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Preface

This reader i1s one product of a symposium held at Syracuse University, hosted by the
Geography Department of the Maxwell School of Citizenship and Public Affairs, during
the Spring semester of 1989. Each chapter is a contribution by a scholar affiliated with
this symposium; most chapters essentially are written versions of presentations made at
Syracuse University under the same or similar titles. Two exceptions are those chapters
penned by Ord and by Griffith. Keith Ord was unable to deliver his lecture because he
was on sabbatical leave from the Pennsylvania State University to the London School of
Economics and Political Science during this time period. I have contributed a chapter based
upon an invited paper presented to the Sixth European Colloquium on Theoretical and
Quantitative Geography, held at the Centre Culturel “Les Fontaines” in Chantilly, France,
during September of 1989,

Plans for this Symposium were stimulated by efforts associated with the 1987 /88 compe-
tition for the NSF National Center for Geographic Information and Analysis (NCGIA), and
the NSF Science and Technology Center (STC) program. Motivation for its organization
and development arose from the NSF NCGIA solicitation calling for “improved methods of
spatial analysis and advances in spatial statistics ...”; this is one reason why two of the lec-
turers had itineraries that included a presentation at the SUNY/Buffalo NCGIA site during
their stays in Syracuse. A second impetus was supplied by an STC proposal for a “Center
for Spatial Statistics and Spatial Econometrics.” The organization of the Symposium was
further inspired by a joint proposal with the Institute of Mathematical Geography, submit-

ted to the Geography and Regional Science Program of NSF, requesting funds to support
it.

The objectives of this Symposium were to evaluate the role that contributions in spatial
statistics have played, are playing, and should play, in expanding the scope of spatial analysis
in geography and the spatial sciences, to critically review state—of-the-art practices, and to
establish a research agenda for the future. This edited collection of lectures should establish
a timely foundation for building bridges to future applications of spatial statistics, and will
disseminate findings that are at the frontiers of applied statistics to the international research
community.

A general goal of this Symposium was to promote greater awareness of complications
caused by the presence of spatial structure and spatial dependence that lie dormant in data
sets, especially in terms of their effect on the validity of traditional statistical analysis. Much
of the early work in this area was devoted to the development of indices to measure spatial
dependence. Meanwhile, more recent advances, refinements, and applications in this field
have been summarized in a number of books; but while these publications provide useful
summaries of conceptual developments, numerical examples and issues, and case studies
of particular problems, they fail to furnish an historical perspective, to assess meaningful
progress to date, or to outline important problems for future research. The very recent spatial
analysis literature is, however, lightly peppered with pieces invoking this broader viewpoint,
suggesting the timeliness of the symposium theme. Given the emergence of this theme in
the current hLterature, together with its attainment of increasing prominence, the topics and
published results of this Symposium should find a receptive audience among researchers from
many disciplines dependent on spatial analysis.
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The Symposium lecturers visited Syracuse in accordance with the following schedule:

Lecturer Date of visit Date of lecture
R. Haining 3/18—4/05/89 3/31/89
B. Ripley 4/03—4/10/89 4/07/89
R. Martin 4/10—4/23/89 4/14/89
S. Richardson 4/16—4/22/89 4/21/89
A. Sen 4/22—4/29/89 4/27/89
P. Doreian 5/01—>5/08,/89 5/05/89
K. Mardia 5/06—5/14/89 5/12 /89
D. Wartenberg 5/17—5/21/89 5/19/89
J. Paelinck 5/24—5/31/89 5/26/89
G. Upton 6/03—6/12/89 6/05/89
L. Anselin 6/09—6,/14/89 6/09/89

The first four of these lectures also were part of the annual Geography Department Collo-

quium series. Ashish Sen and Graham Upton were the two lecturers who visited the NCGIA
at SUNY /Buffalo.

The format of this compendium was shaped, in part, by several invaluable suggestions
from lecturers. Robert Haining proposed that the context of papers as well as the audience
would benefit from published discussions; the model he had in mind was that employed by
the Journal of the Royal Statistical Society. Hence, I asked each Symposium participant to
both referee one of the other papers, and write a discussion of one of the other papers. In
retrospect, not only was Haining’s suggestion a good idea, but I feel that the quality of both
the papers and the book have been considerably enhanced by it. A second recommendation
was made by Graham Upton, who mentioned that an editor’s preamble to each paper would
be a useful and integrative touch; the model he had in mind was that of a standard science
fiction anthology. Again, I believe that this addition has greatly strengthened this publica-
tion. The quotations that I have cited were gleaned from Best Quotations for All Occasions
and The Pocket Book of Quotations. Each quotation was judiciously selected in an attempt
to capture the flavor of its accompanying paper as well as some special personality trait of
the paper’s author. As an aside, the topical mapping I found most suitable is as follows:

Anselin — statistics Paelinck — thought
Doreian — imagination Richardson — inspiration
Griffith — perseverance Ripley — knowledge
Haining — progress Sen — eloquence

Mardia — wisdom Upton — teaching
Martin — criticism Wartenberg — learning
Ord — time

At this time I would like to express my sincere appreciation to all of the Symposium
participants for making these supplemental sections of the book a true success. The general

organizational format used here is the one that I developed earlier for my three edited NATO
Advanced Studies Institute volumes.



Preface

Each Symposium lecturer stayed in my home while visiting Syracuse, and took part in
selected extracurricular activities during his/her stay. We had very enjoyable times hosting
numerous receptions, attending special campus luncheons, sampling various restaurants of
the city, and making site-seeing tours of the area. Most participants visited the Dinoma-
nia robotics dinosaur exhibit. A wvariety of other activities have made the time horizon of
this Symposium memorable, too. For example, Haining accompanied us to an outstanding
production by the Syracuse University experimental theater. We engaged in “Finger Lakes”
wine tasting at the Plane’s vinevard on Cayuga Lake with Ripley. Mardia and I scoured
the rare book market of Syracuse. We visited Manas Chatterji, at SUNY /Binghamton, with
Paelinck. Sen helped us become acquainted with the single East Indian restaurant of the
city, Upton explored the Onondaga County park of Pratt’s Falls with us. And, we hosted a
backyard bar-b-que with Wartenberg. In addition, most of the European lecturers arrived
by airplane in Toronto, facilitating visits to Niagara Falls during the trip between Syracuse
and Toronto. All in all, my family helped me to plan several special events that accented
each lecturer’s stay.

Financial support from the George B. Cressey/Preston E. James Geography Endowment
Fund of Syracuse University, and the Syracuse University Office of the Vice-president of
Research and Graduate Studies is gratefully acknowledged. The patience, tolerance, and

graciousness of my wife through a long parade of visitors to our home is most appreciated,
too.

Daniel A. Gnffith
Syracuse, New York

February 10, 1990
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PREAMBLE

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

S. Johnson, Boswell's Life of Johnson

17th century: discovery by Isaac Newion of the binomial theorem-1§th century:
Bernoulli’s publication of the first book devoled io probability theory-19th century:
development of the least squares principle by Gauss and Legendre, and emergence of
the subject of stalistics-20th century: Kendall, Fisher, Pearson, and the emergence
of multivariale satistics-and, in our own doy the appearance of spatial statistics,
In many of his publications, Ripley has imparied knowledge to the spatial statistics
audience aboui Gibbsian inieraction models, one of the greafest successes of this
new field. This paper furnishes a history of their development, with Ripley this
time imparting knowledge lo the spatial slatistics audience concerning where in the
hterature different advances can be found. The purpose of this paper is twofold,
namely, (1} to document the evolution of Gibbsian inieraction models, and (2) to
provide ezamples of their use. Thus, no! only have the horizons of siatistical sci-
ence expanded, throughout the centuries, but they also continue io ezpand. Martin
corroborates this latier contention by noting that much of the progress chronicled by
Ripley is of very recent origin.

The Editor

———
e ————— e










Gibbsian Interaction Models

Brian D. Ripley ™

Department of Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH,
UK.

Overview: Gibbsian interaction models, often referred to as Markov random fields,
have been one of the greatest successes of Spatial Statistics. They encompass con-
ditional spatial autoregressions and a wide class of models for interacting point pat-
terns. Onginally borrowed from ideas in statistical physics, they have been applied
to both regional measurements (lattice and non-lattice) and to point processes. The
distinctive feature of their development in statistics has been the emphasis on statis-
tical inference, in fitting models and estimating parameters. Over two decades a very
satisfactory methodology has been developed, but this has never been documented
in simple terms. This paper aims to document this progress and to provide some
examples of the use of the methodology.

1. Introduction

It 1s common to classify the underlying forces producing a spatial patiern as either exogenous,
producing heterogeneity or internal, producing interaction. The two effects tend to occur
in opposite directions. For example, with point patterns (Figure 1), exogenous forces tend
to produce ‘patchy’ patterns which are similar to those produced by clustering, whereas
interaction tends to produce patterns which are more ‘regular’ than one would expect to
happen by chance. This comment is not universal, and it is possible to produce clustered
patterns by the methods described here. However, their raison d’ étre is to give us methods
to describe interacting systems. These can be either systems of points such as Figure 1, in
which case the interaction is reflected in their spatial positions, or systems of regions, where
the interaction is reflected in their values. Geographical examples include the locations of
market towns and supermarkets as point patterns (Glass & Tobler, 1971; Rogers, 1974
Ripley, 1979b) and Robert Haining's study of petrol pricing in Sheffield (Haining, 1983;
Bennett & Haining, 1985).

We will take for granted that studies of interaction are appropriate to at least some
problems in geography; some of the issues here are discussed by other authors in this vol-
ume. It is worth noting that it is very difficult to consider exogenous forces and interaction
simultaneously, especially for point patierns. One reason is that the interaction may be
density-dependent. Suppose we studied the pattern of nests of small songbirds in a wood.
Then we will expect territorial behaviour to lead to interaction and some regularity of spac-
ing, but in parts of the wood where conditions are especially favourable the territories will
be smaller and interaction stronger. Something similar might be expected to happen in the
petrol-price competition study.

Gibbsian interaction models subsume what are often known as Markov random fields,
in which sites or points interact if and only if they are neighbours. Of course the concept of
‘neighbour’ needs careful definition, but this has been extensively studied in a geographical

#*

After October 1, 1800, Department of Statistics, University of Oxford, 1 South Parks Hoed, Oxford OX1 3TG, UK.
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Figure 1.

Heterogeneity (a) and interaction (b) in point patterns. (a) shows 232 meat stores in a
6.7744.158 km ward of Tokyo (Okabe & Miti, 1984). (b) shows towns on the Spanish plain,
with a 40 mile square containing 70 of the 136 points (after Glass & Tobler, 1971).
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Brian D. Ripley

context as part of the study of spatial autocorrelation. Formally, sites form a graph, with
an edge joining every pair of sites which is a neighbour, giving a structure such as Figure
2. For definiteness, suppose we have N sites as in Figure 2, and a random variable X,
defined at each site. Then a (joint) probability distribution for the set of random variables,
P(Xy,...,Xp), defines a Markov random field if for each site s, P(X, | X, ¢ # &), the
conditional distribution of the variable at s given the values at all other sites, depends only on
the values at sites which are neighbours of s. This is a minor restriction to local interactions.
The fame of Markov random fields comes from the so—called Clifford-Hammersley theorem,
which states that for a Markov random field, under a positivity condition,

P(Xy....X§n) o [] 6(Xips-.., Xi) (1.1)
cliques

Here a ‘clique’ is a maximally connected component of the graph, that is a set of sites
all of which are neighbours of all others, and which cannot be expanded (so the term is
sociologically appropriate), and ¢ is an interaction function depending on the variables at
all sites in the clique. This result was stated by Clifford and Hammersley in the early
1970’s, and a long proof was in private circulation. They never published, and it became
clear that the result had simpler proofs (e. g. Besag, 1974; Preston, 1974, 1976). The
positivity condition essentially precludes processes for which certain combinations of values
of (X1,...,X n) are excluded in a way inconsistent with (1.1).

The result (1.1) 1s often stated in an equivalent form. Let V = —log,¢. Then

P(X1,...,XN) x exp[—z V(X s Xin)]
cliques
In this form V is known as a potential, as this is the form in which it arises in statistical

physics. The constant implied by the proportional sign is in most cases impossible to express
in a closed form.

The importance of (1.1) is not the theorem, which guarantees its existence, but that it
suggests a way of defining the probability distribution of interacting systems. In practice the
interaction function ¢ is taken to be one for all but very small cliques. The simplest case is
to consider chiques of only one site (a site being a neighbour of itself); we find

P(X1,...,Xn) o J] #(X.)

so the random variables are independent. The first non-trivial case is to consider only pairs
of sites which are neighbours. Expression (1.1) then becomes

P(Xy, ..., Xn) o [] o(XsX0) (1.2)
s nhbr of ¢

and almost all Markov random fields ever used are of this form. (Rarely, three-way inter-
actions are considered.) It seems unnecessary to insist that sites interact only if they are

neighbours, but rather we should allow a gradual diminution of interaction with distance.
We can easily relax (1.2) to

P(X1,..., Xn) o [] 6(Xs, X0) (1.3)

a,t



Gibbsian interaction models

Figure 2.
An illustration of a graph joining the Spanish towns less than 6 miles apart.
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called pairwise interaction processes, and these are the principal subject of this paper, as
well as much recent work.

The term ‘Gibbsian interaction’ processes comes from statistical physics, where such
models have been used for nearly a century to describe the behaviour of gases. Gravitational
and electrostatic forces provide two physical examples in which interactions between objects
are purely pairwise. The pairwise assumption makes sense in many other fields as well.
Animals in defending territories have only pairwise fights, and this may be supposed to
apply also to early human settlements. Nevertheless there are examples in which other
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assumptions may be attractive. In competition studies it may be the minimum price in the
town which 1s important, and the sizes of market towns could be governed by some notion
of ‘catchment area.” Thus we will define the general notion of a Gibbsian interaction process
as
P(X1,...,XN) o ] o(Xips-.., Xi) (1.4)
subsets

with the presumption that the subsets of sites and the interaction function are chosen in
some simple way.

An important alternative way to look at (1.4) is via the conditional distributions of the
variable at each site given the values at all other sites. From (1.4) we have

P(X, | X0t #3) o [[(Xiy, ..., Xim) (1.5)

the product being over subsets containing s, and (1.3) becomes

PX, [Xpt#s)ox J[ o(X.Xe) (1.6)
t nhbr =

The function ¢ must be symmetric, that is, the influence of site s on site ¢ must be the
same as that of ¢ on s,

Closely analogous ideas are used to define Gibbsian and pairwise interaction processes
for point patierns. The variables X, are replaced by the locations x, of the points, and
probabilities must be re-interpreted as densities. Indeed, it is the technical details needed
to make the simple formulae rigorously correct which makes the point process literature
inaccessible to all but the highly mathematically trained. This is unfortunately necessary,
but the treatment given in later sections is as non-mathematical as possible (and so should
not be relied on as totally accurate, in that technical conditions on probability density
functions have been omitted).

The distribution of market towns in a plain provides a nice example of an interacting
point process. We could postulate a pairwise interaction, with strength decreasing with
distance, or an interaction dependent on catchment area. Examples are shown in §4.

The Reference list at the end of the paper serves as a Bibliography to cover the papers
of major methodological importance. Clearly from a biased view, I use my two monographs
(Ripley, 1981, 1988) as reference sources. ‘Spatial Statistics’ is meant for a general readership
(but has been thought terse and mathematically tough) whereas ‘Statistical Inference for
Spatial Processes’ covers recent developments and their impact on statistical theory. It

is intended to be mathematically tough, but is the only reference source for much of the
material sketched here.

2. Regional processes

Interaction processes and Markov random fields were originally developed for lattice processes
by Bartlett and Besag (then Bartlett's research assistant); Bartlett (1975) reports on those
developments, which were motivated by looking at plausible space—time processes ai just one
time point. Much of the complication arises from the assumption of stationary lattice pro-
cesses, that 1s processes defined throughout the iwo-dimensional lattice {(z,y) |2,y integer}

T
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in a translation-invariant way. My own belief is that processes on regular lattices are rarely
useful except in connection with man-made phenomena; this includes their recent use in
image analysis in which the pixels are man-made.

Besag (1975) gave an important insight that these processes do not need to be defined
on a (regular) lattice, and it was in his form that they are given in our §1. If the random
variables (Xj,...,X ;) have a normal distribution (jointly), this is defined by the vector of
their means (p1,...,pn) and the covariance matrix £ = (o;;) where oi; = cov(Xy X ;).
Then the conditional distribution of X; given the remaining sites is normal with mean
pi+ Z#ib_,-{Xj — pj) and variance T3, — afA~'a, where A is the covariance matrix of
the remaining sites, a is the vector of covariances of site i with the remaining sites, and
b = A7'a. Only the mean depends on the values at the remaining sites, so we have a
Markov random field if and only if b; = 0 unless j is a neighbour of i. This has to be true
for all ¢, and reduces to the assumption that the elements E;;-l are non-zero only if 1 and j

are neighbours. Note that since only covariances need to be considered, Gaussian processes
are always pairwise interaction processes.

Markov random fields are normally specified by giving the conditional distributions of
XN, given the values at the remaining sites. In the Gaussian case we have found that the
means are linear, so

E(X, [ Xet #s)=ps+ Y BulXi —pi) (2.1a)
=
var(X, | Xyt #s8) =&, (2.1b)

say, where the matrix B and numbers (x,) are defined by the expressions in the previous
paragraph and B,, = 0. It is important to note that we can regard (2.1) as the definition of
the process, which in this form is called a conditional autoregression. Elementary calculations
(Ripley, 1981, p.89) give the mean and covariance matrix of (X,) as (k) and £ = (I —
B)~'diag(r,) respectively. A covariance matrix must be positive-definite and symmetric,
which imposes an awkward condition on B. In particular, we must have B, = Bk, for
all distinct pairs of sites s,£. The easiest case is when the conditional variances (k,) are
all equal, in which case the necessary and sufficient condition is that the matrix (I — B) be
positive-definite symmetric. I have given these conditions in some detail because they are
often ignored in the literature. Not every choice of connection matrix B in (2.1a) defines a
valid conditional autoregression.

These conditional autoregressions should not be confused with another class of spatial

processes used slightly earlier, now called simultaneous autoregressions. These are defined
by

Xo—ps— Y Bu(Xe—pi) = ¢, (2.2)
1#£s

where the ¢, are independent normally distributed random variables.

The Gaussian case is by far the most important, but Besag (1974) showed that there
were three other interesting cases of simple Gibbsian interaction processes, the auto-logistic,
auto-binomial and auto-Poisson models, with the auto-logistic being a special case of the

8
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auto-binomial. Their specifications are, for the auto-binomial
X4 ~ binomial (n,p,)

log(ps/(1 — p,)) = as+ Z B X
t nhbr =

and for the auto—Poisson
Ay ~ Poisson (u,)

log(ps) = a, + E B Xy
t nhbr =

where for the auto—Poisson By < 0 so only competition between sites is allowed. The
auto-logistic process is the special case n = 1 of the auto-binomial. They correspond to the
special case of

'?5[)(1: xt] = Eai-xuxt

in (1.3) or (1.6), and Besag (1974) showed that these were the only discrete distributions
for which this linear form is allowable. In all these processes the crucial parameter is the
matrix B governing the interactions. Knowledge of the subject is supposed to allow us to
specify B and (p;) [or (a;)] up to a few parameters, with the rest to be estimated from
the data. For example, in studies of spatial autocorrelation (e. g. CLff & Ord, 1981) 1t
1s common-place to specify a matrix W of connection weights. If this is symmetric, we
might take B = pW for small positive p to be estimated from the data. (In a weak sense,
tests of spatial autocorrelation are tests of p > 0 vs p = 0 in this model.) In studies of
plant competition, Mead (1971) based the weight function on the Voronoi polygons (also
termed Dirichlet cells or Thiessen polygons) of the plants (representing ‘catchment area’),
and other suggestions are in Ord (1975) (although note that both these authors worked with
simultaneous autoregressions).

2.1. Parameter estimation

In the early 1970’s when these models were first proposed, people shied away from maximum
likelihood estimation of the parameters in B and in the mean vector. The computational
difficulty comes from the normalizing constant which we have conveniently ignored up to
now. For a conditional autoregression the joint probability density of (X1,..., X ) is (from
its specification as a multivariate normal distribution)

I -BJ'~? 1 T
LS./ A SN Y. - i
s =5 (X — ) T(1 = B)X - )
so minus twice the log likelihood is given by
Nln2rs —In |l = B|+ (X — p)T(J = BY(X - p)/x (2.3)

This is easily maximized over & to give
=N X -p)'(I-B)X-p)
s0 parameters in B are chosen to minimize
Ning —In|l - B (2.4)
9
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The perceived difficulty is the determinant |[J — B|, but for realistically sized problems it

is quite straightforward to minimize (2.4) numerically. In the special case B = pW Ord
(1975) pointed out that we can exploit

T —pW| =[] -pr)

the product being over the eigenvalues of W. For large systems on a regular lattice there are
also asymptotic approximations to |/ — B| dating from Whittle (1954).

However, we should ask whether maximum likelihood is desirable per se. The classical
justifications of maximum likelihood in statistics are asymptotic, for an infinite sequence of
identically distributed independent observations. This is not a natural asymptotic regime
in spatial statistics, although Mardia & Marshall (1984) have proved that for a related type
of asymptotics some classical results hold. In general, we do not even know if (2.3) is a
well-behaved likelihood function. Ripley (1988, Chapter 2) demonstrates that it can fail to
be concave, but that with a known mean vector and B = pW it is unimodal. (Much of the
statistical theory of likelihood functions depends on concavity.) Thus although maximum
likelihood estimation is almost always possible computationally, we must not assume that
1t 1s necessarily statistically desirable. The literature on this point is often misleading or
plain wrong. [For example, Upton & Fingleton (1985, p. 284) quote classical results without
comments on the lack of applicability of these results, and they are by no means alone.]

An alternative, pseudo-likelihood estimation, was introduced by Besag (1975). The
pseudo-likelihood is defined as the product of the conditional densities P (Xa | Xyt # 8),
and is treated like a lLikelihood. There seems no simple explanation as to why this is a
sensible idea, but it has proved to work well in practice. Besag (1975) sketched a proof
that the pseudo-likelihood estimator would be consistent (converge to the true value) as the

problem is increased, and an elegant general proof is given by Geman & Graffigne (1987).
For a conditional autoregression we have

In PL = —%ln[ﬂma] : i%-?;[” _ BY(X - p))?

so pseudo-likelihood estimation amounts to least-squares fitting to the “residuals”

Ns =X, —ps Z By Xt — pe)
t#£s

Be warned that (2.1) cannot be treated like an ordinary regression, and that the resid-
uals (n,} will themselves be spatially autocorrelated, unlike the (e,) in the simultaneous
autoregression (2.2).

Pseudo-likelihood methods have been very successful, and have largely supplanted all
others. Older methods such as ‘coding’ for regular lattices (Besag, 1974) should have disap-

peared by now!
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2.2. Applications

These processes have been used less widely than their early promise suggested, and there are
probably more papers on theory than applications. Part of the cause is that most attention
has been to regular lattices, and as we suggested earlier, these are inevitably man-made.
Another problem is defining well the set of sites to be considered. Interacting systems just
do not occur in closed boxes, and it is always necessary to consider the effects of interaction
with outside sites. Unless the number of sites is very large, there will be a high proportion
of sites near the edge, and so it may be perilous to ignore the effect of the outside world.
One reasonably successful application of spatial lattice processes has been to agricultural
field trials, in which the system is closed and carefully controlled. Even there the impact
has been more in emphasising the design of the trials to minimize spatial variation in soil
fertility that in methods based on spatial autoregressions, except perhaps as part of rescue
attempts on poorly designed experiments.

It seems that applications in image analysis will be successful. There the systems con-
sidered are vast by the standards of the 1970’s, so edge effects may safely be neglected. We

have been using Gibbsian interaction processes with astronomical images of 1024 x 656 pixels
(Ripley, 1990; Molina & Ripley, 1989).

3. Point processes

Point patterns consist of n point locations within a specified domain D, specified by their
Cartesian coordinates {x;} = {(zi,yi)}. They differ from classic multivariate statistics in
two ways. First, the number of points n is thought of as variable, but more importantly,
the coordinates of the points have very little role, the emphasis being on the configuration
of the points. The domain D has to be defined carefully, since edge—effects are important.
There are two rather different cases. Either D can be a natural region such as an island, or
it can be thought of as a window into a much larger region, such as the examples of towns
on a plain and supermarkets mentioned in §1.

Some further examples of studies of point patterns in geography are drumlins in Northern
Ireland (Hill, 1973; Upton & Fingleton, 1985, pp. 68-9; Figure 7), schools in Southampton
(Pinder & Witherick, 1972; Upton & Fingleton, 1985, pp. 76-7) and retail establishments in
a Tokyo district (Okabe & Miki, 1984; Figure la).

The model for no interaction between points is the Poisson process. The number of points
in D, N(D), has a Poisson distribution with mean g, and the points are independently
distributed over D with demsity function f. Then N(A4), the number of points within a
sub-region A of D, has a Poisson distribution with mean p [, f. Further, the numbers
of points in non—overlapping regions are independent. This means that we can consider
a domamn D in isolation, as with a Poisson processes there is no interaction with points
outside I). We will normally consider homogeneous processes in which case the density f is
uniform, and g = A x area(D) where A, the number of points per unit area, is an important
parameter known as the intensity.

Gibbsian interaction processes are defined by stating how much more (or less) likely each
configuration of points 1s than under a Poisson process. For example, pairwise inieraction

11
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processes have density (with respect to a Poisson process) of

px1, .- xn) o [ ] b(xi) [ ] Alxix;) (3.1)
i i<y

The first product corresponds to a change of the underlying spatial intensity of points from
p x f to proportional to b x f, but the interaction is expressed by the second product. Since
we almost always regard interaction as stationary throughout space, we can take h(x,¥) as
a function only of d(x,y), the distance between the two points. Then h can be thought of as
an interaction function, and examples are shown in Figure 3. More general interactions are
possible, but have never been found necessary. (These processes were introduced by Ripley,
1977.) We will normally consider processes for which b and f are constant, so there is no
heterogeneity in the model.

The simplest special cases are the so-called Strauss processes illustrated in Figures 3(a)
and 3(b). The interaction function is defined by

_Je ifd=d(x,y) <R
h(d) = {1 otherwise. 3.2)
introduced by Kelly & Ripley (1976) following earlier (incorrect) work of Strauss (1975).
The case ¢ = 0 is the ‘hard—core’ process in which points are prohibited from being closer
than distance R apart. It can be thought of as being produced by sampling from a Poisson
process and throwing out all patterns which violate this condition. For 0 < ¢ < 1 there
is a disincentive to close pairs, the density being proportional to ¢¥(B) where y(R) denotes
the number of pairs of points closer than R. For ¢ = 1 we have a Poisson process, and no
interaction. For ¢ > 1 the process only exists in a rather pathological way. Close pairs are
encouraged, and most realizations for fixed n will have a single ‘clump’ of points contained
within a disk of diameter R. For variable n the process cannot even be defined. A similar
effect occurs whenever h(d) > 1 for some distance d, although this can be counter-balanced
by h(d) =0 for d < R, small.
There are a number of obvious extensions to the Strauss process. If we think of the
points as having carcular territories of diameter R, the interaction might depend on the area

of the overlap (given by the term [-..] as a proportion of the area of the territories),
d d* e :
Inh{d]= { —H[] —%{}E-\f(lmﬁg) -+ sIn l(ﬁ:}}] fd <R {33)
0 otherwise,

(Pentinnen, 1984). Another idea is to allow more than one step in the interaction function,
the ‘multi-scale’ process,

I;:'.'.'] I{IEERI
£9 ifﬂl{diﬂg

h(d)={ecs ifRa<d<Rs (3.4)
L1 Hd>Ruy

Pairwise interaction functions have been extensively considered in statistical physics,
and other functional forms have been borrowed from that field, including the ‘very-soft-
core’ potential (Ogata & Tanemura, 1984) illustrated in Figure 3(e)

]

hid) =1 - e~(d/o)?
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Figure 3.

Pairwise interaction functions h as a function of distance. (a) ‘Hard-core’ interaction. (b)
Strauss process. (c) Multiscale process. (d) Overlap area (Pentinnen, 1984) with = 4. (e)
‘Very-soft-core’ (Ogata & Tanemura, 1984) with & = 0.5.

0.8

0.4

0.2

——TTT
0.2

13



Brian D. Ripley

Although some of these processes have been extensively discussed in statistical physics,
the questions asked there are rather different. First, the size of the problem is very different,
with of the order of 10** points (molecules) so edge effects are indeed negligible. Further, the
emphasis is the reverse of ours; the interaction function h is assumed known and properties

of the process are required, whereas we have a sample of the process from which to learn
about h.

There is an analogue for point processes of Markov random fields, the Markov point
processes of Ripley & Kelly (1977).

3.1. Simulation

One very effective way to understand the definition and parameters of a statistical distri-
bution is draw some samples from it. Indeed, in my first stochastic processes course this
was given by David Kendall as a criterion for having defined a process properly, that you
could simulate from it. The problem with constructive definitions such as that given earlier
for the hard—core process is that they are ‘in principle’ only. One will eventually obtain a
realization of a Poisson process with no pair of points closer than R (provided only that such
a configuration can be packed into D ), but the wait could be very long. Since simulation is
such an effective way to understand these processes, it is important to know of reasonably
efficient simulation methods.

All the known reasonably efficient simulation methods are iterative. At each stage a
point is added or deleted, dependent on the configuration of the remaining points (Ripley,
1977, 1979a, 1987). The simplest case is when we prescribe the total number n of points.
Then each step of the simulation consists of deleting a point and replacing it. The point to
delete 1s chosen at random (so each of the n points is equally likely). Relabel the existing
points as {X3,...,Xn}, so the replacement point will be x;. Then it has density proportional

to
i

fo(x) = [ A(x,x:) (3.5)

2

The unknown normalizing constant is once again an apparent problem, but this can be
overcome by the use of rejection sampling, a well-known technique in simulation (Ripley,
1987). Consider the case of h{d) <1 for all d. Then given {x3,...,Xn}, sample x from the
underlying Poisson density f on the domain D, and accept it with probability fy(x). (The
assumption on h ensures that 0.< fp(x) < 1 and so it is indeed a probability. To accept
with probability p, get your computer to generate a uniform random variable I/ and accept
if I < p.) If the sample is not accepted, try again until one is.

If n is not fixed, a similar birth-and—death process is run, but additions and deletions
no longer alternate. Details are given in Ripley (1977).

The theory says that this process produces samples whose distribution converges to that
of the pairwise interaction process. The basic idea is due to Metropolis et al. (1953), the
pomnt process implementation to Ripley (1977, 1979a), the latter containing Fortran code.
In practice the process has to be run for some time (10n—100n steps) to settle down from
a reasonable starting pattern, then it can be sampled every 2n—4n steps. For moderate n
the process runs fast enough on a personal computer to be fascinating viewing. For example,
on the towns data shown in Figure 1(b) simulations of the Strauss process change about 10
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points per second.

3.2. Parameter estimation

Parameter estimation in pairwise-interaction point processes proved to be difficult for a
decade, and an obstacle to their wider use. One can of course use trial-and-error methods,
matching some aspect of the simulated patterns to the data. This was illustrated for the
Spanish towns data in Ripley (1977), using my K—function to measure fit, and there are more
extensive comparisons in Ripley (1988, Figure 4.2). Diggle & Gratton (1984) raised this idea
to the status of a theory! However, it is both non-intuitive and rather computer-intensive.

Even the simplest cases have shown difficulties. The maximum likelihood estimate of R
in a hard-core process is dpyiy, the smallest distance between a pair of points. Since pairs
closer than R cannot occur, we know dp;, > R and hence the estimator is biased. (This is
not unexpected, since the discontinuity in h at R makes this a non-regular likelihood prob-
lem.) Ripley & Silverman (1978) showed how to correct this estimator for bias. Even if R is
known for the Strauss process, the maximum likelihood estimator of ¢ is not straightforward.
The density is

p(x1,...,%n) = a(b,e) b ¥R

and it is the unknown normalizing constant a(b,c) which causes the trouble. To ease the
notation, let us write ¥'(R) for the random variable measuring the number of pairs of points
within I} closer than R. Then after some calculation we find that the maximum likelihood
estimators are given by the solution in b,¢ to the equations

n=E N(D) y(R)=EyY(R) (3.6)
if the number of points is allowed to vary, otherwise b is irrelevant and ¢ solves
y(R) = E.Y(R) (3.7)

Here y(R) is the fixed number of observed close pairs, and the right-hand side is the expected
number of pairs. It is intuitively obvious that this increases from zero for ¢ = 0 up to the
value for a Poisson process for ¢ = 1. The latter depends on the shape of the domain D, but
is known for several common shapes (Ripley, 1988, pp. 28-9); for small R it is approximately
n(n—1)mR?/2. It is perfectly possible for us to observe more close pairs than are the average
for a Poisson process; in such a case we take ¢ = 1, although we ought to consider why we
are fitting a process with interaction distance R!

Maximum likelihood estimation depends on our being able to calculate the means in
(3.6). They are not known analytically, but as we shall see in §4, can be estimated by
simulation. An alternative is to make approximations. When interactions are rare, we can
derive the approximations (Ripley, 1988, pp. 56-7)

2a

¢ ~y(R) x n(n — 1)wR?

(3.8)
for fixed n, and for vaniable n

f:tm"m_. ¢ =yY(R) X —
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where a denotes the area of D. These approximations correspond to fitting a straight line
in ¢ to E.Y(R), although they are derived by assuming that any point enters into just
one close pair. More sophisticated approximations have been considered, notably by Ogata
& Tanemura (1981, 1984), who borrowed approximations from statistical physics for ‘non-
ideal’ gases. Details are given in Ripley (1988, pp. 59-62). For the Strauss process, they give
an approximation to the log-likelihood as

n? 5.79n%c — 1)3R*
y(R) Ine —E[c—l}hrﬂz— 55:12 )

corresponding to
i n’rR? . 3 9
E.Y(R) = = ¢ 1+ 1.84(nR*/a)(c — 1) (3.9)

a cubic in ¢. (There is an error of a factor of 3 in the constants in Ripley, 1988.)

3.2.1. Pseudo-likelihood

We have seen that even in the simplest case maximum likelihood estimation causes difficul-
ties, and just as in the regional data case, there is no reason to accord maximum likelihood
methods special status from a theoretical viewpoint. This encourages us to consider pseudo-
likelihood as it was so successful there. There are technical problems in the conditioning,
but these can be overcome either by approximating by a lattice process (Besag, 1977: Be-
sag, Milne & Zachary, 1982) or via the mathematically sophisticated theory of conditional
mtensities. The problem is that we want the probability of a point occurring at x given the
locations of the remaining points. This probability is zero, but we can consider

P(point in a region A containing x | other points)
areaA)

for a small region A around x. This is the conditional intensity A(x; xj,...,%n). If x
15 the location of one of the existing points it is omitted from the conditioning. Then the
pseudo-likelihood is the product of the conditional intensity over all points in D, occupied
or not, which leads to the log pseudo-likelihood as

Zlnﬁn{xg; xl,...,xn}—f Alx; x1, ..., X )dx
D
1

For a pairwise interaction process the conditional intensity is proportional to

b(x) [ Alxx:)

pts other than X

so the log pseudo-likelihood is
In[] [ b(xa) [ A, x;)] - f b(x) ] | h(x,x:)dx (3.10)
- ki D _
i 13 1

At first sight the first term is the likelihood (3.1) without the normalizing constant, but
the second product is different in that each pair {i,5} occurs twice. Nevertheless, pseudo-
likelihood methods are very similar to maximum-likelithood ones, except that the normalizing
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function is replaced by much simpler integrals. For the Strauss process the pseudo-likelihood

estimators b and & solve
b f eilx)dx = n
D

b /D t(x)&"™*)dx = 2y(R)

for variable n, where ¢(x) denotes the number of points of the pattern within distance R
of the test point x. (Conditional intensities, hence pseudo-likelihood, make no sense if n
is fixed. The intensity will be zero or infinite depending on whether there are n or n — 1
points elsewhere.) The integrals in (3.11) can be estimated by sums over a grid of points
within [, and sophisticated methods are available to find #(x) rapidly using auxiliary data
structures.

These pseudo-likelihood methods proved to be a special case of a family of moment
measures derived by Takacs (1986) and Fiksel (1984). These compare the expected values of
observations on the process with similar expectations conditional on a point of the pattern
at x. However, whereas the Takacs-Fiksel work depends on arbitrary choices of moments

to compare (and is mathematically forbidding), pseudo-likelihood has some theoretical ra-
tionale.

3.2.2. Edge effects

All the parameter estimation methods mentioned up to now have been for a process defined
only on the domain D. This is frequently inadequate, in that we imagine the underlying
process placing the points to occur within a much larger domain D' but which is observable
(or has only been recorded) within the window D. In such a case the number of points is
necessarily varable. A rigorous treatment of this case is very difficult, as it would involve
averaging over the positions of points outside D which might interact with those within D.
Rather, we choose to correct the estimators we have seen so far for edge-effects. This is
particularly easy for the Strauss process, since the only statistic which occurs is y(R), the
number of K-close pairs. This occurs in the second-moment K—function which is often used
to describe a spatial point pattern, and so much work has been done on correcting for edge-
effects, going back at least as far as Glass & Tobler (1971). Full details of the corrections
proposed and of their efficacy are given in Ripley (1988, Chapter 3).

(3.11)

3.3. Choosing an interaction function

How will we know what shape of interaction function to pick? Almost never is there any
appropriate theory to suggest a particular functional form, and it is really the shape rather
than the mathematical form which we seek. Two ideas have recently been suggested. The
conceptually simplest is that of Ripley (1988, p. 73). Fit a multi-scale process (3.4) to
obtain a step—function (histogram-like) estimate of the interaction function k., and choose
a suitable functional form to fit parametrically. This is just like plotting a histogram in
univariate statistics, and choosing a family of distributions (normal, gamma, ...) from its
shape.

