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Introduction

Despite seventy years of intensive research, the mathematical nature of
the urban rank-size hierarchy is still subject to much debate (Carroll,
1982). Stewart (1958,245) has argued that urban distributions approximate an
“S" shaped logistics curve, others suggest a "J" shaped distribution and that
linearity in the data exists only in truncated portions of the distribution
(Carroll, 1979). The research in this monograph demonstrates a new
interpretation of rank-size regularities: data which conform, in general, to
a rank-size pattern, approximate the curve of an equiangular spiral. (Figure
1).

It seems prudent first to demonstrate this relationship empirically and
then to explore the implications of this fact. Urbanized area data are used
because these data are more scientifically defined than city populations or
Standard Metropolitan Area data. Rosen and Resnick (1980,180), for example,
recognize that city data affect the distribution under analysis by neglecting
suburbanization and thus under-estimating the growth of cities. DeCola
(1985,1645) makes the case that urban regions other than those defined by
political boundaries should be used. Figure 1 is an illustration of the
correspondence between 1970 urbanized area data for the United States
(Appendix) and a theoretically ideal equiangular spiral described by the
formula
ocota (1)
where a >, o cot a # O. (When cot « > 0, the curve spirals outward as o
increases (as in Figure 2); when cot a < o, the curve spirals inward as o
increases).

In this formula, r is the radius, a is a constant which sets the

dimension of the spiral, e is the base of the natural logarithm, e is the
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r:aeﬁcota

Figure 2. The construction of an equiangular spiral.

angle of the radius from the origin, and « 1is the constant angle at which a
line perpendicular to the radius is tangent to the spiral curve. (Taylor,
1959, 408). These relationships are shown in Figure 2.

To understand the meaning of the data plotted in Figure 1, we must first

discuss the idea of Fibonacci numbers. This is because an equiangular spiral



is a mathematical plot of a particular Fibonacci sequence. (Huntley 1970,
175). The nth term, U,, of the Fibonacci sequence is generated by the general
recurrence relation (Albertson and Hutchinson, 1988, 198)

U= U, 1% U,_, where U= 1 and Uy=1

This relationship states a simple procedure: the next term in the
Fibonacci sequence is the sum of the two preceeding terms. This sequence is
displayed below:

1, 1. 25 3, 5, 8, 13, 21, 34, 55, 83, 144, . . .
A related sequence is the Lucas sequence. Lucas numbers (Rosen, 1988,249),
Lj, are defined by Ly =1 and L, =U, 4, 1 +Uy_1s o > 1> Where U, is the nth
Fibonacci number.
1, 1, 3, 4, 7, 11, 18, 29, 47, 123, 199, . . .

Clearly, an infinite number of sequences of this sort can be produced
merely by varying the values of the initial terms, U; and U,. Employing only
this single recﬁrrence relation leads to an infinite number of sequences whose
internal pattern of numbers rests on the choice of initial values of Uy and
Up. Thus, each sequence can be characterized by an ordered pair of positive
integers (U1= Us). To each such ordered pair, there corresponds a unique
equiangular spiral. The structure of the curves corresponding to these
sequences is an equiangular spiral because the length of the radii forming the
curve at successive increments of 90° in the angle of the radius are Fibonacci
numbers. That is, if the radius of the curve at 0° is 1 unit of length, the
radius at 90° is 2 units of length; at 180° , 3 units; at 270°, 5 units, and
so on (Figure 3). At 360° the curve begins to form a second layer around the
first as the spiral wraps around itself. The term equiangular refers to the
constant angle (a in equation 1) maintained between an extension of any radius

of the curve and a 1ine tangent to the curve at the point where the two meet.



One method by which urbanized area data arranged by rank-size can bhe

plotted as a spiral is by assigning population as the value of r (the length

of the radius). Rank is determined by Fibonacci seqguence.

Thus the 1970

population of the New York urbanized area, the largest, is the value of r

at e = 0°; the population of the Los Angeles urbanized area, second largest,

is the value of r at @ = 90°; the population of Chicago, third largest, is

the value of r at @ = 180°.

of the fifth ranked city, Detroit, is the value of r at o

The next Fibonacci rank is 5, so the population

D.C., the 8th ranked city is the value of r at o =

are indicated on Figure 3.

630°RANK 34
DAYTON
f

270° RANK 5
DETROIT

vy

= 270°; Washington,

360°, etc. These cities

180° RANK 3

CHICAGO CINCINNATI

Figure 3.

540° RANK 21

360° RANK 8
WASHINGTON, D.C.

450° RANK 13
HOUSTON

90" RANK 2
LOS ANGELES

0" RANK 1
NEW YORK

Relationship among urbanized areas,

Fibonacci rank and © on an equiangular spiral.



Once we recognize that an urban system which fits the simple rank-size
rule can be conceptualized as a spiral distribution, a further physical
analogy offers additional insight. This is the analogy of a conical shell,
such as those shown in Figure 4. A conical shell shows how a continuous
distribution such as cities in rank-size relation, can simultaneously be
considered as occupying distinct levels, as cities in a central place
hierarchy. If a conical shell is held in the hand, the levels can be clearly
identified and even counted. Yet the shell surface is a continuous
distribution that can be traced in screw-like fashion around the outside

curves of the shell.

The Spiral Constant

Why should the rank-size relationship closely parallel the curves of an
equiangular spiral? The key to understanding the linkage lies with the
mathematical constant ¢ derived from

(1 v5)/2 = 1.61803...

In addition to its relation to the constant angle of a spiral generated
by the Fibonacci series (as in equation 1), the spiral constant, also known as
the golden mean, can be derived from many sources in mathematics and
geometry. To cite just two examples (Huntley, 1970, 24-25, 42):

1. Any two intersecting diagonals of a regular pentagon divide each other

into two segments having the ratio ¢:1;

2. If the edge of a regular decagon is 1, the radius of a circle

circumscribed around the decagon is ¢:1

In addition to, and in part because of, its recurrence in geometric

figures, numerous aesthetic qualities have been ascribed to the ratio.
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Figure 4. Variety of spiral shells.
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Indeed, the symbol ¢ was selected to designate this ratio in honor of Phidias,
a Greek sculptor who made use of the ratio in his works. Another example from
the Greeks is that the facade of the Parthenon is a rectangle, the sides of
which are in the ¢ ratio. In modern architecture, Le Corbusieur is known for
his use of spirals and the golden mean in his work. Tufte (1983, 189) refers
to this ratio as a venerable but dubious rule of aesthetic proportion. In
this paper, the term spiral constant rather than phi will be used to avoid
confusion with Euler's formula, but the symbol ¢ will be used.

The aesthetic appeal of rectangles, in particular, those with sides
in ¢ proportion has not gone unnoticed by designers and marketers of goods.
One will find that a large proportion of everyday goods have a rectangular
shape approximately in ¢ proportion: houses, rooms, desks and table tops,
books, cigarette packages, newspaper pages, briefcases, television sets,
toasters, microwave ovens, and even 3x5 and 5x8 index cards (although no one
ever accused these last two items of having much aesthetic appeal).

It has been suggested that the aesthetic appeal of objects in
¢ proportion derives from our-subconscious familiarity with numerous objects
in the natural world, especially organic objects, which have dimensions
in ¢ proportion. Many average size relationships in portions of human anatomy
can be approximately described by ¢: the ratio of one's height to the height
of one's navel; the length and width of one's head are two examples (Ghyka,
1977, 97). Needless to say, the frequent occurrence of the spiral constant in
the most unexpected places in mathematical formulas as well as in the physical
world has led, on occasion, to endowment of the ratio with mystic qualities.
The ratio has thus been called the Golden Mean, the Golden Ratio or the Divine
Proportion. Figures in the proportion of the spiral constant are sometimes

given names such as Golden Rectangles and Golden Triangles.



Mathematicians do not attempt to answer "why" the spiral constant appears
repeatedly and in apparently unconnected places in both the mathematical and

physical worlds. The spiral constant, like pi, simply occurs.

Other Derivations of the Ratio of the Spiral Constant

If we construct a golden rectangle such that (¢= —%—) as in Figure 5,

It follows that ¢ = ——+r

By the Pythagorean theorem, r°=

/ 5(w) _ (1 + / 5w
2 2

Combining, & = % i

Therefore ¢ = % = (1+g dlw _ 1 +2’ > . 1.61803...

—w/2 |L ¥

£

Figure 5. A golden rectangle and the derivation of the spiral constant.



Figure 5 also serves to introduce the idea of the gnomon. A gnomon is a
portion of a figure which has been added to another figure so that the whole
is of the same shape as the smaller figure (Huntley, 1970, 169).

Figure 6 shows a series of gnomons generated from a triangle and a
rectangle. Note that both figures can be shown to contain within them the
points needed to generate an equiangular spiral. The edges of the gnomons are
in ¢ proportion. The concept of the gnomon and the preceeding discussion of
proportion in line segments illustrates the fact that the ratio represented by
the spiral constant is the only growth ratio by which a new unit can grow in
proportion to the old unit and still retain the same shape. This is exactly
the process of growth in a spiral shell. As noted by D'Arcy Thompson (1961,
179):

In the growth of a shell we can conceive no simpler law

than this, namely that it shall widen and lengthen in the

same unvarying proportions: and this simplest of laws is

that which Nature tends to follow. The shell, 1ike the

creature within it, grows in size but does not change its

shape; and the existence of this constant relativity of

growth, or constant similarity of form, is of the essence,

and may be made the basis of a definition, of the

equiangular spiral.

The ¢ ratio thus is a mathematical representation of a kind of growth in
which an initial proportion is retained unaltered, that is, in which size
increases but shape remains the same. This is isomorphic as opposed to
allometric growth (Woldenberg, 1971; Coffey, 1981). A second way of viewing
the phenomenon, as outlined by Huxley (1972, 163) is that the ratio of the
spiral constant expresses simple-interest growth. In the case of shells, new
material produced by growth is turned into non-living material as soon as it
is formed and does not contribute to any further new material, so that growth
is an additive, rather than multiplicative process. Of course, as in any

interest curve, the amount of growth can be seen as the product of the initial

amount and interest, but this is still different from growth as a

10
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multiplicative process. In the latter process, new material produced by the
growth process itself grows and, in turn, produces new material in an
exponential manner. The spiral constant appears to reflect some kind of
accretionary, isometric growth, a system in which size increases while shape

is retained.

Figure 7. Sections of an equiangular spiral. Although greatly different in
size, sections A, B, C and D are identical in shape. (After Davis and
Hersh, 1986.)

The accumulative growth discussed by Sahal (1978, 1374) results in the
sort of self-similarity noted in so many real-world applications by Mandelbrot

(1983). Goodchild and Mark (1987) state that probability distributions

governing the sizes of self-similar phenomena result in Pareto distributions

12



and rank-size relations. They offer this definition of self-similarity; a
definition which expresses in words the diagram of the shell in Figure 7: "A
feature is said to be self-similar if any part of the feature, appropriately
enlarged, is indistinguishable from the feature as a whole" (1987, 268).
ArTinghaus (1985) discusses self-similarity as a key component of algorithms
which generate fractal structures; indeed she shows that the geometry of
central place theory is a subset of the theory of fractal geometry. Further,
it appears that all three of the interrelated concepts which characterize
fractals can be related to rank-size. In addition to self-similarity, these
three concepts include response of measure to scale and the recursive
subdivision of space. The response of measure to scale, gnown to many
geographers through the problem of determining the length of a shoreline,
applies to rank-size in the issue of determining the level at which the urban
system ends. Are towns, villages or hamlets to be included in a particular
urban hierarchy? If so, the rank-size distribution may take on strange
shapes. The successive levels of the urban hierarchy defined by the spiral
constant are successive divisions of the same areas into tributary regions,
that is, recursive divisions of space. Hofstadter, (1979, 495-548) offers a
philosophical survey of the concept of se1f—simi1ar%ty. The concepts of
central place, self-similarity, rank-size, fractals and the spiral constant
are interrelated in more than a superficial way.

