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Abstract. We propose a model for early universe cosmology without the need
for fundamental scalar fields. Cosmic acceleration and phenomenologically viable
reheating of the universe result from a series of energy transitions, where during
each transition vacuum energy is converted to thermal radiation. We show that
this ‘cascading universe’ can lead to successful generation of adiabatic density
fluctuations and an observable gravity wave spectrum in some cases, where in the
simplest case it reproduces a spectrum similar to slow-roll models of inflation. We
also find the model provides a reasonable reheating temperature after inflation
ends. This type of model may also be relevant for addressing the smallness of the
vacuum energy today.
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1. Introduction

Despite the simplicity and promising phenomenology of scalar driven, slow-roll inflation,
much remains to make the idea theoretically viable. In particular, vexing issues such as
the required flatness of the inflationary potential and the very existence of a fundamental
scalar (which must be both extremely light and weakly interacting) remain elusive (see
however [1]-[3]). In recent years, a substantial effort has been invested in understanding
how to embed such models in a quantum theory of gravity [6, 7], and there has also been
the suggestion of removing the need for slow-roll completely [8] (see [9] for earlier work).
However, in this paper we will take a different and yet complimentary approach to inflation
model building based on fundamental scalars.

As the universe expands and cools the fields and particles affecting the expansion pass
through a number of different phases. In the very early universe many of these transitions
may have been inflationary. In this paper, we propose the idea of a ‘cascading universe’ by
asking: if the universe passed through enough of these transitions, could this provide an
adequate alternative to scalar driven inflation? Our goal will be to examine whether the
proposed cascading universe model can satisfy the rigid constraints required of successful
inflation model building. We will postpone the very important question of embedding the
model in a fundamental theory (such as string theory) for future work.

In section 2, we present the cascading model and obtain the constraints on the decay
rate in order for adequate inflation to solve the standard cosmological problems (e.g.
horizon and flatness problems). In section 3, we address the nature of the transitions
and we find that adequate inflation and successful reheating are possible given certain
constraints on the nature of the transitions. In particular, we find that cascading can
proceed via second order or weakly first order phase transitions and at a rate I' < H
as might have been anticipated from intuition coming from the graceful exit problem
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in old inflation. Working under these assumptions, in section 4 we turn to the issue
of cosmological perturbations and demonstrate that a nearly scale invariant spectrum of
both density and tensor perturbations results in the simplest case of a constant decay rate.
We also find that in the more realistic case of a varying decay rate it may be possible
to distinguish this model from the usual slow-roll models in that the evolving adiabatic
sound speed can result in an observable tensor to scalar ratio. We conclude in section 5,
where we summarize our results and discuss future considerations.

2. A cascading universe

Let us consider the case of a universe dominated by vacuum energy and an additional
radiation component that is subdominant. For a homogeneous and isotropic universe the
Einstein equations are

T ), (1)

where we work with the Planck mass, which is related to the Newton constant by
Gy =M, 2. The continuity equation is given by
v, — 0, 2)
= p=—3H (p+p). (3)
We consider a two-component fluid composed of radiation and vacuum energy. The
energy density and pressure are given by

p=prtps  P=patpr (4)
AM? P
P 0
A= A= (5)
PA=—Pr,  Dr= 3P (6)
with A > 0. For these sources the equations of motion (1) and (2) become
T
3H2 = a2 (pA +pr>7
My
a 8T ( )
- = PA — Pr);
a 3M?2 (7)
167
= — 5379
302
pr = _4Hpr7

where we have used py = 0. We see that in order for acceleration to occur we need
pr < pa. In fact, the amount of radiation present is a measure of how far the universe is
from an exactly de Sitter phase. Quantitatively this can be seen by considering

d H
, (8)

R -1 —_
dt(H ) H?
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where ¢ is a parameter measuring the deviation from a pure dS space-time*. For inflation
to occur we thus expect ¢ < 1, which for this background gives

2p:
e=—" <1 (9)
PA + Pr
One can solve the background equations (7) in the absence of a coupling and we
find
4A
a’(t) = ¢} sinh <\/ ?t + cl> : (10)
A 4A
H(t) =1/ =zcoth | \/—=t+c ], (11)
3 3
where

1/2
2o (St b (12)
0 M2A sinh(c;)’

are constants chosen so that when ¢ = 0 we have a = 1.