Fortunately, estimating the parameters in the multi-scale process by pseudo-likelihood is
just as easy as for the Strauss process. The equations are similar to (3.11), with ¢ replaced
by c; and f;(x) denoting the number of points of the pattern whose distance from x is
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between R;_; and R;. That is, (¢;) solve

b 1) TTEax = Y- tixs) = 2in(R) - w(Rics)

pts

for each ¢ together with
b / &%y = n
n]‘;[ '

and the ratio is a function of (ey,...,¢.,) which is easily estimated numerically, and so the
equations are solved numerically.

Care is needed in interpreting the shape of the function, as the estimates at small dis-
tances are very variable, unlike a histogram. For a Poisson process we would have that

2a
n(n — 1)x[R? — R2_|]

¢i = [y(Ri) - y(Ri-1)] x

by an extension of (3.8), and the count of pairs [y(R;) —y(Ri_)] is approximately Poisson.
Thus ¢; has standard deviation about the square root of the second term, and this will be
large if the area of the annulus of points between R;_; and R; away from a fixed point 1s
small. This will inevitably be the case for distances between 0 and R;. For example, with
the Spanish towns data [Figure 1(b)] we have n = 70 and the area D is 40 miles square. If we
take H; to be 1 mile, we find a standard deviation of &; of about V’[E--‘H}E;’{Tﬂ-ﬁgrli]} =~ 0.5
so any inference would be meaningless.

The other i1dea borrows from statistical physics a relationship between the interac-
tion function h and the second-moment function K known as the Percus—Yevick formula.
Whereas in physics this is used to calculate K from h, Diggle, Gates & Stibbard (1987) had
the idea to reverse the process to obtain a non—parametric estimator of h: full details are in
their paper. The Percus-Yevick formula is approximate, and something of a mystery to me,
but simulations have shown it to be reasonably accurate. It relates the interaction function
h to the pair-correlation function g. This is defined by

where K (t) is my reduced second-moment function (Ripley, 1977, 1981). Then the formula

h(t) =~ g(t)/lg(t) — e(t)]

where ¢(-) is the solution to

2 poc
e(t) =g(t) -1 -—l]ﬂ /ﬂ lg(s) = 1] e(+/[t? + s? — 2ts cos8)) s dsdf

Details of how g(t) is estimated and how the equations are solved are given 1n the paper.
The procedures are not straightforward, but it their authors’ hands give good results for
simulations of patterns of a few hundred points.
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The cautionary note about the step—function method applies to all; one needs a Very
large number of points to have much success in fitting a non—parametric estimator of the
shape of the interaction function h; about fifty points is not enough, rather a few hundred
are needed. Examples occur in other fields, but rarely, I suspect, in geography. Okabe &
Miki (1984) do have 393 greengrocer shops in their study area (28.2km? of Tokyo) but few
other cities will have so many establishments within a homogeneous area.

4. Examples

In this section we consider two examples of fitting Gibbsian interaction models to point
patterns drawn from geography. All have been mentioned earlier in the text and analysed
previously by various statistical methods.

4.1. Spanish towns

The data come from Glass & Tobler (1971). They show the ‘cities’ (or ‘towns’, the terms
are used interchangeably) in the 40 mile square centred at latitude 2° 30' W and longi-
tude 39° 47" N which is claimed to be “especially homogeneous in climate, physiography,
transport, population density and economy.” An earlier version with 69 points has been
considered from various points of view in Ripley (1977, 1979b, 1988). The data shown here
have been re-digitized to show towns outside the study square, and 70 came within. The
external points were used for edge-correction, for example in the integrals in (3.11). Glass
& Tobler suggested fitting a hard—core model with interaction distance R as 3.46 miles, this
peculiar figure coming from a simple value of §, the number of points divided by the maxi-
mum packing of discs into the same domain. This was fitted despite the presence of pairs of
towns about 0.6 miles apart, and indeed there appear to be y(R) = 30 pairs closer than 3.5
miles, an appreciable part of the total of 2,346 pairs. Nevertheless, this is appreciably fewer
pairs than we would expect for a Poisson process. Ignoring edge effects, we would expect
A%arR?/2 = 57.3 pairs. |The exact result is known from Borel (1925) as

Aa? [wRE 8R*® R?¢

2 |I? ~ 303 T 2rs

for a square of side L, but at 53.1 this is only slightly less. (Further, to a fairly crude
approximation the number of pairs will have a Poisson distribution, so the standard deviation
of the number is about 7.5 and the shortfall is definitely significant. More precise and
powerful tests given in Ripley (1979b) all reject the Poisson hypothesis at at least the 5%
level, some at the 1% level. This suggests that a Gibbsian interaction process might be
appropriate. The interaction function found by fitting 2 multi-scale process by pseudo-
hikelihood 1s shown in Figure 4. (Half-mile intervals were chosen, except at the smallest
distances.) Remember that the values at short distances are unreliable. The Figure gives
no reason to doubt that a Strauss process would be appropriate, although doubtless many
other functional forms for & would also suffice.

We can fit the parameter ¢ of the Strauss process by any of the methods discussed in
§3. The exact value obtained depends on what form of edge correction (if any) is used and,
of course, the method; but for R = 3.5 miles, values of ¢ between 0.4 and 0.5 are suggested
(Ripley, 1988, §4.6). These correspond well to the trial-and—error value of 0.5 of Ripley
(1977). This is a problem in which edge correction is essential as the study region does
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Figure 4.
The interaction function h fitted to the Spanish towns data by pseudo-likelihood, to suggest

a parametnc form.
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Plot of the ratio of the equations (3.11) against ¢. The pseudo-likelihood estimator, ¢ = 0.43
1s obtained from the homzontal hine at 2y(R)/n = 96/70 = 1.37. This example is for the
Spanish towns with R = 4 miles.

%]
*
L

]
L=

=]
Ln

]
L=

=
tn

=
=]

I | T L I L] L] I ¥ [ | L I L] I I L L 1 I L I | | ]

.0 0.2 0.4 0.6 0.8 1.0

=1

20



Brian D. Ripley

not exist in isolation but is part of a very much larger plain. Fortunately the locations of
adjacent points are available, but even if they were not, ‘internal’ edge correction methods
work well and were used in my earlier studies.

To illustrate the procedures let us consider R = 4 miles, as this is suggested by Figure 4.
For all the estimators we need y(R) = 48, counting as one half pairs of point with only one of
them inside the square. For the pseudo-likelihood estimator the ratio of the lefi-hand sides
of (3.11) is evaluated for a range of values of ¢ by taking a grid of points within the square
(I used 10 x 10) and averaging t(x)c"*) and ¢**) at these points. |[Remember that t(x) is
the number of towns closer that R miles to the test point x.] Figure 5 shows this ratio for
all values of ¢ between zero and one. However, this range of values is not needed, as we can
get a rough value of ¢ = 0.63 from (3.8). (Note that this corresponds to fitting a straight
line between the endpoints of the curve in Figure 5.) The value of the pseudo-likelihood
estimator ¢ 1s 0.43.

This rough value is an approximation to the maximum likelihood estimator. We can
refine it by (3.9) to be
2ay(R)
nirR?
with solution ¢ = 0.45. To find the exact maximum likelihood estimator we use simulation
to calculate E.Y(R) and plot this against ¢ {Figure 6). On the other hand, the calculations
for the solid line took 35 minutes on a Sun workstation (running the simulation 10,000 steps
for each of twenty values of ¢), and still the curve is quite rough. From the observed value
of y(R) = 48 we find ¢ =~ 0.51. As Figure 6 shows, the approximation (3.9) is good for
large c, but fails for strong interactions (¢ small). The simulations enable us to estimate
the variance of y(R) and hence of ¢; this suggests a standard error of about 0.10.

Ogata & Tanemura (1984) fitted a very-soft-core model to the old dataset, using their
approximation (but to higher order than is available for the Strauss process).

c[l+1.29(c —1)%] = 0.62 =

4.2. Drumlins in Northern Ireland

Figure 7 shows the pattern of 232 drumlins (glacial deposits) recorded by Hill (1973). Upton
& Fingleton (1985) used sampling methods to analyse this pattern, and concluded “for this
restricted region there is no evidence of other than a random distribution of ‘plants’.” More
powerful methods show otherwise. For example, plots of my K-function show regularity up
to 1 km, pnncipally at distances of less than 600 m. This suggested fitting various multi-
scale processes. With 5 equal steps of 200m each I obtained &; as 0, 0.27, 0.76, 1.30 and 1.06.
This shows the interaction to be principally at shorter distances, and the most satisfactory
result was obtained with an interaction function of 0.03 up to 150 m, 0.68 between 150 and
300 m, and one for larger distances.

Although there are many more points than in the previous example, the distances are
smaller so the number of interacting pairs is only slightly greater [y(300m) = 65]. Thus the
standard error of &9 is around 0.08.

The pattern shows clear signs of heterogeneity, especially in the North-West, so 1t did
not seem wise io take this analysis much further.
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Figure 6.

Plot of E.Y(R) against ¢ for the Spanish towns example. The solid line is from simulations,
the dashed line is equation (3.11).
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Figure 7.

Locations of 232 drumlins in an & km square of the Upper Ards peninsular, Co. Down.
(After Hill, 1873).
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Gibbsian inieraction models
4.3. Discussion

These two examples show that pairwise interaction models can be useful in geographical
examples, and many more such models could have been tried. We do have to remember that
parameter estimates are vanable. It 1s difficult to quote accurate standard errors for the
values quoted here, but since they are based on of the order of 50 pairs of points, and that

number is approximately Poisson-distributed, we can expect standard errors of around 15%
of the values quoted.

It is tempting to suggest smooth interaction functions and to interpret them. As Figure
3(d,e) shows, very different functional forms can be indistinguishable!
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Discussion

DISCUSSION

*“Gibbsian interaction models”
by Brian D. Ripley

Gibbsian interaction models are usually better known as Markov random fields. These en-
compass many of the dependence models for regional or lattice data, and many models of
point processes. The author aims to document the progress made over the past two decades
in statistical inference and model fitting for these models.

About three-quarters of the paper is concerned with point processes. The Gibbsian in-
teraction processes are defined, with particular emphasis on the Strauss processes, and the
usual iterative method for simulation is given. Next there is a thorough discussion of max-
imum pseudolikelihood estimation. Approximate maximum likelihood is now feasible using
theoretical approximations to the likelihood, or through simulation. Approximate maximum
pseudolikelihood estimation is also feasible, and somewhat easier than approximate max-
imum likelihood. Two recent methods for choosing the interaction function are discussed.
Many of these developments are very recent, and the discussion was welcome to me. Two
examples are given. The first is a detailed illustration using the familiar ‘Spanish towns’ data,
whilst the second comments on a previous analysis of some data on ‘drumlins in Northern
Ireland’. There are several figures that illustrate the text.

The section on regional processes is much briefer, and, apart from reviewing the usual
conditional and simultaneous autoregression models, mainly consists of contrasting maxi-
mum pseudolikelihood estimation with maximum likelihood estimation. For these depen-
dence models, both estimation methods have been used for some years (the former was
introduced in 1975), although the author nightly questions whether maximum likelihood es-
timation is always relevant. However, his claim that ‘pseudolikelihood methods have been
very successful’ may reflect his interest in astronomically large data sets, and non-Gaussian
distributions. The results of Besag (1977) show that pseudolikelihood estimators can be very
inefficient when the dependence is not small, so that their use is questionable when other
estimators, that may be more efficient, are readily available. Although the author refers to a
recent rigorous proof of the consistency of the psendolikelihood estimator, he does not refer
to Guyon’s (1987) theorem on asymptotic Normality. There are no examples given in this
section, and the only applications referred to are in agricultural field trials and astronomical
image analysis.

The author’s presentation is, as usual, precise and comprehensive, though the mathe-
matics may make demands on many. Perhaps the author could have considered more the
questions of how appropriate these models and methods are for geographical research, and of
how they are being, or have been, used in geographical research. Whilst it may be useful to
give unreferenced publications in the bibliography, it would have been helpful if this policy
had been noted, and a brief note had been given with each to explain its possible relevance.
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PREAMBLE

There’s a time for all things.
W. Shakespeare, Comedy of Errors (Act II, Scene 2)

Computers are immobile robots thai compute, perform tasks in a logical manner,
and collate information furnished io them by scientists. The dawn of a computer
age i upon science, and compuling devices will play an increasingly larger role
wn scientific research during the coming decades. Ord focuses attention on the in-
creased compuier power available today that enables progress fo be made in the area
of point pattern analysis, by rendering numerically intensive problems soluble, spec-
ulating thatl new computer advances will spur on subsequent developments, too. The
purpose of this paper is to review the main siochastic models used in univariate
point pattern analysis, their accompanying fraditional statistical tests and infer-
ence problems, and their eziensions to multivariale point pattern analysis. Ripley’s
commentary complements the conients of this paper by outlining other imporiant
developments in the areas of theory, point processes of objects, statistical inference,
and mosaic models. He makes three interesting conjectures, namely that (1) point
patierns per se are becoming less imporiant, their few golden years having passed,
with their fulure Literature becoming less prolific, (2) fundamental problems of com-
putational complezily do not ezist for point patiern analysis, with compuiational
intractability being a misnomer applied to situations of ignorance, and (8) point
patiern analysis now is being eclipsed by statistical image analysis. Indeed, then, is
now the time to begin finalizing the history of point patiern analysis? Ord thinks
not; Ripley thinks so!

The Editor

e ———
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Statistical Methods for Point Pattern Data
J. Keith Ord *

Departments of Management Science and Statistics, The Pennsylvania State University,
University Park, PA 16802,

Overview:  Recent developments in spatial point processes are reviewed. After
presenting an outline of the major univariate stochastic models for such processes, a
Poisson-Gaussian model is described which can be made operational for both areal
and distance-based sampling. We then summarize work on tests of randomness using
distance, quadrat and line transect methods. Robust estimation procedures for the
intensity of the process are examined along with the descriptive tools provided by
second order processes. Increased computer power has enabled some progress to be
made in estimating the parameters of stochastic models from the likelihood function
and further activity is likely in this area.

Finally, work on multitype processes is reviewed and future directions for research
are outhned,

1. Introduction

The analysis of spatial data has become a major preoccupation of statisticians only rather
recently and most of the advances in the study of spatial point patterns have happened
within the past ten years. In part, this reflects a neglect of such problems by statisticians
since heuristic statistical methods have been employed in other disciplines such as ecology and
forestry for over fifty years. However, the other side of the coin is the level of computational
difficulty facing statistical model builders. It is only with the computing power available in
the 1980’s that such difficulties are being overcome.

After outlining the different approaches to data collection in Section 2, we turn in Section
3 to the main stochastic models which have been developed for spatial point patterns. To
avold overworking the term “point” we shall reserve it for points in the study region and
prefer the term “individual” for realized events.

After developing the basic models, Sections 4 and 5 cover the traditional areas of tests
of “randomness” (1. e. whether the pattern is formed by a Poisson process) and statistical
inference. In addition to the usual issues of intensity estimation, Section 5 covers the newer
topics of second order methods and parametric model-building. Section 6 is devoted to

multitype (or multivariate) point processes and the paper concludes with a brief section on
the future directions of the subject.

1.1. A bibliography

Apart from the major pioneering effort by Matern (1960), the first theoretical text on spatial
point patterns was that of Bartlett (1975). Since then the literature has expanded consider-
ably. Chapter 4 of Cliff and Ord (1981) considers the analysis of spatial point patterns with
an emphasis on geographical applications. Getis and Boots (1978) discuss spatial point, line
and areal processes, again with an emphasis on problems in geography. Diggle ( 1983) gives

* I am grateful to several colleagues, cspecially Brian Hipley, for comments on an earlier version of this paper,
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an excellent overview with many ecological examples. The major book of a more theoretical
nature is that of Ripley (1981) which also includes a wide variety of applications. Kinder-
man and Snell (1980) provide a useful introduction to the theory of Markov random fields.
Most recently, Upton and Fingleton (1985) provide a lively presentation of the methods of
spatial analysis, drawing on examples from many different disciplines. The most recent and
complete discussion of inference problems for spatial processes appears in Ripley (1988).

In addition to these texts, the review paper by Ripley (1984a) was a valuable source of
information in the preparation of this paper. Further useful sources are the bibliography
compiled by Naus (1979) and the volume of papers edited by Cormack and Ord (1979).

2. Data collection

The manner in which data on spatial point processes are collected and recorded has a major
impact upon subsequent methods of analysis. When a single study area is selected and all
the individuals within that study area are recorded, we say the data are mapped. Alter-
natively, when a series of sites is selected at random and individuals are recorded only in
the neighborhood of those sites, we say that the process has been sparsely sampled. The
definitions and the terminology follow Diggle (1983).

We may select sampling units (known as gquadrats, whatever their shape!) of a prespec-
ified size and record the number of individuals present in that sub-area: this is known as
the method of quadrat counts. The other principal option is to select individuals, or points,
at random and to measure either point-to-individual (PI) or individual-to—individual (I1)
distances. These distance methods are often known as nearest-neighbor methods, although
this term should be taken to include all immediate neighbors, not just the nearest one. The
more general label of distance methods will be used in this paper.

At one time, sparse sampling methods were widely used in ecology, although they are now
less popular. Naturally, geographers prefer mapped data analyses. When complete mapping
is undertaken, other approaches become feasible, such as “empty space” methods whereby we
examine the probability that a region (disk) of given area is devoid of individuals. Subject
matter and research objectives should and do play a major role in the types of analyses
undertaken.

3. Modeling spatial point processes

The benchmark model for spatial patterns is the homogeneous Poisson process, often known
simply as the Poisson process. In order to describe this we consider a planar region C
(sample space) and (sub-)regions A, B C C. The area of such regions is denoted by |A|,
IB| and so on. Let N(A) be the random variable denoting the number of individuals in A .
The expected number of individuals in A is then

E{N(4)} = L A(x) dx, (3.1)

where A(x) is the intensity function defined at all points xeC .
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3.1. The Poisson Process

The assumptions underlying the Poisson process are
PP1: A(x)=A for all xeC.

PP2: N(A) follows a Poisson distribution with mean A|A|.

PP3: Given that N(A) =n, the n events in A are independent and form a random
sample from the uniform distribution on A.

It then follows that
PP4: If A and B are disjoint regions, N(A) and N(B) are independent.

In fact, it may be shown that PP1 and PP2 imply PP3 (Ripley, 1976b), although the proof
1s difficult,

Property PP3 motivates the description of the Poisson process as being “purely ran-
dom.” Many tests of the Poisson model (see Section 4) are known as tests of “randomness.”
Another central property of the Poisson process relates to distance sampling:

PP5: If P is a randomly selected point in the plane, C and I is the individual nearest

to P, the distribution of U; = (PI;)? is exponential with parameter A . Further
if I} is the k** nearest individual to P,

Up = (PI:)* is gamma (k, 7). (3.2)

It seems a rather minor comment to note that, if P denotes a randomly selected individ-

ual rather than a point in the plane, property PP5 is unchanged. However, this additional
result proves very valuable in estimation and testing problems.

3.2. Departures from “randomness”

Given the specialized nature of the assumptions underlying the Poisson process, a variety
of departures from P1 and P2 may be considered. The two simplest schemes allow (a)
heterogeneous intensity (HI) and (b) clusters of individuals respectively. Following Diggle
(1983, pp 52-55) the heterogeneous intensity model may be described as follows:

HIP1 N(A) has a Poisson distribution with mean (3.1), A(x) # A for all x

HIP2 Given N(A) = n, the individuals in A form a random sample from the distribu-
tion on A with pdf proportional to A(x).

Kooijman (1979) discusses the analysis of mapped data when A(x) is represented by a low
order polynomial.

An extension of the heterogeneous scheme is to assume that the intensity A(x) is itself
determined by a random process, A(x). This yields the doubly stochastic process or Cox

process, first developed in the time domain by Cox (1955); see also Bartlett (1964, 1975)
and Matern (1971).

CP1 {A(x): xeR’} is a non-negative-valued stochastic process.

CP2 Conditional on {A(x) = A(x): xeR?} the number of individuals is described
by a heterogeneous intensity Poisson process with intensity function A(x).

When the process in CP1 is stationary, it follows that the ntensity is
A = EjA(x)].
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For two points x and y the conditional intensity given {A(x)} is A(x)A(y), and we define
the second order intensity to be

A2(x,y) = E{A(x)A(y)}

When the process is both stationary and isotropic, this becomes

Aa(x,y) = A +4(t), (3.3)
where y(t) = cov[A(x)A(y)] and ¢t = ||x — y||*/? is the distance between x and y.
3.2.1. Poisson cluster process

PCP1 The distribution of parent individuals in A follows a Poisson distribution with
intensity p.

PCP2 Each parent produces a random number, 5, of offspring, where § is independent
and identically distributed for each parent with probabilities {r,,s =0,1,...}.

PCP3 The positions of the offspring relative to their parents are independently and
identically distributed according to a bivariate distribution with pdf f(.).

When f(-) represents a degenerate distribution PCP1 and PCP2 yield the class of
contagious Poisson distributions (cf. Ord, 1972, pp. 126-7).

When S is described by a logarithmic series distribution, it is well-known that the
resulting PCP is described by the negative binomial distribution. However, when () is
non-degenerate, Diggle and Milne (1983a) found that no plausible process exists which could
produce counts following the negative binomial law.

Quite generally, the clustering processes may be described by their characteristic fune-
tionals (Bartlett, 1964). Bartlett went on to show that the Poisson cluster processes are Cox
processes so that the generating mechanisms cannot be distinguished by any data analytic
method.

Another existence result of interest is due to Kingman (1977), who showed that for
reproducing populations formulated as Cox processes there is no process with independent
displacements of individuals which leads to the Poisson process as an equilibrium. However,
Kingman went on to demonstrate that when dependent displacements are allowed, a variety
of processes lead to a Poisson process in the equilibrium state. These results help to justify
the often implicit assumption that purely spatial models may be viewed as equilibrium
processes for an (unobserved) spatio-temporal process.

3.3. Gibbs processes

Now consider a process defined on the planar region C such that the joint pdf that there
are exactly n individuals in C located at x;,x9,...,%, is

agn(X1,..., Xn)p"e I /n},

where a is a normalizing constant, g,(-) is symmetric in its n arguments and p Tepresents
intensity as before. It follows that

i

P{N(C)=n}= [apﬂe-ﬂ!ﬂ!;'nr]f gn(X1, ..., Xp)dx; ... dx,,
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so that the joint pdf for the {z;} given N(C)=n,is

g(x1,...,x5)/ -/;ng{xh...1xn}dx1...dxn. (3.4)

Wrniting g = exp(—¢,), we may consider ¢, to be a potential function and the joint pdf
then defines a Gibbs process. In particular, the special case

qﬂ:n{xl,...,xn] = Zﬂg[xi—-—]{j} (35:}

1<)

has provided the basis for most empirical work in statistics; 83 = 0 clearly reduces to the
Poisson process. Ripley and Kelly (1977) gave a seminal development of Markov random
fields and show that, for a general class of potential functions including (3.5), the Gibbs
processes and Markov random fields are equivalent. Further, Ripley and Kelly (1977)
demonstrate that the Gibbs processes provide a particularly useful framework for models
of inhibitory processes. For example, setting

Ba(xi —x) =0, |jxi— x;|| < do

provides a hard-core model whereby two individuals cannot co—exist within dy of each other.
Following earlier work by Strauss (1975), Kelly and Ripley (1976) developed a clustering
model using (3.5). Sanders et al. (1982) have extended this scheme to include local hard-
core inhibition and clustering. Taking ¢ > 0 ensures that the normalizing factor in (3.4) 1s
finite; otherwise, the process may not be well defined. If ¢, < 0 for some x, extreme caution
1s advised.

3.4. Related processes

Several other processes have been developed and many of these are reviewed by Diggle (1983,
Chapter 4). Most of the processes described thus far assume stationarity and isotropy. How-
ever, this 1s more for convenience than necessity. For example, the second order properties
discussed in Section 5 below also hold for anisotropic processes.

Byth (1981, 1982a) developed a class of processes which are isotropic with respect to a
particular “origin,” but non-stationary. The intensity is a function of the distance from the
“origin.” Byth’s motivating example was the pattern of fungi around a tree, but her process
has potential value for many diffusion-type processes which emanate from a known origin.

A link between lattice processes and point processes has been provided by Besag et
al. (1982) who show that the auto-Poisson process (of Besag, 1974) on a regular lattice
approaches a limiting inhibitory (pairwise interaction) spatial point process.

Another class of models are the thinned processes discussed by Brown and Holgate (1974)

and Brown (1979) among others. The method of thinning may be either random or position
dependent.
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3.5. Nearest-neighbor results

As suggested by property PP5 in Section 3.1, distances from randomly selected points (or
individuals) to first, second, ..., nearest individuals, often known as nearest-neighbor dis-
tances, are widely used in the analysis of spatial point patterns. Further recent developments
in this area include Cox (1983) on the probability that m® nearest neighbors to individual
I, are also n** nearest neighbors to J5: Cox also develops higher order results of this type.
Newman et al. (1983) consider the probability that an individual is the nearest neighbor of
exactly k other individuals; it is found that the probabilities are of Poisson form with A = 1,
for a variety of processes. Pickard (1982) gives a general treatment of the isolated nearest
neighbor (or reflexive pairs) problem. Warren (1971) and Warren and Batcheler (1979) give
nearest neighbor distributions for several specific non-Poisson schemes.

3.6. The heterogeneous Poisson—Gaussian process

The lack of any plausible spatial process underlying the negative binomial distribution for
quadrat counts has been demonstrated by Diggle and Milne (1983a). This makes it difficult
to interrelate analyses based on areal and distance sampling procedures yet, especially for
mapped processes, some interconnection between these approaches is essential.

A review of the assumptions underlying Cox processes (Section 3.2) indicates that the
intensity process must be non-negative but also infinitely divisible so that spatial aggregates
may be defined for any region. A natural choice would be the Gaussian scheme except
that, of course, it may take on negative values. We could condition upon Alx) =2 0 for
all x; done rigorously, however, this imposes considerable additional complexity upon the
analysis. In practice, provided the probability of negative values is sufficiently small we
need apply this conditioning only notionally and, algebraically at least, may consider the
complete Gaussian process as a reasonable approximation. This approach has been employed
in models for discrete data where the Poisson mixture with the normal gives rise to the
Hermite distribution; Kemp and Papageorgiou (1982) describe the bivariate case and give
references to earlier work. However, it should be noted that the correlation function must
be non-negative for all x — y to ensure a well-defined process (see Section 3.3). We now
develop these ideas for a particular Cox process.

Following Bartlett (1975, p. 7) we may write the characteristic functional (cfl.) for all
points u in some region @ as

C(0) = Exlexp [ Aw){ew) ~1}du], = =¥,

where the integral is taken over all points u €@ . This expression is more readily understood if
we first consider @ to contain a finite number of points when the c.fl. becomes a multivariate
probability generating function (p.g.f.), viewed as an argument in z rather than 8 .

When A(x) is a Gaussian process with mean function u(x)= g, variance function
w(x) = w and autocorrelation function

p(x,¥) = p(x —y), for all x and y,
with p(0) = 1, it follows that

C(8) = exp[ﬁ/{zfu} —1}du + IJ-SuJ'/[p[u —v){z(u) = 1}{z(v) — 1} dudv]. (3.6)
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If sampling is by quadrats, the p.g.f. for the quadrat count is obtained by setting z(u) = z
for all ue@. If @ has area A, (3.6) yields the p.g.f.

Co(z) = exp[Ap(z — 1) 4+ 0.5w(z — 1)* ]fp[u —v)dudv|, (3.7)

where the double integral is taken over (u,v)e@ . Thus, (3.7) defines an Hermite distribution
with p.g.{. of the general form

exp[A1(z — 1) + Az(z — 1)7, (3.8)
reducing to the Poisson when Ay = 0. It follows from (3.8) that the quadrat count, R, has
El:R]I = .11 < I-‘EI'I:R] = ..11 - 211, for .JI-E = (.

Expression (3.6) simplifies further in those cases where an explicit functional form is available
for the correlation. In particular, suppose that the process is isotropic and

p(w) = exp{—a*(w] + w3)/2}. (3.9)

Further, we assume that the quadrats are rectangular, say h; by hg, with hy-hs = A. The
integral in (3.7) partitions into two integrals of the form

G(h) = /hfhaxp{—az{u —-v)%/2} dudv
o Jo
= [4(27)'?/a®][ah F(ah) - ah/2 + f(ah) - £(0)],

where f and F' denote the density and distribution functions, respectively, for the standard
normal. Thus, the p.g.f. for a single quadrat becomes

Co(z) = exp[Ap(z — 1) +w(z — 1)*G(h1)G(h2)/2)]. (3.10)

By extending the argument to two (or more) quadrats, we obtain bivariate (multivariate)
Hermite distributions. Comparison of (3.8) and (3.10) indicates that

Ar=Ap and Az = As(w,a,hy, ki),

so that there are three unknown parameters (u,w,a) relating to the mean, variance and
correlation structures respectively. This is in a one-to-one correspondence with the bivari-
ate Hermite with identical marginal distributions. The simplest procedure inferentially is
probably to estimate the parameters of the bivariate Hermite using a pseudo-likelihood ap-
proach and then relate these values to the process parameters using the moments derived
from (3.10) and its bivariate extension. Detailed development of the method is necessary,
but it appears to have some potential.

Finally, we note that the process also corresponds to a PCP when the cluster size, 5,
1s binomially distributed with index n = 2.

37



J. Keith Ord

4. Tests of randomness

The Poisson process forms a natural null hypothesis for testing whether structure exists
within a spatial data set. Such tests are often known as “tests of randomness” and may
be designed with particular alternatives (clustering, inhibition) in mind or may use the
completely general alternative of a non-Poisson process.

As has been remarked by Ripley (1981) and others, tests of randomness should represent
only the first step in a spatial modeling paradigm, yet it has to be admitted that such tests
have often been presented as the end result of an analysis. Either way, such tests clearly
have value and we now summarize the main options for distance and area-based sampling
respectively.

4,1. Distance methods

The majority of the tests proposed are based upon distance sampling. A summary list is
presented in Table 1. When the region is sparsely sampled, the distributional properties
listed hold. For mapped data, these results hold up less well (Byth and Ripley, 1980). An
alternative procedure is to use Monte Carlo testing (cf. CLiff and Ord, 1081, pp 63-65; Diggle,
1979a). Diggle and Gratton (1984) present the first systematic development of inferential
procedures based upon Monte Carlo methods.

Several comparisons of the relative power of these tests have been performed recently:
their conclusions may be summarized as follows:

(1) In general, tests which include squared distances perform better than those which
do not.

(2) The Hopkins (D) test is most powerful across a range of alternatives but is non-
feasible for sparse data since randomly selected individuals cannot be selected
(Besag and Gleaves, 1973). For mapped data the Hopkins test is often a good
choice and the test may be performed by Monte Carlo methods (cf Diggle,
1979a). Byth and Ripley (1980) have developed a semi-systematic sampling
scheme for choosing individuals “at random,” which allows use of the Hopkins
test. When the semi-systematic sampling is feasible, this approach would appear
to give the best power.

(3) The Besag-Gleaves (G,H ) and Cox-Lewis (L) tests perform similarly across a
variety of alternatives. Cox-Lewis has a slight edge but has a somewhat more
difficult distribution theory. The Eberhardt (J) and Holgate (E,F) statistics
are less powerful (Hines and Hines, 1979). The Hines-Hines (K ) procedure is
comparable i power to the Hopkins (D) test for clustered alternatives, but
weaker for regular alternatives (Hines and Hines, 1979).

(4) Tests (R), (5), (T') and (A) perform better than tests (P) and (Q ) and several
other alternatives (Ripley, 1979a). Tests (R), (S) and (T) have the advan-

tage that they may suggest an alternative model, but (§) and (T') are clearly
dependent on the values of the constants C'1 and C2.

Clayton (1984) suggests a procedure based upon the use of an exclusion angle, but its relative
performance characteristics are as yet unknown.

Ripley and Silverman (1978) demonstrate that, when the alternative hypothesis is a
Poisson hard-disk process, the uniformly most powerful test is based upon the smallest order
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TABLE 1
DISTANCE TESTS OF RANDOMNESS
Code
Letter Statistic Distribution under Hy Reference
A EfiEr,fn approx N|1,(4 —x)/(7n)] Clark & Evans (1954)
TAZu/n approx N1, (A4 +n +1)/(nAA))] Pielou (1959),
Mountford (1961)
C 2xA Lu; approx x3_ Skellam (1951)
D Tu/E{u;+ul) B(n,n) Hopkins (1954)
E Tui/Tugp B(n,n) Holgate (1965)
F Dluy/upl/n approx N(1/2,1/12n) Holgate (1965)
G Zu;/E(u;+ .5vr) Bin,n) Besag and Gleaves (1973)
H E{ug/(u;+ .5v;7) Hn approx N(1/2,1/12n) Besag and Gleaves (1973)
I =58 {uy/ (u; + .5v;p)} X3, Besag and Gleaves (1973)
J nEu;/(Zr;)? see Hines & Hines (1979) Eberhardt (1967)
K Z{u; + Svyr)/ see reference for tables Hines and Hines (1079)
Elri + .54/viT)
L 4/38(1 — mwy) approx N(1/2,1/12n) Cox and Lewis (1976),
Cormack (1977)
M min ;(w;) beta (1,n) Cox and Lewis (1976)
N nén[E(u; + .5v;7)/n] x3(n—1) Diggle (1877b)
~Zfn(u; + v;7)
P B(v;— D)?/D?*(n - 1) by simulation Brown and Rothery (1978)
Q@ (wv;)1/n/D by simulation Brown and Rothery (1978)
(D = Zvy/n)
R SUP <y, [L(E) — 1| by simulation Ripley (1979a), p. 360.
5 Zo(x,y) asymp. normal Liebetrau (1977)
T Zg(x,y) asymp. normal Jolivet (1978)

Notation for Table 1

r; = distance from random point to the nearest individual

= i
u;=r;

rip =distance from random point to p-th nearest individual

up=rl
r} = distance from random individual to its nearest neighbor

uf = (r])?

v; = squared distance from nearest individual to a random point to its nearest neighbor
iT = vy, but with nearest neighbor restricted to T-sguare sampling

w; ' = 27 + sinfl; — (x + 6,)sinf; sin(0.58;) = (v /u;)1/?

L(t) = [K(t)/x]*/?, see (5.3) for definition of K(t)

él{x,y] = [{:1 - |=1 —!Fll]i"-‘z - |32_"5|'3|] if |31""].I','|} € i= 1,2, ‘:']: otherwise.

statistic, r(;), of a sample of first nearesi-neighbor distances. Concerns about measurement
and rounding errors may lead to the use of higher order statistics, but this would occasion
loss of power unless the errors are substantial. Saunders and Funk (1977) demonstrate that
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for a disk of radius rp, rflj —r3 is approximately exponentially distributed; for further
developments, see Silverman and Brown (1978).

As noted earlier, the Poisson cluster process may be represented as a Cox process so that
clustering and heterogeneity cannot be distinguished. More pragmatically, it may be argued
that clustering is essentially a local phenomenon whereas heterogeneity is manifested at a
larger scale; that is, A(x) changes slowly with x. From this perspective, Diggle (1977b)
proposed test (N) as a test of heterogeneity. Diggle recommends that one of the local
distance tests be used to detect local departures from randomness and then test (N) be
used to detect larger scale patterns. As such it represents an alternative procedure to the
transect methods described in Section 4.3. The Diggle procedure has the advantages of being
somewhat simpler to apply and being applicable to both sparsely sampled and mapped data.
Its power, relative to the methods in Section 4.3, is unknown.

4.2. Areal sampling methods

When data are collected from a Poisson process, the counts distribution is Poisson whether
those data are mapped or sparsely sampled. In principle, any goodness—of-fit test could be
used to test the null hypothesis that the distribution is Poisson. However, tests such as chi-
square have been found to have relatively low power since it is the upper tail observations
which serve to distinguish non—Poisson alternatives. The most popular test is the index of
dispersion

D = Sample variance/sample mean.

Perry and Mead (1979) show that D has good power properties in sparse sampling. Heltshe
and Ritchey (1984) show that Stevens' test, defined as

Z = number of empty quadrats | S individuals in N quadrats

has power comparable to D for aggregated alternatives, but does not perform as well for
regular patterns when large quadrats are used. This is understandable since

E(Z)= Ne ™ where S = N,

which becomes small for large A and fixed N.

For mapped data, quadrat methods necessarily lose power as they ignore the spatial
dependence between quadrats; the distance-based methods of Section 5.2 are preferable.
When only quadrat counts are available, the D test can be complemented by a test for
spatial autocorrelation between neighboring quadrats (CLff and Ord, 1981, pp. 97-99).

4.3. Tests using transect data

There is a considerable literature on line transects which we shall not review in detail; see
Gates (1979) and De Vries (1979). One topic relevant to our present discussion is the use of
line transect data to test for different scales of spatial pattern. These methods are associated
with the name of Greig-Smith (1952) who has used the approach extensively in his ecological
work; see Greig-Smith (1979).

Briefly, the computational details of the method may be described as a hierarchical
analysis of variance. As noted by Professor Bartlett and others, formal ANOVA tests are
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unrehiable since detection of one scale of spatial pattern may obscure higher levels. Mead
(1974) developed a randomization procedure which avoids the difficulties noted by Bartlett.

In general, the Greig-Smith and Mead procedures have single starting points along
the transect (or two—dimensional array). Hill's (1973) method gave improved power by
considering all possible starting points and Upton's (1984) procedure does the same for
Mead’s test. Zahl (1977) developed a Scheffé-type procedure which considers all overlapping
blocks and controls the overall probability of Type I error; simulation results indicate that
this technique outperforms the Greig-Smith method, and also the random quadrat method
of Goodall (1974). Moellering and Tobler (1972) and Cliff and Ord (1981, pp. 123-6) provide
geographical applications of this approach.