This understanding of the spiral constant as a reflection of growth in
size without change in shape, offers an opportunity to review several
observations which have accumulated in rank-size research and to suggest a
possible synthesis of some of these findings. For example the hexagon, the
geometric shape of market areas in central place theory, could be the basic
clue to further understanding of the rank-size relationship. Some researchers

who have already explored relationships between rank-size and central place

13



concepts include Beckman (1958), Beguin (1985), Higgs (1970), Parr (1969 and
1970) and Berry (1971). The development of a hierarchical network of larger
and larger hexagons is an obvious example of a system increasing in size while
retaining its shape. Indeed, as will be shown, hexagons can provide points
for the construction of an equiangular spiral. While it is not immediately
apparent how hexagons could combine to produce a ratio of k = 1,618, it is an
intriguing concept. As will be discussed, the slope of -1 in a rank-size
distribution may be a reflection of the isometry of this hexagonal

hierarchy. Gilbrat's law and the Yule distribution, assumptions used to
explain how a central place hierarchy can be modified by stochastic processes
to result in a rank-size distribution, can also be conceptualized as
mechanisms to retain the constancy of shape. Gilbrat's law, which proposes
that the growth rate is the same for each size class, means that the urban
areas maintain the same proportion to each other as they grow - - it is, in

effect, a restriction on the equation that produces isometric growth.

Generating Rank-Size by the Spiral Constant

While it is clear that numbers in Fibonacci sequence are additive by
definition, a series of values in ¢ proportion to each other should also be
additive which can be shown as follows: The golden section or spiral constant

satisfies the following identity:

I 1
¢-1+¢ (2)

This can be proven as follows:

1 +% = 14 2/(/5+)

(v 5+3) /(v 5+1)

Multipling by (v 5-1)/(/ 5-1) yields

14



(5+3/75-/5-3)/(5-1) = (2+2/5)/(4)
or (L+v/5)/(2) =
Returning to the identity (2), if we multiply both sides by ¢, we see

that ¢%= ¢ + 1

and in turn ¢3 =¢ + ¢

and in general

¢ =¢  +o (3)
(Cook, 441; Ghyka, 8)

Table 1 shows this relationship.
TABLE 1

Values of successsive powers of ¢

¢ 0 - 1.000000
o 1 = 1.618034
o2 = 2.618034
- = 4.236068
& 0 = 6.854102
62 = 11.090170
g B = 17.944273
o7 = 29.034443
s B = 46.978716
b 2 = 76.013160
410 = 122.991880
11 = 199.005040
e R SIS
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Thus the sequential powers of the spiral constant are, in themselves, a
sequence. This relationship is unique to ¢. There is no other series for
which the values of successive powers can be generated by addition of the
values of the two preceeding powers. (Cook, 1914, 442)

If U, and Up+q represent the nth and the (n+1)st Fibonacci numbers, then

o > (Up,)/(U,) asn > = (4)

(Huntley, 141-44)
As shown in Table 2, quotients with higher Fibonacci numbers approximate
¢ more closely than do lower Fibonacci numbers. This can be seen also by

taking the identity ¢ = 1 +-—%~ and viewing it as the continued fraction

TABLE 2

Approximate value of ¢ to five decimal places

8/5 - ~ 1.60000
13/8 = 1.62500
21/13 = 1.61538
34/21 = 1.61905
55/34 = 1.61765
89/55 - 1.61818
144/89 - 1.61798
233/144 - 1.61806
377/233 = 1.61803

16



If we examine the sequence at each substitution, we get 1+1, 1 + 1/1+1, 1 +
1/1+1/1+1... which yields 2, 3/2, 5/3 or, (Un i 1)/Un, thus each successive
quotient approximates ¢ more and more closely as we saw in Table 2, and gives
empirical motivation for the validity of (4). |

When applying Fibonacci numbers to an equiangular spiral, the extent to
which a set of ranked data can be plotted as an equiangular spiral depends on
the extent to which empirical values at Fibonacci intervals in proportion to
each other approximate the spiral constant. That is, for the empirically
derived curve to correspond to the equiangular spiral, the ratio of population
size of the largest urbanized area to that of the second largest urbanized
area must be approximately 1.61803..., as will the ratios of the third to
second largest, the fifth to third largest, and so on. Expressed another
way,the application of ¢ to the ranking of urbanized areas can be demonstrated
by examining the population of the urbanized areas in rank intervals which
match the Fibonacci series and by comparing the empirical data to values
derived from successive division by 1.618 of the population of the largest
city (Tables 3 and 4). For example, in 1980 the population of the largest
urbanized area (New York - Northeast New Jersey) was 15,590,274. Division of
this figure by 1.618 yields 9,635,522 as the expected or predicted value for
the second largest urbanized area. The actual value of the second urbanized
area is 9,479,436, (Table 4). The symbol "f" will be used to indicate rank
position in the Fibonacci sequence (that is standard ranks 5 and 8 are the
third and fourth terms in a Fibonacci sequence). In effect, the first column
of predicted values is generated from the population of the largest city

divided by sequential powers of ¢.
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TABLE 3

Actual and predicted population of U.S. urbanized areas, 1970

Urbanized Census  Fibonacci Actual

Area Rank Rank (f) Population
New York-Northeast, NJ 1 0 16,206,841
Los Angeles-Long Beach, CA 2 1 8,351,266
Chicago-Northwest, IN 3 2 6,714,578
Detroit, MI 5 3 3,970,584
Washington, DC 8 4 2,481,459
Houston, TX 13 5 1,677,863
Cincinnati, OH 21 6 1,110,514
Dayton, OH 34 2 685,942
Richmond, VA 55 8 416,563
Las Vegas, NV 89 9 236,681
New London-Norwich, CT 144 10 138,171
Great Falls, MT 233 11 70,905

18

Predicted
Population

(P))/(s")

10,016,589
6,190,723
3,826,157
2,364,745
1,461,523

903,290
558,276
345,041
213,251
131,799

81,458

(ps/9)

10,016,589
5,161,475
4,149,925
2,454,007
1,533,658
1,036,998

686,350
423,944
257,456
146,280

85,983



TABLE 4

Actual and predicted population of U.S. urbanized areas, 1980

Urbanized Census Fibonacci Actual

Area Rank Rank (f) Population
New York-Northeast, NJ 1 0 15,590,274
Los Angeles-Long Beach, CA 2 1 9,479,436
Chicago-Northwest IN 3 2 6,779,799
Detroit, MI 5 3 3,809,327
Boston, MA 8 4 2,678,762
Minneapolis-St. Paul, MN 13 5 1,787,564
Denver, CO 21 6 1,352,070
Sacramento, CA 34 7 796,266
Albany-Schen.-Troy, NY 55 8 490,015
Colorado Springs, CO 89 9 276,872
Lancaster, PA 144 10 157,385
Elkart-Goshen, IN 233 11 83,920
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Predicted
Population

(P)/(s")

9,635,522
5,955,205
3,680,596
2,274,782
1,405,922
868,926
537,037
331,914
205,138
126,785
78,359

(Pe/0)

9,635,522
5,858,737
4,190,234
2,354,343
1,655,601
1,104,799
835,643
492,130
302,852
171,120
97,271



This method of predicting urban values is based on the structure of the
Fibonacci sequence in that each successive term in the sequence can be
predicted once the first term is known. The second term is then approximately
1.61803 times the first term, the third term is approximately 1.61803 times
that of the second term and so forth.

A second method of using ¢ to generate predicted population values is
shown in the column on the far right of Tables 3 and 4. The actual population
at each rank is divided by ¢ to predict the population of the city of the
following rank in Fibonacci order, that is

p = (p)/(e") (5)
This method of predicting urban values is not based solely on the first term,
but rather on (4) above, which shows that of any successive terms in a
Fibonacci sequence, (Un+1)/(Un) = 1.61803. The Targer term is used to
predict the following smaller term. A third method of predicting values, not
given here, would be to use the smaller value to predict the next larger one
in the sequence.

Table 5 illustrates the average of these values for the United States
urbanized area data for 1980. The data in Table 5 are derived as follows:
the actual populations of cities in Fibonacci rank are calculated as a
ratio. For example, in 1980 the ratio of the population of the 5th ranked
city (Detroit) to that of the 8th ranked city, (Boston) is calculated. The
ratio is 1.422 (3,809,327/2,678,762). (See Table 5.) When the calculations
were completed for all the successive pairs of urbanized areas listed in Table
4, an average of all the values was taken. This average for the 1, 2, 3, &
...series for 1980 was 1.6175. The process was repeated for 1980 for the 1,
3, 4, 7...Lucas series and then both series were calculated for 1970 data in

Table 3. The average of these values closely approximates the value of
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Rank

o o, oW N

13
21
34
55
89
144
233

*Ratio of the urban area in the row to the lower ranked

TABLE §

Average ratios between 1980 urbanized areas in Fibonacci rank

Urbanized Area

New York

Los Angeles - Long Beach
Chicago - NW Indiana
Detroit

Boston

Minneapolis - St. Paul
Denver

Sacramento

Albany - Schenectady - Troy
Colorado Springs

Lowell, MA

Elkhart - Goshen, IN

Average

Average (excluding Rank 2/Rank 1)

21

Population

15,590,274
9,479,436
6,779,799
3,809,327
2,678,762
1,787,564
1,352,070

796,266
490,015
276,872
157,385

83,920

Ratio*

1.6446
1.3982
1.7799
1.4220
1.4986
1.3221
1.6980
1.6250
1.7698
1.7592
1.8754

= 1.6175
= 1.6148

urban area.



¢ whether the 1, 2, 3, 5 Fibonacci series or the 1, 3, 4, 7 sequence is
used. (Table 6)
TABLE 6

Mean ratio of urbanized areas

Sequence Year Mean Ratio
1,2:345.8¢4 1970 1.653
1,3,4,7.1%... 1970 1.650
1,2,3,5,8... 1980 1.618
1.3,4,7,11.. 1980 1.628

There is some evidence from traditional rank-size research that the
largest city in many urban hierarchies is larger than predicted by the usual
rank-size formula. In an attempt to explore this possibility, a second set of
calculations was performed the same way on the same data in Tables 3 and 4
except that the ratio of the largest city to the second largest was
excluded. Table 7 shows the result. In 1970 the modified calculations were
substantially closer to the expected value of 1.618 but the 1980 calculations
were slightly further apart; however, in both the 1979 and 1989 cases the
value 1.618 produces sequences of values descriptive of city size at the time,
demonstrating the dynamic character of this procedure.

TABLE 7

Mean ratio of urbanized area excluding largest city

Sequence Year Mean Ratio
2,.3.5,8, .. 1970 1.624
3,4,7,11... 1970 1.621
2,3.5,8. . 1980 1.615
i, W Wy SO0 Ty (O 1980 1.626
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Another way of demonstrating that the ¢ ratio and, in turn, the
equiangular spiral can be used to describe the rank-size structure of the
urbanized areas of the United States is by examining the additive nature of
the populations of cities of sequential Fibonacci ranks. As was demonstrated
in (3), data which are in ¢ proportion are also additive and thus addition can
be used to predict the value of the next datum. For example, if the spiral
constant is reflected in the rank-size hierarchy of urbanized areas of the
United States, the population of the city of rank 233 added to the population
of the city of rank 144 should approximately equal the population of the city
of rank 89. Similarly, at the higher end of the scale, the population of the
largest urbanized area should be approximately the size of the sum of the
population of the second and third largest urbanized areas. Table 8 shows
this additive nature of the population of urbanized areas by using empirical
data from 1980. For the first entry in Table 8 the 1980 population of the New
York urbanized area is 15,590,274. The model predicts that it should be equal
to the population of Los Angeles (9,479,436) added to that of Chicago
(6,779,799). The sum of the populations of the two smaller cities is
16,259,235. In the far right column the ratio of the actual population 6f New
York to the estimated one is 96%. A1l the estimates on Table 8 fall within
83% to 115% of actual values.

