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1. Introduction

Two-dimensional string theory has been fruitfully used to explore problems for which we

lack the technical prowess and/or conceptual framework to address in more realistic, higher-

dimensional string theories. This has been made possible mostly by the matrix models

dual to the d = 2 bosonic (for a review see [1 – 3]) and Type 0 strings [4, 5], which pro-

vide non-perturbative definitions for those theories. Of interest in the present article are
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Ramond-Ramond flux backgrounds which were recently investigated using the matrix dual

descriptions in [6]. In this work we further study non-trivial backgrounds in Type 0A string

theory by deforming the theory with an integrable set of momentum modes in the presence

of both RR flux (q) and tachyon condensate (µ).

Although the integrable structure of the d = 2 bosonic string has been thoroughly

explored (for example, in [7 – 16]), such structures for 0A string theory are somewhat less

developed. The integrable properties of the 0A matrix model were first studied using the

Toda lattice hierarchy [17] in the early ’90s [18], when it was known as the deformed

matrix model [19]. More recently this has been discussed by [20, 21]. Alternatively, fol-

lowing [22], perturbative techniques have been utilized to address momentum mode defor-

mations in [23]. A few of the lowest order correlators were computed and a pattern for

µ = 0 was discerned; summing the infinite perturbative series lead to an expression for the

0A partition function. As discussed in [11] for the c = 1 matrix model, this is equivalent

to solving the string equation constraining the integrable Toda lattice hierarchy. However

in all of these previous works, the authors studied limits where either q → 0 or µ → 0 to

obtain tractable results regarding the partition function or string susceptibility.

In contrast, we obtain transcendental equations for the genus zero string suscepti-

bility parameterized by non-trivial tachyon condensate, Ramond-Ramond flux and mo-

mentum mode perturbations simultaneously. To do so we take advantage of the complex

coordinate µ + iq identified in [6] and introduce a complexified Toda lattice hierarchy.

This hierarchy is based on shifts of both the energy and angular momentum quantum

numbers of the single-fermion Hilbert space of the dual 0A matrix model description.

The utilization of the fermion angular momentum as a dynamical variable is reminis-

cent of the proposed non-critical M-theory [24, 25] perspective on 0A string theory, al-

though we introduce it for purely mathematical ends. The complex nature of the inte-

grable structure provides an additional real constraint (string equation) on the operator

algebra of the theory, relative to previous integrability analyses. This additional con-

straint allows us to solve for the susceptibility equations in the dispersionless, i.e. classical,

limit.

This paper is organized as follows. Section 2 contains a review of the treatment of

integrable momentum mode perturbations to the c = 1 matrix model. We introduce our

notation and philosophy here. In section 3, we address integrable deformations of the

0A matrix model. We show how the system is intractable when there is only one string

equation as a constraint. We then introduce the complexified Toda lattice hierarchy which

provides two such constraints. We solve this system in the dispersionless limit, obtaining

equations for the perturbed susceptibility. In section 4 we analyze the susceptibility equa-

tions, exploring the critical behavior and phase diagram of 0A string theory. We close with

section 5 wherein we include some preliminary results on perturbations which take advan-

tage of the holomorphic structure of the complexified Toda hierarchy. Finally, a number

of technical appendices are included to elucidate points made within the text as well as

providing an alternate derivation of the complex string equations.

While discussing the bosonic string and the c = 1 matrix model, our units are such

that α′ = 1. When discussing the Type 0 strings, we will use α′ = 1
2 units.
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2. Integrable perturbations of the c = 1 matrix model

Before turning to integrable deformations of 0A string theory, we will now provide a short

review of such deformations in the c = 1 model, first studied in [7]. The purpose of this

detour is to introduce our logic and notation in an example where we closely follow previous

analyses before moving on to a treatment of 0A where we will depart significantly from

prior work by other authors.

2.1 Chiral quantization and the energy representation

The c = 1 matrix model is usefully described by a system of non-interacting fermions. The

operator algebra of these fermions is given by

[x̂+, x̂−] = i,

[x̂±, ε̂] = ±ix̂±,

{x̂+, x̂−} = 2ε̂. (2.1)

where ε̂ is the energy and x̂± = p̂±x̂√
2

are light-cone coordinates in the single-particle phase

space. The commutator of x̂± with ε̂ indicates that these operators have simple expressions

in the energy basis, x̂± ∼ e±i∂ε . To produce the correct commutator and anti-commutator

between x̂+ and x̂− requires the addition of certain dressing phases. Suitable energy

representations which reproduce all of the relations (2.1) are

[x̂±]ε = ±S∓1/2 (ε) ω̂±1S±1/2 (ε) (2.2)

where ω̂ is the shift operator

ω̂ ≡ ei∂ε , (2.3)

and S(ε) is

S(ε) = e−iπ/4

√

Γ
(

1
2 − iε

)

Γ
(

1
2 + iε

) ≡ eiφ0(ε), (2.4)

which can be understood as the ε → −∞ scattering amplitude for the fermions.1

Some comments on the representations above are in order. Although we use the term

“operator” to describe ω̂, as well as using a hat, it should be made clear that in this text

we will use it exclusively in the energy basis as a shorthand for the derivative (2.3). Thus,

expressions containing ω̂ will not be treated as operator statements but rather as basis

specific statements. One could, of course, adopt the alternative viewpoint that ω̂ is an

operator and (2.3) is its energy representation, but we will not do so.

Additionally, we wish to mention that the energy basis for the x̂± operators is actually

somewhat subtle and depends on the sign of ε. In studying the c = 1 matrix model, one

considers only fermions with negative energy, which in perturbation theory are localized in

one of the quadrants of the x+x− plane. The definitions (2.2) have been chosen to describe

the quadrant with ±x± > 0. Fortunately this subtlety will not occur for 0A where it is

necessary to consider both signs of ε.

1See appendix A for more details on light-cone quantization and calculation of S(ε).
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2.2 Unitary transformations and the lax formalism

Consider some unitary transformation Û acting on the system of fermions. We choose to

employ a passive transformation picture where the state kets remain unchanged and the

operators in (2.1) transform as Ô → ÛÔÛ−1. In particular, we will label the transformed

operators as

L̂± = Û x̂±Û−1, (2.5)

M̂ = Û ε̂Û−1. (2.6)

As our notation suggests, these transformed operators are precisely the Lax and Orlov-

Shulman operators of the Toda lattice hierarchy when Û is chosen appropriately. It follows

trivially that the commutators and anti-commutators (2.1) are preserved by the unitary

transformation under consideration. This leads to

L̂±L̂∓ = M̂ ± i

2
. (2.7)

In the context of the Toda lattice hierarchy, (2.7) are known as the string equations.

Unlike the usual treatment where separate M̂± are introduced and then equated as an

additional constraint, we posit only one Orlov-Shulman operator from the outset. Thus we

are studying the constrained Toda hierarchy, ab initio.

An integrable set of momentum mode deformations to the c = 1 model are generated

by the transformations

Û± = ei
P

n>0 b̃±n(ε̂;{t}) (±x̂±)−n/R
e∓iφ̃(ε̂;{t})/2ei

P

n>0 t±n (±x̂±)n/R
. (2.8)

The t±n are real constants2, and the operators b̃ and φ̃ are unspecified functions which

vanish when all t±n = 0. We will constrain the undetermined functions b̃ and φ̃ such that

Û+ ≡ Û− ≡ Û . We understand Û+ (Û−) to be the natural form of Û acting on the x̂+

(x̂−) operator. This is not to be confused with different bases; the expression Û+ = Û−
indicates an equality between operators, not that Û± are different representations of the

same operator. Thus they are equal in any given basis.

The operators in (2.8) are of interest since they allow us to represent momentum mode

deformations to the worldsheet action in terms of transformations on the single fermion

Hilbert space. The operators (±x̂±)n/R are the single-particle representations of the matrix

model operators Tr(M ± Ṁ)n/R which create states of Euclidean momentum n
R [26]. In

the regions x± → ∞ the operators Û± behave like

Û± ∼ e∓iφ̃(ε̂;{t})/2ei
P

n>0 t±n (±x̂±)n/R

, (2.9)

demonstrating that asymptotically Û± creates a coherent state of tachyons (plus some zero

mode). The factor with negative powers of x̂± is present to allow the equality of Û+ and

Û−.

