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Abstract
We investigate the near-continuum asymptotics of mean first passage times in
some one-variable birth–death processes. The particular problem we address is
how to extract mean first passage times in the near-continuum limit from their
defining finite-difference equations alone. For the simple class of processes
we consider here, exact closed-form solutions for the mean first passage time
between any two states are available and the near-continuum expansion of these
formulae defines the correct limiting behaviour and is used to check the results
of asymptotic analysis of the difference equations. We find that in some cases
the asymptotic approach does not lead unequivocally to the proper result.

1. Introduction

The theoretical transition from discrete to continuous dynamical descriptions of particle
systems is a classical problem of continuing—even increasing—interest in view of current
developments in materials scence, biology and nanotechnology. Among the fundamental
phenomena of importance is the emergence of long ‘macroscopic’ timescales from an ensemble
of particles evolving on relatively fast ‘microscopic’ timescales. Relaxation rates and mean
first passage times are familiar examples of such quantities [1] that enter into the next level of
modelling of the bulk kinetics, often in terms of deterministic rate equations. These quantities
are of interest in other contexts as well, for example in population biology and epidemiology
where the evolution of a large collection of individuals or, say, an infection within the group, is
often more easily studied by modelling the population as a continuum.

These issues have a long history in physics, chemistry and biology. For example Van
Kampen [2] introduced the 1/� expansion to recover some aspects of the dynamics and
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associated fluctuations of models expressed in terms of master equations (continuous-time
discrete state space Markov processes), in particular birth–death processes with a focus on
chemical reactions. The product of that analysis is a Markov diffusion process (continuous
time, continuous state space) characterized by a Fokker–Planck equation or, equivalently,
a related stochastic differential equation that provides more detail than purely deterministic
‘mean field’ rate equations that neglect effects due to the underlying discreteness. Such
analysis produces a reduced description of local relaxation toward, and fluctuations around,
deterministically stable states. It can be modified to capture more global qualitative features
like relative stability and extinction [3].

More recently it has been recognized that some quantitative features of the dynamics of
microscopically discrete systems are incorrectly captured by the most straightforward quasi-
continuum modelling via Markov diffusion process. One of the earliest examples in the physics
literature was the analysis of transitions in discrete bistable systems by Hänggi et al [4], who
observed that in the large-N (particle number) limit the ‘effective potential’ governing the
exponentially large mean transition times is not the mean-field potential derived from the rate
equations. On the other hand, the mean-field potential consistent with the rate equations is the
one that governs the Fokker–Planck description. This reveals an irreconcilable discrepancy
between the limiting behaviour of the timescale and the timescale predicted by the near-
continuum limiting description. Even more recently, a subset of the present authors made a
direct comparison of the asymptotic large-N expansion of the exact mean extinction time in
a class of birth–death processes, explicitly displaying the discrepancy when the timescale is
exponentially large [5].

In this paper we investigate the near-continuum asymptotics of mean first passage times
in a class of discrete state space Markov processes, namely one-variable birth–death processes.
The particular question we address is of how to extract relevant ‘macroscopic’ timescales in
the near-continuum (large-N) limit from the dynamical description alone. For the simple class
of processes that we consider here, exact—albeit complicated—closed-form solutions for the
mean first passage time between any two states are available and the asymptotic expansion
of these formulae defines the correct limiting behaviour. In more general cases, however,
no such exact solutions are known and the analysis must proceed from the finite-difference
equation for the mean first passage time derived from the defining master equation. Hence we
develop the analysis for some simple one-dimensional problems using the exact solutions only
as benchmarks for checking the assumptions a posteriori. Our fundamental observations are
twofold: for some models familiar methods, namely asymptotic expansions and matching, may
be employed to derive the proper large-N behaviour of mean first passage times in a relatively
routine manner. But these methods applied to other models, including deterministically bistable
systems, may be ambiguous in the sense that, while the ‘correct’ solution can be recovered, the
analysis does not clearly lead to it as a unique prediction.