One last way of showing conclusively that the spiral constant and, in
turn, Fibonacci sequences, are related to the simple rank-size relationship
would be by mathematically demonstrating this fact. Tables 9 and 10 give
empirical evidence by comparing values of urban size predicted by the simpIé
rank-size formula, with values predicted by successive division by ¢ for the
1, 2, 3, 5. . . and 1, 3, 4, 7. . . Fibonacci sequences. The first row in
Table 9, for example, shows that the city of second rank calculated by the

simple rank-size formula is predicted to have a value of .50 of that of the
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TABLE 8
Additive nature of the population of urbanized areas
Actual Population

Population Estimated by Adding (Actual)/

Rank (1980) Two Preceeding Lower Ranked Values (Estimate) (%)
i 15,590,274 16,259,235 (2 + 3) .96
2 9,479,436 10,589,126 (3 + 5) .90
3 6,779,799 6,488,089 (8 + g)* 1.04
5 3,809,327 4,466,326 (8 + 13) .85
8 2,678,762 3,139,634 (13 + 21) .85
13 1,787,564 2,148,336 (21 + 34) .83
21 1,352,070 1,286,281 (34 + 55) 1.05
34 796,266 766,887 (55 + 89) 1.04
55 490,015 434,257 (89 + 144) 1.13
89 276,872 241,305 (144 + 233) 1.15
144 157,385 -
233 83,920 -

*Example: The population of the 3rd largest city (6,779,799) can be
‘ approximated by adding the populations of the 5th largest city
(3,809,327) and the 8th largest city (2,678,762). (3,809,327 +
2,678,762) = 6,488,089.
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largest city. By the ¢ method of calculating rank-size, the second ranked
city would have a population of .618 of that of the largest city. The value
in the right hand column expresses the former value as a proportion of the
latter (.5/.618 = .81). There appears to be a fairly direct re]ationship
between the two sets of predicted values with a systematic bias such that the
value generated by the simple rank-size rule is approximately 85% of the value
generated by the ¢ method of calculation.

The relationship is even more striking in Table 10. After the seventh-
ranked city, the values generated by the simple rank-size rule and the values
predicted by division by ¢ from the Lucas series 1, 3, 4, 7, 11... approach
unity. That is, the two methods (rank-size and the spiral constant) generate
essentially the same set of data. Clearly, here is another distribution
different from the lognormal, the Pareto and the Yule which can generate the
rank-size relationship. Yet the rank-size and the spiral constant methods of
predicting urban hierarchies are not identical. Is one method perhaps a
"shadow" or "phantom" index of the other? Here is a startling phenomenon:
examination of Table 10 and F{gure 8, which plots both measures on log-log
paper, suggests that the simple rank-size rule may "work" simply because
division by 2, for example, generates a value close to that generated by
division by 1.618; division by 3 is close to division by 2.618; division by 4
is close to division by 4.236; division by 7 is approximately equal to
division by 6.854; division by 11 is close to division by 11.090, etc. At the
higher ranks the pairs of values become essentially identical. The advantage
of this formulation of the rank-size rule is that one can clearly see the
workings of the mechanism that generates rank-size. A mathematical model
transforming a probability distribution is not needed. In addition what makes

this formulation unique is not just its relative simplicity, but the fact that
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TABLE 9

Comparison of predicted population calculated by rank-size and
the spiral constant

(Fibonacci Series 1, 2, 3, 5. . .)
Value Predicted by Predicted (Rank-Size Population)/

Rank of ¢ Rank-Size by ¢ (¢ Prediction)

1

2 1.618 .5000 .6180 .81

3 2.618 +3353 .3820 .87

5 4,236 .2000 .2361 .85

8 6.854 1250 .1459 .86

13 11.090 .0769 .0902 .85

21 17.944 .0476 .0557 .85

34 29.034 .0294 .0344 .85

55 46.979 .0182 .0213 .85

89 76.013 .0112 +0132 .85
144 122.992 .0069 .0081 +85
233 199.005 .0043 .0050 .86
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Rank

11
18
29
47
76

123

199

TABLE

10

Comparison of predicted population calculated by rank-size and

the spiral constant

(Fibonacci Series 1, 2, 3, 4, 7 . . .)

Value Predicted by
of ¢ Rank-Size
1.618 .5000
2.618 <3333
4,236 .2500
6.854 .1429
11.080 .0909
17.944 .0556
29.034 .0345
46.979 .0213
76.013 .0132
122.992 .0081
199.005 .0050

Predicted
by ¢

°

.

3

6180
3820
2361
1459
0902
0557
0344
0213

.0132

.0081

.0050
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(Rank-Size Population)/
(¢ Prediction)

.81
.87

.98

1.00
1.00
1.00
1.00



some properties of the spiral constant indicate that it may be a more
meaningful measure of the urban hierarchy than the rank-size distribution.
When two hypotheses offer equal explanatory power, we assume that the
more valid of the two is generally accepted to be that which is more sound,
theoretically (based on mathematical logic). A frequently offered, although
by no means totally accepted, explanation for the rank-size relationship is
based on a central place hierarchy subjected to random disturbance. As
mentioned earlier, this explanation depends on the additional assumptions
expressed by Gilbrat's Law and the Yule Theorem. As we have seen empirically
demonstrated, however, the rank-size relation and the ¢ relation are closely
related, thus any evidence supporting the simple rank size relationship can
also be interpreted as supporting the ¢ relation as well. Which then is more

valid or need they be viewed as competing strategies?

The Slope of the Rank-Size Distribution

Some insight into the problem of which index is more valid can be gained
by examination of the factor of slope in the linear log-log graph. The simple
rank-size ruie is usually regarded as a special case of the more general rank-
size rule

ri(p;%) = K (6)
where q is an exponent with a value of 1 in the simple rank-size rule. In
rank-size research the exponent of 1 generates a slope of -1 on a log-log
graph. Usually this slope of unity is seen as coincidental, an accompanying
but not necessarily theoretically important accessory characteristic of the
rank-size relationship, despite the frequency with which an exponent near

unity occurs when empirical data are examined. A slope near unity is commonly
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found in studies of the urban system of the United States. The research in
this paper suggests that the slope of -1 (an exponent of 1.0 and an angle of
45° in the slope of the function on log-log graph paper) is not coincidental,
but rather derives from the fact that Fibonacci sequences and the ¢ function
when plotted on a log-log graph, both approach a slope of -1 (Figure 8). In
fact the difference in the higher values between the two indices may be
responsible for the frequently noted "concavity" in the empirical data. This
issue of slope is thus worth exploring at some length.

Frequently the line which best approximates the slope of graphed rank-
size data is close to unity and the slope is simply left out of the equation
by omission of the exponent q. In fact the phrase "simple rank-size rule"
means the rank size formula is used but the exponent, g, is ignored.

Inclusion of the exponent allows the formula to be adapted to rank-size
distributions which are log-linear but which do not exhibit a slope of -1.
Because the rank-size rule can be adapted in this fashion, it is tempting, but
incorrect, to assume that the simple rank-size rule is a special or odd case
of a more general, more useful formula. Beguin, for example, suggests that
"The case where the general slope is 1 is not particularly significant. . ."
and that it "appears as some empiric average observation" (Beguin 1984,

754). Rosen and Resnick (1980,166) state that the rank-size rule is a special
case of the Pareto distribution where the exponent equals 1. Instead, this
research argues that the simple rank-size rule is the general formula and
other distributions should be explained as variations of the general
principle. The situation is complicated by the fact that the ranked empirical
data never exactly equal a slope of 1.000. It does not necessarily follow
that this slope, thus, is coincidental; indeed it would be startling, given
the myriad forces impacting upon urban systems and the inaccuracies inherent

in the collection of data, if the slope of the empirical data of any rank-size
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hierarchy exactly equaled unity, although it does come close for aggregate
United States data (Rosen and Resnick 1980,171).

Almost every rank-size researcher has considered, in some fashion, the
issue of the slope of unity. Z. K. Zipf, (1949, 131) in his classic work,

Human Behavior and the Principle of Least Effort noted that "it is only

natural to ask why the value, p = 1 (the slope) should be of critical
significance..." He interpreted the slope as a result of the equation of the
generalized harmonic series and tried to explain the slope in a partially
developed argument concerning competing forces of unity (clustering and
hdmogenizing forces) and disunity (scattering and differentiating forces)
(Zipf 1949, 130-31). This is not unlike Coffey's definition (1981, 227) that
in general,..." a hierarchical spatial system is a dynamic equilibrium state
or, if you prefer, a compromise between the opposing tendencies of
organization and disorganization, between complete agglomeration and complete
disagglomeration" or Sahal's (1978, 1374-75) description of accumulative
growth and differential growth.

Although mainly dealing with business firms rather than urban areas,
Steind1 (1965) sees the slope of unity in a rank-size distribution as
analagous to a center of gravity about a meaﬁ. He argues that given an
initial distribution of different sizes of firms, concentration takes place
which results in the elimination of large numbers of smaller firms and the
creation of a few larger ones. Similar principles obviously apply to urban
areas. Some firms continue to grow while numerous smaller firms attempt to
get started. In theory, a variety of mechanisms operate to maintain
equilibrium. For example, continuous development of larger firms implies a
successful industry and thus more small firms enter. If the growth rate of

firms declines, mortality of firms is increased and the process is reversed.

31



The significance of the slope of unity is that, in theory, at this value,
growth of firms can continue indefinitely. Steindl states that the

tendency to concentrate is to some extent endemic, which

explains why the Pareto coefficient hovers round a level of

1.1 or so in most cases. The growth of industry, even while

equilibrium - in terms of the model - lasts and the mean size
of the firm is stable, leads to tension owing to the fact that
some firms become very large in relation to the rest of the
industry. This change is connected with a statistical measure
of "concentration" in a different sense - the share of the
largest one, two, or three, etc., firms; it is obvious that
concentration in this sense of the term proceeds continuously
in a growing industry, while the equilibrium of our model is
undisturbed and the mean size of the firm remains stable.

Woldenberg (1971) and Coffey (1981) also attach significance to the slope
of -1. They see it as the differentiating factor between allometric and
isometric growth. Both allometric and isometric growth can be expressed as a
straight Tine when plotted on log-log graph paper. When two factors
reflecting allometric growth are plotted (body weight to surface area, to use
an organic example), one grows faster than the other and this is reflected in
an exponent and slope other than -1.0. Isometry is a special case of growth
which, by definition, is different from allometric growth because both factors
grow at the same rate. Visually, this can be seen on the log-log graph by the
maintenance of a 45° angle, or equidistance, between the 1ine marking growth
and the two axes reflecting the growth. Woldenberg (1971, 4-5) explains that
strong allometric growth, a strong influence in one direction rather than
another, cannot continue for long because of size limitations. This
correlates with Steind1's observation that growth at a slope of -1, isometric
growth, can theoretically continue indefinitely. Coffey (1981, 194)
summarizes Bertalanffy's concern with the exponent (slope) as follows:

Briefly, the allometric relationship may be viewed as an
expression of competition within a given system, with
each system component taking its share of the available
resources of the total system according to its capacity,
as expressed by the exponent. The exponent may thus be

regarded as a "growth partition coefficient" that
expresses the capacity of a component to seize its share
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of the resources. An exponent indicating positive

a11omgtry, having a value greater than one when the

equation is dimensionally balanced, signifies that the

component in question captures a proportionately larger

share of the resources than either the total system or a

second component. Conversely, an exponent less than one

indicates that a component captures a share

proportionately less than the system or a second

component.
It follows that an exponent of exactly one means the components are securing
resources exactly in proportion to their respective sizes (Gilbrat's Law, or
the law of proportionate effect, again).