A different approach is the use of spectral analysis, illustrated by Ripley (1978). This
analysis appears to give at least as clear results as spatial domain methods and may indeed
be a better vehicle for separating out different scales of pattern; see also Ripley (1981, pp.

112-129), Renshaw and Ford (1983) and Renshaw (1984).
5. Statistical inference

Inference for spatial point processes may focus upon either the first and second order proper-
ties required for weak stationarity or upon strict stationarity when the more ambitious goal
of fitting a complete parametric model is attempted. We shall examine these in turn.

5.1. Intensity of a process

The simplest and most traditional problem is that of estimating process intensity, or the
average number of individuals per unit area. When the process is stationary and isotropic,
this is only a problem for sparsely sampled data; for non-stationary processes with mapped
data the smoothing methods used in probability density estimation are particularly useful,
see Cox (1079), Diggle (1981a) and, more generally, Silverman (1981).

For stationary and isotropic processes, the obvious real estimate

X = Total number of individuals /(Number of quadrats)-(Quadrat area)

is unbiased for any spatial process. However, it is often the case that quadrat sampling is
either too expensive or impractical which has led to an extensive search for distance-based
estimators. Many of the early estimators were based upon precisely the same statistics used
to test for randomness (see Table 1); this includes the maximum likelihood estimators for
the Poisson process (cf. Pollard, 1971). To the extent that the tests are successful, the lack
of robustness of the estimators is perhaps not surprising. Persson (1971) made this point
forcably and suggested several more robust alternatives; see Table 2. Robustness in this
context 1s a somewhat elusive concept. It is very easy to consider a particular departure
from a Poisson point process and to produce an estimator that is robust to that change, vet
not robust to others. For example, if a pattern includes very tight clusters of variable size,
any distance-based estimator is likely to fail for some configurations. Thus, robustness is a
quality to be assessed in the eye of the beholder and the researcher should determine whether
the method to be used will be robust for the spatial processes likely to be encountered. We
now summarize the evidence on different estimators, bearing in mind that published studies
have tended to focus upon a rather limited variety of non-Poisson processes.
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TABLE 2
ROBUST ESTIMATORS FOR INTENSITY
Code
Letter Estimator | Reference
A ¢/ (Brip)? Persson (1971)
B e/ (Zup) Persson (1971)
C ch;I Persson (1971),
Cox (1976)
D ¢/ median(up) Persson (1971)
E ¢/ (Zu;Bu?)l/? Diggle (1975)
F ¢/ (Bu;Zvr)t/? Diggle (1975)
G c1(Zui) ™! + ca(Tuip) ™! Lewis (1975)
H e1Z(ui/w;) + ea(Bugy)™? Cox (1976)
I e1/ (Bug)es ® Batcheler and Hodder (1975),
Warren and Batcheler (1979)
J ck(n)ulk(n)|/n Patil et al. (1979, 1982)
K ¢/ (r:)(Zvzp’) Byth (1982b)
L e/ (LriZr}) Clayton and Cox (1986)

Notation for Table 2

¢, €1, €2 = constants

K = cS(r; — 7)2/(Sr)(Tol?)

k(n) = function of n such that k(n) — oo and k(n)/n — 0 asn — oo,
le. g., k(n)=n'/?

ulk(n)] = [k(n)]th order statistic from uq,...,u,

Other notation as for Table 1.

Diggle (1977a) shows that the estimators (E ) and (F ) are more robust than the earlier
suggestions (A-D); (E) performs better than (F) when the clusters are rather diffuse but,
of course, (E') may not be usable in practice. Cox (1976) shows (H) to be better than
(C'). An extensive Monte Carlo study by Byth (1982b) indicates that (E ) and (F') perform
better than (A-D) or (I'), but suggests that (K ) may be best of all unless there is a very
high degree of clustering. The evidence on other methods is incomplete although method
(J ) appears to have a high standard error despite its low degree of bias; the several possible
estimators based upon (L ) seem to perform quite well.

Aherne and Diggle (1978) recommend the use of (E) or (F) in conjunction with a
preliminary test of randomness. This opens up the possibility of using different estimators
according to whether the spatial pattern is judged regular, random or clustered. For forestry
applications, Ord (1978) gives an unbiased estimator based upon the angle-exclusion method.
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5.2. Second moment methods

The second order intensity function may be defined more generally than in (3.3) as

Azx,y) = ﬁm|dx|-nEiNfdx}N{‘fF}]f(|dx|'|d—}'|]- (5.1)
|dy|—0

For stationary processes As(x,y) = Aa(x — y) and when the process is also 1sotropic

AE{x:}'.} . ‘]‘I{t]r

where ¢* = |lx — y||. For the Poisson process, As(x,y) = A? for all x and y.

An alternative representation of second order properties is by means of the function
(Ripley, 1976a):

K(t) = A7 'E[N(t)] (5.2)

where N(t) denotes the number of further individuals within distance ¢ of a given individual.

For the Poisson process, K(t) = mt?. The function K(t) is a natural representation for
mapped data since an unbiased estimator is then available as

K(t)=1A])_ k(x,y)/N?, (5.3)

where ;
|A| = area of the study region A,

N = number of points in A, and
[k(x,y)] "' = proportion within A4 of a disk of radius ¢ centered on x
(and passing through y),

and the summation is taken over all pairs (x,y)e A less than distance ¢ apart. Other edge
corrections are possible; see Ohser and Stoyan (1981). K was introduced by Ripley (1976a);
Ripley (1979) shows that the distribution of K is approximately Poisson for distances small

relative to the size of the study area. A normal approximation is reasonable for N > 50
provided the average number of points per unit area is not too small.

For non-Poisson processes, the distribution theory is intractable, but the sample K (t)
may be contrasted with the envelope of a set of random simulations to determine agreement
with a specified model (ef. Ripley, 1977; Diggle, 1979a,b; Diggle and Gratton, 1984). Sil-
verman (1978) and Besag (in the discussion on Ripley, 1977) note that L(t) = [I? (t)/m]1/?
has a linear plot against ¢ and also var[L(t)] is approximately constant. This provides the
basis for test (R ) in Table 1.

As defined, K (t) requires both stationarity and isotropy; however, isotropy is not neces-
sary (Ripley, 1976a). Ohser and Stoyan (1981) suggest plotting a “rose” of directions with
AK (t,7) defined as the number of individuals within ¢ of the given individual, with an ori-
entation angle # <. Hanisch (1983) considers higher order moments, both for isotropic
and anisotropic processes.

Another form of analysis useful for mapped patterns is the estimation of
P(t) = P [circle of radius ¢ contains no individuals] (5.4)
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sometimes known as “empty space” methods. Again, edge corrections are necessary to
produce an unbiased estimator (Ripley, 1977, 1984b.c). The information content of (5.2)
and (5.4) 1s different, so both analyses should be performed (Ripley, 1977). Cox (1979)
describes a simple approach for identifying “sparse” and “dense” regions which may then be
incorporated into computer mapping of the study region. For further discussion of second
order methods see Getis and Franklin (1987).

5.3. Model-based inference

The fitting of parametric process models to spatial point patterns has proved extremely
difficult once the Poisson scheme is rejected as inadequate. Primarily this is due to the
very heavy computational burdens which must be borne. These problems arise in evaluat-
ing normalization constants for Gibbs processes as in (3.3) or generally in evaluating joint
likelihood functions. Ogata and Tanemura (1981, 1984) developed the likelihood for a Gibbs
process based on a variety of local pair-potential functions satisfying (3.4). Even so, several
heroic approximations were necessary before the computational effort proved feasible. Gates
and Westcott (1986) showed that some of the Ogata-Tanemura simulated examples were
unrealistic and that the potential functions under consideration violated a stability condi-
tion, at least for some parameter combinations. They conclude that data analysis based on
models with unstable potential functions must be performed with great care and, in general,
recommend the use of more traditional clustering methods. Alternative approximations for
hard-core models are given by Westcott (1982).

Shapiro, Schein and De Monasterio (1985) give an interesting example of modeling a
spatial point process. Their paper should be read in conjunction with the ensuing discussion
by Diggle and Gates.

Ogata and Tanemura (1984) introduce a “very soft core” (VSC) model with potential
function

B(r) = —log[l — exp(—ar?)],

where 7? = ||x — y||. The VSC process represents a weaker form of local inhibition than the
hard—core models where rounding error is present.

Sager (1982) develops a non-parametric maximum likelihood estimation procedure using
smoothing methods. Diggle and Gratton (1984) further develop the use of kernel methods
for estimating the likelihood of an implicitly defined process. They give suitable numerical
procedures for obtaining the maximum likelihood estimators from the estimated likelihood
function. The central idea, deve]npeE from Diggle (1978), is that the sample realization,

described by some function such as K(t), is fitted as closely as possible to the theoretical

function K (t,8) estimated from S simulated realizations of the process for different values
of the parameters #. The intractability of the likelihood functions led Diggle and Grattan

to determine # by minimizing
L . F il 1/2
. [ 1/2 _}2 | 2
.(0) = [“HUR@) {3§R3{z,aj} 2

so that their estimates are “sensible” rather than “optimal.” Diggle, Gates and Stibbard
(1987) give an improved non-parametric estimator for interaction processes based on an
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approximation drawn from statistical physics. This works well in simulations and probably
represents the best approach to model estimation at the present time, although it is not
immune from some numerical problems.

5.4. Simulation of processes

The simulation of spatial point processes represents another computer-intensive task. When
the spatial model can be represented as the equilibrium form of a spatio-temporal process,
the scheme can be run over sufficient time periods until an equilibrium may be assumed to
have been achieved. Kelly and Ripley (1976) give a rejection method for hard-core processes;
see also Lotwick (1981). The Dirichlet tessellation algorithm of Green and Sibson (1978) is
used to identify empty areas and to speed up the assignment of individuals to available
spaces. Lewis and Shedler (1979) simulate a non-homogeneous Poisson process by thinning.
For further discussion, see Ripley (1987).

6. Multitype processes

Point processes involving several types of individual are variously known as multivariate,
marked or multitype processes; we shall use the last of these terms. A useful discussion of
the multitype process is given in Diggle (1983, Chapter 6).

6.1. Bivariate Cox processes

A convenient way to approach such schemes is to allow the individuals to be generated by a
mechanism similar to the univariate scheme, and then to superimpose a “marking” scheme.
The specification of the basic bivariate Cox process (Diggle, 1983, pp. 96-98) illustrates this:

BCP1 A(x) = {Ai(x), Aa(x)} is defined for all xe R? and represents a pair of non-
negative valued stochastic processes.

BCP2 Conditional on Aj(x) = Aj(x), j=1,2 and all xe R?, type 1 and type 2 events
form a pair of independent non-homogeneous Poisson processes with intensity
functions Aj;(x).

Dependence between the processes may then be achieved by modifying BCP2. For example,
Az(x) = cAy(x) represents extreme positive correlation
A1(x) + aAz(x) = b represents extreme negative correlation, and
Aj(x) = Ap(x)+ A j(x) represents a variety of processes with positive correlation.

The class of BCP schemes is studied in detail by Diggle and Milne (1983b), who also
consider thinned bivariate processes. Brown ef al. (1982) develop a class of multitype
processes where each marginal process is Poisson but there is negative correlation between
the processes,

Isham (1984) has developed a bivariate Markov point process extending the earlier work
of Ripley and Kelly (1977). Ogata and Tanemura (1985) have extended their potential
function models to the bivariate case.
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6.2. Tests of dependence

Let R;; denote the distance from an arbitrary individual of type i to the nearest individual
of type j and the subscript i = (0 denotes a randomly selected point in the study region.
Let F,'jf:r} = P{R,‘j <r).

If the two point processes are independent, stationary and isotropic it follows that
F[|1{1‘J=F31(T} and Fug(f‘}=F12[T]. (El:l

Goodall (1965) tested the equality of the distributions in (6.1) by applying a two sample
t-test to the square roots of the distances. Diggle and Cox (1981, 1983) show that Goodall’s
test 1s fairly robust against departures from the assumptions, but recommend the use of the
corresponding Mann-Whitney test. A second pair of tests follows from testing the correlation
between Rp; and Ry for a pair of individuals near randomly selected points. The test based
upon Kendall’s tau appears to perform best but the form of the alternative hypothesis is

critical. An advantage of the correlation test is that it does not require random sampling of
individuals.

6.3. Second order properties

The appropriate second order function is
Kij(t) = A7 E[N:()), (6.2)

where N;;(t) denotes the number of type j individuals within distance ¢ of an arbitrary type
i individual, which follows directly from the univariate case (Ripley, 1976). Two estimators,
K 12(t) and K 21(t), are available and since K12(t) = K1(t), a simple average of the estimates
1s usually taken for each value of t (Lotwick and Silverman, 1982). Examples of data
analyses are given in Diggle and Milne (1983b), Lotwick and Silverman (1982) and Harkness
and Isham (1983). Lotwick (1984) shows that stationary ergodic processes exist for which
the interactions cannot be detected using K, so that empty space methods should also be
examined; the extension from (5.4) is relatively straightforward.

Byth (1981) develops methods for isotropic but non-stationary multitype processes.
7. Related topics

It is inevitable that any review must draw boundaries around the subject matter that is
considered “most relevant” and omit discussion of other topies. Invariably, some topics are
caught on the boundary. In this case, perhaps the two major omissions are mosaics and
sampling. Comprehensive reviews of earlier work on mosaics is provided by Pielou (1977,
pp. 181-199) and by Getis and Boots (1978, Chapters 6 and 7). Roach (1968) should also
be consulted. Diggle (1981b) suggests a stochastic model for binary mosaics as a union of
overlapping disks and uses the model to describe the spatial pattern of heather. Hall (1985)
describes an alternative modeling approach; also see Ripley (1986) for discussion of this
model in the context of pattern recognition methods.

A general view of recent developments in sampling is provided by the volume of papers
edited by Cormack et al. (1979). With regard to sampling point patterns, the early work of
Matern (1960) has been followed up by Diggle and Matern (1981) among others; Byth and
Ripley (1980) also discuss sampling procedures for distance measurements.
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For other recent developments in spatial processes, the review paper of Ripley (1984a)
should be consulted. This paper has restricted attention to purely spatial, or static, models.

For a recent survey of dynamic spatial models including birth-death and epidemic processes,
see Renshaw (1986).

8. Future directions

The field of spatial point processes has undergone very major changes in the past fifteen
years and it is a research area where the computer revolution will continue to have a strong
impact on future model-building efforts.

It would seem that the major classes of stochastic model have been developed, at least for
the univariate case, although further work is merited on interesting special cases, such as the
Poisson—Gaussian. Much more research is needed to develop effective inferential methods.
The combined use of likelihood approximations, Monte Carlo methods and second order
methods seems to offer a fruitful road ahead for both univariate and multitype processes,

The development of tests for randomness would seem to have reached the point of di-
minishing returns, although some useful work remains to be done on power COmMparisons;
perhaps similar comments are true for the robust estimation of intensity, although the use
of preliminary tests in estimation seems worthy of further investigation.

An area with considerable potential for development is the use of more complex sampling
schemes such as the semi-systematic scheme of Byth and Ripley (1980) or the divided
quadrats scheme of Ord (1970). Close collaboration with researchers in the field will be
necessary to ensure that such methods are cost—effective as well as statistically sound.

Finally, it should be noted that work on dependence among multitype processes has only
just started and much remains to be done both to describe patterns of dependence and to
develop the necessary inferential tools.
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DISCUSSION

“Statistical methods for point pattern data”
by J. Keith Ord

The field of spatial point processes encompasses work in both probability and statistics as
well as in several applied fields, and readers should note that Ord's review is much more
restricted in scope than its title might suggest. Rather than comment on the details of the
paper, I will attempt to complement it with other developments that I see as important.
Almost all the issues addressed are covered in some detail in texts such as Diggle (1983),
Ripley (1981) and Upton and Fingleton (1985), but many of the topics below are not.

Theory.

It 1s easy to overlook the importance of theory: major practical developments such as second—
moment methods (K ) and Gibbs processes arose from theoretical ideas. Major theoretical
contributions have been made by Kallenberg (1975, 1983), the East German school (Matthes
et al., 1978; Stoyan et al., 1987), and Papangelou for conditional intensities (see Kallenberg,
1983). Apart from these monographs there are also expositions by Karr (1985) and Daley and
Vere-Jones (1988). The area of Gibbs processes is on the interface with the axiomatization
of statistical physics by Preston, Georgii and colleagues.

One thecretical contribution has been to find minimal econditions that define a Poisson
process. Rather surprisingly, it suffices to know

P(N(A)=0) for a sufficiently wide class of sets A4 C C
P(N({x})>1 foranyx)=0

to specify any point process that is simple (the second condition). In particular, a process
with
N(A) Poisson mean A(A), A({x}) =0 forall x

is a Poisson process (a combination of results of Renyi, Kallenberg and myself in the period
1971-6).

Point processes of objects.

One of the major goals of spatial statistics has been the ability to handle more complicated
image data than points. Stochastic geometry reduces objects to points in other spaces, and
much work has been done on ‘fibre processes’ and their cousins (Stoyan et al., 1987). These
can represent lines and curves such as rivers, and Stoyan and Ohser (1982) have studied the
interactions between points (trees), fibres (rivers) and areas (soil types) on Dresden Heath.

I would argue that point patterns per se are becoming less important. They are almost
always approximations to the truth, representing objects with size and shape, and as we
become able to cope with the image data we actually observe, the underlying point pattern
descriptions will become important rather than direct inference from point patterns.
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Statistical inference.

Much more has been done on inference from point patterns recently than appears in this
review. Many of the issues are discussed in my own contribution to this volume and in Ripley
(1988), but let me underline the importance of pseudo-likelihood and simulation methods, as
well as Palm probabilities. The latter correspond to comparing the views of a point pattern
from an arbitrary point with those from an ‘individual’ (in Ord’s notation), and this has
been exploited by Takacs (1986) and others subsequently.

I do not share Ord’s pessimism (first paragraph) on computational intractability. The
phrase seems to reflect our ignorance of what to do rather than fundamental problems of
computational complexity. Over the last decade the picture has become much more promising
due to all of

(a) developments in computational geometry (Preparata and Shamos, 1985),

(b) new ideas on approximations, and

(c) cheap desktop computing power, equal to that of a mainframe of a decade ago.

Unfortunately these subjects are not part of the traditional education of either statisticians
or geographers. Indeed, the computing skills needed for modern methods may exclude many
potential users, and one day we may see the MINITAB or SAS of spatial statistics.

Mosaic models.

Diggle (1981b) used distance methods to fit a point process model of objects to his heather
data, and very successfully demonstrated how methods of low power allow one to fit inap-
propriate models! The inadequacies of his model are obvious to most people immediately
on companng images of the data with those of simulations of the model. Finding summary
measures that are as good as ‘eye-balling’ took some time, and depended on measuring no-
tions of shape as well as size (Ripley, 1986, 1988). Hall’s (1985) methods suffer from similar
difficulties.

Hall (1988) gives a comprehensive introduction to a family of coverage processes for
mosaics. Other models are described by Ahuja and Schachter (1983).

Spatial point processes have had a golden few years, and the methods developed then
are beginning to be widely used. It is the case that point patterns are now usually analysed

as maps, and the K-function methods (specifically, plotting L(t) = 1#ﬁ[t}f t vs t) have
become standard in a number of biological fields. Nevertheless, currently point processes are

being eclipsed by statistical image analysis, and I suspect developments in point processes
in the near future will be less prolific.
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Rejoinder

A REJOINDER TO RIPLEY’S DISCUSSION

by J. Keith Ord

In some ways my reply must include a defense of Ripley-past from the comments of Ripley-
present. But, overall, I do not believe our viewpoints are so very different.

It certainly was not my intention to underrate the role of theory. Rather, my review
focuses more on methodology, as the title implies. I am grateful to Dr. Ripley for including
the additional references to more theoretical literature.

I would agree entirely, for the case of image processing, that shapes are more important
than points. However, there are many areas of application, especially in human geography,
where point processes are, and will remain, of central interest.

My opening paragraph was not intended to be pessimistic. To the contrary, it is a com-
ment on the history of spatial modeling. I agree wholeheartedly that the present need is for
accessible software,

In terms of stochastic modeling, I suspect it is true that the golden age has passed for
spatial point processes. However, the further development of inferential tools and diagnos-
tic procedures remains a substantive challenge for the future. Only by such progress can
innovative applications be assisted.
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Statistics are like alienists—
they will testify for either side.

F. H. LaGuardia, Liberty, (May, 1933)

In a fashion somewhat similar to that found in the subsequeni chapter by Hain-
ing, Anselin addresses a debate focusing on different perspectives regarding geo-
referenced data analysis. In doing so, he promotes model validotion and sensitivity
analysis. But what conclusion should e researcher state when a slight, modest, or
even radical change in underlying assumptions produces en opposite siatistical deci-
sion? In recent years, scholars seem to be increasingly bombarded with contradictory
statistical evidence eziracied from daia sets. Such pairs of findings could be amus-
g if consequences of their coezistence were not so unfortunate. The purpose of
this paper is fo review and evaluate verious approaches lo modelling and analyzing
spatial data, as well as the role spatial errors play in these endeavors. By fulfilling
this goal, Anselin helps to resolve these troublesome themes of conflicting statistical
implications obiained from geo-referenced data. Haining goes on to emphasize three
of the poinis raised by Anselin, stressing the importance of substance over method
es a guiding light in data analysis.

The Editor
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What Is Special About Spatial Data?

Alternative Perspectives on Spatial Data Analysis
Luc Anselin”

Department of Geography and Department of Economics, and National Center for Ge-
ographic Information and Analysis, University of California/ Santa Barbara, CA 93106,
U.5.A.

Overview:  In this paper, some general ideas on fundamental issues are outlined,
related to the distinctive characteristics of spatial data analysis, as opposed to data
analysis in general. The emphasis is on the relevance for spatial data analysis of the
ongoing debate about methodology in the disciplines of statistics and econometrics,
and on the role of spatial errors in modeling and analysis. First, some general remarks
are formulated on two opposing viewpoints regarding spatial analysis and spatial
data: a data-driven approach versus a model-driven approach. This is followed by
a review of a number of competing inferential frameworks that can be used as the
basis for spatial data analysis. Next, the focus shifts to spatial errors and to the
implications of various forms of spatial errors for spatial data analysis. Finally, some
concluding remarks are formulated on future research directions in spatial statistics
and spatial econometrics,

1. Introduction

The analysis of spatial data has always played a central role in the quantitative scientific
tradition in geography. Recently, there have appeared a considerable number of publications
devoted to presenting research results and to assessing the state of the art. For example,
at an elementary level, Goodchild (1987a), Gnffith (1987a), and Odland (1988) introduce
the concept of spatial autocorrelation, and Boots and Getis (1988) review the analysis of
point patterns. At more advanced levels, Anselin (1988a) and Griffith (1988) deal with a
wider range of methodological issues in spatial econometries and spatial statistics. Extensive
reviews of the current state of the art for different aspects of spatial data analysis are
presented in Anselin (1988b), Anselin and Griffith (1988), Getis (1988), Griffith (1987b),
and Odland, Golledge and Rogerson (1989). In addition, spatial data analysis has received
considerable attention as an essential element in the development of Geographic Information
Systems (GIS), as outhned in Goodchild (1987b) and Openshaw (1987), and as an important
factor in regional modeling, as argued in Anselin (1989a).

In this paper, I will take some distance from specific methods and techniques, and instead
outline a few general ideas on fundamental issues related to the distinctive characteristics of
spatial data analysis, as opposed to data analysis in general. I will focus on two issues that
are often overlooked in technical treatments of the methods of spatial statistics and spatial

" Paper prepared for presentation ot the Spring 1989 Symposium on Spatial Statistics, Past, Present and Future, Depart-
ment of Geography, Syracuse University. The research reported on in this paper was supported in part by Grants SES 86-00485
and SES 87.21876 from the National Science Foundastion, and by the Nationa! Center for Geographic Information and Anal-
ysis (NCGIA). An earlier version was presented at the NCGIA Specialist Meeting entitled “"Accuracy of Spatial Databases ™
Montecito, CA, December 13-18, 1088,
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econometrics. One is the relevance for spatial data analysis of the ongoing debate about
methodology in the disciplines of statistics and econometrics. I will review and evaluate a
number of different approaches towards modeling and analyzing spatial data, and put them in
the context of the debate. Some recent examples of the opposing viewpoints that are taken
in this debate can be found in Leamer (1978), Hendry (1980), Sims (1980, 1982), Lovell
(1983), Swamy et al. (1985), Zellner (1985, 1988), Efron (1986), Pagan (1987), Kloek and
Haitovsky (1988), and Durbin (1988). The second issue is much narrower and pertains to the
role of spatial errors in modeling and analysis. This topic has recently received considerable
attention in the context of GIS (e. g., as evidenced in the 1988 Research Initiative of the
National Center for Geographic Information and Analysis on “errors in spatial databases” ),
but many aspects of its relation to spatial data analysis remain to be explored.

The discussion in this paper is not intended to be comprehensive, but it is selective in the
sense that I will focus on issues that seem to be most relevant to current modeling practice
and most promising to lead to future research advances. Clearly, this selective treatment
reflects my own biases and interests, and is focused on applications in regional science and
analytical human geography.

The remainder of the paper consists of six sections. First, I formulate some general
remarks on two opposing viewpoints regarding spatial analysis and spatial data: a data-
driven approach versus a model-driven approach. This is followed by a review of a number
of competing inferential frameworks that can be used as the basis for spatial data analysis,
Next, I focus on spatial errors and on the implications of various forms of spatial errors for

spatial data analysis. I close with some concluding remarks on future research directions in
spatial statistics and spatial econometrics.

2. Spatial Analysis and Spatial Data

In general terms, spatial analysis can be considered to be the formal quantitative study
of phenomena that manifest themselves in space. This implies a focus on location, area,
distance and interaction, such as is expressed in Tobler’s (1979) First Law of Geography,
where “everything is related to everything else, but near things are more related than distant
things.” In order to interpret what “near” and “distant” mean in a particular context,
observations on the phenomenon of interest need to be referenced in space (e. g., in terms
of points, lines or areal units). There are two opposite approaches towards dealing with
spatially referenced data (Anselin, 1986b; Haining, 1986). In one, which I will call the
data—driven approach, information is derived from the data without a strong prior notion
of what the theoretical framework should be. In other words, one lets the “data speak for
themselves” (Gould, 1981). In this largely inductive approach information on spatial pattern,
spatial structure and spatial interaction is derived without the constraints of a pre-conceived
theoretical notion.

In most respects, this approach falls under the category of “exploratory data analysis”
(EDA) popularized by Tukey (1977) and Mosteller and Tukey (1977). It is also similar to the
philosophy underlying time series analysis and forecasting of the Box-Jenkins (1976) type,
and 1ts extensions to vector autoregressive processes and the like (e. g., Doan et al., 1984;
and the critique of Cooley and LeRoy, 1985).

The data-driven approach in spatial analysis is reflected in a wide range of different
techniques, such as point pattern analysis (Getis and Boots, 1978; Diggle, 1983), indices of
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spatial association (Hubert, 1985; Wartenberg, 1985), kriging (Clark, 1979), spatial adaptive
filtering (Foster and Gorr, 1986), and spatial time series analysis (Bennett, 1979). All these
techniques have two aspects in common. First, they compare the observed pattern in the data
(€. g., locations in point pattern analysis, values at locations in spatial autocorrelation) to
one in which space is irrelevant. In point pattern analysis this is the familiar Poisson pattern.
or “randomness,” while in many of the indices of spatial association it is the assumption that
an observed data value could occur equally likely at each location (1. e., the null hypothesis
for many tests for spatial autocorrelation, based on a normal or randomization approach ).

The second common aspect is that the spatial pattern, spatial structure, or form for
the spatial dependence are derived from the data only. For example, in spatial time series
analysis, the specification of the autoregressive and moving average lag lengths is derived
from autocorrelation indices or spatial spectra.

The data—driven approach is attractive in many respects, but its application is not always
straightforward. Indeed, the characteristics of spatial data (dependence and heterogeneity)
often void the attractive properties of standard statistical techniques. Since most EDA tech-
niques are based on an assumption of independence, they cannot be implemented uncritically
for spatial data. In this respect, it is also important to note that dependence in space is qual-
itatively more complex than dependence in the time dimension, due to its two—dimensional
and two-directional nature. As a consequence, many results from the analysis of time series
data do not apply to spatial data. As discussed in detail in Hooper and Hewings (1981),
the extension of time series analysis into the spatial domain is limited, and only applies to
highly regular processes. It goes without saying that most data in empirical spatial analysis
for irregular areal units do not fit within this restrictive framework.

The second approach, which I will call model-driven, starts from a theoretical speci-
fication, which is subsequently confronted with the data. The theory in question may be
spatial (e. g., a spatial process or a spatial interaction model, as in Haining, 1978, 1984) or
largely aspatial (e. g., a multiregional economic model, as in Folmer, 1986), but the impor-
tant characteristic is that its estimation or calibration is carried out with spatial data. The
properties of this data, namely spatial dependence and spatial heterogeneity, necessitate the
application of specialized statistical (or econometric) techniques, irrespective of the nature
of the theory in the model.

Most of the methods that I would classify under this category deal with estimation and
specification diagnostics in linear models in general, and regression models in particular (e.
g., Clff and Ord, 1981; Anselin, 1980, 1988a). The main conceptual problem associated
with this approach is how to formalize the role of “space.” This is reflected in three major
methodological problems, which are still largely unresolved to date: the choice of the spatial
weights matnx (Stetzer, 1982a; Anselin, 1984, 1986a); the modifiable areal unit problem
(Openshaw and Taylor, 1979, 1981); and the boundary value problem (Griffith, 1983, 1085:
Griffith and Amrhein, 1983).

In order for the data—driven or the model-driven approaches to be operational, the var-
1ous tests, diagnostics and estimators need to be incorporated in an inferential framework.
More precisely, the uncertainty associated with a random variable, sampling error, or any
other stochastic aspect of the data analysis needs to be assessed within a consistent frame-
work that forms a logical basis for decisions. A number of competing frameworks have been
suggested. They are discussed next.
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3. Inferential Frameworks in Spatial Data Analysis

Spatial data analysis is not immune from the implications of the philosophical debates that
go on in the broader disciplines of statistics and econometrics. Although the results of applied
and empirical work are often presented as if only one particular view of statistics existed,
there are in fact many competing perspectives (or even paradigms). Rather than repeating
the various philosophical arguments, I will outline five dimensions of conflict or competition,
and discuss some implications of the alternative viewpoints for spatial data analysis. Some
of these dimensions are more fundamental than others, but all have direct applications to
the practice of spatial statistics and spatial econometrics.

3.1. Classical versus Bayesian inference

The debate between the classical (Neyman-Pearson) and Bayesian approaches to statistical
inference (or decision making) is undoubtedly the most fundamental one ongoing in the
discipline. The arguments of both sides are well known and a compromise does not seem
likely in the near future (e. g., Efron, 1986; Durbin, 1988; Zellner, 1988). In a nutshell,
the classical approach is “objective,” and practical, but fraught with philosophical problems
when applied in a strict sense: problems with multiple comparisons, the need to assume
a “true” model, and the such. On the other hand, the Bayesian approach is generally
considered to be superior in terms of overall consistency and as a perspective on “learning,”
but is “subjective” and difficult to apply to many practical problems, due to the need to
construct complex prior distributions and to carry out numerical integration in multiple
dimensions.

In spatial data analysis, the Bayesian perspective is the exception, and it has found
only limited application. Some Bayesian concepts are fairly familiar in image processing of
remotely sensed data (Richards, 1986), but applications to spatial data analysis in human
geography are fairly rare (some exceptions are provided in March and Batty, 1975; Odland,
1978; Hepple, 1979; and Anselin, 1982, 1988b). Although the classical approach reflected
in the Neyman-Pearson inferential framework is by far the dominant one in geography, its
uncritical application to spatial data analysis is inappropriate in a lot of respects. The many
assumptions, judgements and multiple comparisons carried out in the practice of estimation
and data analysis (both data—driven as well as model-driven) make a mockery out of the
rigorous and elegant probabilistic calculus that underlies the classical approach (for more
details, see Anselin, 1988b). It therefore would seem, at least from a conceptual viewpoint,
that a number of spatial “problems” could be most fruitfully attacked from a Bayesian
perspective. Examples are pattern recognition, or “learning” from data in general, the prior
assumptions about a spatial weights matrix, spatial interpolation, and dealing with boundary
effects. However, the practical implementation of a Bayesian analysis of these issues is
not straightforward. Specifically, it has so far not been possible to develop useful prior
distributions for the full range of patterns of spatial dependence (spatial weight matrices )
that would be operational in spatial data analysis. Overall, dealing with the two—directional

nature of spatial dependence in a Bayesian framework is still very much an unresolved
research topic.
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3.2. Parametrics versus non-parametrics and/or robustness

In applied spatial data analysis, the standard assumptions of normality and of perfect knowl-
edge of the model specification are often rather crude abstractions of reality. Consequently,
the relevance of a strict parametric approach has been increasingly questioned, and a non-
parametric, qualitative or robust perspective has sometimes been suggested as an alternative,
by, among others, Gould (1981), Costanzo (1983), Nijkamp, Leitner and Wrigley (1985) and
Knudsen (1987). However, it is not as if nonparametric and robust procedures have not
been introduced into spatial analysis. On the contrary, a number of well known indices for
spatial association have been based on randomization, permutation and other nonparametric
techniques. Examples range from a robust Moran index in CLff and Ord (1973), and Sen
and Soot (1977), to the general measures of spatial association in Hubert et al. (1981, 1985).
Most of these methods would fall under the data—driven category of spatial data analysis.
However, there have been some recent applications in the model-driven category as well,

primarily based on the use of the Jackknife and bootstrap estimation techniques (Stetzer,
1982b; Folmer and Fischer, 1984; Anselin, 1989b).

In spite of the concerns about its appropriateness, the parametric approach remains the
most common one in spatial data analysis. Most tests are based on an underlying distribution
which 1s normal (for values) or Poisson (for peoint patterns) and the estimation method of
choice is the maximum likelihood technique. As is well known, the parametric approach is
optimal in a number of ways if the underlying assumptions are indeed satisfied. It is when
this is not the case that problems occur. Since the robust and nonparametric techniques are
not grounded in such a restrictive set of assumptions, they remain valid in a wider range of
situations. However, this robustness comes at the cost of a loss in generality and precision.
For example, the spatial association indices that are based on a permutation approach only
pertain to the data at hand, and cannot be generalized to hold for a “population.” Similarly,
the variance estimates for parameters obtained by means of the bootstrap or Jackknife will
tend to be larger than for the maximum likelihood (ML) approach, and thus will lead to
a more conservative inference (1. ¢, it will be “harder” to find significant coefficients).
Clearly, when the assumptions underlying the ML approach do hold (primarily normality
of the distribution), the larger variances of the robust approach will be inefficient and the
parametric approach is superior. However, this is likely to be the exception rather than the
rule in spatial data sets.

An important obstacle for the acceptance of robust or non-parametric techniques in
spatial data analysis is that a great many of the techniques developed in mathematical
statistics and econometrics (e. g., as reviewed in Huber, 1981; Koenker, 1982; Efron, 1982;
and Robinson, 1988) are not directly transferable, since they are based on an assumption
of observational independence. An appropriate “spatial” theoretical framework for robust
analysis remains to be developed.

3.3. Random sample versus stochastic process

The dependence that is inherent in many (if not most) spatial data runs directly counter to
the postulate of a random sample of independent observations upon which most common sta-
tistical procedures are based. Nevertheless, much applied spatial data analysis still proceeds
as if the standard assumptions hold (see Anselin and Gnffith, 1988), and notions of sampling
error, sampling variance, and the such, abound in the empirical literature. Clearly, this is
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incorrect, and the loss of information that results from the dependence in the observations
should be accounted for.

In most instances, the proper perspective is not to consider spatial data as a random
sample with many observations, but instead as a single realization of a stochastic process. In
contrast to the sampling approach, where each observation is taken to provide an independent
piece of information, the dependence (and heterogeneity) embodied in a stochastic process
implies that only one observation is available, which is the full spatial pattern (or space—
time pattern) of values. Provided that the underlying stochastic process is sufficiently stable
(stationary, isotropic, etc. ...) or that the structure of the instability (nonstationarity) is
known, the observed pattern will yield information on the characteristics of that process. In
contrast to the random sampling approach, where the notion of independence is exploited in
order to derive exact statistical properties for estimates and hypothesis tests, an asymptotic
reasoning is needed in the stochastic process approach. Specifically, the theory of mixing
processes, which allows a degree of dependence as well as heterogeneity, forms a solid basis
for the inference for spatial stochastic processes (for details see Anselin, 1988a, Chapter 5).

The consequence of spatial dependence, or, more precisely, positive spatial dependence is
that the observations contain less information than if there had been independence. In other
words, in order to obtain approximately the same degree of information as in an independent
set of observations, a larger data set of (positively) dependent observations will be needed.
Sometimes, the latter can be transformed into the former, by deleting observations that are
contiguous or within a given distance of each other. For example, if only those observations
are selected that are far enough apart so that no marked dependence can reasonably be
expected (i. e., dependence related to distance only) this new “sample” can be considered
to be independent for most practical purposes. This “re—coding” lies at the basis of the so—
called “conditional” approach to spatial modeling (Haining, 1986). Its advantage is that most
standard statistical techniques can be applied unchanged to the re-coded data. However,
the re-coding itself is not unique and somewhat arbitrary. Also, this is only a practical
approach if the loss of information from discarding the “dependent” observations is not
cntical. Unfortunately, in many practical situations such a luxury does not exist, and the
“simultaneous”™ (joint probability) stochastic process approach is the only feasible parametric
framework.