The asymptotic methods we use are familiar from the theory of large deviations for discrete
state space Markov processes. These methods, in particular a WKB-like ansatz, are similar
to those employed in large-deviation analysis for Markov diffusion processes described by
Fokker–Planck equations. We work directly with the discrete state space processes, however,
because the usual Fokker–Planck equations (and related stochastic differential equations)
obtained by truncating Kramer–Moyal expansions of master equations do not always accurately
describe the rare events associated with large deviations [6]. The basic problem that we
encounter here is connected with the fact that there are not unique critical points for the
functionals describing the paths of extremal probability, and the paths contributing most
significantly to the mean first passage times between two points need not be the most probable
trajectory connecting those two points. Also, as discussed further in the concluding section,
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this problem is not limited to discrete state space systems: it can appear as well in the
asymptotic analysis of mean first passage times for diffusion processes defined by Fokker–
Planck equations.

The rest of this paper is organized as follows. In section 2 we illustrate these ideas for
systems with one deterministically stable non-zero state but subject to extinction, i.e. with an
absorbing state at zero population. In this case, the asymptotic analysis of the finite-difference
equation is straightforward and is easily confirmed with the expansion of the exact solution. In
section 3 we consider a deterministically bistable system. We first present the correct large-
N behaviour of the mean first passage time from an arbitrary initial state to one or the other
of the ‘equilibrium’ states by expanding the exact solution. Then we perform the asymptotic
analysis of the difference equation finding that there is apparently not enough information on
hand to uniquely select between the possible approximate solutions that may be constructed.
The concluding discussion summarizes the results and remarks on the outlook for the resolution
of this problem.

2. Discrete SIS epidemics model as a birth–death process

In this section we study a class of models that posess a unique deterministically stable steady
state but are also subject to extinction, a rare event that does not occur in the continuum limit
(i.e. for the population scale N → ∞). We approach the near-continuum large-N approximate
formula for the mean extinction time first via appropriate expansion of the exact formula, and
then by asymptotic analysis of the finite-difference equation. We begin with a specific example
that sets the stage and illustrates the role of the population scale N .

Consider the susceptible-infected-susceptible (SIS) model of epidemiology [7]. A
population of size N within which n individuals suffer from an infection and the rest, N − n,
are susceptible. Suppose the infection rate per contact is �/N and the recovery rate is unity
(to fix the unit of time). A recovered individual immediately becomes susceptible. One can
formulate this system as a birth–death process:

λn n → n + 1,

μn n → n − 1,
(1)

with rates
λn = �n(1 − n/N),

μn = n.
(2)

We consider the case � > 1, where there is a single stable equilibrium state ne = N(1 − 1/�)

with λne = μne . The results of the following sections apply both to this specific model and
others that share these structural features.

2.1. Exact solutions for the mean extinction time

Since λ0 = μ0 = 0, we have an absorbing state at n = 0. Although the state of the system
is most likely to be found near the stable equilibrium, there is finite probability of so-called
extinction (absorbtion to the zero state) of the disease (everyone is recovered).

We are interested in the mean extinction time τn from any state n. Also we will find large
system size asymptotics of mean extinction time. Since we have a unique stable equilibrium,
the mean extinction time will be an exponentially large quantity in N . We will try to find the
exponent bypassing the exact solution. This technique can be crucial in the absence of exact
solutions, e.g. in multi-dimensional systems or even one-dimensional ones with more complex
structure than single-step jumps.
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Φ(n/N)

ne n

Figure 1. Effective potential for the SIS and related
models. The birth and death rates are equal at ne.
Extinction corresponds to n = 0, an absorbing state.

The mean extinction time τn satisfies the backward inhomogeneous equation

−1 = λnτn+1 − (λn + μn)τn + μnτn−1 (3)

with boundary conditions τ0 = 0 and τr − τr−1 = 1
μr

for some large, reflecting state r . The
contributions from this reflection in the asymptotics below will be negligible. The equation
above can be solved exactly (see, e.g., [5]):

τn =
n∑

m=1

[
1

μm
+

m−1∏

i=1

1

ρi

r∑

j=m+1

1

μ j

j−1∏

k=1

ρk

]
(4)

where we have introduced the ratio of the rates ρi = λi/μi .