2Although we will be more general in our analysis, in order to produce real deformations to the worldsheet

action the signs of the t’s must be such that tn = −t−n for all n. This will be true for the 0A theory as

well.
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Now consider these operators in the energy basis. From (2.2), we have

[

ei
P

n>0 t±n(±x̂±)n/R
]

ε
= S∓1/2 (ε) ei

P

n>0 t±nω̂±n/R
S±1/2 (ε) , (2.10)

and so find

[

Û±
]

ε
= ei

P

n>0 b±n(ε;{t})ω̂∓n/R
e∓iφ(ε;{t})/2ei

P

n>0 t±nω̂±n/R
S±1/2 (ε) , (2.11)

where we have introduced

φ (ε; {t}) ≡ φ̃ (ε; {t}) + φ0 (ε) ,

b±n (ε; {t}) ≡ b̃±n (ε; {t}) S∓1/2 (ε) S±1/2 (ε ∓ in/R) . (2.12)

Using the energy basis and the equivalent forms of the transformation Û , we can make

explicit the connection of the above with the Lax formalism. We write

L̂± = Û±x̂±Û−1
± ,

M̂± = Û±ε̂Û−1
± . (2.13)

It should be emphasized that the above is simply a rewriting of (2.6) and that

M̂ = M̂+ = M̂−, (2.14)

which follows from the equality of Û and both Û±. In the ε basis, we have

[

L̂±
]

ε
= ±Ŵ±ω̂±1Ŵ−1

± ,
[

M̂±
]

ε
= Ŵ±εŴ−1

± , (2.15)

where Ŵ± are the dressings

Ŵ± = ei
P

n>0 b±n(ε;{t})ω̂∓n/R
e∓iφ(ε;{t})/2ei

P

n>0 t±nω̂±n/R
. (2.16)

We wish to emphasize that the Ŵ±, as functions of ε and ω̂, are basis specific expressions.

In order to solve the string equation (2.7), we first must have the expansion of the Orlov-

Shulman operator in powers of the Lax operators. There are two equivalent expansions

obtained by resumming the expansions of M̂± in powers of ω̂ in the energy representation

in terms of the Lax operators

M̂± = ε̂ ∓
∑

n>0

nt±n

R

(

±L̂±
)n/R

+
∑

n>0

v±n (ε̂; {t})
(

±L̂±
)−n/R

. (2.17)

The v±n(ε̂; {t}) are undetermined functions which are in principle calculable. By intro-

ducing the functions v±k we have not introduced any more unknown functions, but rather

simply reorganized the unknown b±k into the v±k.

– 5 –
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2.3 Dispersionless limit and solving the string equation

The above formalism is a compact way to record an infinite hierarchy of finite-difference

equations. These are obtained by expanding both sides of the string equation (2.7) in

powers of ω̂, with all factors of ω̂ moved to the right. Matching the coefficients to each

term in the series provides an infinite set of finite difference equations for the various

undetermined functions in the operators Û . The most interesting of these functions is the

zero-mode φ(ε; {t}) which provides the density of states via ρ(ε) = ∂εφ(ε)
2π .

While the system of finite difference equations is in principle soluble, the study of these

equations is not technically practical. Firstly, there are an infinite number of such equations

and, secondly, even a finite set of finite difference equations is generally difficult to solve.

Instead we will take advantage of the simplification occurring in the “dispersionless limit”,

when the lattice spacing goes to zero [14, 15, 12, 13]. In the fermion language, this is the

classical limit, ~ → 0. Since we use ~ = 1 units this is accomplished by considering the

regime |ε| À 1, which is the genus zero limit of the dual string theory. Since the Orlov-

Shulman operator scales as ε and the Lax operators scale as
√

ε, the string equation in this

regime is

M = L−L+. (2.18)

In this limit, the Lax operators are given by

L± = ±e−∂εφ/2ω±1

(

1 +
∑

k>0

a±k (ε; {t}) ω∓k/R

)

+ · · · , (2.19)

where the dots represent subleading terms in ε and the hat on ω as been dropped to indicate

it is now a classical variable. The functions a±k(ε; {t}) are calculable from the functions

in the transformation Û but we will shortly solve for them using algebraic constraints,

bypassing the need to ever know the precise form of the undetermined functions in Û .

We now take advantage of the expansion of M in terms of the Lax variables (2.17). To

simplify matters, we consider the case where all the couplings vanish except t±n for some

particular n

M± = ε ∓ nt±n

R
(±L±)n/R +

∑

k>0

v±k (ε) (±L±)−k/R . (2.20)

These two expansions will effectively provide two string equations, M± = L−L+, constrain-

ing the a±k coefficients strongly. Substituting (2.19) into the above, we find

M± = ε ∓ nt±n

R
e−n∂εφ/2Rω±n/R

(

1 +
∑

k>0

a±k (ε)ω∓k/R

)n/R

+
∑

k>0

v±k (ε) e
k
R

∂εφω∓k/R

(

1 +
∑

`>0

a±` (ε) ω∓`/R

)−k/R

. (2.21)

Now compare (2.21) with

L+L− = −e−∂εφ

(

1 +
∑

k>0

a+k (ε) ω−k/R

)(

1 +
∑

k>0

a−k (ε)ωk/R

)

. (2.22)
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Since the highest (lowest) power of ω in M± is ω±n/R, power matching in the string equation

implies a±k = 0 if k > n. Furthermore, upon examining other coefficients in the string

equation one can see all the constraints are satisfied for a±k = 0 for k 6= n.

Bearing this in mind, we match the coefficients for the ω±n/R terms in M± = L+L−
and obtain

a∓n (ε) = ±nt±n

R
e(1−n/2R)∂εφ, (2.23)

which when substituted into the equation obtained from the ω0 terms results in3

|ε| − e−∂εφ =
n2

R2
t+nt−ne(1−n/R)∂εφ

( n

R
− 1

)

. (2.24)

We wish to emphasize the importance of (2.24). This equation provides a transcendental

equation for the density of states, and hence the free energy, in the presence of momentum

mode perturbations. Our goal in the sections ahead is to obtain equations such as (2.24)

for the density of states in 0A string theory perturbed by momentum modes.

As a quick consistency check of our method, we see that (2.24) produces the correct

density of states for the c = 1 theory when there is no perturbation,

ρ(µ) =
1

2π
∂εφ

∣

∣

∣

∣

ε=−µ

= − 1

2π
log µ. (2.25)

For more details see, for example, [2]. A more non-trivial check is that (2.24), with n = 1

and a suitable redefinition of couplings, is precisely T-dual to the genus zero susceptibility

equation obtained in [11] for the c = 1 theory perturbed by winding modes.

The beauty of the procedure above is that there was never a need to know the undeter-

mined functions v±k. We have only assumed that they are such that it is possible to match

the coefficients for the powers of ω which we do not examine. The fact that knowledge

of the functions v±k is irrelevant to obtaining the equation for the density of states is not

limited to the simple example above. Suppose that some finite number of couplings are

turned on, but that t±k = 0 for k > N . Once again, a general argument indicates a±k

vanish if k > N . Matching the coefficients for ωk/R with 0 ≤ k ≤ N in M+ = L+L−,

we obtain N + 1 constraints, none of which contain v±k. Similarly, examining the ω−k/R

coefficients with 0 < k ≤ N in M− = L+L− leads to another N equations which do not

involve the v±k. Together, these 2N + 1 constraints are sufficient to solve for ∂εφ and

the non-vanishing a±k≤N . We will find in the next section that the most straightforward

application of this method to 0A string theory will not be so tractable.

3. Integrable deformations of the 0A matrix model

We would like to perform deformations of the 0A matrix model analogous to those of the

previous section. This has been previously attempted [18, 20, 21, 23], but these authors

were only able to obtain solutions by setting µ or q to zero. We will first demonstrate the

intractability of the most straightforward organization of the integrable structure of the

3Although this result has been derived for ε < 0, it can be derived formally for positive energy as well.
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0A matrix model. Then we consider an integrable structure based on the 2+1 dimensional

perspective for the 0A matrix model eigenvalues. Through this viewpoint we are able to

find additional string equations which can be solved in the dispersionless limit with both

µ and q non-zero.

3.1 The 0A matrix model

It is well-known [4] that type 0A string theory in d = 2 can be described by a gauged matrix

model similar to that of the d = 2 bosonic string. As is common with matrix models, the

singlet sector can be reduced to the dynamics of a many-body problem of non-interacting

fermions in 1 + 1 dimensions. The single-particle Hamiltonian is

ε̂0A =
1

2

(

p̂2 − x̂2 +
q2 − 1/4

x̂2

)

, (3.1)

where we consider q to simply be some parameter. Proceeding as in the c = 1 model, we

put the operator algebra into the light-cone form [26]
[

B̂+, B̂−
]

= 4iε̂0A,
[

B̂±, ε̂0A

]

= ±2iB̂±,
{

B̂+, B̂−
}

= 2
(

ε̂2
0A + q2 − 1

)

, (3.2)

where

B̂± = x̂2
± +

(

q2 − 1/4
)

x̂−2. (3.3)

We can easily obtain from (3.2) the following identity

B̂±B̂∓ = (ε̂0A ± i)2 + q2. (3.4)

We will hereafter drop the subscript “0A” on the energy.

From the algebra (3.2) we can find the energy basis representations
[

B̂±
]

ε
= S∓1/2(ε, q)ω̂±2S±1/2(ε, q) , (3.5)

where ω̂ is defined in (2.3) and S(ε, q) is the scattering phase4

S (ε, q) = 2−iεi|q|
Γ (1/2 (1 + |q| − iε))

Γ (1/2 (1 + |q| + iε))
≡ eiφ0(ε,q). (3.6)

3.2 Intractability of the 0A lax system

Besides simplifying the 0A operator algebra the B̂± play the role of momentum modes in

the free fermion representation of 0A string theory [26]. Thus, following the analysis for

the c = 1 model, we wish to consider unitary transformations generated by powers of B̂±
to implement momentum mode perturbations. However, we will see that a straightforward

application of this method will not lead to a solvable string equation in this instance.