A related issue is the extent to which spatial data constitute a sample, a realization of a
stochastic process, or instead form the complete population of interest. It is sometimes ar-
gued that the latter is the only correct perspective, and not only that no inferential statistics
are possible, but also that a descriptive approach is the only valid one (e. g., Summerfield,
1983). Although this may be an acceptable viewpoint in the case of extreme heterogeneity
(1. €., each place is “unique” and no generalization is possible), it is more the exception than
the rule. There are two crucial issues that need to be considered. The first pertains to the
imperfect nature of measurement, and the inherent error (or noise). Since a mixture of signal
and noise is observed in empirical practice, the stochastic nature of the data can be easily
generated from the randomness in errors of measurement. As a consequence, the population
in question pertains to the family of stochastic processes that may have generated a partic-
ular error pattern. Thus, a “statistical” approach is the only way in which conclusions can
be formed about the underlying “signal” and an understanding of spatial errors is crucial.
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The second issue pertains to the nature of space as a framework within which observations
are ordered. In essence, the spatial unit of observation needs to be a representative unit for
the phenomenon that is under study. Only then will it be possible to formulate and test
general statements about “space.” The real issue is whether the observations at hand are
compatible with the complexity of the phenomenon of interest. If they are not, this does not
mean that a statistical approach should be rejected, but rather that other types of data are
needed. For example, this may necessitate the collection of micro-behavioral data to avoid
problems of ecological fallacy, or may require the extension of a cross—section into the time
dimension in order to formulate general conclusions about a specific region.

3.4. Finite sample versus asymptotics

The stochastic process approach to spatial data analysis is based on asymptotic properties
for an “abstract” and infinitely large data set. This conceptual framework contrasts sharply
with the reality of small data sets with a finite number of observations. Two issues merit
some consideration. The first is practical and pertains to the extent to which the asymptotic
properties are valid in finite samples. As is well known, this is not necessarily the case,
and many properties of equivalence and optimality of asymptotic tests and estimators are
not reflected in realistic data sets. Moreover, few analvtic results are available and the
properties of a number of approximations are questionable (see, for instance Taylor, 1983;
and also Anselin, 1988b for spatial data). In other words, considerable caution (a conservative
inference) is needed when interpreting the findings of spatial data analysis that are based on
asymptotic properties.

The second 1ssue related to asymptotics is more conceptual and pertains to the relevance
of the notion of an infinitely large data set for spatial analysis. In essence, an asymptotic
reasoning is only meaningful if an infinitely large number of replications of the observed spa-
tial units can be conceived of. While this is fairly straightforward in the case of a continuous
process that is observed on regularly spaced points or grids, it is not at all obvious for dis-
continuous processes or observations for irregular areal units (e. g., a given set of counties in
a state). There are two approaches to this conceptual problem. In one, the data for irregular
spatial units are transformed (interpolated) to regular spatial units. Although this forms
an elegant solution to the problem, it is only valid if the underlying process is sufficiently
smooth and homogeneous. In the other approach, the dependence and heterogeneity in the
data are recognized as a limiting factor, and the only way to obtain meaningful information
from the observations is by adding an additional dimension (i. e., the time dimension). In
other words, by pooling time series data for a fixed set of cross—sectional units, the asymp-
totics in the time dimension provide the framework to carry out statistical inference about
the spatial dimension. In either case, it is necessary to evaluate whether the complexity of
the proposed hypotheses or models is compatible with the information available in the data.
Unfortunately, in many situations encountered in applied empirical work this will not be the
case. In those instances the stochastic framework for inference will be suspect, and give rise
to legitimate concerns about the relevance of a “statistical” approach.

3.5. Analytics versus computing power

A final issue that has come to the fore as a result of the recent advances in computer tech-
nology 1s the choice between procedures based on rigorous analytics and those that replace
the analytics by numerically intensive computation. The latter have led to the development
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of combinatorial methods and resampling schemes in which the stochastic properties are de-
rived from a large number of replications of pseudo—data (e. g., Efron, 1979; Hubert, 1985:
Knudsen, 1987). With the advent of large spatial data bases and geographic information
systems, the distinction between description, analysis, modeling and simulation has become
blurred. The technological possibilities are virtually unbounded, and have opened up new
honizons for spatial data analysis. An example of a recent development in this respect is the
creation of a so—called “geographical analysis machine” (GAM), as a combination of a GIS,
a spatial statistical analysis and expert system that is designed to carry out an automated
spatial data analysis (Openshaw et al., 1987). This concept has many attractive features, but
in its current form, the GAM is still rudimentary and limited to a specific application. Also,
the statistical properties of the results obtained from a sequence of multiple comparisons (as
in the GAM) are unclear. As is well known, a naive impression of “significance” can always
be obtained after a large number sequential tests. Consequently, important further develop-
ments are needed before this a-theoretical approach will be able to replace (or complement)
the more traditional analytic approach for a wide range of spatial data analysis problems.

4. Spatial Errors

Basic to both the data—driven and the model-driven analysis of spatial data is an under-
standing of the stochastic properties of the data. The use of “space” as the organizing
framework leads to a number of features that merit special attention, since they are different
from what holds for aspatial or time series data. The most important concept in this respect
1s that of error, or, more precisely for data observed in space, spatial error. The distinguish-
ing charactenstics of spatial error have important implications for description, explanation,
and prediction in spatial analysis. Some of these issues will be discussed in the next section.
In this section, I present a simple taxonomy of the nature of spatial errors, and outline some
alternative perspectives on how error can be taken into account.

4.1. The nature of spatial errors

Spatial errors can be due to a variety of sources. For spatial data analysis, the most relevant
types of error are measurement error and specification error. Measurement error occurs when
the location or the value of a variable are observed with imperfect accuracy. The former
is an old cartographic problem and is still very relevant in modern geographic information
systems (e. g., errors due to a lack of precision in digitizing). The main problem is that the
geometric and graphical representation of the location of points, lines or areal boundaries
(2. €., a map) gives an imperfect impression of the uncertainty associated with errors in the
measurement of these features. Since these locational features are important elements in the
evaluation of distance and relative position, and in the operations of areal aggregation and
interpolation, the associated measurement error will affect many of the “values” generated
in a spatial information system as well. Although similar errors occur in the time dimension,
they are much simpler to take into account since they only propagate in one dimension and
one direction. Moreover, spatial measurement errors, in contrast to the classical case, will
tend not to balance out.

Other spatial errors of measurement have to do with the imperfect way in which data on
socio-economic phenomena are recorded and grouped in spatial units of observation (e. g.,
various types of administrative units). This interdependence of location and value in spatial
data leads to distinctively spatial characteristics of the errors. These are the familiar spatial
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dependence and spatial heterogeneity. Dependence is mostly due to the existence of spatial
spill-overs, as a result of a mis—-match between the scale of the spatial unit of observation and
the phenomenon of interest (e. g., continuous processes represented as points, or processes
extending beyond the boundaries of administrative regions). Heterogeneity is due to struc-
tural differences between locations and leads to different error distributions (e. g., differences
in accuracy of census counts between low-income and high-income neighborhoods).

Specification error is particular to the model-driven approach in spatial data analysis. It
pertains to the use of a wrong model (e. g., recursive versus simultaneous), an inappropriate
functional form (e. g., linear as opposed to nonlinear), or a wrong set of variables. In
essence, it 15 no different from misspecification in general, but it generates spatial patterns
of error due to the use of spatial data. These spatial aspects can occur as a result of
ignonng location-specific phenomena, spatial drift, regional effects or spatial interaction.
When a false assumption of homogeneity is forced onto a model in those instances, spatial
heterogeneous errors will result. Similarly, when the spatial scale or extent of a process does
not correspond to the scale of observation, or when the nature of a process changes with
different scales of observation, spatial dependent errors will be generated.

4.2. Perspectives on spatial errors

The treatment of spatial errors in data analysis is fundamentally different between the data—
driven and the model-driven approaches. In the data-driven approach, errors are considered
to provide information. The focus of attention is on how the spatial pattern of the errors
relates to data generation processes. For example, in attempts to provide measures of un-
certainty for spatial information in a GIS, the spatial pattern of errors is related to data
collection and manipulation procedures. The spatial pattern of errors can often provide in-
sight into the form of the underlying substantive spatial process, such as is exploited in the
model identification stage of a spatial time series analysis. Important and still unresolved
research questions deal with the formulation of useful spatial error distributions, in which
error is related to location, distance to reference locations, area, and the such.

In the model-driven approach to spatial data analysis, error is considered to be a nui-
sance. The main focus is on how to identify the spatial distribution of the error process, and
how to eliminate the effect of errors on statistical inference. In other words, once errors are
identified, they are eliminated by means of transformations, corrections, or filters. Alter-
natively, robust estimation and test procedures can be applied that are no longer sensitive
to the effect of errors. A major research question in this respect is how diagnostics can be
developed that are powerful in detecting various types of errors, and are able to distinguish
between them (e. g., to distinguish between spatial dependence and spatial heterogeneity,
or “real” versus “apparent” contagion).

5. Implications of Spatial Errors for Spatial Data Analysis

The presence of errors with a distinctive spatial pattern has obvious implications for the
analysis of spatial data. These implications vary between the analysis of spatial pattern, the
estimation and prediction of spatial models, and their validation.
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5.1. Analysis of spatial pattern

Given the importance of distance and contiguity in the analysis of spatial pattern, errors of
measurement in the location of points, lines, and areal units will greatly affect the distribu-
tional properties of tests and other indices. This aspect of spatial error is largely ignored in
current statistical practice, but merits closer attention, particularly in light of the increased
availability of large computerized spatial data bases with the explosion of the GIS field.
Some indices of spatial pattern and spatial association that are routinely derived in a GIS
(e. g., based on nearest-neighbors) provide a misleading sense of precision, since they ignore
the uncertainty associated with the location of spatial units themselves. Conceptually, the
solution to this problem is straightforward, in that a spatial distribution needs to be specified
for each location (and the associated values). However, the choice of the most appropriate
distribution and its effect on the properties of the various spatial statistics are still largely
unresolved topics of research.

5.2. Estimation and prediction

The effect of spatial errors on the estimation and prediction of standard linear models is
probably the best understood aspect of spatial data analysis. In particular, for the linear
regression model with normally distributed disturbance terms, many tests and estimators
have been developed (see Anselin and Griffith, 1988, for a review ). In those models, the
error is taken to pertain to the dependent variable only and its effect is incorporated in
the regression disturbance term. The more realistic situation where error is present in both
dependent and independent variables has received much less attention, and is considerably
more complex. The specification of interaction between the various spatial errors is largely
unresolved, and so far only a robust estimation approach seems to hold promise.

Most methodological results obtained so far also are limited to the normal distribution
case. Spatial effects in models with limited dependent variables, censored and truncated
distributions, or in models for count data have been largely ignored. A major problem in
this respect is that multivaniate dependent distributions other than the normal are highly
complex. Moreover, their application in an operational context is often hampered by limi-
tations on carrying out numerical integration in multiple dimensions. Since the non-normal
case is probably the rule rather than the exception in actual spatial data, a considerable
agenda of research questions remains to be addressed.

5.3. Model validation

In model validation, the focus is on assessing the uncertainty associated with the output (in-
terpretation) of alternative specifications. Clearly, this will be a function of the probabilistic
model that has been adopted for the underlying (unobserved) spatial errors. A particular
problem in spatial data analysis is how to provide a meaningful summary measure of spatial
accuracy. If spatial heterogeneity is present, the accuracy is likely to vary systematically by
location. On the other hand, if spatial dependence is present, the accuracy at one location
will be affected by the accuracy associated with “neighboring” locations. A SUMMAary or
holistic measure of accuracy will be an imperfect reflection of this partitive (observation
by observation) accuracy. What is needed is a meaningful objective function (loss or risk
function) that incorporates the relative importance of accuracy for particular locations or
regions in space. It is unlikely that such an objective function can be developed with uni-
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versal applicability, but instead, a flexible approach can be taken that is consistent with the
use of spatial information systems as decision support systems.

6. Conclusion

The wide array of philosophical and methodological dilemmas that confront the analysis of
spatial data necessitates an eclectic perspective. Many different ways of looking at a data
set or at a model specification should be compared, and sensitivity analysis should play a
central role. In other words, the extent to which the results are affected by changes in the
underlying assumptions (as in fragility analysis) needs to be assessed. If different approaches
yield the same qualitative conclusions, one can be more confident that meaningful insights
have been gained. On the other hand, if the statistical findings turn out to be very sensitive
to the approach taken, there is likely to be something wrong with the data and/or with the
model, and not much faith should be put in the precise quantitive results.

The characteristics of errors that affect observations of spatial data clearly motivate the
need for a specialized methodology of spatial statistics and spatial econometrics. However,
much of the current state—of-the-art in these fields pertains to highly artificial and rather
simplistic data structures. A major emphasis of future research should be to focus on realistic
perspectives on spatial data. With the vast power of a user—friendly GIS increasingly in the
hands of the non-specialist, the danger is great that the “wrong” kind of spatial statistics
will become the accepted practice. Since the “easy” problems have more or less been solved,

a formidable challenge lies ahead.
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Discussion

DISCUSSION

“What is special about spatial data?
alternative perspectives on spatial data analysis™

by Luc Anselin

Anselin has given an interesting review of issues underlying the analysis of spatial data.
I will comment on three areas of his discussion, namely model-driven versus data—driven

approaches to data analysis, problems raised by data accuracy, and the role of robust analyses
in spatial data analysis.

Data analysis involves the stages of model specification, parameter estimation and model
validation. The dangers inherent in the model-driven approach are first that data properties
play a reduced role in the first and last stages, and second, as a consequence, there is a
tendency to confirm or re-enforce existing theoretical ‘prejudices’. In the case of the data—
driven approach, analysis tends to emphasize current experience (the data) and disregard
the results of previous analyses, and as a consequence there is a risk of reporting results that
are mere artifacts of a particular data set. Data analysis in the social sciences tries to strike
a balance between these two approaches, which lie at two ends of a continuum. The case
aganst a purely model-driven approach in the social sciences is the dearth of good theory,
while the case against a purely data—driven approach are first the conditions under which
much data are collected (non—experimental, complex interactions), and second the aceuracy
of much social science data. These concerns make model specification, purely on the basis of
data properties, an uncertain exercise.

Data accuracy is a major concern in all areas of inductive science. The rising tide of spa-
tially referenced data (collected through both government and commercial agencies) offers
both opportunities and pitfalls. The accuracy of these data, in terms of both spatial refer-
encing and the reported values, should be a matter of concern. Although methods are being
developed to reduce the influence of unusual or suspect values, in later stages of analysis
this is hardly a substitute for the specification of minimal criteria for the procedure of data
collection and the careful screening of data prior to and during computerized data storage.
The question as to whether it is worthwhile analyzing large data sets, particularly those that
may not satisfy such mimimum criteria, is an important one. The increase in data allows
us to be more discriminating in what we analyze, and should not necessarily lead to more
analysis. There is a danger that the more data we have, the less we will know.

The following are two classes of problems that confront the data analyst: those that
arise when statistical assumptions are not satisfied, and those that arise from the nature
of the data. Robust and resistant estimation methods have been developed that provide
improved estimates where the data follow some skewed distribution, or the data contain
outliers or extreme values. Most of these estimation methods assume that observations are
independent. Robust and resistant estimation methods are required for situations where
observations are not independent in order to provide estimates of the parameters of spatial
models (where there may be several different parameter sets associated with different aspects
of the model). Not only the presence of extreme values but also their spatial distribution may

affect parameter estimation when standard ‘non-robust’ methods are used on such spatial
models.
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Lastly, in addressing the issues raised in Anselin’s paper and identifying directions for
future research, it is important not to lose sight of the reason for developing these meth-
ods within any subject field such as geography or regional science. The importance of any
methodological area of research ultimately depends upon the extent to which it better en-
ables users to tackle substantive questions. The concern of statisticians is largely with the
development of statistical theory and the methodology of data analysis. The concern of the

applied scientist is with the development of the theory and methods in relation to important
substantive issues within the specific field of study.

Robert P. Haining, University of Sheffield
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What we call progress is the exchange of one Nuisance
for another Nuisance.

Havelock Ellis

A brief compendium of spatial regression model types is presented by Haining. In
his discussion of this fopic, “firmer” models are ezchanged for “soft” models, “rel-
ative” mathematical space is ezxchanged for “absolute” space, and geo-referenced
data complications ore ezchanged for iraditional independent dats complications.
The purpose of this paper is lo outline a class of models that seems io successfully
handle redundant information contained in data arising from the locational posiiions
of observations. What new idiosyncrasies, nuances, or subtleties of data will become
problematic during analysis with the utilization of these aliernaie perspectives? A
transcending issue beginning to emerge through the confusion surrounding devel-
opment of spatial regression models appears to be even more fundamental than its
old counterpart issue of multicollinearity that troubles traditional regression models.
Dareian echoes many of these same sentiments, while raising questions coneerning
spattal regression model tmplementation.

The Editor
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Models in Human Geography:
Problems in Specifying, Estimating, and

Validating Models for Spatial Data
Robert P. Haining ™

Department of Geography, The University of Sheffield, Sheffield §10 2TN, England.

Overview:  The use of the linear regression model for analysing relationships
between a set of predictor variables and a response variable when the data refer to
areal units, raises a number of distinctive issues. These issues include: specification
of the regression model to allow for possible “spillover” effects; how to get good
estimates of the spatial parameters. Further, there may be a separate set of concerns
that derive from the nature of the data and the spatial distribution of certain types
of values. The paper examines these problems and discusses ways of handling them.
We conclude with two short examples.

1. Introduction

This paper is concerned with the problem of accounting for variation in some attribute (a re-
sponse or dependent variable), in terms of a set of other attributes (explanatory, predictor or
independent variables) where measurements are taken at “locations” (point sites distributed
across a map or areas that partition a map).

For all its many perceived conceptual shortcomings as a model for variable relationships,
the regression model is still widely used to treat questions of this type. Denoting the response
variable as Y and the predictor variables as X;,..., X the model is specified by a linear
equation of the form

Y =Bo+BiX1+ ... +BuXp + 6 (1.1)

where the Js are unknown parameters and the {s are statistical errors (or disturbances).
The data to fit equation (1.1) form an n-by-(k + 1) array, where n is the number of cases
and (yq @14, ...,24) 1s the vector of observations for case i. Given these data, equation
(1.1) may be re-written as

vi=Bo+bzii+ .. + 8 +& (i=1,...,n) (1.2)

where the £ s are assumed to be normally and independently distributed with mean zero and
constant variance o [£; ~ NID(0,c?)).
If these assumptions are satisfied, least squares provides the best linear unbiased esti-

mator for the unknown parameters. Given the data, let B denote the least squares estimate

for 8 = (Bo,...,B8:)T, where the superscript T denotes the matrix operation of transpose.
Then

B = (XTX)"(xTy), (1.3)

¥ Part of the work for this paper was carried out while the suthor was in receipt of & Nuffield Social Science Hesearch

Fellowship.
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where X is the n-by—(k + 1) matrix containing data on the predictor variables, with the
i*h row given by (1,z14...,2ki), and YT = (¥1,...,¥n). Further, letting £ = e

dl=eTe/(n -k -1), (1.4)

where e = (e},...,e,)7 is the vector of least squares residuals, with e; = y; — (B + --- +
Bz k;i)-

The vaniation accounted for by the linear combination of predictor variables is referred
to as the explained variation, and the unallocated portion (associated with the residuals) is
the unexplained variation, in variate Y. The steps that are followed in fitting a model such
as equation (1) are:

(a) identification of a model (selection of predictor variables and specification of

relationships),

(b) estimation of the unknown parameters,
(c) assessment of goodness—of—fit (residual analysis), and

(d) perhaps modification of the current model (new assumptions, data transforma-
tion), followed by a return to step (b).

This procedure cycles until a satisfactory model emerges, meaning a model where the per-
centage of explained variation is as high as possible and the residuals are well behaved in
the sense of satisfying model assumptions. The initial model [at Step (a)] is often referred
to as a "soft” model, which is made “firmer” by the cycles of fitting and model assessment.
In addition to ensuring that the least squares assumptions are met (and applying remedial
action 1f they are not), further problems may arise depending upon the nature of the data.

In this paper we examine the use of the regression model for describing relationships
between variables measured across a set of locations on a map. In Section 2 we consider
generalizations of equation (1.1) that reflect the spatial ordering of the data. Then in
Section 3 we examine the implications for least squares parameter estimation. In Section 4
attributes of the spatial system that influence regression analysis are described. In particular
we discuss how boundaries should be handled, the treatment of order relations between the
set of locations and the influence of the surface partitioning. We also consider problems that
arise when trying to assess the influence of individual cases and extreme values (outliers) on
model fit. The last section briefly discusses two data sets in order to exemplify some of the
1ssues raised in this paper.

2. Spatial Regression Models

The regression model defined by equations (1.1) and (1.2) disregards the geographic location
of the n cases. Each case is treated as a distinct event. In specifying the regression model,
the value of the response variable at any location is assumed only to be a function of values
of the predictor variables at that same location (this accords with what sometimes is referred
to as an “absolute” or “container” conceptualization of space). The location of each case
only plays a significant role at the assessment stage of analysis. The errors in the regression
model (1.2) are required, by assumption, to be independent. One aspect of model evaluation,
therefore, consists of checking the residuals for evidence of pattern (spatial autocorrelation).
Within an “absolutist” representation of space the presence of residual pattern is taken to
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imply that important variables have been omitted, or that the functional relationship has
been misspecified. In the former case new variables are sought that will eliminate the residual
autocorrelation while in the latter case data transformations are used.

But space 1s not.a series of separate, disconnected (independent) “boxes” or “containers,”
and the influence of events need not be restricted to the locations where they occur. The
level of a response variable at a location may reflect the levels of predictor variables at other
locations, and indeed a response variable at one location may act as a predictor variable for
another location. Such considerations reflect the fact that events in space are not “parcelled—
up.” If these influences are present, then they may need to be taken into consideration when
specifying a regression model. Several situations are presented next where such issues arise.

2.1. The spatially lagged response variable model.

In a lagged response variable model, the response variable at location j may act as a predictor
variable at other locations. For example,

mn
Yi=Bo+B1X1i+ ...+ BiXei+p ) wii¥j+&; (2.1)
=1
JE
where p is an unknown parameter and the set {w;;} denotes a prior weighting scheme that
may reflect, for instance, the distance between locations i and j. Often the influence of Y;
on Y; i1s assumed to decrease as this distance increases.

Consider a set of retail sites scattered across a large urban area, with each site selling a
more or less identical product. In such cases the market of each seller may be closely linked
to neighboring markets, with the degree of interdependence lessening rather quickly with
distance until this dependency becomes zero. The result of such local competitive interactions
1§ a network of intnicately interwoven markets—a “chain linking” (Chamberlin, 1956, p. 103)
that is likely to be strongly influenced by the underlying movements of consumers within
the city. If the retailers are gasoline retailers strung out along a road, for example, and
if one retailer reduces his price, then it is probable that the nearest competitor also will
drop his price. Such considerations lead to the specification of price models of the form
given by equation (2.1), where X, ..., X} measure site effects (such as site quality, range
of automotive services, brand type) and the set of weights {w;;} describes the structure of
inter-site competition (Haining, 1986). The price charged at site i (namely Y;) is in part
dependent on prices charged in surrounding local retail sites, since the level of demand at
site 1 15 not only dependent on prices at i, but also on the level of prices at site 1 relative
to prices at other sites with which 1 competes.

As an additional example, consider the problem of modeling variation in the total income
accruing to the residents of a number of towns and cities distributed over a region. Let Y
denote the vector of total income for the residents of the n places. Then

Y=X+C,

where X denotes the vector of exogenous income (deriving from export earnings, investment,
government outlays), and C denotes the vector of endogenous income (local consumption
by community residents). Assuming

C=/°Y, (2.2)
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where the scalar ¢ is the income creating local propensity to consume, then
Y=([{1-e)"%

The vector X can be further decomposed into income earned from long distance (extra-
regional) income transfers (X;), and income earned from short distance (intra-regional)
transfers X3). Thus

Y =(1- .:}'1{1{1 + X3).
The vector Xy includes income accruing to each community arising from consumption ex-

penditures by non-residents. Haining (1987) suggests that if equation (2.2) is reasonable in
terms of intra-community consumption expenditure, then

X, = Y,

where ) is an n-by-n matrix with diagonal values equal to zero, and non-negative off-
diagonal entries that reflect the structure of inter-community movements for the purposes of
purchasing consumer goods. Given a hierarchical ordering of the urban places, the non—zero

elements of matrix ) can be specified using central place arguments. Accordingly the model
becomes

Y = (1-¢)"Y(X; + QY),

where again the response variable at location ¢ may appear as a predictor variable at other
locations. Unlike the price model, where interactions are reciprocal (Y; is a function of Y;
and vice versa, so that matrix W = {w;;} contains non-zero values above and below the
main diagonal), central place principles suggest that interaction will be directional (con-
sumers in low—order centers spending in high-order centers, but not vice versa), so that
matrix { will be an upper- (or lower-) triangular matrix.

2.2. The spatially lagged predictor variable model.
The simplest form of this model may be stated as

T
Yi=Bo+B1 X1+ .. +BuXpi+7 Y wiiX,j+&, (2.3)
=

where the set of weights {w;;} are as before, and 7 is an unknown parameter. Variable X,
is usually a member of the set {X,...,X,;}.

Models of this type have arisen in the study of the housing market, and in particular
the modeling of spatial variation in house prices. House price is a function of structural
charactenstics of the house, the location of the house with respect to the city center, and
characteristics of the area in which the house is situated (including environmental and de-
mographic characteristics). Furthermore, depending upon the scale of the areal units, the
characteristics of neighboring areas also may be significant. Hence, a house located in a
desirable residential area that is adjoined by other desirable residential areas will tend to
have a higher price than an equivalent house located in an equally desirable residential
area, but where some of the adjoining residential areas are of lower status. Anas and Eum
(1984, p. 105) remark that “the spillovers among neighboring and otherwise substitutable
sub—markets can be taken into account to specify models in which market information from
other submarkets becomes capitalized into housing prices.” The estimate of each coefficient
implicitly measures the price of that attribute.
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2.3. The spatially correlated error model.
Equation (1.1) is modified here, yielding

Yi=Bo+B1 X1 i+ ... +BaXpi+ v (2.4)

where now v; are the statistical errors, with non—zero covariances E (vi,v5) # 0 for some
i and j (i # j). Therefore E[wwT] = 0?5, where ¥ is a matrix having some non-zero
entries in its upper— and lower-triangles. Traditionally, in geography, matrix £ has been
modelled as a first—order simultaneous autoregressive scheme, such that

T =[1-pW)T(I-pW) 7,

where I is the n-by-n identity matrix, W is an n-by-n matrix of given weights {w;;}
reflecting order relations on the map, and p is the (unknown) autoregressive parameter.
However, many other models could be used.

In experimental situations (e. g., agricultural uniformity trials), where the set of predic-
tor variables and their levels are determined by the experiment, a correlated errors model is
a natural choice when residuals are found to be correlated. In this context attention focuses
on the choice of error model. In non-experimental situations the justification for this model
is less clear cut, since the set of relevant predictor variables is not defined. In such cases it

is usual to consider fitting a model such as equation (2.4), if the residuals are found to be
correlated and if

(a) no further variables can be identified, or
(b) data are not available on other variables that might be significant, or

(c) adding further variables to the model does not remove this property of the resid-
uals.

Residual correlation may be present because of the influence of a large number of variables
that are difficult to speafy, but that together display spatial persistence or continuity. Omis-
sion of variables representing these influences is responsible for the correlation detected in
the residuals. Rather than atiempt to model such influences, which might prove very diffi-
cult, a model such as equation (2.4) enables “safer” inference to be made with respect to
those variables that can be included in the model. If such effects display smooth variation

(such as trend), then replacing the error model by some order of polynomial trend surface
may be preferable.

Loftin and Ward (1983) use a correlated errors model in examining the effects of popu-
lation density on fertility rates in areas of Chicago. Such a modification apparently enables
better estimates and safer inferences to be made on the influence of the included predictor
variable. Further details are discussed in, for example, Cliff and Ord (1981), and Upton and
Fingleton (1985).
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3. Parameter Estimation

Estimation procedures for each of the three models presented in Section 2 will be discussed
now, in turn.

3.1. The spatially lagged response variable model.

Using matrix notation, equation (2.1) may be written as
Y=X8+pWY + ¢,
where matrix W = {w;}. By re-arranging terms this expression becomes
I-pW)Y =X8 +¢, (3.1)

and letting matrix A = (I — pW) and matrix M = I - X(XTX) !XT, substitutions into
equations (1.3) and (1.4) yield

B = (XTX) Y(XTAY), (3.2)

62 =YTATMAY/(n —k - 2), (3.3)

where matrix A denotes that the parameter p has been estimated (the problem of estimating
p will be considered later), so that another degree of freedom is lost.

3.2. The spatially lagged predictor variable model.

Using matrix notation, equation (2.3) becomes

where vector X, denotes one of the columns of matrix X (but not the first column). Again
by re-arranging terms this equation may be expressed as

-T_

B

where the vertical dots symbol, :, denotes matrix partitioning, matrix Z = [X : WX,], and

7T = (272)7Y(2TY),

ﬂ'z = ETE_."'{H —k — 2:!,

where e = Y — (X8 + +WX,).

The regression parameters 8 and T are estimated simultaneously. If vanable X, is
spatially correlated, then (X7X)~! may be unstable (since in extreme cases vectors X, and
WX, may be linearly dependent, causing matrix XTX to be singular). This numerical
problem produces inflated estimates of the parameter estimator variances, giving misleading
or erroneous inferences.
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3.3. The spatially correlated error model.

As noted in Section 2, a commonly used regression model with correlated errors is given by
the pair of equations

Y=XB8+»
v=pWr +§ (3.4)

so that ¥ ~ MVN(0,0°E), where £ = (ATA)~!. By substituting the second of these
equations into the first one, and algebraically manipulating the result,

I-pW)Y = (I-pW)Xf + ¢ (3.5)

Then by substitution into equations (1.3) and (1.4),

A= (X181 YxTE Yy, (3.6)
#2=uTE lu/(n —k - 2), (3.7)

where vector u =Y — X8 and £ = (ATA) = (I - pW)T(I — jW).

_ Intuitively speaking, it appears that the general effect of including £! in the estimate of
B is to downweight those observations with high spatial correlation. The presence of spatial
correlation means that the information content of an observation is partially duplicated by
those other observations (usually nearby) with which it is strongly correlated. Therefore a
natural approach to this problem is to reduce the influence of such data duplication in the
model fit. Those observations that are to be most strongly downweighted depend upon how
matrix W is specified; often (because of the way matrix W is specified in applications)
they tend to be observations associated with the highly connected interior sites of a spatial

partition, particularly if these interior areas also are small relative to areal units closer to
the boundary of the region.

3.4. Properties of the spatial parameter.

In the case of the lagged response and correlated error models, there is the additional spatial
parameter, p, to be estimated. Estimation of this parameter could be avoided by evaluating
the regression equation for different values of p contained in the permissible range which is,
in fact, very restricted since 1/9,:, < p < 1/fmax, where gmax and NMmin Tespectively
are the largest and smallest eigenvalues of matrix W . This identifies the sensitivity of 8 to
values of 5, and it is usually B we are most interested in. As an extension of this strategy,
a grid search can be conducted i order to find the minimum residual sum of squares for
either equation (3.1) or equation (3.5).

Estimation of p in the case of the lagged response variable model is described in, amongst

other sources, Upton and Fingleton (1985). The maximum likelihood estimate of p is ob-
tained by minimizing (with respect to p)

(n/2)% LN (52|A[~2/") (3.8)

where &% is given by equation (3.3), replacing the degrees of freedom value n —k — 2 by the
sample size n, and the pair of parallel lines, | e |, denotes the determinant of a matrix. One
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should note that, by substituting equation (3.3) into equation (3.8), the estimate of p does

not depend upon B, so that once p is obtained B can be estimated. The estimation of p in
the spatially correlated error model (with autoregressive errors) is more complicated. Again
expression (3.8) is minimized, but ¢ is now given by equation (3.7), replacing n —k —2 by
n, which depends upon ,& A recommended estimation procedure here is to start with an
mitial estimate of B [e. g., equation (1.3)], estimate from expression (3.8), then evaluate
equation (3.6), and iteratively repeat these last two steps until convergence occurs. Mardia
and Marshall (1984) discuss other possibilities, including computation of the standard error
of p. It is usually necessary to write a separate routine to estimate p, which includes

evaluation of a matrix determinant. These problems currently limit the size of data sets that
can be handled easily.

4. Regression Problems Associated with Spatial Data

In this section we examine a variety of problems encountered in the fitting of regression
models that arise in one form or another from the spatial context of the data. The problems
raised here fall into three genenic groups, namely

(a) problems associated with representing the spatial distribution of observations—
these usually call for modeling assumptions that cannot be directly tested:

(b) problems associated with the surface partitioning (in the case where observations
are areal aggregates or densities) and which give rise to problems for least squares
estimation; and,

(c) data problems that arise either as a consequence of the areal units system or
independently of it.

4.1. The spatial distribution of observations.

The fitting of each of the models described in Sections 2 and 3 require an explicit, and
largely a priori, representation of the areal units system to which the observations refer.
This representation has two aspects to it: first defining order relationships between the
sites or areas; and, second treating the boundary of the study area. For the most part any
representation constitutes a set of modeling assumptions that are largely untestable (for
instance, there is rarely sufficient information to estimate the elements of matrix W). Since
they are untestable, the sensitivity of results to different assumptions should be examined
both as part of parameter estimation, and as assessment of fit (e. g., inspecting whether or
not the residuals are better behaved under one set of assumptions than under another).

4.1.1. Order relationships.

Order relationships across the map are specified by the matrix W. This specification in-
volves two separate decisions: (i) which sites or areas should be considered joined, and (ii)
what weights should be attached to the joins. The first decision identifies which entries
in matrix W are non-zero, whereas the second decision enables a particular value to be
attached to each element w;;. These issues are discussed at length in Cliff and Ord (1981).
Table 1(a) identifies some of the main criteria used to select a join structure. The use of
proximity criteria seems most appropriate where inter-site connections are not limited to
speaal transport networks, whereas the use of interaction criteria seems most appropriate
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where such a network does exist. Some level of flow existing between all pairs of sites or
areas may necessitate introducing a cut off level, or alternatively an analysis of the system
of flows, in order to identify the key linkages in the system (Holmes and Haggett, 1977). In
addition, order relations might be hierarchical and directional |as on a central place lattice
(Haining, 1987)] or discontinuous (for example, neighbors might be areas with stations on
a railway track, if the analyst is looking at the spread of a rumor or an infectious disease).
Table 1(b) identifies possible weighting schemes. Again one should note that these weighting
schemes can be standardized by setting row sums to 1. This aspect of model specification
clearly involves many ad hoc decisions, which implies that a need exists for assessing the
sensitivity of results to plausible alternative definitions. The specification of matrix W has
a direct effect on the fit of the model, since it enters into the estimation of 8 and ¢2 in all
the models outlined in Sections 2 and 3, and in the case of the spatially correlated errors
model it influences the relative downweighting of observations.

4.1.2. Boundary effects.

Boundary effects are likely to be more serious for the analysis of map data than for the
analysis of time series data. In the time series case border effects are of order 1/n, where n
15 the length of the observed series. In the case of an n = N » M rectangular lattice there
are usually at least 2N + 2M — 4 border sites, although the number of border sites depends
on the specification of order relationships on the map.

Suppose the study area is not naturally bounded (for example it is a subarea of a much
larger region). Here the analyst must consider how to model boundary effects. Consider the
problem of modeling county death rates in Pennsylvania due to the spread of an infectious
disease. The border counties of Pennsylvania will be influenced by death rates in immediately
adjacent counties in New York, Ohio, West Virginia, Maryland, Delaware, and New Jersey.
If these influences are simply ignored, the overlooked effects may distort the fit of the model.
Border county residuals may be inflated (relative to non-border county residuals) because
these external influences will be felt most strongly close to the border of the study area.

In the case of a model such as equation (2.1), if death rates are available in non Penn-
sylvanian counties, such values at the boundary could be included as additional exogenous
predictor variables. Where such boundary information is not available, options include
shrinking the study area (which would seem wasteful of data), or assuming values for the
(non-observed) boundary counties. Fixed values could be assigned that preserved gradients
at the boundary in some sense. Any selection would tend to be arbitrary, and the sensitivity
of results to the choices made probably should be assessed.

Regardless of how boundary values are treated, the problem remains of estimating the
spatial parameters in models such as equations (2.1) and (2.4). The issues are far from
straightforward [see Ord (1981), Kinsch (1983), Martin (1987), Griffith (1988)]. However,
if the primary interest is in estimating the regression parameter vector B rather than the
spatial parameter (p), then these problems may be rather less serious than they appear
from the arguments put forward in the literature cited above. If some adjustment is thought
necessary, since residuals might be larger for those cases in the study region close to the
boundary, might not robust or resistant regression be considered? Alternatively, an a priori
weighting might be considered in which observations close to the boundary are downweighted
in the fit of the regression model. Different levels of downweighting could be tried and the
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TABLE 1
SPECIFICATION OF W: DEFINING JOINS AND WEIGHTS

(a) Joins
Proximity:

1. Distance: each site/area is linked to all other sites/areas within a specified dis-
tance.

1. Nearest neighbors: each site is linked to its k (k = 1,2,3,...) nearest neigh-
bor(s).

il. Gabriel graphs: “any two sites A and B are said to be contiguous if and only if all
other sites are outside the 4 — B circle, that is the circle on whose circumference
A and B are on opposite points” (Matula and Sokal, 1980).

iv. Delaunay triangulation: all sites that share a common border in a Dirichlet
partitioning of the area are joined. Where the sites refer to areas that already
partition the map, then the joins may be based upon whether the areas have a
boundary in common.