It should also be noted that the slope of unity has significance in
physics. In the logarithmic plot of functions which illustrate exponential
decay with time, Shire and Weber (1982,27) note that special significance is
attached to the time at which the exponent of the function equals unity. (The
exponent changes as the process goes through time.) At that instant,
approximately 37% of the decay has occurred and this instant is called the
one-over-e time (e for the natural logarithm), the relaxation time, or the
time constant of the process. This measure of time, which is system-
dependent, may be related to Sahal's statement (1979,1375) related to the
evolution of a system: "According to the framework provided by the Pareto
distribution, the appropriate concept is then one of system-specific time;
that is, the passage of time measured by successive events which are specific
to the system under consideration."

Despite the general acknowledgement of some unexplained significance to
the slope of unity, rank-size researchers usually believe the slope of -1.0
derived from the simple rank-size rule to be a special case of a more general
rank-size process. Carroll (1982, 1) calls the simple rank-size rule the
“restrictive rank-size rule" and in a discussion of the "misleading rank-size

versus primate continuum", he states "In particular, the rank-size rule with

exponent of unity is too restrictive to be the 1imiting case against which
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primacy is contrasted" (1982, 3). Berry (1971, 148) is aware of the slope of
unity but interprets it as a measure of balance between cities in the system
and cities entering the system, that is, a reflection of the Yule
distribution:

- . . unity is therefore the value of the exponent to be

expected if one is dealing with a fixed number of cities

(Tognormal case) as opposed to the case in which the

number of cities is growing. If (the part of growth

attributed to the entry of new cities reaching a

threshold size) is substantial, as in the case of a

system of cities rapidly expanding in numbers above

threshold, g (the exponent) will exceed unity. If, on

the other hand, the number of centers in the system is

shrinking . . . q will be less than 1.0. In general, a

value of g exceeding unity implies proportionately more

small places, whereas gq's of less than one arise with

increasing concentration of the urban population in

larger cities.
In Berry's explanation, as in many of the others, a balance of competing
forces is seen as the mechanism generating a slope of unity. His explanation
also dovetails with that of Woldenberg, above, in that rapid growth of cities
or very slow growth produces allometric rather than isometric growth because
growth progresses faster along one axis rather than another.

The slope of empirical data which are linear but which do not approximate

a slope of -1, has not been a major concern of this research. As ¢ and the
simple rank-size formula are essentially the same measure after rank seven,
the ¢ formula could be adapted mathematically to fit other slopes just as the
simple rank-size formula can be adapted. Near the end of this paper, the

application of a systematic bias to ¢ will show how this can be accomplished.

The Spiral Constant and Concavity of Rank-Size Distributions

The slope of -1, and the exponent of 1 in the simple rank-size equation,

are interrelated phenomena that have occupied the attention of many rank-size
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researchers. Both the simple rank-size rule and the ¢ method of deriving
rank-size produce a slope of -1 on a log-log graph; the former equation does
so exactly; the latter approximates that slope after rank seven. Figure 8
shows how the two derivations compare. Given the preceeding discussion of the
significance of the slope of -1 in the rank-size relationship, is the

¢ method of deriving the rank-size distribution the less accurate of the two
methods? The answer appears to be "no" when empirical data are taken into
account. Note that the 1ine representing the graph of the values derived from
¢ , in a sense, bulges, or is deflected upward from the 1line derived from the
simple rank-size rule. This phenomenon is referred to as being concave to the
origin of the graph, and far from being an unexpected aberration when compared
to empirical data, rank-size distributions which are concave to the origin at
the higher ranks are a frequently occurring and largely unexplained
phenomenon.

Ijiri and Simon, in discussing Pareto and Yule distributions applied to
sizes of business firms state quite clearly: "When the fit between theory and
data is examined, systematic differences can be seen between the theoretical
and empirical curves. The most important of these is that the empirical data,
when plotted on log-log graph paper, almost always exhibits a noticeable
concavity toward the origin" (Ijiri and Simon 1977, 12). In their work they
propose various adjustments in the rank-size formula to produce such
concavity. In general terms they see the concavity as a result of growth
processes of firms in which (1) the rate at which new firms develop is not
constant but decreases gradually over time or (2) growth is largely static yet
sizes of some firms continue to increase or decrease in a fashion which
follows Gilbrat's law. Beguin (1982, 230-31) summarizes work by Parr, Vining,
Malecki and others, and notes that "This concavity is well known in the

Titerature and it is frequently observed in empirical data (although not
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always located in the same sections of the curve..." He later states that
"...the concavity is essentially observed in the highest level of the
hierarchy..." (Beguin 1982, 230-31). He suggests that one consider the
concavity as a systematic upward deviation from the rank-size formula. Beguin
discusses diseconomies of scale in urban growth in conjunction with rank-size
as the possible producers of this distribution. Sahal also cites this
phenomenon: "It should be noted that the empirical distributions of the
Pareto Law invariably exhibit the observed anomalies. Typically they tend to
be concave upward and are linear or nearly so only over the lower range of
data" (Sahal, 1981, 292-93). He attributes this, again, to the general
phenomenon of the inability of simple laws to accurately describe values
across whole ranges of data. Thus, although the hypothesis is not empirically
tested in this research, the ¢ formulation clearly offers the possibility that
it more closely approximates urban empirical data than does the rank-size rule
because ¢ predicts concavity to the origin in the upper tail 6f the
distribution. Although it is not an explanation for the phenomenon, it is
easily seen that the concave déviation from the straight 1ine of the rank-size
distribution is the result of the numerical differences between ¢ and rank-
size in ranks up to rank 11 which were shown on Figure 8 and discussed in
reference to Tables 9 and 10. That is, the deviation results from the
graphical plot of 2 instead of 1.618; 3 instead of 2.618: 4 instead of 4.236,

gte.

The Spiral Constant and the Primate City

At first glance, the spiral constant may seem unable to offer any insight
into the phenomenon of the primate city. A look again at Table 9 will

illustrate this. The simple rank-size formulation suggests that the second
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largest city should be one-half the size (.50) of the largest city and the
third largest should be one-third, (.33) of that size. The ¢ method of
deriving rank-size suggests the second largest city should be .618 the size of
the largest city and the third largest city should be .381 the size of the
largest city. Thus the ¢ formulation projects larger expected second and
third ranked cities than does the simple rank-size formula, so a primate
distribution lands even farther from the mark in the ¢ formulation than in the
simple rank-size formulation. Expressed another way, if primate cities seem
“larger than they should be" by rank-size, they are Tlarger still by
the ¢ formula. On the other hand, if one argues that primacy reflects a
situation where the largest city usurps much of the population and many of the
functions of the second, or second and third largest cities, then
the ¢ formula offers a more plausible measure of primacy because the second
and third largest cities, as calculated by e, offer more to usurp. That is,
(-618 + .381 = .999) compared to (.5 + 333 = .833). Berry (1971) and Carroll
(1982) remind us that rank-size and primate distributions are not, in some
way, opposite kinds of distributions. Vapharsky (1969, 584) stated "It can be
observed that primacy and rank-size rule are not mutually exclusive models.
Rather, a perfect fit to the rank-size rule of all cities in an area except
the Targest is compatible with a high level of primacy." Stewart (1958) also
studied the interplay of primacy and rank-size and concluded that

The results diverge considerably from the rank-size

rule. For most countries not only is the second city

much less than half the size of the largest but other

ratios also differ somewhat from the rule. The size

difference between second and third cities, and between

third and fourth cities, is larger than the rule

postulates. The fourth and fifth cities are close

together in size.

He goes on to conclude that "Well-structured areas of urban dominance tend to

have an S-shaped, rather than a linear logarithmic, distribution of towns by
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size." Table 11 shows the data Stewart saw as diverging from the rank-size

rule:
Based on the additive properties of the the spiral constant derivation of
rank-size (the sum of the populations of the fifth and the third largest

cities should approximate the population of the second largest for example),
TABLE 11

Median size of five largest cities as a fraction of the largest city

Area Largest Second Third Fourth FiPEh
72 Countries 1 <315 .200 .140 .120
Australia (states) 1 .076 .0405 .024 .019
Brazil (states) 1 «210 «138 .105 .0785
Canada (provinces) 1 .340 .220 .140 .078
India (states) 1 .440 .365 .280 i 5
United States (states) 1 .435 .310 .200 .165
U.S.S.R. (republics) 1 +375 e ‘v ou 3 W o
Rank-Size Rule 1 .500 -333 .250 .200

Source: Stewart, 1958.

Table 12 shows the expected values for the second largest cities for all areas
Stewart analyzed in Table 11 for which the fifth largest city was given.
Rather tﬁan the chaos that Stewart found, a good deal of empirical regularity
can be demonstrated by the spiral constant using the very same data Stewart
used.

The spiral constant offers new insight into primacy because unlike the

traditional rank-size formulation and unlike central place theory, the
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¢ formulation of the urban hierarchy suggests that in the series 1, 2, 3, 5,

8, 13. . . urban areas of ranks 1, 2 and 3 are separate, distinct levels. As

TABLE 12

Expected size of Stewart's second largest cities based on
additive values

Area Stewart's Second Ranks
Largest City {5+3)
72 Countries 315 .320
Australia (states) .076 .060
Brazil (states) .210 .214
Canada (provinces) .340 .298
Unites States (states) .435 .475

Rank-Size Rule .500 533

shown in Table 13, it is not until the fourth ranked city that urban areas
share a level; that is 1, 2, é and 4-5 are four levels of the hierarchy. A
possible interpretation of this structure derived from the spiral constant is
that the two or three largest cities of an urban system all serve a national
market. Primate cities, as some have already suggested, may represent a
situation in which the largest city has usurped the functions of the second
and/or third largest cities. Beguin (1984, 754) makes a similar case when, in
a discussion of concave distributions, he argues that the concept of primacy
does not have to be restricted to an arbitrary number of large cities.
Vapharsky (1969, 589) also wrote of "group primacy" in regions of Argentina.
Expressed another way, the spiral constant offers theoretical grounds to argue

that an urban system can be expected to have its three cities share a national
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TABLE 13

Levels within an urban hierarchy defined by the spiral constant

NUMBER OF CITIES AT

EACH LEVEL
1 1
2 1
3 1
4 5 2
6 7 8 3
9 10 11 12 13 5
14 15 16 17 18 19 20 21 8

Although cities of ranks 2 and 3 are clearly smaller than and subordinate
to city 1, it is not until cities of rank 4 and 5 that levels of function
are duplicated. That is, city 3 is smaller than and different in function
from city 2, whereas city 5 is smaller than city 4, but similar in
function; cities 6, 7 and 8 are similar in function, etc.