Since this solution is derived for the case of A = constant, inflation of course does
not end, and this solution does not provide for a successful inflationary epoch. When we
include time varying values of the vacuum energy, which results from multiple transitions
or cascades, we will see the result becomes satisfactory.

The energy transfer from the vacuum energy density to radiation (massless string
states) is given by

= —T'p,,
Qa PA (13)
Qr = FpAa
where I is the transition rate and the modified continuity equation becomes
V. IE = pn = Qa, (14)
VNTrMO = pr +4Hp: = Q1 (15)
=V, (T +TH) =0. (16)
The equations of motion for the background are then
8T
3H? = — 0 17
v (290 (7)
pn = —Lpa, (18)

4 This is analogous to the slow-roll parameter € in models of scalar field inflation, but because our model does not
contain any scalar fields we will avoid this terminology. Moreover, in contrast to the slow-roll case, the definition
of € is exact and does not depend on any approximation.
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From (18) we immediately find
PA = pAOe*Ft. (20)
Using this result in the above equations we find

. 16
Hy2H?= el

ny (21)

The solutions are related to modified Bessel functions. They can be simply expressed by
introducing the dimensionless quantity

1287 px —Tt/2 _ _ _—Tt/2
T= /3]\/[731”06 = Tpe . (22)

The scale factor and Hubble parameter are then given by

a’ = % (o Io(T) 4+ aa Ko (7)) , (23)
- I7 (oK () — aidi(7)
== (aQKO(T) n @110(T)> ! (2

where the functions I, and K, are modified Bessel functions of order v (see e.g. [19]). The
constants are given by

I'r,

] = 4 Kl(Te) — HeKo(Te>, (25)
I're

= —47 L(7) + HoIo(r), (26)

with 7. = 7(t.), H, the Hubble parameter at the end of inflation (t = t.) and we
normalize so that the number of e-foldings is measured from the end of inflation,
N =In(a./a) = —In(a) where a, = 1.
We can again introduce a deformation parameter as in (9), however now it is time
dependent,
2p:

€(t) = = 2Q,. 27
() pA+pr ( )

Using this in (17) we find

ety =2-— BHQMEG : (28)

with H being given by (24). At the beginning of inflation we have H*M? ~ p, and
so € < 1. As the energy is transferred from the vacuum energy density to radiation
via particle production, the deformation parameter increases as can be seen in figure 1.
Inflation then ends when p, = pp and € ~ 1, which can be seen in figures 1 and 3. The
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Figure 1. The deformation parameter for various values of the decay rate I
Time is measured in units of the Planck time and we take Mé > pAg > pr
The various curves are given by the values I' = 0.01,0.02,0.03,0.05 from left
to right. As discussed in the text, € is initially small and proportional to the
density of radiation p,. As inflation proceeds, more and more energy is dumped
into radiation via the coupling I'. At the very end of inflation we are left with a
radiation dominated universe corresponding to € = 2.

final result is € = 2 and we are left with a universe filled by the radiation® p,. Let us now
consider the amount of inflation or number of e-folds. Using the above expression for the
deformation parameter the Hubble equation can be rewritten as

167TpA _
3H? = R0 T2, (29)
M2(2 —€)
This can then be integrated to find the number of e-foldings,
N (167TPA0 ) Y2 rto oTt/2 i@t
= SMS te /—2 — é 7
L2 (Yomon\sek i (30)
I\ 3M; I'M, r’

where ty = 0 is the beginning of inflation, ¢, is the end and Hj, is the initial Hubble scale.
In the second line we use the fact that the denominator varies smoothly from v/2 to 1 and
exp(—I't,/2) =~ 0. As we may have anticipated the amount of inflation depends on the
initial vacuum density and the decay rate.

