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PREFACE

Applied statistical and econometric analysis in Regional Science and
Geography frequently deals with data collected for aggregate spatial units of
cbservation. Typically these data are affected by a variety of measurement
problems, resulting in spatial dependence and spatial heterogeneity. However,
most empirical work with spatial data series fails to take this complication
into account, even though awareness of problems caused by spatial structure
and spatial dependence, and their impact on the validity of traditicnal
statistical methods, is not recent. In fact, an important series of
methodological developments has occurred in Regicnal Science and Geocgraphy
based on the need to deal with the special nature of spatial data sets.
Despite these substantial methodological advances, the actual application of
appropriate spatial techniques in situations where they are likely to be
relevant has been rather limited, even within the academic community of
regional scientists and geographers. This point has been emphasized in a
survey, reported in Anselin and Griffith (1988), of articles in Journals that
typically are receptive to the publication of analytical dewvelcpments in
spatial statistics and spatial econometrics: only about 7% of those studies
examining spatial data series actually took spatial effects into account. This
finding suggests that further methodological developments alone are not
sufficient to affect the dissemination of spatial techniques to both empirical
academic work and to the applied practice of professicnal geography and
regional science. A concerted effort must be forged in order to bring about
an increased availability of readily implementable software, which can be
easlly integrated within currently existing and widely used packages.
Moreover, although methodological results achieved in the fields of spatial
statistics and spatial econcmetrics have been substantial, the disseminatien
from the research community to the applied world has been virtually
nonexistent.

The recognition of spatial effects has resulted in a large mumber of
specialized analytical techniques and spawned the separate fields of spatial
statistics and spatial econometrics. For definitional purposes, we consider
the distinguishing characteristic for spatial statistics to be its data-driven
orientation, whereas spatial econometrics is viewed as being essentially
model-driven. In contrast to this, there is an almost total ignorance of
spatial effects in the mainstream statistical and econometric literature. For
example, in most recent statistics and econometrics textbooks hardly any
mention of the spatial effects problem can be found. This lack of

ii




consideration of the complications caused by spatial effects is also reflected
in the practice of statistics and econometrics, in that spatial techniques are
absent from standard regression packages, such as SAS, MINITAB, SPSSX, or
BMDPP commonly used by regional scientists and economic geographers.

As a consequence, there has been an almost total lack of diffusion of
the spatial statistical and spatial econcmetric techniques to empirical work
in Regional Science and Geography. Even though the type of data used in this
empirical work, such as aggregate observations for states, counties, or census
tracts, is likely to reflect spatial structure and to be subject to various
spatial spill-over effects, the spatial autocorrelation and spatial
heterogeneity which may result are almost completely ignored.

Collaborative research addressing this problem was proposed to and has
been funded by the Geography and Regional Science Program of the National
Science Foundation (Research Grants # SES-8722086 and # SES-8721875). It is an
integrative effort between a spatial statistician and a spatial
econometrician, and in part has the distinct purpose of transcending
theoretical work by emphasizing the development of accessible software and its
dissemination to the profession. This joint venture maintains that the
integration of new software within existing commercially available packages
and GIS systems will result in an increased accessibility of the proper
spatial techniques to the professional Geography and Regional Science
community, and should allow for an improvement in the general quality of
modeling efforts that can be carried out. It also is hoped that products from
this collaboration would considerably increase the level of sophistication and
the degree of accuracy of the technical analyses achieved by applied spatial
analysts. Accordingly, one of the broad cbjectives of this research endeavor
is to develop and implement a set of tools for the improved dissemination and
accessibility of methodological results for use in applied work in empirical
Regicnal Science, professional Geography and spatial analysis of Geographic
Information Systems. In essence, this should result in a set of procedures
and techniques that the applied spatial analyst can effectively utilize to
deal with the problems of spatial dependence and spatial hetercgeneity. These
procedures and techniques are made available in a user-friendly format and
presented through a series of discussion papers, of which the first two are
Spatial Regression Analysis on the PC: Spatial Statistics Using MINITAR (#1,
by Griffith), and Spatial Regression Analysis on the PC: Spatial Econometrics
Using GAUSS (#2, by Anselin). These two publications are designed to present
translations of methodological tools into computer code that can be easily and
quickly integrated into existing, widely available computer packages. This
integration is in the form of macros and subroutines, which essentially remain
transparent to the user. The specific microcomputer package treated in
Discussion Paper #1 is MINITAB-PC (its code can easily be uploaded to a
mainframe housing MINITAB), whereas the designated microcomputer package of
GAUUSS is treated in Discussion Paper #2.

Wide dissemination of the computer code constructed under the
sponsorship of this research project is to be achieved through the
availability of this series of discussions papers, and the hosting of
workshops. These discussion papers have been designed to accompany a workshop
that introduces users to hands-on experience with microcomputer versions of
the code. They are suited for use as laboratory manuals for upper-level
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undergraduate or graduate courses in geographical data analysis or applied
regression analysis, tooc. The workshop was first held at the Association of
Mmerican Geographers (AAG) Baltimore meeting (March, 1989), under the Joint
auspices of the AAG Mathematical Models & Quantitative Methods Specialty Group
and the NSF National Center for Geographic Information and Analysis (NOGIA)
cutreach program. In addition, this Workshop also has been supported by the
MINITAB demonstration program. The discussion papers list the different sets
of computer code, describe how to integrate this code into the two packages,
and provide test examples for determining whether or not correct
implementation has occurred (interested persons can obtain digital copies of
the computer code either through the workshop or by completing the mail-order
acquisition form found at the end of this discussion paper).

Although the routines described in these two discussion papers have been
tested, both before and during the workshop, and used by their respective
authors and by pecple elsewhere, no warranties, expressed or implied, are made
by University of California/Santa Barbara, Syracuse University, or the authors
that the computer code or documentation are free of error. Furthermore, this
software is not warranted for correctness, accuracy, functioning of the macros
and related routines, or fitness for a task. Users rely on the results of the
routines solely at their own risk; no responsibility is assumed in connectien
therewith.

It is hoped that this pair of discussion papers will begin to provide
some specific advice and guidance to practitioners, couched in user-friendly
commercial software. The first step in analyzing a spatial data series should
be to assess the sources, nature and degree of prevailing spatial effects. The
software outlined in these discussion papers is intended to facilitate this,
and when needed, to allow the implementation of the proper modeling
techniques.

Daniel A. Griffith
Syracuse, New York

and

Luc Anselin
Santa Barbara, California

February 1, 1989
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CHAPTER 1.
INTRODUCTION, BACKGROUND, AND CAVEATS

This Discussion Paper presents computer code that exploits the MINITAR
commercial software package in order to substantially reduce the tedium of
numerically intensive, complex spatial statistical calculations, as well as
convert the accompanying massive matrix manipulations into transparent
operations. Its preparation is part of an ongoing collaborative effort to
develop, popularize, and disseminate a comprehensive set of user-friendly
procedures for undertaking spatial statistical analyses. These modified
statistical techniques are necessary because, on the one hand, spatial
statistics addresses situations involving geographic data series for which
standard statistical tests and estimation procedures often are invalid, and,
on the other hand, no present standard commercial statistical package provides
these specialized routines in a user-friendly format or envirorment. In part
the impetus for this research came from the success with which results for a
simultaneous autoregressive (SAR) model can be teased out of standard
commercial statistical software [see Griffith (1988)]. Findings for
previocusly published as well as new numerical examples are included; the data
for these examples appear in Appendices 2-A, 2-B, and 5-A. Prominent
statistical issues for this approach to geographic data analysis include model
specification, model estimation, and model diagnostics. CQuestions concerning
model specification will not be addressed here; the single model of concern is
the SAR specification. Maximum likelihood estimation will be employed, with
appropriate adjustments being made by substituting degrees of freedom for
sample size in order to secure unbiased estimates. And, diagnostics will be
focused on; especially the violaticn of independent errors in ordinary least
squares (ULS) regression solutions, and the assumption of normally distributed
errors will be scrutinized.

1.1. The MINITAE commercial software package

Interactive MINITAB is a user-friendly, widely available, inexpensive,
and general purpose statistical analysis package. It encompasses the entire
range of customary univariate statistical technigues, and recent updates have
begun to include some of the favored multivariate procedures. It has a EC
version that performs quite efficiently, is very powerful, and is attractively
flexible. It operates on IBM-compatible machines, with DOS version 2.0 or



later, requires a minimum 512K REM (there must be at least 450K available
after system configuration), is best used with a 10 Megabyte hard disk and one
double-sided, double-density diskette drive (a minimm of two double-sided,
double-density diskette drives are needed if a hard disk is unavailable), a
monochrome or color graphics monitor (80 character width) , and preferably a
math coprocessor chip. Once it is installed on a machine, running it usually
is initiated with the following command (.J denotes a carriage return):

C>MINITAE J

where C> is the system prompt; customized paths may alter this command to scome
degree,

MINITAB stores, manages, and manipulates data in three different forms.

Data may be stored in constants, which are denoted by K1, K2, ..., K100 (a
maximm of 100), in wvectors or colums, which are dencted by Cl, C2, ..., Cl100
(a maximm of 100), or in matrices, which are denoted by M1, M2, ..., M15 (a

maximm of 15). A list of consecutively numbered constants, columns, or
matrixes may be abbreviated by using a dash. Besides these machine-specific
limitations, MINITAB-PC has the following restrictions:

Worksheet size: 16,000
Maximm width of "A" format variables: 4 with READ

80 with SET
Maximum number of characters per line with formatted
RERD: 256
WRITE: 256

Defaults for:
output width: 79
output height: 24
Maximum mumber of open files (macros plus outfile): 6
To temporarily exit Minitab to DOS, type:
MTE > SYSTEM
To return to your Minitab session type "EXIT".
Minitab supports DOS 2.0 file paths up to 30 characters.

These parameters constrain the size of problems that can be handled by this PC
software package; mainframe versions possess less binding limitations and
hence are capable of handling much larger problems. Furthermore, the output
height of 24 means that after each 24 lines are displayed on the CRT sSCreen,
the prompt CONTINUE? appears; the simplest response to this prompt is a
carriage return.

MINITAB commands are entered after the prompt MTB>. MINITAE embraces
about 180 different commands. A command always begins with a command word,
which usually is followed by a list of arguments; an argument is either a
colum C_, a constant K , a matrix M (the underline signifies the position of
an appropriate numeral), a number or a file name (inside single quotation
marks) . When columns, constants, or matrices are reused, all previous
contents are erased and the new contents are inserted. For shorthand
purposes, only the first four letters of a command and/or arqument are needed.
Annotations may be included by preceding remarks with the MINITAE command
NOTE. Each command must start on a new line, with continuaticns indicated by



including an ampersand (&) as the last character of the line that is to be
continued (MINITAB autcmatically inserts ampersands when writing output to
files). Subcommands are available for some MINITZAR commands; these
subcommands are used to evoke special options. Commas cannot appear within a
number; only consecutive numerals can be constructed, except for the
appearance of a decimal point.

A single user-defined macro file is necessary for implementaticn of the
spatial statistical analysis software outlined in this Discussion Paper. This
macro stipulates the problem size, variable definitions, and data input, and
as such requires proficiency with only a few MINITABR commands. In order to
maintain consistency with the test materials presented in this workbook, this
file is expected to be named START.  (the underline signifies a three-
alphanumeric extension; see Section 2.1 for several examples). The first file
line should contain the MINITAB command NOECHO, which turns off the echo
printing of MINITAB commands; this command suppresses the display of data that
are read, and MINITAE commands that are executed, on the CRT screen. The next
two lines should contain initial problem size parameters, and involves using
the IET command, which allows MINITAB constants, columns, and matrices to be
assigned values; IET K1 = the mmber of areal units, and IET K2 = the number
of X variables. The software described in this Discussion Paper is designed
for problems where K1 < 50, and K2 € 10. The fourth line should contain the
FEAD statement for the binary connectivity matrix M1, which will have
dimensions Kl-by-K1; its format is READ ’file name’ K1 K1 M1, and it expacts
the first Kl entries to appear in free-format style on the first line of the
file in question (clearly this file will contain at least K1 lines). In most
cases the fifth line should be IET K3 = K2 + 1, and increments the muber of
predictor variables by one in order to take into account the regression
intercept term; in analysis of variance this declaration is LET K3 = K2, while
it may remain undefined for the trend surface routines, The sixth line should
contain the READ statement for the data file, defining that variable to be
designated Y as Cl, and those variables to be designated the Xs as C2-CK3;
READ "file name’ Cl C2-CK3. As Chapter 2 illustrates, considerable latitude
is available here, with the designation of variables being made in whatever
order is compatible with their appearance in the data file. The last line of
this file is END, which terminates execution of the macro. Once all of the
MINITAE macros have been executed (see Chapter 6 for a summary of the
necessary macro sequences for various spatial statistics routines), MINITAR is
terminated by entering the command STOP.

Output appearing on the CRT screen also can be captured in a file by
entering OUTFILE 'file name’ before the execution of macros. This MINITZE
command is extremely valuable for collecting results from a final analysis; it
creates an ASCII file that can be easily read into many word processing
software packages.

1.2. The Moran Ceefficient and the Geary Ratio

Cne of the first diagnostics utilized in these spatial statistics
routines is a test for spatial autocorrelation in regression residuals. The
Moran Ccefficient (MC) has been selected for this test. Griffith (1987, pp.
48-49) shows that this index can be calculated using the following set of



MINITAB commands, where there are Kl areal units, the connectivity matrix is
housed in MINITAE matrix M1, and the geographic data is housed in MINITAR
columm Cl:

CENTER Cl1 C75;
LOCATICHN.

MILT M1 C75 Clé

LET K2 = SIM(CT5*CT6)
LET K3 = SUM(C75**2)
SET C77

K1 (1)

END

MULT M1 C77 C78

LET K4 = SUM(C78)

IET K5 = (K1/K4)* (K2/K3)
PRINT K5

END

The MINITABR constant K5 is MC.

Another spatial autccorrelation index option is the Geary Ratio (GR),
which entails squared paired comparisons calculations. But for any geographic
variable, the paired comparison (x - ¥;) can be rewritten such that

(5 -8 - (& -8 = (& -%-2(x -8 (4 -8 + (x - 8)?

This middle term appears in the numerator of MC. Therefore, GR may be
calculated with the set of MINITAE commands

CENTER C1 C75;

LOCATTION.