market with some overlap of functions (New York, Los Angeles and Chicago come
to mind). As has been noted in the research, (Lensky, 1965), nations small in
area may be more 1ikely to have these functions concentrated in a single

city. Another advantage offered by the spiral constant approach is that the
1,3,4,7 hierarchy may fit some nations better than the 1,2,3,5 hierarchy; that
is, there are multiple patterns of distribution generated by the spiral
constant. This fits in well with research which argues that primate cities
should be analyzed from a perspective other than that of an aberration from

expected distributions (Rose, 1966, for example).
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affords wide latitude in plotting data. Even when the plotted data exhibit a
“good fit", it is striking how far off the mark are predictions of the ranks
of specific urban areas. Anyone who has had the experience of plotting a
rank-size curve knows how slight a difference even several thousands of
population can make in the placement of a dot on the graph in the high and
middle ranges of many sets of urban data. Rapoport (1978,847) reminds us that
some monotonically decreasing curve will describe just about any group of
objects arranged according to size. Secondly, the existence of a straight
1ine on a graph also depends, to an extent, on the portion of the urban
distribution selected for analysis -- the lowest levels of the urban hierarchy
frequently deviate markedly from the projected straight 1ine (and the
mathematical formula) and thus are frequently omitted from analysis because
attention is given to the largest urban areas. The largest cities, as well,
usually deviate significantly from the values predicted by the formula or the
straight Tine on a graph. Thi§ is the phenomenon known as the primate city.
Attempts to accommodate the lower portion of the curve often displace the
upper portion and vice-versa. Sahal (1981,294) has discussed this as a
problem of results being sensitive to the origin of the independent

variable. Applied to the simple rank-size rule this means, for example, that
instead of attempting to predict the size of the 100th largest city by
dividing the population of the largest city by 100, we could, with equal
logic, but with different results, predict the size of the largest city by
multiplying the population of the city of rank 100 by 100. This follows, of
course, from equation (7) above in which the product of these two factors is a
constant. Rosing (1966) relates how Zipf accomplished a similar end by
determining the population of the largest city (New York), not by census data,
but by the computation of the y intercept of a regression line through the

ranking of the 100 largest cities on double log paper.
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There is evidence that a full urban distribution may be " S " shaped,
reflecting a growth or logistics curve (Stewart 1958, 245), or " J " shaped,
and that the linear orientation of the data exists only in portions of the
distribution. Parr and Jones (1983, 284-85) for example, describe the rank-
size distribution as a lognormal distribution if truncated at a sufficiently
high level. Carroll (1979) offers the greatest clarity on these issues. He
points out that the rank-size distribution is more properly classified as a
relation between two variables than as a probability distribution. The rank-
size distribution can be derived from three kinds of the class of skew
probability distributions. Al1 of these probability distributions -- the
lognormal, the Pareto and the Yule, are J-shaped and highly skewed in the
upper tail. Each of the distributions is unique although the upper tails are
quite similar, iherefore, if the examination of a set of urban data excludes
the smaller urban centers, any or all three distributions might apply.
Carroll states

We have seen that the law of proportionate effect results

in the lognormal distribution. This Taw with a lower

threshold results in the Pareto. And, this law with a

lower threshold at which new units enter in a constant

rate gives the Yule distribution.
Nader (1984) suggests that a non-logarithmic approach to rank-size data yields
results superior to that of a logarithmic model. Perhaps such non-1inear
distributions are polymodal and reflect mixtures of two or more rank-size
distributions, as has been reported for some distributions in geology
(Krombein and Graybill 1965,108,126). Another perspective on this issue is
that of Sahal (1981) who states quite simply that it is a general character-
istic of simple laws that they do not hold over the entire range of
variables. Clearly the rank-size relationship is still open to inter-
pretation, and it is was intent of this research paper to suggest even another

method which can generate a distribution similar to the rank-size rule.
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Rank-Size and Central Place Theory

In addition to this uncertainty about the accurate mathematical portrayal
of the structure of urban size distributions, geographers face a theoretical
dilemma, which has not been satisfactorily explained, between two of the most
intensively researched problems in the field of geography; rank-size research
and central place research. Expressed very simply, the dilemma is that
presented when the theoretical forms of the two distributions are
contrasted. Central place theory suggests the existence of step-like plateaus
or clusters of cities of similar sizes at intervals along the urban
hierarchy. Rank-size research suggests a Tinear, sloping function with a
continuous gradient rather than steps. Recall our earlier discussion of the
spiral shell and how distinct levels as well as a continuous distribution can
be viSua1ized. It has been mathematically demonstrated that with certain
assumptions a hypothetical central place hierarchy can be randomly disturbed
to generate a rank-size hierarchy (Berry 1971, 144-46; Parr 1970; Beguin,
1985).

Briefly, these two necessary assumptions are those known as Gilbrat's Law
and the Yule Theorem. In Berry's words, (1971) Gilbrat's Law of proportionate
effect is that ". . . in very small time intervals city growth is small
relative to city size, and that absolute growth is proportional to city size
(i.e. the growth rate is the same for each size class of cities; . . . )".
Carroll (1979) notes that Gilbrat's law is simply the basic underlying
assumption of the lognormal distribution. The Yule distribution, is, in
effect, a way of dealing with the "tail" of a distribution which usually
deviates from the straight 1ine of the plot of a rank-size relationship. The
Yule distribution is a modification of the rank-size formulation (as Parr and

Jones note) which results in a truncated probability distribution in which the
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tail falls below a threshold size for the objects under consideration, in this
case urban areas. The number or quantity of new cities entering the system
over a given time is a kind of birthrate into the rank-size hierarchy. (Berry
1971, 147-48). 1Ijiri and Simon (1977) and Aitchison and Brown (1963) describe
these two modifications of the rank-size relationship in greater detail but
with application to size of business firms rather than urban centers.

In summary, the traditional view of rank-size is that i1t is a situation
of entropy in which numerous stochastic processes acting on a central place
hierarchy disturb the distribution and produce a rank-size hierarchy.
(Carrol1, 1982, 5-8). Coffey's, (1981, 215) summary of Simon's work (1955)
expresses this view well: " . . . the rank-size regularity is the
manifestation of a set of stochastic relationships that offset the development
of any phenomenon." More specifically, Simon believes the rank-size
distribution to represent the equilibrium slope of any general growth process
in which each element initially has a random size and thereafter grows in an
exponential manner proportional to its size. Moreover, the stability of the
rank-size relationship in various systems over both time and space suggests
that it may be the manifestation of a steady-state condition in which the
distribution is affected by a myriad of small random forces. From a
statistical perspective, these explanations make sense. As we know from
Carroll, what is being accomplished is that the rank-size portion of a
particular skew distribution results from modification of certain probability
distributions by incorporation of assumptions which result in the use of
Gilbrat's law and Yule's theorem. What is less satisfying are the highly
unrealistic assumptions necessary to accomplish these manipulations; namely
the assumption that all classes of urban areas grow at the same rate in the
case of Gilbrat's law, and the assumption of a constant and steady rate of new

entrants into the urban system in the case of Yule's theorem. In any case,
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since Gilbrat's law and Yule's theorem are needed to generate rank-size,
clearly, as Thomas (1985) concludes, the regularity of rank-size measurements
will depend on the number of cities included in the urban system and the

minimum population threshold that defines or Timits the urban system.

Directions for Further Research

It appears from the preceeding material that further research on the
spiral constant as the organizing concept for the rank-size relationship is
profitable. Because the concept seems to lead in so many directions, one
researcher cannot hope to explore all leads in a short amount of time.
Therefore, this author will suggest a variety of paths of exploration, citing
where possible specific, testable hypotheses. By their very nature these
hypotheses are speculative.

1) The spiral constant may be able to predict urban distributions more
accurately than rank-size. To test this hypothesis a large number of national
urban systems, perhaps twenty or thirty in number, should be tested. Both the
spiral constant and rank-size can be used to predict the urban distributions
and the closer correlation in the majority of cases will be the more accurate
predictor. Some mathematical difficulties present themselves in that
experimentation with the formula for generating an equiangular spiral will be
necessary to determine how such a spiral can be best adjusted to provide a
best fit for the data. This is a process analogous to adjusting the exponent
of the rank-size formula.

2) The spiral constant may help explain the concavity in rank-size
distributions. Most rank-size research views the concavity in the empirical
data as a deviation from a theoretically expected straight 1ine. The spiral

constant formulation suggests that the concavity in the data is quite
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predictable based on theoretically expected values. This hypothesis, and in
general, the ability of the formula using the spiral constant to predict urban
distributions can be tested statistically. Statistical tests should correlate
empirical urban data and values predicted by the formula for an equiangular
spiral as described above. These correlations should be compared to those
derived by the usual rank-size formula. In addition, for the same sets of
data, separate correlations should be run for just the ten largest cities,
those where the spiral constant may be able to predict the concavity in the
rank-size distribution. This hypothesis is a subset of the first, more
general, hypothesis above.

3) An understanding of the spiral constant can help in analyzing the
primate city phenomenon. The structure of the spiral constant formula
provides a variety of systematic ways to experiment with primate city data.
For example, recall that the population of the eighth and the fifth largest
cities combined should equal, approximately, the size of the third largest
city. Thus the spiral constant gives us a method of predicting an expected
size of the third largest city independent of the large primate city.
Similarly, once the expected size of the third Targest city is known, the size
of the second largest city can be predicted, and, in turn, the Tlargest city.
If the second and third largest cities are substantially less than the
predicted figure, this may be an indication that the primate city has usurped
some functions of the other cities. In any case the population of the primate
city can be hypothetically re-allocated to second and third ranked cities to
see if a "normal" spiral curve can be generated. The examination of many
primate distributions should provide insight into this process. As & general
comment, it should be noted that what are often seen as three separate issues
may in fact be related: the fit of the expected distribution to the straight-

line portion of the rank-size distribution, primacy and concavity. The spiral
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constant may help explain concavity or primacy even if it does not fit all
categories of urban data better than does the rank size rule, or similarly, it
may help explain concavity but not primacy. Hopefully it may shed some 1ight
on all three issues.

4) The spiral constant offers a new way to conceptualize levels of urban
functions in urban hierarchies. If there is validity to the concepts of a
rank-size relationship based on the spiral constant, this validity may derive
from functionally different structural Tevels at Fibonacci intervals along the
rank-size distribution. In a Christaller hierarchy (k=3), functionally
different levels would be found at ranks 1, 3, 9, 27, 81. . . In the
hierarchy derived by the spiral constant these functionally different levels
coald beat 1, 24 3« 55 B 13s o ws O 1a 35 g 75 1ls 18 o oy 0 dy 2y 8y 15
12, 19. . ., etc. Considered as a hypothesis, the numbers of central place
functions could be examined to see if there are decreasing levels of urban
functions with decreasing rank. In this research, of course, we have used
urbanized area data as a substitute for functional level. Detailed
investigation of functional level of urban areas must look at the actual
number of functions in each urban area. A rank-size relationship may be
evident in the functional data. If not, the average number of functions at
each Fibonacci level based on urbanized area data can be used. The fact that
one set of data provides several Fibonacci sequences for examination allows a
number of tests to be applied to the same set of data. In other words, one
set of urban data allows the three Fibonacci sequences listed above to be
examined. In addition, the finer differentiation of an urban hierarchy
expected from the phi formulation allows more vigorous testing than that
possible from simple rank-size. Indeed there is no theoretical basis in the
traditional rank-size formulation to predict varying levels of functions.

These levels are either assumed from central place theory or they are inferred
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from breaks on the graph of the empirical data. The spiral constant, on the
other hand, offers some mathematical justification for stating a priori, that
urban centers ranked 4 and 5 for example, should have a different number of
functions than urban centers ranked 6, 7 and 8, and these in turn should be at
a different functional Tlevel from those ranked 9 through 13, etc.

To test this hypothesis the number and kinds of functions in the U.S.
urban hierarchy can be examined. Differences in functions within levels
should be less than differences between levels, that is, the number of
different functions available in urban centers ranked 4th and 5th should be
closer than the numbers of functions in cities ranked 6th, 7th and 8th. In
short, differences in numbers of functions within levels should be less than
differences between levels. There may also be a Fibonacci hierarchy in the
number of functions as well. This can be easily tested when the data are
collected for the first test. Expressed simply, when the numbers of functions
of urban centers are ranked, do they approximate a Fibonacci sequence?