Interaction:

All sites/areas between which there is a flow (measured, for example, by traffic movement,
telephone calls, or person to person contact).

(b) Weights

Binary:

wij =1 1if areas 1 and j are joined; w;; = 0 otherwise

Inverse distance:

wij =d;; (v > 0), where d;; is the distance separating areas i to j
Exponential:

Wi; = E—"‘:P{_‘f?j

Boundary length:

wij = (l;;/1;)7, where I;; is the length of the common boundary between areas i and 7, I;
15 the perimeter of the border of area i, and 7 is a constant.

Boundary and distance:
wij = (lij/1:)7d],

results compared. As posed here, however, perhaps the most fundamental question concerns
the sensitivity of 8 to p, and the influence of boundary assumptions on the estimation of
p.
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4.2. The surface partitioning.

Spatial data often refer to aggregate or density attributes of subareas into which the study
area has been partitioned. The results of fitting a regression model to such data will be
sensitive to the particular partition involved. Partitions that lump together individual micro-
level units (e. g¢., households), which are alike with respect to the important predictor
variables, are generally considered better than those that lump together individual units that
are unalike, simply because the level of the predictor variable then will be more representative
of the area to which it refers. However such ideal partitions do not usually arise in practice,
and there may be several “plausible” alternative partitions; ideally the sensitivity of results
to these alternatives should be assessed.

Often the size of areal units within any surface partitioning varies with respect to either
geometric size or total number of objects captured. If the response variable is a density
measure (e. g., with respect to the population size), then it is often the case that some
density measures are taken with respect to subareas with large populations while others

relate to subareas with small populations. If Y is a density variable derived from equally
variable umits, then we might expect

Var(Y;) =e?/n;, n;> 0,

where n; is a measure of the size (e. g., total population) of areal unit i. This result is
attributable to the law of large numbers, since the average is taken over more individual
units. It follows that the errors are heteroscedastic:

Var(§;) = o*/n;,

and thus
E¢¢T] = 7P,

where P is a diagonal matrix with element p;; = 1/n;. The weighted least squares estimator
for B is

B, =(XTP'X)"*XTP-Y), and
65 = (Y —XB,)"PUY — XB,)/(n —k - 1).

Table 2 shows equivalent weighted estimators for the three models of Sections 2 and 3. The
parameter p may be estimated as before. The determinant |A| is unchanged if P does not

depend upon p, but &% is now given by &2,

4.3. Data problems.

Certain data problems arise that often have nothing to do with the spatial nature of the data
per se. These include such problems as multicollinearity (which renders parameter estimates
unreliable), excessive numbers of predictor variables (which makes efficient analysis difficult),
mussing and unreliable values, and outliers. The latter group of problems relate to specific
data values. However, even if these latier problems arise independently of the areal units
system, how they are dealt with (e. g., estimation of missing values, adjustments of the fit
to the presence of extreme values) might be affected by where the problem observations are
located on the map. If a missing value is near the boundary, for example, interpolation of its
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TABLE 2
WEIGHTED LEAST SQUARES ESTIMATION RESULTS
FOR THE THREE REGRESSION MODELS

1. The regression model with spatially correlated errors:

B, = (XTATP'AX) Y(XTATP'4Y)
62 = uT.ﬁLTPdliuI[n —k —2)

2. The regression model with lagged response variable:

B, = (XTP1X) Y(xXTP-1AY)
65 =(AY - XB,)TPHAY - XB,)/(n —k - 2)

J. The regression model with lagged predictor variables:

B, =(2TPZ)"Y(zTP 1Y)
¢l = (Y - XB, - +WX,)TP (Y - X8, — +WX,)/(n —k — 2)

value might be more difficult than if it is near the center. Similarly, several missing values
may be more difficult to estimate if they are clustered rather than scattered.

In regression analysis it is often of particular interest to assess the sensitivity of the model
fit to individual cases, particularly cases with extreme values either in the response variable
or in one or more of the predictor variables. In the standard regression model, individual
cases can be deleted, one at a time, and the model refit. But with the models of Section
2, deletion of individual cases alters the order relationships between the sites, and creates
internal boundaries within the study area if the cases refer to areal units. So procedures
that are exact for the standard regression model no longer apply. Martin (1984) gives the
estimator for vector B, for the case of a general Gaussian correlated errors model, when
one or more cases are (treated as) missing, and although implementation of the procedure
taking each of the n cases in turn might be lengthy, his results can be used to develop an

appropriate check on the sensitivity of B to individual observations. The results also can

be used to assess the sensitivity of estimates of B to individual observations in the case of
a general matnx X.

The spatial distribution of extreme values may need to be comsidered, particularly
whether they are scattered or clustered. Suppose the distribution of extreme regression
residuals in equation (3.4) (defined by vector u) is clustered. This might have a greater
impact on the estimate of p than if the extreme values are scattered. A plot of the elements
of vector u against the corresponding elements in vector Wu may highlight this problem.
The potentially important consideration is the influence of the distribution of extreme values

on the estimation of p, and thence on the estimation of B (since vector B8 is a function of
p). Methods for resistant estimation of regression parameters by iterative downweighting
ol observations based on the frequency distribution of residuals are available [see Hoaglin,
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Mosteller and Tukey (1983, 1985); see Besag (1981) for a spatial application]. Resistant
estimators for 8 are of the general form

B = (XTQX)'(xTQY),

where matrix Q downweights observations with large residuals. The estimation is often
performed by iterated weighted least squares, where the residuals at one iteration step are
used to specify the elements of matrix Q at the next iteration step through a selected
“weighting function.” This procedure is distinguished from the weighting scheme discussed
in Section 4 (“surface partitioning”), where the weights are specified a priori, as a function
of areal unit attributes, and are not subsequently re-estimated. However, in the case of the
regression models discussed in Sections 2 and 3, there is the further problem of acquiring
resistant estimates of the spatial parameter p, a problem that has not as yet received much
attention 1n the literature. Indeed many of the problems raised in this section have not vet
received detailed consideration.

5. Two Case Studies

We conclude this discussion by briefly examining two applications that exemplify some of
the points made in earlier sections of this paper.

5.1. Standardized Mortality Rates (SMRs) for areas of Glasgow.

Cancer data are available on SMR’s for 87 community medicine areas (CMAs) in Glasgow
(1981/82). An SMR is obtained for any area by dividing the observed number of deaths (O;)
by the expected number (E;), given the age and sex composition of the area, and multiplying
by 100. Data also are available on 15 relevant social and economic variables for the areas
that are to act as predictors for the SMR data.

Scatterplots of the SMR values against the predictor variables suggest that the relation-
ships are more linear and have better spread properties if the SMR data are subjected to a
loganithmic transformation. Table 3 summarizes the fit of the best fitting model selected by
a stepwise regression procedure.

TABLE 3
SUMMARY OF THE FIT OF THE REGRESSION MODEL
TO THE SMR DATA FOR GLASGOW

LN(SMR) = 4.23 + 0.014X; + 0.017X,
R*=679%, & =0.100

Values of {-statistics corresponding respectively to terms in the regression model containing
vanables X;, X,:
3.95, 13.07

X1 =" of population that are pensioners living alone.

X9 = % of population in Social Classes 4 and 5.
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The residuals from the model show evidence of pattern with generally higher values
near the center of the city, declining out towards the suburbs. A Moran test for residual
autocorrelation, using a binary connectivity matrix W in which CMAs that share a common
boundary are defined as being joined, leads to a rejection of the null hypothesis of no pattern,
at the 10% level of significance. However, a correlated errors model has proven to be an
unsatisfactory data descriptor in this example. The regression model was augmented with a
second-order trend surface. The fit of this model is summarized in Table 4. Although the
R? does not improve substantially, its increase is significant, and the residuals are better
behaved (no residual autocorrelation is detected). The trend surface model peaks at the city
center and declines towards the suburbs.

TABLE 4
SUMMARY OF THE FIT OF THE REGRESSION MODEL
WITH SECOND ORDER TREND COEFFICIENTS
TO THE SMR DATA FOR GLASGOW

LN(SMR) = 4.27 + 0.010X; + 0.017X3 — 0.165X g + 0.202X y
—0.610X g — 0.7T10X §, + 1.296X pX i
R*=173.7%, & =0.093

Values of t-statistics corresponding respectively to terms in the regression model containing
variables X1, Xa, Xp, Xn, X%, Xi*: ApXpn:

2.55, 12.27, -0.38, 0.65, —1.65, —2.35, 3.24

A p and X are trend surface co—ordinates,
X7 and X5 are defined as in Table 3.

There 1s evidence in the residuals of an inverse relationship between residual variance
and the observed number of deaths. Pocock et al. (1981) have argued that this should be
expected, and have shown that observations should be weighted, with areas having a small
number of observed deaths being downweighted. In the notation of Section 4, they suggest
that

pii = 1+1/(0%0;). (5.1)

In addition, high leverage values have been noted for three of the suburban CMAs, which are
of large areal extent and hence, when represented by their centroids for purposes of fitting
the trend surface component of the model, isolated from the rest of the map. Leverage effects
in fitting trend surface models have been discussed in Unwin and Wrigley (1987). The best
fit model derived from reanalyzing the data and downweighting observations using equation
(5.1} are reported in Table 5. The effect of deleting the three CMA’s with high leverages
resulted in variable X; ceasing to be significant in the fit (failed to reject Hp : #; = 0).
Finally, Table 6 reports the results of using a resistant R-estimator (Li, 1985, p. 331) to fit
the regression model. This uses a rank—based criterion. The table provides evidence of the
resistance of the fit to the few large residuals.
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TABLE 5
SUMMARY OF THE FIT OF THE REGRESSION MODEL
USING MATRIX P TO DOWNWEIGHT THE OBSERVATIONS

=

LN(SMR) = 4.26 + 0.009X; + 0.016X; — 0.142X g + 0.242X y
—0.588X2 — 0.704X% + 1.210X g » X i
& = 0.093

Values of t-statistics corresponding respectively to terms in the regression model containing
variables X, Xy, Xp, Xy, X%, X%, Xp* Xy:

2.49, 12.27, —0.32, 0.71, —1.57, —2.19, 3.03

Xfg and X are defined in Table 4.
X1 and Xy are defined as in Table 3.

TABLE 6
R-RESISTANT REGRESSION

LN(SMR) = 4.34 + 0.009.X; + 0.017X3 — 0.375X g + 0.135X
~0.461X 5 — 0.682X % + 1.373Xpx X i
R? = 46.0%, & = 0.087

Values of standard errors corresponding respectively to terms in the regression model con-
taining variables X;, Xy, Xp, Xy, X2, X%, Xp» Xy

0.003, 0.001, 0.412, 0.294, 0.347, 0.284, 0.375

A g and Xy are defined in Table 4.
A1 and X9 are defined as in Table 3.

An interesting feature of this analysis is the presence of an “inner city” factor as an
added risk factor that is in addition to the usual class and age variables. Such a factor
might be associated either with the environmental characteristics of the inner cities or the
charactensiics of the inner city population (related to, for example, diet, exercise, higher
levels of stress and overcrowding).

5.2. Agricultural consumption and accessibility.

CLff and Ord (1981, pp. 209 and 237) report the results of an analysis of spatial variation
in the percentage, in value terms, of the gross agricultural output of each county in Ireland
consumed by itself (}) as a function of a measure of county accessibility in terms of the
arterial road network (X'). Table 7 reports the results of the least squares regression fit.
The residuals show evidence of spatial autocorrelation under three different order definitions
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of matrix W (the binary matrix is constructed by setting w;; = 1 if counties ¢ and j share
a common boundary, zero otherwise; the matrices are standardized by setting row sums to

1).

TABLE 7
ORDINARY LEAST SQUARES ANALYSIS OF IRISH DATA

Y = —8.44 + 0.0053X,

Values of t-statistics corresponding in order to the two terms in the regression model:

-2.65, 7.42
R* = 69.7%, R*(adjusted) = 68.4%

n = 26, residual variance = 13.58

Lag correlations computed for the residuals:

lag 0 1 ' 3
correlation 1.000 0.387 —0.089 —(0.218
number of pairs 58 93 04
Autocorrelation tests on the residuals:

standard standard
Matrix type: GMC E/GMC] deviation normal

IGMC] deviate
binary 1.726 —0.238 0.535 3.67
standardized binary 0.315 —0.057 0.126 2.95
weighted 0.429 —0.057  0.146 3.32

Source: Cliff and Ord, 1981, p. 230.

We consider the effects of adding spatially lagged forms of the original variables in order
to deal with the problem of residual spatial autocorrelation. Added variable plots have been
used in order to determine whether vector WX or vector WY, or both, should be added
to the model, as well as what form of matrix W provides the best fit (Haining, 1990). The
evidence of these plots, irrespective of how matrix W is constructed, is that adding vector
WY is preferable to adding vector WX ; if vector WX is added then vector WY also
should be added, whereas if WY is added then WX is not needed.

Table 8 reports the results of regression model fitting with vector WX and then with
WY . The evidence here confirms the superiority of including vector WY rather than
WX. One should note that vectors X and WX are correlated, raising the problem of
multicollinearity in the fit of the lagged predictor variable model. Table O reports the results
of fitting a regression model with a spatially correlated errors model. Three error models have
been tried: a simultaneous autoregressive (SAR) scheme, a moving average (MA) scheme
(parameter ), and a conditional autoregressive (CAR) scheme (parameter 6 ). Details of
these models are summarized in CLff and Ord (1981), Upton and Fingleion (1985) and
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Ripley (1981). The first error model provides the best fit, although it is not quite as good as
that obtained by the lagged response variable model. On the other hand, the spatial error
model is probably more substantively justifiable than the lagged response variable model for

this data set.

TABLE 8

FITTING DIFFERENT SPATIAL REGRESSION MODELS TO THE IRISH DATA

(a) Lagged predictor variable:
Y=01+5X+7WX+§

Binary Standardized
Matrix W Binary Matrix W
By ~14.13 —23.97
(—3.55) (—5.24)
B 0.0056 0.0026
( 8.25) ( 3.13)
T 0.0002 0.0063
( 2.15) ( 4.05)
R? T4.7% 82.3%
adjusted R? 72.5% 80.7%
Tzus 0.06 0.57
eTTOT Variance 11.80 .28
(b) Lagged response variable:
Y=01+3HX+pWY +§
Standardized
Binary Matnx W
51} —6.24
(—3.10)
B, 0.0024
( 4.38)
P 0.731
_ ( 6.38)
R? 87.2%
eITOr variance 5.25

Weighted Matrix W
(CLff & Ord, 1981, p. 230)

—20.59
(—4.22)
0.0030
( 3.25)
0.0050
( 3.02)
78.3%
76.4%
0.58
10.16

Weighted Matrix W
(CLff & Ord, 1981, p. 230)

~6.71
(—3.21)
0.0028
( 5.11)
0.646
( 5.13)
86.2%
5.67

Figures in parentheses under the coefficient estimates are t-statistic values; r. .. is the
Pearson correlation between variable vectors X and WX these results agree with those
given in Anselin (1988) and Bivand (1984).

Finally we report the fitting of a robust form of the regression model with SAR errors
(Table 10) using Tukey’s biweight function to downweight the influence of large residuals (e)
in the estimation of B. Outliers also will affect the estimation of p, but after computing
vector u at the first iteration and inspecting the ploi of (u, Wu) a non-robust estimator
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TABLE 9

FITTING A REGRESSION MODEL WITH SPATIALLY CORRELATED ERRORS

TO THE IRISH DATA

(a) SAR. errors model:

Eluu™] = o?[(I - pW)T(I - pW)]

Binary Standardized Weighted Matrix W
Matrix W Binary Matrix W (Chff & Ord, 1981, p. 230)
3 1.155 4.670 1.359
) ( 0.33) ( 1.04) ( 0.36)
A4 0.0032 0.0024 0.0030
( 5.84) (37.79) ( 4.74)
i 0.177* 0.843 0.780F
(14.29) ( 9.44) ( 7.06)
R? 87.0% R5.7% 86.1%
error variance 5.36 5.80 5.73
(b) Other spatial error models:
Moving Average Conditional
Invertible Range Unrestricted Autoregressive
Bo —1.290 1.766 —8.725
51 0.0037 0.0034 0.0041
d 0.193 0.944 )
3 ok ok * & 0.184
R? 78.3% B0.4% R1.9%
erTor variance 802 8.07 1.47

* denotes that the maximum value is (1.194.
* denotes that the maximum value is 1.00.

Figures in parentheses under the coefficient estimates are t-statistic values.

for p was chosen that employed the usual expression (16) (indeed an R-estimator fit of u
on Wu gives an estimate for p very close to the maximum likelihood estimate). The results
reported here are for B = ¢5 where ¢ = 6 and 5 is the median absolute deviation of the
residuals (Li, 1985, p. 293). The downweighting is strongest for western counties. It happens
that these are the counties for which X values are most unreliable because of the way the
index was constructed (CLff and Ord, 1981, p. 207).
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TABLE 10
ROBUST ESTIMATION OF EQUATION (3.4) USING TUKEY’S BI-WEIGHT

Y = 1.9941 < 0.0028X
p =0.794, error variance (%) = 5.68, R? = 86.2%

Final set of Tukey weights (in alphabetical order across rows)

0.989 0.962 0.918 0.866 0.971 0.980 0.959 0.908 0.997
0.972 0.999 0.821 0.991 0.970 0.999 0.829 0.847 0.999
0.990 0.873 0.893 0.928 0.990 0.973 0.970 0.999

MAD = 1.715, B = 10.293

6. Conclusions

Social scientists are often accused of selecting models that derive too much from theory and
too little from data properties. A “firm” model is specified on the basis of some theoretical
argument (less kindly put, some “preconceived” idea) and attention then focuses on fitting
the models and, at best, making comparisons with a small range of alternative models.

In developing “spatialized” forms of equation (1.1) in Section 1, the aim is to broaden
the range of possible models that may be considered “soft” or “firm,” depending upon
the substantive context and the stage of data analysis reached. In discussing data related
problems in Section 4, the aim was to draw attention to the sorts of fitting and assessment
1ssues that often prove endemic to regression modeling with spatial data and to suggest some
possible lines of treatment.

The development of interactive statistical packages with a range of graphical data inspec-
tion options should encourage closer inspection of data properties. Unfortunately, however,
some of the procedures needed to fit the “extended” range of spatial regression models de-
scribed here are yet to be made widely available in easy-to-use packages.
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DISCUSSION

“Models in human geography:
Problems in specifying, estimating and validating models
for spatial data™

by Robert P. Haining

Haining considers the following three kinds of model: (i) those with a spatially lagged re-
sponse variable; (ii) those with a spatially lagged predictor variable; and, (iii) those with
spatially correlated disturbance terms. Using his notion, with A = I — pW, the presence of
In|A| in the log-likelihood function complicates the estimation of the parameters for the
first and third classes of models. With an emphasis on maximum likelihood methods, only
a relatively small set of areas (making up a region) can be considered, as Haining notes. In
turn, the smaller the number of cases (areas), the greater the vulnerability of the estimated
regression parameters to problems stemming from the presence of high leverage data points
and outliers. This vulnerability can be tackled on two fronts, namely (i) modifying software
and data structures in order to analyze larger data sets, and (ii) paying close attention to
diagnostic signals (of the presence of problems). Both are crucial. As the first strategy does
hittle for small systems, it is necessary to take regression diagnostics very seriously and to
look closely at robust regression methods. Haining’s discussion of these issues for spatially
distributed variables is particularly welcome.

Theories, models and statistical methods.

He notes that “social scientists are often accused of selecting models that derive too much
from theory and too little from data properties.” Excluding theorists who disavow any sys-
tematic examination of empirical evidence, the problem for social scientists is not that they
choose models based on theories, but that they choose models from a superficial examina-
tion of data properties. This “examination” usually excludes consideration of the diagnostic
procedures discussed by Haining. There is, however, another basis for the superficial con-
sideration of data that is rooted in the modeling cycle outlined by him. As described, the
process of moving from a “soft” model to a “firmer” model capitalizes on chance. It is not
clear why making “the percentage of explained variation as high as possible” is of any real
value in assessing the utility of an estimated model. Certainly, we must have well behaved
residuals, but this criterion can be invoked without slavish adherence to the maxim of maxi-
mizing R?. A satisfactory model may “emerge” but, at most, it is a specification of a model
that can be assessed with a different data set. Of course, such a model has a better chance of
serving further tests if the problems discussed by Haining are addressed in a (modified—only
modest attention given to R?) modeling cycle.

Specifying interdependence.

The specification of the weights matrix W is crucial. Leaving it out is problematic when
linear models are specified and it is known that the data points are interdependent. Haining's
Table 1 is helpful in laying out some of the possible specifications of W. Many specifications
of W in terms of joins and weights remain little more than guesses about the processes
generating interdependencies. Until we know more about these processes, specifications of W
will remain individual guesses or customary behavior. Even so, doing something with regard
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to W for models where the disturbance terms are autocorrelated may be of some value
for “safer” inference. For this class of models, the interdependence is a technical problem.
However, for models with a spatially lagged response variable, the specification of W must
be substantive, as it is an explicit part of the theoretical statement directly of interest.

Another important issue concerns the match, if any, between the level of aggregation of
the data and the spatial scale of the phenomenon under study. Intuitively, it is unlikely that
a social process with a spatial scale defined in terms of local neighborhoods can be captured
in data aggregated to the ward, postal ZIP Code, or city levels. The larger units are likely
to contamn many diverse and distinct neighborhoods that have been grouped together in
the (usually implicit) aggregation. At the other extreme, a process with a spatial scale at
the county level will be modeled, at best, inefficiently with data assembled at the local
neighborhood level.

Spatially lagged predictor variable models.

The simplest form, as stated by Haining, of such a model is as follows:

Yi=Bo+B81Xy i+ - +BrXRi+7 Y WiX, +e
i=1

Attention can be focused on the estimation of [@:r]. Haining writes, “if variable X, is
spatially correlated, the matrix (X'X)™! may be unstable (since in extreme cases vectors
X, and WX, may be linearly dependent, causing X'X to be singular).” A worse situation
would be an undiagnosed near singularity that would lead to inflated standard errors and
compromised inference. (For an exact singularity, estimation would breakdown and diagnosis
would be straightforward.) Why include both X, and WX, in the specification of the model?
If X, is spatially autocorrelated, then X, ;, would be given by the weighted sum of the values
of X, for the areas, j, having non-zero W ;. The data value for X, ; would include little
new information beyond that contained in

mn
Y WX,
j=1

Use of X, and WX, seems certain to generate collinearities and, as it is a specification
problem, recourse to reduced rank methods seems premature. (Of course if X is not of full

rank for a set of measured variables, then techniques like ridge regression may be of some
value. )

The possibility of T being a vector may merit further consideration. If one X, is auto-
correlated, then it is possible that other X's are autocorrelated, too. Further, each X, may
have its own W, regime. This may be introducing an identification and specification night-
mare, but there is no reason (other than simplicity) for assuming only one X, is spatially
autocorrelated. Coupled spatial processes with distinct autocorrelation regimes seem quite
reasonable.
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Data problems.

Haining is correct in directing our attention towards data problems. Missing and unreliable
data values are a major problem, as are outliers. Influential data points can be included here
also. In addition to the statistical problems discussed by Haining, there are many database
management issues. Techniques for re—estimating a specified equation, when data points are
dropped one at a time, must rest on an adequate database management system. Not only
are Y and X changed when one (or more) observation(s) is(are) removed, but W also is
changed. As Haining notes, deletion of a data point does create internal boundaries and it
changes geometric relationships between areas. These are serious technical and substantive
issues that can only be addressed if there is in place a sophisticated and flexible database
management system that can handle dropped cases and the accompanying implied changes
for matrix W.

Haining’s discussion uses a variety of alternative estimation procedures (e. g., resistant
regression methods) given a specific problem has been identified. This is useful, but many re-
searchers will be left unsatisfied if they can neither implement nor have an adequate database
management system to support such statistical procedures. It took a decade before regression
diagnostics were widely available in the standard statistical software. As even fewer analysts
grapple with interdependent data points, it may take even longer to have widely available
software to support generalized autocorrelation modeling. Of course, if the importance of
grappling with interdependent data points is recognized more widely, the (badly needed)
software will become available for general use sooner. Haining has helped to push us in that
direction.

Patrick Doreian, University of Pittsburgh
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PREAMBLE
I had rather be hissed for a good verse than applauded for a bad one.

Vietor Hugo

Some scholars practicing what is called pure science are convinced that their ways
of doing science are theoretical, and hence superior io thai dome in what is called
apphied science. On the other hand, many scholars in the applied sciences stress that
superiorily of theory over practice is & myth, and that theory and practice cannot
be separaied. They coniinually poini oul the numerous possibilities of doing science
that miz pure theoretical research goals and applied research goals, eack worthy of
equal respect and dignity. The relationship between statisiicians and geographers
- the realm of spatial siatistice 15 a poini in quesiion here. The purpose of this
paper is for Martin io give his personal view of the application of spatial statistical
analysis in geographic research, mostly noting shoricoming of its use by selected ge-
ographers. Martin argues thai if geographers believe they have theoreiical resecarch
findings that contribule lo stalistics, then siafisticians should be allowed lo scru-
finize this research. Throughout! his discussion he hints tha! geographers do noi
have the ezperiise necessary for making such contributions, aend thai geographers
should restrict themselves to applications while enticing statisticians inlo underiak-
ing the requisite theoretical developmenis. A number of publicaiions concerning spa-
tial statistics have made clear that il is both an oversimplification end even an error
to mew geography as solely application-orienied, and statistics as theory-oriented,
for scholars in both areas hold o variety of talenis and viewpoints. Richardson sofi-
ens Martin's message, noting that all scholars have an inieresi in avoiding abusive
uses of statistics, and echoes Martin's belief that theoreiical developmenis in spatial
statistics need lo be hinked to relevant ezamples and realistic geographical problems.
In many ways, this paper effectively highlights the contrasts beiween statistical and
geographical approaches to spatial siatistics.

The Editor
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The Role of Spatial Statistical
Processes in Geographic Modelling
R. J. Martin

Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, England

Overview:  In this paper I give a personal view of the role of spatial statistical
processes in geographic modelling. I consider models used by geographers, and com-
ment on the statistical shortcomings of their use. I discuss the role of the geographer
1n statistical research, and the role of the statistician in geographic research. I also ex-
pand on the discussion of two particular topics of interest to geographers—boundary
effects and missing values.

1. Introduction

There has been a considerable amount of published research in geography in which spatial
statistical models have been used or investigated—see for example the review papers of CLiff
and Ord (1975) and Bennett and Haining (1985), and the references therein. I will discuss in
this paper one particular part of this research—that part in which spatial stochastic processes
are used to model the dependence between observations on the same variable at different
spatial sites (or on different regions). This is the topic in Section 6 of CLff and Ord (1975),
and Sections 3.1 and 4.1 of Bennett and Haining (1985). Even in this restricted area I am
only going to discuss aspects of which I have some statistical knowledge. My viewpoint is
that of a theoretical statistician, and I claim no geographical knowledge or understanding.

In the discussion to Bennett and Haining (1985), I expressed my reservations (Martin,
1985) about the published research in geography that I had seen. Some stronger views
were given by Besag (1985). My reservations concerned two main aspects. Firstly, that the
models used by geographers did not appear to receive the validation from data that has be-
come standard in current statistical analyses, and there was no indication that geographers
felt that such validation was necessary. Secondly, that research by geographers that pur-
ported to advance statistical theory and methodology was being published in non-statistical

Journals, and was clearly receiving inadequate refereeing and not receiving the attention of
statisticians.

In Section 2 I shall discuss in detail the role of statistical models in geography, whilst in
Section 3 I shall discuss the role of the geographer in statistical research and of the statistician
in geographical research.

Two particular topics that have received much attention in geographical publications on
spatial statistics are boundary effects and missing values. I discussed boundary effects in
Martin (1987), and will reconsider some of that discussion in Section 4. In response to a
question from a geographer, I wrote up some research of mine on missing values in Martin
(1984). Some further comments are in Martin (1987). A subsequent publication (Haining,
Griffith and Bennett, 1989) has considered numerically one aspect of this—the information
loss. As a result I derived some theoretical results covering this aspect, which are in Martin
(1989a). I discuss and extend some of these results in Section 5.
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2. Statistical Models in Geography

2.1. Justification of models

I am not a geographer, and I have no basis for discussing geographic models unless these
models are statistical. Unfortunately, I have been unable to understand those statistical
models that I have seen used in geography. I mentioned in the introduction my concerns
about these models expressed in Martin (1985). In their reply, the authors (Bennett and
Haining, 1985) confirmed that the ‘model is paramount’, and justified this by stating that ‘It
must be remembered that in human geography and planning we are dealing with individuals
and social groups and this results in a problem of legitimizing models, and often in planning
applications, it requires the participation of individuals who often will be non-numerate.’,
and that data analytic methods are ‘not appropriate for planning a city’.

I will reply to this in two ways. Firstly, if the data are of no relevance to the model,
I do not see the point of presenting the models to statisticians and hoping that ‘a research
agenda ... may have stimulated the Fellows of the Society to help in their solution’. However,
whatever the context and whether or not individuals are involved, I would still be concerned
that models are not validated through an examination of relevant data. I also cannot see
the relevance of the possible non-numeracy of the participating individuals. My concern is
with the non-numeracy of the geographical researchers. Secondly, my comments were not
actually aimed at planning models, but at the spatial dependence models discussed below.
To concentrate the reply on one area, which did not appear to be represented in the paper,
15 misleading.

[ will now elaborate on my misgivings about models for spatial dependence. When it
1s possible to envisage a development over time, in which present events depend in some
way on previous events, it may be reasonable to attempt to model this development using a
‘generative’ model. For purely spatial data it is not possible to imagine such a development.
Besag (1974) says of spatial models that ‘... our models will not be mechanistic and must
be seen as merely attempts at describing the “here and now” of a wider process’. Some
of the early discussions in statistics over simultaneous and conditional models appeared to
depend on the belief that such generative models had some meaning outside describing the
data. This attitude still appears to pervade geographic research.

Thus, without consulting the data, it is forthrightly assumed that the covariance struc-
ture 1s modelled by, for instance, a one-parameter first-order conditional process or a one-
parameter first-order simultaneous process. For example, Haining, Griffith and Bennett
(1989) state that ‘a first-order conditional autoregressive model ... has ... a monotonically
decaying correlation function which seems appropriate for social and environmental spatial
data’. They then use the non-stationary edge-corrected version of this model on some re-
motely sensed data, with only a cursory check for suitability, although they do allow the pos-
sibility that the model represents the deviations from a second-order trend surface. I know
of no physical or geographic reason why the dependence should of necessity be adequately
fitted by this model. The data collection may require the participation of non-numerate
individuals (and instruments), but I would not find the argument convincing. There are of
course many other correlation functions that monotonically decay with lag.
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2.2. First—order models

Assume henceforth that for a given set of n sites or regions there is an n-vector of observations
y with mean g = E(y) and covariance (or dispersion) matrix Vo2, The one-parameter
first-order conditional process is usually taken in geographic modelling as specifying the
inverse covariance matrix V=" in the form I — 8W, where W is a symmetric matrix of
non-negative weights that are assumed known, and are usually taken as zero down the main
diagonal. In this form it is a very simple and convenient model. Parameter estimation is
particularly simple. Note that there is no need for the row sums of W to be constant, nor
any great advantage when they are; and that elements could be negative. Also, the diagonal

elements do not need to be zero, although the conditional means are not then linear in 3,
as noted below.

Gaussian maximum likelihood requires (see, for instance, Martin, 1984) the minimization
with respect to 8 of |V ~1|-1/%e'V~le  where e = Y —ji, and i is an estimate of p. This
involves the calculation of the quadratic form €'V’ ~le and the determinant |[VV~!|. Both of
these are very easy for a given 3, since e'V"~'e = e'e — fe'We and so is linear in 3, whilst
V=1 =TI(1 — BA;), where the ); are the eigenvalues of W .

Thus exact Gaussian maximum likelihood is easily performed using a one-dimensional
search over the admissable range of 8 (to ensure that V= is positive definite), which is in
general, provided A, < 0 and Amax > 0, [A&n,kﬁh}, where A = min;{};} and
Amax = max;{A;}. This is the appropriate range when the diagonal elements of W are zero.
Note that this range is more general than that given in many geographical publications—see,
for example, Haining (1987, 1988), and Haining, Griffith and Bennett (1989). For example, if
n = 3 and the off-diagonal elements of W are all 1/2, as used by Brandsma and Ketellapper
(1979), then the admissable range of @ is (=2, 1). Note also that that if W consists of non-
negative elements and does have constant row sums ¢, then Amax = ¢, so that we require
8 < ¢~'. Also, by the Perron-Frobenius theorem, Amin € —¢~!. Thus 8 has a simple
upper bound, rather than |3| having a simple bound, as was stated in Martin (1987).

The differential and second differential of the likelihood can also be easily found, so
that maximisation routines that use the differential can be used. For example, the Newton-
Raphson procedure given by Ord (1975) for the one-parameter first-order simultaneous
scheme can easily be adapted. In this case, using

£(8)=-n"1Y In(1 — BA;) — In(e'V le),
where €'V “le = e'e — fe'We, the iteration for @ becomes

.B‘.I‘-l—] = E‘rr - fﬁ(&r)ﬁfﬂﬂ{ﬁr}t
where
fa(B) =n"1 Y {N/(1-BA;)} - (e'We)/(e'V )
and
f8s(B) =n™" Y _{Ai/(1 - BA;)} — {(e'We)/(e'Vte))2

However, care should be taken to ensure numerical accuracy and to monitor COnVergence, as
3 is often close to the upper limit of its admissable range. Ripley (1988, Section 2.1) notes
that the Newton-Raphson procedure may fail for some data sets.
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For some configurations of the sites, the eigenvalues are known theoretically. For exam-
ple, for an n; by nj rectangular lattice with W containing ones for immediate horizontal
or vertical neighbours, the nyn, eigenvalues of W are given by

Aij = 2cos{mi/(n1 + 1)} + 2cos{mj/(ny + 1)} fori =1,...,ny and j = 1,...,my.

Gasim (1988) has obtained eigenvalues of W~ when further neighbours are included, al-
though it is difficult to see the practical use of such W (he actually obtains his results for
a one-parameter simultaneous process, but they hold equally for the conditional). In other
situations the eigenvalues of W need only be calculated numerically once.

Results on the (Fisher) information under Normality can also be easily obtained for this
model. Formula for the information, defined as the expected value of the second differential
of the log likelihood, are given by Mardia and Marshall (1984 )—see also Martin (1984). Now,

2yr=1 : .
when V! =T — AW we get % = 0, so that the most convenient form to take for twice

a3
&% In(1-8x)}

#ln v

the information on 8 1s 2Jg5 = ——5g7» Which 15 — 5 . Therefore, 21g5 is
S {Ai/(1 - BA;)}?. Since & = 1, another convenient form for 2145 is
a1 -1 _ﬂ']."'l 1 .
’ - = v ,
trace( | 38 | a8 ) = trace{( 53 )}

For small n, this 1s easiest found as the sum of squares of the elements of V' g_iEE—_’ = VW,

using trace(4?) = £Xa? ; when A is symmetric. Otherwise, we can use the fact that the trace

of a matrix is the sum of its eigenvalues, and that the eigenvalues of —VW = (I — W )~'W
are A;/(1 —BA;), i =1,...,n, so that those of (—VW)? are {X;/(1 — 8A;)}2.

If we want to get the asymptotic variance of B, the maximum likelihood estimator

of 3, then we also need Ig 2. The simplest form for 20® times this is trace( —1"—53—5"‘_]],

which is therefore } {A;/(1 — 8A;)}. Although the previous result on Igg has been used
by geographers, this result on J4 2 has not—see Haining, Griffith and Bennett (1989), and

Martin (1989a). These results give a simple formula for the asymptotic variance of A as
2 over the corrected sum of squares of the A;/(1 — 8;), ¢« = 1,...,n, (Martin, 1989a),
although asymptotically equivalent forms are easier to use. The latter are considered in
Besag and Moran (1975) and Besag (1977b).

It is important to realise that the form V™! = ] — 8W is not the inverse variance
matrix of a second—order stationary one-parameter first—order conditional process when the
sites or regions form a finite regular lattice. That is, V' is not proportional to a correlation
matrix. There are several ways of seeing this. A simple way is to invert numerically a
given 1'7', and note that, for instance, the diagonal elements are not constant. Although
geographers are becoming more aware of this fact—see, for instance, Haining (1987)—there
does still appear to be some confusion. For example, Haining, Griffith and Bennett (1989)
use V™! =T — W, but also appear to assume | proportional to a correlation matrix—see
my comments in Martin (1989a).

For a given W with zeroes on the main diagonal, the one-parameter first-order condi-
tional process can be written in the form

Blyil-)=pi+8 Y wijly; —pj), with var(y; |-) = o2,
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where the conditioning is on all other values, y;, j # i. Note that the assumption that all
sites have the same conditional variance is often not reasonable for a finite set of sites—in
particular, it is usually preferable that the conditional variance is smaller for the interior
points. It is possible to postulate unequal conditional variances for the one-parameter first-
order conditional process, but W must then be asymmetric with w; 7% = wjo;?, where
var(y; |-) = o;° (Besag, 1975). Another possibility would be to use a symmetric W, but
for W to have non-zero diagonal elements. Then, provided 1 — Bwy; > 0 ¥, var(y;|) =
oy°/(1 — Bw,;). However, the conditional mean would now have the form

8
Eyi|-)=pi+ mzwu{ﬂ — p5)
J#
which is non-linear in 3.

On an infinite lattice, the second-order stationary process is such that w; ; only depends
on the lag ¢ — 7. For a finite lattice, define an interior site as a site ¢ for which all the sites
appearing in the expression for E(y;|-) are observed. Then, part of the confusion about
stationary is due to the fact that provided either site i or site j is an interior site, the (i, i)
element of Vg ', where S denotes the stationary form, is precisely that element of J — AW .
This is easily seen by direct multiplication of Vs and Vg !, and using known relationships
between the correlations—see equation (5.12) of Besag (1974).

