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Abstract

A method for mapping known cylindrical magnetovac solutions to solutions
in torus coordinates is developed. Identification of the cylinder ends changes
topology from R' x S' to S! x S'. An analytic Einstein-Maxwell solution for
a toroidal magnetic field in tori is presented. The toroidal interior is matched to
an asymptotically flat vacuum exterior, connected by an Israel boundary layer.

PACS numbers: 04.20.Jb, 04.40.Dg, 04.40.Nr

1. Introduction

Magnetic fields can be found in many astrophysical configurations. Both poloidal and toroidal
fields can model the observed dipolar fields in magnetic white dwarfs [1]. The radius of a
nonrotating white dwarf can change significantly [2] when a magnetic field is frozen-in. The
equilibrium configuration of magnetized stars with both poloidal and toroidal magnetic fields
has been studied for some time [3]. It is known that toroidal B fields deform neutron stars and
it has been shown [4] this deformation acts as a source of gravitational radiation.

Because of the general interest in astrophysical magnetic fields, this work provides a
method for mapping known cylindrical magnetovac solutions to magnetovac solutions in
nested tori. The cylindrical solution used as an example has an axially symmetric magnetic
field which is mapped to tori with a toroidal magnetic field. The cylinder solution is unbounded
in distance from the cylinder axis. It is straight forward to map a portion of this solution to a
set of tori. If we conclude the map with an unbounded set of tori, nothing further is required.
But if the torus solution is matched to an exterior vacuum at a finite boundary, then the metric
and extrinsic curvatures, as well as the magnetic field must also satisfy boundary conditions.
The magnetic field requires a surface current density, which must reside in an Israel boundary
layer [6]. We construct such a layer between the magnetic tori and the exterior vacuum.

The new solution has four distinct regions. The innermost region is a singular loop. The
next region extends from the singularity to the vacuum boundary. This second region contains
a toroidal magnetic field in nested tori. At the vacuum boundary there is a third region of zero
thickness with a delta function current density supported by an Israel layer. The fourth region
is an asymptotically flat vacuum.
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The next section discusses the map from cylinders to tori and gives details of the
magnetovac cylinder solution. The cylinder solution has a singular z-axis. This is mapped to
a singular cylinder in torus coordinates. Section 3 gives a new solution for a toroidal magnetic
field in torus coordinates. It is shown that the Rainich conditions for an Einstein—-Maxwell
solution are satisfied. In section 4 the boundary and extrinsic curvatures are presented.
Section 5 treats the magnetic field junction conditions, the boundary current, and the stress—
energy content of the Israel layer. In section 6 the electromagnetic energy, Komar mass
and sectional curvature mass are computed. The sectional curvature mass definition has been
extended from spheres to include tori. We show that the magnetic energy subtracts quasilocally
from the sectional curvature mass. Section 7 presents the complete metric and its asymptotic
and inner regions. The vacuum region is asymptotically flat and can be compactified. We close
with asummary. Details are collected in four appendices: appendix A discusses Euclidean torus
coordinates. We use coordinates (7, o, 8); r labels successive tori and (o, 8) are coordinates
on a single torus [5]. Appendix B analyses geodesics in the plane surrounding the singular
region by examining timelike geodesics paths in an effective potential. Appendix C covers
torus null tetrad quantities. Appendix D lists electromagnetic field equations and the Rainich
conditions.

Conventions. Riemann and Ricci sign conventions are 24,41 = A, R* qp and Rog = RVgp,.
The metric signature is (+, —, —, —) and the field equations are G, = —87 T},,. We use units
suchthat G =c = 1.

Magnetic field terminology. In cylindrical or spherical coordinate systems, magnetic field B
has orthogonal roroidal and poloidal components. A component is toroidal if it is everywhere
orthogonal_to meridional planes through the cylinder axis or planes through the spherical
poles. If B has axial symmetry, toroidal field lines are circles about the cylinder axis or
spherical circles of longitude. A component lying totally in meridional planes is poloidal, and
is orthogonal to the toroidal component.

2. Cylinder to torus

A torus is the only compact, oriented, Euler number zero, two-dimensional surface. A cylinder
can be made into a torus by joining its ends.

