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1. Introduction

The open/closed string correspondence is one of the fundamental concepts in the modern

understanding of string theory. This correspondence provides, in various cases, a non-

perturbative definition of string theory.

The AdS/CFT correspondence is perhaps one of the best studied instances of the

open/closed string correspondence. Another very important case is string theory in two

dimensions where the open string side of the correspondence is described via a matrix

model. The main attraction of the open/closed string correspondence in two dimensions

resides in the ability to obtain exact results on both sides of the correspondence.

The simplest case of two-dimensional duality is provided by the c = 1 model. The

open string side is described by an exactly solvable random matrix model with inverted

harmonic potential. The closed string side is a Liouville theory which has been solved using

the conformal bootstrap.

Recently, two new non-supersymmetric two-dimensional string theories have been for-

mulated and their corresponding matrix models identified [1, 2]. In the spirit of the renor-

malization group flow, it is natural to study the deformation of the above correspondence,

that is to study the relationship between the two descriptions after adding operators or

expectation values to these theories.
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In this paper we study the deformation of two-dimensional type 0A string theory by

momentum modes. We employ a technique successfully applied to the c = 1 model by G.

Moore in [3] (see also [4]). This technique uses a combination of conformal perturbation

theory and matrix model results. In recent years, the beautiful results of [3, 4] have been

reproduced and improved using alternative techniques [5, 6]. In particular, the study of

adding momentum and winding perturbations to the c = 1 model has explicitly revealed the

rich mathematical structure of integrable systems in these models [7 – 10]. Various physical

aspects related to phase transitions have been confirmed and reinterpreted. Most remark-

ably among them are the connection with the Euclidean two-dimensional black hole [6]

and to time-dependent backgrounds [10 – 13].

The idea that some two-dimensional black holes admit a matrix model description has

a long history. A prominent role has been played by a deformation of the inverted harmonic

oscillator matrix model due to Jevicki and Yoneya (JY) [14]. This precise matrix model

has resurfaced recently as it describes type 0A string theory in the presence of D-branes [2].

Indeed, there was some evidence that certain aspects of the deformed matrix model

match their counterpart in the 0A two-dimensional black hole [15]. A closer examination,

however, showed that the thermodynamics of two-dimensional type 0A black holes does not

match that of the deformed matrix model [16 – 18]. It was suggested in [16], that the two-

dimensional 0A black hole has properties similar to that of a different deformation of the

c=1 matrix model considered by Boulatov and Kazakov [5] and applied to the c = 1 black

hole in [6]. Kazakov and Tseytlin [19] compared the matrix model deformed by vortices

with the exact two-dimensional black hole obtained in [20] and found some qualitative

agreement. Despite much effort, the existence of a direct correspondence between two-

dimensional Lorentzian black holes and matrix models is still under scrutiny [21].

Irrespectively of the ultimate relationship of perturbed two-dimensional string theories

with two-dimensional black holes, our work is interesting in its own right as it provides

an explicit expression for the partition function of the Jevicki-Yoneya (JY) model in the

presence of momentum modes. From the matrix model point of view we are computing the

effect of adding momentum modes in a model that provides a non-perturbatively calculable

unitary S matrix [22]. Other interesting nonperturbative aspects have been discussed in,

for example, [23 – 26].

The paper is organized as follows. In section 2 we review the work of Moore in [3],

outlining the strategy that we will follow and introducing most of the notation. Section 3

contains our main result, the partition function of the two-dimensional type 0A string

theory perturbed by momentum modes. Using the dual matrix model description in terms

of free fermions, the deformed JY model, we find an explicit analytical expression for the

genus zero partition function, in the limit of a vanishing Fermi energy. In section 4 we

analyze the phase diagram in terms of the three parameters: the momentum p, the RR

flux q and the coupling constant of the momentum modes α. We conclude in section 5

with comments on the approximations used in this paper and some open problems. In

appendix A we apply the Lagrange Inversion Formula to obtain and analytic expression

for the partition function and comment on its analytic continuation.
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2. Review of the gravitational Sine-Gordon model (c = 1 perturbed by

momentum modes)

In this section we review Moore’s analysis [3]. Similar calculations were also performed

in [4], and in [6]. This review should provide much of the notation and the logical framework

we will use in the next section.

The Sine-Gordon (SG) model coupled to two-dimensional gravity is given by the fol-

lowing action:

S(µ, λ) =

∫

d2z
√

ĝ

(

1

8π
(∇φ)2 +

µ

8πγ2
eγφ +

Q

8π
φR(ĝ)

)

+

∫

d2z
√

ĝ

(

1

8π
(∇X)2 + λeξφ cos(pX)

)

, (2.1)

where ĝ is a background metric, R its curvature, µ the cosmological constant. The theory

is conformal for γ =
√

2, Q =
√

8, ξ = γ(1 − |p|/2) in the convention where α′ = 1.