Therefore, many results obtained for V=1 = I — AW do hold for interior sites of the
stationary process without modification. Nevertheless, there are many results that do not
simply carry over from one form to the other. Of particular importance are the results of
Guyon (1982), who showed that using Gaussian maximum likelihood for one form may lead
to estimators with undesirable properties for a different form. Thus, great care should be
taken to precisely define which form is being postulated. This care is not yet sufficiently in
evidence.

Similarly, the one—parameter first-order simultaneous process has V= of the form
(I —BW)(I - W),

where in this case W does not need to be symmetric. Note that the diagonal elements of
W'W usually differ, and are usually greater for interior sites, so that the conditional variance
at these sites is reduced. In fact, assuming wy; = 0, var(y;|-) = o2/(1 + 8° ijfi], Whilst
it may be desirable that the conditional variance is smaller for interior sites, the precise
variances arise from the modelled neighbours, rather than being directly specified.

This model has also been used without question—for instance, see Haining (1987). The
model s also simple and convenient, although not as simple as the conditional process.
Since |A'A| = |A|*?, exact Gaussian maximum likelihood can easily be performed using
the eigenvalues of W (Ord, 1975), although these eigenvalues may be complex if W is not

symmetric. In many cases, the postulated W is the same as a possible W for the conditional
process, in which case W is symmetric and has the same eigenvalues as before.

In this common case that W is symmetric, it is possible to get simple results for the
information. Then V~! = (I =AW )2, so that its eigenvalues are {(1-8X;)*},and V and W

commute. Therefore —V%l = 2W(I — BW)™?, with trace 25 {};/(1 — BA;)}. Since W
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and W' have the same eigenvalues, this formula also holds even when W is not symmetric.

Also . l
F o _:'F -
Vﬂ”if Fﬂl
ag a8
with trace 4X{A;/(1 — 8);)}*. These are just multiples (2 and 4) of the values for the
conditional process. The asymptotic variance of 3 is therefore exactly one quarter of the
value for the conditional process, which was discussed above. Since Haining (1987) uses
a symmetric W, the general formulee misquoted from Ord (1975), and the approximation
given, are quite unnecessary. Note that Ord’s (1975) a should be —X{};/(1 — 8X;)}2.

= 4W3I - gW )2

2.3. More general models

Extensions to the one-parameter conditional or simultaneous forms have been suggested.
For instance it is easy to extend the conditional form for V~! to the two-parameter form
I — 81W; — B2W,, which either extends the range of dependence or can be used for the
same range of dependence as before, but with W split into two parts to allow different
degrees of dependence in different directions. This extension, at least in the simultaneous
form, is usually attributed in the geographic literature to Brandsma and Ketellapper (1979),
although the idea was hardly new to statistics. Even in spatial statistics the use of more
than one parameter is well established—see Whittle (1954). The simultaneous process can
itself, at least on an infinite lattice, be represented as a special case of a conditional form
with separate parameters for each of the immediate horizontal or vertical neighbours, the

immediate diagonal neighbours, and the lag-two horizontal or vertical neighbours—see Besag
(1974).

However, if it is wished to keep some of the simplicity of the one—parameter conditional
or simultaneous forms, there are not many extensions available. The ability to obtain eigen-
values of 1V~ that are linear in the parameters 3; is hampered by the requirement that the
W; matrices need to commute. Using powers of W is possible, but is not always satisfactory.
Unless W is triangular, W? has some diagonal elements positive, so that the conditional
variance for those sites is reduced. For a rectangular lattice the most general conditional
form with known eigenvalues that does not use powers has V= = I — ;W; — 85 W5 — B33,
where W, is for horizontal neighbours, Wa for vertical neighbours, and W3 for the four
diagonal neighbours. Squaring this gives the most general simultaneous form.

Note that whenever V' (or V~!) has a simple eigenvalue/eigenvector decomposition,
V = PAP' where the columns of P are the standardized (or normalized) eigenvectors of
V' and A 1s a diagonal matrix of the corresponding eigenvalues, then a simulation is easily
obtained using y = g + PAY2P' | where A1/? is a diagonal matrix of the square Toots
of the eigenvalues, and ¢ is a vector of simulated independent random variables with mean
zero and variance . There is no need to numerically find the Cholesky square root of V',
as suggested by Haining, Griffith and Bennett (1983). Similarly, if V' has the simultaneous
form B'B where B has a simple eigenvalue/eigenvector decomposition, B = PAP~!, we
can use B! = PA~1P~! where A~! is a diagonal matrix of the inverses of the eigenvalues,
so that y = p + B~'e. This should be preferable to numerically inverting B, as suggested
by Haining, Griffith and Bennett (1983), and reasonable for even moderately large n.

Another simple extension is to use the above forms for V-1 as forms for V —finite
dependence or moving-average models. Note that the finite dependence models are per-
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fectly reasonable models of the covariance, although the attempt to derive them through
a ‘generating’ mechanism in CHff and Ord (1981, p. 150) is incorrect. The eigenvalues
of V' will again be linear in the parameters. The quadratic form e'l ~le can be quickly
computed as f'A7'f, where f = Pe and V has the eigenvalue/eigenvector decomposition

FAP'. Simple results can be obtained for the information using, this time, trace(V %lj

and trace( 1/ %—1 V i%—l}, so that essentially the same results are obtained as before. The

rapid decay to zero of the covariances makes this form less attractive in many practical sit-

uations. It is also possible to combine the two forms, and still keep the same eigenvectors
provided the W; matrices commute,

One other possible extension that does preserve some simplicity in the likelihood is the
errors-in-variables formulation (Besag, 1977a). Essentially, this approach uses one of the
above V' matrices, and adds to it al, so that var(y) = (V + al)o?. This is useful when
the sample correlation function does not appear to tend to 1 as the lag tends to 0, as when
there is an extra independent error, such as measurement error, at each site. The quadratic
form e'V"~le is found in the same way as when V is specified.

Another extension for data on a rectangular lattice is to the separable processes, which
can often be very easily fitted (Martin, 1990). These processes are somewhat restrictive
in the range of possible covariance structures—in particular correlations must be reflection
symmetric and decay exponentially—but the ease of specification and fitting makes them
attractive whenever the assumption is reasonable. Simulation of a separable process is rela-
tively easy provided the sites can be represented as a subset of a rectangular lattice, since on
an ny by ny rectangular lattice V' is a Kronecker product of dispersion matrices of orders
n; and nj, and square roots of these matrices are usually easily found (Martin, 1990).

2.4. Comparison of models

From a data analytic point of view, it is important to be able to fit different models, and
compare their fits. If the models are hierarchical, each more general than the previous, then
standard statistical tests often can be used as a guide, although the theoretical justification
is frequently lacking. Note that if n is not too large, say less than 100, then provided care is
taken to ensure numerical accuracy, any model can be fitted, whether or not V has simple
eigenvalues. If computing problems are ignored, it is easy, for regularly arranged sites or
regions, to postulate a series of models, each more general than the previous one, with natural
orderings of the neighbours (with, in general, different parameters for the two directions, but
the possibility that the two parameters are the same). The next extension is to include the
four diagonal neighbours (again, in general there would be different parameters for the two
directions). For the subclass of separable processes, this procedure can actually be easily
accomplished, because of the ease of fitting most processes (Martin, 1990).

It is much harder to say what should be done with irregular sites or regions. Note
that despite the attempts at developing theory on a rectangular lattice, it is the irregular
sites or regions that are most common for natural geographical data. Irregular sites can
still be modelled with a particular dependence structure, and the form for V deduced from
it. Irregular regions cause the most problems. Modelling for data on irregular regions
has tended to be extremely arbitrary. A particular form is postulated, such as the one-
parameter conditional form of V™! = I — AW, and then the weights w;; also are arbitrarily
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chosen from a wide range of possibilities. These include functions of the distance between
arbitrary centroids, and functions of the common boundary length (see Besag, 1975). In
most applications the weights are more like parameters than known constants.

It is easy to criticise, but less easy to make constructive suggestions. My own belief
is that for a given set of neighbours the elements of W; should be parameterized in terms
of a small number of parameters, so that different choices of W; can be compared using
standard statistical theory. This approach also has been suggested by Brandsma and Ketel-
lapper (1979). Unfortunately, separability does not appear to have any relevance for data
on irregular regions.

So far, I have discussed the modelling of the covariance structure. Of course there are
other considerations. The mean structure can also be specified, and may be dogmatically
specified, or chosen after examination of the data. The use of a trend surface to represent the
large scale variation, as in Haining (1987), is fraught with difficulties when the dependence
1s also modelled through the covariance. Even a second-order stationary process can exhibit
trend-like behaviour, so that the partition into a fixed trend and a random component is
not clear. In addition, a parameterized trend surface is usually far too inflexible over a large
region, and may require many parameters. Unless there is a clear planar trend over the sites,
many statisticians would prefer to model the trend-like behaviour through differencing, or
the use of the intrinsic processes introduced in geostatistics (see, for example, Journel and
Huijbregts, 1978; and, the extension to intrinsic autoregressions of Kiinsch, 1987).

Another consideration is the distribution. Normality is almost always assumed, often
implicitly. There is usually no check on normality; and, where there is, it usually consists of a
univariate histogram of the original data. Apart from the necessity of correcting for the mean
function, I have remarked before (Martin, 1983) on how misleading the marginal histogram
can be for correlated data. The histogram of normal correlated data can often be multimodal
and skewed. The need for correcting the significance values of a goodness—of-fit test for two-
dimensional data was shown by Patankar (1954). My view (see Martin, 1990) is that some
attempt should be made to obtain approximately uncorrelated residuals, on which standard
tests of normality (for example, using as a test statistic the sample correlation coefficient
associated with a normal probability plot) can be approximately used.

Note that, whilst it is important to check the distributional properties when simulating
data, there is no point in checking the derived data, as suggested in Haining, Griffith and
Bennett (1983). It 1s better and simpler to check that the original simulated data for ¢
satisfy the assumptions of normality, constant variance, and independence.

3. Statisticians and geographers

There have been calls for statisticians to become involved in geographic research (see, for
instance, CLff and Ord, 1975; Bennett and Haining, 1985). My own involvement has been by
a somewhat strange route. The published research in geography, which uses spatial statistics,
held, and still holds, no particular interest to me. As I already have mentioned, I cannot see
the point of most of it, and much is riddled with statistical errors. If that published research
were concerned with applications in geography, I would probably have remained uninvolved.
However, somewhat to my surprise I found that the vast majority of the publications that
I had seen were not about geography at all. Although published in geographical journals,
they were claiming to contain advances in statistical theory (by statistical theory I mean any
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non-trivial mathematical manipulations performed within a statistical context).

I take care to seek opinions and comments, before submission of a paper, from others
who may have more knowledge of the topics in the paper. I do not find it easy to get my
papers published in statistical journals. I rigorously check any paper many times between
the first draft and the final proof version for errors and misprints. I therefore was disturbed
by the apparent ease with which these papers were able to appear in geographical journals,
the kudos the authors received, the statistical errors the papers contained, and the lack of
generality of reported results. Of course, there are poor papers in statistical journals, and
there is good statistical work done by members of disciplines other than statistics. There also
are many papers abusing statistics of which I am thankfully unaware. It seems unfortunate
to me that non-statisticians who publish statistics, however flawed, are held in high esteem
in their professions, whilst statisticians who publish statistics, however good, are seen as
doing no more than trade. I can only say that I became aware of these “geographical”
papers, and responded to them.

My first response (Martin, 1984) was a purely statistical work, but resulted from seeing
some tentative beginnings by geographers. In this case I had already looked at the theory,
but had not had the time (or the stimulus) to prepare it for publication (see my comments in
Section ). My second response (Martin, 1987) was a direct result of seeing published work
by geographers. In that paper 1 attempted to straighten out what I saw as some muddled
thought (see my comments in Section 4), and to correct some of the errors I had noted. To
the credit of the geographic community, this response was published. However, this credit
1s somewhat diminished by the fact that I was not made aware of the reply (Griffith, 1988),
nor given an opportunity to comment on it before or after publication. My third response
(Martin, 1989a) also was a purely statistical work; it attempted to give the theory behind
some numerical results obtained by geographers. This work was interesting in that it would
never have occurred to me to obtain the results if it had not been for the other paper. Indeed,
I still doubt that the results have any practical significance (see my discussion in Section 5).
This present paper constitutes an invited fourth response, which I have used to develop my
previous arguments.

I thus have four papers that may be of interest to geographers, but I still do not see
mysell as being, or wanting to be, a statistician interested in geographical research. I have
reacted to geographical research, and may continue to do so. However, I have long thought
that I would have nowhere near enough time, even if it were my only aim, to keep up with,
and correct, statistical publications by geographers in the area of my research interest.

Perhaps fortunately, I am not kept in touch with current geographical research in this
area, so that I only find out about it on the rare occasions that I am asked to referee a
paper, or a paper appears in a journal that I notice. In connection with this, Bennett and
Haining (1985) note, on geographic modelling, that I appeared unaware of “an extensive
methodological discussion of these points ... in the social sciences and geography.” I am
happy to acknowledge my unawareness of this discussion. I feel that if geographers wish
statisticians to become involved in their research, then the onus is on them to help make
their research accessible to statisticians. It is quite unreasonable to expect a statistician to
keep abreast of all the research in all the areas that use or abuse statistics.

My second point in Martin (1985) was that research purporting to contain statistical
advances should be submitted to the scrutiny of statisticians. My hope was that better
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refereeing would result in better papers, and that more statisticians would become aware of
the research. I am pleased to see that there are now submissions to statistical journals: for
example, Haining (1987, 1988), and Haining, Griffith and Bennett (1989). The drawback is
that the statistical community must now share the blame for any criticisms of these papers.
That I do have criticisms can be seen from my comments in Martin (1989a), and in this
paper. As an additional example, I will mention that the reference to Matérn’s lower bound
of —0.403 (Haining, 1987, p. 464) is incorrect. This bound is for an isotropic process in
continuous space, and has no relevance in discrete space. Even the concept of “isotropy” has
little meaning or relevance for regional data, such as pixel measurements.

However, worse things are still occurring in quantitative geographical journals. For
instance, Griffith (1987) gives (p. 72) an 11-line derivation of the simple result E(x) =
(1 —p) 'pel when x = (1 — pC)~ ¥, E(£) = pel, and C has row sums equal to one (and
does not achieve this result). The paper contains several errors, admittedly relatively minor
once the necessary assumptions have been deduced. Also, the torus limit of p g, must equal

the planar value (see Martin, 1986).

Poor published research does not represent a step forward, but several steps backwards.
It sets a standard for subsequent publications, and deters those who might have worthwhile
contributions to make. I wonder what the reaction of the geographic community would be
if a statistician published, in a statistical journal, articles suggesting the present state of,
and future research necessary in, geography. I wonder why people wishing to do research in
statistics do not liase with statisticians who are expert in that area of research. I wonder
why geographers do not concentrate on the many interesting geographic problems that are
amenable to a sensible use of statistics.

As examples, I would like to see geographers investigating, by examining many relevant
data sets, what models are reasonable for the sorts of data that arise in geographical appl-
cations. I would like to see investigations of different methods of predicting “missing values”
in geographical situations in which an answer is actually required.

I also would like to see geographers who meet a statistical problem actively seeking the
views and help of statisticians well before the stage of seeking publication. I am confident
that many statisticians would be interested in such investigations and ready to help, when
asked, with any necessary theoretical developments.

4. Boundary effects

There have been several papers discussing the “problem” of boundary values, and possible
solutions to this “problem” (see Griffith, 1980, 1983, 1985, 1987; Griffith and Amrhein, 1083;
Ord, 1981). In Martin (1987), written before I had seen Griffith (1987), I examined the
“problem” and came to the conclusion that the published research was unsuccessful because
the problem had not been sufficiently well defined, and the research had not considered
problems that might be of interest. Some of the discussion is worth elaborating on here.

Much of the previous discussion on the topic of the “boundary value problem” appeared
to assume that the problem was a well-defined one, and that a statistical solution to the
problem was possible. I suspect that some of the confusion was due to the use of the term
“boundary value,” which has certain connotations in Applied Mathematics. In solutions
to differential or difference equations, a general solution is found that depends on certain
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nitial conditions. Once these initial conditions are specified, the solution is unique. Also, a

geographical boundary between sites is different from the boundary sites at which “boundary
values” may oceur.

However, the spatial statistical models used by geographers are of a different kind. I
already have stated my view that these models are only descriptive of the covariance of
the data, and have no meaning as generative models of the data. This still applies even
when the model can be expressed in a “generative” or “causal” form. Thus the fact that
these “generative” models include, for some “boundary” sites, dependence on unobserved
sites, is irrelevant. Also irrelevant is any attempt to predict these boundary values in order
to estimate parameters (Martin, 1987). Even the definition of what are boundary sites is
unclear. One definition was used here in Section 2, but many others are possible.

A simple example is given by the first-order autoregression in one dimension, namely
z; = azr;_; +¢;, where {¢;} is a sequence of uncorrelated random variables with zero mean
and constant variance. With finite data {z;},i =1,2,...,n, it appears that an assumption
about z needs to be made. However, for spatial data we could equally well “assume” that
the data were “generated” from the right, with the model z; = az;;; + €, so that now it
appears that we need an assumption on z,+;. If we write the model in conditional form,
then E(z;|-) = B(zi-1 + zis+;), where E(z;|-) denotes the mean of #; given all other zs
and 8 = a/(1 + a?), so that in this formulation we need assumptions about both zy and
Zyp+1. All these requirements concern what I term “exterior boundary” values: but it also is
possible to formulate the problem in such a way that we need assumptions about z, and/or
T ,—what I term “interior boundary” wvalues.

A preferable way of considering the problem is through the covarance structure of
T1,T3,...,&n. If the covariance matrix is 17, then the only elements that change under
the different assumptions on the first-order autoregression are the (1,1) and/or the (n,n)
elements of V=1, We therefore essentially require assumptions about these. It also is pos-
sible to define the covariance structure of a larger set of zs, for instance zg,21,...,Zn41,
and then derive V' from this. This is discussed in Martin (1987), and eight different forms
that have been suggested for V! are given in Kunert and Martin (1987). Note that it is
quite unnecessary to believe that the data were generated temporarily from an infinite past,
or spatially from an infinite space, in order for V' to have the stationary form. Thus the use
of a finite geographic region does not, of itself, rule out the use of the stationary V. How-
ever, doubtlessly it is true that when the region considered has natural boundaries, it may
be reasonable to expect those sites on the geographic boundary to have different properties
from those sites in the geographic interior.

Note that we can produce identical effects by including different assumptions on the
variances of some of the “innovations.” For instance, the assumptions that zo = 0 and
var(e;) = ¢2/(1 — a?) lead to the stationary form for V1.

Thus the first possible boundary effect is that for a given model different “boundary”
assumptions lead to different dispersion matrices. Since it is unlikely that even a large data
set would allow statistical differentiation between mildly different “boundary” assumptions,
the choice is largely a matter of convenience, unless there are strong prior arguments for one
form over all other forms. The specification of a reasonable model for the “interior” sites
usually will be more important than the specification of the precise form of the model to be
used, although attempts should always be made to incorporate good prior information.
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In more that one dimension there is another problem. The stationarity assumption for
many statistical models does not lead to a V' or a V'~! that can easily be numerically
calculated. This means that exact likelihood is not feasible. Since it is, at least for the finite
conditional or simultaneous schemes, the “boundary” sites that cause problems for V-l
we have a second possible boundary effect, which is that some stationary models cannot,
at present, sensibly be fitted by exact likelihood. This, together with results reported by
Guyon (1982) on approximate likelihood not necessarily being /n-consistent, suggest that
we should not attempt to fit the stationary form, but one of the other forms that is associated
with different “boundary” assumptions.

The third possible boundary effect is that estimators may be biased, and that different
“boundary” assumptions may reduce this bias. Whilst this is undoubtedly true, it is not at all
clear in what way some boundary assumptions reduce the bias for estimators of parameters of
V' for the same, or other, forms; nor is it clear whether changing the “boundary” assumptions
15 a good way to reduce estimator bias, or even whether the bias is large enough to cause
COICETITL.

The geographical discussion of “boundary effects” is greatly complicated by the lack of
clear definitions of what are the effects that are causing concern, and what are the attempted
solutions to them. It is difficult to comment on ambiguous or unclear work, since there is
always the possibility that there are hidden assumptions that make the analysis correct. A
step forward in research would be for all assumptions and aims to be clearly stated.

5. Missing Values

Although I had locked at the theory for estimation of the parameters of a spatial model
when observations at some sites are not available as early as 1978, it was not until 1983,
when I was told that geographers were working on a special case of the problem and were
encountering difficulties, that I completed and wrote up the work (Martin, 1984). The results
were circulated earlier, and mentioned in Martin (1983). This work covered in full generality
the estimation of parameters using exact maximum likelihood for a Gaussian process. The
work was referred to in several subsequent publications by geographers—see for example
Bennett, Haining and Griffith (1984), Griffith, Haining, and Bennett (1985), and Haining,
Griffith and Bennett (1984, 1989), although not always correctly, as I pointed out in Martin
(1987).

There are two aspects to ‘missing values’. One is the ability to use, with possibly minor
modifications, known estimation methods on a given configuration of sites, usually a regular
rectangular lattice. The results are of most usefulness when the covariance matrix, or its
inverse, is of a known simple form on a given configuration, and m, the number of unobserved
sites, is small. The other aspect is the prediction of the unobserved values.

Much of the oniginal impetus for the interest of geographers appears to have been as a
possible ‘solution’ to the ‘boundary problem’. As I discussed in Martin (1987), and have
commented again above, missing value techniques are quite irrelevant to the ‘boundary
problem’. Since then, more realistic problems have been proposed in which missing value
techniques may be valuable. One is in the area of analysis of remotely-sensed data. For such
data, 1t is possible to have unobserved sites for several reasons. Two possibilities are cloud
cover when a passive sensor is used, and instrument malfunction. The former will result in
unobserved data in all bands over a region on the ground, whilst the latter may result in the
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loss of data on individual pixels or lines of pixels, and may only affect one band. Another
situation in which ‘missing data’ arises is when the data contain possible outliers, that is
observations that appear unusual amongst the others, or influential observations, that is data
which have a large effect on the analysis. It may then be desirable to perform any analysis
with such observations omitted. Some general theory on influence and residuals for known
V' is in Martin (1989b). It may even be sensible to routinely calculate such ‘leave-k —out
statistics’ as a diagnostic procedure—see the time series case in Bruce and Martin (1989).
Procedures for dealing with an unknown mean and an unknown dispersion matrix require
further investigation (Martin, 1989c).

Although the application to remotely-sensed data has been mentioned recently (Hain-
ing, Gnffith and Bennett, 1989), the example given is unsatisfactory, in that there is little
indication that the chosen covariance structure, the one-parameter first—order conditional
process, is an adequate representation.

The main purpose of that paper appears to be to advance statistical theory on the loss
in information (here meaning the Fisher information) when some sites are unobserved. The
interest appeared to be on how the loss varies over different spatial configurations of the
spatial sites. Results were obtained numerically for the special case of the one-parameter
conditional process on a rectangular lattice.

The paper does not explain what the purpose of obtaining these results is. Since in any
application the unobserved sites are given, and are not in the control of the investigator, it is
difficult to see what the point is in comparing different configurations and different numbers
of unobserved sites. However, if we assume that the results are of interest, it is easy to obtain
theoretically much more powerful results. I have given the appropriate theoretical results
in Martin (1989a). Special cases can easily be found—all the cases considered by Haining,
Griffith and Bennett (1989) are also given in Martin (1989a). Many other special cases can
also be considered, although it is only for the one-parameter conditional process that the
formule are at all simple. Mrs. T. Krug at Sheffield has obtained formulz for more sites
and for the one-parameter firsi—order simultaneous model.

Assuming that there is an interest in these results, I shall outline some of them, elaborate
on some of the details omitted in Martin (198%a), and include some new results. Assume
that the n—vector of observations (strictly the random variable) is u, with dispersion matrix
var(u) = Vo?, where o7 is a scale parameter and V' depends on 8. Although it is possible
to allow the mean to include trend and other fixed effects, I shall just discuss here the case
of a constant mean, so that E(u) = u1,,, where 1, is an n—vector of ones. Also, it is easy
to generalize to the case that V' is a function of the g—vector .

Assume also that data are unavailable at m of the sites, and that u is permuted into x,
where the first n —m elements of x are y and correspond to the observed sites, while the last
m elements are z and correspond to the unobserved sites. Similarly, let var(x)/e? = Vi,

be partitioned as
( Vig Ve )
sz Ve

Vw Ve
V=¥ p'u): s
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Then, in general, the loss in information on g when m sites are not observed is c'(V*)"1eo?,
where ¢ = V*1,,. For the one-parameter conditional process with V' =! = | — BW , we find
that V** = I — BW,,, where W is partitioned similarly to V. Also, for any interior site
of the first-order process on a rectangular lattice, ¢ = alm,, where @ = 1 — 48, Thus the
information loss then becomes 1,'(] — AW ..)"!1,, times aZo?.

Exact formulee can be obtained for this situation. Some general results, plus particular
formule for the different configurations when m = 1,2, 3,4 are given in Martin (1989a).
Note that when m = 4, one of the configurations was omitted by Haining, Griffith and
Bennett (1989). For this case one configuration is

XX

X

and the loss is 1%—+aﬁ.ﬂ times a’s®. This is intermediate in its loss between cases 3(d) and

3(e) of Haining, Griffith and Bennett (1989). For the values of 3 they consider, 0.075, 0.150,
and 0.225, the loss is 2.218, 0.840, and 0.063 respectively.

Exact results can be obtained for greater values of m , although the number of essentially
different configurations increases rapidly with m, as does the difficulty in general in obtaining
the formulz for the elements of (V' **)~!. The recursion given below is often useful. However,
good approximations are also possible. Provided that |3] is not too large, the information
loss on @ for m missing sites is approximately {m + 2m.8 + 2(m) + m3)B?%} times a?e?,
where m; is the number of ‘links’ of length one among the missing sites, and ms is the
number of ‘links’ of length two. These links are found using the usual city-block metric.

As an example, consider the case m = 5. There are several cases in which not all the
sites are joined, but I will only consider those four cases in which all sites are connected.

Case 1 Case 2 Case 3 Case 4
X XX X

XX XX 00 00X
X

The pair of numbers associated with each configuration are (mi1,m32). The figure below
shows how these are obtained for Case 1.

The 4 links of The 6 links of
length 1 length 2

X X

X b

In general, the exact result requires the inversion of V**. However, using results on
partitioned matrices, it is possible to obtain recursively formula for the information loss.
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Partition the m sites into m — 1 and 1, so that

V= = A b
~\b' d

where A is an m — 1 square matrix, b is an m — 1 vector and d is a scalar. Then

(V51 AloN 1 —A7'b\ [-A"'b)'
N0 o) Td-bA b\ 1 1 '

Thus, if ¢ = al,,, which is so for interior points for conditional and simultaneous
schemes, then the loss in information on p is the loss for the m — 1 sites,

(1, _ A "1 1)e?e?,

. 1-b'A"11,,.1)° . i
plus a’e? times ( ey ..-I‘Th 1)° This latter additional term can be very easy to calculate

if the extra point is carefully selected. For instance, for the one-parameter first-order con-
ditional process, if in Case 1 above the centre point is chosen, then 4 = I; and b = —A1,.

2
Thus the loss is a?e? times 4 + %EL.

Note that the above result can easily be extended to m sites being partitioned into
m —m' and m'.

Results for the one-parameter first—order simultaneous model can be obtained, but are
nowhere near as simple. There are several reasons for this. Firstly, (17**)~! does not have
the form (I — 8W..)'(] —BW.:). Secondly, because V' =! has non-zero terms for (1,1) and
(2,0) lags, there are more cases to consider. For example, when m = 2 there are 3 different

configurations, and when m = 3 there are 12. The numbers for the conditional process are
2 and 3 respectively.

Thus, when m = 2 the four cases are:

Case 1] Case 2 Case 3 Case 4
immediate lag 2 diagonal all other
neighbours neighbours neighbours configurations
xx X-X x-
"X

For the conditional process Cases 2 and 3 are included with Case 4. An interesting point
with the simultaneous process is that when 8 > 0, the smallest loss is not associated with
Case 4, but with Case 3. This follows from the element of V' ~! associated with diagonal
neighbours being 28%, which is positive. The next smallest is for Case 2, as the element of
V=1 associated with lag 2 neighbours is 82, which is also positive.

So far I have considered the easier case of the loss of information on p. The loss of
information on 8 was also considered in Haining, Griffith and Bennett (1989), and Martin
(1989a). This is more complicated for several reasons. Firstly, there are more configurations
to consider, and secondly, the formule involve both V** and (V**)~!. Because of the
second point, the formulee depend not just on the configuration of sites, but also on the
actual positions of the sites. However, provided attention is restricted to interior points of
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the stationary process, then the result only depends on the configuration. Although Haining,
Griffith and Bennett (1989) do evaluate their results for the stationary process, it appears
that they are also assuming V=1 =T — W .

Note that if the loss of information on # is being considered because of an interest in
var(3), then the information required is that for 3 conditicnal on ¢?, which was considered
in Section 2.

The formulee for the loss of information on # are most easily obtained by using the
missing information principle of Orchard and Woodbury (1972). 1 take their principle to be
their equations (2.13) and (2.15); that is, the use of the expectation with respect to z of
the conditional likelihood of z|y. Setting the mean u to 0, since its value does not affect
the information on 8, the distribution of zly is Normal with mean —(V#)=1V#y and
dispersion matrix (V' **)~1g?,

Since the second differential with respect to 3 of both V% = —W gy and V= =T AW,
is 0, the second differential of the conditional log likelihood becomes

- lﬁzlnﬁ’r:” 1 aﬂ{}rrv pz“;::]—lv.ty},}
2 0p8* 202 ap? :

The first term can be evaluated as before. Taking the expectation over y of the second term
gives

1 aﬂ{v*y:(v.::}—lvly}
Etl‘ﬂ.{‘.‘ﬂ Vaw RE :

Now, V¥(V=)=1y = = g2W (I — BW..)"'W,y, and so its second differential with
respect to G is 2W,. (I — BW,,)73W,, {compare this with the second differential with
respect to x of 22/(1 — az), which is 2/(1 —az)® }. Then using (VE)y"IWWaY, = -V,
see Martin (1984)] and V., V¥ + V.,V ** = ] it follows that this expectation becomes

g? trace {(V **)"*V,;,W,. } = B2 trace {(V**)"1V,, — (VE=)72)

The second term here can be evaluated as before, using the sum of squares of the elements
of (V**)7! for small m. The first term involves V., as stated above. For small m, exact
formulee can be found (Martin, 198%a). Again, approximate formule can be derived—see
Martin (1989a).

Also, these formulee can be extended to larger m, and to other processes. Although the
mathematics is interesting, I feel that further theory should be justified by practical needs.

Which models are reasonable for a given application needs to be discovered, as well as why
it is of interest to know the loss in information.

6. Conclusion

[ have given a personal view of some of the spatial statistical models used in geography, and
of some of the publications concerning these models. I hope that the papers in this volume
will lead to an improvement in modelling, and in published research. If geographers stimulate

statisticians by presenting problems of practical interest, then valuable joint research should
result.
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If my comments have been unduly negative, I should say that 1 have been heartened by
the apparent willingness with which geographers accept criticism of their mistakes, although
I would prefer that the mistakes were not made. I should also emphasize that similar
comments could be made about workers in other disciplines, or even within the statistical
community. I have tried to ensure there are no mathematical or statistical errors in this

paper, and will endeavour to correct any that I notice subsequently or that are bought to
my attention.
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Discussion

DISCUSSION

“The role of spatial statistical processes
in geographic modelling”
by R. J. Martin

Statistical models of spatial dependence have been used quite commonly in geographic re-
search. In his presentation, the author both reviews and comments on their use. He further
takes up the topics of boundary effects and missing values, attempting to clarify the former
and giving some new results on the latter.

The paper starts with a substantial section (Section 2) on models that includes mathe-
matical details on their fitting as well as the author’s view on how a modelling exercise should
be justified. Computations for fitting first-order models are thoroughly discussed, and the
author gives convenient, simple forms for the Fisher information matrix of the parameters,
both for the conditional and the simultaneous versions. Then restrictions of first—order mod-
els are developed, leading to a review of selected extensions, still using contiguity matrices,
which would allow some form of non-isotropy for the dependence or an increase of its range.

The author omits from his review a class of models where the covariance between sites
i and j is not modelled through arbitrarily defined contiguity matrices, but rather has
a parametrised functional form. This class of models rarely has been used in geographical
studies, although it has received attention in the statistical, epidemiological and geostatistical
literature (Ripley, 1988; Cook and Pocock, 1983; Mardia and Marshall, 1984; Vecchia, 1988)
it would be interesting to see applications of this model in geography.

Section 2 starts and ends with some methodological considerations about justification
and comparison of models. This is certainly an important area that, until now, has not
received enough attention, and the author's emphasis and suggestions are most welcome.
I would add that the strategy used to justify or compare different models depends upon
whether the aim of the modelling exercise is explanatory, for forecasting purposes, or to be
used in a generalised regression framework.

Section 3 recounts some of the arguments that have arisen between the author and
geographers concerning the application of statistics. Although part of this section may be
difficult to follow for a reader who does not have all of the quoted papers on hand, the author
develops a convincing case on the desirability of constructive discussions between statisticians
and geographers that should benefit both professions. It is in everyone’s interest to avoid
mncorrect uses of statistics. Discussions of this kind often stimulate new research.

Section 4 is of a general nature and argues for a precise definition of what is called
the boundary value problem, whether it influences the dispersion matrices or the bias in
estimators. In contrast, the final section gives some results on the loss of information due
to mussing values on the mean g and the parameter 8 of the first-order conditional or
simultaneous process. Since the author wanted to expand on some new results, this section
1s the least self-contained. Useful approximations for the loss of information are given when
the number of missing sites becomes large.
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In this paper the author presents original and thoughtful considerations on the use of
spatial statistics in geography, emphasising throughout the need to link theoretical develop-
ments (like those arising for missing values) to relevant examples, and to relate models to
geographical problems.
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PREAMBLE

The three foundations of learning:
Seeing much, suffering much, and studying much.

Catherall

The terms “traditional” and “classical” refer to statistics governed by very resiric-
tive assumptions, and cover much of statistical theory and practice prior to the
widespread advent of numerically intensive computing capabilities. It was increased
computing power that enabled staiisticians to gradually develope abilities and skills
that can distinguish between tenable and unienable assumpiions. Hence io its benefit
spatial statistics has seen much that has gone before i, Outliers—leverage points—
influence functions—these and other dingnostics have been devised in order io betier
assess, deal with and undersiand statistical assumption violations. Bui what do these
diagnostics reveal about geo-referenced data? Nothing perhaps; everything perhaps.
Wartenberg suggests that geo-referenced data analyses may have suffered much from
a lack of comprehending what such diagnostic tests tell about spatial data. The pur-
pose of this paper is to help determine which aspects of spatial patierns and individual
geo-referenced observations contribute most to spatial autocorrelation, based upon
these standard diagnostic statistics. [Upton, while questioning some of the specifics,
agrees with the thrust of Wartenberg’s work, supporiing the contention that there is
a need for methods to conduct ezploratory spatial data analysis. In Upton’s opinion,
this work helps o address a new and fruitful research area in spatial statistics, and
accordingly he views il as one step in developing ezploratory spatial daia analysis,
Indeed, much studying remains!

The Editor

———————— e
e — e ——— .
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Exploratory Spatial Analyses:

Outliers, Leverage Points, and Influence Functions
Daniel Wartenberg *

Department of Environmental and Community Medicine, Robert Wood Johnson Medical
School, 675 Hoes Lane, Piscataway, NJ 08854, U. §S. A.

Overview: Exploratory data analysis provides quick, easy to calculate summaries
of data that convey much of the information relevant to interpretation of a sample.
While development of exploratory methods in traditional applications has been ex-
tensive over the past decade, development of analogous methods that exploit the
spatial relationships among observations have lagged. This paper presents three
approaches for exploratory tools for use with spatial autocorrelation analysis that
emphasize spatial aspects of the data.

The first approach proposes a method for detecting outliers called local trend
surface residuals (LTSR). For each observation, a trend surface is fit to neighbors of
a point and the difference between the observed value and the prediction based on the
trend surface is evaluated. Highly deviant values are termed outliers. The method
can detect spatial outliers, points that are outliers with respect to their neighbors
while not being outside the overall range of observations. The second approach
evaluates the location of observations relative to random placement of observations.
Isolated points should not be considered in the same context as clustered points.
The third approach develops influence functions for spatial autocorrelation analysis.
This approach evaluates the importance of each observation in the determination of
the value of the spatial autocorrelation coefficient.

These methods are applied to simulated data and to one real data set, the rate
of population growth in Ireland 1926-1961. Results demonstrate the utility of these
approaches for identifying unusual values and for characterizing the basic structure
in a data set.

1. Introduction

The need for quick, informative and easy to perform descriptive methods for the analysis
of data have catapulted exploratory data analysis (EDA) methods into the forefront of
statistical development over the past 10 to 20 years. Development of analogous methods
for the description of spatial data have lagged considerably, although recent efforts in this
direction hold promise. This paper considers some of these developments, proposes a context
for these approaches, and presents some recent suggestions for additional consideration.