The cylindrical 3-metric is d#? + 7> dg? + dz?, and this is mapped to torus coordinates as
dr?+r?dp?+%? do?. (Details of torus coordinates are given in appendix A.) Cylindrical # —
torus r, and cylindrical ¢ — torus B. For the cylinder ends, dz = fdw. Since —oo < z < 00
and 0 < o < 27, the cylinder is wrapped to a torus. This identification takes R! x S! to
S' x S'. The cylinder z-axis corresponds to % = ry+r cos B = 0. Because of torus topology,
flat metric dt> — (dr? + r2 dB? + %2 da?) is not the Minkowksi metric.

Cylinder solution. The cylindrical metric we consider (equation (22.11), m = 2, in Exact
Solutions [7]) is
g dx dx” = F4(F /bo)*(dt* — dF*) — F2(F /bg)* dp* — #*(bo/ F)* dz”, (1)
with F(7) = 1+ b(2)74. This solution satisfies the Einstein—Maxwell field equations and has an
axially symmetric magnetic field along the z-axis. The Kretschmann scalar is
by (3 + 12657 + 62637 — 108b5F!? + 63b§716)

FI2 8 :
Metric g has a singularity along the z-axis, # = 0, where the Kretschmann scalar becomes
infinite.

R Rypy = 64
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The Ricci tensor has components ¢, 7, ¢, z:

1
o bg -1
-1
The magnetic field is
by

BM dxt :4ﬁ d(D (3)
with electromagnetic invariants

1 Ly bg 1 v *

EFMVFI = 1672F4 EFM F/Lv:()

The metric and magnetic field can be mapped, locally, to a different metric and magnetic
field in a frame of nested tori. After the transform, the resulting metric is g'" given in
equation (4).

3. Torus solution

The toroidal magnetic metric is, with a map of cylinder coordinates {7, z, ¢} to torus
coordinates {r, o, 8}, and with R =rp+rcosfand F =1+ b%ﬁi“,

gl dx dx” = F20R*dr? — N (F 2 cos? B+ F Psin’ B)dr? — F R do?
+R(F2 = F HrcosBsinB2drdB — R (F2sin® B+ F 2 cos® B)r2dp® (4)
with volume element

rWF2)dr Adr Ada AdB. 5)

Note that if parameter pg is introduced by f — F/po in metric g'"", just as parameter by

appears in the cylinder metric, then the Ricci and Riemann tensors are multiplied by p3. The
limit py — O takes g'" to flatness (but not to the Minkowski metric).

The Kretschmann scalar for g' is Ryp,, R** ~ 1/R'2. The singularity of g®! is
mapped to a singular loop, i = 0, at the centre of the torus solution.

Killing symmetries are static 9, and axial d,. Constant time hypersurfaces for static g"*
have unit vector

o, =F 'R, (6)
In torus coordinates, the Ricci tensor has components (¢, 7, «, )
1
b} -1
R*, =162
v =16 oy 1 (7N

-1

Static metrics have the timelike Killing vector as an eigenvector of the Ricci tensor. For g'*
we find

bg
v 124
RM,80) = (169{2,(4) 84

with eigenvalue twice the magnetic energy density.



7458 E N Glass

The metric is expanded in a null basis, gfflf

appendix B). The only non-zero Ricci component is

) = 8HIRTIF . ®)

= lun, +n,l, —m,m, —m,m, (see

With Ricci tensor
Ry = =2®1 1 (Luny +nyly +myim, +i,m,) 9)
the Ricci ‘square’ is
RQRS = 4(‘1)11)285,
and with @, in equation (8) this becomes
B\
R™R,, = (329{;#) ) (10)

Equation (10) shows the Ricci ‘square’ satisfies Rainich condition (D.14b).
The vacuum limit, by — 0, is

g dt dx” = R dr® — 0t dr? — m 2 da® — P20 dp2. (11

g""V* has zero Ricci tensor and non-zero Riemann tensor. (R ROPIVY o ae = 192 / Ri2,

Electromagnetic field. The vector potential for the Maxwell field is

"
A dx! = bO?(sin,B dr +rcos BdB), (12)
with
ror_ g (T 1500500 _ 51500 13
/w_OFz[uv_uv]' (13)

There is no electric field since F,; has no time component and there is no current since