As an example, consider inflation with a Hubble scale near the GUT scale Hy ~
Mgyt ~ 10'® GeV. We see to get adequate inflation the decay rate need only be slightly
below the initial Hubble scale I' ~ 10 GeV. This condition is required in order that

5 Much later, of course, the radiation is diluted as the volume increases and the small remaining constant energy
density again dominates.
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Figure 2. The number of e-folds of inflation N = [ Hdt for various values of the
decay rate I'. Time is measured in units of the Planck time and we take M2 >
PAy > pr. The various curves are given by the values I' = 0.01,0.02,0.03,0.05
from top to bottom. We see that the requirement of sufficient inflation places a
constraint I' < 0.02.

cascading lasts long enough so that the cosmic acceleration can resolve the horizon and
flatness problems. In figures 1-3, we examine the evolution numerically and find adequate
inflation is possible given modest values of the parameters.

Another important consideration is the reheat temperature of the model. The cosmic
acceleration ends at the moment ¢, when p, = p, and radiation comes to dominate. At this
moment we have 3H? = 16mp, where py = p, = pa,e . Using the exact solution (23)
and (24) and assuming the minimal amount of e-foldings (V. = 60) we find I't, ~ 10 so
that the reheating temperature can be approximated as

T p1/4 _ p/l\/4e—rtr/4
r T 0 )
~ 10" GeV, (31)
where we have used py, = AgMZ/8m and we have taken the initial Hubble scale

Hy, ~ 10" GeV. We will see in the next section that this is consistent with producing
the observed temperature anisotropies in the cosmic microwave background and avoiding
over production of gravity waves.

3. Nature of the transitions

Another important constraint on the cascading model comes from considering the type of
phase transition from level to level. In arriving at the previous constraint on the decay
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Figure 3. The graphs above show the evolution of the vacuum energy density
Qa = py/p and the radiation energy density €2, = p,/p relative to the total
density. We present the evolution for two values of the coupling I' = 0.05 (top)
and I' = 0.01 (bottom), where it an be seen that stronger coupling means inflation
ends faster, through faster dissipation.

rate I' in the last section, we have tacitly assumed that whatever the nature of the phase
transition that it was successfully completed and that the associated microphysics was
irrelevant. However, obviously this is not always the case and properties of the transitions,
such as whether they are first or second order can play an important role. We will now
consider both cases of first and second order transitions.

First order transitions typically proceed by nucleation of bubbles of the new phase
in the background of the old phase (see however [11]). The energy difference between
the phases is stored in the bubble walls, and typical expand near the speed of light. The
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transition from the old phase to the new phase is complete when all the nucleated bubbles
collide, releasing the energy stored in their walls.

Completion of such transitions in cosmological backgrounds can often be problematic.
If the tunneling barrier (more precisely, the tunneling action) is large, then this
corresponds to a strongly first order transition. In such cases the average bubble size
is typically comparable to the gravitational scale (H~!) and the gravitational background
can have important effects [12]-[14]. In particular, in the case of inflationary backgrounds,
bubbles of the new phase will form in the exponentially expanding background of the old
phase. In this case, although the nucleated bubbles expand at the speed of light, the
background itself is expanding faster. This makes bubble collisions rare and instead of
completion of the phase transition we find isolated bubbles expanding in a background of
eternal inflation. This is the graceful exit problem.

This was made more precise by Guth and Weinberg in [12]. Consider the zero
temperature bubble nucleation rate per volume®

['= Ae %, (32)

where Sg is the Euclidean action and A comes from a one-loop determinant factor that
depends on the microphysics and is typically the energy (density) scale of the transition.
We note with hindsight that if the transition is going to complete then the typical bubble
size 7, must be much less than the gravitational scale’, ie. r, < H~!. In this case
gravitational effects in (32) are negligible. The authors of [12] then showed that the
probability of a point to remain in the false vacuum is given by

p(t) ~ exp (—%%Ht) | (33)

where we introduce the dimensionless quantity § = r /H*. We see that the corresponding
decay time is given by