MULT M1 C75 C76

LET K2 = SIM(CT5*C76)

LET K3 = SUM(CT5%%*2)

SET CT77

Kl (1)

END

MULT M1 C77 C78

LET K4 = SUM(C78)

LET K5 = (K1/K4)*(K2/K3)
LET K& = SUM(CT8* (C75%*%2))
LET K7 = ((K1-1)/(2*K4))*(2*K6/K3) - ((K1-1)/Kl)*KS
PRINT K7

END

The MINITAB constant K7 is GR. Consequently, in order to calculate GR, one
mist calculate MC; morecover, GR is a function of MC. In addition, Cliff and
Ord (1981) suggest that the statistical properties of MC are better behaved
than are their GR counterparts,

The MINITAE code presented in this Discussion Paper assumes that the
matrix Ml, cor the geographic comnectivity matrix, is binary (0,1) and
symmetric. If one wishes to go beyond the classical statistical distribution



theory of MC, and use cther forms of a binary connectivity matrix (only zeroces
and ones are present here), then several slight adjustments to the ensuing
MINITAB code will be required. For mathematical purposes, this matrix will be
dencted as C,

1.3. Types of autoregressive models

Various types of autocorrelation models have been used successfully with
geographic data series. One class of these models spotlights error; the error
component of a model is spatially autocorrelated, Conceptually the simplest
structure for this autocorrelation is a ing average (MA) model, whose error
covariance matrix may be written as (I - pC)¢°. The second simplest structure
found in the literature is a conditional autoregressive (CAR) model, whose
error covariance matrix may be written as (I - pC)'¢’. Extensive use of
elther of these models for regression analysis purposes requires a
decomposition of the matrix (I - pC); two possibilities are an eigenfunction
decomposition, and a Cholesky decomposition. Findings reported by Griffith
(1988c) imply that final regression analysis results are conditional with
respect to the selection of a particular decomposition. Thus, there is a need
for further meticulous study of these two models before implementation
procedures for them are disseminated. A second class of these models is
characterized by the autoregressive response specification, which presumably
will be the topic treated in one of the next releases in this Discussion Paper
series,

Cne model whose estimation theory is sufficiently developed to support
deployment in the area of applied spatial statistics is the simultanecus
autoregressive (SAR) model. The error covariance matrix for this
autocorrelation structure may be written as [(I - pW)"(I - pW) ]7°C°. Here the
previous connectivity matrix C is replaced with a stochastic matrix W (all
elements of this matrix should be non-negative, and the row sums of this
matrix should be unity), frequently called a welghts matrix. Unless user
interventicn occurs (see the Upton and Fingleton example of Chapter 5), this
stochastic matrix is automatically calculated from the initial comectivity
matrix; all SAR model routines presented subsequently assume this latter
matrix. Griffith (1988) presumes the use of this matrix in model
specifications; in one instance, however, Upton and Fingleton (1985) employ a
welghts matrix that fails to be stochastic. In order to accommodate their
exanple, primarily for illustrative purposes, the spatial statistics software
of this Discussion Paper has been generalized beyond that of Griffith (1988) ;
unfortunately, this generalization increases the mmerical intensity of the
procedures, and hence increases the required computer execution time.
Briefly, this extension means that the regression intercept variable must be
written as (I - pW)1l rather than (1 - p)1.

Algebraic expansion of the matrix product (I - pW)®(I - W) to [T -p@W
+ W + ] emphasizes the close relationship between CAR and SAR model
specifications. If p is quite small, then p* will be very close to zero, and
this expansion becomes analogous to a CAR specification of the form I -pW
+ W)]. This linkage implies that if P for a SAR model is small, then a CAR
specification should be explored.



As is well known [see Griffith (1988b)], estimation of the SAR model
requires maximum likelihood techniques. This optimization problem reduces to
one of

MIN: det|(I - pW)" (I - pW) |7 (¥ - XB)(T - pW)" (T - pW) (¥ - XB) ,

i=n
where det| (I - pW)° (T - pW) |7 = [ JT (1 - ph) 1™ is the Jacobian term, with

i=1
A, being the i-th eigenvalue of matrix W. Extraction of the eigenvalues of
matrix W combined with the minimization of a nonlinear function are what make
this maximm likelihood estimation calculation so rumerically intensive. By
construction the principal eigenvalue, A, always equals unity; this result
constrains the spatial autocorrelation parameter such that |p| < 1, and is the
main reason why Ord (1975) contends that the use of a stochastic version of
the connectivity matrix leads to a natural interpretation for the spatial
autocorrelation parameter. Because this minimization problem involves the
multiplication of the Jacobian term, which is a constant for any value of p,
times a summation, this constant can be distributed over the sum of squares
term represented by the matrix product (Y - XB)"(I - pW)* (I - pW) (Y - XB) .
After Griffith (1988a), this Jacobian term may be rewritten as

i=n
11‘[&:{1}{[21 In(l = ph)1/n})*
l=
which is a mean as well as a sguared number. This rendition of the Jacobian
term allows the minimization prcklem to be translated into a regression
problem involving the following model expression:
i=n
(I -pWY¥/exp{[ X In(l - ph}]/n} =

1=1 i=n
(I -pOXP/exp{[ ¥ 1In(l - pA)1/n} + &
i=1
This is the estimating equation employed in this Discussion Paper.

At times the nonlinear estimation procedure for calculating p fails to
converge. Convergence may not be attained when the geographic data series
under study is nonstationary (this is not the only reason for convergence
failure, though); one reason for the presence of ncnstationarity is a spatial
drift in the parameters of the regression model. Probably the simplest form
of this drift is a spatially varying regression intercept term. Even if no
spatial autocorrelation is latent in the geographic data series, if the
intercept term drifts, and this drift is ignored in the model specificaticn,
then the regression residuals may exhibit autocorrelation. Such a drift can
be removed by introducing sundry powers of absolute coordinate measures into
the matrix X of predictor variables. In essence, if p = 1, then an areal unit
value is exactly the average of the values taken on by those areal units to
which it is juxtaposed. This scenario is precisely what a linear trend
surface describes! Inclusion of the trend surface terms will remove the
detected spatial autccorrelation in the residuals, and hence in the absence of
spatial autocorrelation will move p close to zero; the new geographic
distribution of residuals now is stationary.



1.4. BStatistical properties of OLS versus SAR

Classical statistics has provided thorough documentation of the
desirable properties of the ordinary least squares (CLS) solution for a
regression model. In an ideal situation in which the Gauss-Markov Theorem
holds, the quality of the OLS regression coefficients b is such that they are
the best (minimum variance) linear unbiased estimators; moreover, they are
consistent (they differ from the true parameter values by a decreasingly very
small amount as n becomes large), sufficient (they extract all of the relevant
information about their respective population parameters that is contained in
the original sample), unbiased (the mean of their sampling distribution equals
the population parameter), and equivalent to the maximum likelihood estimators
for a random effects model having normally distributed errors. The covariance
of the estimators b is given by (XX)¢°. The maximm likelihood estimate of
the error variance ¢° is asymptotically unbiased; its OLS estimate is
urbbiased.

Spatial statistics has found that if the OLS solution is used for a SAR
model, then the regression coefficient estimators b are urbiased, but no
longer consistent or sufficient. Mardia and Marshall (1984) show that the SAR
estimators are weakly consistent, and Ord (1975) shows that the estimator far
p is consistent. Griffith (1988a) shows that these SAR parameter estimates
are sufficient. Upton and Fingleton (1985) ncte that the estimator for the
spatial autocorrelation parameter will be biased, strictly due to the nature
of the nonlinear estimation procedure involved. The covariance of the
estimators b is given by [X'(I - pW) " (I - pW)X]"'¢°, which is the asymptotic
covariance matrix, and is independent of the estimates of parameters p and o';
the covariance matrix for these latter two estimators is such that they are
not independent of each other. The maximm likelihood estimate of the errer
variance ¢ in the SAR model is asymptotically unbiased; it can be converted
to an unbiased estimator using the same degrees of freedom principle as for
conventional OLS estimation. The OLS mean square error for a SR model tends
to be severely biased, beyond what can be accounted for merely by making an
adjustment with degrees of freedom.

1.5. What the SER model estimation procedure accomplishes

Two prominent points advanced in the preceding section highlight why the
specification of a SAR model can be worthwhile. First, the OLS mean square
error estimate of ¢ may be too large. When this value is inflated, it can
result in (1) failure to reject the null hypothesis about a regression
parameter when in fact that null hypothesis should be rejected (the Type I
error probability is incorrect), and (2) underestimation of the B value for
the overall regression model. Second, the diagonal terms of the covariance
matriz [X'(I - pW)*(I - ¢X]™ for b may be either too large or too small,
since the spatial linear cperator could either inflate or deflate (depending
upcn the nature of the latent spatial autocorrelation) individual regression
coefficient standard errors. If these values are inflated, then again the
Type I error probability may lead to an incorrect failure to reject H.; the
compound effect of a double inflation can be dramatic. If these values are
deflated, then the null hypothesis about a regression parameter may be
rejected when in fact it should not be. It is extremely unlikely that an



inflation due to the incorrect OLS estimate of ¢ would be exactly offset by a
deflation due to the incorrect OLS estimate that substitutes the matrix (XX ™
for [X'(I - pW)°(I - pX)™. Cbviously the Type IT error probabilities are
impacted upcn by these inflations and deflations, too. The magnitude of these
effects increases in severity as |pl approaches unity.

When spatial autocorrelation is present in the residuals, then the
Gauss-Markov theorem no longer holds. Consequently, many standard diagnostics
lose interpretability. MNumbers are cbtained for an OLS solution, but many of
them become either meaningless or purely descriptive. Moreover, results
become sample specific, for the method of least squares can be used to
estimate the parameters of a linear regression model regardless of the form of
the statistical distribution of residual errors. This OLS solution erodes the
soundness of the inferential basis, though, if it is mistakenly determined
when a SAR model specification should be posited.



CHAPTER 2.
OLS REGRESSION
WITH A TEST FOR SPATTIAL AUTOCORRELATION

One of the first steps in a regression analysis is to obtain and then
evaluate the traditicnal ordinary least squares (QLS) regression solution. In
MINITAB this task is accomplished using the command REGRESS. Regression
residuals are to be normally distributed, and are to lack spatial
autocorrelation. These residuals are captured here using the MINITABR
subcommand RESIDS with REGRESS. A Moran Coefficient (MC) is used to test for
the presence of non-zero spatial autocorrelation, based upcn the assumption of
normality. A t-statistic is calculated for this ocbserved M value, and its
corresponding degrees of freedom are determined. The t-statistic is preferred
here for two reasons. First, usually the sample size in question is rather
small (almost always less than 100; frequently less than 30). Second, the
estimate s, is being used, rather than G,.. Critical values for this
statistic, using a two-tailed testing situation and a critical region of 5%,
are as follows:

degrees critical degrees critical degrees critical

of freedom value of freedom value of freedom wvalue
1 + 12.71 14 + 2.14 27 + Z.05
2 + 4.30 15 + 2.13 28 + 2.05
3 + 3.18 16 + 2.12 29 + 2.04
4 + 2.78 17 + 2.11 30 + 2.04
5 + 2.57 18 + 2.10 35 + 2.03
() + 2.45 19 + 2.09 40 + 2.02
7 + 2.36 20 + 2.09 50 + 2.01
8 + 2.31 21 + 2.08 60 + 2.00
9 + 2.26 22 + 2.07 80 + 1.49
10 + 2.23 23 + 2.07 100 + 1.98
11 + 2.20 24 + 2.06 200 + 1.97
12 + 2.18 25 + 2.06 500 + 1.9%6
13 + 2.16 26 + 2.06

These tabulated t-statistic results have been gleaned from standard
statistical tables, and are presented here with the threshold values for
larger degrees of freedom (i. e., all critical values between 50 and 59



degrees of freedom equal 2.01; convergence cn the normal distribution value
occurs at 500 degrees of freedom).

Results for the randomization assumption are avoided here because, as
Cliff and Ord (1981) note,

... under assumption R[andomization] we are assuming, falsely,
that the sample residuals are uncorrelated under H,, whereas by
using assumption N(ormality) we are allowing for the correlation
among the sample residuals under H,. The amount and direction of
the bias introduced when we make assumption R ... (p. 211)

A modified Shapiro-Wilk statistic is calculated to test for normality of the
regression residuals, allowing one to assess how reasonable invoking this
normality assumption is. This statistic is produced by first converting the
residuals to normal scores (these are not z-scores) using the MINITAR command
NSCORES, and then correlating the original residual values with their
corresponding normal sccre values using the MINITAR command CORR., Critical
values for this statistic, using a one-tail testing situaticn (a2 two-tailed
test is inappropriate, since the population correlation is hypothesized to be
unity) and a critical region of 5%, are as follows:

sample critical sample  critical sample critical
size value size value size value
4 0.8734 20 0.9503 50 0.9764
5 0.8804 25 0.9582 a0 0.9799
10 0.9180 30 0.9639 75 0.9835
15 0.9383 40 0.9715

These tabulated correlation coefficient counterparts to the Shapirc-Wilk
statistic have been taken from the MINITAE Reference Manual (1568, p. 63).

The Eire data (by counties) analyzed by Cliff and Ord (1981) is employed
here for benchmarking purposes. Selected agricultural production data for the
Mayaguez Region of Puerto Rico are used for illustrative purposes, too. All
source code macros are housed on a diskette that should be located in Drive A,
while the MINITAB software package is to be housed on a hard disk.

2.1. The Moran Coefficient for Regression Residuals

An initial macro file needs to be constructed that defines the sample
size, the number of regressor variables, the connectivity matrix file, and the
data set file (see Section 1.1 for a more complete discussion of this file).
The code housed in this file has the following structure:

noecho
let k1 = Size
let k2 = of independent variables

read 'a:connedtivity matix flle name’ k1 k1 ml
let k3 = k2 + 1

read 'a:dain set fle name’ cl cZ-ck3

end

10



The first MINITAB READ command accesses the connectivity matrix file from the
diskette in Drive A; this two-dimensicnal array is stored in matrix Ml. The
second MINITAB READ command accesses the data set file from the diskette in
Drive A; variable Y is stored in colum Cl, whereas the set of X variables is
stored in columns C2-CK3. The corresponding files for the Eire data analyzed
by Cliff and Ord, and the Puerto Rican data, respectively are a:START.TST and
a:START.PR, and appear as follows:

a:3TART.TST a:5TART.FPR

noecho noecho

let k1 = 26 let k1 = 16

let k2 =1 let k2 =7

read 'a:eireconn.tst’ k1 k1l ml read 'armayaguez.con’ k1 k1 ml

let k3 =kZ 4+ 1 let k3 =k2 +1

read 'areiredata.tst’ cl c2-ck3 read "armayaguez.dat’ c50 ¢l c2-ck3
end end

One should notice that the second variable in the Puerto Rican data set is the
¥ variable, and that the first variable in this data set is being eliminated
from the analysis.

The concern here is with spatially autocorrelated regression residuals.
A standard OLS regression is cbtained with the sequence of MINITAR command
lines

IFT K3 =KZ + 1
REGRESS C1 K2 C2-CK3;
RESIDS (C50.