V,F*” = 0. The dual Maxwell field is

tor

Fr, =2bo[8*8") — 505(]. (14)
The local magnetic field B)" = F;, 7, which satisfies V,, B" = 0, is
by b2
B dx* = 4sz da, B\ By, = —16WOF4. (15)

The magnetic field lines are toroidal, i.e. Bl is everywhere orthogonal to meridional (r, 8)

planes through the & axis. The non-zero Maxwell null tetrad component is
é1 =iV 2bo) R 2. (16)

The relation ®,, = ¢,P; between the Ricci ®,;, and the Maxwell ¢, must be satisfied, and
such is the case for the solution given here. This is seen explicitly since ¢;@; = @ given in
equation (8). The Maxwell invariants are

1 ; i
I = 3P Fu = =(¢1 +67) = 1657 - a7

1
1" = SPEL =0,

The Weyl tensor vanishes on a particular torus. From equations (C.4) all Weyl components
are zero at W, = 1/bg, providing an effective ‘magnetic range’.
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4. Interior—exterior metric and extrinsic curvature

4.1. Boundary

One can match interior metric g'* to exterior metric g'"~Y*°. The boundary surface is located
at

r = r, = const.

The metric match is straight forward since g™~ V% is g'°" with by = 0. The second
junction condition requires extrinsic curvatures to match at r,. N* is the unit normal at
rp, NyN* = —1, N,dx* = N dr,

N = R2F (145290 sin> B0+ )+ 1], Nyae = R2. (18)
The extrinsic curvature, K, is the projected covariant derivative
K;OJ = Np:a J—ZJ—:’ (19)

where 1* , = g°, + N*N, projects into the boundary.

4.2. Interior

Atr =rp, K;flf withfR, =rg+r,cosBand F, =1+ bgfﬁ;‘, has components

2N, cos /3(1 + Sbgﬁﬁé)

Kz))r(f) == g%th ’ (2061)
Ko Npcos B(1 — 3b30}) 208)
@@ = RF b ’
o _ NerpWp (20¢)

Ny = R F p[1+ by sin® B(L+ £ ) (1+ Fg)]_l/z

Wy, = 3R, /1y — 210/, + IR BNy /1, + 210/ 1) — 264K (4 cos® B+ 9 cos B — S5ro/rp)
— (b +by°) 9, (109, /v, — 289, cos B sin® B — 3Ry /1y, — 210/ 1)
+2bSRE (SR, /1y — 14cos B sin® B).

Relevant g/, components are
gt((t)z(t) — m74F72’ gt(g?(ll) — _sz—z’
gt(fr)(ﬂ) = —r 2R *(F*sin® B +cos® B) .

tor :
The trace of K} is

Nb Wb
K = — 2cos B(1 +3b20%) — cos B(1 — 3b2NRY) + )
T [ (L 3080) = cos P = 30006) e o

2
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4.3. Exterior

K ;7" has components

tor—vac __ _ g tor—vac _ thl
Ko™ = =29 cos B, Koy = —cos B /%, )
Kzzr)zg)ac = rpMp (3N, — 2r9).
Relevant g . . components are
(@) —4 (o) (a0) 2 B)YB) —2gp—4
tor—vac = N7, gl(()xrf%ac = -0, Sior—vac = —F R

The trace of K, ™Y is

K = —L(cos B +3NR -2 23
=3 Ry /1 — 2ro/rp). (23)
I

5. Magnetic field match

With unit normal N, the magnetic field at the boundary requires

(Bror - N)b = (Bvac Nvac)lw (24)
This condition is satisfied since the normal components are zero on both sides of the boundary.
The tangential component must obey

(B x N)p = s, (25)
where J; is a surface current density. The jump in tangential component (non-zero to zero)
requires an Israel surface layer to support Js.