4The attentive reader may notice that this differs slightly from the result in [6]. This is due to our

somewhat different normalization of the fermion states. Note that the exclusion of the i|q| factor in [6] does

not affect the calculation of the density of states, ρ(ε) ∼ φ′(ε). See appendix B for more details.
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For the 0A matrix model an integrable set of momentum mode deformations is gener-

ated by the unitary transformations

Û± = ei
P

n>0 b̃±n(ε̂;q,{t})B̂−n/R
± e∓iφ̃(ε̂;q,{t})/2ei

P

n>0 t±nB̂
n/R
± . (3.7)

Once again, φ̃ and the b̃ are some undetermined functions which vanish when all of the

couplings {t}, are turned off. As in the treatment of the c = 1 theory, the operators (3.7)

are constrained by Û+ = Û−. In the energy basis these operators are given by
[

Û±
]

ε
= ei

P

n>0 b±n(ε;q,{t})ω̂∓2n/R
e∓iφ(ε;q,{t})/2ei

P

n>0 t±nω̂±2n/R
S±1/2 (ε, q) , (3.8)

where we have introduced

φ (ε; q, {t}) ≡ φ̃ (ε; q, {t}) + φ0 (ε, q) ,

b±n (ε; q, {t}) ≡ b̃±n (ε; q, {t}) S∓1/2 (ε, q) S±1/2 (ε ∓ 2in/R, q) . (3.9)

We now define Lax and Orlov-Shulman operators as in the c = 1 theory through

unitary transformations on the 0A operators

L̂± = Û±B̂±Û−1
± ,

M̂± = Û±ε̂Û−1
± . (3.10)

where once again we have M̂+ = M̂− due to the equivalence of the unitary transformations

Û±. In the energy basis these operators are represented as
[

L̂±
]

ε
= Ŵ±ω̂±2Ŵ−1

± ,

[M±]ε = Ŵ±εŴ−1
± , (3.11)

with the dressings given by

Ŵ± = ei
P

n>0 b±n(ε;q,{t})ω̂∓2n/R
e∓iφ(ε;q,{t})/2ei

P

n>0 t±nω̂±2n/R
. (3.12)

Since this is simply a unitary transformation, the operator algebra remains intact so we

immediately get the string equation

L̂±L̂∓ =
(

M̂ ± i
)2

+ q2 , (3.13)

which was also obtained in [18, 20]. This equation is perfectly correct but its use in reaching

the density of states is limited. The problem lies in the appearance of a quadratic power

of the Orlov-Shulman operator as we will see below.

In the dispersionless limit we take ε, q À 1. The above string equation becomes

L+L− = M2 + q2 , (3.14)

and the Lax operators can be expanded as

L± = e−∂εφω±2

(

1 +
∑

k>0

a±k (ε; {t}) ω∓2k/R

)

. (3.15)

– 9 –
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Once again, we examine a simple case where the only non-zero couplings are t±n for some

n. The expansion of M in terms of the Lax operators is similar to (2.20)

M± = ε ∓ 2nt±n

R
L

n/R
± +

∑

k>0

v±k (ε)L
−k/R
± . (3.16)

We examine the non-negative powers of L± that appear in M2
± (denoted M2

±,≥), since

only these will contribute to the coefficients in which we are interested

M2
±,≥ = ε2 +

(

4nt±n

R

)2

L
2n/R
± ∓ 2nt±n

R

(

εL
n/R
± +

n
∑

k=1

L
(n−k)/R
± v±k (ε)

)

. (3.17)

Compare this with

L+L− = e−∂εφ

(

1 +
∑

k>0

a+k (ε)ω−2k/R

) (

1 +
∑

k>0

a−k (ε)ω2k/R

)

. (3.18)

Once again, matching of coefficients implies the a±k truncate. In this case we have 4n + 1

non-vanishing functions; ∂εφ and the a±k for k ≤ 2n. However, one cannot obtain a closed

set of equations for these variables. The v±k appear in the 2n + 1 equations one obtains

from examining the coefficients to ω2k/R with 0 ≤ k ≤ 2n in L+L− = M2
+ + q2. This is

also true of the 2n coefficients of ω−2k/R with 0 < k ≤ 2n obtained from the M− string

equation. Examining more coefficients will simply increase the number of v±k involved.

One must then solve the whole infinite set of equations.

One can see that the origin of the above intractability is the appearance of the unknown

functions v±k multiplying non-negative powers of L± in the string equation once (3.17) is

substituted into (3.14). This would be alleviated were the string equation linear in the

Orlov-Shulman operator. We now turn to such a way of organizing the 0A system.

3.3 Flux and the complex basis

We have found that the Toda Lattice based on shifts of the single-particle energy do not

lead to solvable string equations. In fact, it appears as if we are missing information.

To remedy this, we recall that the one-dimensional Hamiltonian (3.1) can be understood

as the effective radial Hamiltonian for fermions moving in a two-dimensional harmonic

oscillator [4]. In this description, the RR-flux is the angular momentum operator, q̂. In

terms of the Cartesian coordinates and momenta in the plane, the energy and angular

momentum are given by

ε̂ =
1

2

(

p̂2
1 + p̂2

2 − x̂2
1 − x̂2

2

)

, (3.19)

q̂ = x̂1p̂2 − x̂2p̂1 . (3.20)

It is convenient to complexify these operators

ẑ± ≡
(

p̂1 ± x̂1√
2

)

+ i

(

p̂2 ± x̂2√
2

)

, (3.21)

ŷ ≡ ε̂ + iq̂ , (3.22)
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which obey the algebra
[

ˆ̄z+, ẑ−
]

= 2i ,

[ẑ−, ŷ] = −2iẑ− ,
[

ˆ̄z+, ŷ
]

= 2iˆ̄z+ , (3.23)

where the bar above an operator denotes its Hermitian conjugate. Other commutators are

trivial or obtained by Hermitian conjugation of (3.23). For convenience we also record the

relation

ẑ− ˆ̄z+ = ŷ − i. (3.24)

We can obtain the previous algebra (3.2) by noting that

B̂± = ẑ± ˆ̄z± . (3.25)

Recalling that B̂± are the vertex operators for momentum modes, it is evident that in the

complex coordinates we should consider unitary transformations generated by powers of

ẑ± ˆ̄z± to implement momentum mode deformations. This is done in the following section.

But first let us obtain the (ε, q)-basis for the operators above.

Define the shift derivative η̂ = e2i∂ with Hermitian conjugate ˆ̄η = e2i∂̄ where

∂ ≡ ∂y =
1

2
(∂ε − i∂q) ,

∂̄ ≡ ∂ȳ =
1

2
(∂ε + i∂q) . (3.26)

Examining the algebra (3.23), we see that ˆ̄z+ ∼ η̂ and ẑ− ∼ η̂−1 will reproduce the com-

mutators with ŷ. To reproduce the final commutator and (3.24), we dress the appropriate

power of η̂ with the scattering phase5

[ẑ−]y,ȳ = S1/2 (y, ȳ) η̂−1S−1/2 (y, ȳ) ,
[

ˆ̄z+

]

y,ȳ
= S−1/2 (y, ȳ) η̂ S1/2 (y, ȳ) , (3.27)

with other operators defined by Hermitian conjugation and S (y, ȳ) given by

S (y, ȳ) = 2−i Re(y)iIm(y) Γ
(

1
2 (1 − iy)

)

Γ
(

1
2 (1 + iȳ)

) . (3.28)

3.4 Complexified lax formalism

Now we act with some unitary operator, Û , obtaining the complex Lax and Orlov-Shulman

operators6

Ẑ± ≡ Û ẑ± Û−1, (3.29)

Ŷ ≡ Û ŷ Û−1, (3.30)

5Without loss of generality we have assumed that q > 0. For q < 0, it is important that |q| appears in the

scattering amplitude dressing η̂. However, this eventually leads to the same susceptibility equation (3.44).
6Note that the algebra of all operators quadratic in the z’s is sp4. It may be possible to construct

generalized Toda lattices from other Lie algebras, building in and out Lax operators from the positive

and negative roots, and Orlov-Shulman operators from the elements of the Cartan subalgebra. Such a

construction is a subject for future research.
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and similarly for their Hermitian conjugates. The algebra (3.23) is preserved by the unitary

transformation as is, most importantly, the string equation

Ẑ−
ˆ̄Z+ = Ŷ − i. (3.31)

This is essentially a complexified version of the string equation for the c = 1 theory.