The colum C50 contains the residuals, say vector e, that are to be analyzed.
The Moran Coefficient for these regression residuals may be defined, using
matrix notation, as follows:

MC = (n/1°C1)* (e'Ce/e'a) ,
where the vector 1 is n-by-1 and has all unity entries, and the superscript
"t" denotes the operation of matrix transpose. The expected value of this
coefficient is giwven by

EMC) = - {n/[(n - k)*1I°C1) p*cr[ (XX) "XCX]
where k equals cne more than the number of regressor variables (this increment
is necessary to include the intercept term), and tr denotes the matrix
cperation of "trace" (suming the diagonal entries). Matrix X consists of the
set of regressor variables together with an initial wvector of cnes, which is
the variable associated with the intercept term. The variance of this
coefficient is given by

VAR(MC) = {of/[(1'CL)** (n - kK)*(n - k + 1)1}* (S, + 2%tr{ [ (XK) XCX]?)

- r[XX)7X(C + C)K] - 2% {tr[ (¥R XX] )/ (n - k),

11



where S is defined as
i=n i=n
(1/2y ¥ X (Wyy + wy)®
i=]1 i=]
A t-statistic can be cbtained for the cbserved MC by calculating

t = {MC - E(M)]/WWARQEC)
which should be distributed with (n - k) degrees of freedom.

The wvector of ones, which will be column C409 here, to be included with
the predictor variables in order to construct matrix X is cbtained with the
following MINITAR commands:

SET C49

K1l(1)
END

Next, matrix X, which will be M2 here, is constructed with the MINITAR command
COPY C49 C2-CK3 M2

Matrix X', which will be M3 here, is produced with the MINITAE commancd
TRANS M2 M3

The inverse matrix (X'X)™, which will be M5 here, is obtained with the
following sequence of MINITAR commands:

MULT M3 M2 M4
INVERT M4 MS

Construction of matrix (XX)“X'CX, which will be M8 here, is achieved with the
following sequence of MINITAB commands:

MULT M1 M2 M6

MULT M3 M6 M7
MULT M5 M7 M8

The trace of matrix (XX)7X'CX, or matrix M8, is obtained with the MINITAR
commands

DIAG MB C48
SUM (C48)

The sum of the cennectivity matrix entries, 1°Cl, is computed with the MINITZR
commnands

MULT M1 C49 C47
SUM(C47)

And, the numerator of the Moran Coefficient is calculated with the MINITAR

12



commands

MULT M1 C50 C46
SIM(C50*C46)

wille the denominator of this statistic is cbtained with the MINITAB command
SUM (C50**2)

which is the sum of the squared residuals.
These various MINITAB commands allow MC to be defined as follows:
IET K4 = (K1/S5UM(C47)) *SUM(C50*C46) /SIM(CS0**2)

In addition, these foregoing sets of MINITAB commands allow EMC) to be
defined as follows:

IET E5 = (-K1/(K1-K3))*SUM(C48) /S (C4T)

The standard error of MC, requiring the calculation of VAR (MC), involves
additicnal computations. First, the trace term tr[ (XX) X (C + C )X is
calculated with the sequence of MINITAE commands

TERANS M1 M9

ADD M1 M9 MLO
MULT M10 MIO M11
MULT M3 M11 M12
MULT Mi1Z2 M2 M13
MULT M5 M13 M4
DIAG M14 C44

S (C44)

Next, the trace temm tr{[(XX) X'CX]’} is computed with the sequence of MINITAB
commands

MULT ME M8 MIS
DIAG M15 C43
SUM (C43)

And, the term S is calculated with the sequence of MINITAR commands

LET K6 = 50 + K1

COFY M10 C51-CKé&

LET K7 = 51

EXEC 'a:SQUARE. MV K1
RSIM CS51-CKé& Cc42

SUM (C42)

This last set of code involwves the macro a:5QURRE .MCV, which appears as
follows:

13



a:SQURRE . MCV

let ck7 = ck7**2
let k7T =k7 + 1
end

- These foregoing MINITAB commands are housed in the file a:CLASSIC.REG,
which when executed yields an OLS regression, an MC test for spatial
autccorrelation amongst the regression residuals, and a Shapiro-Wilk test for
normality of the residuals. This set of code appears as follows:

a:CLASSIC.REG

trans ml mS

sub ml m9 m3

print m3

let K3 =kZ2 + 1

NOTE cl is ¥; c2-ck2 are the predictors
regress cl k2 c2-ck3;
resids c50.

set c49

k1(1)

end

copy c49 c2-ck3 mZ

diag m8 c48

mult ml c49 c47

mult ml c50 c46

NOTE Moran Coefficient (MC) calculated for residuals; printed as k4
let k4 = (k1/sum(cd7)) *sum({cS0*cdb) /sum(c50**2)
NOTE Expected value of MC for residuals

let k5 = (=kl/(kl-k3))*sum(c48) /sum(c47)
add ml m9% ml0

malt ml0 ml0 mll

mult m3 mll mlZ2

malt ml2 m? ml3

mult m5 ml3 mld

diag ml4 c44

mult m8 m8 mls

diag ml5 c43

let k& = 50 + k1l

copy ml0 c51-cké

let k7 = 51

exec "a:square.mcv’ kl

rsum c5l-cké c4?2

let k8 = (k1**2)/((sum(c4d7)**2)* (k1-k3) * (k1-k3+2))
NOTE Variance of MC for residuals

let k8 = k8* (sum(cdZ) /2+2*sum (c43) —sum (c44) =2* (sum (c48) **2) / (k1-k3) )

14



NOTE t-score calculated for MC; printed as k9, df printed as k10
let k9 = (k4 - k5)/sqrt (k8)

let kK10 = k1 - k3

print k4,k9,k10

NOTE Shapiro-Wilk test for normality performed on residuals
nscores ¢S50 c45

corr <50 c45

end

The Moran Coefficient is printed as K4, its t-statistic is printed as K%, and
the number of degrees of freedem for this t-statistic are printed as K10. One
should note that the first three lines of MINITAE commands generate a display
of the differene between matrix € and €, so that one can determine whether or
not this matrix is symmetric. Moreover, matrix C is transposed, and the
difference between this matrix and its transpose is calculated; the code
involved here is as follows:

TRANS M1 M9

SUB M1 M9 M3
PRINT M3

2.2. Benchmark output for the Eire data

The results reported in Cliff and Ord (1981) are duplicated here by
first executing the MINITAR command

EXFC 'a:START.TST" J

which results in the CRT display

26 FWE FERD
26 RWE READ

This first response indicates that 26 rows of data have been read from the
file a:EIRECONN.TST, while this second response indicates that 26 rows of data
have been read from the file a:ETREDATA.TST.

Next, the regression analysis is completed by executing the MINITAB
cammand

EXEC fa:CLASSIC.REG" J

which results in the following CRT screen display for assessing the symmetry
of the connectivity matrix

=
L=l = = N = |
L=l = R = N = I = ]
(= = N = - -]
(== = = ]
2 o o o i i
£ <3 (=1 o O [ =]
£F €3 £ diZ O DO
o O O O £ e
L= L B = ] [=] [ I =
L = = R = R
L = T = R
L=
L= = = - - ]
LET = T = = N = N = |
(= = - - - -]
L= R = R - | [ R =) L=}
£33 &3
[=T = = = R = I =]
£ 3 o O O
= o D O O 3
@ I o O O
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correct response to this prompt.

Next the OLS

a brief note.

cl is ¥r cP-ck3 are the poedictors

Te peqression equation is
C1l = 133 = 9.9103 ¢=2

Fredictor Ooaf Stdew
Cormtant 133,45 11.54
=2 —2,.310340 0. M0ZSEs
8= 13,31 F-ag = 40.4%

Mralysis of Varianse

SRE F 55
Bogression 1 ZBED.T
Erper 24 42847
Total 5 71354

U] Chesroations
hs. ol cL Fit
5 T3040 .00 35.90
& At 14z.00 10042
14 e815 TL.03 62,38

E=ratio B
11,57 Q.00
—4.03 0,000

F-sgiadi) = 37.0%

ME 3
2880,7 16.35
177.3

Stdav,Fit Residual

8.4 13.10
4.24 10.38
8,77 E.02

then matrix C and its transpose must
During the displaying of the above matrix, and
ying of all CRT MINITAB results, remember that
the prompt "CONTINUE?" will appear periocdically; a carriage return (J) is the

regression results are displayed on the CRT, together with

P
0, 00o

& Resid
1.B5 X
13w
L.70 x
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R denctes an obs, with a large st. pealid.
¥ demotes an dbs. Whose X value gives it larpe Influesce.

These outcomes agree with those findings reported in Cliff and Ord (1981, p.
209); in particular one should compare the a, b, and K values. These
standard OLS calculations are supplemented here with the spatial
autocorrelation and normality test results, producing the CRT screen display

Moran Coefficle: M0) caloalated for residusls: pristed as ké
ExpacTed valoe of HE for meesidials

Variance of HC for residuals

t=score calonlated for MO pointed as kB, 2f printed as k1D
Ka Q. 1907TES

Eg 217845

1O 24 D0

SraplroeWilk test for normality performed on residoals
Jorrelatlan of S50 and O45 = 0,585

The Moran Coefficient and t-statistic outcomes agree with those findings
reported in Cliff and Ord (1981, Table 8.2, p. 211). The Shapiro-Wilk
statistic implies that invoking the normality assumption is reasonable to do
(this cbserved value lies closer to the hypothesized value of one than does
its associated critical value of approximately 0.9593).

The second data analysis replication undertaken here is for the
logarithmic form of the Eire model analyzed by Cliff and Ord. After

completing the first regression analysis, the following MINITAR commands were
executed:

IFT C1
LET C2

LOGTEN (C1)
LOGTEN (C2)

These two commands transformed the original Eire data by converting them into
their log,, versions. Then the MINITAE command executed was

EXEC fa:CLASSIC.REG" J

which repeats the same CRT screem display for assessing the symmetry of the
connectivity matrix as seen above. This execution also produces OLS
regression results, and displays them on the CRT screen, together with a brief
note.

<l is ¥y c2—cka ame the predictors

The megression equation 1s

]l =4,1% - 4,621 C2

Prodicser Coaf Stdev t-mtis -+
ConsTant £.1837 0. 4450 .41 Q003
= =0, 6211 0. L2225 =5.07 Q.007

5 = [0 05813 F-sg= 51.7% F-sgiadil = 49.7%

17



Analysls of Varlasee

TORCE oF 55 M5 F B
Reqression 1 0.081008 (061006 25,71 0.000
Error 24 0.07SES  0,0031%0

Total 2%  0.156618

Unema] Chservwmtions

[ .08 =2 1 Flt Stdev.Fir HResidual 5t.Resid
5 3.88 1.8751 1.7888% t.a31a J.0E82 1.1 x
[ 5.49 £.1523 2.0271 0.0247 4,185z 240
12 3,70 1,77188 1.8962 0.0138 -0.1181 =2.1TR
1E 3,83 1.8%813 1.8127 3,927 4.0388 0.7 X

B denctes an obs, with a large st. resid,
¥ denctes an cbs. whose X value gives it large influence.

These outcomes also agree with those findings reported in Cliff and Ord (1981,
p. 209); in particular one should compare the a, b, and B values. Again
these standard OLS calculations are supplemented here with the spatial
autocorrelation and normality test results, producing the CRT display

Moran Coeffilciemt (MO calsslared for resichals: zrinted as k4
Expacted value of MC for reaidnls

Varlance of MC for mesiduals

t-score caloalated for MYy printed as k%, df prinved as k10

f.C 0130081
K 1.67554
g als] £4 . 3000

Shaplee~Wllx cest for noomlity pacfommed on Pesiduals

Correlation of G50 and C4S = 0,942

The MC and t-statistic outcomes agree with those findings reported in Cliff
and Ord (1981, Table B.2, p. 211). The Shapiro-Wilk statistic once again
implies that invoking the normality assumption is reascnable to do (this
cbserved value lies considerably closer to the hypothesized value of one than
does its asscciated critical value of approximately 0.9593).

ently, the benchmarks used here demcnstrate that the calculations
done with MINITAE code are correct.

2.3. Illustrative output for the Puerto Rican data

Results for selected agricultural production density data from the
Mayaguez Agricultural Administration Region of Puerto Rico (see Figure 2.1)
are produced here for illustrative purposes, and are cbtained by first
executing the MINITAE command

EXEC 'a:START.PR'
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which results in the CRT display

16 ROWE FEAD
16 ROWE READ

Tt:ais first response indicates that 16 rows of data have been read from the
file a:MAYAGUEZ.CON, while this second response indicates that 16 rows of data
have been read from the file a:MAYAGUEZ .DAT.

Next, the regression analysis is completed by executing the MINITEE
command

EXEC "a:CLASSIC.REGT J

which results in the following CRT screen display for assessing the symmet
of the connectivity matrix: 7 -

E
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oD o i O O O O O O O 3 i i D i
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Since every entry in matrix M3 is zero, then matrix C and its transpose must
have identical cell entries, and so matrix C is symmetric.

Next the OLS regression results are displayed on the CRT, together with
a brief ncte,

<l is ¥r cé—ckd ame the predictors

Thi megressicm eqution is
CL o= 3,20 - 0,088 CF + 0,119 C3 & 0.4TT C4 +0, 000937 S5 + 0,677 06 = 1.8L 07 - 1,90 &8

Fredictor Coat Srabeny t=ratio B
Constant d.13% 3,561 0,80 0,355
=z =0, D265 0.1935 —0.,26 0808
=3 0. I1B& 0. 1408 0.384 0423
e} D.4760 0.1534 3,11 0.0le
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= CLO00RETE 00004807 1.85 C.0B7
[ . ETEE 0,505% 1.34 r.218
(=} =1l.810 1.554 —-1.04 3.331
o= -1.818 1.14] =1.E8 d,.532
5 = 3,301 Remq = 78,3 B-agiad!) = 59.4%

Balyals of Variance

SXRCE CE 55 Mg F o
Regresalon 7 315,47 25,06 4,14 J.032
Ermor B aT.17 10,80

Tozal 15 q02.5%

FRCE o= SEQ ES

o) L E.53

=3 L 15.407

oa 1 1.50

= 1 218,25

oh 1 35,55

nt) 1 6.93

s ] 1 .58

These results differ from those for the Cliff-Ord Eire data in that none of
the cbservations seems to be uncharacteristic of the sample (presently the
author 1s working on the preblem of properly interpreting the battery of
regression diagnostics in the presence of non-zero spatial autocorrelation) .
These OLS regression results will be referred to in later chapters, for
comparative purposes.