5.1. Israel layer

If the extrinsic curvatures do not match at the boundary, an Israel boundary layer is created. The
stress—energy content of the Israel layer is constructed from the mismatch in the curvatures.
The stress—energy of the boundary layer is [8]

-8 S =[K!] — [K]L",. (26)
Here K = K/, and [K] := K for _ ginterior denotes the jump of K (for any tensorial quantity
defined on both sides of the boundary). The non-zero components of the stress—energy are

S((;; S((g)) and S((g)) We find

1 N, W,
§SN = ———— | N2 3 (cos B +2 — 3% +
[ <z>] fﬁiFZ[ »Fp(cos B +2ro/1y b/7b) FTsin? B+ cost B
— Ny cos B(1 — 3b5§}i§)} (27a)
1 : Ny W,
SO = | R2F32cos B+ 3N, /1y — 2ro/1h) —
[ (a)] mZFi[ »F p( B b/t 0/7p) FTsme f+ oo B
— 2N, cos B(1 + 3bgm;j)] (27b)
cos B |
[S5] = 5[5 — Ny(1+9630)]. 27¢)

NIF3

When the magnetic field is set to zero, i.e. b3 — 0, all jumps vanish.
A graph of S((t’)) for weak magnetic field, with [ 12, ~ 1, is bell-shaped and peaked at
(B) = m (figure 1). With large magnetic field, F 7 ~ b¢%, the graph has two bell-shaped
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Figure 1. ro/r, = 10. Weak magnetic field with th ~ 1. Vertical scale adjusted to graph.
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Figure 2. Large magnetic field. sz ~ bg.‘)ti. Vertical scale adjusted to graph with by = 1.
peaks at (8) = /2, 37 /2 falling to zero at (8) = m (figure 2). The other components have
similar graphs. The stress—energy is peaked at the ‘top, 7/2’ and ‘bottom, 37 /2’ of a given
torus. Since magnetic energy subtracts quasilocally from mass energy, the stress—energy is
greater at top and bottom to maintain the torus shape. With no magnetic energy, the stress—

energy is a maximum at the innermost point, (8) = m, to balance mass attraction.
In the outer equatorial plane, with cos 8 = 1,

[S0] = B2 +ro/r) (ry — 4r0) + O (1), (284)
[S] = —263(1 + ro/rp)(ry — 2r0) + O (%), (28b)

[SU)] = —b2(1 +ro/rp) + O (). (28¢)



7462 E N Glass

100000 -

80000 -

60000

40000 -

20000 A

1 2 3 4 5 6

beta

Figure 3. J; versus (8). sz ~1,r9/rp = 1.1 Vertical scale adjusted to graph.

Poisson [8] expresses the complete energy—momentum tensor as

T/Av — @(Z)T:ﬁterior + @(_Z)Timerior + S(I)SM\;-

L

In this work 73" = 0 for g'™™¥* and Ty*"" = T\ for ¢'". © is the Heaviside step
function and §(/) is a Dirac distribution of shell width /. We have

T =0 — rb)T;ff +8(r —rp) Sy

The conservation equation for S*,, its covariant divergence, expresses the jump in Tli“’f
components at the boundary. To find the surface current density, we write the field tensor at
the boundary

I _ v
Finterior - @(}" - rh)Ftor )

where
4b
nv 12 13
For = <rER5F2) [S(r)az)ﬁ) - 8(/3)85)]'
V,F = 4mJ" = 8(r — rp) FX". With J, from equation (25) the current is

4 I8, = 8( )<—4b° >a (29)
T =6(r —r .
o P\rasrz)

Any one of the current lines is an « = const circle around the torus. Together, the circles form
a surface current on the bounding torus.

The graph of one of the current lines, J versus (8), is bell-shaped and peaked at (8) = .
For weak magnetic field, with /7 ~ 1, the shape is dominated by ?Rb_s ~ (ro/rp +cos B)7°
(see figure 3). The curve narrows and the peak rises as r, — rg, while the volume containing
the magnetic field shrinks, with a spike as the volume nears zero. With large magnetic field,
F i ~ bé NP, the current goes as 2)%,]_13. The curve shape is the same, with smaller magnitude.



Magnetovac cylinder to magnetovac torus 7463

6. Mass and energy

6.1. Magnetic energy

The electromagnetic energy follows from integrating the magnetic energy density, u, over
t = const hypersurfaces within 3-volume /—gd>x = rR>f > da dB dr:

u=—3B,B"
= 8% /(W FH).