The motivation and direction for work in exploratory, descriptive analysis owes much of
its development, insight and widespread acceptance to the pioneering and innovative work of
John Tukey (Olmstead and Tukey, 1947; Tukey, 1949; Tukey, 1951; Tukey, 1977; Mosteller

w
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and Tukey, 1977). By showing that quick did not mean inaccurate, and that approximate
did not mean without statistical foundation, Tukey was able to use EDA methods to lead the
development of a field of statistical investigation that ran counter to many statisticians’ ways
of thinking; it was easy to do, and results were instantaneously apparent and heuristically
pleasing. One did not need years of statistical training to appreciate the importance of
numerical results. And yet, the methods are founded in rich statistical traditions. Tukey,

among others, provided much of the rigor and statistical underpinning necessary for the
discipline to gain acceptance.

Following Tukey’s development of “quick and dirty” methods for evaluation of data,
others began looking at observations that were inconsistent with a data set (outliers—see
Hawkins, 1080; Barnett and Lewis, 1984), observations that had a disproportionate effect
on a summary statistic or result (leverage points—see Belsey, Kuh and Welsch, 1980; Cook
and Weisberg, 1982; Atkinson, 1985) and observations whose omission would result in a
vastly different summary statistic or result (influential points—see Belsey, Kuh and Welsch,
1980; Cook and Weisberg, 1982; Atkinson, 1985). These methods allow for characterizations
of a data set that go beyond simple statistical summaries. They relate information about
consistency of observations, stability of parameter estimates and homogeneity of observa-
tions. After 20 years of development, the field of EDA is an accepted branch of statistics.

and results of EDA analyses are reported routinely along side more traditional statistical
SUIMITNATIES.

Development of EDA methods specifically designed for geographical data have lagged
behind developments of more general EDA approaches. As the EDA methods have become
popular, some geographers have incorporated EDA evaluations into geographical studies, but
only as formulated in the aspatial context (e. g., Unwin and Wrigley, 1987a; 1987b). That
1s, geographers, like other data analysts, look for outlying observations in a data set using
methods that ignore geographic information and consider only the aspatial variate values.
Or, geographers conducting regression analyses use leverage and influence curves to evaluate
regression results without consideration of each observation’s neighbors. While this approach
15 useful, it neglecis the additional information available to geographers, namely, the spatial
location of each observation and the variate values at each observation’s neighbors.

To exploit this additional information, I will present a few methods that emphasize the
geographic components of a data set in the EDA spirit. Most previous work in this area
has taken place in the field of geostatistics, principally directed at enhancing the robustness
of geostatistical predictions or kriging (e. g., Cressie and Hawkins, 1980: Diamond and
Armstrong, 1984; Hawkins and Cressie, 1984; Dowd, 1984; Omre, 1984; Brooker, 1986;
Bardossy, 1988). Considerably less attention has been devoted to descriptive analyses of
the data, process-oriented interpretations of correlograms (variograms), and identification
and characterization of contamination or error variance (however, see Cressie, 1984: 1986:
Cressie and Chan 1989; and Grffith, 1988 for work in this direction).

The goal of exploratory spatial analysis is to provide a quick and meaningful summary of
both the spatial and aspatial characteristics of a data set. That is, we want ways to describe
unusual observations, trends, patches, clusters, and systematic pattern in our data. In
such descriptions, we must consider location, neighbors, observed values and the covariance
of these characteristics. | present a few ways of decomposing the spatial structure of a
given data set. The goal is to determine which aspects of the data contribute most to the
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spatial autocorrelation structure of the data, and to seek some substantive interpretation
of this structure. To begin, I undertake a preliminary outlier assessment to find individual
observations that are unlike all others. I consider these in an aspatial as well as a spatial
context, and evaluate whether or not any localities are extremely isclated. Upon detecting
outliers, I remove them from the data set. Then, I evaluate their spatial autocorrelation
structure and the contribution each observation makes to the overall spatial pattern.

2. The Problem: Detecting Unusual Observations

Unusual observations, or outliers, are troublesome data points for most statistical analyses.
By definition, outlier observations are data points that stand apart from the rest, those that
are extremely large or extremely small when compared to the distribution of all other ob-
servations, the definition of the term “extremely” taking on different meanings for different
investigators and purposes; generally speaking, it refers to that which appears to be incon-
sistent with the rest of the data (Barnett and Lewis, 1984). Qutliers are troublesome in that
they may unduly influence summary statistics or other characterizations of a data set. Since
they are uncharacteristic of the rest of the data set, by definition, summary statistics that
reflect the few outliers rather than values of the other observations can be misleading.

Outliers can be defined operationally in terms of a variety of properties (Welsch, 1985).
Three are used most frequently. First, we can define an outlier as an observation that
1s substantially greater or less than all other observations, as noted above. Second, we can
define an outlier as an observation that contributes disproportionately to a summary statistic,
a leverage point. Third, one can define an outlier as an observation whose deletion would
effect a disproportionate change in the statistic being estimated or evaluated, an influential
point. In discussing leverage points in regression analysis, Hoaglin and Welsch (1978) suggest
that individual elements of the “hat matrix” (which is based entirely on the independent
variables) should not deviate too far from a balanced design (each point having an equal
influence) or else a few observations could disproportionately dominate the calculation of the
regression coefficients. That is, in concert with the dependent variable, they could control the
value of the regression coefficients to the near exclusion of all other observations. Influence
points in regression, while similar in concept to the leverage point, reflect the covariance
between independent and dependent variables in addition to each observation’s consistency
with the rest of the observations. (That is, an outlier for the independent variables will not
have a large effect on the regression coefficients if the dependent variable is near the mean.
Such a point would have high leverage but low influence. But to be influential, a point must
have moderate to large leverage.)

Investigators are interested in influence and leverage because traditional analyses of data
sets with high leverage or influence points may lead to misinterpretation if these properties
are not noticed. Generally speaking, one assumes implicitly that a summary statistic reflects
properties of an entire data set. For data sets with high influence points, the summary
statistic may disproportionately reflect this one data point in preference to all others. While
this information is important, it must be put into context. Investigators not only want to
know about this data point, but also want to know about structure in the rest of the data
set. Once identified, influential points can be removed, summary statistics calculated and
both sets of results (with and without the influential point) should be reported.
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Investigators have proposed a variety of ways of analyzing data sets with outliers. Most
simply, one can detect outliers by a priori evaluation without consideration of which sta-
tistical analyses will be undertaken later. This would identify points that are unusual in a
distributional sense, and give one an indication of the variability and consistency of one’s
data. The outliers could be removed from the data set and then more traditional analyses
could be undertaken with the reduced data set. The results without the outlier can be inter-
preted on their own as well as in comparison to similar analyses with all the data points. One
must, however, be wary of interpreting the results for the analysis with the outlier included
in terms of underlying pattern or process, as the results reflect that status of the outlier in
disproportion to the other data points.

A more rigorous approach to accommodating outliers is to develop statistical methods
that are insensitive to or diagnostic of the influence of individual outlier observations. Such
methods are called robust statistics (e. g., Huber, 1081; Hampel et al., 1986). Robust statis-
tical methods either identify data points that are unlike the others (outliers) or have undue
influence or leverage on a summary statistic of interest, or provide results and summaries
that are insensitive to individual observations that may be aberrant. These methods are
different from the a priori methods in that they tend to evaluate the effect of each data
point on some statistical summary that is of interest to the investigator, identify unusual
values and provide results that do not allow individual data points to dominate the analysis.

To clanfy these concepts, consider the following example. Given a data set for a re-
gression analysis, one can look for outlying values for each of the independent variables, in
turn, and also separately for the dependent variable. This would correspond to the a priori
considerations I described first. Then one could evaluate the independent variables as a set
of variables separate from the dependent variable, detecting observations that could have
disproportionate effects on the regression coefficients due to individual observation distances
from the mean values of these variables. These are called leverage points. Then, one could
determine which observations have a large impact or influence on the regression itself in two
ways. One could evaluate quantitatively how much each point contributes to each regression
coefficient. And, one could calculate the regression coefficients for the entire data set except
one point. One could do this calculation repeatedly, omitting each data point one at a time.
The scaled difference between the regression coefficient for all data points and that with a
given point removed is called the influence of that point.

Usually, points identified as unusual in terms of leverage also will be identified as unusual
in terms of influence. However, an outlying dependent variable observation might not affect
a regression greatly if the corresponding values of the independent variables were inconse-
quential. In terms of the analysis of the overall data set, after unusual points are identified,
such observations can be culled from the data set to remove their influence entirely, and one
can compare analytic results with and without the outliers.

When analyzing geographic data (or any data set in which the observations are not
independent of each other), one may encounter even more types of outlier observations.
First, one may find an observation whose value would be considered unusual in any data set,
that which is substantially different from all other observations, which I call an aspatial or
global outlier. These are the same as the outliers discussed above and identified a priori.
Or, one may find an observation that is not larger or smaller than all other observations,
lying well within the range of variation of other values. This observation, however, may be
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very different from all those observations nearby it, and this is what I call a spatial or local
outlier. The concept of near or local is critical to this definition. For regional or quadrat
data, near may mean contiguous. For point data, it may mean that the distance between
the point in question and a neighbor is within a specified threshold. Or, neighborliness may
be defined by the connections of a Delaunay tessellation. In all of these, the definition of
neighborliness is in the hands of the investigator.

Time senes analysts also undertake evaluations of the similarity of neighbors, although
temporal data has a natural ordering defining neighbors. That is, in temporal analyses one
studies sequential observations with neighbors being defined as the previous and successive
observations. Temporal data also can have local outliers. These would be observations that
are different from values near them in time, but not outside the range of observed values.
Because of the possible dependencies of neighboring values, detecting outliers in time series
1s more complicated than for the case of independent observations (although less complicated
than for spatial data). Fox (1972) defines two types of outliers in time series: (1) observation
errors that affect single data points only, and (2) innovation errors that affect many nearby
points. Denby and Martin (1979), Abraham and Box (1979) and Muirhead (1986) further
emphasize this distinction and argue that different types of outliers warrant different types
of adjustments. Others have focused on model fitting, filtering (Kleiner et al., 1979) and
influence functions (Kinsch, 1984). Putterman (1988) considers data with autocorrelated
errors by modifying diagnostic indices for data of independent observations, and shows the
importance of considering outliers in the evaluation of data with first—order dependencies.

Two-dimensional dependencies add further complications. Some aspects are considered
explicitly in geostatistical and geographical analyses, but others are omitted. Even when
conducting analyses of geographic data, most investigators who have subjected their data to
outlier tests have done so without consideration of where the values occur, even though locally
extreme values (those substantially different from a group of neighboring observations) may
be as problematic as globally extreme values. Investigators have discussed the robustness
of geostatistical methods and the influence that an individual observation can have on the
geostatistical prediction methods produce (e. g., Cressie and Hawkins, 1980;: Hawkins and
Cressie, 1984; Dowd, 1984; Omre, 1984; Diamond and Armstrong, 1984; Brooker, 1986;
Bardossy, 1988). However, even in these contexts little attention has been paid to identifying
or characterizing outliers.

Cressie (1984; 1086) develops some methods for detecting outliers when kriging or cal-
culating variograms. Cressie is particularly concerned with the position of unusual values
and their neighbors, and develops a number of tools to detect troublesome observations.
Most of his methods are designed for regularly spaced or gridded data. When confronted
with irregularly spaced data (e. g., Cressie and Read, 1989), he superimposes a grid and
assigns observations to the nearest node. While a practical solution, this procedure may dis-
tort small scale spatial structure. Further, it deflates the relative importance of individual
observations that are geographically clustered.

Unwin and Wrigley (1987a; 1987b) and Griffith (1988) investigate leverage of geographic
data. Unwin and Wrigley consider the case of trend surface analysis, which is the regression
of an independent variable on powers and cross products of geographic coordinates (Chorley
and Haggett, 1965). Using traditional indices of aspatial leverage (e. g¢., Belsey, Kuh and

elsch, 1980; Cook and Weisberg, 1982) on geographic data, they show that observations
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near the edges of a study area or isolated observations often have disproportionate effects of
trend surface regressions.

Griffith (1988) extends the traditional diagnostic indices for an aspatial framework to a
spatial framework by modifying the indices to incorporate the non-independence of observa-
tions in a generalized least squares (rather than ordinary least squares) regression. He shows
that evaluation of unusual values is of considerable importance in regressions using spatial
data. Failure to do so can lead to erroneous conclusions about the presence or absence of
outhers.

Additionally, it is worth noting that various investigators have considered the impact of
outliers on non-geographic data in which observations are not independent. This particular
work has focused on generalized least squares regression in which the dependence is modeled
by factors other than geographic location (e. g., Pierce and Schafer, 1986; DeGruttola, Ware
and Louis, 1987; Lee, 1988).

Given the general importance of considering outliers in statistical analyses, the additional
complexity of geographic data, and the paucity of methods directed towards geographic
outliers, 1t 1s the purpose of this paper to suggest some methods of detecting and describing
such unusual observations. In biclogical and medical applications the identification and
description of these sorts of observations may be as informative in their own right, as well as
important for the reduction of influence of these outliers on one’s eventual statistical goals.

3. Methods: Characterizing Spatial Outliers

In conducting spatial analyses there are at least three ways one can characterize outliers.
First, outliers can be identified as traditional, aspatial outliers; these are observations that are
simply numerically different from all others in a data set. Second, outliers can be identified
as outlying locations, referring to locations for variate observations that are far from all
others, locations that have no nearby neighbors (i. ., isolated points). These correspond to
points with high leverage. Third, outliers can be identified as spatial outliers that are defined
as observations whose variate values are unlike the values of their neighbors (although these
values may be well within the range observed for the entire data set). These observations
can be very influential. I consider each outlier type in turn. I note that the second type of
outlier described here is analogous to leverage. But, since the focus of this paper is on the
methods of spatial autocorrelation in which there are no dependent variables, I consider the
methods as slightly different.

3.1. Aspatial Outliers

Outliers are observations that are unlike all others in a data set. They may be due to ob-
servation, recording or transcription errors. They may represent heterogeneous populations.
They may be the result of data contamination. Or, they may even be the result of random
fluctuations. Various authors have presented reviews of methods and theories for detecting
and identifying outliers (Barnett and Lewis, 1984; Hawkins, 1980 Atkinson, 1985). These
methods can be applied to spatial data to detect the most flagrantly different observations
(. e., global outliers). I consider just a few of these methods as others have written ex-
tensively on their use. For simplicity, we will use only a few methods based on normally
distributed data, namely N2, N8, N14 and N15, as described by Barnett and Lewis (1984).
N2 assesses the significance of the most extreme standardized normal deviate, high or low.
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N8 compares the gap between the two largest values with the overall data range and the gap
between the two smallest values with the overall data range, picking the maximum of these
two differences. N14 is the sample skewness and N15 is the sample kurtosis. These latter
two methods test a data set for normality, which is a useful exercise since an outlier tends to
distort the observed frequency distribution of an otherwise normally distributed set of data
points. With these four measures in mind, it is useful to provide sample estimates of the
first four moments of the distribution of observations (mean, variance, skewness, kurtosis),
nonparametric data summaries (minimum, maximum, median, hinges) and a stem-and-leaf
plot of the data. The significance cutoffs for the aspatial tests are derived from the tables
provided in Barnett and Lewis (1984).

3.2. Outlying Locations and Leverage

The second type of outlier I consider is an outlying location. That is, in some data sets,
one (or a few) observations are situated far away from all other observations in geographic
space. This positional anomaly will affect their influence on spatially weighted statistics.
For instance, if one is using an inverse squared distance weighting in spatial autocorrelation
analysis (Cliff and Ord, 1981), influence of an outlying observation would be limited. Sim-
ilarly, if one is calculating a correlogram, the influence of outlying observations would be
relegated to the far distance classes.

In essence, this is a consideration of the spatial point pattern of the data locations. Var-
lous investigators have developed extensive reviews on the analysis of spatial point patterns
(e. g., Ripley, 1981; Diggle, 1983; Upton and Fingleton, 1985; Ord, 1990). I note that while
most evaluations of spatial point patterns seek to identify clustering or shorter than expected
interpoint distances, outlier detection is based upon finding longer than expected interpoint
distance. Thus, while many tests exist to find non-random distributions of observations,
most are not well suited to the task of finding outliers.

A complementary problem, that of point clustering, has been discussed by Journel (1983,
Appendix A). He argues that if too many points occur in close proximity, then averaging
functions will overemphasize these points. He proposes a method of evening out the density
of observations which he calls declustering. To decluster a data set, one superimposes a grid
on a data set and then replaces the observations within a grid cell by their mean. This
has the effect of removing undue weight of clustered points, but also obscures any variation
that might exist within the grid. One also must worry about small-scale amisotropy that
might cause the placement of the grid to affect the value of the declustered data. A similar
averaging method has been proposed by Robinson and Mathias (1972).

As noted above, Cressie (1984; 1986) and Cressie and Read (1989) also consider the
non—uniform distribution of sampling locations. For their study of Sudden Infant Death
Syndrome, Cressie and Read wanted to use averaging methods that require gridded data.
To accommodate irregularly spaced data, they allocated each observation to the nearest grid
point and proceeded by using the new location. Since their data field was based upon re-
gional summaries rather than individual point observations, averaging at grid points was not
necessary. Again, while facilitating application of a particular methodology, this alteration
may affect the ability to detect small scale pattern.

Evaluation of reflexive nearest neighbors is another method that has been proposed for
evaluating spatial point patterns (e. g., Clark and Evans, 1055 Pielou, 1977; CLiff and
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Ord, 1981; Diggle, 1983). This again relates to global data characterization rather than the
evaluation of the remoteness of individual localities. In the case of clustered data, reflexive
nearest neighbors will be evident. Pairs of points will be closer to each other than to any other
points. The frequency of such point pairs is an index of localized clustering, or fragmentation,
rather than changes in overall density of points. Outliers, in contrast, would be points that
are far away from all other points, and would not have reflexive nearest neighbors.

There are a few simple ways of evaluating the isolation of an individual data point. First,
one can calculate the distance from each observation to its nearest neighbor. A limitation of
this approach for points located on the edge of a study area is that this distance is generally
larger than for those that are internal. Second, one can calculate the average of the distances
from one point to all other points. Third, for correlograms, Delaunay tessellations or other
models with defined neighborhoods, one can calculate the number of points with which an
observation 1s connected (6 per point, on average—Upton and Fingleton, 1985, p. 97). CLff
and Ord (1973) note that in conducting spatial autocorrelation analysis one should try to
have equal numbers of connections for each point (sum of w;s) lest one or a few points
dominate the analysis. Fourth, one could calculate the area of the Thiessen (or otherwise
specified) polygon surrounding each point. Each of these computations gives slightly different
information about spatial isolation. Each can be studied by using conventional measures that
detect aspatial outliers. To allow for comparisons among data sets, these indices should be
scaled by the maximum possible values for a data set. In this paper I consider only the first
three indices that I have proposed here.

3.3. Spatial Outliers and Influential Points

The third type of outlier I consider is the spatial outlier. This type consists of points that fall
within the distribution of other observations but are unlike their neighbors. They influence
statistics that assess spatial pattern of variate values because comparison with near neighbors
show large differences. Unlike leverage points, influence points must be important in terms
of both location and variate value.

There are (at least) three ways to investigate the consequences of spatial outliers. First,
one can consider the extreme of deviations from an overall trend in the data. That is, if the
data are non-stationary, one can model this effect and look for deviations from it. Rather
than asking simply if the most exireme values are sufficiently far from the other values to be
considered data from a separate population, one could ask if there are any values that are
sufficiently far from a model of the geographic distribution of the data so as to be considered
statistically different from the other observations; that is, are outliers or contaminants present
with respect to overall geographic pattern? For example, along a linearly increasing trend of
a specific variate, a new sample value equal to the overall maximum value of the spatial data
series would be unusual if it were found at the lowest part of the trend. This point would not
be an aspatial outlier, as it falls within the range of other observed values, but does represent
a large deviation from the overall model of the data. One method of evaluation here is to
fit a trend surface to the data set and then study the properties of the residuals. While
this approach has some utility, large residuals may reflect unusual observations, nonlinear
trends, data heterogeneity, or other complicated situations; residual analysis will not help
distinguish between these causes.

In time series terminology, the analogue of the analysis of residuals for a fitted trend
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surface is the application of a high-pass polynomial filter to the data. A generalization of
this approach for spatial data would be to use a geographic high-pass filter on the data that
1s more general than a polynomial of the coordinate location (e. g., Holloway, 1958; Tobler,
1969). Such a filter could remove low frequency patterns from the data (i. e., trends) while
leaving high frequency, local pattern. One example of such a filter is a first—difference filter
in which one differences an observation from a weighted average of its near neighbors. This
allows local variation to remain while removing large scale pattern, regardless of structure.
Various weighting patterns and neighborhood sizes can be used in designing the filter to
correspond to a particular type of long period, low frequency pattern. One then can evaluate
the data that pass through the filter.

A nonparametric method of high-pass filtering used by Cressie (1986) is the decompo-
sition of the surface by median polish (Emerson and Hoaglin, 1983; Mosteller and Tukey,
1977). In this method, one removes the median from each row and then from each column of
a two-way table. One performs this removal repeatedly until no more changes result. The
residuals in the two-way table represent the new data, and the values removed represent
the row and column averages. This approach is less sensitive to individual, outlier values
and edge effects than trend surface analysis, and yet also adjusts for global pattern. One

limitation of this approach is that it presupposes gridded data. If the data are not gridded,
modifications will be necessary.

A second approach for assessing local outliers is to subdivide a study region into a
specified number of smaller subregions. Statistical features of each of these subregions can be
assessed (e. ¢., mean, median, variance, quartiles). One could compare the mean and median
as an index of outlying observations, as suggested by Cressie (1984). Large differences suggest
unusual distributions and probable outliers. The subregions can be defined as overlapping
or non—overlapping. The results can be tabulated or can be plotted on the map of localities
(as in Cressie, 1984). It is important that each box have similar numbers of points within it
for comparable reliability.

Third, one could model local pattern and then look for outliers with respect to the local
distribution. For example, for each point one could fit a trend surface to the k nearest points
(e. g, k = 6 for the empirical analysis presented below). A value at the location of the
locality under consideration could be predicted from the trend surface model and the locality
value could be replaced by the difference between this predicted value and the corresponding
observed value. These “local residuals” could be evaluated with unusually discrepant values
(positive or negative) being indicative of outliers.

This treatment of residuals from locally fit polvnomial trend surfaces can be thought of
as the converse of the contouring methods using local polynomials (Czegledy, 1972). Rather
than using local polynomials to smooth out irregular variations, we focus attention on the
variations. Effective implementation is contingent upon the number and placement of control
points in fitting the polynomials. In the exercises presented in this paper, I set an arbitrary
number of control points and do not consider placement. This leads to decreased rehability
in border or isolated locations. For routine use, I recommend limiting the maximum distance
of any control point and making sure that the control points form a relatively even angular
distribution around the point to be evaluated. Unwin and Wrigley (1987a; 1987h) address
some of these issues, as noted above. However, their main concern is global rather than local
trend surfaces. For comparability purposes residuals should be standardized.
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Having removed bad or aberrant observations that are not representative of the data set
as a whole, we now proceed to look at the influence of individual data points on a statistic of
interest. In particular, we consider the impact of individual observations on the spatial auto-
correlation index known as Moran’s I (CLff and Ord, 1981); similar considerations could be
developed for other indices, such as Geary’s ¢. Since this index, I, is calculated as the double
sum of values over all possible point pairs, one can calculate how much each point, when
considered with all other points, contributes to the statistic. I call this the index decompo-
sition value. The sum of the individual values equals the statistic of interest. Similarly, one
can calculate how much the index would change if one omitted a single observation. This is
evaluated by calculating the index with all data points, and then calculating the index with
one point omitted, doing so for each point in turn. The difference between the value with
one point omitted and with all points included, times the sample size minus one, is called the
sample influence function. I note that one of the assumptions on which the behavior of the
sample influence function is based is that the observations are identically and independently
distmibuted. This characteristic does not hold for these data, and hence compromises the
statistical rigor of this approach. However, it is still useful as a descriptive index to assess
apparent influence.

It may seem that the index decomposition and sample influence function are identical;
they are not. For the index decomposition, one retains all of the data values in the data
set but shows the contribution of each data point to the observed statistic. To calculate the
sample influence function, one discards one data point from the data set and then recalculates
the index. Since the discarded data point had been used in calculating both the mean and
the variance of the data set as well as the spatial index, the new mean and variance differ
from those calculated with the entire data set. This alone may affect results. Thus, this
index reflects a slightly different property of the data than the decomposition index.

One can plot results of these analyses, looking for individual points that fail to make a
uniform contribution to this index. Single points that contribute disproportionately to the
statistic, or whose omission result in marked changes in the statistic, are not representative
of the entire surface. They can be removed, the analyses redone and results presented both
with and without the influential point(s). Since influential points are still a part of the data
set, they should not be discarded entirely. Rather, the removal and impact must be included
in the presentation of results.

In summary, I propose four measures to use for exploratory spatial data analysis. First,
as 18 customary with any data set, one should look for aspatial outliers and unusual distribu-
tions. Their presence can overwhelm any spatial pattern. Then, one should conduct a local
trend surface residual analysis. This will detect anomalous spatial values irrespective of the
underlying pattern. Next, one can calculate spatial autocorrelation decomposition- and influ-
ence indices. These reflect both the overall spatial pattern and the effects of local aberrant
values. More specifically, unusual spatial decomposition values and nearly uniform influence
values are found if there are outliers in a spatially autocorrelated surface. Unusual spatial
decomposition values and unusual influence values are found when a surface has negligible

spatial autocorrelation but outliers. Unusual influence values cannot occur if decomposition
values are similar.

To summarize, one can use these indices to characterize different properties of spatial
data. One can determine whether or not there are aspatial outliers, whether or not there are
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spatial outhers, and whether or not there is overall spatial structure. If there is no overall
spatial structure, but aspatial outliers are present (and, hence, also spatial outhers), the
aspatial tests should reveal this. Some of the spatial measures, including autocorrelation
indices, may show pattern as well, but this finding would be a reflection of the difference
between the outlier and the rest of the data, rather than an index of pattern in the non-outlier
points. Once outliers are removed, the autocorrelation indices should be near their expected
values under the null hypothesis. If there is no overall spatial structure but spatial outliers
are present, then the spatial tests should reveal this (e. g., local trend surface residuals—see
below), and again the spatial autocorrelation values also may appear to be large. Removal of
these outliers also should return the spatial autocorrelation indices to their expected values.
One can have a data set with spatial structure but no outliers. In this case the autocorrelation
indices should show pattern while the outlier indices should not. Finally, one can have overall
spatial pattern with outliers. Then both the outlier tests and autocorrelation values should
exceed expectation, and removal of the outlier should not remove (although it may modify)
the geographic structure detected by the autocorrelation analysis. It also is possible that in
this last case the spatial autocorrelation index decomposition will show variability while the
influence function does not. This cutcome reflects the contribution of the outlier point while
also showing that its removal does not eliminate all spatial pattern.

4. Data Sources

I use two different data sources to demonstrate the utility of the approach proposed above.
I use a simulated one to demonstrate the utility of components of the approach. This allows
me to construct situations that emphasize particular features of data distributions that are of
interest. In addition, I use observed data to demonstrate the applicability of these methods
to real situations. The limitation of using actual data is that a single data set rarely has
all the features of interest. Indeed, I will characterize the data set to determine what class,
from those listed above, it belongs to. Further application of the methodology to additional
data sets (in other publications) will help provide more general guidance.

Two different types of data are used in this investigation: location and observed variate
values. Accordingly, I have conducted two sets of simulations: one for the locational outliers
and one for the spatial outliers. For the locational simulation, I positioned points on a
unit square with the uniform pseudo-random number generator from Turbo Pascal. Then
I calculated, for each data point, the nearest neighbor distance and the average (mean)
distance to all other points. I report results of the shortest and farthest nearest neighbor
distances as well as average distances for different numbers of localities at various quantiles.
So that data can be compared regardless of the units of measurement, all distances are scaled
as a proportion of the maximum distance observed. Table 1 lists all of these numerical
tabulations, as well as the means of results for 100 simulations.

Other investigators have looked at the distribution of nearest neighbor distances for
describing the pattern of geographic data (e. g., Silverman and Brown, 1978; Ripley and
Silverman, 1978; Saunders, Kryscio and Funk, 1982). Their goal was to evaluate whether
or not clustering exists in a given data set, overall, and they used the mean first (or third)

nearest neighbor distance as their index. I make similar inferences and consider the overall
description of the inter-point spacing.

For the second set of simulations, I simulated the effect of a single outlier on stationary
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TABLE 1
Locational Simulations
Distance
Frobability n  Shortest Longest
Upper Lower Upper Lower

Nearest Neighbor

< 0.01 10 0.1843 0.0045 0.6298 0.1877
20 0.0883 0.0026 0.4708 0.1369
30 0.0519 0.0018 0.3425 0.1303
40 0.0372 0.0009 0.3093 0.1152
50 0.0295 0.0010 0.2701 0.1050
0 0.0187 0.0006 0.2220 0.0917
100 0.0142 0.0004 0.1992 0.0819

< 0.05 10 0.1586 0.0143 0.5496 0.2169
20 0.0728 0.0060 0.3953 0.1647
30 0.0441 0.0035 0.3054 0.1435
40 0.0330 0.0028 0.2677 0.1259
a0 0.0264 0.0020 0.2411 0.1160
75 0.0161 0.0014 0.1878 0.0871
100 0.0122 0.0009 0.1681 0.0884

Average

< (.01 10 0.5335 0.2783 0.8304 0.5796
20 0.4397 0.2658 0.7449 0.5657
30 0.4080 0.2746 0.7096 0.5576
40) 0.3830 0.2704 0.6913 0.5557
50 0.3737 0.2641 0.6674 0.5506
5 0.3513 0.2630 0.6458 0.5478
100 (0.3414 0.2643 0.6295 0.5471

< 0.05 10 0.4987 0.3036 0.7900 0.6075
20) 0.4208 0.2867 0.7306 0.5789
30 0.3854 0.2885 0.6849 0.5670
4() 0.3708 0.2833 0.6693 0.5632
a0 (.3622 0.2781 0.6475 0.5584
75 0.3399 0.2762 0.6299 0.5543
100 0.3323 0.2741 0.6179 0.5533

and non—stationary surfaces. First, 81 random normal deviates were generated, having mean
0 and unit variance using the uniform pseudo-random number generator from Turbo Pascal
and an inverse normal transformation (Abramovitz and Stegun, 1965), and then they were
allocated to a 9-by-9 grid. Next, an outlier was added either to the corner or the central
point of each surface, with the increment ranging between 0 and 9. For the simulation of
non-stationary surfaces, for each row the value of the row index was added to all values
in that row. This procedure yielded a simple cline of slope 1 and maximum displacement
of 8. 100 replicates of each of these situations were run. Estimates of the mean, variance,
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skewness and kurtosis, as well as results of the two additional aspatial outlier tests noted

above and the residual from the trend surface at the location of the outlier, are reported in
Table 2.

Following execution of the simulation experiments, one real data set has been analyzed:
the 1961 populations of the counties of Ireland as a percent of their 1926 populations. These
data are derived from a study on road accessibility by O’Sullivan, and already have been
presented and analyzed by ClLiff and Ord (1981, p.208). A map of these data is presented in
Figure 1, and numerical tabulations are presented in Table 3.

5. Results and Discussion

5.1. Simulations

The first set of simulations evaluated the nearest neighbor distances and average distances
for random point patterns. 1000 replicates were run for surfaces with 10, 20, 30, 40, 50,
75, and 100 localities. Quantiles at the 1% and 5% two—tailed levels are shown in Table 1.
These data are not meaningful in and of themselves, but need to be evaluated with respect
to real data locations. As expected, one sees a decrease in the interpoint distances as the
number of points on the square increases. The nearest neighbor distances change markedly
over the range of localities tested while the average distances are fairly stable.

To interpret the data, one compares both the near and far results. If even one small
cluster exists, then the shortest nearest neighbor distance should be smaller than that in
the table. If they are clustered more generally, then the shortest average distance should
be smaller than some of those in the table. If there is an outlier, then the longest nearest
neighbor distance should exceed that value appearing in the table, as should the longest
average distance,

The second set of simulations was run to evaluate a variety of summary statistics for data
with a single outlier in a non-stationary data field. The non-stationarity was an inclined
plane of slope of 1 (total displacement of 8) and the outlier was placed either in the middle
of the data field or at the lower corner. 100 replicates were run for each case for values of
the outlier ranging from 0 to 9. The summary statistic results are reported in Table 2. For
the stationary surface, spatial outliers are also aspatial outliers. All the indices, aspatial and
spatial, detect the outliers.

For the non-stationary surface, except for one measure of skewness, none of the aspatial
indices yield a statistically significant value. Even though we have added a large spatial
outlier, In many cases larger than any other value in the data field, aspatial indices fail to
detect it. The local trend surface residuals (LTSR), however, show a clear and consistent
pattern increasing with the size of the outlier. Beginning with an outlier of 2 or 3 (depend-
ing on location), the LTSR method detects the outlier. Values greater than 2 seem to be
indicative of unusual values. This threshold value is recommended as a rule of thumb. The
LTSR 1s relatively sensitive to spatial outliers and has performed well with other data sets
not reported here.
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TABLE 2
Results of 100 Simulations of a Spatial Outlier
Increment Mean Variance Skewness Kurtosis N8 N2 LTSR
Stationary Background with Qutlier at (1,1)
0 —0.01 0.99 0.39 2.83 0.08 2.47 1.91
1 0.02 1.03 0.40 2.93 0.09 2.51 1.48
2 0.02 1.08 0.42 2.99 0.10 2.63 1.39
J 0.05 1.10 0.54* 3.53 0.14 J.04** 1.55
4 0.03 1.20 0.74%* 4.93%* 0.27* 3.80** 4.61
5 0.06 1.31 0.98** T.02%* 0.35%* 4.43% 1.88
] 0.08 1.47 1.10%#* B.b5** 0.40%* 4.80** 4.49
7 0.08 1.59 1.40%* 13.19%* 0.49%* 5.52%* 4.62
8 0.10 1.82 1.56%* 16.49% 0.53** 5.91** 5.10
] 0.11 1.95 1.66% 16.88** 0.55%* 6.14%* 4.30
Stationary Background with Qutlier at (5,5)
0 —0.01 0.99 0.39 2.83 0.08 2.47 1.91
1 0.02 L.03 0.42 2.94 0.09 2.50 0.69
2 0.02 1.08 0.44* 2.99 0.10 2.60 -0.29
3 0.05 1.10 0.54" 3.61 0.15 d.06* -1.12
4 0.03 1.17 0.73** 4.66% 0.25* 3.65% 1.85
5 0.06 1.29 0.94%* 8.75** 0.34%* 4.34%* 0.54
6 0.08 1.50 1.14%* 9.19%* 0.41%* 4.00% 0.36
7 0.08 1.59 1.40%# 13.10%* 0.49%* 5.52** —0.27
8 0.10 1.78 1.53%* 15.70** 0.52%* 5.82%* 0.35
g 0.11 2.02 1.71%* 20.08%* 0.57+* 6.26** —1.52
Non-Stationary Background with Outlier at (1,1)
0 4.98 7.66 0.26 1.98 0.05 1.98 —1.75
1 5.03 7.63 0.27 2.02 0.05 2.02 1.19
2 5.01 7.63 0.28 2.01 0.04 1.99 —-1.14
3 5.04 7.55 0.27 2.04 0.05 2.02 2.08
4 5.06 7.52 0.29 2.03 0.05 2.02 2.53
9 2.07 7.51 0.28 2.00 0.05 1.98 4.04
i 5.08 7.68 0.27 1.99 0.04 1.99 2,98
T 5.09 777 0.23 1.99 0.05 1.99 J.85
B 5.06 T.67 0.25 1.96 0.05 2.00 0.66
9 5.12 7.80 0.28 2.03 0.05 2,02 5.69
Non-Stationary Background with Outlier at (5,5)
0 4.98 7.66 0.26 1.98 0.05 1.98 —0.49
1 5.03 7.72 0.27 2.01 0.05 2.02 0.30
2 5.01 1.83 0.27 1.98 0.04 1.97 2.21
J 5.04 7.83 (.28 1.98 0.05 2.00 3.43
4 5.06 7.91 0.27 1.96 0.05 1.99 1.97
5 2.07 B.00 0.27 1.96 0.05 1.99 4.07
i 5.08 B.26 0.27 2.02 0.07 2.11 4.29
7 5.09 B.47 0.33 2.15 0.12 2.40 4.77
B 5.00 8.53 0.39 2.37 0.20 2.75* 6.17
9 5.12 8.72 0.49* 2.69 0.24 3.03%* 5.80

* denotes a significant difference at the 0.05 level.

** denotes a significant difference at the 0.01 level.
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Figure 1.
Chloropleth map of 1961 Irish population as a per cent of 1926 population.

1961 Population as Per Cent of 1926 Population
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TABLE 3
1961 Insh Population as Percent of 1926 Population

Table 3A: Aspatial Statistics

N2 NE Skewness Kurtosis
Raw Data 3.19%* 0.38* 1.02* 4.73%
Log Data 2.71 0.29 0.64 3.27
Data=Dublin 1.91 0.08 0.18 2.04
Log Data-Dublin 1.72 0.06 0.49 2.18

Table 3B: Local Trend Surface Residuals
Raw Data Log Data  Raw Data-Dublin Log Data—Dublin

3.11 ( 6) 2.29 ( 6) 1.63 (15) 1.85 ( 5)
—1.51 (26) 1.73 ( 5) 1.57 ( 3) 1.65 (20)
1.29 ( 5) 1.54 (21) 1.46 (20) —1.55 (11)
Table 3C: Locational Statistics
Distances
Nearest Neighbor Average
Shortest Longest Shortest Longest

0.083 (14) 0.257 (5) 0.282 (19) 0.590 (8)
Table 3D: Correlogram Results for Irish Population Data

Distance Class 1 2 3 4 5
Raw Data 0.45** —0.07 —-0.21* -0.16 -—0.20*
Log Data 0.48** —-0.05 —-0.22* -—-0.19 -0.22*

Raw Data-Dublin  0.45**  0.00 —0.15 —0.27* —0.24*
Log Data-Dublin  0.45** 000 -0.15 —0.27* —0.24*

* denotes a significant difference at the 0.05 level.