Again these standard OLS calculations are supplemented here with the
spatial autocorrelation and normality test results, producing the CRT display

Moran Coefficlent 0] caloulated for resichsls; printed as kd
Expectad value af MC for mesidials

Varlanoe of MC for residis]s

t—score calaulated for MO; pofinted as ik, df printed as k10

B =0, 205054
E® =0 649001
K1 8,00000

Shapler-Hilk test for nemmality perfoomed on pesiduals

Correlation of C50 ard €45 = 0,082

These findings suggest that there is no spatial autocorrelation present in the
regression residuals, since the relevant critical value of the t-statistic is
-2.31. Furthermore, these residuals imply that their parent population
frequency distribution conforms to a normal distribution, given the relevant
Shapiro-Wilk statistic critical value of about 0.90; this specific outcome
reinforces the appropriateness of the normality assumption for testing MC.
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APPENDIX Z2-A,

EIRE DATA FROM CLIFF AND CRD

Connectivity Matrix

Variables
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NOTE: the connectivity matrix recording errors appearing in Table A8.1 (p.
229) of Cliff and Ord (1981) have been corrected.
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APPENDIX 2-B,

ILIJSTRATIVE PUERTO RICAM DATA:
PRODUCTION DENSITY FOR THE MAYAGUEZ AGRICULTURAL ADMINISTRATIVE REGION

municipio # farm milk sugar- coffee tobacco bananas/ #
farms land cane plantains families
Acuada 21.15 41.66 0.06 26.05 10286.9 0.00 2.24 1.26
Acuadilla 5.29 28,14 5.65 14.32 198.6 0.84 0.15 2.33
Anasco 9.29 37.04 0.00 14.67 11811.4 0.00 2.14 2.10
Cabo Rojo 5.54 48,28 22.50 14.79 7.0 0.00 0.17 3.62
Guanica 2.41 39.02 4.40 9.94 147.9  0.00 0.04 1.01
Hormigueros 9.77 44.50 0.07 27.66 4130.0 0.00 1.25 1.97
Isabela 11.00 32.31 39.64 5.79 683.6 B8.29 0.48 2.02
Lajas 5.31 62.53 6.07 13.13 31.5  0.13 0.18 2.04
Las Marias 18.24 40.31 0.00 0.36 34270.9 3.20 9.33 2.47
Maricao 14.00 42.02 0.00 0.00 48140.1 0.00 14.26 4.75
Mayaguez 9.22 26.35 3.80 7.62 9763.0  0.33 2.92 1.62
Moca 14.30 37.87 2.089 15.29 6482.3  0.07 1.21 2.58
Fincon 8.42 21.60 0.00 7.54 2391.8 0.00 0.35 0.85
Sabana Grande 4.91 24.33 3.53 4.87 4898.7  0.00 0.05 1.65
San German 11.86 49.41 0.50 14.06 109%3.9 5,79 1.71 4.30
San Sebastian 14.69 45.94 6.86 17.43 11689.8 1.79 1.83 2.74
coordinates C R
Connectivity Matrix bt y IU
Aguada 1 1 0 00000 O0O0 11 0 0 0 54.6420.0300
Aguadilla 10000 01 O0O0O0O0I1O0O0O0 0 61.11 23,1501
Anasco 1 000 O0CO0O0CO0TI1IO0T1T1 1 0 0 1 50.1823.8600
Cabo Rojo O 00 0 0 1 0 1 0010 0 0 1 0 34.4222.6300
Guanica c 000000100 O0O0 01 0 0 30.8 36.6501
Hormigueros 001 0 0O0O0O0O0CT1O0O0O0 1 0 40.4224.72 11
Isabela 01 000 O0O0O0O0O0O0O0T1I O0O0 0 1 60.8030.1000
Lajas c 00 1 1 00 O0O0O0OO0O0CO0TI1 1 0 32.8129.4000
Las Marias 0 ¢ 1 00 O0O0O0O0TI1T1O0O0TO0O0 1 47.2532.1010
Maricao 0 00 0O0O0CO0O0T1IO0T1IO0O0 1 1 0 43,1434.9910
Mayagquez 001 1 01001 1 000 O0C 1 0 45.0024.8401
Moca 11 10001 0O0O0CO0DO0O0O0O0 1 56.0325.8710
Rincon 1 010 0O0O0CO0O0O0OO0COTOTO0OTO0OTUO0 52.8817.0800
Sabana Grande 0 0 O 0 1 0 0 1 0 1 0 0O O 0 1 0 37.4735.0710
San German 0 00 1 01 01 01 1 00 1 0 0 239.0429.2410
San Sebastian 0 0 1 0 O 0 1 0 1 ©0 0 1 0 0 0 0 53.1332.6110

NOTE: the x- and y- coordinates are municipio centroids, cbtained from a map

digitization process; C/I (coastal lowlands/interior highlands) and R/U

(rural /urban) are binary classification variables.
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CHAPTER 3.
STATISTICAL TECHNIQUES THAT ARE
EXECUTABLE AS AN OLS REGRESSION

A number of statistical techniques can be rewritten as regression
problems. In fact, the general linear model develcpments of the late 1960s
and early 1970s did much to synthesize statistical theory, as well as solve
certain problems that had been intractable or even unsolvable until then.
Moreover, the advent of high-speed electronic computers has propagated a
flurry of revived interest in the multiple regression approach to statistical
problems, especially since tedious and horrendous calculations or computer
programming requirements are no longer an cbstacle to this approach. This
chapter will review several different statistical techniques, in terms of
their multiple regression versions, and in each case apply the test for non-
zero residual spatial autocorrelation presented in Chapter 2. Those
techniques to be addressed here include test of a single mean, analysis of
variance (ANOVAR), two-groups discriminant function analysis, correlation, and
trend surface modelling.

3.1. Inference about the population mean

One can posit an hypothesis about a single regicnal mean. But the
presence of non-zero spatial autocorrelation complicates the affiliated
hypothesis testing. While the expected value of a sample mean is still its
parent population mean, since this parameter estimate remains unbiased in the
presence of non-zero spatial autocorrelation, complications arises from a
Diased estimate of the variance of the corresponding sampling distribution of
sample means. In other words, usually non-zerco spatial autocorrelation
primarily impacts upon variance estimates, altering associated Type I and Type
1I error probabilities. This complication causes many sample results to be
far more unstable, although still correct on average,

A simple bivariate regression approach can be taken to the estimation of
a sample mean. In this formulation, the wvariable whose mean is sought becomes
the dependent variable, ¥, and this variate is regressed on a vector of ones,
denoted by 1, which becomes the matrix of "independent variables."
Accordingly, (XX)™ becomes (1°1)7, with 1°1 being the sum of n products of
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1*1; this term yields 1/n. Meanwhile, XY becomes 1Y, which is the sum of
Lhe observed values. Thus, (XX) XY becomes (1°1)71%¥, which equals ¥.
Consequently, regressing vector ¥ on vector 1 yields an intercept value of
zero, a regression coefficient value of ¢, and a standard error for the
regression coefficient of s,. Because the intercept term must equal zero,
this type of regression is carried out with a no-intercept model. And, since
a regression analysis is being conducted, the test for spatial autocorrelation
outlined in Chapter 2 is applicable here.

The MINITABE code appearing in file a:CLASSIC.REG has been modified in
order to exploit the reduced form of the regression analysis needed for
handling this problem, and in order to estimate a no-intercept regression
model. This revised version of regression analysis with a test for spatial
autocorrelation is housed in file a:REG.MU; its set of code appears as
follows:

a:REG.MU

trans ml m%

sub ml m9 m3

print m3

NOTE cl 1s ¥; c49 is a wvector of 1s that will be the predictor
set c49

k1(1)

end

mean cl

regress cl 1 c49;

noconstant;

resids c50.

mult ml c49 c47

milt ml c50 cdé

NOTE Moran Coefficient (MC) calculated for residuals; printed as k4
let k4 = (kl/sum({c47)) *sum(c50*c46) /sum (c50**2)

NOTE Expected value of MC for resicuals

let k5 = =1/ (k1-1)

add ml m9 ml0

mult ml0 c49 c45

let k6 = 50 + k1

copy ml0 c5l-cké

let k7 = 51

exec ’a:square.mcv’ kl

rsum c51-cké c42

let k11 = 1/ ((sum(c47) **2) * (k1-1) * (k1+1))

NOTE Variance of MC for residuals

let k8=(k1**2)*sum(c42) /2-k1*sum(cd45**2)+2* (sum(c47) **2) * (k1-2) / (k1-1)
NOTE t-score calculated for MC; printed as k9, df printed as k10
let k9 = (k4 - kS5)/sgrt (k11*k8)

let kl0 =kl -1

print k4,k%, k10

NOTE Shapiro-Wilk test for normality performed on residuals
nscores cb50 c4s

corr c50 c45

end
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This macro expects MINITAB column Cl to contain variable Y. It differs
fundamentally from file a:CLASSIC.REG only in that it contains the reduced and
simplified forms of many general regression terms, Also, the MINITAER command

MEAN C1

is included so that one can see that the regression solution indeed vields the
mean of variable Y.

As a benchmark, data from Griffith (1987, p. 57) were analyzed with this
program; only the results for Figure 5.4(c) [p. 37] will be sumarized here.
The first CRT screen display was

3 ROWE BEAD
9 ROWE BERD

This first response indicates that 9 rows of data have been read from the
connectivity matrix file, while this second response indicates that 9 rows of
data have been read from the variate file [neither data set has been included
on the diskette, since they are available in Griffith (1987)].

Next, the regression analysis was completed by executing the MINITRAE
cammand

EXEC 'Ta:REG.MJ'

which results in the following CRT screen display for assessing the symmetry
of the connectivity matrix:

MRTRTX MY
o

o o O o O £ o 3

[ =T = = - - = ]
(=T = R = R = N~ I = = T T ]
(== == = - - e - |
B 2 o o o O 9o x

= o O O O O 2 £ £
O O O o £ £ oo &2 DO
o o O O &2 @3 o o D
L T = = =]

Since every entry in matrix M3 is zero, then matrix C and its transpose must
have identical cell entries.

Then the OLS regression results were displayed on the CRT screen,
together with the variable mean and a brief note.

2l is ¥; o4% ls a wector of 1s that will be the predicter
HEAN = 30000

The megression equation 1s
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1 = 3,00 C49

Bradictor o Stdaw T=rarin B
Roconssant

el ] 30000 0. 408z T.35 0,080
£ w1 FI5

SURCE oE 55 Mg F P
Fegression 1 #1000 81,000 2400 0.00d
Error B 12.000 1,500

Torcal 5 83,000

' HOTE ¢ ALL VRIDEES TH OOl ARE IDENTICAL

First the mean is reported, being 3, and next the regression results are
reported, with no constant in the model (the intercept term) and a regression
coefficient of 3; these two statistics are identical. The standard error of
the mean is gi by the standard error of the regression coefficient, and is
0.4082 here (s,/¥n). Finally, the analyst is notified that MINITAB column C49
is a constant, which is what it is to be. These standard OLS calculaticns
were supplemented with the spatial autocorrelation and normality test results,
producing the CRT screen display

Moman Coefficlent (O] caloulated for residals; printed as ké
Expectad value of MC for mesidoals

Varlansk of MC for residuals

T-score calevlared for MOy printed as kS, df printed as K10

oty =0 875000
ES =3 . 25396
K10 B. D000

Snapirc-Wllk test for roomlity pecfored on mesiduals
Correlation of OS50 and O45 = 1,000

The Moran Coefficient and t-statistic outcomes agree with those findings
reported in Griffith (1987). The Shapiro-Wilk statistic implies that inveking
the normality assumption is reasonable to do, and demonstrates the difference
between a raw value of this statistic, which is found in Griffith (1987), and
a modified value of this statistic, which appears in the MINITAR Reference
Manual.

Density of coffee production in the Mayaguez Agricultural Administrative
Region, from the Puertc Rican data, is used here for illustrative purposes.
These data are accessed with the file a:DEMOMAY.MUJ; this set of code appears
as follows:

a :DEMOMAY .MU
nocecho
let k1 = 16
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let k2 =0

let k3 =kZ + 1

read 'a:mayaguez.con’ k1l k1l ml
read ’a:mayaguez.dat’ c50-c54 cl
end

This file defines n as being equal to 16, reads in the connectivity matrix,
discards the first five variables in the data file, and fills the MINITAB
column Cl with the density of coffee production data. This file is executed
with the MINITAE command

EXEC 'a:DEMOMAY .MU
which results in the now familiar CRT screen display

16 BOWE RERD
16 FOWE BERD

As mentioned in Chapter 2, this first response indicates that 16 rows of data
have been read from the file a:MAYAGUEZ.CON, while this second response
indicates that 16 rows of data have been read from the file a:MAYAGUEZ .DAT.

Next, the regression analysis is campleted by executing the MINITAR
command

EXEC 'a:REG.MU'

which results in the following CRT screen display for assessing the symmetry
of the connectivity matrix:

:
[+

L = = D = I - D - - D = R = R = T T = T = = = |
L= = O - I - e - R = R I I N L - - =]
L=~ I = I = I = N = - - - - - - - = = ]
L= - R = - - - - - - - - - = = = |
o 2 2 D D D 2 O8O O & o o O O
L = = R R - - T - T - T - - - -
L= = - - - = A e = N = = T = T T T T ]
o oD O 9 £ & o o O O D O & & & o
L= = - - - B - B = B - R - - - - - = = ]
L= = I - - I - I = B = B = T = T T T~ T~ T = T = T =]
o D £ £ @ 3 2 i D O £ £ £33 L o3
oD 2 2 @ o o i D & £ 9 £ o2 o o
L= = B - 2 - N = T = T = = T R = = T = = T = R = O =]
LT O D~ I = = T T = R = TR~ T T = T TR S = T = ]
L= = = -1 - - - = T = T B R T = T =T =Y
2 o O O O 9 @ @ O o O O O 9 o O

Again the symmetric of matrix C can be verified.

Succeeding this output, the OLS regression results are displayed on the
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CRT screen, together with the variable mean and a brief note.

=l L8 ¥; o489 Is a wector of 18 that will be the predicter

BERN - 5745.5

The mgression egquation is

0l = 9746 4%

Fradictor Coaf Stdev C=ratia ie]
Noonstant

4% 748 33249 .93 0010
5= 13%18

fualysis of Varianse

ERE oF 85 M= F =]
Fagression 1 1519604086 1519604036 B.57 0.010
Errmar 15 2655847680 177323184

Total LE 4178451804

Uriesia] heosmations
s, 49 cl Fit Stdev.Fit Resicml 5t .Resid
1c 1.00 487144 e 3325 1898 2 9BR;

R demotes an aobe. with a large st. reald.

* NOTE * ALL VALDES TH OOLIMM BRE TDENTICAL

First the mean of the density of coffee production is reported, being 9745.5,
and next the regressicn results are reported, with a zero intercept term (by
construction) and a regression coefficient of 9746; these two statistics are
identical, except for rounding error. The standard error of this mean is
given as 3329 (the standard error of the regression coefficient). These
standard OLS calculations are supplemented with the spatial autocorrelation
and normality test results, producing the CRT screen display

Moran Ceefficiert M) caloulated for mesiduals; printed as kd
2pected value of B for msiduals

Varlance of MC for residwls

T=scobe calanlated for MCy printed as k9, df printed as klb
% 0.2438149

K9 2.11573

Hig 150000

Shaplre-Hilk test for nommlity performed on residuals
Correlation of 50 and C45 = 0.836

These findings suggest that there is near-significant spatial autocorrelation
present in the density of coffee production variable, since the relevant

critical value of the t-statistic is 2.13. Furthermore, this sample variate
does not seem to come from a population whose frecquency distribution conforms

29



to a normal distribution, given the relevant Shapiro-Wilk statistic critical
value of 0.9383; this specific outcome raises a question concerning the
appropriateness of the nommality assumption for testing MC in this situation.