. (Wﬂ)l _ 3 (34

3 4 T

The number of e-foldings resulting from the transition is N ~ H7. The authors of [12, 14]
found that for percolation to occur and the transition to complete § 2 (. = 9/(4n),
which we see corresponds to N < 1/3. Thus, we see in the cascading model we have
presented in this paper, that if we assume transitions are first order than they must be
weakly so and the maximum number of e-foldings per level is N = 1/3 corresponding to
I'/H* = 9/(4w). To build a successful inflation model we will need a large number of
transitions (/~150-180) of this type to get the required 50-60 e-foldings in order to solve
the horizon and flatness problems. This idea for the case of a fundamental scalar field
has been argued for in [4,5] and is similar to the original proposal of Abbott [15]. To
relate this to the phenomenological cascading model we presented in the last section, we
note that this is exactly what one expects from a course grained approach. The decay of

6 Note this is not the same as the decay rate I' that we have introduced above, however we will see that these
quantities can be related.

" A detailed discussion of this point appears in [14], where it is shown that the only feasible first order transition
is one that results in a distribution of bubble sizes sharply peaked around ry, and with r, < H ™', i.e. a weakly
first order transition.
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vacuum energy to radiation will proceed as explained above, but on gravitational scales
t > H~! this will simply be seen as a decay of the vacuum energy to radiation, whereas on
very small scales ¢t < H ! one would see that it was small bubble collisions that had been
responsible for replenishing the radiation bath. Thus, by treating the percolation events
as instantaneous (as seen from the gravitation scale) the constraint on I' (as opposed to I')
is simply that of the last section I'/H < 1/8. Combining both the microscopic constraints,
along with the macroscopic requirements we see that the first order transition can work,
but it is in a very special regime. It will be a challenge to embed such an approach into
a fundamental theory, such as string theory, where e.g. in the case of scalars, potential
barriers typically lead to strongly first order transitions.

Of course the other possibility is that the transitions proceed via a second order phase
transition. Since such transitions do not proceed via quantum mechanical tunneling,
bubble percolation is no longer a concern. Immediate examples of such transitions are
provided by that of a scalar field, in which case we simply recover slow-roll inflation
models such as new inflation and chaotic inflation. Another possible example is provided
by that of the ‘thermalons’ [16], where transitions are stimulated by thermal fluctuations
and so-called ‘over-barrier’ tunneling.

In summary, we find that the cosmological phase transitions of the cascading model
must either be second order or weakly first order.

4. Cosmological perturbations

Let us consider density and tensor fluctuations about the background solution (7). We
will be primarily interested in modes that leave the Hubble radius 50-60 e-folds before the
end of inflation, since these are the modes that are responsible for the CMBR anisotropies
observed today. Therefore, instead of working with the exact solution (7) for the study of

perturbations, it will often be simpler to work in the conformal time n = —o0...0 where
dn = a~! dt and with approximate solution
a(n) = (=n) 19, (35)
1+ ¢
H(n) = 0 (36)

where H is the conformal Hubble parameter H = aH and is related to the deformation
parameter by ¢ = 1 —H'/H?. The approximate solution treats the deformation parameter
as a constant, since its rate of change is small (6 ~ €), but of course this solution must
break down towards the end of inflation when € ~ 1.

We now consider linearized perturbations about the background (7) and in what
follows we will adopt the conventions of [17].

We work in longitudinal gauge with the perturbed line element

ds® = —(1+2®) dt* + (1 4 2V + hy;) da’ da’, (37)

where the tensor perturbation is traceless and transverse (i.e., h = V;h% = 0) and can
be broken into its two polarizations ho. Our background contains no anisotropic stress
so one finds from the Einstein equations & = W. Thus, we have only one scalar metric
degree of freedom associated with the density perturbation and two tensor metric degrees
of freedom for the gravity waves. Because we are considering linearized perturbations the
scalar and tensor metric fluctuations decouple and we will treat each one in turn.
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4.1. Density fluctuations