2.2. Large system size asymptotics from the exact solution

Before stating the results of asymptotics of the sums above, we assume that both λ and μ

involve N in a special way:

λn = N λ̄(x),

μn = Nμ̄(x),
(5)

where x = n/N and λ̄, μ̄ are smooth functions of x .
We also define ρn = ρ̄(n/N), where ρ̄(x) is a bounded, smooth, and non-negative function

and the ‘effective potential’

�(x) = −
∫ x

0
log ρ̄(ξ) dξ (6)

which, for � > 1, is a smooth function passing through the origin with a quadratic minimum
at xe = ne/N ; see figure 1.

The large system size expansion is [5]:

τn = (
1 − e−n log ρ̄(0)

)
√

2π

λ̄(xe)μ̄(xe)�′′(xe)

√
ρ̄(0)

ρ̄(0) − 1

e−N�(xe)

√
N

× (1 + O(1/N)) , (7)

where the first factor is important in the boundary layer of thickness O(1) in n (O(1/N) in
x = n/N). Figure 2 shows the behaviour of the leading-order exponent Vn = 1

N log τn . It is
constant, i.e. does not depend on n, except in the boundary layer.

2.3. Large system size asymptotics using exponential ansatz

In this example we had the exact solution (4) available. For more general problems, in particular
higher-dimensional ones, there might not be a closed form for the mean extinction time. In
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Figure 2. The leading-order exponent Vn = 1
N log τn does not depend on n, except in the boundary

layer.

these cases, we can bypass the exact solution by putting the WKB-type exponential ansatz
τn = σneN Vn with Vn > 0 into (3). The motivation for this is the fact that extinction is
a rare event with exponentially small likelihood, hence the mean extinction time has to be
exponentially large in N .

With this ansatz, (3) becomes

−1 = λn(e
N Vn+1σn+1 − eN Vn σn) + μn(e

N Vn−1σn−1 − eN Vn σn). (8)

Rewrite the above equation in the form

−e−N Vn = λn(e
N�Vn+1σn+1 − σn) + μn(e

−N�Vn σn−1 − σn), (9)

where �Vn = Vn − Vn−1 = O(1/N), assuming smooth behaviour of the exponent Vn.
The left-hand side of (9) is exponentially small in N , hence the right-hand side vanishes

up to the order O(1/N):

0 = λn(e
N�Vn+1σn+1 − σn) − μne−N�Vn (eN�Vn σn − σn−1), (10)

which implies, up to the order O(1/N),

0 = (λn − μne−N�Vn )(eN�Vn σn − σn−1). (11)

For n = O(N), expand σn in the powers of N , assuming the leading order is Nα (with the
exponent α to be found later): σn = Nασ 0

n + Nα−1σ 1
n + O(Nα−2).

Equation (11) leads us to two possibilities for �Vn (one or the other factor must vanish):

�Vn = 0 (12)

or

�Vn = 1

N
ln

μn

λn
. (13)

The mean-field quadratic potential and associated rate equation dynamics suggests that, no
matter where we start, the system quickly approaches the equilibrium and stays there before
becoming extinct due to rare fluctuations. Hence the exponent in the mean extinction time
should not depend on the starting position n and this suggests that we pick the first branch for
all n. This selection does constitute a choice rather than a strict deduction, but the physical
argument is reasonably compelling in this case. As will be seen in section 3, however, the
selection process is much more subtle for the bistable system.

Now �Vn = 0 or Vn = C , and (9) becomes

λn(σn+1 − σn) + μn(σn−1 − σn) = −e−NC ∼ 0 as N → ∞. (14)

Using the expansion of σn , we will arrive at the leading order 0 = (λn − μn)(σ
0
n+1 − σ 0

n ),
implying σ 0

n = C1 = const. C1 is non-vanishing in general, which is incompatible with the
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boundary condition τ0 = 0. To get rid of this incompatibility, we need to consider the boundary
layer n = O(1).