3.2, One-way RAnalysis of Variance (ANOVA)

Analysis of variance involving a single factor desian can be rewritten
as a regression problem by converting the classification variable into a set
of binary indicator variables, and then using these new arrays as the
independent variables of a regression analysis. Because these indicator
variables sum to the vector 1 (they are mutually exclusive and collectively
exhaustive), a variable whose regression coefficient is the intercept term
(see Section 3.1), jointly they constitute a case of perfect multicollinearity
in regression analysis. This perfect multicollinearity can be reduced either
by employing a regression model with a zero intercept term (see Section 3.1),
or by removing any one of the indicator variables (this selection is
arbitrary) from the analysis. The removal of a single indicator variable is
possible because if an cbservation is not in any of the groups represented by
those indicator variables retained in an analysis, then this cbservation must
be a member of the group represented by that indicator variable that has been
dropped from the analysis; in other words, the removed indicator variable
represents redundant information, which is exactly what malticollinearity
refers to. Now, since there often is a desire to compare group means, the
best way to remove one of the indicator variables from an analysis is to
subtract it from all other indicator variables. This differencing results in
regression coefficients that are of the form (WL - W), or pairwise difference
of means tests. Clearly, when one of these regression coefficients is not
significantly different from zero, then the two population group means in
question are expected to be equal. This is the standard formulation of the
analysis of variance regression model; it yields identical results to those
from standard analysis of variance calculations.

MINITAB allows indicator variables to be generated from a classification
variable by using the command INDICATOR; this MINITAR command constructs cne
indicator variable for each group identified in the MINITAB column housing the
classification variable. For the purposes of this workbook, this conversion
procedure is achieved with the following set of MINITAE command:

IET K6 = 11 + K2 - 1
INDICATCR C2 Cl1-CKé

In this context, K2 defines the number of groups existing in the
classification variable, which is read into the statistical package as MINITAR
column C2. The set of indicator variables is housed in MINITEE colums Cl1l-
CKe. The differenced indicator variables are constructed with the set of
MINITAER commands

IET K4 = K2 - 1
IET K5 = 11

EXEC "a:5UB.IND" K4
LET KS = K5 -1
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where the macro a:SUB.IND appears as

a:5SuB, IND

let ck5 = ck5 - ck3
let k5 = k5 + 1
end

This procedure subtracts the last indicator variable from all others.

The regression analysis seeks to produce an analysis of variance; SO,
the MINITAB macro devised for this task includes the standard MINITAR command
to achiewve this end, namely

CNEWRY C1 C2

ANOVA results cbtained with this MINITAB command then can be compared with
those obtained from the regression analysis.

Again density of coffee production in the Mayaguez Agricultural
Administrative Region, from the Puerto Rican data, is used here for

illustrative purposes. These data are accessed with the file a:DEMOMRY , ACV;
this set of code appears as follows:

a:DEMOMRY A0V
noecho

let k1 = 16
let k2 = 2
let k3 = k2

read "a:mayaguez.con’ kl k1l ml
read "a:mayaguez.dat’ c50-c54 cl ¢55-c59 c2
end

This file defines n as being equal to 16, reads in the cornectivity matrix,
discards the first five variables in the data file, sets the sixth variable
equal to ¥ (MINITAB column Cl), discards the next 5 variables, and sets the
twelfth variable equal to the classification variable (MINITER column CZ) .
The classification variable captured here is the coastal lowland/interior
highland dichotomy, which means K2 = 2. This file is executed with the
MINITAER command

EXEC 'a:DEMOMAY.ACV'

which results in the now familiar CRT screen display

16 WS READ
16 FeE RERD

As mentioned above, this first response indicates that 16 rows of data have
been read from the file a:MAYAGUEZ.CON, while this second response indicates
that 16 rows of data have been read from the file a:MAYAGUEZ.DAT,
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The MINITAE code appearing in file a:REG.AOV is a modified version of
a:CLASSIC.FEG in which indicator variables are created from the MINITAE column
c2 variable, and a one-way ANOVA is produced. The set of code for this
revised version of regression analysis with a test for spatial autocorrelation
appears as follows:

a:REG.ACV

trans ml m9

sub ml m9 m3

print m3

oneway cl c2

let k6 = 11 + k2 - 1

indicator c2 cll-cké

let k4 = k2 - 1

let k5 = 11

exec 'a:sub.ind" k4

let k5 = k& - 1

copy cll-ck5 c2-ck3

NOTE cl is Y; difference indicator variables c2-ck3 are predictors
regress cl kd cZ2-ck3;

resids c50.

set c49

K1{1l)

end

copy c49 cll-ckS m2

trans mZ2 m3

milt m3 m2 md

invert m4 mS

malt ml m2 mé

malt m3 mé m7

mult m5 m7 m8

diag m8 c48

malt ml c49 c47

malt ml 50 cd6

NOTE Moran Coefficient (MC) calculated for residuals; printed as k4
let k4 = (kl/sum(c47)) *sum (c50*%c46) /sum (c50**2)
NOTE Expected value of MC for residuals
let k5 = (-k1/(k1l=-k2))*sum(c48) /sum(c47)
add ml m% mlQ

malt m10 mi0 mll

malt m3 mll ml2

malt ml2 m2 ml3

malt m5 ml3 ml4d

diag mld c44

mult m8 mB mls

diag ml5 c43

let k& = 50 + k1

copy mlQ c51-cké

let k7 = 51

exec "a:square.mcv’ kl

rsum cSl-cke cd2
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let k8 = (k1**2) /((sum(cd7)**2) * (k1-k2) * (k1-k2+2) )

NOTE Variance of MC for residuzls

let k8 = k8* (sum(c42) /2+2*sum (c43) —sum (c44) -2* (sum (c48) **2) / (k1-k2) )
NOTE t-score calculated for MC; printed as k9, df printed as k10
let k9 = (k4 - k5) /sgrt (k8)

let k10 = k1 - k2

print k4,k9,k10

NOTE Shapiro-Wilk test for normality performed on residuals
nscores c50 c45

corr c50 c45

end

The regression analysis is completed by executing this program with the
MINITAR command

EXEC "a:REG.AOV"

which results in the usual CRT screen display for assessing the symmetry of
the connectivity matrix. This matrix M3 display is followed by the output
from the MINITAE command ONEWRY, standard analysis of variance results, which
dppears as

R{ALESIE OF VIRIANCE ON 1
SRE CF 14 M F ]
) 1 696990592 EE9R055T £.57 0043
ERRCR 14 1.963E+00 140304080
pice 1 15 Z.660E+00
INDIVIDOAL 895 PCT CIFE FOR MERN
BASED ON POOLED STIEV
LEVEL ] HERAN ETOEY + - -
a3 ] 3825 5102 0 -
1 9 17229 17161 [

POLED STOEW = 11841 a 156004 20000 30000

Next the OLS regression results are displayed on the CRT screen,
together with a brief note.

gl is ¥y difference indicater wariables c11-ckS ame predictors

The regression eguation is
Cl = 125877 - §652 €11

Predicrer Coaf Stdeyv r=matio B
Comstant 16577 2534 3,55 0,003
il -GE57 il =2.23 0,043
s = 1184] ey = 2624 R-sglad)) = Z0.9%

Aralysis of Vaclance

SEE e 2 &8 M F B
Pogqrassion 1 BERERISEZ  ERESGOSE £.97 0. 043
Ermer 14 18EEBETIIE 140204089
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Toeal 15 265984TEED
DUrasual Cheermtions
s, =il £l Fit Stdew.Fit Besichm] 5% Resid

14 -1.00 #8140 176 4475 IpBl 2B

E derotes an ¢bs. with a lapge st, resld.

From the regression equation, when the differenced indicator variable is 1,
then the mean is 10577 - 6652* (1) = 3925, which is the "Level 0" mean fourd in
the preceding OMNEWAY results. Similarly, when the differenced indicator
variable is -1, then the mean is 10577 - 6652* (-1} = 17229, which is the
"Level 1" mean found in the preceding ONEWAY results. From the CNEWRY
results, the F-ratio is 4.97, and its probability is 0.043. From the
regression results, the ANOVA table reveals these same two values, while the
regression coefficient for the 3ifferenced indicator variables MINITAR column
Cll has a t-statistic equaling V4.97 = -2.229, with exactly the same
probability. These standard OLS calculations are supplemented with the

spatial autocorrelation and normality test results, producing the CRT screen
display

toran Cofficiet L) @loulated for sesicmls: printed as ki
Bxpacted value of MC for mesidials

Varianoe of MC for mesidials

t=soore caloulated for MCr printed as k8, df printed as k19

K4 0.13T1ES
K4 L.39289
K14 14.0000

Snaplro-Wilk test for mormmlity perfoomed on pesidumls
Correlation of 50 and C4% = 0,820

These findings suggest that there is insignificant spatial autocorrelaticn
present in the density of coffee production variable difference of means
residuals, based upon the two groups of coastal lowlands/interior highlands,
since the relevant critical value of the t-statistic is 2.14. Furthermore,
these residuals do not seem to come from a population whose frequency
distribution conforms to a normal distribution, given the relevant Shapirc-
Wilk statistic critical value of 0.9326 (it is close, though) ; this specific
outcome raises some question concerning the appropriateness of the nommality
assumption for testing MC.

3.3. Two-groups discriminant function analysis

Cne popular multivariate technique is discriminant function analysis,
which may be used to find linear combinations that maximize differences among
group means, or to classify cbservations into groups, given some set of
original independent variables X. When only two groups are present in a
classification scheme, the computations for determining the single cancnical
discriminant function simplify to those of estimating a regression equation;
morecver, the single cancnical discriminant function can be cbtained without
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solving an eigenfunction problem. In this context, the variable Y is a binary
indicator variable, taking on the values of zero and unity. Overlocking the
intercept term, the regression coefficients cbtained by regressing this binary
vector ¥ on matrix X are proporticnal to the actual cancnical discriminant
function coefficients. Except for rounding error, the actual cancnical
discriminant function coefficients are cbtained by taking any ocne of the
regression coefficients, dividing all other regression coefficients (excluding
the intercept term) by this selected one, and then multiplying all of these
quotients by the canonical discriminant function coefficient for that variable
whose regression coefficient served as a divisor. In other words, in a two-
group case the canonical discriminant weights are proportional to the welights
for a multiple regressicn equation where a dichotomous group-merbership
variable regressed has been regressed on p regressors. Here each correlation
between Y and X, is a point-biserial coefficient.

Classificatory discriminant function analysis constructs a function for
each group, with these functions being of the form, for group k,

L = XW'% - XWX/ ,

where matrix W is the pooled within-groups covariance matrix, and X, is the
vector of variable means for group k. The individual variable coefficients of
a classificatory discriminant function result from the term W', whereas the
intercept for this function is provided by the term XW'X/2. For the two-
group problem,

L - L, = XW & - &) + intercept,

with the coefficients W' (X, - &) again being proportional to the canonical
discriminant function coefficients. This classificatory discriminant function
problem is discussed here because this is the solution that MINITAE yields,

The binary variable Y used in the example for this technique is the
coastal lowland/interior highlands dichotomy. Discrimination between these
two groups will be attempted on the basis of density of farms, density of farm
land, and density of milk production, for the Mayaguez Agricultural
Administrative Region of Puerto Rico. The file a:DEMOMAY.DFR establishes the
parameters for utilizing regression to achieve a two—group discriminant
function analysis. This macro also renders the MINITAR output for a
classificatory discriminant function analysis (this procedure allows a maximm
of twenty groups). The contents of this file are as follows:

a:DEMOMRY . DFA

noecho
let k1 1
let k2 = 3
read 'ammayaguez.con’ kl k1 ml

let k3 = k2 + 1

read 'a:mayaguez.dat’ oS50 c2-ck3 c51-c57 cl
disc ¢l c2-ck3;

1df c40 cd4l.

let cd42 = c40 - c41

6
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print c42
end

This setup defines the MINITZR column Cl1 as the classificatory variable, and
MINITAB columns C2-CK3 as the predictor variables. The MINITAR command DISC
executes a classificatory discriminant function analysis, and the MINITAR sub-
command LDF stores the individual group discriminant function coefficients
into MINITAB columns C40 and C41. MINITAB column C42 is the difference
between these two sets of coefficients; these mmerical values will be
proportional to the regression coefficients cbtained by regressing Cl on C2-
CK3. The contents of MINITAB column C42 are printed. This file is executed
with the MINITAE command

EXEC 'a:DEMOMAY .DFA!
which results in the CRT screen display

16 ROWS FEARD
16 FOWE FEAD

Lirear Discriminast Aralysis for o1

oA o 1
CoumT 9 7

Somary of Clasaificarion

W= 18& N Cormect = 13 Frigp., Cormect = O 812

Squred Distance Between Groups
] 1

o C.00000 1.13284

1 1.13288 O0.00000

Lingar Dlscriminart Punction for Group
th 1
Constant -7.3808 -9, 5T73Z
= 9.3143  O.4610
= 03030 0.3284
= 0.0788  0.0040

S=wary of Mlsclassified Cheerwations
Coservat 1on T Prad  Geogp Sqrd Distne Drobability

Group  Grap
] ww 5] 1 &) &, 987 0,122
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3.037 .81
Q. 7eaz 2.479
0.35554 0.530

2.178 0.6

4,333 0.254

14 ww 1 =)

H oo o e

cag
Z.18263 =0.I14672 -0.02540  0.08580

The first two lines of output should be quite familiar by now, and indicate
that 16 rows of the connectivity and 16 rows of the data matrices have been
read. The first entry in MINITAR column C42 is the intercept term, and is
arbitrary. The second, third and fourth entries in this colum are the
coefficients, respectively, of the three variables (a) density of farms, (b)
density of farm land, and (¢) density of milk production. These three
coefficients are proportional to the canonical discriminant function
coefficients for this two—group problem.

