Vo=0.5,d=2; and (d) Vy=0.5, d =4.5.

3.2.2. High frequency (ka =8). A high-frequency source is characterized by an efficiently radiated
wave in the direction of the axis of the piston. In this case, the interference between radiated waves
becomes more pronounced as the distance between pistons decreases. When the pistons are close
enough, the interference waves are very well defined, and their position and power depend on the
position of the source. This behavior is captured very well by our computation as can be seen in
Figure 18. In the case that the piston emits a strong signal, the shock wave appears very close to
the piston and waves dissipated rapidly (see Figure 19).

3.3. Reflection of a pulse on an oblique wall
A simple example appropriate for checking the performance of the cut-cell approach is the reflected
wave from an oblique wall, illustrated in Figure 20. Even though this problem can be solved by
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(bl

Figure 18. Radiated wave from array of the three baffled pistons: r =12; Vp=0.01; ka =8; distance
between the center of the piston (d): (a) 1.75; (b) 2.3; and (c) 3.75.

Figure 19. Radiated wave from array of the three baffled pistons: t =12; Vp=0.1; o =16; d =2.3.

placing the wall parallel to the grid line, we purposely arrange the wall so that it is at an oblique
angle to the grid line. This offers a direct evaluation of the cut-cell technique. In this example,
the sound hits the wall and reflects. The linearized Euler Equation (39) characterizes the problem.
The initial condition is

N2 N2
p(x,y>=exp{—1n<2)[(" bx") +(y by") “ (48)

where b = %. The values xg and yg are chosen so that the distance from the point (xg, yp) to the
oblique solid wall is equal to 1.5.

The outflow boundary condition is the same as that used in the previous linear test prob-
lem. The solid wall boundary conditions for pressure and velocity are given in Equation (31).
The computation is performed on a Cartesian grid that is characterized by Ax = Ay =0.05 and
CFL=0.5.

Figure 21 illustrates the solid boundary intersecting a Cartesian mesh. The boundary cell can
remain independent, like in ABCK, or it can merge with a neighboring cell. For example, CID
merges with KCIJ. The computation of a dependent variable, such as pressure, in the cut-cell

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
DOIL: 10.1002/fid



A FINITE VOLUME-BASED HIGH-ORDER, CARTESIAN CUT-CELL METHOD 1809

= Wall
{ eut cell) /

~a,

Ll Center of

L
&

i
|
A

z )

X

Figure 20. Schematic illustration of reflection of the pulse on an oblique wall.
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Figure 21. Reflection of the pulse on an oblique wall: cell around boundary.

EFGHI can be written from wave equation (39) in the form:
ap 1
P,

0t  SEFGHI (uepdyep +ujgdysx — uppdxip — upgdxrc — ugydxgu) =0 (49)

where the values of u* and u” represent the values of the functions u; and u; in the middle of
the segment. The value of the parameter is approximated using: (i) the OPC scheme on faces H I
and G H; (ii) fourth-order polynomial on faces DI and FG; and (iii) Equation (31) on face DF
(boundary).

To evaluate the performance of the cut-cell approach, Figure 22 shows the pressure history from
time = 0—4 and for three wall angles: 90°, 81°, and 63°. As we see from the figure, there is a good
agreement between these solutions. Figure 23 shows the pressure contours at three time instants
by placing the solid wall at a 63° inclination.
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Figure 23. Reflection of the pulse on an oblique wall, « =63°: (a) t =0.8; (b) t =1.6; and (c) t =3.2.

3.4. Wave generated by a baffled piston and reflected on an oblique wall

This problem is based on the combined characteristics of the previous two cases, and is an example
where the exact solution does not exist and the performance of the numerical techniques is assessed
based on grid refinement. The wave generated by a piston is reflected on an oblique wall. The
linearized Euler equations (Equation (39)) are used in this test case, and the initial condition is
the same as that of the baffled piston, Equation (40).

The rectangular domain over which we do the computation is similar to the previous case (see
Figure 24) with: (x, y) € [—6, 6] x [0, 15]. The bottom of the domain is a piston mounted on a
plane rigid baffle; hence the boundary conditions are given by Equation (41). The velocity and
pressure on the solid and open boundaries are identical to those used in the previous case.