We can now solve 0 = λn(σn+1 − σn) + μn(σn−1 − σn) to get

σ inner
n = C2

n∑

m=1

m−1∏

k=1

1

ρk
(15)

for some constant C2 and n � 2, while σ inner
1 = C2 and the ‘empty’ product (for m = 1) is

taken to be equal to 1, here and further in this paper.
Next, the matching σ inner

n→∞ = NαC1 leads to the relation between two constants C1 and C2:

C2

∞∑

m=1

m−1∏

k=1

1

ρk
= NαC1. (16)

In order to find one of the constants, let us get back to the equation for mean extinction
time (3). We will multiply both sides by the ‘discrete integrating factor’ βk (to be determined
below) and sum over k = 1 to r − 1:

−
r−1∑

k=1

βk =
r−1∑

k=1

βk(λk(τk+1 − τk) + μk(τk−1 − τk)). (17)

In order to get cancellations in the right-hand side, we require βkλk = γk+1 and βkμk = γk .
This leads to β1 = 1 and βk = μ1

μk

∏k−1
i=1 ρi , up to a constant, non-important factor.

Now (17) becomes, using the boundary conditions,

−
r−1∑

k=1

βk =
r−1∑

k=1

γk+1(τk+1 − τk) − γk(τk − τk−1) = βr − μ1τ1 (18)

or, sending βr to the left-hand side and dividing through by −μ1,
r∑

k=1

1

μk

k−1∏

i=1

ρi = τ1 = σ inner
1 eNC = C2eNC = NαC1eNC

∑∞
m=1

∏m−1
k=1

1
ρk

. (19)

Rewrite the above equation

NαC1eNC =
(

r∑

k=1

1

μk

k−1∏

i=1

ρi

) ∞∑

m=1

m−1∏

k=1

1

ρk
. (20)

Using Riemann sum approximation, as well as Gaussian approximation on exponential
integrals, we get

r∑

k=1

1

μk

k−1∏

i=1

ρi =
r∑

k=1

1

μk

1√
ρ̄(0)ρ̄(k/N)

e−N�(k/N) × (1 + O(1/N))

=
∫ r/N

0+

dz√
ρ̄(0)ρ̄(z)μ̄(z)

e−N�(z) × (1 + O(1/N))

= 1√
ρ̄(0)ρ̄(xe)μ̄(xe)

√
2π

N�′′(xe)
e−N�(xe) × (1 + O(1/N)) (21)

and
∞∑

m=1

m−1∏

k=1

1

ρk
=

∞∑

m=1

√
ρ̄(0)ρ̄(m/N)eN�(m/N) × (1 + O(1/N))

= ρ̄(0)

ρ̄(0) − 1
× (1 + O(1/N)). (22)
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In the last step we used n = O(N), �′(0) = − ln ρ̄(0) < 0, �(0) = 0 and the smoothness of
ρ̄ to compute the geometric sum after expanding �(m/N) around 0.

Finally, plug (21) and (22) into (20) to get

NαC1eNC =
√

2π

�′′(xe)λ̄(xe)μ̄(xe)

√
ρ̄(0)

ρ̄(0) − 1

e−N�(xe)

√
N

× (1 + O(1/N)) (23)

for n = O(N). The left-hand side is the mean extinction time,

τn = σneN Vn ∼ NαC1eNC , (24)

so we deduce asymptotic formulae for the exponent Vn = C and the prefactor σn = NαC1:

C = −�(xe) > 0 (25)

and

NαC1 =
√

2π

�′′(xe)λ̄(xe)μ̄(xe)

√
ρ̄(0)

ρ̄(0) − 1
× 1√

N
. (26)

This also fixes α = −1/2.
In order to get a complete agreement with the asymptotics (7) of the exact solution,

notice that, for n = O(1), the geometric sum in (22) is cut at n, resulting in an extra factor
1 − en�′(0) = 1 − e−n log ρ̄(0). The upshot is that we see that the analysis proceeding from the
difference equation alone is capable of recovering the exact asymptotic behaviour bypassing
the exact formula.

3. Discrete Schlögl model as a birth–death process

In this section we extend the analyses to birth–death processes describing deterministically
bistable systems. Now there are three values of the population n where the birth and death rates
coincide: two corresponding to deterministically stable steady states and one intermediate point
corresponding to an unstable steady state. Again we begin by presenting a specific example,
followed by a near-continuum expansion of the exact expression for the mean first passage time
between any two points. We then turn to the asymptotic analysis of the mean first passage time
finite-difference equation, in this case finding that this approach does not uniquely produce the
correct result.