** denotes a significant difference at the 0.01 level.

5.2. The Real Data: The Irish Road Data

Finally, I analyze one data set to demonstrate how these methods work with actual obser-
vations. With this real data set, my goal is to determine whether or not there is any spatial
structure in the data, and if there is, to describe it. The principal tool will be autocorrelation,
although first one must consider the possibility and potential effects of outliers.

Results from aspatial tests (see Table 3A) show that this data set does not fit a normal
distribution. There are two possible explanations. One is that the data fit a different
distribution, such as an exponential, The other is that there is at least a single outlier that
does not fit the distribution. To investigate these options, I can apply treatments for each
effect. If I transform the data by taking logarithms of all the values to remove the effects
of an exponential distribution, I see that the data now fit a normal distribution. Or, if I
remove the single outlier (Dublin), these data also fit a normal distribution. Now, if I apply
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the LTSR method to both raw and modified data sets, I find a spatial outlier for both the
raw and log transformed data, namely Dublin (see Table 3B and Figure 2). However, if I
remove Dublin from the raw data, there is neither an aspatial nor a spatial outlier. Thus, I
conclude that Dublin is an outlier and ought to be removed, implying that the logarithmic
transformation seems unnecessary.

Before performing spatial autocorrelation analysis, I investigated the spatial distribution
of the observations (see Table 3C). Neither the shortest nor the longest nearest neighbor
distance was remarkable. However, both the shortest and longest average interpoint distances
fell at about the lower 5% level of the simulation sampling distributions. This outcome
suggests that points are relative evenly spaced rather than random. This finding is not
surprising as the data represent regional centroids rather than true point patterns.

Next, I determined appropriate distance class boundaries for correlogram analysis. |
arbitrarily decided to use 5 distance classes, all with equal numbers of point pairs. Figure 3
shows the number of connections that each point has for each distance class. The expected
number (if all connections were evenly distributed) is 5 joins per point per distance class.
There is a moderate amount of variation with central localities taking on increased impor-

tance in the middle distance classes. One locality, Donegal, does not contribute to the first
distance class at all.

Finally, I begin the spatial autocorrelation analysis by measuring the spatial autocor-
relation for both the raw data and the logarithmically transformed data. The correlogram
results are shown in Table 3D. The data exhibit a strong clinal pattern. The logarithmic
transformation does not affect the correlogram markedly. It is reasonable to presume that
there is a strong clinal pattern in the data.

To investigate the impact of individual observations, I calculated the index decomposition
and sample influence function. The resulting computations are summarized in Figure 4. The
top set of circles display the index decomposition values. The left-most circle represents the
first distance class, the next represents the second distance class, and so on. The solid circle
15 the expected value of each point’s contribution to the statistic under the null hypothesis
(approximately 0). The dashed circle shows the expected value of each point’s contribution
to the statistic, assuming each point contributed equally to the observed value of the statistic
[1/(observed value)|. The larger the observed value of the statistic, the farther the dashed
circle 1s from the solid circle. Rays projecting from the solid circle indicate the actual
contribution of each point as measured from the center of the circle. They are plotted as
the difference between the expected and the observed value. Values outside the solid circle
are greater than zero and values inside the circle are less than zero. The first data point is
represented by a ray at twelve o'clock, and subsequent data points by rays proceeding in a
clockwise manner around the solid circle. For the left-most circle, which represents the first
distance class, one sees that points 6 (Dublin), 9 (Kildare) and 12 (Leitrim) contribute the
greatest amount to the index. Data point 6 contributes throughout all distance classes. It
is an influential point.

The influence function is displayed in similar plots in the second row of Figure 4. In
this set of plots, a solid circle represents the expected value of the statistic, a dashed circle
represents the observed value of the statistic, and a ray represents the value of the statistic,

with a given observation omitted. As the rays are of nearly the same length, the statistic is
relatively insensitive to omission of data points.
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Figure 3.
Chloropleth map of local trend surface residuals (LTSR) of the 1961 population data.
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Figure 4.

Index decomposition and sample influence curve values for the Irish population data. Each
circle represents a different distance class.
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To summarize, the Irish population data have strong spatial pattern. Dublin is a large
outlier, being larger than all other values and disproportionately greater than its neighbors.
It contributes greatly to the observed spatial autocorrelation statistic although its omission
does not affect the observed pattern greatly. Similarly, a few other points (Kildare, Leitrim)
contribute disproportionately to the statistic, but their omission also does not greatly affect
the overall statistic. Thus, the spatial pattern is spread over many points. In general, there
15 a clinal structure to the pattern of population. In the typology described above, the data
correspond to the class of spatial structure with spatial outliers. If one were to model the
pattern of these data, one would have to take into account both the outlier and the overall
trend in the data.

6. Conclusions

Exploratory spatial analysis is a field that largely has been ignored. While much attention
has been devoted to exploratory data analysis over the past number of years, investigators
who study spatial phenomena have not adapted these methods for their own purposes. This
paper proposes a few such methods and demonstrates that they can be effective through the
employment of simulation experimentation.

Further, one can classify spatial data structure into four groups:

(1) aspatial outliers with no overall spatial pattern;

(2) aspatial outliers with overall spatial pattern;

(3) spatial outliers with no overall spatial pattern; and,

(4) spatial outliers with overall spatial pattern.

Using the indices proposed herein, one can classify real data sets into these different

groupings. This classification exercise can be extremely useful in the study and evaluation
of spatial process.

For example, I analyzed the spatial structure of 1961 Irish population as a percentage of
the 1926 population. In this context, the goal is to determine whether or not there is any spa-
tial structure in these data, and if there is, to describe it. Results indicate that both spatial
outhiers and spatial pattern exist. Because the data are regional summaries, consideration
of locational outliers is not meaningful. Results obtained by spatial autocorrelation analysis
without consideration of outliers or influential points is similar to that obtained after the
identification and removal of such values. Indeed, Dublin, a major urban center, outstripped
the growth of the rest of the country. Looking back to the original data (Figure 1), one can
see such a pattern. However, if one proceeded with additional analyses of these data, such
as regional pattern summarization or the regression work deseribed by CLff and Ord (1981),
identification of these properties is extremely important. Residuals from regression, even
though conducted in an aspatial context, were dominated by the influence of the Dublin.
Removal of this value likely would have resulted in a more representative regression model.

The goal of this paper has been to propose some methods for the exploratory analysis of
spatial data. These methods can be thought of as a series of pretreatments before rigorous
statistical analysis. They are designed to give the investigator an intuitive understanding
of the spatial structure of the data, and to assist in the design of subsequent statistical
mmvestigations. The methods, newly proposed herein, will require refinement and application
if they are to become useful tools for the spatial analyst.
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Discussion

DISCUSSION

“Exploratory spatial analysis:
outliers, leverage points, and influence functions”

by Daniel Wartenberg

Are outliers “bad or aberrant observations”? The answer to this question has to be “Not
necessarily”! It may well be the case that the data have been misreported or mistyped; in
such cases, tests for outliers are useful diagnostic devices for locating such errors. However,
when the data are free from errors, a test for an outlier should be regarded as a test for the
validity of a model (often implicit) rather than a test of an observation per se.

The usual implicit model is that all the values being studied have resulted from a single
distribution. The presence of an outlier implies that this assumption is faulty—the outlier
1s an observation from some other distribution. If the values under consideration are the
residuals from some model, then an outlier residual implies that the model is inadequate
with respect to the corresponding datum point.

In summary, therefore, the presence of an outlier usually should be regarded as pointing
to a deficiency in the modelling process, rather than a deficiency in the data.

Edge effects and boundaries.

In the analysis of small quantities of point pattern data, edge effects play a dominating role.
All the points lie within some more or less well defined boundary. When the number of
points is small, the proportion of “internal” points (those near the geometric center of the
cluster of points) also will be small. Most points will have no points “outside” them (beyond
them as one moves from the geometric center of the cluster outward). For example, of the 26
counties of Eire, only 9 (35%) are totally bordered by neighboring counties. The remainder
have either the sea or Northern Ireland adjacent to their borders.

Influence, attributable to boundaries, upon the distribution of the popular Clark-Evans
statistic 1s well known (e. g., see Upton and Fingleton, 1985, p. T4). Required corrections to
the mean and variance of the distribution of distances to nearest neighbors involves measures
of both the perimeter and the area of the region under study. Doguwa and Upton (1988,
1989) have studied the corresponding “point-event” statistic, and find a need for similar
corrections. The distribution function of nearest-neighbor distances is a powerful tool for
detecting departures from randomness; but this, too, is complicated by the need to take
boundaries into account. An improved estimator of this function is given by Doguwa and
Upton (1990).

It follows from the above discussion that Wartenberg's simulated results, given in his
Table 1, need to be treated with some care. He gives the upper and lower 1% and 5%
significance points for the distance to the nearest neighbor, and for the average distance to
the remaining n — 1 neighbors—but these results only apply to a square study region. It is
easy to see that the results for a region such as the Florida Keys would be rather different!

As a check, I performed 99 simulations, representing Eire by an 11-sided polygon, re-
taining only those points that fell inside the polygon, and continuing until I had generated
26 randomly placed retained points for each simulation. For the shortest nearest neighbor
distance, my simulations gave values between 0.0022 and 0.0486 (after scaling), compared
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with an observed 0.0201 for Longford to Westmeath (Counties #14 and #24). My longest
nearest neighbor distances varied between 0.2909 and 0.1165, compared with an observed
0.136 (Donegal and Leitrim Counties). Thus, neither observed value appears significant. Note
that my observed values are very different from those of Wartenberg, partly (I conjecture)
because of different scaling factors, and partly because the observed results are critically
dependent upon the point positions taken as representative of the counties under study.

Wartenberg suggests scaling by the largest observed distance. I think it would be prefer-
able to scale by the largest observable distance. The problem of representing areas by points
is discussed in my own article in this volume. In my simulations, I evidently used rather
different co—ordinates to those used by Wartenberg.

Monte Carlo methods and simulation.

The rapid increase in easily available computing power during the last two decades has led to
an increasing reliance on simulation as a means for determining the distributional properties
of otherwise intractable statistics. There are many examples in the field of spatial statistics.
However, there is no need to present simulated results when the theoretical results can be
easily calculated, as is the case with the first four statistics reported in his Table 2. The
results given there merely serve to confirm that the remaining results are plausible.

Trend surfaces.

Wartenberg's analysis uses, I think, quadratic surfaces fitted to the nearest 6 neighbors of
each point, with the value for a given point being omitted from its corresponding trend
surface estimation. With either stationary or non-stationary linear backgrounds one would
expect a “pimple” to appear as such, and I am therefore surprised at the entries in the second
quarter of Table 2.

However, I confess that trend surfaces leave me uneasy! Although I have very little
experience with them, I am very conscious of the potential differences that can arise as the
degree of a surface is altered. It would be interesting to see the residuals that arise as surfaces
of different orders are fitted to these artificial data sets.

The diagrams.

I cannot let the diagram of distance classes pass by without querying its usefulness; to me
1t seems merely to confirm that distant points are indeed distant!

It 1s refreshing to see an entirely new method of presenting data being illustrated in
Wartenberg's final figure. However, while I applaud the intention, I feel that its circular
nature 1s totally misconceived, since there is nothing cyclic about the counties of Eire! A
further problem arises because the diagrams are almost impossible to label effectively. A
more successful display might be a dot diagram of the type advocated by Cleveland (1985),
though with 26 counties this might not be feasible. It probably would be more useful simply
to list the major departures from uniformity of contribution.

Summary.

Much of the above has been critical in nature. However, the author is quite right to point
to the need for spatial methods for exploring spatial data. Wartenberg raises an impor-
tant and valid point when he argues that an obvious spatial outlier, as in the sequence
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{8,6,4,2,0, -2, —4, —6, —8}, may appear to be entirely typical when the data are divorced
from their spatial locations. Unfortunately, I do not believe that this paper has answered the
question of how to identify such an outlier. I do think, however, that Professor Wartenberg
has opened up a new and fruitful research area in the field of spatial statistics.

References

Cleveland, W. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Doguwa, 5., and G. Upton. (1988) On edge corrections for the point-event analogue of the
Clark-Evans statistic. Biometrical Journal, 30, 857-963.

Doguwa, 5., and G. Upton. (1989) Simulations to determine the mean and variance of the
point-object analogue of the Clark-Evans statistic. Biometrical Journal, 31, 163-170.

Doguwa, 5., and G. Upton. (1990) On the estimation of the nearest neighbor distribution,
G(t), for point processes. Biometrical Journal, 32, (in press).

Upton, G., and B. Fingleton. (1985) Spatial Data Analysis by Example, vol. 1. Chichester:
Wiley.

Graham J. G. Upton, University of Essex

159



160



Rejoinder

A REJOINDER TO UPTON’S DISCUSSION

by Daniel Wartenberg

New areas of research are always controversial. And, while EDA methodology has become
widely accepted in statistical investigations, few attempts have been made to develop EDA
methodology specifically for spatially dependent data. Thus, I am not surprised, although
somewhat disheartened, by Upton’s acerbic and contentious discussion of my paper. As he
notes, there is yet a long way to go before this area of investigation develops into mature
methodology that is routinely useful and diagnostic of spatial aberrations. But that does
not diminish the value of initial innovations and first ideas. The proposals I put forth are
meant to open a dialogue on these issues, rather than present definitive methodology. Toward
that end, I address two specific issues Upton raises, with the goal of broadening the basis
of discussion and stimulating further work. Page constraints preclude more comprehensive
commentary.

The first issue is outliers, their definition, detection and interpretation. Upton notes that
outlier tests are most useful as tests of model validity. The usual, implicit model employed
1s that observed data are from a single, statistical distribution. Indeed, while outlier tests
may be useful for detecting data transcription or reporting errors, these are in the sphere of
data processing rather than spatial statistics. Upton argues that outliers are diagnostic of
“a deficiency in the modeling process, rather than a deficiency in the data”. A still broader
(and more appropriate) view is that outliers show an inconsistency between a model and
the data, and that attribution of this inconsistency is not possible based on outlier detection

alone. Substantive evaluation may help elucidate whether the problem resides in the data or
the model.

In my paper, I use an implicit model of similarity among geographically proximate ob-
servations. Rather than being purely distributional, my implicit model accounts for spatial
location. That is, I test the similarity or smooth variation of nearby values. It is common
geographic knowledge that observations near one another are more similar than those widely
separated, and the tests I propose exploit this property. And, when I make this model ex-
plicit by using local trend surface models, Upton dismisses the methodology out of hand.
Numerous examples exist of useful applications of trend surface methodology, although it is
an approach subject to misuse and misinterpretation. To improve on the specific application
I propose, I encourage Upton to provide a more informative and easy to use model for lo-
cal spatial structure! (I have experimented with trend surfaces of different orders, as Upton
suggests, but these correspond to different spatial models with varying data requirements. A
full discussion of this approach with surfaces of different orders and consideration of varying
numbers and orientations of control points will be presented elsewhere.)

Upton also summarily dismisses the circle plots I propose because he believes circular-
ity implies cyclicity and because of the difficulty in labeling specific localities on the circle.
In preference he suggests dot diagrams or data listings. However, both of these have the
limitation that they require more space on a printed page (which is always at a premium ),
and make it more difficult to compare the same object across sets of observations or distance
classes. Circle plots exploit the human ability to juxtapose cyclic images on top of each other
and compare objects at like positions (e. g., comparing the length of objects at 3 o’clock on 5
different circles). This is one of a class of similar methods that display many variables simul-
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taneously for many objects. Star plots (Chambers et al., 1983), for example, are multivariate
profiles plotted in polar coordinates for easier viewing. Experimentation with line plots used
for regression diagnostics were noticeably more difficult to interpret. However, improvement
of circle plots, or alternative representations that facilitate interpretation, would be useful.

In sum, the goal of my paper was to raise some questions of data quality, data consistency
and diagnostic methodology. In view of the paucity of methods for addressing these issues,
I have proposed a few. As developments continue in this area, new ideas, new methods and
new wnterpretations likely will improve upon these preliminary explorations.
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PREAMBLE
The power of Thought — the magic of the Mind!

Byron, Corsair

Whe was the innovator who first wrote of spatial economeirics? Probably hidden
somewhere in the yellow-paged journals of yesieryear is a forgotten article, the first
to break this barrer; if il ezists, undoubledly its discovery will occur ai some fu-
ture daile. Certainly Paelinck was one of the first scholars to devote considerable
thought 1o complications that lie dormant in iraditional econometric analysis but be-
come problematic when analyzing geo—referenced data. Over the past fifieen years he
has repeatedly developed and/or modified economeiric technigues in order lo han-
dle these complezilies. As is characierisiic of his earlier work, here he presents
rationales, relevant properties, empirical ezamples, and possible exiensions of es-
timators. In doing so, he highlights the difficulties of specification, inierpretation,
and computation. The purpose of this paper is to present the siz new estimation
techniques colled simulianeous dynamic least squares, strictly positive conditional,
linear logistic, leasi spheres, non-numerical regression, and disiribution—free power.
Acknowledging the innovativeness of Paelinck’s work, Anselin emphasizes the focus
of the siz new estimators (i. e., problems of simulianeily in spatial modeling, data
limilations, and complezities atiributable to spatial interaction), as well as the tech-
nical issues of identifiability, disiributional properiies, and non-trivial implications
associated with various approzimations {o non-linear estimators. All in all, this pa-
per is as delightful an ezample of the spatial econometric viewpoint as can be found
in the hteraiure loday.

The Editor
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Some New Estimators in Spatial Econometrics
J. H. P. Paelinck

Department of Theoretical Spatial Economics, Erasmus University, P. O. B. 1738, 3000 DR
Rotterdam, The Netherlands

Overview:  The empirical study of spatial economic phenomena leads to a large
number of specifically different problem settings. Reliable quantitative study of these
problems often cannot proceed using standard econometric techniques, or approaches
that initially were developed for other purposes. Moreover, better solutions can
be obtained for these problems by modifying standard results in an appropriate
way, or improving the properties of methods that already have been proposed. A
number of new estimators are presented in this paper; it is believed that they will
prove illuminating when applied to those spatial economic cases for which they have
been developed. Without presenting an integrated body of econometric analysis—
like k—class estimators, for instance—these new estimators represent a sample of
spatial econometric estimation exercises that might usefully complement the body
of knowledge already in existence.

1. Introduction

One important aspect of spatial econometrics is the development of estimators appropriate to
given types of problems. In Paelinck and Klaassen (1979, Chapter 3) some special estimators,
based on previous work, already have been presented. These include

= estimators for a spatial income-generating model;

* estimators for the interregional attraction model: MOLS (Multiregional Ordinary
Least Squares), IOLS (Interregional Ordinary Least Squares), ISSML (Interre-
gional Semi-Separable Maximum Likelihood); and,

» estimation of threshold effects.
Estimators presented in Chapters 4 and 5 were original contributions at the time, and include
*» distribution-free testable spatial autocorrelation estimation;
» component parameter estimation [for a recent application of this procedure, see
Kuiper (1989)]; and,
» fuzzy multiple regime estimation.

In this paper more recent materials that resulted from research undertaken since the
publication of the aforementioned volume are presented. The organization of this presen-
tation is as follows: rationale for the estimator, its presentation with relevant properties,

an empirical example, and possible extensions. Additional aspects can be found in Ancot,
Paelinck and Prins (1986), Ancot and Paelinck (1987) and Paelinck (1989).
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2. Newcomers

2.1. Simultaneous Dynamic Least Squares (SDLS)

In Paelinck and Klaassen (1979, Chapter 7) it has been shown how SDLS estimation can
simultaneously comply with synchronic, diachronic, sectoral and spatial interdependences.
The model can indeed be written as

Ay + Bx = £, (2.1.1)

where matrix A represents the linkages between arbitrary endogenous variables y (spatial-
1sed or not, lagged or not), Bx the effects of exogenous shocks, and £ stochastic elements. !
The SDLS estimator is derived from the optimization problem of

1&]1:]1;1{3' - A7'Bx)'(y - A"'Bx) (2.1.2)

and computed from the vector-matrix transformation of equation (2.1.1)
y =Xv + £, (2.1.3)

with y and X respectively being a vector and a matrix of observed variables (one should
note that vector x and matrix X are not the same), 4 the vector of A and B coefficients,
and (2.1.3) being in fact a so-called “normalised form” of equation (2.1.1). The estimator
15 given by

¢ = (X'X°)"X'y, (2.1.4)

where matrix X¢ contains estimated endogenous variables. Numerical work conducted on

this estimator has found that in practice convergence of a Gauss—Seidel nonlinear estimation
procedure does occur (Prins, 1985).

Some properties of the equation (2.1.4) estimator are:
» 1t 1s a generalized reduced form estimator;
» if £ ~N(0,0°I), then the estimator is a maximum likelihood (ML) one; and,
= ¢ is consistent, with pim 4 ¢ = ¢?(X'X)™!.
Some early applications of this estimator can be found in Ancot, Kuiper and Paelinck (1981).
It has been applied more recently to the estimation of discrete versions of the Lotka—Volterra

model (Bagchus a.o., 1985; Budding a.c., 1985; Dickmann and Spoorendonk, 1987; for the
model itself, one is referred to Peschel and Mende, 1986), the latter being then specified as

A'ln(z) = a + bzyq + cyi_1 (2.1.5a)
A'ln(ye) =d +ez4—1 + fyi (2.1.5b)

where the variable x represents population and y income per capita. Applied to the city
of Rotterdam over the period 1946-1978, this estimator has given those results appearing
in Table 1 (the computer program is discussed in Schueren, 1986). These tabulated values
have acceptable interpretations. Loo (1987) also has studied other dutch cities, the principal
problems encountered being that of the availability, the quality and the comparability over
time of income figures. One could consider introducing distributed lags into this model, too.
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TABLE 1
PARAMETERS OF A LOTKA-VOLTERRA MODEL
FOR THE CITY OF ROTTERDAM

Parameter Estimated Student’s
Value t-statistic

a —0.8798 —T7.68

b 0.0711 7.33

c (0.398E8 4.22

d 1.0870 0.49

e —0.8025 —B8.51

{ —0.5355 —5.67

a*® 0.0362 1.64

d*° 0.0538 2.43

® Optimisation parameters for the starting point of an endogenous simulation.

Simultaneous dynamic least squares also can be useful in studying spatial autocorrela-
tion. Consider the model

y = pCy +pi +, (2.1.6)
where C is a geographic contignity matrnx, and i is a vector of ones. The SDLS estimator
is generated by minimising w.r.t. p and g the expression

¥y = (I - pC)~Hil'ly — u(I - pC)71i]. (2.1.7)
Let us suppose that
PA(C)|max < 1, (2.1.8)

so that one can consider an approximation supplied by only the linear terms of the spatial
multiplier, (I + pC); equation (2.1.7) then can be rewritten as

y — (X + pCli]'ly — pu(I+pC)i], or (2.1.9)
y — (i + pn)]'ly — p(i + pn)), (2.1.10)

where the vector n results from summing over the rows of matrix C.
A first hypothesis can be that this summation gives a constant, v such that

n = ui, (2.1.11)

but differentiating equation (2.1.10) with respect to u and p gives one and the same equation.
This outcome is due to the non-discriminating effect of an infinite spatial structure.

If one defines

n=1in, and (2.1.12a)
n* =n'n, (2.1.12b)
then the two parameter estimates become
p=(y'n—pun)/(gn*), and (2.1.13a)
p=(i'y +py'n)/(r + 2on + p’n*), (2.1.13b)
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where 7 is the number of spatial units. In equation (2.1.13), then, the non-spatial mean,
i'y/r, is corrected for spatial autocorrelation.

From equations (2.1.13a) and (2.1.13b),

p = (ni'y —ry'n)/(ny'n —n*'y), and (2.1.14a)
p=(ny'n —n*i'y)/(n® —n*r). (2.1.14b)

These two expressions can be rewritten as

p = —(r/m)(W* /™) — U/[(*/4") - (a*/n)(n/r)) and  (2.1.15a)
b = w*ln/r)W* ) —n*/n))/ (fr —n*/n), (2.1.15)

with
* 8 1'y/r, and (2.1.16a)
u* 2 n'y/n. (2.1.16b)

From equation (2.1.15a) one finds that if y4® = u”, then p would be zero; the spatially
corrected average does not add any information. Hence from equations (2.1.3b) or (2.1.15b)
then, p = p*.

Study with respect to the critical values for p, namely 1 and —1, can proceed as follows.
I (n*/n)(n/r) —1 =1, then p = —r/n > —1, so r/n is a damping factor. Positive
autocorrelation is to be expected with “skew” spatial structures defined as

(n*/n)(n/r)"! > p*/p* > 1. (2.1.17)

In the case of a constant number of first~order autoregressive links, v, the expression for p
becomes

p=(1/v)(p"/u—1). (2.1.18)

Supposing p* > 0 and g > 0, negative autocorrelation occurs for p*/p < 1, but will never
be less than —1. Positive autocorrelation can only exceed +1 (e. g¢., a non-stationary
geographic process is operating) if (p*/u — 1) > v, which is a possibility for which the
probability is unknown.

2.2. Strictly Positive Conditional Estimation (SPCE)

Ancot and Paelinck (1981} have drawn attention to the conceptual necessity of obtaining
strictly positive values for certain parameters resulting from an a priori spatial theory. They
have investigated the approach outlined here in the ensuing discussion. Let 8 be a parameter
of the equation

& 2 yi— Bz, (2.2.1)
the probability of observing jointly £; and 8 being written as
p(&i,B) = p(&:l8)p(B), (2.2.2)

where p(£;|3) 1s given by equation (2.2.1) and p(#3) is a prior density for parameter 4. One
estimates J under the hypothesis that over the observation period (or the observed regional
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TABLE 2
FLEUR SECTOR NUMBER 28, PERIOD 1950-1960¢

Var- With Ehmination
ia-  of Parameters With All Parameters 95% SPCE Bounds
bles the Wrong Sign

Bols Student’s t Bols Student’s t Bspce lower upper
X 0.647 34.93 0.647 35.20 0.647 0.618 0.675
Xo 0.832 5.31 0.799 5.10 0.802 0.530 1.034
Xg 0.243 1.43 0.196 1.14 0.196 0.101 0.336
Xy 0.759 4.75 0.705 4.34 0.706 0.444 0.941
Xs 0.873 4.04 0.783 3.52 0.782 0.417 1.087
N 0.215 6.06 0.216 6.15 —0.100 -0.120 —0.084
X7 0.388 11.42 0.403 11.50 0.403 0.360 0.452
Xg 0.434 20.52 0.424 19.41 0.424 0.396 0.452
Xg EEEE *EEEF —0.034 —1.52 0.100 0.091 0.110
Xio 0.119 1.76 0.110 1.64 0.110 0.083 0.144
A1 0.063 0.81 (0.G88 0.89 0.079 0.049 0.095
XNia —0.121 —1.16 —(.158 —1.49 —0.158 -0.283 -0.095
X3 0.510 6.35 0.497 6.19 0.496 0.387 0.607
A1 0.330 B.03 0.331 B.11 0.331 0.287 0.376
Xis (0.303 7.65 0.301 7.68 0.301 0.262 0.343
Xig 0.134 3.53 0.129 3.39 0.1286 0.110 0.150
Xt 0.103 3.64 0.104 3.70 0.104 0.092 0.117

R*=0.974 R?=00975
MSE?=1542 MSE =1.493 MSE = 10.340
“price” of SPCE = 6.927

“ On the FLEUR model, see Ancot and Paelinck (1983).
b MSE is the residual variance.

system) 8 has been constant. This estimation has been investigated for £ ~ N(0,2I) and
B ~T(B"), where T represents a Tanner distribution having estimates 8*. The estimated
value, B°, is

- - =1
B=B(B, B")+2me(X'X)B") i, (2.2.3)
where fl is the ordinary least squares (OLS) estimator, and n is the number of observations.
One should note that

» equation (2.2.3) has indeed a strictly positive (or strictly negative, if required )
value in 8°; and,

* up to second-order o?, VAR(8°) equals the OLS expression.

Table 2 summarizes an individual result borrowed from Enhus (1986) based upon this
estimator.
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TABLE 3
SYNTHESIS OF RESULTS OBTAINED BY ENHUS, 1986
FLEUR Sector Penod Number of “Price”
Replaced Coefficients

19 1960-1970 2 6.337
28 1950-1960 2 6.927
37 1950-1960 2 7.059
19 19501960 . 8.912
a3 1950-1960 2 14.643
28 1960-1970 1 17.168
37 1960-1970 2 a4.603
7 1950-1960 3 220.399
7 1960-1970 3 566.485

Following Ancot and Paelinck (1981, p. 360, Property 3) the confidence intervals for
the SPCEs have been assumed to be log-normal. The interpretation of the tabular results

reported in Table 2 is obvious; the “price” to be paid for SPCE 1s the ratio of the residual
variance SPCE/OLS (all parameters).

Table 3 presents an overview of those results obtained by Enhus (1986).

2.3. Linear Logistic Estimation (LLE)

In spatial analysis the presence of binary 0 — 1 indicator variables that are to be predicted
or statistically explained (presence or absence of certain elements) is frequent. Suppose the
probability p;j: for a firm of type i (I charactenstics of a “plant profile”) of exporting
product j (J characteristics of a “product profile”) to country k (K characteristics of an
“export profile”) to be logistic. The three profiles are represented by a vector x, with “more”
of a characteristic increasing the probability of exporting according to the function

Pisk = [1 + exp( —a'x}]_l, (2.3.1)
with
a >0, (2.3.2)

and with the observations being 0 (no exports) or 1 (exports). Let two variables be defined,
one for exporters as

di; 21 - [1 + exp(—a'x;)] ™", (2.3.3a)

and one for non-exporters as
dai £ [1 + exp(—a'x;)] 7, (2.3.3b)

Thus one can easily compute
a'xy;=In(d;} = 1) 2 63,> 0, and (2.3.4a)
—a'xy; = In(d;} — 1) 2 65> 0. (2.3.4b)
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Maximising 3" ,(61; + 83;), under a norm restriction, one obtains

a®= A" X'X)"'X"i, and (2.3.5a)

VAR(a®) = A~3(X'X)?, (2.3.5b)

which means that the ratio af/e(a}) is independent of A, so that the null hypothesis a = 0
can be tested.

The numerical example presented in Table 4 has been explored here. Using those data,
Table 5 compares the results from a classical “probit” analysis with that of LLE.

TABLE 4
DATA FOR L. L. E.
Vanables
Values of 1 Y A3 X
1 1.0 6.0 4.0
2 1.0 8.0 2.0
3 1.0 4.0 3.0
4 1.0 7.0 0.0
5 1.0 9.0 1.0
il 0.0 2.0 6.0
7 0.0 3.0 9.0
R 0.0 1.0 4.0
9 0.0 0.0 8.0
10 0.0 1.0 7.0
TABLE 5
PROBIT AND L. L. E.
Parameter Probit Student’s t LLE Student’s t
of X, 3.40 0.20%10-92 0.20 1.18
of X5 =172 —0.90%107093 —0.13 —0.70
Constant —2.54 —0.23%10-08 —0.26 —0.18

One can see from these tabulated results that the signs as well as (for the parameters of
x; and Xz ) the ratios are consistent. The t statistics for the LLE estimators, however, are
much less non-significant than are those for the probit estimators, the data obviously being
ll-conditioned.

Recently this estimator has been extended to 0 — z; cases, where the z; are possibly
all different real numbers. For the latter observations the vector i in equation (2.3.5a) 1s
extended by Af, with vector

€ 2 In(2 — 2k77) — In{(24k: — 1)exp(a’x;) + 1}, (2.3.6)

which reduces to the binary 0 — 1 case for a choice of A — 0 (very small “distances”
required) or z;k' — 1, Wi (a perfect fit, which is the equivalent result). The k;s are
variable asymptotes; for a specification of the form

ki = exp(b'y;), (2.3.7)
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straightforward OLS (with an extra parameter for the z; = 0 observations) allows the
estimating of b.

2.4. Least Spheres Estimation (LSE)

In some cases of spatial analysis, the presence of potentials (sums) can lead to multicollinear-
ity; in such a case, another estimator, LSE, can bring relief, its objective function being

n

_[ZZ (ai; — y13+ZZz” z7:)%)/2, (2.4.1)

=1 =] =1 =1

where the a; and z;; are the endogenous variables to be estimated, and the starred variables
y{ and z7; are being observed (the number of degrees of freedom will remain n — k in this

case). More specifically, one minimises the sum of squares of the radii of the hyperspheres
with centres (y7, zf;), i, that are tangent to the hyperplane y; = E;—l ajrij, Vi.

The estimators for a = la;] are
i = {Kt'xr —E_EI:}}:*‘yt,

the stars indicating exogenous variables, which is a curious rejoinder to ridge regression.
As the ajs are not inversely invariant with the measurement units of the z;;s, ¢ should
be maximised, and to guarantee positive definiteness, its sign reversed (the mathematical
Justification for this approach appears in Paelinck and Klaassen, 1979, pp. 54-55). Table
6 reproduces the results for this estimator applied to a tourist model of Swiss data for
the “canton du Valais” (Bailly and Paelinck, 1988). Significance tests for the estimated

parameters are available, and their results are reported in Table 6.

2.5. Non—numerical Regression (QUALIREG)

Suppose one wants to explain a phenomenon on which only qualitative observations are
available (for example a vector of ranked items y' = [+ + +, —, 0, ++, ...]), with the same
situation prevailing for the matrix of explanatory variables, X:

+ —
++ 0 :
X=| = ++ - - - (2.5.1)

Suppose matrix X is of order n-by-k (n observations on k explanatory variables). Such a
situation is frequently encountered in spatial econometric analysis. The following programme
gives a solution for the problem: find a vector of coefficients 8° maximising

(¥, ¥°), (2.5.2)

where 7 is Kendall’s rank correlation coefficient ? and y*® the vector of estimated ranks of
y. A normalisation of B° is necessary, which leads to the mathematical programme

max = maxﬁ r 2.5.3
g B° s
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TABLE 6
PARAMETERS OF A TOURIST MODEL
AFPPLIED TO A “CANTON"” IN SWITZERLAND

Types of Villages
Valley Locations

Mountain Locations

Parameters French German French German
Speaking Speaking Speaking Speaking

Self-inducation /breaking —0.074*  —0.760 -0.722  —-0.236*

Locations Potential:

French Speaking Valley 0.003* 0.109* 0.061* 0.078*

German Speaking Valley —0.069* 0.111% 0.006* —0.002*

French Speaking Mountain —0.056* 0.111* 0.016* 0.013*

German Speaking Mountain —0.010* 0.112* —0.019% —0.038%

Optimised starting point 0.377* —0.012* 0.290 0.421*
of endogenous dynamics

Autonomous growth/ 0.004* 0.109* 0.062* 0.080%
decline rate

Pseudo-R ? 0.241*  0.563 0.460 0.416*

NOTE: * denotes significance at the 95% confidence level using chi square and F test statis-
tics.

subject to:
-i < f8°%<i (2.5.4)
where 7 is the vector of Kendall 7's corresponding to the permutations of columns of X

producing y*®. “Multiple correlation” and B¢ tests are available, as Table 7 shows.

This method has been applied to an explanatory relation of water discharge per province
in the Netherlands (see Davelaar a. o., 1983). Table 7 gives the results of a comparative

exercise with OLS-estimation; more elaborate commentary on these results appears in Ancot
and Paelinck, forthcoming.

2.6. Distribution—Free Power Estimator (DFPE)

Relations in spatial econometrics are often of a highly non-linear nature (see Paelinck and
Klaassen, 1979, pp. 6-9). Power parameter specifications can be useful to model such
behaviour; an early application of this perspective to a so—called “multiple gap” investment
model, using other solution methods, is reported on in Ancot e. a. (1978).

Generalised Box-Cox transformations (see Box and Cox, 1964) will be discussed next,
together with a proposed procedure for nonparametric estimation. This latter procedure—
for generalised Box—Cox transformations—can proceed in the following manner. Suppose a
non-linear relation exists and may be specified as

k

e __ o P3 3
¥, = E :ﬂ':.rz-:'j"-'fl

i=1

(2.6.1)
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TABLE 7
COMPARISON OF THE RESULTS OBTAINED BY QUALIREG AND BY QLS
Coeflicients
by Kendall’s bs  Kendall's by Kendall's Multiple
tau tau tau Correlation
QUALIREG
0.5 0.24* -0.4 0.31 —-0.3 0.16 0.636¢
1.0 0.24 -0.8  0.31 —0.56 0.18
0.8 0.24 —-0.6 0.27 -0.4 0.27 (0.600
1.0 0.20 -0.6 0.35 -0.8 0.09
Coefficients
by S-1 by St bs S-1 bs S-t  Multiple
Determination
OLS

3635.02 165 —-150 -1.26 0.17 302 -10335 -—1.33 O0.875
“S—t” 15 short for “Student’s t”

“ Significant at the 5% level, in accordance with Kendall's tau, implies a value of 0.2385 or
more,

Note: ° denotes significance at the 5% level, using Kendall’s tau (critical region is —0.385
or less).

one of the z;;s being equal to unity if necessary (the regression constant). The typical
“normal” equations for this situation are as follows (from minimising 37 §;* = ¥): 3

Eh& Z ajz;dlyfin(y;) = (2.6.2a)
J—l
0w
e anz” In(z;j) = 0 (2.6.2b)
PJ = 1
E_FZLF': Zﬂjm ]'ml.jl —n {EEEE]
=1 _';l-]
Equations (2.6.2a) and (2.6.2b) can be expressed in vector-matrix form as
yi(p) =Xi(p)a, (2.6.3a)
and similarly for equations (2.6.2c),
y2(p) = Xap)a, (2.6.3b)

where equation (2.6.3b) is a generalisation of the OLS normal 