To implement momentum mode perturbations we use the unitary transformations (3.7)

generated by B±. The y basis representations are easily obtained from (3.8) by noting that

ω̂2 = η̂ ˆ̄η

[

Û±
]

y,ȳ
= ei

P

n>0 b±n(y,ȳ;{t})(η̂ ˆ̄η)
∓n/R

e∓iφ(y,ȳ;{t})/2ei
P

n>0 t±n(η̂ ˆ̄η)
±n/R

S±1/2 (y, ȳ) . (3.32)

As with the previous examples we impose Û+ = Û− and define the transformed operators

Ẑ± ≡ Û±ẑ± Û−1
± , (3.33)

Ŷ± ≡ Û±ŷ Û−1
± , (3.34)

where Ŷ+ = Ŷ− = Ŷ . The y basis expressions are given by
[

Ẑ−
]

y,ȳ
= Ŵ−η̂−1 Ŵ−1

− , (3.35)
[

ˆ̄Z+

]

y,ȳ
= Ŵ+η̂ Ŵ−1

+ , (3.36)
[

Ŷ±
]

y,ȳ
= Ŵ±ŷ Ŵ−1

± , (3.37)

where the dressings are

Ŵ± = ei
P

n>0 b±n(y,ȳ;{t})(η̂ ˆ̄η)
∓n/R

e∓iφ(y,ȳ;{t})/2ei
P

n>0 t±n(η̂ ˆ̄η)
±n/R

. (3.38)

By reorganizing the η̂ expansions of the two equivalent forms of Ŷ we find the expansions

of the Orlov-Shulman operator in terms of the Lax operators

Ŷ± = ŷ ∓
∑

k>0

2k

R
t±kẐ

k/R
±

ˆ̄Z
k/R
± +

∑

k>0

v±k

(

ŷ, ˆ̄y
)

Ẑ
−k/R
±

ˆ̄Z
−k/R
± . (3.39)

In the dispersionless limit, we simply drop the hats in the above. The string equation

becomes

Y± = Z−Z̄+ , (3.40)

and the Lax variables have expansions

Z− = e−∂φη−1

(

1 +
∑

k>0

a−k(y, ȳ) (ηη̄)k/R

)

, (3.41)

Z̄+ = e−∂φη

(

1 +
∑

k>0

a+k(y, ȳ) (ηη̄)−k/R

)

, (3.42)

and similarly for their conjugates. Conveniently and unsurprisingly, we obtain only powers

of ηη̄ = ω2 in the expansion of (3.40).
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To be explicit, assume all t±k = 0 except t±n. The matching of coefficients once again

implies only a±n are non-vanishing. Since the v±k do not multiply positive powers of the

Lax variables in the string equation, we have few enough variables to solve the equations

imposed by matching of coefficients. We obtain

a±n = ±2n

R
t∓ne2∂φe−

n
R(∂φ+∂̄φ) , (3.43)

by matching the (ηη̄)±n/R coefficients. The order (ηη̄)0 coefficient matching then gives the

complex susceptibility equation

e−2∂φ − y =
4n2

R2
t+nt−ne−

2n
R (∂φ+∂̄φ)

((

1 − n

R

)

e2∂φ − n

R
e2∂̄φ

)

. (3.44)

The above equation is perhaps more transparent when split into real and imaginary parts

ε − e−∂εφ cos (∂qφ) =
4n2t−nt+n

R2
e(1−2n/R)∂εφ

(

2n

R
− 1

)

cos (∂qφ) ,

q − e−∂εφ sin (∂qφ) =
4n2t−nt+n

R2
e(1−2n/R)∂εφ sin (∂qφ) . (3.45)

The equation (3.44) (or alternatively the real and imaginary parts (3.45)) constitutes

the main result of our paper, as it contains the information necessary to extract the genus

zero susceptibility for 0A string theory in the presence of momentum mode perturbations.

A few comments are in order. First, we would like to emphasize that (3.44) has been

derived in full generality, with both non-vanishing cosmological constant µ and RR flux q.

To the best of our knowledge, this is the first instance in which a set of string equations have

been solved in a flux background. Second, we have arrived at these results by exploiting

the integrability of the 0A matrix model. We have found that perturbations to the matrix

model can be cast as a complexified Toda system, and have derived the string equations

constraining it. In the dispersionless limit, these string equations yield (3.44).

4. Analysis of the 0A susceptibility equations

We wish to analyze the complex susceptibility equation (3.44), with the goal of obtaining

the phase diagram of the system. Given the transcendental nature of the equation, this

is a difficult task. We begin by specializing to the case of no Ramond-Ramond flux and

perform an analysis T-dual to that of [11]. We find critical behavior which obstructs

smoothly moving through parameter space to the momentum mode condensate phase for

R > 2n. We then proceed to the case of non-trivial flux and explore the critical behavior

present there.

Before diving into the intricacies of these transcendental equations, let us digress briefly

to make some general comments. Firstly, the perturbation couplings t±n must be such that

the worldsheet Lagrangian is deformed by a real operator. For the 0A theory, the unitary

transformations generating the momentum perturbations have the asymptotic forms Û± ∼
eit±nB̂

n/R
± , which act on the single-fermion Hamiltonian as Ĥ → Ĥ ∓ 2nt±n

R B̂
n/R
± . This
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translates, in the absence of flux, to deforming the worldsheet Lagrangian as

L → L− tnV2n/R + t−nV−2n/R. (4.1)

Given the form of the vertex operators Vp ∼ eipX , we see that a real deformation requires

that tn = −t−n ≡ t for some real t. This is not expected to change in the presence of RR

flux. We will thus make the substitution t2 = −tnt−n hereafter.

Secondly, we will pursue a thermodynamic analysis of 0A string theory in what follows.

This can be accomplished with our susceptibility equations since ∂εφ(ε) = 2πρ(ε), where

ρ(ε) is the density of states. The grand canonical partition function, with fixed q, is then

lnZ =
1

2π

∫ ∞

−∞
dε ∂εφ(ε) ln(1 + e2πR(µ−ε)). (4.2)

It follows that

∂µ lnZ = R

∫ ∞

−∞
dε

∂εφ(ε)

1 + e2πR(ε−µ)

≈ R

∫ µ

−∞
dε ∂εφ(ε) , (4.3)

where in the second line, we have kept only the leading term as |µ| → ∞. We thus arrive

at the genus zero expression for the susceptibility

χ(µ) ≡ 1

R
∂2

µ lnZ = ∂µφ(µ). (4.4)

In keeping with this notation we will make the replacement ε = µ henceforth.

4.1 Relevant perturbations at q = 0

We are studying in this paper deformations of the string worldsheet theory by tachyon

vertex operators of definite Euclidean momentum. In order to have an effect on the long

wavelength dynamics of the theory, and hence the semi-classical spacetime geometry, this

must be a relevant deformation in the sense of worldsheet renormalization group flow. This

consideration puts a bound on the radius of compactification that we consider.

Let us consider the bosonic string for illustrative purposes. Before gauge fixing the

worldsheet metric, the vertex operators we are considering are simply

Vp = eipX , (4.5)

and have conformal dimension ∆ = p2

4 in α′ = 1 units. If Vp = eipX is to be relevant then

|p| < 2. This same bound applies to the canonical ghost picture7 Type 0 vertex operators

at zero Ramond-Ramond flux in α′ = 1
2 units. To obtain the susceptibility equation (3.44)

for the 0A matrix model, we have considered perturbations with momenta p = ±2n
R . Thus,

for a given n, we have a bound on the Euclidean time radius, R > n. Although this has

been argued for the case of vanishing flux we will shortly see indications that this bound

should be extended to q 6= 0.

7That is, picture (−1,−1) for NS-NS operators and picture (− 1
2
,− 1

2
) for R-R operators.
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4.2 Scaling behavior of c = 1

We begin by considering the scaling behavior in µ of the perturbed 0A theory with q = 0.

One might expect perturbed 0A with no flux to be identical to the perturbed c = 1

matrix model, and in this section we will highlight the similarities of these two theories.

In section 4.5 we will see that 0A contains novel behavior resulting from divergences in the

q-derivatives of the free energy, even at strictly vanishing flux.

To explore the similarities between c = 1 and 0A with q = 0, it is most useful to use

the component form of the susceptibility equation. For vanishing flux, the second equation

in (3.45) is satisfied with sin (∂qφ) = 0. When all of the t±n vanish, cos (∂qφ) = sign(µ) at

large |µ| and q = 0; we will assume this is so when the perturbations are non-trivial. Thus

the first equation of (3.45) reduces to

|µ| = e−∂µφ +
4n2t2

R2

(

1 − 2n

R

)

e(1−2n/R)∂µφ. (4.6)

This is identical to the result (2.24) for the c = 1 theory perturbed by modes with mo-

mentum p = ±2n
R . This factor of 2 is accounted for by the fact that only perturbations by

B̂± ∼ (x̂±)2 have been used in our treatment of the 0A theory. Our result (4.6) is thus

T-dual to that obtained through studies of the c = 1 theory perturbed by even winding

modes [11, 12].

We find that (4.6) can be expressed more simply by using the positive-definite dimen-

sionless parameter8

Λ =
4n2

R2
t2|µ| 2n

R
−2. (4.7)

This variable replaces the perturbation coupling t2 with a coupling that runs with the

worldsheet cosmological constant. Recalling that R > n for any relevant perturbation, we

see that the unperturbed theory is located at Λ = 0 by sending t2 → 0 and |µ| → ∞.