The toroidal energy is

r p2mw / / 3

r'(ro +r' cos B) ,

/ 5 dgdr'.
0 [

Uor (1) = 2b} f
ro 1+ b3(ro + 1’ cos /3)4]

Termwise integration provides

2.3
Utor<r>=[ b 2}(r—ro)2+0(r—ro)3- (30)

(1+575)

6.2. Komar mass

The Komar superpotential, with Killing vector k%, is
Ut = —g(V*k' — V k"), 31

komar

For k* = 55) we find

giz Vv Vv . v v
U bﬁ?[r cos B(8(1() — 8 8(r)) — sin B(8(8(s) — 85(s))]-

komar

The Komar mass is expressed by

1 v
M(@,) = . yguﬁgm ds,,. (32)
The mass integral, for = const, r = const 2-surfaces with dS,,, = 2(¢ ,r, —t,r ) da dp, is

1 +3b3(ro + r cos ,3)4:| ap
1 + b3 (ro + r cos B)* '

Integrating termwise provides the toroidal quasi-local mass

327 b3
IR0 24 007, (33)
(1+55r5)

The mass expansion is finite since vacuum starts at r = ry,.

2
Mo (r) = 4r/ cos B [
0

Mo (r) = |:

6.3. Sectional curvature mass

Spherical fluids, with 2-metric 2(d®? + sin® #d¢?), have a well-defined sectional curvature
mass given by

_2msph(r) = r3RuupaﬁM¢vl§p¢)ga

where the Riemann tensor is weighted by 7> because of spherical geometry. The Reissner—
Nordstrom solution (Schwarzschild mass m, charge ¢) has sectional curvature mass

2mm(r) = 2my — q°/r. (34)

The electrostatic field energy due to charge ¢ has a negative quasilocal contribution.
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One can extend this notion to energy in tori. Vectors «” and B* span r = const tori
and are surface-forming, i.e. B'a*., — a”B*., = aa” + bp". We define the torus sectional
curvature mass as

~2mior(r) = [N Runpo G B'6" B 1 (p)=0 (35)
with the Riemann tensor weighted by 9i® because of the torus geometry in metric (4). Fixing
(B) = 0 selects R = rq + r for a given torus. We find

1-— b(z) (ro +r)*
[1+B62(ro +1?*]"
Parameter m( appears in the Riemann tensor when metric function [ is scaled by my.

We see that the magnetic energy has a negative contribution to m,, just as the Reissner—
Nordstrom electrostatic energy. In the vacuum limit, b(z, — 0, my; (r) = my.

(36)

Mo (r) = myo

7. Complete metric

tor tor—vac

Metrics g*°" and g combine to provide

tor
gloroidal — 8 fo<r S Tp (37)

glorvae, rp, <1 < 00.

7.1. Inner region

The inner torus boundary has coordinates cos § = —1 and r = ry, with metric functions i = 0
and / = 1. The toroidal metric goes as g'*" ~ R*(dr> — dr? — r2dB?) — (1/R)* do? and is
not well behaved. Since R*'R,,, = (32b(2)/5)i2F4)2 and Reg RBm ~ 1/%12 it is clear that

£'°" has a singularity at r = ry, cosf = —1, the it = 0 loop. This reflects the singular axis of
the original cylinder metric (1).

7.2. Asymptotic region

The vacuum region starts at r,. For large distances r > ry, and with |cos 8| ~ 1, metric

function R = rg+rcospB goash ~ r.

£'"" is matched to a vacuum solution

g dxt dx” = W (dr* — dr® — N0 da® — r?dp?).
Asymptotically, for |cos | > O,

gV~ (dr? — dr? — g O da® — r7 dB?). (38)
When () is near /2 or 3 /2 and cos B ~ € (near zero)

gV ~ et (dr? — dr? — ry bda? — r2dp?).

There are two directions which do not have a well-defined limiting metric: (8) = 7 /2, 37/2,
where the Gaussian curvature of the («, ) 2-surface is zero. This difficulty can be removed
by choosing different torus coordinates. Morse and Feshbach [10] use torus coordinates
with a hyperbolic radial coordinate. Present coordinates {r, ¢, 8}ior map to {t, ¢, n}mp. The
analogue of (B) is angle (n). The Gaussian curvature of (¢, n) 2-surfaces is

Kme = 1 — cosncosh
and for (n) = /2,37 /2, Kmr = 1.
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With r* as a conformal factor, g'°~¥% can be compactified and is asymptotically flat. In

the compactified diagram, the boundary of the singular cylinder curves from /™ to I™ while
the null surfaces of the tori extend to Z*. The spacetime of g'" is asymptotically flat and
foliated by nested tori.