Since the only change in canonical discriminant function analysis as a
regression problem is the definition of the dependent variable, rumerical
results for this procedure may be secured by executing the original OLS
regression macro a:CLASSIC.RFEG, or

EXEC "a:CLASSIC.REG"

Of course this macro produces the CRT screen display for verifying symmetry of
the connectivity matrix. This output is followed by the CRT screen display

el i ¥ c2=ck3 am poedictors

Tre meqgression equatlo: is
A= - 8.013 » 0.0313 ©2 + 00054 Y - 0,0040 C4

Predictar Coaf Sredeny T=rario 4]
ConetanT =0, 0129 G.5388 =3.02 0.581
=2 0.03128 0.02556 1.22 0,244
= 0.00542 Q.02 .44 0,666
b =0.02404 9.01242 =1.13 0,280

s = [ 4988 R-sg = 24.2% B=sgiadi) = 5.2%

falysls of Varlance

SORCE oF 55 HS F P
Regression 3 0.5614 0.317 1.7 a.:1
Error 1z 2.59861 0.2488

Total 15 3,937%

SOURCE. E SE 55

= 1 0.5897

= 1 0.0438

= 1 0.3180

Drrsum] Oeserwmt lons
=N e €1 Fit Sodev.Fit Reslsual St Resid
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1 21.1 0.000 a.874 0297 —0.874 =2 . 1BR
7 1.8 0,000 =0,.080 0.448 0,050 D23 ¥

R denctes an obe, with & lanje =, mesid,
¥ denctes an obs, whose X walue glves 1t large influerse.

Again, the intercept term is not of interest. Now the three regressicon slopes
are (carrying them out several decimal places beyond what was printed by

MINITAR)
0.0312943 0.0054185 -0.0140351 ,

dividing each of these three coefficients by the last cne yields
-2.2297169 -0.3860678 1,

and multiplying these by 0.06580, which is the classificatory discriminant

function coefficient difference from above (see C42) for the third variable,
renders

~-0.1467154 —=0.0254033 0.06580 ,

which round off to the differenced individual functions coefficients obtained
with the MINITAR command DISC.

These standard OLS calculations are supplemented with the spatial
autocorrelation and normality test results, producing the CRT screen display

Moran Cosfficlert (MD) calowlsted for residusls; printed as k4
Expected value of MC for pealdisls

Variance af MC for mesidoals

t=soore caleslated for MOy printed as k9, df pointed as k10

Ka 008750871

] 132005

ek 120000

Saplre-Wilk vest for nommlity performed on mesiduals
Corralation &f C50 and C45 = 0,979

These findings suggest that there is no significant spatial autocorrelation
present in the coastal lowlands/interior highlands discriminant function
residuals, since the relevant critical value of the t-statistic is 2.18.
Furthermore, these residuals seem to come from a population whose frequency
distribution conforms to a normal distribution, given the relevant Shapiro-
Wilk statistic critical wvalue of 0.9261.

3.4, Bivariate correlation

OLS regression can be used to calculate a bivariate correlation
coefficient merely by converting both the Y and the X variables to their
corresponding z-score counterparts. By construction, again, the regression of
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Y on X yields a zero intercept; but milticollinearity restrictions are not
encountered here, so that the no-intercept model is not required. For this
problem the MINITAB code appearing in file a:CLASSIC.REG has been modified in
order to convert both X and Y to z-score variates. This conversion is
achieved with the following set of MINITAR commands:

CENTER Cl1-C2 C3-C4;
LOCATION:
SCALE.

The CENTER. command instructs MINITAE to Operate on columns Cl and C2, storing
the results of these operations in columns C3 (for Cl) and C4 (for C2). The
operation performed when MINITAE command LOCATION is executed is subtracticn
of variable means from their respective columns; the operation performed when
MINITAB command SCAIE is executed is division of colums by their respective
unbiased variable standard deviations. Thus, the mean of each variate is
zero, and the standard deviation of each variate is one; the MINITAR command
DESCRIBE is executed in the ensuing modified version of a:CLASSIC.REG so that
these two features of the data may be checked.

The macro of interest here is constrained to treatment of two variables,
and incorporates this above set of z-score transformations code. In addition,
it includes the MINITAR command CORR in order to show that the regression
coefficient cbtained indeed equals the correlation coefficient in question.
This revised version of regression analysis with a test for spatial
autocorrelation is housed in file a:REG.COR; its set of code appears as
follows:

a:REG.COR

trans ml mS

sub ml mS m3
print m3

NOTE cl is ¥Y; c2 is the predictor
center cl-c2 c3—-c4;
locaticon;

scale.

let cl = 3

let c2 = ¢4
describe cl-c2?
corr cl c2

let kK3 =k2 + 1
regress cl k2 c2;
resids c50.

set c49

k1 (1)

end

copy c49 c2 m2
trans mZ m3

milt m3 mZ2 md
invert md mS
mult ml m? mé
milt m3 me m7
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malt m5 m7 mé

diag m8 c48

milt ml c49 c47

milt ml S0 cdé

NOTE Moran Coefficient (MC) calculated for residuals; printed as k4
let k4 = (k1/sum(cd7)) *sum(c50*cd6) /sum{cS0**2)

NOTE Expected value of MC for residuals

let k5 = (=k1/(k1-k3))*sum{c48) /sum(c4d7)

add ml m9 ml0

malt ml0 ml) mll

malt m3 mll ml2

mult ml2 m2 ml3

malt mS ml3 ml4

diag mld c44

malt m8 m8 mlS

diag ml5 c43

let k6 = 50 + k1

copy mlQ cSl-cké

let k7 = 51

exec "a:square.mcv’ kl

rsum c5l-cke c42

let k8 = (K1**2) / ((sum(c47) **2) = (k1-k3) * (k1-k3+2) )

NOTE Variance of MC for residuals _

let kB = k8* (sum(cd2) /2+2*sum (cd3) —sum (c44) —2* (sum (cd8) **2) / (k1-k3))
NOTE t-score calculated for MC; printed as k9, df printed as k10
let k9 = (k4 - k5)/sart (k8)

let kK10 = k1 - k3

print k4,k9,k10

NOTE Shapiro-Wilk test for normality performed on residuals
nscores 50 c45

corr <50 c45

end

This macro expects MINITAB column Cl to contain Y and column C2 to contain X.

Density of sugarcane production and density of farm families in the
Mayaguez Agricultural Administrative Region, from the Puerto Rican data, are
used here to exemplify correlation as a regression problem. These data are
accessed with the file a:DEMOMRY.COR; this set of code appears as follows:

a:DEMOMBRY . COR
noecho

let k1 = 16
let k2 =1

read fa:mayaguez.con’ k1l k1 ml

let k3 =kZ + 1

read "a:mayaguez.dat’ c50-c54 ¢l c55-c56 o2
end

As usual, this macro defines n as being equal to 16, defines the number of

regressors as 1, reads in the connectivity matrix, discards the first five
variables in the data file, fills the MINITAB column Cl with the density of
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sugarcane production, discards the next two variables, and fills the MINITER
column C2 with the density of farm families. This file is executed with the
MINITAEB command

EXEC 'a:DEMOMAY .CORS .

which results in the now familiar CRT screen display indicating that both the
connectivity and data files have been read.

Next, the regressicn analysis is completed by executing the MINITAR
command

EXEC 'a:REG.CCR' .

which results in the recurrent MINITAR matrix M3 display for a connectivity
matrix symmetry check. Then OLS regression results are displayed on the CRT
screen, together with a description of the mean and standard deviation of each
variable, the correlation coefficient for the two variables, and a brief note.

<l is ¥y < 1s the predictor

H FEAN  HMEDIRN  TRMERY SIDEY  EEMERM

= 16 =0.000 -0,3% =0.154 1,008 T 250

=2 1a =0.000 =0.79 —0.0a 1,008 0.250
HIN HRK ol s

Cl -0, TaL 2.883 <0 TOB £.133

0

=1,.351 2.204 =042 0. 336

Correlacion of CL and &2 = 0,546

T megresslon equarion is
CL e D030 + 0,545 2

Predictor Conf Stday t=macie =3
Jonstart 00000 0.21&8 2.6 1000
= 35960 Q. 22358 £.44 I.020
& = [ BETZ Bmg = F9.E% B-sgiadi) = 24 5%

Aoaly=is of Varlance

SIRCE oF 13 Mg F )
Begression 1 44712 44712 5.5  D0.029
Errmr 14 10.52648 0,751

Total 15 15.0000

Urnamml Chaereat Dons

s, cE ol Fit Stdev.Flt Residiwm]l St _Rasid
3 f.13 1.842 0.06% Q.18 1.773 2. 118
1d 2.2 2.883 1.203 0,539 1.880 2.4TRY

B denctes an cbs, with a lame 5. mesid,
X denctes an dbs, whose X value gives !t lame influence.
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This output demonstrates that the mean and the variance of each z-score
variate is, respectively, zero and unity. It also shows that the intercept of
the z-score regression is zero, and that the correlation coefficient for the
two variables equals the slope of the z-score regression line. These standard
CLS calculations are supplemented with the spatial autocorrelation and
normality test results, producing the CRT screen display

Moran Coafficient (M) cloulated for residals; printed as k4
Boected value of MC for mesiduals

Varlanoe of MC for mesiduals

T-score calsulated for MOr printed as kO, d4f printed as kio

K4 0. 273060
K 248053
Ko 14,0000

Shaplee-Wilk test for nommelity pecfozmed on mesliduals
Correlatlon of CS0 and C45 = 0,962

These findings suggest that significant spatial autocorrelation is present in
the residuals for this correlation analysis, since the relevant critical value
of the t-statistic is 2.14. Furthermore, these residuals seem to come from a
parent population whose frequency distribution conforms to a normal
distribution, given the relevant Shapiro-Wilk statistic eritical value of
0.9342,

3.5. Trend surface models: linear, quadratic, and cubic forms

Trend surface models merit attention here because of their close
relationship with spatial autocorrelation analysis, and because they rely so
heavily on the statistical notion known as the "extra sum of squares"
principle. In this first instance, spatial autocorrelaticn Converges upcn a
trend surface as the average juxtaposed dependency approaches an absolute
value correlation of cne. In other words, if a trend surface component is
necessary, but is not included in an analysis, the regression residuals will
exhibit spatial autocorrelation; once these trend surface terms are introduced
into the model specification, this feature of the residuals may well
disappear. This is an example of the missing variables problem extensively
discussed in econometrics. What a trend surface means is that the spatial
mean is not stationary from location to location. Rather, it becomes a
function of absolute location. Thus, a non-homogenecus process 1s cperating
over the planar surface.

The extra sum of sgquares principle pertains to the idea that the
contribution a subset of variables makes to the regression sum of squares,
appearing in the regression ANOVA table, may be investigated by determining
the difference between the regression sum of squares with these regressors in
the model, and this sum of squares with these regressors out of the model.
Because the marginal contribution to the regression sum of squares is being
calculated, these are conditional quantities. This increase in the regression
sum of squares that results from adding r regressors is distributed as an F-
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ratic, with r and (n - p - 1) degrees of freedom. This F-ratioc is calculated
by dividing this sum of squares quantity by r, and then dividing this ratio by
the mean square error quantity cbtained when all p regressors are in the
model ,

Macros have been developed here for evaluating a linear, a quadratic,
and a cubic trend surface model. The linear model has two orthogonal
coordinate variables, say U and V, the quadratic model adds three additional
terms of second degree (two squared coordinate terms, F and V¥, and a cross-
product term, UV), and the cubic model adds four final terms of third degree
(two cubed terms, U’ and V%, and two cross-product terms, U*V and UV). These
terms can become highly collinear by construction; centering (i. e.,
subtracting the respective means) the coordinate variables U and V
dramatically helps to avoid this situation, at least until considerably high
order models are dealt with. This end is achieved because centering moves the
absclute co-ordinate system to a trough/peak of the parabola, for example, in
a quadratic trend surface model; positions away from such exaggerated
curvatures may result in nonlinear portions of the curve being closely
approximated by a straight line. So, again, the regression macro includes a
MINITAE LOCATION command.

Besides centering the data, the only two other tasks to be corpleted are
(a) to identify the coordinates of each areal unit, and (b) to construct the
various polynomial terms. Once these three data management issues have been
resolved, then the original OLS regression macro can be employed. Once more
density of milk production is used for illustrative purposes. The relevant
data are secured by executing the file a:DEMCMAY.TSM, whose code appears as

a:DEMOMAY , TSM
noecho
let k1 = 16

read 'a:mayaguez.con’ kl kl ml
read 'a:mayaguez.dat’ c50-c52 cl c53-c57 2 c3
end

This file is executed with the MINITAE command

EXEC fa:DEMOMAY.TSM" J
It causes the connectivity matrix to be read, and it retrieves the third
variable from the data set as ¥, and the the tenth and eleventh variables from
this data set as U and V. Of course it generates the CRT screen display
indicating that both the connectivity matrix and the data file have been read.

The linear trend surface model is cbtained by executing the macro
a:LINEAR.TSM, whose code appears as

a:LINEAE . TSM
center cZ-c3 cd-c5;

location;
scale,
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let c2=c4

let c3=c5

let k2 = 2

let k3 =k2 +1
exec 'a:classic.reg’
end

This macro centers the coordinate system, and executes the original regression
macro. It 1s executed with the MINITAR command

EXEC "a:LINEAR.TSM'

Of course it generates the familiar M3 matrix. And, it produces the following
CRT screen display of OLS results:

ol iz ¥ c2=ck3 ame predictors

The megression equation is
Cl=5.%5 + 2,58 2 +~ 1.68 O3

Predisrter Coaf Srdev  t-mtio P
Constart 5544 2,76 2.15 0051
= 2,57 3,171 b.B3 G424
= 1.684 3.12] 2.54 1.59%
s = 11.0% Besg = 5. 3% H=sgiady) = O.0%

hraly=sis of Variamce

SOURCE E s HE F e
Regresaion F Bh.5 44 .8 g.37 0.704a
Errer 13 15%84.8 122.2

Tocal 15 1678.2

SARCE oe EEQ 55

= 1 54.0

= 1 35.6

Urissua]l Cheserwmtions

b=, o2 a Flt Scdev.Fit Residml 5. Resid
4 -1.84 £2.50 1.7 6.12 21.13 £ 308
7 1.4% 3864 19.51 8.01 28.13 1148

B derctes an cba. with & large s, oesid,

Clearly neither the F-ratio for the regression ANCVAE, nor the individual
regression coefficient t-statistics suggest that a linear trend surface is
appropriate for describing the spatial variation of milk production density.
These standard OLS calculations are supplemented with the spatial
autocorrelation and normality test results, producing the CRT screen display

Moran Coafficlent (M0) caloulated for mesicuals: printed as kd
Epected value of BC for mesldaals
Varlance of MC for residuals
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t-score caleulated for MO; printed as k%, 4f printed as k10

K =4, 00785580
K9 L2194
oulls] 130000

Shapiro-ilk tesc for Aosmlity performed on pesidisls
Correlation of S50 and C4% = D.ED4

These findings suggest that there is little spatial autocorrelation in the
regression residuals; but, the frequency distribution of these residuals
deviates markedly from a normzl one, raising a concern about the
appropriateness of the normality assumption for testing MC in this situation.