Consider the following chemical reaction, introduced by Schlögl [8] as a catalysis model:

2X + A
k1�
k2

3X

X
k3�
k4

B.

(27)

Let n be the number of particles X . Then, keeping the concentrations of A and B fixed and of
the order of the system volume N , we are interested in the evolution of n. ki are the rates of the
corresponding reactions in (27).

The reaction (27) also can be rewritten as a birth–death process with the following rates:

λn n → n + 1,

μn n → n − 1.
(28)

Here the birth and death rates are, correspondingly,

λn = k1

N
n(n − 1) + k4 N and μn = k2

N2
n(n − 1)(n − 2) + k3n. (29)

7
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Notice that, without loss of generality, we absorbed the concentrations of particles A and B
into the system volume N .

For a particular choice of parameters, there are two stable equilibrium values n1, n2, and
an unstable one, n3. For these states, λni = μni , i = 1, 2, 3.

3.1. Exact solutions of mean first passage times

In this bistable system, the question of relative stability arises—namely, which stable
equilibrium state is ‘more’ stable: that is, if we take a ‘snapshot’ of the system at any particular
time, near which of the stable equilibria it is more likely to be found.

The relative stability question can be answered by comparing the mean first passage times
from n1 to n2 and vice versa. Without loss of generality, we analyse the first passage to the first
equilibrium, n1. Denote by τn the mean first passage time from a state n to n1.

As before, τn solves the equation

−1 = λnτn+1 − (λn + μn)τn + μnτn−1 (30)

with modified rates λn1 = μn1 = 0 and the boundary conditions τn1 = 0, τr − τr−1 = 1
μr

.
Eventually, we will take r to be very large, and the contributions from this reflection will
vanish.

The solution of (30) is

τn =
n1∑

m=n+1

[
1

λ0

m−1∏

k=1

1

ρk
+

m−1∑

i=2

1

μi

m−1∏

k=i

1

ρk

]
(31)

for n < n1, and

τn =
n∑

m=n1+1

[
1

μm
+

m−1∏

i=1

1

ρi

r∑

j=m+1

1

μ j

j−1∏

k=1

ρk

]
(32)

for n > n1.

3.2. Large system size asymptotics from the exact solution

As in the previous section, we will introduce the potential function (6), which in this case is
a double-well function with quadratic extrema at xi = ni/N , for i = 1, 2, 3, the only three
solutions of λ̄(x) = μ̄(x). The asymptotic N → ∞ behaviour of the exact solutions (31)
and (32) is derived using standard techniques [2, 5, 9]:

τn ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ n1/N

n/N

ρ̄(ξ)

μ̄(ξ) log ρ̄(ξ)
dξ × (1 + O(1/N))

for n ∈ [0, n1]
( π

2 )
3
2

√
λ̄′(n1/N)μ̄′(n1/N)�′′(n1/N)

√
N + O(log N )

for n ∈ [n1, ns ]
1

λ̄(n2/N)

√
2π

�′′(n2/N)

√
ρ̄(n/N)

e−�′(n/N) − 1

eN(�(n/N)−�(n2/N))

√
N

× (1 + O(1/N))

for n ∈ [ns, n3]
2π

λ̄(n2/N)|�′′(n2/N)�′′(n3/N)|
eN(�(n3/N)−�(n2/N))

N
× (1 + O(1/N))

for n ∈ [n3, r ].

(33)

8
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Here ns is, if any, the point in the first well characterized by �(ns/N) = �(n2/N) (if the
second well is deeper than the first one, we take ns = n1 and are left with three regions only).

The leading order of the exponent Vn = 1
N log τn is not constant anymore—there is a layer

[ns, n3], non-dependent on N , where Vn is not constant; see figure 4.