Working in conformal time the equations for density perturbations are,

V20 — 3H(H® + @) = 4rGa*Sp (38)
0; (H® + @) = 4nGa(p + p)ous, (39)
" + 3HP' + (2H' + H*)® = 47Ga’dp, (40)

where dp, dp, and du; are the perturbations of the total energy density, pressure, and
velocity, respectively and H = da/(dn)a™! is the conformal Hubble parameter and V is
the comoving gradient. The pressure perturbation is related to the energy density and
entropy density perturbations by

dp dp
op=—| 0 — ¢ 41
= c25p + 708, (42)

with ¢ the adiabatic sound speed at which the perturbations evolve and should not be
confused with the equation of state parameter w = p/p, which depends on the background
quantities.
Indeed, for the model we consider here these quantities are quite different. The
adiabatic sound speed for long-wavelength perturbations is given by®
2_ P 1 I'pa

“ T 5T 37 3Hp (43)

where we see in the limit I' — 0 our perturbations will evolve like pure radiation.
This is consistent with the fact that a true cosmological constant does not propagate,
i.e. is constant. This allows us to see the importance of the graviton and other particle
production (I" term), since in an quasi-exponentially expanding background with no
transfer the perturbations will be immediately damped away.

The equation of state parameter is given by

p 4p,

p 3(pa + pr)
2
=1+ 56, (45)

which reduces to the pure de Sitter solution if p, = ¢ = 0 as we have noted. We see that
w(t) is explicitly time dependent and in general this implies that there can be a significant
contribution from non-adiabatic pressure in (42) by the entropy term 70S. This could
result in significant generation of entropy perturbations, a possibility that we will analyze
in section 4.1.2.

8 Strictly speaking it is incorrect to think of ¢ = p/p as the sound speed during inflation, since this is only true
on large scales where ¢2 = 0p/dp|ls ~ p/p and these modes evolve on scales beyond the sound horizon. On small
scales during inflation the metric perturbation ® oscillates and the effective adiabatic sound speed is found to be
¢2 =1, in agreement with causality.

Journal of Cosmology and Astroparticle Physics 11 (2007) 017 (stacks.iop.org/JCAP /2007 /i=11/a=017) 11


http://stacks.iop.org/JCAP/2007/i=11/a=017

Inflation without inflaton(s)

We now return to solving the system (38)—(40). Combining equation (38) with (40)
and working in momentum space V?® — —k?®, we find a second order differential
equation,

O + 3H(1 + )P}, + [2k* + 2H' (46)

+ (1 + 32)YH?|®), = 4rGa*r8S (47)

subject to the constraint (39). We can simplify this equation by introducing the field
redefinition,

by

Up = ) 48
g ArGpY/2\/1 +w (48)
8 M2
B TE R (49)
3a%(1 + w)
where w = p/p. Then (46) becomes
0//
ulkl—i-(k2 s—g) up =N (50)
with A/ giving the contribution from entropy modes as
N = a?p**V/1+w 738. (51)

4.1.1.  Adiabatic fluctuations. We will first consider solutions to (50) in the absence of
entropy modes, i.e. A" = 0. For modes that are far inside the sound horizon k¢, > H
we find that u oscillates with a constant amplitude that is to be found by the initial
conditions after quantization. Far outside the horizon k¢, < H and by inspection we
have the solution u ~ 6. However, this solution corresponds to a decaying mode for the
metric perturbation ®. Instead, it is the growing mode that is of interest, which can be
found by noting #” ~ 0 during inflation, so that u constant is also a solution. Assuming
that we are deep in the inflation epoch where € is nearly constant an exact solution can
be found by integration. In terms of the original metric perturbation ® one finds

CIDZH(A1+A2/(1+w)a2dn), (52)

a?
H 2 . 9
= ? (Al —+ §A2/€a dn) s (53)
H .
= Al? + @06, (54)
where we have used w = —1+ ¢ is nearly constant during inflation. The first term in (54)

corresponds to the decaying mode found above (u ~ ), whereas the second mode is nearly
constant with ¢y = %Ag to be determined by matching to the oscillating mode inside the
sound horizon. We note the importance of the graviton production in this model resulting
in a non-zero radiation density, since in the pure de Sitter case where p, = 0 so that € =0
we see no density metric perturbation would remain since & — 0 as ¢ — 0 and all that is
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left is the decaying mode. This is an illustration of the no hair theorem for pure de Sitter
space.