There are various motivations for considering the above problem. Coupling the SG

model with two-dimensional gravity helps understand aspects of the SG model as a quan-

tum field theory. For example, properties like the existence of certain RG trajectories are

expected to be insensitive to coupling to gravity.

The interpretation that is more along the lines of our interest here is as follows. Con-

sider the free action of two uncompactified real fields φ and X:

SLiouville + SGaussian =

∫

d2z
√

g

(

1

8π
(∇φ)2 +

Q

8π
φR(g)

)

+

∫

d2z
√

g
1

8π
(∇X)2. (2.2)

It is natural to consider, in the spirit of RG, perturbing this action by an operator of the

form
∑

i

eξiφOi, (2.3)

where Oi are operators of the c = 1 Gaussian model, the values of ξi are selected such that

the dressed operator has conformal dimension one. For the choice of Oi made in (2.1), the

problem formulated above is that of perturbing the c = 1 model by momentum modes.

The central object is the partition function defined as

Z =
〈

e−S(µ,λ)
〉

. (2.4)

In the limit were λ is very small, the techniques of conformal perturbation theory become

available to us. Namely, we can think of Z as a series expansion of the form:

Z =

∞
∑

n=0

λn

n!
〈
(

cos pXeξφ
)n

〉λ=0 =

∞
∑

n=0

(1
2λ2)n

(n!)2
〈(eipX+ξφ)n(e−ipX+ξφ)n〉λ=0. (2.5)

As can be seen from the above expression, we will be interested in correlators of the form

〈

∏

Vqi
e

1
2
λ(Vp+V

−p)
〉

≡
∑

n1,n2≥0

λn1+n2

2n1+n2n1!n2!

〈

∏

Vqi
(Vp)

n1(V−p)
n2

〉

. (2.6)
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where

Vp =

∫

d2z
√

ĝeξφeipX . (2.7)

A remarkable aspect of the duality between two-dimensional string theories and matrix

models is that one can actually compute all the correlators in (2.6) using matrix mo-

dels [27, 3].

In the matrix model framework it is convenient to work with rescaled operators and

coupling:

J±p =
Γ(p)

Γ(−p)
V±p =

Γ(p)

Γ(−p)

∫

d2z
√

geξφe±ipX , α =
Γ(−p)

Γ(p)
λ. (2.8)

Note that with the above notation the partition function takes the simple form of:

Z =
〈

eαJp+αJ
−p

〉

. (2.9)

In principle, one could proceed to evaluate
〈

J n
p J n

−p

〉

using the prescription of [27]. However,

a simpler way to evaluate it is by inserting a zero momentum operator inside the correlators.

The simplification comes about due to a couple of observations made in [27]. First, note

that introducing J0 into a correlator is equivalent to differentiating the correlator with

respect to µ. Second, since µ always enters as p + iµ we see that differentiation with

respect to µ is equivalent to differentiation with respect to p. Inspecting the general form

of the amplitudes in [27] we see that differentiating with respect to momentum turns the

θ-functions into δ-functions making integration a simple task. In other words, inserting

J0 into the amplitudes has the advantage of turning a complicated integration into a

manageable combinatorial formula presented in appendix A of [3]:

An(µ, p) ≡ µ−np
〈

J0J n
p J n

−p

〉

(2.10)

= i(−1)n(n!)2
n

∑

k=1

(−1)k

k

∑

ai,bi

(

k
∏

i=1

b2
i −

k
∏

i=1

a2
i

)

C(a1, . . . , bk)
k

∏

i=1

RaipR
∗
bip

(ai)!2(bi)!2
,

where Rp is the bounce factor of c = 1 for momentum p. The sum is over all partitions of

n = a1 + b1 + . . . + ak + bk with ai, bi ≥ 0 such that

C−1(a1, . . . , bk) ≡ (a1 + b1)(b1 + a2)(a2 + b2) . . . (ak + bk)(bk + a1), (2.11)

is nonzero. The last step in recovering the amplitudes that enter in the partition function

involves integrating over µ.

Since we are interested in the genus zero partition function, it is worth considering the

asymptotic form of the bounce factor for the c = 1 model

Rµ→∞
p = exp

[

pψ +
∑

n≥1

inpn+1

(n + 1)!