3.3. Large system size asymptotics using exponential ansatz

As can be seen from (33), the mean first passage time is exponential in the last two regions.
Hence, similar to the SIS case, we would like to find the correct exponents and the prefactors
from an ansatz

τn = σneN Vn (34)

with Vn > 0.
Plugging the exponential ansatz into the equation for the mean first passage time (3), we

arrive again at the two possibilities

�Vn = 0 (35)

or

�Vn = 1

N
ln

μn

λn
. (36)

The selection here is not as trivial as in the SIS case. As can be seen from the exact
solutions’ asymptotics (33), for n ∈ [ns, n3] we need to pick

�Vn = 1

N
ln

μn

λn
(37)

in order to get a non-constant exponent that varies with n. This is not really satisfactory,
since the main reason for using the exponential ansatz (34) was to avoid the exact solution.
In section 4 we will discuss this ambiguity problem in more detail.

Let us rewrite (10) one order further than in (11):

0 = (λn − μne−N�Vn )(eN�Vn σn − σn−1) + [λn(e
N�Vn+1σn+1 − σn) − λn(e

N�Vn σn − σn−1)].
(38)

The first summand vanishes because of the chosen �Vn, hence the second summand in
square brackets vanishes too. This implies that eN�Vn σn − σn−1 = C = const.

Again, expand σn in the powers of N : σn = Nασ 0
n + Nα−1σ 1

n + O(Nα−2). Then the
equation for the leading order is

σ 0
n = N−αC

eN�Vn − 1
= N−αC

μn

λn
− 1

. (39)

The exponent is

Vn = D +
n∑

m=ns+1

�Vm = D + 1

N

n∑

m=ns+1

ln
μm

λm
(40)

with a constant D = Vns to be found. Now the leading order for the mean first passage time τn

is

N−αC
μn

λn
− 1

exp

(
N D +

n∑

m=ns +1

ln
μm

λm

)
= N−αC

μn

λn
− 1

√
ρn

ρns

eN D+N(�(n/N)−�(n3/N)). (41)

9
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In order to find the constants C and D, we multiply both sides by the ‘discrete integrating
factor’ βk and sum over k = ns + 1 to r − 1:

−
r−1∑

k=ns +1

βk =
r−1∑

k=ns +1

βk(λk(τk+1 − τk) + μk(τk−1 − τk)). (42)

To get cancellations in the right-hand side, we require βkλk = γk+1 and βkμk = γk . This leads
to βns+1 = 1 and βk = μns+1

μk

∏k−1
i=ns+1 ρi , up to a constant, non-important factor.

With the chosen βk , (42) becomes

−
r−1∑

k=ns +1

βk = βr − μns+1(τns+1 − τns ) (43)

or

−
r∑

k=ns +1

βk = −μns+1eN Vns (σns+1eN�Vns +1 − σns ). (44)

Plugging in the expressions for βk , as well as for the leading-order prefactor (39) and the
exponent (40), we get

−
r∑

k=ns +1

μns+1

μk

k−1∏

i=ns

ρi = −μns+1eN D N−αC. (45)

The asymptotics of the left-hand side

−
r∑

k=ns +1

μns+1

μk

k−1∏

i=ns

ρi = −μns+1

μk

r∑

k=ns +1

√
ρns

ρ̄(k/N)
eN�(ns/N)−N�(k/N) × (1 + O(1/N))

(46)

= −μns+1
√

ρns

∫ r/N

ns/N

dz√
ρ̄(z)μ̄(z)

eN�(ns/N)−N�(z) × (1 + O(1/N)) (47)

= −μns+1
√

ρns

μn2

√
ρn2

√
2π

N�′′(n2/N)
× (1 + O(1/N)) (48)

leads to the expressions for the constants (note that μn2 = λn2 )

C =
√

ρns

λn2

√
2π

�′′(n2/N)
, α = 1/2 and D = 0. (49)

Plugging the values of C and D into the mean first passage time leading order (41), we get

1

λn2

√
2π

N�′′(n2/N)

√
ρn

μn

λn
− 1

eN(�(n/N)−�(n2/N)) (50)

which coincides with the asymptotics (33) of the exact solution.
Similarly, for the last region n ∈ [n3, r ] we pick the other increment �Vn = 0, which will

lead to a constant prefactor and a constant exponent (see the calculations for the SIS case) that
coincide with the exact solution’s asymptotics (33).