In summary, we have found that during inflation the metric perturbation is nearly
constant on super-horizon scales, whereas on sub-horizon scales we find u ~ ® undergoes
constant amplitude oscillations. What remains is to quantize the perturbations in order
to determine the unknown constant ®,. However, we must first justify neglecting the
entropy mode term (i.e. A') in (50).

4.1.2. Entropy fluctuations. In this section we consider the role of entropy fluctuations in
the model. We will follow [18] where a systematic procedure for the study of perturbations
in multi-fluid systems was described. It will be useful to introduce (, which is curvature
perturbation on constant energy density hypersurfaces. We will drop the momentum
index in what follows, writing ( = (x.

In the presence of multiple fluids, the total curvature perturbation can be expressed
as a sum of the curvature perturbation due to each fluid component as

<=§j%@, (55)

where

@=¢+;MM (56)

«

and we have used the lack of anisotropic stress to again write ® = U as before. For
entropy fluctuations we are interested in the non-adiabatic contribution to the pressure
perturbation in (42), which is given by

OPnad = T0S = dp — c26p. (57)
As discussed in [18], there are two sources of non-adiabatic pressure
0Puad = OPnag + OPhaat (58)

which are the relative and intrinsic non-adiabatic pressures, respectively. In the model we
are considering here the two fluid components have fixed equation of state, i.e. dpy = —dpx
and dp, = 1/3dp, so that there is no intrinsic non-adiabatic pressure, i.e. jp™t, = 0. The
contribution to the relative non-adiabatic pressure is [18]

rel

1 .. 2 2
5pnad = _@ azﬂ papﬁ(ca - Cﬁ)Saﬂa

r ..
= _%p/\pr(c?\ - C?)SAM (59)
where we have introduced the relative entropy perturbation
Sap = 3(C0¢ - Cﬁ)? (60)
0pa O
— 3y L P2 (61)
Po Ps
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with the factor of three due to the convention of normalizing to baryons. For the model
we consider here

Sur = — TA=—3H(‘5.ﬂ—5f’)). (62)
PA Pr

Returning to (59) we see that the relative non-adiabatic pressure is proportional to p,, the
rate of change of the radiation density. During inflation one finds from the background
solution (23) and (24) that g, &~ 0. That is, the transfer of vacuum energy to the radiation
density via the coupling I' is just enough to counter the dilution of the radiation by the
exponential expansion. Thus, the non-adiabatic pressure is negligible and we need not
worry about the presence of entropy perturbations during inflation.

However, there is a more fundamental reason to expect entropy perturbations to
be absent from this model. The crucial point is that a relative entropy perturbation is
produced when two fluids generate different curvature perturbations. This difference can
then be mediated from one fluid to the other via the gravitational background. A well
known example is the perturbation in the baryon-—photon ratio

dpg  30p,
R (63)
which does not vanish because the two fluids are perturbed differently.

However, in the case we consider here things are different. In the absence of the
coupling I' there is only one fluid with propagating fluctuations, namely the radiation
density with fluctuations dp,. In this case the long-wavelength fluctuations propagate at
¢2 = 1/3 and the cosmological constant remains a constant, i.e. dp, = 0. In the presence
of the coupling I" the fluctuations now propagate at a different adiabatic sound speed (43),
but the two fluids are coupled through their equations (18) and (19) through the term
+Tpp. Thus, there is really only one propagating degree of freedom and the two fluids do
not evolve independently, resulting in Sy, = 0.