(

d

dµ

)n

(log µ + ψ)

]

= 1 +
ip2

2µ
+ . . . , (2.12)

where,

ψ ≡
∑

k≥1

(−1)kB2k

2k
(1 − 2−2k+1)

1

µ2k
, (2.13)
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and B2k are the Bernoulli numbers. With this expression for the bounce factor Moore finds

that the genus zero amplitude is given by

Ah=0
n (µ, p) ≡ µ−np〈J0J n

p J n
−p〉 = n!µ−2n+1 Γ(n(1 − p) + n − 1)

Γ(n(1 − p) + 1)
(1 − p)np2n . (2.14)

Integrating with respect to µ we find that the needed correlators are:

〈

J n
p J n

−p

〉

= −µnp−2n+2n!p2n(1 − p)n
Γ(n(1 − p) + n − 2)

Γ(n(1 − p) + 1)
. (2.15)

An insightful way of assembling the answer was presented in [6].1 Using that

∑

n≥0

Γ(na + b − 1)

n!Γ(n(a − 1) + b)
(−z)n =

(1 − s)b−1

b − 1
, where

s

(1 − s)a
≡ z, (2.16)

one obtains an expression for the susceptibility χ = ∂2
µZ of the form:

χ = − lnµ + ln(1 − s), (2.17)

where in this case

z = α2 p2(p − 1)µp−2, a = 2 − p, b = 1. (2.18)

This expression for the susceptibility can be rewritten as

µ eχ + α2 p2 (p − 1)e(2−p)χ = 1. (2.19)

The main advantage of the above expression is that it allows finding the large α behavior in

the region where µ can be turned off. As a bonus, the KPZ scaling in the new coupling [3, 6]

can be verified automatically. Namely, we find that in this limit

χµ=0 = − 1

2 − p
ln α2p2(p − 1). (2.20)

3. Type 0A perturbed by momentum modes

In this section we discuss perturbing two-dimensional type 0A string theory by momentum

modes following the techniques of [3, 4].

The matrix model description of type 0A with q unit of fluxes2 was recently estab-

lished [2] to be the Jevicki-Yoneya (JY) matrix model [14]. Essentially, this is a matrix

model with the following potential:

V (x) = −x2

2
+

q2 − 1/4

2x2
. (3.1)

1In appendix A we included a derivation of this formula as an application of the Lagrange Inversion

Formula.
2Recently, a clarification of the meaning of q has been given [28] as the sum of the two distinct fluxes and

was denoted by q̂. A similar interpretation was put forward previously in [18] based on a thermodynamical

analysis of the low energy supergravity action.
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This model was solved a decade ago, its non-perturbative S-matrix and the explicit form

for some of the amplitudes were discussed in [22, 29].

Our goal is to compute the partition function of the two-dimensional type 0A string

theory, with non-vanishing RR flux, and in the presence of momentum perturbations. For-

mally, we would like to compute:

Z = 〈exp(λ cos(pX)eξφ)〉0A . (3.2)

where ξ = (1 − p), and λ is the coupling of the momentum perturbation and we now

work in the convention where α′ = 1/2. In practice, however, we lack a worldsheet action

analogous to (2.1). Nevertheless, via the string/matrix model correspondence we take the

momentum correlators in two-dimensional type 0A to be those of momentum operators in

the JY matrix model. Then, we interpret (3.2) as defined with the momentum correlators

computed using the matrix models. Within conformal perturbation theory, the partition

function is composed of building blocks similar to the c = 1 case, that is, the partition

function is obtained from correlators of the form 〈J n
p J n

−p〉.

3.1 Bounce factor

Our starting point is the bounce factor of the JY matrix model:

R(p) =

(

4

q2 + µ2 − 1/4

)p/2 Γ(1
2 (1 + q + p − iµ))

Γ(1
2 (1 + q − p + iµ))

. (3.3)

As in the c = 1 model, we build the genus zero partition function in the presence of

momentum modes perturbatively in the coupling constant λ, with λ ¿ µ. This amounts

to expanding the bounce factor as a series in inverse powers of µ. However, as a result of

having µ → ∞ in this expansion, the dependence on the RR flux will be washed out. To

avoid this we choose an alternative limit in which the RR flux scales with µ:

q = µf . (3.4)

Introducing the notation

µ1 =
µ

2
(if + a), µ2 =

µ

2
(if − a) , (3.5)

up to an overall p-independent phase we can rewrite the bounce factor (3.3) as

R(p) = (−µ1µ2)
p/2

( −16

16µ1µ2 + 1

)p/2

exp

(

p

2
ψ(µ1) +

p

2
ψ(µ2)

+
∑

n≥1

pn+1

2n+1(n + 1)!
(∂n

µ1
ln µ1 + (−)n∂n

µ2
ln µ2 + ∂n

µ1
ψ(µ1) + (−)n∂n

µ2
ψ(µ2))

)

, (3.6)

where ψ is defined as in (2.13). In (3.5), a is a marker introduced for later purposes, with

a = 1 its canonical value. Introducing a allows, among other things, to turn off µ (by

setting a = 0) without turning off the RR flux at the same time. Also, the limit f = 0 is

expected to bring us back to the c = 1 bosonic string.