While it may be poor scientific practice to base an expectation on
intuitive reasoning, there is something inherently unsatisfactory in the gross
differentiation of the urban hierarchy provided by traditional Christaller
hierarchies. Even the finest Christaller hierarchy, k=3, provides no
differentiation in level between cities of ranks 4 and 8, or between ranks 10
and 26, 28 and 80, or 81 and 243. Expressed in 1980 U.S. population data, the
k=3 hierarchy predicts no difference in function between those aforementioned
pairs of cities with populations of 4,113,000 and 2,679,000; 2,413,000 and
1,078,000; 1,009,000 and 312,000; 306,000 and 79,000. The spiral constant
formulation, in contrast, predicts twelve levels between and including ranks 1
and 243, namely 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 and 233.

5) The spiral constant may offer new perspectives on integration of

rank-size research and central place theory. Hypothesizing twelve levels of
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urban function rather than six in a given range of an urban hierarchy may be
intuitively pleasing, but in addition to empirical testing, sound theory is
needed as to why this might occur. Attempting to match a hexagonally based
central place hierarchy with a rank-size distribution derived from the spiral
constant requires a k=1.618 hierarchy. This is evident from the fact that, if
functionally different levels are found at ranks 3, 5, 8, 13, 21, etc., on
average the ratio of number of centers of one level to numbers at the
preceeding level is 1.618:1. The column entitled "number of cities at each
level" in Table 13 illustrates this. (Note that the number of cities at each
level is, itself, an element of a Fibonacci sequence.)

In order to speculate how the equivalent of a k=1.618 hierarchy can be
generated from a regular central place hierarchy, it seems wise to begin with
the standard central place pattern which is closest in area, that of k=3. One
method of generating a k=1.618 hierarchy from a k=3 hierarchy is by
introducing a systematic bias that increases the number of centers which
evolve into higher order centers. The ratio of 3/1.618 which approximates
1.85, will accomplish the task. Assume that the ideal conditions of an
isotropic plain do not exist over most of the territory of a national urban
system, and that instead, barriers are found due to terrain, uneven
distribution of population, incomplete accessibility of each point to every
other point, and so forth. Assume further that a k=3 hexagonal network was
evolving but the above factors introduced a systematic bias such that as each
level of the hierarchy evolved, 1.85 higher level centers resulied for each
one predicted by central place theory. For example, if a Christaller-type
hierarchy of 1, 3, 9, 27, 81, 243, 729 was "expected," 729 lowest order
centers would produce not 243 higher level centers, but rather, 450 centers
(243 x 1.85). From these 450 centers, combination of hexagons in the k=3

pattern would tend to produce 150 of the next level center, but instead, 277.
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centers (150 x 1.85) would be produced. Table 14 shows these figures. Note
that the numbers of the resulting centers are another Fibonacci series (with
some variation due to rounding). As such the average ratio of numbers of
centers at successive levels is 1.618. The resulting figures could be plotted
on a log-log graph with an approximate slope of -1, or as an equiangular
spiral. 7

This demonstration is offered as illustrative of one possible way in
which a traditional central place hierarchy can be manipulated in a somewhat
plausible manner to result in a rank-size distribution. Such manipulation
might seem less contrived when it is recalled that the generally accepted
demonstration of how a central place hierarchy results in a rank-size
distribution is based on stochastic processes applied to the central place
hierarchy. The main difference between the two approaches appears to be that
one is based on random factors and the other on random factors with a
systematic bias. There is some research which argues for a random factor
which disturbs the regular central place hierarchy and results in the rank-
size distribution. In fact, this is way the generation of rank size from
central place is usually explained. Beckmann (1958), Berry (1971) and Beguin
(1985) all explain this random factor és deviation about the midpoint of each
hierarchical level. Beguin (1985, 440) describes it best: "A large random
diversity of empirical local conditions describing the heterogeniety of
geographical space might be represented by some random factor. Such a factor
influences the sizes of local urban centers, and thus generates differences

between observed urban populations and theoretical populations derived from
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TABLE 14

k=3 hierarchy modified by a systematic bias

of 1.85
Arrangement of centers k=3 centers modified by
from k=3 1.85
729 | 729
243 451
81 278
27 172
9 106
3 66
1 41
25
16
10
6
4
2
1

Note that the number of centers in the right column is,
approximately, a Fibonacci sequence.
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central place theory." Further, he states (1985,437) "the random factor
should thus generate as many positive as negative differences between the
empirical values p; and the population P of the median center of any level
m." Clearly, a systematic bias from a beginning pcint or end point for each
level can result in the same distribution as positive and negative deviations
around a midpoint. It is difficult to think of a way to test this hypothesis
which is different from the test suggested earlier: test for levels in the
urban hierarchy based on number of different functions. If the levels on
average are separated by ratios approximating the spiral constant, it is
evidence that the urban hierarchy in that case is based on what in a
Christaller model would be called k=1.618. Such a network could possibly be

modeled by fractal generation of a central place hierarchy (Arlinghaus, 1985).

U

Figure 9. An equiangular spiral generated from a
network of hexagons. (After Thompson, 1961.)
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Although the k=3 hierarchy seems the most logical hierarchy to be
converted into one which might reflect the influence of growth by the spiral
constant intervals, the k=4 hierarchy also offers possibilities. As was
mentioned earlier in a discussion of gnonomic growth, almost any simple
regular geometric figure can be used to demonstrate how a set increment of
growth can produce an equiangular spiral. Squares, rectangles and triangles
are used to illustrate this in many works dealing with gnomonic growth.
Interestingly, an equiangular spiral derived from corresponding points in a
system of hexagons (Figure 9) is based on hexagons which are four times as
large as the preceeding one. Note in the figure that the hexagons are not
related to each other in the usual manner of a k=4 hierarchy. This occurrence
can be seen as an invitation to explore new ways of combining hexagons into
logical and economically rational hierarchies.

6) The spiral constant may help explain why different urban systems have
different slopes. Due to the importance attached to urban distributions with
a slope of -1, 1ittle has been written in this paper about rank-size
distributions which deviate significantly from this slope. The argument has
been made that the slope of -1 is a slope of theoretical significance, not of
incidental significance. It could be argued that urban distributions
substantially different from those with slopes of -1 are incomplete, still
evolving, or deviant in some fashion and it could be argued that some
corrective factor should be applied to the formula. In the case of the
formula for the equiangular spiral, a variable could be added or the angle of
tangency adjusted. The formula would no longer be that of an equiangular
spiral and it would no longer have a slope of -1 on a log-log graph, but this
was the desired result. This adjustment is equivalent to that accomplished by
manipulation of the exponent in the traditional rank-size formula. When the

rank-size exponent is manipulated, theoretical reasons why a particular
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exponent should be assigned are not offered; it is simply the exponent needed
to achieve a line of best fit.

If, as we have considered, a slope of -1 is a reflection of a systematic
bias of 1.85 (related to the ratio of 8:5) at work in the central place
hierarchy, could other slopes reflect other systematic biases? Suppose the
systematic bias due to non-isotropic conditions resulted in ratios of 9:5 or
8:4, what slopes would result? Statistical testing of this hypothesis would
require examination of many urban systems in an attempt to see if there are
consistently recurring values of slope; that is, if values of slopes are not
randomly distributed around -1.0, but rather cluster around set values. If
such recurring values are found, detailed comparative investigation of the
structure of the urban system of each slope class is warranted. Standardized
methods of determining slope must be employed to avoid non-comparative data
which, as Carroll states, has hindered rank-size research in the past. It may
be possible to examine slope data from already-completed research such as that
of Rosen and Resnick (1980) who looked at 44 countries.

The spiral constant may help generate new conceptualizations of the urban
hierarchy. There is still debate over the validity of central place theory
and the extent to which approximations of hexagonal market areas exist.
Suppose market areas combine with nearest neighbors in some way to produce
dendritic market regions analogous to river drainage patterns? Consider three
examples of branching patterns cited by Huntley (1970). He shows how stems
and flowers of certain plants can produce Fibonacci sequences as does Coxeter
(1961, 169-72) with the facets on the face of a pineapple. The same kind of
pattern can be found in the branching pattern illustrating the genealogical
table of a bee or the possible histories of an atomic electron (in terms of
gain and loss of charge). Dendritic patterns are frequently found in spatial

systems. Certain types of such patterns generate fibonacci sequences.
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Goodchild and Mark (1987) cite Batty (1985) who connected recursive algorithms
to the branching process used in simulation of networks and trees. Kapteyn, a
turn-of-the-century mathematician, designed a mechanical analog to show how
trickling sand could generate a lognormal distribution similar to a rank-size
hierarchy (Aitchison and Brown, 1963, 22-24). The machine accomplished this
by subdividing the flow of sand in a branching pattern. Could a branching
pattern rather than hexagonal pattern of service areas better account for the

rank-size regularity in urban systems?
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APPENDIX A

RANK OF URBANIZED AREAS BY POPULATION 1970

RANK URBANIZED AREA POPULATION
1. New York, NY-Northeastern NJ 16,206,841
2. Los Angeles-Long Beach, CA = 8,351,266
3. Chicago, IL-Northwestern IN 6,714,578
4. Philadelphia, PA-NJ 4,021,066
5. Detroit, MI 3,970,584
6. San Francisco-0akland, CA 2,987,850
7. Boston, MA 2,652,575
8. Washington, DC-MD-VA 2,481,489
9. Cleveland, OH 1,959,880

10. St. Louis, MO-IL 1,882,944
11. Pittsburg, PA 1,846,042
12. Minneapolis-St. Paul, MN 1,704,423
13. Houston, TX 1,677,863
14. Baltimore, MD 1,579,781
15. Dallas, TX 1,338,684
16. Milwaukee, WI 1,252,457
17. Seattle-Everett, WA 1,238,107
18. Miami, FL 1,219,661
19. San Diego, CA 1,198,323
20. Atlanta, GA 1,172,778
21. Cincinnati, OH-KY 1,118,514
22. Kansas City, MO-KS 1,101,787
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RANK URBANIZED AREA POPULATION

23. Buffalo, NY 1,086,594
24. Denver, CO 1,047,311
25. San Jose, CA 1,025,273
26. New Orleans, LA 961,728
27. Phoenix, AZ 863,357
28. Portland, OR-WA 824,926
29. Indianapolis, IN 820,259

30. Providence-Pawtucket-Warwick, RI-MA 795,311

31. Columbus, OH 790,019
32. San Antonio, TX 772,513
33. Louisville, KY-IN 739,396
34. Dayton, OH 685,942
35. Fort Nortﬁ, TX 676,944
36. Norfolk-Portsmouth, VA 668,259
37. Memphis, TN-MS 663,976
38. Sacramento, CA 633,732
39. Fort Lauderdale-Hollywood, FL 613,797
40. Rochester, NY 601,361
41. San Bernardino-Riverside, CA 583,597
42. Oklahoma City, OK 579,788
43. Birmingham, AL 558,099
44. Akron, OH 542,775
45. Jacksonville, FL 529,585

46. Springfield-Chicopee-Holyoke, MA-CT 514,308
47. St. Petersburg, FL 495,159
48. Omaha, NE-IA 491,776

58



RANK

75
76.
77
78.
79
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91l.
92
93.
94.
g5.
96.
897
98.
99.
100.

URBANIZED AREA

Trenton, NJ-PA

Newport News-Hampton, VA

Davenport-Rock Is.-Moline, IA-IL

Austin, TX
Fresno, CA
Mobile, AL

Des Moines, IA
Baton Rouge, LA
Worcester, MA

Peoria, IL

Oxnard-Ventura-Thousand Qaks, CA

Canton, OH
Columbia, SC
Harrisonburg, PA
Las Vegas, NV
Shreveport, LA
Aurora-Elgin, IL
Spokane, WA
Lansing, MI
Charlestown, SC
Fort Wayne, IN
Chattanooga, TN-GA
Wilkes-Barre, PA
Little Rock-N. Little Rock, AK
Corpus Christi, TX

Columbus, GA-AL

POPULATION

60

274,148
268,263

266,119

264,499
262,908
257,816
255,824
249,463
247,416
247,121
244,653
244,279
241,781
240,751
236,681
234,564
232,917
229,620
229,518
228,399
225,184
223,580
222,830
222,616
212,820
208,616



RANK

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111,
112
113.
114,
115.
116.
1137,
118.
119.
120.
121.
122.
123.
124.
125.
126.