In fact, in this regard this is not unlike the case of inflation by a single scalar field
where it is known that there are only adiabatic perturbations. Instead of working with
the scalar directly, we could consider two fluids, one representing the kinetic energy with
a stiff equation of state p; = p; = 1/2¢?* and a second fluid composed of the potential
pa = —p2 = V(¢). Insisting on this two-fluid description and demanding that the full
equations of motion are satisfied we are led to an energy exchange term Q4 = +oV'(¢),
similar to the case we have above. However, since we know there is only one degree of
freedom, we certainly know that there are no entropy perturbations and no non-adiabatic
pressures. This can be seen by examining the perturbation equations in full detail, and in
particular one finds that the two fluids do not evolve independently due to the coupling
)+ and the fact that the second fluid does not propagate in the absence of the coupling
(i.e. 0p2 =0 for Q = 0).

In sum, we see that entropy perturbations in the cascading model are negligible during
inflation for the case of a constant decay rate I'. For the case of a time varying I', this
issue must be revisited, which is work in progress.

4.2. Spectrum of fluctuations

Having shown that entropy perturbations are negligible, we proceed to find the spectrum
of the density fluctuations. In order to find the power spectrum all that remains is
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to determine the unknown constant @, in (54). We can then find the gauge invariant,
comoving curvature perturbation

2 (D, +HD
Ri=P, + - L -7F 64
k kT 3 ( 1+w ) ) (64)
which is related to the curvature perturbation (; from the last section by
1 k2o,
Ry = T —— 65
k Ck + 3H — H27 ( )

so that for large scales modes (which are the ones of interest) k — 0 and Ry — (. The
density power spectrum is then defined as

k?’
~ on?

which can be compared with observations.

Finding the constant @, is accomplished by enforcing the correct initial condition on
the modes. However, these modes are born in their vacuum state far below the Hubble
radius. This requires us to quantize the perturbations, starting their evolution in the
standard adiabatic vacuum. Then we have seen that the solution inside (kcg > H)
oscillates with constant amplitude until Hubble radius crossing where it can be matched
to the solution outside (kc; < H) providing us with the required normalization constant.

The only obstacle to quantization is finding the canonical field which diagonalizes the
action. For the case of hydrodynamical fluids, as we consider here, this was done in [17].
There it was found that the canonical field v, (the so-called Mukhanov variable) which is
related to uy by

P |Gkl?, (66)

 (u0)
ck20

and the curvature perturbation (64) by v, = z(y, reduces the action to that of a harmonic
oscillator with time dependent frequency. In terms of this variable the equation of
motion (50) becomes

" 22_2_” _
vp + | K¢ vp =0, (68)
¥

where z = (c,0)~!. In terms of the new variable vy the solutions on large scales (kc, > H)
are given by vy ~ z. Notice this is the growing mode of interest in contrast to the classical
case where uy ~ 6 decayed and it is this squeezing of the quantum state that will result
in classical fluctuations on large scales. On small scales the momentum term dominates
and we again have oscillations with constant amplitude.

We could now proceed with the approximate solution, however in the case ¢ < 1 we
can solve (68) exactly. We find 2”/z = (v? — 1/4)/n? where v = 3/2 + ¢ and the solutions
can be expressed in terms of Hankel functions. We require that the modes begin in the
adiabatic vacuum, which amounts to the condition

—ikesm

v = e as kcgn — —o0. (69)

-

2¢4

Journal of Cosmology and Astroparticle Physics 11 (2007) 017 (stacks.iop.org/JCAP /2007 /i=11/a=017) 15


http://stacks.iop.org/JCAP/2007/i=11/a=017

Inflation without inflaton(s)

The appropriate solution is then given by
a
vk(n) = 5 V= H (—kean), (70)
where HS" is a Hankel function of the first kind and |a] = 1. We can then immediately

find the curvature perturbation

Vg,

Ge= || = SV H (hean). ()

On large scales using the asymptotic expansion of the Hankel function we have

Gl ~ — (—hean)™, (72)

2mkes

and using z = (¢0)~" the power spectrum (66) is

P (ﬁ) (—hea) ™. (73)

pr— 2 <
4mlcgé€ b

We note that this reduces to the standard slow-roll inflation result for the case
les] = 1.
The tilt of the power spectrum is given by

dIn P, .
ng =1+ Tk =1—2¢, (74)
=1 — 49, (75)

where €, = p./p. By noting that g, ~ 0 during the time modes of interest exit the Hubble
radius (i.e. N ~ 50), we see that the tilt of the spectrum is set by the initial abundance
of radiation since € ~ 22, is constant during inflation.