– 6 –
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Expanding in the first few orders in inverse powers of µ we get:

R(p) = 1 +
i

2

a

µ(f2 + a2)
p2

− p

24µ2(f2 + a2)2
(

−7f2 + a2 + 4p2f2 − 4p2a2 + 3p3a2
)

− i

48

a

µ3(f2 + a2)3
p2

(

−8a2 + pa2 + 4p2a2 − 4p3a2 + p4a2

+ 24f2 − 7pf2 − 12p2f2 + 4p3f2
)

+ O(µ−4) . (3.7)

Some consistency checks are in order. First, note that for f = 0 we basically return to

the c = 1 model (setting a = 1).3 In this case, the first line in the above expression

coincides with the appropriate result quoted in (2.12). A less trivial consistency check can

be obtained as follows. Setting a = 0 brings us to the case discussed in [22], where the

coupling was identified as M = (µ f)2−1/4. The first interesting observation is that in the

expansion of the bounce factor all odd powers of µ−1 are proportional to a and therefore

vanish in the limit a → 0, in perfect agreement with [22]. Taking a to zero in (3.7) we

obtain (including a term not written above)

R(p) = 1 +

(

7

24
p − 1

6
p3

)

M−1 (3.8)

+
p(p − 2)

5760

(

80p4 − 128p3 + 536p2 + 128p + 510)
)

M−2 + O(M−3) .

This reproduces the expansion of the bounce factor of Demeterfi, Klebanov and Ro-

drigues [22] (equations (12) and (13)). Notice that in the limit when the free fermion

Fermi energy µ is vanishing, and one expands the bounce factor in M , the strength of the

deformation in (3.1), the infinite series expansion in (3.8) truncates for even integer values

of the momentum.

3.2 Correlators

As mentioned before, the building blocks of the partition function are correlators of the

form 〈J n
p J n

−p〉. They can be computed directly with the methods developed by [27], but

the calculations can soon become rather tedious. Instead, as in [3], it is technically simpler

to compute correlators with an extra insertion of a zero-momentum vertex operator which

we will denote by An. This section is dedicated to their evaluation after which we can

proceed with the derivation of the partition function.

3.2.1 〈J0J n
p J n

−p〉 correlators

The An amplitudes are related to the correlators we need for the partition function by the

following equation:

An = (
√

µ2 + M)−np 1

µ
∂a((

√

µ2 + M)npRn→n) = (
√

µ2 + M)−np〈J0J n
p J n

−p〉 . (3.9)

3Strictly speaking the c = 1 limit is obtained by setting the deformation in (3.1) to zero, which amounts

to setting f = 1/(2µ) in (3.7) and next re-expanding in µ → ∞. This will precisely reproduce the bounce

factor of the c = 1 matrix model. In particular, upon making this substitution, the a priori infinite series

in (3.7) will truncate to order 1/µn for an integer value of the momentum p = n.

– 7 –
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where Rn→n =
√

µ2 + M
−np〈J n

p J n
−p〉 is the S-matrix element corresponding to the scat-

tering of n tachyons of equal momenta into n tachyons of equal momenta.

This stems form the observation that, as in the case of the c = 1 model, in the bounce

factor the dependence on the momentum p arises in the combination p − iµa, with the

exception of the prefactor
√

µ2 + M
−p

. Hence we can trade again the differentiation with

respect to a for a differentiation with respect to the momentum. The latter, after partial

integration, when acting on the Heaviside functions of the integrand, yields delta-functions

and so, the net effect is to reduce the evaluation of (3.9) to the same simple algebraic

computation according to (2.10). Recall that in (2.10) the insertion of the cosmological

constant J0 inside the correlator was done with the same means of differentiating with

respect to µ, and to the same end. Thus, (3.9) can be evaluated as in the c = 1 case,

using the definition of (2.10), where we insert the asymptotic expansion of the bounce

factors (3.6). At the expense of being too explicit but with the hope of exemplifying the

simplification achieved by the combinatorial formula quoted in (2.10) and obtained in [3]

we list the first few terms:

− iA1 = R0R
∗
p − RpR

∗
0,

−iA2 = R2pR
∗
0 − R0R

∗
2p − 2R2

pR
∗2
0 + 2R2

0R
∗2
p,

−iA3 = R0R
∗
3p − R3pR

∗
0 + 3RpR

∗
2p − 3R2pR

∗
p + 9RpR2pR

∗
0
2 − 9R∗

pR
∗
2pR

2
0

+9R2
pR

∗
pR

∗
0 − 9RpR

∗
p
2R0 − 12R3

pR
∗
0
3 + 12R3

0R
∗
p
3, (3.10)

where ∗ represents complex conjugation. All we need to do at this point is to substitute

the asymptotic expansion for the bounce factor (3.6). We present only the first few genus

zero correlators:

A1 = − ap2

µ(f2 + a2)
,

A2 = −2!
ap4[(p − 1)2a2 + (2p − 3)f2]

µ3(a2 + f2)3
,

A3 = −3!
ap6[(p − 1)3(3p − 4)a4 + (13p3 − 54p2 + 78p − 40)a2f2 + (3p − 4)(3p − 5)f4]

µ5(a2 + f2)5
,

. . . (3.11)

The higher genera correlators correspond to subleading order terms in 1/µ2n−1+h.