Similarly, condensation of the momentum mode perturbation occurs as Λ → ∞ via the

opposite limits, t2 → ∞ and |µ| → 0. For R < n these limits break down, and the variable

Λ no longer has a clear limit in which the theory is unperturbed. Although there will not

be a bound from worldsheet relevance when we study q 6= 0, we will see a similar behavior

in the corresponding dimensionless variable.

To take advantage of the dimensionless variable we introduce the reduced susceptibility

χ̃ through

χ ≡ ∂µφ = χ̃ − 1

2(1 − n
R)

log

(

4n2

R2
t2

)

. (4.8)

Then (4.6) reduces to

Λ
1

2(n/R−1) = e−χ̃ +

(

1 − 2n

R

)

e(1−2n/R)χ̃, (4.9)

indicating that χ̃ is function only of Λ and R.

8The parameter Λ is a natural variable since, being linear in the coupling t2, it organizes the perturbative

expansion around the 0A string without flux. Another natural variable, Λ̃ = Λ
− 1

2(1−n/R) , is linear in |µ|

and associated with the expansion near the theory with momentum mode condensate.
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4.3 Critical behavior of c = 1

The critical behavior of c = 1 string theory can be inferred from (4.9). We differentiate

this relation with respect to Λ and obtain

∂Λχ̃ =
Λ

1
2(n/R−1)

−1
eχ̃

2(n/R − 1)

[

(

1 − 2n

R

)2

e2(1−n/R)χ̃ − 1

]−1

(4.10)

=
Λ

1
2(1−n/R)

−1
eχ̃

2(n/R − 1)

[(

1 − 2n

R

)(

2 − 2n

R

)

e(1−2n/R)χ̃ − Λ
1

2(n/R−1)

]−1

. (4.11)

In the second line we have substituted the susceptibility equation into (4.10) to obtain a

relation for later comparison with the case q 6= 0. As is clear from (4.10), ∂Λχ̃ has a pole

at a finite value of χ̃

χ̃c =
1

(n/R − 1)
log

∣

∣

∣

∣

1 − 2n

R

∣

∣

∣

∣

. (4.12)

To confirm that this is critical behavior, we must check that the equation of state is satisfied.

Substituting (4.12) into (4.9), we obtain the critical surface in the Λ − R plane

Λ
1

2(n/R−1)
c = sign

(

1 − 2n

R

)(

2 − 2n

R

)
∣

∣

∣

∣

1 − 2n

R

∣

∣

∣

∣

n
R(1− n

R)
−1

. (4.13)

Since Λ is positive definite, we see that there is no critical behavior for n < R < 2n; this

can also be discerned from (4.11). We discard the solution for R < n as the perturbation

is irrelevant in that region and solve (4.13) for Λc

Λc(R) =

(

1 − 2n

R

)−2n/R[

2

(

1 − n

R

)]−2(1−n/R)

, R > 2n . (4.14)

This cleanly divides the parameter space of the theory as can be seen in figure (1). Thus,

this critical behavior provides an obstruction to smoothly perturbing from the unperturbed

0A phase to the momentum mode condensate phase with R > 2n. Beyond this, for

Λ > Λc(R), there do not exist real solutions to the equation of state (4.9).

Alternatively, let us plot the right-hand-side of (4.9) (call it f(χ̃)) in figure (2). The

behavior described above is associated with a local minimum at χ̃ = χ̃c, where f(χ̃c) =

Λ
1

2(n/R−1)
c . Again, we find that there exist no solutions for Λ > Λc(R). More generally, all

local extrema of f(χ̃) will be associated with critical points since ∂Λχ̃ ∼ 1/(∂χ̃f).

The above critical behavior can be understood thermodynamically by recalling from

(4.4) that χ = 1
R∂2

µ lnZ. Then, using (4.8), we see that Λc(R) is the surface where there

is a divergence in

∂3
µ lnZ

∣

∣

t,R
∼ ∂Λχ̃ |R . (4.15)

In the vicinity of this critical surface one has the behavior

∂3
µ lnZ ∼ (Λ − Λc)

−1/2, (4.16)

typical of pure d = 2 gravity, known sometimes as a c = 0 model [27]. The physical picture

of this phase transition is that the worldsheet field, X, associated with Euclidean time

freezes out by settling into one of the minima of the cosine potential in (4.1).
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1 2
R�n

L

Figure 1: The phase diagram for c = 1 theory perturbed by momentum modes. For Λ = 0, the

system is in the unperturbed 0A phase, and for Λ → ∞, in the momentum mode condensate phase.

For n < R < 2n one can transition freely between these two phases, whereas for R > 2n, there

will be an obstruction given by the curve Λc(R), associated with the phase transition to c = 0. For

Λ > Λc(R), there are no solutions to the reduced susceptibility equation (4.9). The shaded region

for R < n is forbidden due to the irrelevance of the operators V±n/R.

f(  )χ

χ

n<R<2n

R>2n

Figure 2: The right-hand-side of (4.9) is plotted as a function of χ̃ for two values of R, as indicated.

4.4 Perturbative analysis with non-trivial flux

Having analyzed the susceptibility equations at q = 0, we would now like to study them

in the presence of RR flux. To gain some confidence in the veracity of (3.44), we perform

two consistency checks.

We first examine the limit of vanishing momentum mode perturbations; this is the

case studied in [6]. Solving (3.44) with t2 = 0 we find

∂µφ(µ) = (∂ + ∂̄)φ = −1

2
ln(yȳ) = −1

2
ln

(

µ2 + q2
)

, (4.17)
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which does indeed agree with the known result to leading order in µ2 + q2. We shall use

this expression for the unperturbed partition function as a boundary condition for the

non-linear PDE system (3.45).

We next utilize perturbation theory to expand about the solution (4.17). Through the

0A string/matrix model duality we expect that the worldsheet theory perturbed as in (4.1)

should be related to the perturbed matrix model free energy through

lnZ =
〈

et+nT2n/R−t−nT−2n/R
〉

. (4.18)

In perturbation theory, the right-hand side is evaluated as a sum of tachyon correlators

in the unperturbed worldsheet theory. Through (4.4), we can then interpret ∂µφ as a

generating functional for the tachyon correlators on the sphere

∂µφ = R−1∂2
µ lnZ = −1

2
ln

(

µ2 + q2
)

+ R−1
∑

m>0

t2m

(m!)2
∂2

µ

〈

T m
2n/RT m

−2n/R

〉

. (4.19)

In order to compute these correlators, we first eliminate ∂qφ from (3.45),

e−2∂µφ =
µ2

[

1 − (2n/R − 1) (4n2t2/R2) e−2(n/R−1)∂µφ
]2 +

q2

[

1 − (4n2t2/R2) e−2(n/R−1)∂µφ
]2 ,

(4.20)

then expand ∂µφ in powers of t2 around (4.17). In appendix D we compute these tachyon

correlators to O
(

t6
)

and find that they agree with those calculated in [23]. This gives us

great confidence in our result for general flux and momentum mode perturbation.

4.5 Critical behavior in flux vacua

We are now in position to construct the d = 2 0A phase diagram. We are going to follow the

same strategy as outlined in the previous section, but in a flux background. Turning back

to the complex equation (3.44), we begin by rewriting it in terms of a complex dimensionless

variable

Λ =
4n2t2

R2
y−2(1−n/R) =

4n2t2

R2
y−2(1−n/R) . (4.21)

This gives

Λ
− 1

2(1−n/R) = e−2χ̃ + e−
2n
R

(χ̃+¯̃χ)

[(

1 − n

R

)

e2χ̃ − n

R
e2¯̃χ

]

(4.22)

where χ̃ = ∂φ + ln(4n2t2

R2 ) is the complex reduced susceptibility. Of course, we will also

need the complex conjugate of equation (4.22).