8. Summary

We have developed a method for mapping known static cylindrical magnetovac solutions to
static solutions in torus coordinates. The cylinder topology has been changed from R! x S' to
torus S' x S! by identifying the top and bottom cylinder ends. An explicit example has been
presented with a toroidal magnetic field. The example satisfies Rainich conditions for valid
electrovac solutions.

The new solution has three parameters: ry specifies the torus geometry, b3 the magnetic
field and magnetic energy density and m is the sectional curvature mass parameter. The jump
in magnetic field is supported by a surface current density in an Israel layer at the vacuum
boundary. The solution has an asymptotically flat vacuum exterior, and an Einstein—Maxwell
interior with a singular loop at the centre. By extending sectional curvature mass to include
energy in tori, we have shown that the magnetic energy subtracts quasilocally from m .

There are other exact cylinder solutions, such as the Melvin metric, which have no singular
region but whose map to torus coordinates provide a more complicated magnetic field. These
will be studied in future work, which will also add rotation to these solutions.
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Appendix A. Torus coordinates in Euclidean 3-space

A torus can be generated by sweeping a circle, orthogonal to the x—y plane, about the z-axis.
In the x—y plane ry is the distance from the z-axis to the centre of the generating circle, and r
is the radius of the generating circle. For ranges 0 <r < 00,0 < o < 27,0 < B < 27, with
N=rop+rcosp,

x =MNcosa, y = Nsina, z =rsing. (A.1)
Cartesian and toroidal coordinates are related by
X2 +y? +722 =N +r%sin’ B.

The torus r = O lies in the z = 0 plane and has circular radius ry. Looking down the z-axis
(about which « has range 0 < o < 2m) at the torus, one sees the torus boundaries as two
concentric circles. The § = constant surfaces, 0 < 8 < 2, are spheres centred on the z-axis.
In the plane B = /2, x> + y* + 2% = r§ + 2.
The Euclidean metric dx? + dy? + dz? with coordinates (A.1) becomes

dr? + W2 do?® + r2dp>. (A.2)

The (o, B) 2-surface has Gaussian curvature
cos B

K= ——. (A.3)
r(ro +rcospf)
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The angle B ranges from O to 2w over the generating circle, while /C is negative, zero and
positive.

K <0 for w/2 <pB <3m/2
K=0 for B=m/2,37/2
K>0 for 0<pB <m/2, 3m/2<pB <2m.

The Euler—Poincaré characteristic is

2
X = / Kr(ro+rcosB)dg =0 (A.4)
0

corresponding to the torus (sphere with one handle).

Appendix B. Geodesics
To better understand the region surrounding the central singularity we examine the geodesic
flow. From metric g'"~¥* we have a Lagrangean for geodesic paths
L= 1O — 0 — R e — PR, (B.1)
where overdots denote d/ds. The geodesic equations follow from
d 9L oL
=0

— — = B.2
ds 9x¢  9x¢ (B.2)
Killing symmetries 9, and 9, yield first integrals
oL . oL
— = Ey = N, —=—Jy=-R"%
ot o
or
i = Eo/N*, & = JoR. (B.3)

For x* = (B), the timelike geodesic equation is
—r2RB + 2,203 (r sin B) B2 + 203 (r sin B) (4% — %) + N} (rsin B)a? = 0. (B.4)

If (8) = m then B = 0. Furthermore, if 8 = 0 and 8 = 0, then the orbit remains in the
(B) = = plane. (In order to examine the singular region, we choose (8) = m rather than

(B) = 0.) Again, from metric g'r—*

1 = Ej /R — Jg0? — 0t*i? — P04 B2
2 4 2 2 4.2 (BS)
1=Ej/(ro—r)" = J5(ro — r)* — (ro — r)*i*.