We would like to comment on the main difference between the c = 1 correlators (which

at genus zero are obtained by setting f = 0 in (3.11)), and the generic case with both a, f

non-vanishing. Namely, in the c = 1 case all correlators An with n ≥ 2 vanish for a special

value of the momentum, p = 1. The reason why this is happening is that for p = 1, the

c = 1 bounce factor is simply R(p = 1) = 1 + i
2µ , and for integer momenta R(p = n) is a

degree n polynomial in 1/µ. Substituting this into (3.10) one finds that the highest power

of 1/µ for a given n is 1/µn. However, according to KPZ scaling, these correlators should

scale with 1/µ2n−1. Thus, for p = 1, all An with n ≥ 2 must vanish. A short proof by

induction shows that p = 1 is a zero of order n for the amplitude An.

– 8 –
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On the other hand, in the 0A case the bounce factor is an infinite series in 1/µ

(see (3.7)), and the previous argument does not apply anymore. Indeed, the correla-

tors (3.11) have the right KPZ scaling, and are non-vanishing for p = 1 as long as the

RR flux is not turned off (f 6= 0). It is also worth mentioning that even though there

is a similar truncation of the bounce factor that takes place for the 0A bounce factor for

even integer values of the momentum, this truncation happens only for µ = 0. In fact, the

correlators An are odd 2n + 1-point functions which vanish when µ (read a) is zero.

3.2.2 The µ → 0 limit and 〈J n
p J n

−p〉 correlators

As it has been already discussed in the previous section, we obtain the building blocks of

the partition function in the presence of momentum modes, 〈J n
p J n

−p〉, by performing the

integration with respect to a in (3.9).

First, we notice that by setting the RR flux to zero (f = 0) we reproduce the correlators

of the c = 1 model (2.15), as expected. As shown in [3] and reviewed in section 2, at zero

RR flux the correlators acquire an expression that can be generalized for all n.

For general values of the Liouville coupling µ and RR flux we have been unable to find

a universal expression for all n correlators. Interestingly, there is another limit4 where such

an universal expression can be found. The limit sends the cosmological constant to zero,

µ → 0 (or equivalently f À 1). In this limit, the correlators which enter in the genus zero

0A partition function can be written as:

〈J n
p J n

−p〉 = −n!(−1)nqnp−2n+2(1 − p)p2n Γ(n(2 − p) − 2)

Γ(n(1 − p) + 1)
, (3.12)

where, after taking the limit f À 1, we reverted to the original notation µf = q, with q

the RR background flux of the two-dimensional type 0A string.5 We would like to stress

that the limit f À 1 should not be taken prematurely. Even though the correlators (3.11)

organize themselves in such a way that in the numerator, which is a polynomial in f , the

highest and lowest order term in f can be written as ratios of Euler Γ-functions while the

rest of the terms have no apparent structure, as we perform the integral over a all the

terms in the numerator are equally contributing to the final result (3.12).

Our formula (3.12) reproduces known results in the literature. Namely, for the 2-point

function we obtain:

〈JpJ−p〉 =
1

2
qpp , (3.13)

which coincides with the results of [14, 22, 29]: see for instance eqn (15) in [22]. Recall

that the correlators and n-point functions are related by multiplication with leg factors:

< J n
p J n

−p >= Rn→n(p, . . . p;−p, · · ·−p)q2np/2. Similarly, we find agreement for the 4-point

4This limit was discussed recently by A. Kapustin [24].
5Amusingly, the next-to-leading order term in a/f , or equivalently µ/q, has also a universal expression:

〈J n
p J n

−p〉 = −n!(−1)nqnp−2n+2p2n

„

(1 − p)
Γ(n(2 − p) − 2)

Γ(n(1 − p) + 1)
+

µ2

2q2

Γ(n(2 − p))

Γ(n(1 − p) + 1)

«

. . .

We were unable to organize the other subleading terms in a similar manner.
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function (eq. (17) in [22])

〈J 2
p J 2

−p〉 = q2p−2p4 . (3.14)

For comparison the c = 1 2-point function and 4-point function, as given by eqs. (4.17)

and (4.40) in [30], are: 〈JpJ−p〉 = pµp, and 〈J 2
p J 2

−p〉 = p4(p − 1)µ2p−2 respectively. The

difference between the 0A 4-point function [14, 22, 29] (3.14) and the c = 1 model result is

reflected in the different dependence on (1 − p) encoded in the 0A generic formula (3.12)

vs. (2.14).