URBANIZED AREA

Rockford, IL
Madison, WI

Colorado Springs, CO
Scranton, PA
Lawrence-Haverhill, MA-NH
Lora%n-E]yria, OH
Knoxville, TN
Jackson, MS
Stamford, CT

Lowell, MA
Utica-Rome, NY

Ann Arbor, MI
Bakersfield, CA
Erie, PA

Reading, PA

Huntington-Ashland, WV-KY-OH

Binghamton, NY
Pensacola, FL
Savannah, GA
Fayetteville, NC
Stockton, CA
Lexington, KY
Charleston, WV
Greenville, SC
Waterbury, CT

Roanoke, VA

POPULATION

61

206,084
205,457
204,766
204,205
200,280
192,265
190, 502
190, 060
184,898
182,731
180, 355
178,605
176,155
175,263
167,932
167,583
167,224
166,619
163,753
161,370
160,373
159,538
157,662
157,073
156,986
156,621



RANK URBANIZED AREA POPULATION

127. Joliet, IL 155,500
128. Lincoln, NE 153,443
129. Raleigh, NC 152,289
130. Greensboro, NC 152,252
131. Kalamazoo, MI 152,083
132. Lubbock, TX 150,135
133. Ogden, UT 149,727
134. Augusta, GA-SC 148,953
135. Brockton, MA 148,844
136. Saginaw, MI 147,552
137. Huntsville, AL 146,565
138. Winston-Salem, NC 142,584
139. Evansville, IN 142,476
140. Fall River, MA-RI 139,392
141. Eugene, OR 139,255
142. Montgomery, AL 138,983
143. Duluth-=Superior, MN-WI 138,352
144. Atlantic City, NJ 134,016
145. New Bedford, MA ' 133,667
146. Topeka, KS 132,108
147. Cedar Rapids, IA 132,008
148. New Britain, CT 131,349
149. Santa Barbara, CA - 129,774
150. Appleton, WI 129,532
151. Green Bay, WI 129,105
152. Macon, GA 128,065
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RANK

153.
154.
155,
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.

URBANIZED AREA

Amarillo, TX

York, PA
Biloxi-Gulfport, MS
Springfield, MO
Springfield, IL
Waco, TX

Racine, WI
Lancaster, PA

Port Arthur, TX
Beaumont, TX
Waterloo, IA
Norwalk, CT
Portland, ME
Modesto, CA
Muskegon-Muskegon Hgts., MI
Provo-Orem, UT
Pueblo, CO

Durham, NC
Petersburg-Colonial Hgts., VA
Champaign-Urbana, IL
Decatur, IL

Reno, NV

Meriden, CT

Wichita Falls, TX
Johnstown, PA

Sioux City, IA-NE-SD

POPULATION

63

127,010
123,106
121,601
121,340
120,794
118,843
117,408
117,097
116,474
116,350
112,881
106,707
106,599
106,107
105,716
104,110
103,300
100,764
100,617
100,417

99,693

99,687

98,454

97,564

96,146

95,937



RANK

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192,
183,
194,
195,
196.
197.
198.
199.
200.
201.
202.
203.
204.

URBANIZED AREA

Lawton, OK

Manchester, NH
Springfield, OH

High Point, NC
Seaside-Monterey, CA
Salem, OR

Wheeling, WV-OH
McAllen-Pharr-Edinburg, TX
Hamilton, OH

Abilene, TX

Monroe, LA

Muncie, IN

Lake Charles, LA
Tuscaloosa, AL
Steubenville-Weirton, OH-WV
Fargo-Moorhead, ND-MN
Boise City, ID

Kenosha, WI

Texas City-La Marque, TX
Altoona, PA

Odessa, TX

Terre Haute, IN

Anderson, IN

Lafayette-West Lafayette, IN

Jackson, MI

Lafayette, LA

POPULATION

95,687
95,140
93,653
93,547
93,284
93,041
92,944
91,141
90,912
90,571
90,567
90,427
88,260
85,875
85,492
85,446
85,187
84,262
84,054
81,795
81,645
80,908
80,704
79,117
78,572
78,544
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RANK

205.
206.
207.
208,
209.
210.
211
212.
213.
214.
215,
216.
217.
218.
219.
220.
221,
222,
223.
224.
225.
226,
227.
228.
229.
230.

URBANIZED AREA

Bay City, MI
Fitchburg-Leominster, MA
Tallahassee, FL
Mansfield, OH

St. Joseph, MO-KS
Albany, GA

Fort Smith, AR-OK
Sioux Falls, SD

Santa Rosa, CA
Vineland-Millville, NJ
Ashville, NC

Bristol, CT

Billings, MT

Great Falls, MT
Lynchburg, VA

Lima, OH

Laredo, TX
Bloomington-Normal, IL
Gainesville, FL
Boulder, CO

Gadsden, AL

Dansbury, CT

Dubugque, IA-IL
Lewiston-Auburn, ME
San Angelo, TX

LaCrosse, WI-MN

POPULATION

65

78,097
78,053
77,851
774599
1223
76,512
75,5817
75,146
75,083
73,579
72,451
71,732
71,197
70,905
70,842
70,295

70,197

. 69,392

69,329
68,634
67,706
66,651
65,550
65,212
63,884
63,373



RANK

231,
232.
233.
234.
235.
236.
237
238.
239,
240.
241.
242,
243.
244,
245,
246.
247.
248.

URBANIZED AREA

Pittsfield, MA
Salinas, CA
Galveston, TX
Nashua, NH

Pine Bluff,AK
Midland, TX

Tyler, TX

Columbia, MO
Texarkana, TX-AR
Wilmington, NC

Simi Valley, CA
Rochester, MN
Oshkosh, WI
Sherman-Denison, TX
Owensboro, KY
Brownsville, TX
Bryan-College Station, TX

Harlingen-San Benito, TX

POPULATION

66

62,872
62,456
61,809
60,961
60,907
60,371
59,781
59,231
58,570
57,645
56,936
56,604
55,480
55,343
h3.133
52,627
51,395
50,469



APPENDIX B

RANK OF URBANIZED AREAS BY POPULATION 1980

RANK URBANIZED AREA POPULATION
1. New York, NY-Northeastern NJ 15,590,274
2. Los Angeles-Long Beach, CA 9,479,436
3. Chicago, IL-Northwestern IN 6,779,799
4. Philadelphia,PA-NJ 4,112,933
5. Detroit, MI 3,809,327
6. San Francisco-0Oakland, CA 3,190,698
7. Washington, DC-MD-VA 2,763,105
8. Boston, MA 2,678,762
9. Dallas-Fort Worth, TX 2,451,390

10. Houston, TX 2,412,664
11. St. Louis, MO-IL | 1,848,590
12. Pittsburgh, PA 1,810,038
13. Minneapolis-St. Paul, MN 1,787,564
14, Baltimore, MD 1,755,477
15. Cleveland, OH | 1,752,424
16. San Diego, CA 1,704,352
17. Atlanta, GA 1,613,357
18. Miami, FL 1,608,159
19. Phoenix, AZ 1,409,279
20. Seattle-Everett, WA 1,391,535
21. Denver, CO 1,352,070
22. San Jose, CA 1,243,952

67



RANK

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
a4.
4s.
46.
47.

48.

URBANIZED AREA

Milwaukee, WI
Cincinnati, OH-KY
Kansas City, MO-KS
New Orleans, LA
Portland, OR-WA
Fort Lauderdale-Hollywood, FL
Buffalo, NY

San Antonio, TX
Indianapolis, IN
Columbus, OH

St. Petersburg, FL

Sacramento, CA

POPULATION

Providence-Pawtucket-Warwick,RI-MA

Memphis, TN-AK-MS
Norfolk-Portsmouth, VA
Louisville, KY-IN

San Bernardino-ﬁiverside, CA
Oklahoma City, OK

Salt Lake City, UT
Birmingham, AL
Rochester, NY
Jacksonville, FL
Dayton, OH

Honolulu, HI

Orlando, FL

Tampa, FL

68

1,207,008
1,123,412
1,097,793
1,078,299
1,026,144
1,008,526
1,002,285
944,893
836,472
833,648
833,337
796,266
796,250
774,551
770,784
761,002
705,175
674,322
674,201
606,085
§06,070
598,015
595,059
582,463
577,235
520,912



RANK

49.
50.
a1
He.
53.
54.
55.
56.
574
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

URBANIZED AREA

Nashville-Davidson, TN

Akron, OH

Omaha, NE-IA

Hartford, CT
Springfd.-Chicopee-Holyoke,MA-CT
Richmond, VA
Albany-Schenectady-Troy,NY

West Palm Beach, FL

Toledo, OH-MI

E1 Paso, TX

Tucson, AZ

Tulsa, OK

Las Vegas, NV

Albuguerque, NM

Bridgeport, CT
Scranton-Wilkes-Barre,PA
Wilmington, DE-NJ-MD

Tacoma, WA

Youngstown-Warren, OH
Allentown-Bethlehem-Easton,PA-NJ
Austin, TX

Syrécuse, NY
Oxnard-Ventura-Thousand Oaks, CA
Grand Rapids, MI

New Haven, CT

Charlotte, NC

POPULATION

69

518,325
515,720
512,438
510,034
505,822
491,627
490,015
487,044
485,440
454,159
450,059
443,350
432,874
418,206
410,998
406,517
406,112
402,077
383,398
381,734
379,560
379,284
377,695
374,744
368,061
350,715



RANK

75,
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
895.
96
97.
98.
99.
100.

URBANIZED AREA

Baton Rouge, IL

Flint, MI

Fresno, CA

Newport News-Hampton, VA
Charleston, SC

Columbia, SC

Wichita, KS
Sarasota-Bradenton, FL
Chattanooga, TN-GA
Mobile, AL

Little Rock-N.Little Rock, AK
Davenport-Rock Is.-Moline, IA-IL
Knoxville, TN
Harrisburg, PA

Colorado Springs, CO
Worcester, MA

Des Moines, IA

Spokane, WA

Jackson, MS

Shreveport, LA

Peoria, I1

Trenton, NJ-PA

Lansing, MI

Augusta, GA-SC

Corpus Christi, TX
Canton, OH

POPULATION

70

350, 657
331,931
331,551
328,576
328,572
311,561
305,752
305,431
301,515
295,493
295,133
285,024
284,708
278,296
276,872
276,022
267,192
266,709
265,051
263,827
261,418
260,751
254,704
251,250
245,854
244,888



RANK

101.
102,
103.
104.
105.
106.
107.
108.
109.
110.
111,
1i2.
113.
114.
115
116.
117.
118.
119.
120.
121.
122.
123,
124.
125.
126.

URBANIZED AREA

Fort Wayne, IN
Greenville, SC
South Bend, IN-MI
Lorain-Elyria, OH
Bakersfield, CA
Pensacola, FL
Fayetteville, NC
Columbia, GA-AL
Madison, WI
Melbourne-Cocoa, FL
Lawrence-Haverhill, MA-NH
Ann Arbor, MI
Raleigh, NC

Ogden, UT

Rockford, IL
Stockton, CA
Montgomery, AL
Lexington-Fayett, KY
Savannah, GA
Stamford, CT
Eugene, OR
Evansvilie, IN-KY

Huntington-Ashland, WV-KY-OH

Biloxi-Gulfport, MS
Erie, PA

Brockton, MA

POPULATION

36,479
228,303
226,331
225,331
222,236
215,995
215,839
214,591
213,675
212,917
211,428
208,782
206,597
205,744
204,304
197,052
196,947
194,093
186,546
182,978
182,495
180,089
179,840
179,280
178,338
177,784
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RANK

127.
128.
129;
130.
131s
132.
133.
134.
135.
136.
137
138.
138.
140.
141.
142.
143.
144,
145.
146.
147.
148.
149.
150.
151,
152.