Once the linear trend surface has been appraised, a gquadratic trend
surface regression model can be estimated; these two models mist be explored
sequentially, with the linear model estimated first. The quadratic trend
surface model is obtained by executing the macro a:QUADRATI.TSM, whose code

appears as
a:QUADEATT , TSM

let cd = c2**2
let ¢5 = c2*c3
let cb = g3**2
let k2 = 5

let k3 =k2 +1
exec 'a:classic.reg’
end

This macro builds upon the linear trend surface model constructed with macro
a:LINEAR.TSM, and also executes the coriginal regression macro a:CLASSIC.REG.
It is executed with the MINITAR command

EXEC "a:QUADRATI.TSM" .

Of course it, too, generates the familiar M3 matrix. And, it produces the
following CRT screen display of OLS results:

=l im ¥y cd-ckd are peedlerors

The mgression equation is
Slm = 343+ 1B3 02 + 154 53+ 10,204 + 11,505 « 4.45 06

Predictor et Stéew  teratio P
Somstant -3.426 2.560 -1.33 0.2
= 1,830 1.487 1,23 0,246
] 1.535 1.507 .62 0.3z
= 10.182 1,713 5.8 0000
5 11.451 2,213 .17 0.00n
cE 4.446 1,038 2,29 [.045
2= 5,230 Resq = 83.8%  R-sqladd) = T5.6%

Aralysis of Varlanoe
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SOECE oF g5 Mg F B
Regression 3 1405, 70 201.14 19,32 .06
Error 10 272,51 27.25

Total 1% 1678.21

TARCE oF SEQ 5%

for] 1 54,01

o] 1 35.57

o' 1 500,71

€3 1 672,00

b 1 143.41

s, =2 L | Fir Srdew Fit Resism]l & Resid
T 1.489 30_E4 3.7 q.0E B.94 2.73R

A denotes an abs. with a large st. mesid.

Using the extra sum of squares principle to compare this quadratic model with
the preceding linear model yields the following F-ratio for the marginal
contribution to the regression sum of squares:

F = [(1405.70 - 89.6)/31/27.25 = 16.099 > Fog,. = 3.71

This result suggests that the quadratic terms add a significant amount of
statistical explanation to the trend surface model. This suggestion is
further reinforced by the dramatic increase in the ¥ walue, as well as the
sizeable decrease in the residual mean square value. These standard 0OLS
calculations are supplemented with the spatial autocorrelation and normality
test results, producing the CRT screen display

Moran Coefficient (M) caloulated for resicmls; printed as kd
Expected value of MC for residoals
Varlamee of M® for msidals

T=soone @loilated for MC: printed as k9, df printed as kl1f

B4 =0.317211
K3 =0, 63624
K10 10,9600

Shaniro-Wilk test for nommelity performed on pesideals
Correlation of 30 and O45 = 0.98E

These findings also suggest that there is only spurious spatial
autocorrelation in the regression residuals. One should note, though, by
adding the quadratic terms to the trend surface model, the t-statistic for MC
has moved closer to zerc in absolute value, demonstrating to some degree the
close relationship between trend surfaces and spatial autocorrelation. In
addition, the Shapiro-Wilk statistic implies that the frequency distribution
for the regression residuals, in the population, conforms to a normal
distribution, given its affiliated critical value of 0.9180; this particular
outcome is a welcomed improvement over its counterpart for the linear trend
surface model.
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Finally, after the linear and quadratic trend surface models have been
evaluated, a cubic trend surface regression model can be estimated; these
three models must be explored sequentially, with the linear model estimated
first, and the quadratic model estimated second. The cubic trend surface
model is obtained by executing the macro a:CUBIC.TSM, whose code appears as

a:ClJBIC.TSM

let 7 = c2**3

let cB = cd*c3

let c9 = c2*ch

let cl0 = c3**3
let k2 9

let K3 =k2 +1
exec "a:classic.reg’
end

This macro builds upon the linear and quadratic trend surface models
constructed above, and also executes the original regression macro
a:CLASSIC.REG. It is executed with the MINITAB command

EXEC "a:CUBIC.TSM' .J

Of course it, too, generates the familiar M3 matrix. And, it produces the
following CRT screen display of OLS results:

gl i3 ¥; e2-ck3 are predictors

The megression eqation 1=
1 ==-2237T-303 @2 =-2.233 + 8,994 + 120 C5 + 4,60 O5 + 3,99 07 + 4,34 O - 1,30 £9 = 0,46 13

Predictor Coaf Stdev t-mtio +)
Constanc =2 268 i.978 =1.TE 0,478
= =3.030 4.227 -4.72 0504
o —&.231 4.67L —0.48 b.650
] 4,487 1.87& 4.52 O.004
ch n.0% 2.336 S.02 0.002
=1 4.603 2,780 l.e7 0.146
o7 £ 2,103 1.80 0.106
B 4.3345 2,851 1.64 0.153
) =132 q1.692 =3.48 0.791
il 0. 465 3,261 =1.1% 0.891
5 = §,ET] F-8g = 92.2% A-sgiadil = 80.5%

Analysis of Yariance

SRR oF 55 M5 F =]
Ragression & 154729 1752 T.88 3010
Ermor B 130,82 1.8z

Total 15 168,21

FIRCE oF EHD 85

= L 54,01
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F5.57
500.7
&T2.00
143.41

17.22
11,53

2.40
0,44
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8289382820

Using the extra sum of squares principle to compare this cubic model with the
preceding quadratic model yields the following F-ratio for the marginal
contribution to the regression sum of squares:

F = [(1547.29 - 1405.70) /4]/21.82 = 1.622 < Foe,c = 4.53

This result suggests that the cubic terms fail to add any significant amount
of statistical explanation to the trend surface model. Thus, the quadratic
mocdel should be accepted as a reasonable description of the non-staticnary
spatial mean landscape. Returning to the quadratic trend surface output, cne
should recognize that its linear trend surface terms do not have significant
regression ccefficients, and so perhaps they need to be removed from the
model. The acknowledgement of strictly quadratic terms in this example is
consistent with the nature of agricultural production in Puerto Rico, where
restrictions and constraints placed on agricultural production by the interior
highlands could lead to such a surface. These standard OLS calculations are
supplemented with the spatial autocorrelation and normality test results, too,
producing the CRT screen display

Moran Coefficient (MC] caloulated for resicolsy printed as kdé
Bgpected value of MC for mesiduals

Varlance of MT for residaals

t-score calmulated for MO; printed as k9, &f printed as k10
] —0.241615

] a.572380

ks 6. 00000

Fapleo-Wilk test for nommlity performed on resideals
Correlation of 50 and 045 = §, 610 mext

Not surprising, these findings are consistent with those for the quadratic
trend surface model; after all, no noticeable increase in statistical
explanation has been achieved by adding the cubic terms. Noteworthy here,
though, is the additional shrinkage of the distance separating the MC t-
statistic and zero; again, the close relationship between trend surface models
and spatial autocorrelation is alluded to.
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CHAPTER 4.
ESTIMATING AN SAR E R MCDEL

As was mentioned in Chapter 1, there are several autoregressive/moving
average models that can be fitted to or estimated with geographic data
exhibiting a non-zerc level of spatial autocorrelation. The model to be
focused on in this Discussion Paper is the simultaneous autcregressive model
(SAR), for autocorrelated errors. The present plan is for these models to be
topics of future Discussion Papers. This chapter will be devoted to issues of
estimation, and the description of a MINITAR macro for performing this
estimation; this algorithm is based upon Griffith (1988a). The macro is
interactive and iteratiwve,

A word of caution is in order here. Spatial autoregressive models are
nonlinear in nature. As is found with their time series counterparts, the
nonlinear nature of the mathematical structure means there always is a risk
that convergence of the iterative estimation procedure will not occur within
the feasible parameter space [for the SZR model, with matrix € converted to
matrix W, this region is (-1,1)]. The convergence criterion is a weighted
mean square error. The optimization problem is one of minimizing this
weighted average sum of squares. For most cases convergence will be achieved.
But when it is not, then the analyst must evaluate two conditions of the
prevailing model specification. First, the simple SAR model assumes a
stationary spatial mean; failure of convergence could mean that the spatial
mean is non-stationary, and hence trend surface terms need to be introduced
into the regression equation specification. The relationship between spatial
autocorrelation and trend surfaces was briefly sketched in Chapter 3. 2s
Upton and Fingleton (1985) demonstrate, because the likelihood function tends
to be well behaved within the feasible parameter space, changing the starting
values of the iterative procedure should prove futile and fruitless in a quest
for convergence. Second, the model specification under study could have too
many parameters (overparameterization), and hence some parameters need to be
deleted. In other words, the SAR model should be replace with a CAR, an M,
Or an autcoregressive response model. Inspection of the MO t-statistic should
prove illuminating here. If this statistic is not significant, then fitting
any autoregressive model to the regression residuals would tend to be
questionable; such an estimation exercise may well involve an
overparameterization of the model. If this statistic is significant, then
experience indicates that convergence should occur.
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4.1. The estimation algorithm

The iterative algorithm developed for estimating a spatial SAR model is
camprised of two macres, and three subroutines. This algorithm accepts input
from any of the macros presented in Chapter 3; these sorts of output
constitute its starting point. As was mentioned in Chapter 1, cne major
problem with spatial statistical analysis is that the Jaccbian term is present
and complex. A first step in estimating the spatial autocorrelation parameter
is to construct the necessary components of this Jaccbian term. The SAR model
usually converts the connectivity matrix C to its stochastic counterpart, say
W (recall that each entry of matrix C is divided by its respective row sum,
resulting in each of the rows of matrix W summing to unity). This conversion
is achieved with the MINITAR commands

IET K19 = 50

COPY M1 C51-CK19
R5UM C51-CK15 C50
LET K18 = 51

EXEC 'a:WFROM.C' K1
COPY C51-CK19 M2

where the MINITAB command RSUM sums the rows of a set of MINITAR colums. The
subroutine a:WEROM.C has the following code:

a:WFROM.C

let cklB = cklB/cB0
let k18 = k18 + 1
end

Griffith (1988a), after Ord (1975), shows how to extract the eigenvalues of
this non-symmetric matrix while satisfying the symmetry constraint imposed by
MINITAB. This task is achieved with the MINITAE commands

LET C51 = SCRT(1/C50)
DIAG C51 M3

MULT M3 ML M4

MULT M4 M3 MS

EIGEN M5 C48

The eigenvalues of matrix W are basic ingredients for evaluating the Jaccbian
term. These eigenvalues must sum to zero, and the principal eigenvalue must
equal unity (except for rounding error).

The feasible parameter space is (-1,1), which is determined by the
principal eigenvalue of matrix W (values close to + 1 can be analyzed, such as
0.333, but use of the values * 1 themselves will result in an error statement
and subsequent erroneous calculations). This range of values must be searched
for the minimum mean square error for the nonlinear regression model. This
search procedure is initiated with the MINITAE macro a:START.SAR, whose code
appears as
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a:START . SAR

let k20 = =-0.9
let k21 = 0.1
let k19 = 50 + k1

copy ml c51-ckl9
rsum c51-ckl9 50
let k18 = 51

exec "a:wfrom.c’ kl
copy ¢51-ckl9 m2

let c51 = sqgrt(1/c50)
diag <51 m3

mult m3 ml md

malt md4 m3 mS

eigen mS c48

let k18 =1

let k19 = 51

exec 'a:slag.x’ k3
milt m2 ¢49 50

exec 'a:classic.sar’ 19
end

This macro generates 19 regressions, each involving a set of spatially lagged
variables; these variables are constructed with the MINITZR cammands

IET K18 1
LET K19 51
EXEC "a:SLAG. X' K3

o

The code for subroutine a:SLAG.X appears as
a:SLAG. X

mult m2 ckl8 ckl9
let k18 = k18 + 1
let K19 = k19 + 1
end

The analyst must monitor each of the 19 resulting regression mean square
errors, searching for the minimum (this is the interactive feature of this
method) . These regressions are executed with the MINITAB macro a:CLASSIC. AR,
whose code appears as

a:CLASSIC.SAR
let k22 = exp (mean (loge ( (1-k20*c48) **2) ) /2)
let k17 = 1
let k18 = 51
let k19 = 15

exes 'a:trans.x' k3
let c47 = (c49 - k20%c50) /k22
let k19 = k16 - 1
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regress cl5 k3 c47 cle-ckls;
noconstant;

mse kl5.

print k20, k15

let k20 = k20 + k21

end

This set of MINITAB commands constructs synthetic variables that are products
of the spatial linear operator (I - pW) and the original X, and Y variates.
Because the likelihood function is a summation of squared quantities
multiplied by the Jacobian term, each synthetic variate can be multiplied by
the square root of this Jaccbian term, which is equivalent to distributing the
Jaccbian term over the individual summation terms of the likelihood function.
Since this Jacobian term is raised to a negative exponential power, this
maltiplication operation can be written as a division. And, since its
logarithmic form is equivalent to a sum divided by n, it also can be rewritten
as the functicn of an arithmetic mean. Thus, the modified Jaccbian term is
calculated with the MINITAE command

LET K2 = EXP (MEAN (LOGE ( (1-K20*C4RB) **2)) /2)

This quantity becomes the denominator of a fraction in which the mmerator is
the spatial linear operator times a given variable. Hence, the synthetic
variables are constructed by the MINITAE macro a:TRANS.X, whose code appears
as

a:TRANS . X

let ckl8 = (ckl7 - k20*cklB8) /k22
let k17 = k17 + 1

let k18 = k18 + 1

let k19 = k19 + 1

aend

Finally, an (OLS regression is executed using these synthetic variables, which
actually have some level of spatial autocorrelation filtered out of them.
This OLS yields a mean square error value, printed here as K15, which is the
quantity to be minimized; the corresponding value of the spatial
autocorrelation parameter is printed as K20.

Cnce the algorithm has searched over the range (-0.9,0.9) by increments
of 0.1, then the analyst must identify that value of p from the 19 choices
being displayed that has the minimim mean square error, and then initiate
search over the range (p - 0.09, p + 0.09) by increments of 0.01. Again, once
the improved estimate of p is uncovered by identifying the new and more exact
minimum mean square error from a second set of 19 choices, the search must be
extended to the range (p - 0.009, p + 0.009) using increments of 0.001. This
third search conpletes the process. This second step of the search process is
completed by executing the MINITAE commands
LET E20 = f
LET K21 = .01
EXEC 'a:CLASSIC.SARS 19
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This third algorithm step is completed by executing the MINITAE commands
IET K20 = p

LET K21 = .001
EXEC 'a:CLASSIC.SAR' 19

Upon completion of these three steps, the analyst can identify the minimum )
mean square error (MSE) value, and hence the maximum likelihood estimate of p.