The piston presents the same characteristics as the piston from the previous case: Vp=1 and
ka =2. The solution is obtained using the uniform grid Ax = Ay =0.05, and with a time step of
CFL =0.5. Figure 25 highlights the pressure contours at different time instants, especially with
regard to the pattern of the wave generated by the baffled piston, and influence of the wall.

3.5. Wave from a baffled piston around an elliptical solid object

The purpose of this case is to test the ability of cut-cell method. The computational domain (sound
field) is a square with domain (x, y) €[5, 5] x [0, 10] and a baffled piston with radius 0.5 is
mounted at the bottom side of the domain. In this problem, the low-amplitude signal condition is
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Figure 24. Wave generated by a baffled piston and reflects on an oblique wall:
general description of the domain.

Figure 25. Wave generated by a baffled piston and reflects on an oblique wall, & = 63°:
(a) t=1.5; (b) t=9.4; and (c) t =25.0.

assumed and the linear Euler equations are used. The CFL number is 0.5 in this case. Specifically,
a small solid ellipse is placed at the center of the domain for which the long axis is 0.5 and the
short axis is 0.25. The center of the ellipse is at (0., 0.), and the ellipse is inclined at an angle of
30°. The exact solution does not exist and the performance of the numerical techniques is assessed
based on grid refinement.

A grid refinement test is used to assess the convergence of the solution, which Figure 26 shows
the geometry and the pressure distribution at x =0 along the y-axis at t =10 based on different
grid resolutions. As the grid is refined, the solutions converge toward each other, demonstrating
that the cut-cell approach works satisfactorily in regard to yielding unique solutions.

3.6. Order of accuracy assessment via Richardson extrapolation

We study the accuracy of the solution for the wave generated by a baffled piston and reflected
by an oblique wall case. First, we determine the order of accuracy before the waves, generated
by the baffled piston, hit the wall. The solutions P(Ax), P(Ax/2), and P(Ax/4) are interpolated
to the common grid with grid spacing Ax /4, where Ax =0.1 and the CFL = 0.5, which determines
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Figure 26. Geometry and pressure distribution of different grid sizes of linear baffled piston with an
oblique ellipse: w =4, Vo =1.0, t =10: (a) geometry; (b) pressure contour; and (c) axial solution.
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Figure 27. (a) Numerical solution of wave originated from a baffled piston and reflected by an oblique
wall case with grid spacing Ax/4 and CFL-number of 0.5 at t =4.2 and (b) order of accuracy.

the time step. The order of accuracy will not be determined if P (Ax/4) = P (Ax/2) within round-off
error. From Figure 27, it appears that the order of accuracy is space dependent. The derived order
of accuracy is 4, but the order of accuracy in practice is much less. This is caused by the presence
of discontinuities in space and time between piston and wall. Shyy er al. [30] have considered
Navier—Stokes computations and demonstrated that for flows with large jumps in velocity profiles,
Richardson extrapolation is challenged. The various aspects of Richardson extrapolation in the
context of wave propagations will be discussed next.
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3.6.1. Impact of discontinuities. The piston has length 1 and piston € [—%, %]. Therefore, the

boundary condition in Equation (41) at y =0 has two discontinuities at x = —% and % Furthermore,
the initial condition on the piston is Vj, while the rest of the domain has initial condition 0. This
gives another discontinuity on the piston in the initial condition.

These discontinuities can be removed by replacing the boundary condition at y =0 by

uj(x,0,1)= Vo sin(wt)[§ cos(2mx) + 1] (50)

where the time-dependent sine term makes the initial condition continuous and the cosine term
makes the boundary condition at x = —% and % continuous.

The result of replacing the discontinuous boundary condition on the south boundary by a
continuous one is given in Figure 28. From this figure it appears that the order of accuracy has

LT L Y 4
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2

10
F
= 73 i |
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Figure 28. Order of accuracy of a wave originated from a baffled piston and reflected
by an oblique wall case at t =4.2.
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Figure 29. Order of accuracy of a wave originated from a baffled piston and reflected by an oblique wall
case: (a) t =8.4 and (b) r = 12.6—west boundary is an oblique wall.

improved. The magnitude of the order of accuracy is about 4, which is the derived order of
accuracy.

The white lines correspond with singularities in the order of accuracy. This is caused by the
phenomenon that the order of accuracy cannot be determined if P(Ax/4) = P(Ax/2) within
round-off error. This phenomenon is conform with Shyy and Garbey [31].