10
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0

Φ(n/N)

n1 ns n3 n2 n

Figure 3. Effective potential for a deterministically bistable system. The state at n = 0 is reflecting
in the case of interest here.

0
0

n1 ns

Vn

n3 n2 n

Figure 4. The leading-order exponent Vn = 1
N log τn depends on n. It vanishes for n � ns and is

a constant for n � n3. The variation between ns and n3 is not a boundary layer, i.e. its thickness is
O(N) as N → ∞.

4. Discussion

We have studied two classes of birth–death models defined by one-step Markov jump processes,
the SIS model from epidemiology and the Schlögl model from chemical kinetics. For these
benchmark models, near-continuum (large system size) asymptotics of certain rare events’
mean waiting times are found exactly as well as using large deviation techniques, namely a
WKB-type exponential ansatz. For non-single step processes, as well as multi-dimensional
models, the exact solutions may not be available, highlighting the importance of the WKB
method that bypasses the exact solution.

The mean-field potential for the first (SIS) model is a quadratic function, while the second
(Schlögl model) example displays a double-well potential. In the SIS model, the mean first
passage time from initial state n to the extinct 0-state, asymptotically proportional to eN Vn ,
has a constant (as regards n) exponent Vn in the large-N asymptotic limit [10]. On the other
hand, in the Schlögl model, the mean first passage time to one of the deterministically stable
states (say, n1) has interesting behaviour as a function of n. It is exponentially large in N
if there is a potential maximum to overcome, namely from the region [n3,+∞) in figure 3,
but it is also exponentially large in the region [ns, n3] even though there is a deterministic
path ‘downhill’ from n ∈ [ns, n3] to n1. Such a deterministic path connecting the initial
and final states usually coincides with the most probable path connecting these states. We
find in this case, however, that it does not coincide with the path that contributes most to
the mean first passage time. The direct deterministic path adds nothing to the exponent of
the mean first passage time asymptotics, while a trajectory that first goes to the second well
(with probability exponent N(�(n/N)−�(n3/N))) makes an exponentially large contribution
(with exponent N(�(n3/N) − �(n2/N))) which results in the correct, positive exponent
N(�(n/N) − �(n2/N)).

The exact solution’s asymptotic expansion (33) reveals this fact, but the method that uses
the exponential ansatz has an ambiguity built into it: it is not obvious a priori how to pick

11
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the correct branch of �Vn . The various branches evidently correspond to critical points of
the relevant large-deviation functional (the ‘action’) but, unlike the problem of determining the
most probable path connecting two states, there is no discernable selection criteria for mean
first passage times analogous to the‘minimum action’ principle. Indeed, it has generally been
assumed that the correct mean first passage time may be recovered by restricting attention
to the most probable path(s) [11]. (On the other hand, it has recently been realized that the
most probable path connecting two states, even in one dimension, may not be the most direct
path [12].) In order to resolve this quandary, an appropriate selection rule must be identified.
At the present time we do not know what criterion generally determines the most dominant
path(s) that determine the asymptotic behaviour of the mean first passage times.

We close by noting that the same issues regarding the ambiguity of the standard WKB-type
asymptotic analysis arise for the mean first passage time problems associated with the Fokker–
Planck operator. Suppose that U(x) is a bistable potential, as in figure 3, with minima at x1 and
x2 and a local maximum in between at x3. Let the diffusion process X (t) satisfy the stochastic
differential equation

dX = −U ′(X) dt + √
2ε dW (51)

with reflection at x = 0. Then the mean first passage time τ (x, x f ) from x to x f satisfies

−1 = −U ′(x)
∂τ

∂x
+ ε

∂2τ

∂x2
(52)

and τ (x f , x f ) = 0. The exact solution by quadrature of τ (x, x f ) is straightforward [1, 9] and
its routine ε → 0 asymptotic expansion shows that τ (x, x1) may be ∼eC/ε with C �= 0 for
some x ∈ (x1, x3), indicating that, in these cases too, the most direct path is not necessarily the
one that determines the mean first passage time.
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