URBANIZED AREA

Roanoke, VA
Lubbock, TX
Lincoln, NE

Reading, PA

Winston-Salem, NC

Daytona Beach, FL

Greensboro, NC
Anchorage, AL
Provo-Orem, UT
Joliet, IL
Reno, NV
Binghamton, NY
Waterbury, CT
Modesto, CA

Aurora, IL

McAllen-Pharr-Edinburg, TX

Lowell, MA-NH
Lancaster, PA
Durham, NC
Utica-Rome, NY
Kalamazoo, MI
Huntsville, AL

Charleston, WV

Santa Barbara, CA

Armarillo, TX

New London-Norwich, CT

12

POPULATION

177,475
175,479
173,550
173,450
171,530
170,749
170,457
170,247
169,699
167,475
162,286
161,312
160,249
159,538
158,911
157,423
157,412
157,385
157,287
155,238
154,990
153,841
153,618
150,173
149,230
148,829



RANK

153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175,
176-
L2«
178.

URBANIZED AREA

Saginaw, MI
Atlantic City, NJ
Green Bay, WI
Appleton, WI

Fall River, MA-RI
Fort Myers, FL
Springfield, MA
Santa Rosa, CA
Poughkeepsie, NY
New Britain, CT
Cedar Rapids, IA
Salem, OR

Boise City, ID
Waco, TX

New Bedford, MA

Duluth-Superior, MN-WI

Macon, GA

York, PA

Topeka, KS

Lake Charles, LA
Beaumont, TX
Santa Cruz, CA
Springfield, IL
Waterloo, IA
Tallahassee, FL

Racine, WI

POPULATION

73

146,769
146,034
142,747
142,151
141,510
140,958
139,030
137,019
136,571
135,817
135,798
135,747
134,848
134,491
133,274
132,585
130,871
129,336
125,936
123,820
123,729
123,226
122,806

120,290 -

119,341
118,987



RANK

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.

URBANIZED AREA

Port Arthur, TX
Seaside-Monterey, CA
Lakeland, FL
Lafayette, LA

Monroe, LA
Richland-Kennewick, WA
Pueblo, CO
Champaign-Urbana, IL
Texas City-La Marque, TX
Decatur, IL

Norwalk, CT

Portland, MA

Gastonia, NC

Elgin, NC

Petersburg-Colonial Hgts., VA

Kailua-Kaneohe, HI

Muskegon-Muskegon Hgts., MI

Hamilton, OH
Fargo-Moorhead, ND-MN

Gainesville, FL

Portsmouth-Dover-Rochester, NH-ME

Manchester, NH
Ashville, NC
Odessa, TX
Wheeling, WV-OH

Spartanburg, SC

POPULATION

118,562
115,418
114,360
113,999
112,537
112,171
109,444
109,278
109,193
107,864
107,550
107,099
106,884
106,593
106,582
105,712
105,634
105,026
104,643
103,768
103,722
102,844
102,400
101,518
101,049
100,706
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RANK

205.
206.
207.
208.
209.
210.
211,
212,
213.
214.
215,
216.
217.
218,
219.
220.
2él.
222,
223.
224.
225,
226.
2t
228,
229,
230.

URBANIZED AREA POPULATION

High Point, NC
Abilene, TX
Tuscaloosa, AL

Sioux City, IA-NE-SD
Lawton, OH

Danbury, CT-NY
Laredo, TX

Wichita Falls, TX
Lynchburg, VA
Alexandria, LA
Middletown, OH
Brownsville, TX
Muncie, IN
Lafayette-W. Lafayette, IN
Johnstown, PA

Fort Smith, AK-0K
Kingsport, TN-VA
Alton, IL
Vineland-Millville, NJ
Wilmington, NC
Albany, GA

Killeen, TX
Springfield, OH
Antioch-Pittburg, CA
Sioux Falls, SD

Kenosha, WI

75

100,089
99,763
99,554
96,746
96,134
95,371
94,961
94,716
93,921
92,742
91,730
91,611
91,479
91,380
90,254
90,021
89,760
88,994
88,822
88,763
88,716
88,145
86,742
86,435
85,834

85,742



RANK ~ URBANIZED AREA POPULATION

231. Fort Walton Beach, FL 85,318
232. Billings, MT 84,328
233. Elkhart-Goshen, IN 83,920
234. Bristol, CT 83,601
235. Bryan-College Station, TX 83,036
236. Salinas, CA 82,600
237. Bloomington-Normal, IL 82,397
238. Boulder, CO 81,239
239. Jackson, MI 81,178
240. Yakima, WA 81,085
241. St. Joseph, MO-KS 79,936
242. Simi Valley, CA 79,921
243. Mansfield, OH 78,948
244, Panama City, FL 78,886
245, Altoona, PA 78,802
246. Anderson, IN 78,581
247. Johnson City, TN 78,473
248. Fort Collins, CO 78,287
249. Battle Creek, MI 77,789
250. Bay City, MI 77,678
251. Steubenville-Weirton, OH-WV-PA 77,651
252. Clarksville, TN-KY 77,535
253. Fitchburg-Leominster, MA 76,652
254. Burlington, VT 76,528
255. Anniston, AL 75,614
256. Nashua, NH 75,299

76



RANK

257 .
258.
259,
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
2F1.
Z272.
273.
274.
275.
276.
2117
278.
279.
280.
281.
282.

URBANIZED AREA

Terre Haute, IN
Gadsden, AL

San Angelo, TX
Tyler, TX
Jacksonville, NC
Florence, AL
Winter Haven, FL
Eau Claire, WI
Concord, NC
Midland, TX

Fort Pierce, FL
Lewiston-Auburn, ME
Lima, OH
Longview, Ti
Fairfield, CA
Olympia, WA
Elmira, NY
Dubuque, IA-IL

La Crosse, WI-MN
Harlingen-San Benito, TX
Burlington, NC
Palm Springs, CA
Hagerstown, MD-PA
Great Falls, MT
Monessen, PA

Houma, LA

POPULATION

77

74,736
74,730
73,994
72,927
72,891
72,669
72,560
72,317
71,994
71,606
70,450
70,108
70,104
69,757
69,255
68,616
68,227
68,149
67,966
66,702
66,580
66,431
66,277
66,256
65,884
65,780



RANK

283.
284.
285
286.
287.
288.
289.
290.
291.
292.
293.
294.
295
296.
297.
298.
299.
300.
301.
302.
303.
304.
305
306.
307.
308.

URBANIZED AREA

Newburgh, NY

Round Lake Beach, IL
Columbia, MO
Pascagoula-Moss Point, MS
Bremerton, WA
Annapolis, MD
Bloomington, IN
Texarkana, TX-AK
Parkersburg, WV-OH
Athens, GA

Pine Bluff, AK
Fayetteville-Springdale, AK
Hickory, NC

Greeley, CO
Kankakee, IL
Galveston, TX
Kokomo, IN

Yuba City, CA
Bismark-Mandan, ND
Benton Harbor, MI
Rochester, MN
Bangor, ME

Port Huron, MI
Charlottesville, VA
Cumberland, MD-WV

Iowa City, IA

POPULATION

78

65,711
65,676
65,380
65,174
64,536
64,447
63,513
63,474
63,181
62,896
62,817
62,703
62,329
62,297
61,451
61,382
61,224
61,107
61,105
60,639
60,473
60,003
59,647
59,422
59,331
59,295



RANK

309.
310.
311,
312,
313,
314.
318,
316.
317
318.
319.
320.
321
322.
323.
324,
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.

URBANIZED AREA

Casper, WY

Napa, CA

Visalia, CA
Williamsport, PA
Sheboygan, WI
Cheyenne, WY

St. Cloud, MN
Missoula, MT
Goldsboro, NC
Joplin, MO
Pittsfield, MA
Owensboro, KY
Santa Maria, CA
Meriden, CT

Grand Junction, CO
Hattiesburg, MS
Sherman-Denison, TX
Lancaster, CA
Florence, SC
Hemet, CA
Longview, WA-OR
Las Cruces, NM
Warner Robins, GA
Danville, VA
Decatur, AL

Yuma, AZ-CA

POPULATION

79

59,287
59,277
58,957
58,650
58,531
58,429
58,375
58,035
57,670
57,658
57,554
57,549
57,237
57,118
56,854
56,542
56,441
56,328
56,240
55,377
55,076
55,072
54,923
54,815
54,710
54,657



RANK

335.
336.
337.
338.
339.
340.
341.
342.
343.
344,
345,
346.
347.
348.
349.
350.
351.
352.
353.
354,
355.
356.
3575
358.
359.
360.

URBANIZED AREA

Naples, FL
Bristol, TN-Bristol, VA
Pocatello, ID
Temple, TX

Wausau, WI
Oshkosh, WI
Redding, CA
Lawrence, KS
Medford, OR
Taunton, MA

Grand Forks, ND-MN
Danville, IL
Santa Fe, NM
Dothan, AL

Chico, CA _
Auburn-Opelika, AL
Janesville, WI
Glens Falls, NY
Newport, RI

State College, PA
Rome, GA
Bellingham, WA
Anderson, SC
Sharon, PA-OH
Rapid City, SD
Ocala, FL

POPULATION

80

53,675
53,537
53,401
53,191
52,990
52,958
52,867
52,810
52,469
52,334
52,310
52,243
52,042
51,976
51,914
51,823
51,643
51,382
51,381
51,298
51,082
51,025
51,014
50,933
50,882
50,860



RANK

361.
362.
363.
364.
365.
366.

URBANIZED AREA

Rock Hi11, SC
Newark, OH
Beloit, WI-IL
Victoria, TX
Enid, OH

Jackson, TN

POPULATION

81

50,846
50,839
50,834
50,728
50,601
50,338
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6. Plerre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoretical Market Areas Under Euclidean
Drstance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Other transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpoint of the shape of the market
areas they generate, and their disparity asks the question whether other types of funciions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims

at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean
distance.

(Bien qu’ébauchée par Rau dés 1841, la théorie €conomique de la forme des aires de marché planaires
s’est longtemps contentée de I’hypothése de coiits de transport proportionnels a la distance. Dans le modéle
gravitaire généralisé, anquel on peut étendre cette théorie, ceci correspond au choix d'une exponentielle
décroissante comme fonction de dissuasion de la distance. D’autres fonctions de coiit de transport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché qu’elles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété amene 2 se demander si d’autres fonctions
encore ne mériteraient pas d’étre examinées. Il parait donc utile de disposer d’une théorie générale des aires

de marché : ce & quoi s’attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d’une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nystuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume displays the use of this graph theoretical tool in geography. from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
1s Included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
items listed below are previously unpublished.) Contents: “ ‘Foreward’ by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre-1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions” by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, q) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank-size Hierarchy: A Mathematical Interpretaiion, 1989.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = ge®cOte,
An equiangular spiral can also be constructed from a Fibonacei sequence. The urban rank—-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank-additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank-size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model aliows conceptualization
of a new view of the urban rank-size hierarchy in which the three largest cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, An Atlas of Steiner Nétworks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the
steps, visually, in a series of Figures. The proof of the Steiner construction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in Euclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.



Sylvia Richardson, “Some remarks on the testing of association between spatial processes”;

Graham J. G. Upton, “Information from regional data”;
Patrick Doreian, “Network autocorrelation models: problems and prospects.”
Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some cases, by

an author’s Rejoinder to the Discussion.