Let us pause to make a brief point alluded to in section 4.1. Just as in the q = 0 case,

the relationship between the dimensionless parameter (4.21) and the unperturbed theory

becomes ill-defined for R < n. In the absence of flux, it is understood that we must have

R > n so that the perturbation of the worldsheet Lagrangian by V2n/R is relevant. We

have no such worldsheet understanding with q 6= 0, but we still have a breakdown in our

variables. This suggests that the relevance bound R > n may be extended for the case

with flux. Following this suggestion, we will only consider R > n in the following.
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To make the notation more concise, we find it useful to introduce the complex function

A = e2(1− n
R

)χ̃e−
2n
R

¯̃χ. (4.23)

The complex equation (4.22) can be written in terms of A, Ā as the system

A

Ā
=

Λ̄
− 1

2(1−n/R) − (1 − n
R)Ā + n

RA

Λ
− 1

2(1−n/R) − (1 − n
R)A + n

RĀ
,

(

AĀ

)− 1
1−2n/R

=

∣

∣

∣

∣

Λ
− 1

2(1−n/R) − (1 − n

R
)A +

n

R
Ā

∣

∣

∣

∣

2

. (4.24)

As in the q = 0 case, we identify the critical points from the divergences of the third

order derivatives of the partition function, or more precisely of the derivatives ∂Λχ̃ and

∂Λ
¯̃χ. Therefore one begins by taking a Λ-derivative of (4.22) and its complex conjugate

Λ
− 1

2(1−n/R)
−1

4(1 − n
R )2

=

[

Λ
− 1

2(1−n/R)

1 − n
R

− (2 − n

R
)A +

n

R
Ā

]

∂Λχ̃ +
n

R

(

A + Ā

)

∂Λ
¯̃χ ,

0 =
n

R

(

A + Ā

)

∂Λχ̃ +

[

Λ̄
− 1

2(1−n/R)

1 − n
R

− (2 − n

R
)Ā +

n

R
A

]

∂Λ
¯̃χ . (4.25)

This is a linear algebraic system for the two derivatives ∂Λ∂φ̃ and ∂Λ∂̄φ̃. Therefore any

divergent (critical) behavior will be associated with the zeros of the discriminant

∣

∣

∣

∣

Λ
− 1

2(1−n/R)
c

1 − n
R

− (2 − n

R
)Ac +

n

R
Āc

∣

∣

∣

∣

2

− (
n

R
)2(Āc + Ac)

2 = 0 , (4.26)

where the subscripts are meant to imply that (4.26) only holds on the critical surface.

To reiterate, the 0A critical surface is constrained by (4.26), where A, Ā are defined

through (4.24). To obtain the critical surface we must first eliminate Ac, Āc in terms of Λc

and R. We proceed by combining (4.26) and the first equation in (4.24), and find that we

can solve for the critical Ac, Āc from a quartic equation

(2x−1)z4
c +4L1,c(3x−2)z3

c +24L2
1,c(x−1)z2

c +16L3
1,c(x−2)zc−16L2

1,c(L
2
1,c+L2

2,c) = 0 , (4.27)

where

z = 4(x − 1)Re(A) , L1 = Re(Λ
− 1

2(1−n/R) ) , L2 = Im(Λ
− 1

2(1−n/R) ) , x =
n

R
.(4.28)

The powers appearing in the definitions of L1,2 are such that L1 ∼ µ and L2 ∼ q (with

proportionality factors depending on R, t).

Before studying the entire critical surface, let us consider the zero flux limit, L2 =

0, where we expect to recover the results of section 4.3. In this case we find that the

solutions to the quartic equation are given by Re(Ac) =

(

2
2x−1 ,−2,−2,−2

)

L1,c

4(x−1) . The

degeneracy observed among the roots in this special case is only accidental. The first

(non-degenerate) root corresponds to the c = 1 critical surface (4.14), as can be verified
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0 1 x

-2

-1

1

2
L1

0 1 x

-2

-1

1

2
L1

0 1 x

-1

1
L2

0 1 x

-1

1
L2

Figure 3: The left plot depicts a slice through the 0A critical surface with L2 ∼ q = 0. The inner

curve L1 = L1(x) (closer to the x-axis) is the c = 1 critical curve discussed in section 4.3, where ∂2

µφ

diverges, while the outer line is a new feature of the 0A critical surface, where ∂2

qφ diverges. The

dotted lines indicate solutions of (3.45) where ∂2

µφ diverges, but which are probably not accessible

from the unperturbed 0A theory since they are completely enclosed by other critical surfaces. The

right plot takes L1 = 0 and shows the dependence on the flux parameter L2.

Figure 4: The left plot depicts the 0A critical surface, with emphasis on the dependence of L1 on

x. The right plot depicts the same surface, but from ”below”, which emphasizes the extent in the

L1,2 plane. To get oriented, compare the left 3d surface with the left cross-section in figure (3).

The ”tentacles” of the left surface continue all the way to x = 0, where they collapse to the points

L1 = ±2, L2 = 0. At x = 1, the surface collapses to a point at L1 = L2 = 0.

by comparison with (4.11). By expanding (4.24) around this non-degenerate root, while

keeping the RR flux zero, we can extract the divergent behaviour of ∂2
µφ ∼ (L1−L1,c)

−1/2 ∼
(Re(Λ) − Re(Λc))

−1/2. This was expected, and it is in accord with (4.16).
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The second (degenerate) root is novel, and corresponds to a straight line, |L1| =

2 (1 − x), where ∂2
qφ diverges. The critical behaviour at zero RR flux is given by ∂2

q φ ∼
(L1 − L1,c)

−1 ∼ (Re(Λ) − Re(Λc))
−1. This clearly distinguishes c = 1 perturbed by

momentum modes from 0A with q = 0, and the same perturbation. In figure (3) we

include plots of the intersection of the 0A critical surface with the L2 = 0 and L1 = 0

planes.

The full 0A critical surface is found by substituting the solutions of the quartic into

the remaining (second) equation of (4.24). This constraint defines a surface in the 3d space

parameterized by L1, L2 and x, which were introduced in (4.28). We used Mathematica to

generate the plots of the 0A critical surface shown in figure (4). We have plotted the 0A

surface in terms of the finite range variable x ∈ (0, 1) (i.e. R > n) and as a function of the

real and imaginary parts of the dual “Sine-Liouville” dimensionless parameter, Λ
− 1

2(1−n/R) .

Note that L2
1 + L2

2 → ∞ is the regime identified with the unperturbed 0A string theory.

The entire 0A critical surface is symmetric with respect to the L2 = 0 plane as well as the

L1 = 0 plane. It is also closed.

The line L1 = L2 = 0 of figures (3) and (4) is the momentum mode condensate (Sine-

Liouville) phase. Fixing L2 = 0 (as in the left plot of figure (3)) it would seem that the

critical surface obstructs a smooth connection to the unperturbed 0A regime |L1| À 1.

For x ∈ (0, 1
2) the obstruction includes the familiar c = 1 critical curve (4.14). The novel

(linear) component of the critical curve obstructs the entire range of x ∈ (0, 1). In figure (4)

we see that, for the range x ∈ (0, 1
2) the obstruction can be avoided by taking advantage

of non-trivial flux L2, while for x ∈ (1
2 , 1) the Sine-Liouville regime remains covered by

the critical surface. Note that this is precisely the opposite of the case in c = 1, where

x ∈ (0, 1
2) is obstructed and x ∈ (1

2 , 1) is not [11].

5. Outlook & holomorphic perturbations

There are a number of obvious extensions of the line of development presented in this work.

We have studied the perturbation of 0A string theory by momentum mode operators in

the presence of Ramond-Ramond flux. It would be of interest to address also the effect

of perturbing by winding operators when flux is present; some prior work in this direction

includes [20, 21]. Although of more technical difficulty (since the matrix model is no

longer in its singlet sector), such perturbations may shed light on the conjectured 0A black

hole [28]. Also, the study of the integrable structure of 0B string theory with non-trivial flux

is of obvious interest. The analysis of winding and momentum mode perturbations in that

case would provide another probe of T-duality for Type 0 strings. All of these directions

would provide a more detailed picture of the vacuum structure of two-dimensional string

theory.

There is a more novel direction which is suggested by the complexified Toda lattice that

we have introduced. We have not fully explored this structure for we have only examined

deformations by the momentum modes, which are given by B̂± ∼ e2i∂ε . Formally, it is

natural to further exploit the complex nature of the system by studying perturbations which
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preserve the holomorphicity existing at vanishing perturbation [6]. Such perturbations

involve the flux in a non-trivial way.

To make this more concrete, we consider the transformations

Û± = ei
P

n>0(b̃±n(ŷ;{t})ẑ−n/R
± +h.c.)e∓i(φ̃(ŷ;{t})/2+h.c.)ei

P

n>0(t±n ẑ
n/R
± +h.c.), (5.1)

for some complex parameters {t} and undetermined functions b̃ and φ̃ and where “h.c.”

denotes Hermitian conjugate. We will call these “holomorphic perturbations” since (5.1)

factorizes into an operator dependent only on ŷ and η̂±1 and one dependent only on ˆ̄y and
ˆ̄η±1. Thus, this is much like two decoupled copies of the transformation (2.8) for the c = 1

matrix model.

The string equation (3.31) is the same under this transformation as when perturbed

by momentum modes. The expansions of the complex Orlov-Shulman operator in terms of

the Lax operators are now

Ŷ+ = ŷ − 2n

R
t̄+n

ˆ̄Z
n/R
+ +

∑

k>0

v̄+k (ŷ) ˆ̄Z
−k/R
+ , (5.2)

Ŷ− = ŷ +
2n

R
t−nẐ

n/R
− +

∑

k>0

v−k (ŷ) Ẑ
−k/R
− , (5.3)

for some undetermined functions v±k. Combining the above expansions with the string

equation we obtain the holomorphic susceptibility equation

y − e−2∂φ =

(

2n

R

)2

t−nt̄+ne2(1−n/R)∂φ
( n

R
− 1

)

. (5.4)

Unlike (3.44), the above result does not mix ∂φ and ∂̄φ and so preserves the holomorphic

factorization of the unperturbed solution.