Note that the role of the genus expansion which was originally played by µ is now played

by q in precise agreement with the KPZ scaling. An interesting point to address is that of

the order of limits. In the original works of [22, 29] the strategy was to set the cosmological

constant to zero at the beginning of the calculations. This was also suggested in works

by Jevicki and Yoneya [14]. Here, and in the approximation considered by Kapustin, we

have started with a nonzero cosmological constant (nonzero a) and obtained a formula

in the limit of large flux which is basically f/a À 1. In the end, we have found that the

expression derived for the 2n-point functions 〈J n
p J n

−p〉 is not sensitive to the order of limits.

This independence of the order of limits hints to the existence of a deeper relation between

the couplings µ and q beyond the extreme limits when either of them is effectively zero.

3.3 Partition function

The sum

∑

n

(α2)n

2nn!2
〈J n

p J n
−p〉

can be performed after first differentiating twice with respect to q and using (2.16). Thus,

upon taking the limit µ → 0, the 0A string partition function admits an analytic expression

∂2
q Z = ∂2

q Zn=0 + (1 − p)
∑

n≥1

1

n!
(−qp−2p2α2)n

Γ(n(2 − p))

Γ(n(1 − p) + 1))
= − ln q + (1− p) ln(1− s) ,

(3.15)

where, for us,
s

(1 − s)2−p
= qp−2p2α2 ≡ z . (3.16)

Let us contrast the current situation with the c = 1 model [3, 6]. While z in the c = 1

model could have been positive for p > 1, or negative for p < 1, in our case we see that z

is always positive. Moreover, now z varies monotonically with s for all 0 < p < 2. Recall

that in the c = 1 string one had to distinguish between a monotonic z behavior with s for

1 < p < 2, and a non-monotonic one for 0 < p < 1. In the latter case, z was bounded by

a critical value Zc reached for (dz/ds)|Zc
= 0 for p < 1. In the vicinity of the extremum,

one finds the susceptibility χ = ∂2
µZ being proportional to (z − Zc)

2, behavior that is

characteristic to a c = 0 system. The physical interpretation is that the c = 1 field X

decouples by settling into the minima of the cosine potential corresponding to the turning

on of the momentum modes. Thus p = 1 is a critical point associated with the phase
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transition from the c = 1 string to a c = 0 model coupled to gravity. We will soon see that

this decoupling is absent in our case.

Returning to the two-dimensional 0A string, and similarly defining χ = ∂2
q Z, we find

that χ obeys:

q
1

1−p e
1

1−p
χ

+ α2p2q
p(2−p)
1−p e

2−p

1−p
χ

= 1 . (3.17)

Sending α → 0 in the above expression brings us back to the expected answer

χα=0 = − ln q . (3.18)

Alternatively, we can directly explore the limit q → ∞ (instead of α → 0), by redefining

χ = − ln q + χ̂, with χ̂ finite for large flux and constrained by

1 = e
χ̂

1−p + α2p2qp−2e
2−p

1−p
χ̂

. (3.19)

However, the limit that we are interested in is α À q, or equivalently q → 0. This regime

can be probed by exploiting the analyticity of the equation (3.17) which allows us to re-

expand the partition function around a background provided by the momentum modes. It

is clear from (3.17) that sending q → 0 cannot be done without assuming that χ blows up

at the same time. More precisely we need χ = −p ln q + χ̃, with χ̃ defined by

1 = qe
χ̃

1−p + α2p2e
2−p

1−p
χ̃

. (3.20)

We can accomplish the re-expansion of the partition function in a regime where α À q

by simply observing that the small expansion parameter z in (3.15) corresponds to s ≈ 0,

while a large z corresponds to s ≈ 1. Therefore, to expand around large z, all that is

needed is to replace the term ln(1 − s) in (3.15) by ln(s) ≡ ln(1 − t). Solving for t yields

t/(1 − t)1/(2−p) = z−1/(2−p) ≡ y . (3.21)

Using that χ̃(2 − p)/(1 − p) = ln(1 − t), the relation between the function χ̃ and the new

variable y is given by

y = e
− 1

1−p
χ̃(y) − eχ̃(y) . (3.22)

Furthermore, from

F =

(

p
2

2−p α
2

2−p

)2[

− py2

2
ln(yα

2
2−p p

2
2−p ) + y2 p − 1

2 − p
ln(αp) + f(y)

]

, (3.23)

where ∂2
yf = χ̃(y), we finally arrive at the sought-after expression of the genus zero partition

function of the two-dimensional type 0A string theory, in a momentum mode background:

F = q2(
p

2
ln q +

p − 1

2 − p
ln(αp))

−

(

p
2

2−p α
2

2−p

)2

4

[

1+(−4p2 + 4pχ̃ + 4p − 4)e
pχ̃

p−1+(3p2−3p−2pχ̃)e
2χ̃

p−1+(3p − 2χ̃p)e2χ̃

]

.

(3.24)
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From its definition (3.22), one finds that χ̃ → 0 as y → 0. Thus, for q → 0, the partition

function behaves as

F =
(p − 2)2

4
p

2+p

2−p α
4

2−p + O(µ) . (3.25)

Let us compare our result with a somehow similar situation: the momentum perturbation

of the c = 1 model. In [3, 4] and [6] this perturbation was studied and the same KPZ

scaling of α
2

2−p , and α À 1 was obtained. The result is known as the sine-Liouville theory.