We follow the central force problem of classical mechanics, where Ey = %mi’2 + Ve (1),
and write > + Vg (r) = const. Thus, the timelike geodesic paths in the (8) = 7 plane can be

described by the effective potential
Veir(r) = 1/(r —ro)* + J5 [ (r = ro)* — E§ [ (r — ro)®. (B.6)

For Jo2 = Eé, the graph of V. has a hard negative core at r = ry. The graph increases
exponentially to positive values with a maximum at rp,x, and then falls to zero as 1/ 2. Foax 1S
a positive root of Jo2 r—ro)+2(r —ro)* — 4E§ = 0. At r = rpax there is a closed, unstable,
geodesic path around the singular region.

For JO2 = 0, the shape of the graph is the same, but the height of ry, is decreased.

oy 1/4

Fmax = ¥o + (ZEO) .

For large angular momentum, JO2 > Eg, the graph has no negative values (see figure 4).
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Figure 4. Vi with rg = 0, JOZ = Eé =1.

Appendix C. Torus null tetrad quantities

The metric, g'% = I,n, +n,l, — m,m, —m,m, with R = ro+rcosB and F = 1+ bIR*,

v
has the null basis

1, dx* = %(mz dr — R do),

\/_
I r a2 m—1
et = SO A+ oo,

N>
m,, dx* = —E[(F cos B +iF 'sinB)dr — (F sinB —iF ~'cos B)rdpl,

2
i, dx" = —%[(F cos B —iF “'sinB)dr — (F sin B +iF ~'cos B)r dB].

The spin coefficients are

3
22 W
V=—K
1 1 24
ﬂzz—ﬁ W (1+9b05)t)
T=—T
1/ 1 y
B =—c.

(C.1a)

(C.1b)

(C.1¢c)

(C.1d)

(C.2a)
(C.2b)
(C.2¢)
(C.2d)
(C.2¢)
(C21)

(C.2g)
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m, and m, are null geodesics, since m,.,m" = (B — @)m,. The only non-zero Ricci
component is
by

Py = SW. (C.3)
The Weyl tensor null tetrad components are

Wy = — 3 (1 — byt (C.4a)

0= T\ e o '
U =¥;=0 (C.4D)
1 2004 2004

v, = — (W) (1 — bgR*) (1 +9p51*) (C.4c)

W, =Y (C4d)
which correspond to Petrov type 1.

The quadratic Ricci and Weyl invariants are
RMR,, = (3263 /R2F*)’, (C.5q)
192 (1 —BZR*) (1 + 6b3R* + 21HgR3
Caﬁ/l«vcaﬂﬂv = — ( 0 )( 5= 0 : 0 ) (C5b)
RIZp4 (1+6b5R* + byNR®)

Appendix D. Relativistic electromagnetic field

The Maxwell field is represented by skew tensor F),,,, with dual field F :U = %«/ —g&uapl’ ap
The symmetric energy—momentum is

1 o 1 «,
Tuv = 4 (FWFU + 28w FupF f’) . (D.1)
In a local Lorentz frame, the energy density is
Too = —(E? + B?) /8. (D.2)

The Einstein field equations provide the trace-free Ricci tensor
Ry = — (FuoFY + 18,0 Fup F*P) . (D.3)

For static systems there exists a hypersurface orthogonal timelike Killing vector £#9,, = 9;.
The constant time hypersurfaces form a family of Lorentz frames with unit normal ¥ =
£V/(£,E")1/2. Local electric and magnetic fields are defined by

E, = F,i" = (0, E), B, = F},i" = (0, —B). (D.4)
Maxwell’s static equations are
V. E = 4mp, VxE=0, V.B=0, VxB=dr]. (D.5)
The field invariants are

I := 1F,,F* = B> - E?, L= jF"FY = —2E,B". (D.6)
The Maxwell components on an anti-self dual bivector basis are

TF™ +iF*) = goUM — ¢y M™ + o V. (D.7)
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The field invariants are
I +il, = 4(¢og2 — ¢7).

There are three necessary and sufficient Rainich conditions [11] for 7},, to be an electrovac
energy—momentum tensor.

(1) T,,, (and Ricci) must be trace-free.
gle;w = gle;w =0. (D.8)

(2) The ‘square’ of T}, is a positive multiple of the unit tensor.
TITY = (I} + I5)5" (D.9a)
orRYRY = 1(Rag R*P)81. (D.9b)

(3) Since the electromagnetic energy—momentum density, 7Ty, iS negative in a local
Minkowski frame, it is necessary for any timelike vector ## that

Tt < 0. (D.10)
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