It is important to keep in mind that the physical interpretation of the holomorphic

perturbations is quite different from that of the momentum mode perturbations studied

throughout this work. In the absence of flux, perturbing by the matrix model operators

B̂± has the clear interpretation of adding tachyon vertex operators to the string worldsheet

action; this can be generalized to a flux background since B̂± still generate small defor-

mations in the Fermi sea at finite q. The holomorphic perturbations above are less clearly

interpreted, and perhaps should be understood as generating coherent states of D-branes

or discrete states. Alternatively, the interpretation may lie outside of 0A string theory

itself and require ideas from non-critical M-theory [24, 25]. It would be of great interest to

understand the full physical interpretation of these perturbations and the complex Toda

structure introduced herein.
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A. Chiral quantization of c = 1 matrix model

Here we will briefly review the chiral quantization of the fermion system dual to d = 2

bosonic string theory. Since these fermions are non-interacting we will make do with

single-particle quantization.

A.1 Operator algebra

Recall that the single-particle energy for the fermions in the c = 1 matrix model is given by

ε̂ =
1

2

(

p̂2 − x̂2
)

. (A.1)

The algebraic structure becomes clearer when we introduce the light-cone coordinates

x̂± ≡ 1√
2

(p̂ ± x̂) , (A.2)

which obey the following closed algebra (note ~ = 1)

[x̂+, x̂−] = i,

[x̂±, ε̂] = ±ix̂±,

{x̂+, x̂−} = 2ε̂. (A.3)

The first commutator indicates that x̂± are canonically conjugate, and the second that x̂±
are “shift operators” of ε̂. The third relation indicates that the Schrodinger equation is

first order in both the x± bases, which is a sizable advantage over the second order wave

equation in the position basis.

Using the above relations the Schrodinger equation can be expressed in either the x±
bases

∓i

(

x±∂x± +
1

2

)

Ψ(x±, t) = i∂tΨ(x±, t). (A.4)

Or for energy eigenfunctions, where Ψε(x±, t) = e−iεtψε(x±),

(

x±∂x± +
1

2

)

ψε(x±) = ±iε ψε(x±). (A.5)

A.2 States and eigenfunctions

For a given energy, ε, there are four states of interest which in ket notation are | ε, in/out,

L/R〉. The notation is such that in refers to fermions moving toward the origin and out

refers to those moving away. The label L/R refers to which side of the potential the fermion

is localized on. The in (out) eigenfunctions are most conveniently expressed in the x− (x+)
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bases. They are as follows

〈x−| ε, in,R〉 = θ(x−)
x
−iε− 1

2
−√

2π
,

〈x−| ε, in, L〉 = θ(−x−)
(−x−)−iε− 1

2√
2π

,

〈x+| ε, out,R〉 = θ(x+)
x

iε− 1
2

+√
2π

,

〈x+| ε, out, L〉 = θ(−x+)
(−x+)iε−

1
2

√
2π

. (A.6)

The in and out states are not independent, but rather are connected by the change of

basis, x− ↔ x+.

We can see that the in eigenfunctions are delta-function normalized by inserting a

complete set of x− eigenstates.

〈 ε′, in, a| ε, in, b〉 =

∫ ∞

−∞
dx−〈 ε′, in, a|x−〉〈x−| ε, in, b〉

= δ(ε′ − ε)δa,b, (A.7)

where the Roman letters label L/R. Similarly, by inserting a complete set of x+ states, we

can show

〈 ε′, out, a| ε, out, b〉 = δ(ε′ − ε)δa,b. (A.8)

It is also useful to consider parity eigenstates. Define

| ε, in,±〉 =
1√
2

(| ε, in,R〉 ± | ε, in, L〉) ,

| ε, out,±〉 =
1√
2

(| ε, out,R〉 ± | ε, out, L〉) , (A.9)

where the third quantum number labels the parity eigenvalue.

A.3 Unperturbed scattering

Scattering in the unperturbed problem involves only a simple change of basis. We want

to compute 〈 ε′, out, a| ε, in, b〉. This is easily done by inserting complete sets of states of

both x±. Note that in performing the calculations, one must use 〈x+|x−〉 = 1√
2π

eix+x−

which follows from the canonical commutator [x+, x−] = i. We will also need use of the

integrals [29]

Γ(z) =
bz

sin πz
2

∫ ∞

0
dt sin (bt) tz−1

Γ(z) =
bz

cos πz
2

∫ ∞

0
dt cos (bt) tz−1. (A.10)
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The scattering is completely diagonal in the parity basis

〈 ε′, out,±| ε, in,∓〉 = 0,

〈 ε′, out,±| ε, in,±〉 =
1√
2π

(

e
iπ
4

+ επ
2 ± e−

iπ
4
− επ

2

)

Γ

(

1

2
− iε

)

δ(ε′ − ε)

= eiπ/4

√

1 ∓ ie−πε

1 ± ie−πε

√

Γ
(

1
2 − iε

)

Γ
(

1
2 + iε

)δ(ε′ − ε). (A.11)

To discuss the c = 1 matrix model we consider only the parity odd states. Then we can

write the scattering as

| ε, in,−〉 = S(ε)| ε, out,−〉, (A.12)

where the bounce factor is defined as

S(ε) = eiπ/4

√

1 + ie−πε

1 − ie−πε

√

Γ
(

1
2 − iε

)

Γ
(

1
2 + iε

)

≈ e−iπ/4

√

Γ
(

1
2 − iε

)

Γ
(

1
2 + iε

) . (A.13)

In the second line we have neglected terms of order eπε, i.e. we consider large negative

energy with negligible tunneling. This is appropriate and indeed required in the c = 1

model which is defined only by perturbation theory in 1
|ε| .

The expression (A.12) indicates the in and out states are not independent. In-

deed, (A.12) appears to be the conventional relationship between scattered states, but

this is incorrect. Both | ε, in/out,−〉 are solutions to the time-independent Schrodinger

equation and so (A.12) is an equality valid at all finite times. That is, there is no implicit

insertion of the time translation operator evolving time from t = −∞ to t = +∞. To

eliminate this redundancy, define

| ε〉 = S−1/2(ε)| ε, in,−〉 = S1/2(ε)| ε, out,−〉. (A.14)

Then we have two equivalent expressions for the same state, given in different bases

ψ±
ε (x±) = 〈x±| ε〉 =

S±1/2(ε)√
4π

sign(x±)|x±|±iε− 1
2 . (A.15)

Even though we consider the c = 1 theory where the fermions are localized on one side

of the barrier, to calculate probabilities one should still integrate over all x±, i.e. the

wavefunctions (A.15) are delta-function normalized on the whole interval x± ∈ R.

B. Chiral quantization of 0A matrix model

We reproduce here results from the appendix of [6] for our normalization differs in its q-

dependence. Consider now particles moving in a plane with a radial harmonic oscillator

potential which in Cartesian coordinates has the Hamiltonian

ε̂ =
1

2

(

p̂2
1 − x̂2

1 + p̂2
2 − x̂2

2

)

. (B.1)
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It is useful to apply chiral quantization as in c = 1 to both degrees of freedom,

x̂±,i ≡
p̂i ± x̂i√

2
,

[x̂±,i, x̂∓,j] = ±iδij . (B.2)

For future use, note that the kernel of this transformation is

〈xi| x±,i〉 =
21/4e±iπ/8

√
2π

exp

[

∓i

(

x2
i

2
∓

√
2xix±,i +

x2
±,i

2

)]

, (B.3)

where we have chosen the phase in (B.3) so as to have a simple form for the inner-product

〈x+,i| x−,i〉 =
1√
2π

exp (ix+,ix−,i) . (B.4)

It is not as straightforward to compute the relevant inner products and wave-functions

as in the c = 1 theory so we must go through a series of changes of variables. First,

introduce the conventional polar coordinates

x̂1 = r̂ cos θ̂ , x̂2 = r̂ sin θ̂ . (B.5)

So that |x1, x2〉 are delta-function normalized, the kernel of this change of basis is

〈x1, x2| r, θ〉 =
√

xδ (x1 − r cos θ) δ (x2 − r sin θ) .. (B.6)

The momentum conjugate to θ is the conserved charge q̂ = x̂1p̂2 − x̂2p̂1. It is also of use

to introduce polar coordinates in phase space via

x̂±,1 = r̂± cos θ̂± , x̂±,2 = r̂± sin θ̂± . (B.7)

which have an integral kernel analogous to (B.6). The relation between conventional polar

coordinates and the phase space polar coordinates is easily derived to be

〈r±, θ±| r, θ〉 =

∫

dx1dx2dx±,1dx±,2 〈r±, θ±| x±,1, x±,2〉

× 〈x±,1, x±,2|x1, x2〉 〈x1, x2| r, θ〉

=
e∓iπ/4

2π

√

2rr± exp

[

±i

(

r2

2
∓

√
2rr± cos (θ − θ±) +

r2
±
2

)]

. (B.8)

It is convenient to exchange θ± for the conjugate momenta q±

〈r, θ |r±, q± 〉 =
e±iπ/4

(2π)3/2

√

2rr±e∓i( r2

2
+

r2
±
2

)

∫ 2π

0
dθei(q±θ±+

√
2rr± cos(θ−θ±))

=
e±iπ/4i|q±|

√
2π

√

2rr±e∓i( r2

2
+

r2
±
2
∓q±θ)J|q±|

(√
2rr±

)

, (B.9)
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and then calculate

〈r+, q+ |r−, q− 〉 =
e−iπ/2i|q−|−|q+|

2π
2
√

r+r−ei(r2
++r2

−)/2

∫ 2π

0
dθeiθ(q−−q+)

×
∫ ∞

0
rdreir2

J|q+|
(√

2rr+

)

J|q−|
(√

2rr−
)

= δq+q−i|q+|√r+r−J|q+| (r+r−) . (B.10)

We almost have all of the ingredients for the scattering phase. First we note that

the momenta conjugate to r̂± must classically satisfy the Poisson brackets {r±, p±} = 1.