Our situation generalizes the previous one in that we start with ĉ = 1 with RR flux q and

zero cosmological constant µ. In the regime where the momentum perturbations become

relevant, the original ĉ = 1 with (q 6= 0, µ = 0) theory is driven into a new phase which can,

at best, be described as a generalization of the sine-Liouville theory. This is inferred from

equation (3.25), where wee see that in the regime where the strength of the perturbation,

α, sets the scale, we uncover the sine-Liouville KPZ scaling.

It is worth mentioning that using the underlying integrable structure of the 0A matrix

model, the derivation of the momentum perturbed partition function is not restricted by

perturbation methods to considering one of the cases: either µ = 0 (zero cosmological

constant) or q = 0 (zero RR flux). This leads to a more detailed picture of the phase

diagram of type 0A at arbitrary values of µ and q [31]. The phase transition to a sine-

Liouville type theory is confirmed in that picture.

4. Phase diagram

In this section we consider the phase diagram in the (α, p) plane. A natural set of variables

for addressing this question are p and z. Basically, z = 0 corresponds to the absence

of momentum perturbation, that is, to α = 0. We are interested in the behavior of the

partition function as z → ∞ and in particular will look for singularities as we cover the

range of couplings.

Given that

z = α2 p2 qp−2, (4.1)

we are limited to the region of positive z for all values of p.

Varying z from zero to infinity can be achieved by varying s. Note that the relation

between z and s is monotonous. Indeed, using (3.16) we conclude that

∂sz =
1 + s(1 − p)

(1 − s)3−p
. (4.2)

Monotonicity breaks when the above expression becomes zero, which happens for

sc = 1/(p − 1). (4.3)

For p < 1 we have sc < 0 and negative sc implies negative z through (3.16) but this is

outside the range of z, which we consider to be positive. For 1 < p < 2, we have that

sc > 1 which is also outside allowed domain for s and z.

Thus, we verify that there is a monotonous relation between z and s and that it is

possible to vary z without obstruction in the full range 0 ≤ z < ∞ by taking 0 ≤ s < 1.
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In the language of the coupling α, this means that we can vary it in the range 0 ≤ α < ∞
with no obstruction, as long as 0 < p < 2. The expansion for small α, that is, small z, is

given by formula (3.15), whereas the expansion for large α is given by,

χ = −p ln q − 1 − p

2 − p
ln(p2α2) +

1 − p

2 − p

∑

n≥1

1

n!

Γ( n
2−p)

Γ( n
2−p − n + 1))

(

− q

p
2

2−p α
2

2−p

)n

, (4.4)

where we have introduced the appropriate small parameter (3.21). In appendix A we

complement this analysis with a more explicit discussion.

To conclude, let us present an alternative analysis of the phase structure of the par-

tition function. Here we will follow some of the standard techniques for studying series

convergence which where applied to the c = 1 case in [3]. The main object is the function

H(p; z) ≡
∞
∑

n=1

Γ(n(2 − p))

n!Γ(n(1 − p) + 1)
zn. (4.5)

The radius of convergence is

|z| < Rc = exp ((p − 2) ln |p − 2| − (p − 1) ln |p − 1|) . (4.6)

There are basically four regions, recall that in our case z = α2 qp−2 p2 ≥ 0:

I. 0 < p < 2, 0 ≤ α2qp−2 < Rc/p
2

II. 2 < p < ∞, 0 ≤ α2qp−2 < Rc/p
2

III. 0 < p < 2, α2qp−2 > Rc/p
2

IV. 2 < p < ∞, α2qp−2 > Rc/p
2

In contrast with the phase diagram of the c = 1 model perturbed by momentum modes

(Sine-Liouville), two of the phase space regions, distinguished by 0 < p < 1 and 1 < p < 2

have coalesced (recall that in our case z stays always positive). As a consequence, the

phase transition of the c = 1 string in a momentum modes background to the c = 0 model

coupled to gravity, which took place at p = 1, has disappeared from the phase diagram the

0A string.

We have included regions II and IV for completeness. Region II has a singularity but it

is expected since it corresponds to non-normalizable α perturbation, that is, an irrelevant

perturbation which in the string theory diverges as φ → ∞ rather than dying off. The

partition function in region III is to be computed using eq. (4.4). Remarkably similar

formulas were obtained in [3] for regions II and IV.

5. Conclusions

Let us comment on some aspects of our calculations and some interesting open problems.