With this approach, substitution of Az in Equation (32), it has been checked that the order of
accuracy is CFL-number independent.

3.6.2. Impact of cut-cell method. In order to investigate the impact of the cut-cell method on the
order of accuracy, the impact of the outflow boundary condition should be eliminated. This can
be carried out implementing an oblique wall on the west boundary, with wall boundary conditions
(31). From Figure 29 it appears that the order of accuracy in the reflected wave decreases to about
3, less in some areas. Thus, it can be concluded that there is a slight negative impact on the order
of accuracy.

3.6.3. Richardson extrapolation for accuracy improvement. In order to investigate whether Richard-
son extrapolation can be an effective tool to improve the solution, two test cases will be investigated.
Richardson extrapolation is designed such that it cancels the leading truncation error term in Equa-
tion (33). However, there is an additional requirement for wave problems. The extrapolated solution
should give a smooth wave again.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1787-1818
DOI: 10.1002/fid



A FINITE VOLUME-BASED HIGH-ORDER, CARTESIAN CUT-CELL METHOD 1815

Order of accuracy
/
{
-__\—\
|
el

B e
T
I

o

10 125 25 315 5
(h) Y

Figure 30. Solution of a wave originated from a baffled piston and reflected by an oblique wall case,
along x =0 at t =4.2: (a) numerical solutions and extrapolated solution PE and (b) order of accuracy.

3.6.3.1. Baffled piston. Richardson extrapolation is applied to the problem before the waves hit
the wall. No extrapolation is needed where singularities appear, because then the solutions are
equal within round-off error. Extrapolation is only applied to points on the grid where the solutions
are converging, so where the order of accuracy is positive.

From Figure 30 it appears that the extrapolated solution does not satisfy the additional condition
of being a smooth wave. In the wavefront, the order of accuracy is very poor and unstructured,
which is caused by the discontinuity in the time derivative of the initial condition (50). Consis-
tent with the point made by Shyy er al. [30], this causes unsatisfactory results with Richardson
extrapolation.

3.6.3.2. Acoustic pulse. The second test case for investigating Richardson extrapolation is the
propagation of an acoustic pulse. The initial condition is given by Equation (48).

Richardson extrapolation has been applied with grid solutions P (Ax/2), P(Ax/4), and P(Ax/8).
From Figure 31, it appears that the extrapolated solution is smooth. By the construction of
Richardson extrapolation this is an improved solution. However, it cannot be determined how
many orders it has improved. The only thing known is that the leading truncation error term is
cancelled.

From the two test cases it can be concluded that Richardson extrapolation can be an effective
tool to improve the solution if the problem is smooth and does not contain large gradients or
discontinuities.
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Figure 31. Slices x =0 at r = 2: (a) finest grid solution and extrapolated solution and (b) order of accuracy.

4. SUMMARY AND CONCLUSION

A method based on a high order, finite-volume scheme aimed at optimizing the dispersion and
dissipation properties, and the cut-cell technique aimed at handling geometric variations, is pre-
sented. The approach is motivated by the need for handling acoustic problems with nonlinearities
(using finite volume technique) and complex geometries (using the cut-cell technique). The finite
volume-based OPC scheme and the Cartesian cut-cell approach are combined to offer the nom-
inal fourth-order accuracy and geometric flexibility. The computational overhead of the cut-cell
approach is modest because the following information needs to be computed only once, unless, of
course, if the geometry is time dependent:

e data communication between cells affected by the boundary treatment;
e calculation of area and other geometric information;
e interpolation procedures required for the flux computation in the boundary region.

Numerical computations of the baffled piston have been conducted with both linear and nonlinear
models. For nonlinear waves, depending on the flow parameters, the propagation, interference,
sharpening, and dissipation of the wave characteristics are well captured. For example, for the weak
signal case, since the dissipation is less important, we observe the pattern of interfering waves. For
a stronger signal, the shock wave appears close to the pistons, and experiences dissipation quickly.
Richardson extrapolation is used to evaluate the performance of the solution technique. It is shown
that discontinuities in space and time significantly influence the general order of accuracy of the
solution. The cut-cell method has a modest effect on the order of accuracy. It is also demonstrated
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that Richardson extrapolation can be successful in improving the solution only for problems that
do not contain high gradients or discontinuities.

Based on the evaluation of the test cases investigated, we conclude that the present approach

can be effective in treating aeroacoustics problems with irregular geometry.
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