Comparing (73) to the best fit WMAP3 data [20],

P, =19.973 x 107", (76)
we find that
H -5
o S0, (77)

Since ¢ < 1 during inflation this implies an upper bound on the Hubble scale during
inflation H < 10* GeV. Combining this with the constraint for adequate inflation
from (30), i.e. I'/H < 1/N we find an upper bound on the decay rate of the vacuum
energy I' < 10'3 GeV consistent with our earlier results and our general approach.
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Figure 4. The figure above summarizes the constraints found on the Hubble
scale during inflation and transition rate I' between levels. In addition to these
constraints one should also add the requirement that the transitions proceed via
second order or weakly first order phase transitions.

4.2.1. Gravity waves. The gravitational wave spectrum is found in much the same way
as the spectrum of density perturbations. One first decomposes the graviton into its two
polarizations h;j) and hgg_). The modes then obey the same equation (68) as the density
fluctuations except in this case we have v, = ahyM, (where we set h = hy) and z is
replaced by the scale factor a. The solution is again in terms of Hankel functions, and

one finds for the long-wavelength fluctuations
1

g av2rk (=kn) (78)
and the power spectrum is
8 [ H\" o
P,=—=— —k ‘ 79
=% (57) e (79)
with the tilt of the tensor spectrum np = —2¢. Thus, we see that the main difference

between the tensor and density spectrum is the deformation factor and the presence of
the adiabatic sound speed in the spectrum of density perturbations. Our tensor to ‘scalar’
ratio is then

P
== 16écs, scalar free model (80)

which contains the adiabatic sound speed ¢, evaluated at the time of Hubble radius
crossing.
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This is an important result and is similar to models of kinetic inflation [9], where
the adiabatic sound speed offers a way to distinguish this model from standard slow-roll
inflation which gives instead

r = 10e, scalar slow-roll inflation, (81)

where we recall that € &~ € is the usual slow-roll parameter which measures the slope of
the scalar field potential in units of the Hubble scale.

We have seen the adiabatic sound speed does not differ greatly from the usual slow-
roll inflation case for the choice of I' = constant that we have considered here. However,
for the case of non-constant I' this could dramatically change, since the adiabatic sound
speed could differ greatly from one. This could allow for an observable tensor to scalar
ratio, where standard models of scalar driven inflation starting near the string scale seem
to generically predict an unobservable spectrum [21]. This is work in progress.

5. Further considerations and conclusions

In this paper we have considered a cascading model for the early universe that provides
a period of cosmological acceleration, which can account for the required number
of e-foldings. As the universe cascades, vacuum energy is converted into radiation
inhomogeneously, resulting in a nearly scale invariant spectrum of cosmological density
perturbations and a small amount of gravitational waves. Once the radiation density
overtakes the decaying vacuum energy, the model naturally exits in a radiation dominated
universe with a temperature which we found can be as large as T, ~ 10 GeV. As the
universe evolves through the radiation and matter epochs the vacuum density will once
again dominate the energy density if the decay does not proceed to zero vacuum energy.

We have seen that our approach has one basic (in principle calculable) parameter, the
level decay rate I'. The number of e-foldings, the reheating, and the density fluctuations
all depend on I'; and we find there does exist a range of values of I' consistent with the
data for all of these, which might not have happened. These constraints are summarized
in figure 4.

Although these preliminary findings are promising, much remains to be addressed. A
particularly pressing issue is a concrete derivation of the decay rate I' or equivalently a
better understanding of the level spacing and the time spent in a given energy (density)
level. In fact, we argued in section 5 that if I' is not taken constant, the result is a
varying adiabatic sound speed which can result in density perturbations and gravity waves
that would further distinguish the cascading model presented here from usual slow-roll
inflation.
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