There are several approximations which we had to make in order to arrive at an analytic

answer. One particular point that one would like to improve on is relaxing the condition
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of large flux. Note that in this sense we differ from previous results in the literature

where the vanishing flux limit was taken [32, 33]. We used perturbative techniques to

arrive at an expression for the genus zero two-dimensional 0A partition function perturbed

by momentum modes, in the limit of vanishing cosmological constant µ. Exploiting the

analyticity of our result we were able to probe regions characterized by arbitrary values of

the RR flux q and momentum modes coupling constant α. We explicitly check the existence

of a perturbative expansion around large values of α, corresponding to a condensation of

momentum modes. The phase diagram analysis shows that for momentum values below 2,

such that the momentum mode vertex operator remains relevant, the phase transition to

a c = 0 system coupled to gravity is absent and there is no obstruction to turning on an

arbitrarily large value of α. It would be interesting to study the problem for generic values

of µ, q. One would hope that the analysis at intermediate values of q/µ would perhaps

uncover a richer phase structure.

We would like to point out the benefits of keeping the Fermi level µ non-vanishing in the

intermediate stages of our calculation, even though ultimately we had to assume the limit

µ ¿ 1. Sending µ to zero prematurely would have left us with only one means of evaluat-

ing the two-dimensional 0A correlators 〈J n
p J n

−p〉, namely integrating the loop momentum

following [27]. Instead, keeping µ non-vanishing allows differentiating the correlators with

respect to µ, and subsequently turning a tedious integral into a simple algebraic expression,

as in [3].

In a sense our calculation can be viewed as part of a more general conjecture mirroring

that of Fateev, Zamolodchikov and Zamolodchikov [34]. The FZZ conjecture states (as

presented in [6]) that the SL(2)/U(1) coset CFT, which contains the 2-d black hole, is

equivalent to the Sine-Liouville model, c = 1 CFT coupled to a Liouville field, with the

cosmological constant tuned to zero and the scale set by the winding mode of the c = 1

field. We are lead to discuss this relation in the presence of RR flux on both sides of the

correspondence. It was conjectured in [35] that in the presence of RR flux perhaps the

coset CFT is replaced by a version of gauged WZW models. The Sine-Liouville action now

clearly contains the RR flux. Our computation pertains to the limit where the RR flux

is large compared to the cosmological constant. It would be interesting to investigate the

precise formulation of the conjecture in the presence of fluxes q.

We hope that our results will shed light into the integrable structure of type 0A. In

fact, we have partially studied the perturbation by momentum in the framework of the

string equation and will report on our findings in an upcoming work [36].

Recently [28] have discussed the finite temperature partition functions for 0A and 0B

establishing T duality explicitly. It would be interesting to consider the extension of our

work to the Euclidean case when the X field lives in a circle as well as its 0B counterpart.

We hope to return to some of the fascinating issues in perturbing two-dimensional string

theories with momentum and winding operators.
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A. The Lagrange Inversion Formula applied to the partition function

In this appendix we showed that the main formula used in body of the paper repeat-

edly ((2.16) and (3.15)) follows as a direct application of a theorem due to Lagrange [37].

Our discussion follows [38, 39].

Theorem. (The Lagrange Inversion Formula) Let f(z) and φ(z) be functions of z analytic

on and inside a contour C surrounding a point a, and let t be such that the inequality

|tφ(z)| < |z − α|, (A.1)

is satisfied at all points z on the perimeter of C. Then the equation

ξ = α + tφ(ξ), (A.2)

as an equation in ξ has one root in the interior of C; and further any function of ξ analytic

on and inside C can be expanded as a power series in t by the formula

f(ξ) = f(α) +

∞
∑

n=1

tn

n!

dn−1

dxn−1

[

f ′(x)(φ(x))n
]

x=α

. (A.3)

The case we are interested is basically

y = 1 − z ya, (A.4)

In the formula (A.3) we simply have f(y) = ln(y) and φ(y) = ya and obtain

ln y = −z +
2a − 1

2
z2 − (3a − 1)(3a − 2)

6
z3 +

(4a − 1)(4a − 2)(4a − 3)

24
t4 . . . (A.5)

which can be rewritten as

ln y =

∞
∑

n=1

Γ(na)

n!Γ(n(a − 1) + 1)
(−z)n, with y = 1 − zya. (A.6)

This is the formula used in the main body of the paper (2.16) and (3.15) with the minor

substitution of y = 1 − s and for the case of a = 2 − p.

Let us now discuss the regime of validity of the above expression and its possible

continuation. The above expansion (A.6) is valid for

|z| < |(a − 1)a−1a−a|, (A.7)

which coincides with the radius of convergence given in section 4 by equaiton (4.6). Having

identified the series in z with ln y, one has a perfect analytic expression near y = 1 for the

partition function. Now we can analytically continue the natural logarithm. The only

problem is with the branch cut (−∞, 0]. However, as explained in the main body, we are

interested in z ∈ [0,∞) which corresponds to y ∈ (0, 1]. Recall that the singularity in the

c = 1 case reviewed in section 2 appears because z takes negative values for p < 1.
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