Using x+,i as the generalized coordinates and x−,i as their momenta, we easily obtain

p± = ±ε/r±. When promoted to operators this is written

ε̂ = ±1

2
(r̂±p̂± + p̂±r̂±) , (B.11)

which yields the time-independent wavefunctions

〈r∓| ε, in/out〉 =
1√
2π

r
∓iε−1/2
∓ . (B.12)

Finally, we compute the scattering phase by combining the results of this appendix,

〈

ε′, q′, out
∣

∣ ε, q, in
〉

=

∫ ∞

0
dr−dr+

∑

q+,q−

〈

ε′, q′, out
∣

∣ r+, q+

〉

〈r+, q+| r−, q−〉 〈r−q−| ε, q, in〉

= δqq′δ
(

ε − ε′
)

2−iεi|q|
Γ

(

1
2 (1 + |q| − iε)

)

Γ
(

1
2 (1 + |q| + iε)

) . (B.13)

Thus the scattering phase is given by

S(ε, q) = 2−iεi|q|
Γ

(

1
2 (1 + |q| − iε)

)

Γ
(

1
2 (1 + |q| + iε)

) . (B.14)

C. An alternate derivation of the 0A string equations

Consider the compactified, unperturbed, all-genus 0A partition function [6]

lnZ = −1

2
Re

∫ ∞

0

dt

t

eitR(µ+iq)/2

sinh( t
4R ) sinh(t/2)

, (C.1)

where we have neglected terms analytic in µ. Using the notation introduced previously,

y = µ + iq, ∂ = ∂
∂y , we arrive at the functional equation

−4 sin(∂/(2R)) sin(∂) lnZ = ln(y) (C.2)

where we have implicitly regularized the rhs of the above equation. Similarly, we find

−4 sin(∂̄/(2R)) sin(∂̄) lnZ = ln(ȳ) . (C.3)
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Following Kostov [12], we will map these functional equations for the unperturbed

partition function into the complex string equation derived in section 3. First, we shall

identify the partition function with the τ(y, ȳ)-function of the complexified Toda hierarchy:

lnZ = ln(τ).

Next, we recall that in the absence of perturbations, the Lax operators are simply

dressed complex shift operators

Z− = W−η−1W−1
− , Z̄+ = W+ηW−1

+ , plus the c.c., (C.4)

where the dressing functions, with the perturbations turned off are W± = e∓iφ0/2. More-

over, given that the scattering phase and the τ -function are related through

φ(µ; q) = i ln

(

τ(µ − i
2R)

τ(µ + i
2R)

)

, (C.5)

we derive

W−(µ)

W+(µ)
=

τ(µ + i
2R )

τ(µ − i
2R )

(C.6)

which in terms of the complex variable y reads

W−(y, ȳ)

W+(y, ȳ)
=

τ(y + i
2R , ȳ + i

2R)

τ(y − i
2R , ȳ − i

2R)
(C.7)

At this moment it is useful to also recall that the unperturbed partition function, and

therefore τ , enjoys a holomorphic factorization, already transparent from (C.1). This fact

is a manifestation of the expression for the scattering phase, which factorizes holomorphi-

cally in a manifest way. Clearly, this property carries through to the unperturbed dressing

operators. We conclude then that the previous equation can be decomposed (up to nor-

malization constants) in

W−(y)

W+(y)
=

τ(y + i
2R )

τ(y − i
2R )

(C.8)

and its complex conjugate.

We have now gathered all the information we need to proceed with the derivation of the

string equations. To this end we now turn back to the functional-differential equation (C.2),

which when integrated yields

y =
τ(y + i

2R + i, ȳ)

τ(y − i
2R + i, ȳ)

τ(y − i
2R − i, ȳ)

τ(y + i
2R − i, ȳ)

(C.9)

The latter expression, according to the previous discussion on the holomorphic factorization

properties of the unperturbed τ -function, reduces to

y =
τ(y + i

2R + i)

τ(y − i
2R + i)

τ(y − i
2R − i)

τ(y + i
2R − i)

. (C.10)

– 28 –



J
H
E
P
1
2
(
2
0
0
6
)
0
0
8

In the next step we substitute (C.8), to arrive at

y =
W−(y + i)

W+(y + i)

W+(y − i)

W−(y − i)
. (C.11)

Equivalently, this equation can be written as
[

W+(y)−1W−(y)

]

η−1

[

W−(y)−1W+(y)

]

η = y − i

η

[

W+(y)−1W−(y)

]

η−1

[

W−(y)−1W+(y)

]

= y + i .

(C.12)

Also, since (W−)−1W+ = eiφ0 it is a trivial statement that (W−)−1W+y[(W−)−1W+]−1 =

y. Furthermore, based on the Toda hierarchy flow equations, it can be shown that the

operator (W−)−1W+ is independent of the couplings tn, t−n. This means that (C.12) hold

in general. In fact, these equations constitute the constraint among the Lax and Orlov-

Shulman operators that we called the string equations

Z̄+Z− = Y + i , Z−Z̄+ = Y − i . (C.13)

As highlighted by this derivation, the complex nature of the 0A string equations arises

naturally from the holomorphicity of the unperturbed partition function.

D. Comparison with low-order correlators

We here confirm the consistency of the complex susceptibility equation (3.45) with calcu-

lations of low-order tachyon correlators as stated in section 4.4. To facilitate comparison

with [23] we first introduce

p ≡ 2n

R
, (D.1)

the momentum of our perturbations, so that (4.20) becomes

e−2∂µφ =
µ2

[

1 − (p − 1) p2t2e−(p−2)∂µφ
]2 +

q2

[

1 − p2t2e−(p−2)∂µφ
]2 . (D.2)

We then expand ∂µφ as

−∂µφ =
1

2
log

(

µ2 + q2
)

+
∑

m>0

t2m

(m!)2
am, (D.3)

and solve iteratively for the am. Recalling (4.19)

∂µφ = R−1∂2
µ logZ = R−1

[

∂2
µ logZ0 +

∑

m>0

t2m

(m!)2
∂2

µ

〈

T m
2n/RT m

−2n/R

〉

]

, (D.4)

we can identify the coefficients in (D.3) with the tachyon correlators

am = −R∂2
µ

〈

T m
p T m

−p

〉

. (D.5)
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We reproduce the first few correlators here, as predicted by (D.3):

∂2
µ 〈TpT−p〉 = −R−1p2

(

µ2 + q2
)(p−4)/2 [

(p − 1) µ2 + q2
]

, (D.6)

∂2
µ

〈

T 2
p T 2

−p

〉

= −2R−1
[

p2
(

µ2 + q2
)(p−4)/2

]2 [

(p − 1)2 (2p − 3) µ4

+
(

18 − 22p + 7p2
)

µ2q2 + (2p − 3) q4
]

, (D.7)

∂2
µ

〈

T 3
p T 3

−p

〉

= −6R−1
[

p2
(

µ2 + q2
)(p−4)/2

]3 [

(3p − 5) (3p − 4) (p − 1)3 µ6

+3
(

100 − 247p + 239p2 − 106p3 + 18p4
)

µ4q2

+ 3
(

−100 + 179p − 108p2 + 22p3
)

µ2q4 + (3p − 5) (3p − 4) q6
]

. (D.8)

We now wish to compare with the results of [23], which quotes several Am (see their

(3.11)9) defined through

〈

T0T m
p T m

−p

〉

=
(

µ2 + q2
)mp/2

Am. (D.9)

These correlators
〈

T0T m
p T m

−p

〉

, are related to
〈

T m
p T m

−p

〉

, in both c = 1 and 0A, via

∂µ

〈

T m
p T m

−p

〉

=
〈

T0T m
p T m

−p

〉

. (D.10)

This was first recorded in [30] and exploited in [22]. We thus obtain

∂2
µ

〈

T m
p T m

−p

〉

= ∂µ

[

(

µ2 + q2
)mp/2

Am

]

. (D.11)

Using this expression and the Am in [23] we see that our correlators match, up to an overall

normalization factor R.
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