4.2. Illustrative estimations for problems from Chapter 3

The first problem investigated in Chapter 3 has to do with inference
about the population mean. The t-statistic for MC calculated with the
regression residuals for this example is significant at the 10% (critical
value of 1.753), but not at the 5% level. Given this context, one may want to
explore a SAR specification for this model. The iterations generated by the
algorithm presented in Section 4.1, for this problem, are summarized in the
fellowing tabulations:

LET K20 = -.9 LET K20 = .51 LET K20 = .571
LET K21 = .1 LET K21 = .01 LET K21 = .001
p MSE p MSE p MSE
-.9 343379264 .51 148794128 571 148262064
-.8 312978400 .52 148651984 572 148260368
-.7  2B6835840 .53 148530544 573 148258928
-.6 264183360 .54 148430384 574 148257712
-.5 244446880 .55 148352160 575 148256736
-.4 227189872 .56 148296432 .576 148256016
-.3 212077152 .57 148264016 .577 148255504
-.2 198850832 .58  148255552* .578  148255280*
-.1 187314400 .59 148271952 .579 148255312
0.0 177323200 .60 148314048 .580 148255568
.1 168779168 .61 148382816 .581 148256080
.2 161631056 .62 148479264 .582 148256832
.3 155880448 .63 148604512 .583 148257824
.4 151597504 .64 148759824 .584 148259088
5 148956512 .65 148946480 .585 148260608
.6 148314032* .66 149165888 .586 148262352
7 150405312 .67 149419664 .587 148264384
.8 156847232 .68 149709568 .588 148266656
.9 173425392 .69 150037408 .58% 148269168

Consequently, the maximum likelihood estimate of the spatial autocorrelation
parameter is p = 0.578,

The second problem investigated in Chapter 3 has to do with analysis of
variance. Here the t-statistic for MC is not significant, even at the 10%
level. Hence, fitting of a SAR model to these data may falter, in that the
MSE may fail to converge upon a minimm within the interval (<1,1) due to
overparameterization of the model. 2s an illustrative exercise, consider the
estimation of a SAR model here. The iterations generated by the algorithm
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presented in Section 4.1, for this problem, are summarized in the following
tabulations:

LET K20 = -.9 LET K20 = .31 IET K20 = .381
IET K21 = .1 IET K21 = .01 IET K21 = .001
p MSE p MSE p MSE
-.9 227614112 .31 132675208 .381 132305784
-.8 210258912 .32 132589032 .382 132304768
-.7 195644032 .33 132513736 .383 132303872
-.6 183269216 .34 132449544 .384 132303088
-.5 172758688 .35 132396504 .385 132302408
-.4 163825840 .36 132354960 .386 132301880
.3 156250656 .37 132325016 .387 132301464
-.2 149865360 .38 132306952 .388 132301184
.1 144545232 .39 132300944*  .389 132300992
0.0 140204096 .40 132307288 .390  132300936*
1 136792832 41 132326216 391 132301008
.2 134302416 .42 132358024 392 132301200
3 132772112 .43 132403016 393 132301552
.4 132307280* .44 132461520 394 132301976
.5 133116272 .45 132533816 .395 132302552
.6 135590112 .46 132620336 .396 132303256
.7 140500528 47 132721408 397 132304072
.8 149604832 .48 132837440 .398 132305016
.9 168429104 .49 132968920 .399 132306104

Consequently, the maximum likelihood estimate of the spatial autocorrelation
parameter is p = 0.390. One should note that this estimate is lower than that
for the preceding problem, as well as the t-statistic for MC accompanying this
problem i1s closer to zero than the one for the preceding problem.

The third problem investigated in Chapter 3 has to do with two—-group
canonical discriminant function analysis. Again the t-statistic for MC is not
significant, even at the 10% level. Hence, fitting of a SAR model to these
data may falter, too, in that the MSE may fail to converge upon a minimm
within the interval (-1,1). Cnece more, as an illustrative exercise, consider
the estimation of a SAR model here. The iterations generated by the algorithm
presented in Section 4.1, for this problem, are sumarized in the following
tabulations:

LET K20 = -.9 LET K20 = .31 IET K20 = .371
IET K21 = .1 LET K21 = .01 LET K21 = ,001
p MSE p MSE p MSE
-.9 .379174 31 236464 3N .235930
.8 354060 .32 .236325 372 .235928
-.7 332775 .33 .236207 373 .235926
-.6 .314600 .34 .236107 .374 .235924
-.5 .299002 .35 .236028 .375 .235922
4 .285582 .36 235970 .376 .235921
-.3 274042 .37 .235933 377 .235919
-.2 264163 .38 235917+ .378 .235918
-.1 255792 .39 .235923 .379 .235917
0.0 .248839 .40 .235953 .380 235917
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-1 243278 .41 .236005 .381 235917
.2 .239157 .42 .236082 .382 .235916%
.3 .236621 A3 .236184 .383 .235916*
.4 .235953* 44 .236310 .384 235917
.5 237653 45 236464 .385 . 235917
.6 242559 A6 236644 .386 235918
.7 252430 A7 .236852 .387 .235918
.8 .2706895 .48 .237083 . 388 .235920
.9 .308114 .49 .237355 . 389 .£235922

Consequently, the maximm likelihood estimate of the spatial autocorrelation
parameter is p = 0.3825. One should note that this estimate is lower than
that for the preceding two problems, and its t-statistic for MC also is closer
to zero than are those for the preceding two problems.

The fourth problem investigated in Chapter 3 has to do with the
correlation between two variables. This time the t-statistic for MO is
significant at the 5% level. Hence, fitting of a SAR model to these data is
advisable, The iterations generated by the algorithm presented in Section
4.1, for this problem, are summarized in the following tabulations:

LET K20 = -.9 LET K20 = .51 IET K20 = .591
LET K21 = .1 LET K21 = .01 LET K21 = .001
p MSE p MSE p MSE
-.9  1.515220 .51 .617594 .591 .613487
-.8  1.375280 .52 .616759 .592 .613477
-.7  1.255010 .53 .616011 .593 .613468
-.6  1.150860 .54 .615353 .594 .613460
-.5  1.060180 .55 .614787 .595 .613454
-.4 .980945 .56 .614316 .596 .613448
-.3 .911593 .57 .613942 .597 .613443
.2 .850913 .58 .613668 .598 .613440
.1 .797969 .59 .613499 .599 .613437
0.0 . 1520860 .60 .613436* .600 .613436*
.1 . 712687 .61 .613485 .601 .613436*
.2 .679556 .62 .613649 .602 .613437
.3 .652599 .63 .613932 .603 .613439
- .632035 .64 .614341 .604 .613442
.5 .618514 .65 .614879 .605 .613446
.6 .613436* .66 . 615554 .606 .613452
i .619747 .67 .616370 607 .613458
.8 .644395 .68 .617336 .608 .613466
.9 .709681 .69 .618459 .609 .613475

Consequently, the maximum likelihood estimate of the spatial autocorrelation
parameter is p = 0.6005. One should note that this estimate is higher than
that for each of the preceding three problems, and its t-statistic for MC also
is farther away from zero than are those for the preceding three problems,
Furthermore, one should note that this form of modified regression analysis,
even though in its classical form it is independent of which variable is
labelled X and which is labelled Y, may differ in the estimate p it renders if
these two variables are switched; one should consult Griffith (1988b) and
Mardia (1988) for a better understanding of this problem.
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The fifth problem investigated in Chapter 3 has to do with the
construction of trend surface regression models. Rs in previcus problems
discussed in this Chapter, the t-statistic for MC is insignificant, ewven at
the 10% level. Hence, fitting of a SAR model to these data may well falter,
in that the MSE may fail to converge upon a minimmm within the feasible
parameter space interval (-1,1). Once more, as an illustrative exercise,
consider the estimation of a SAR model here. The iterations generated by the
algorithm presented in Section 4,1, for this problem, are summarized in the
following tabulations:

IET K20 = -.9 LET K20 = -,19 IET K20 = -.079
IET K21 = .1 IET K21 = .01 IET K21 = .001
p MSE b MSE p MSE
-.9  156.514 -.19  122.596 -.079  121.975
-.8 147,718 -.18  122.496 -.078  121.974
-7 140.575 -.17  122.404 077 121.974
-.6  134.823 -.16  122.321 -.076  121.973
-.5 130,274 -.15  122.247 -.075  121.973
-4 126,795 -.14  122.182 -.074  121.973
-3 124.292 -.13  122.125 -.073  121.972%
-2 122.706 -.12  122.077 -.072  121.972%
-.1  122.009%  -.11  122.039 -.071  121.972%
0.0  122.202 -.10  122.009 -.070  121.972%
1 123.321 -.09  121.988 -.069  121.973
2 125.441 -.08  121.976 -.068  121.973
.3 128.691 -.07  121.972* -.067  121.973
.4 133.283 -.06  121.978 -.066  121.974
.5  139.565 -.05  121.993 -.065  121.974
6 148.129 -.04  122.017 -.064  121.975
.7 160.088 -.03  122.049 -.063  121.975
.8 177.891 -.02  122.091 -.062  121.976
.9 209.024 -.01  122.142 -.061  121.977

Consequently, the maximum likelihood estimate of the spatial autocorrelaticon
parameter is p = - 0.0715. One should note that this estimate is lower than
that for each of the preceding four problems, and its t-statistic for MC also
1s closer to zero than are those for the preceding four problems. Again there
is a consistency in the emerging relationship between the MC t-statistic for
this problem and the estimate of the spatial autocorrelation parameter; this
estimate is the lowest thus far, and its affiliated MC t-statistic is the
closest to zero.

Before evaluating the last two numerical examples that are treated in
this Discussion Paper, this relationship between the estimated spatial
autocorrelation parameter value and its affiliated MC and MC t-statistic will
be further explored; there does appear to be a direct relationship between
this first variable and these latter two variates. Testing each for normality
results in the following modified Shapiro-Wilk statistics:

estimate of the spatial autocorrelation parameter: 0.910

MC calculated for the regression residuals: 0.985
MC t-statistic calculated for the regression residuals: 0.934
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In all three cases this statistic is well beyond the 5% lewvel critical value
of 0.8804, and hence suggests that the associated parent population frequency
distributions conform to a normal distribution; these three values may well be
correlated, though, since they are based upon the same sample. Meanwhile, the
correlation between the estimated spatial autocorrelation parameter value and
its affiliated MC value is 0.937, which is significant at the 5% level t =
4.65). A plot of the relationship between the spatial autocorrelation
parameter estimate and its corresponding MC t-statistic suggests that it is
nonlinear, but direct. These data lead to the following estimated regression
equation:

The regressleon eguation is
o= 0,058 « 2,17 2

Predistar Coas Stdev  t-mtio B
Constard 0. D544 a.08467 0.85 0,568
= 2,101 L. 4616 4,64 0019

a = 0,1083 B-sg = 87,84 B=ag (ad]] = &3,Ty

falysis of Varlsnce

SOURCE oE g5 ME F B
Regression 1 O, 25604 0.25604 21.54 0015
Ermor 3 0.03566 0.01288

Total q 0.20170

These results suggest that a one-to-one correspondence exists between the
calculated MC value and p, such that p can be computed as roughly twice this
statistic’s value (the slope is 2.17, and the intercept term in the population
is expected to be zero, given the t-statistic of 0.65). If this finding holds
in general (considerable subsequent meticulous research is needed in order to
establish such an empirical rule), then a reasonable and quick estimate of the
SAR spatial autocorrelation parameter is revealed by the value of MC (a
considerably easier and less numerically intensive caleulation).

The remaining two numerical examples have been isclated from this
foregoing analysis because both are examples of non-convergence, presumably
due to model overparameterization. These two problems are the initial
regression results reported in Chapter 2, and the quadratic trend surface
results reported in Chapter 3. The first stage iterations generated by the
algorithm presented in Section 4.1, for these two problems, are sumarized in
the following tabulaticns:

LET K20 = -.9 LET K21 = .1
initial regression model quadratic trend surface model

p MSE p MSE

-.999  B.05973 -.999 14.3141
-.9 8.22823 -.9 15.05866
-.8 8.441¢61 -.8 15.9236
-.7 8.68830 =.7 16.3033
-.6 8.96259 -.6 17.9947
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-.5 9.258657 =-.5 19.2003
-.4 9.56582 -.4 20.5255
-.3 9.8B638 -.3 21.9789
-2 10.21550 -.2 23.5726
-.1 10.55130 =-.1 25,3228
0.0 10.89640 0.0 27.2510
.l 11.25280 .1 29.3856
2 11.62960 2 31.7648
.3 12.04100 .3 34.4418
.4 12.51070 .4 37.4913
= 13.07690 .5 41.0265
.6 13.80250 B 45,2288
L 14.80010 o7 50.4260
.8 1€.30510 .8 57.33386
.9 18.01210 .9 68.2257

In both cases the § value of -0.999 has been evaluated, too, to demonstrate
that in fact this mean square error function is not achieving a minimm
between -1.0 and -0.9. In both cases the mean sSquare error gquantity
continually increases; in other situations it could Just as easily decrease,
without achieving a minimum, as it moves toward 1.0. Inspecticn of the
associated MC t-statistics for these two problems reveals that both are very
close to zero (-0.65 and -0.68, respectively) . In both cases one would espect

that non-convergence is attributable to overparameterization of the regression
model .

4.3. Benchmark output for the California plant species data

The results reported in Upton and Fingleton (1985) are duplicated here
in crder to verify that the MINITAB computer code macros indeed do yield
correct calculations; these data come from Tables 5.2 (p. 273) and 5.6(0) (p.
292) . First comparable results will be presented here, and second
improvements offered by the algorithm of this Discussien Paper will be
outlined.

Upton and Fingleton (1985, p. 292) present matrix W, rather than its
underlying symmetric form. Hence, the eigenvalues of this asymmetric matrix
cannot be extracted by MINITAB; rather, those eigenvalues reported in Table
5.10 (p. 299) have been used as part of the input to this analysis. Reading
the eigenvalues rather than calculating them internally compels the making of
a slight modification to the MINITAER code for analysis; MINITABR colum C48 is
read from the digital file, as is matrix W, and so the EIGEN command and the
matrix C conversion macro are not part of this particular analysis. &
connectivity matrix C has been constructed here from matriz W, so that MC and
its accompanying t-statistic can be calculated. These modifications have
necessitated the construction of an additional separate file for this example.
Furthermore, as will be shown subsequently, Upton and Fingleton (1985, p. 289)
do not calculate the spatial autocorrelation parameter estimate with the same
degree of precision as is done with the present algorithm; hence, P is set to
0.75 in order to replicate their results, but alsoc will be estimated to a
third decimal place in this section. Therefore, their California plant
specles example results are obtained by executing the following sequence of
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MINITAB commands:

EXEC 'a:UFEXAMP .TST’
EXEC fa:CLASSIC.REGS
EXEC "a:UFSTART.SAR/

Cnly selected relevant portions of the output from these commands will be
presented here. Of course the various CRT screen displays, such as the

symmetry check, appear, too.

The OLS regression results cbtained are as follows:

<l is ¥ cl=ckd ame predictors

Tha meqression eguaticon Ls
Cl= - 1668 + 0,164 ©2 + 0,116 3 + 52,5 04

Predictor O Stdey t-mtio =]
congtant -16e8.7 6.0 =451 Q000
=2 0.16418  0.05024 3.27  0.004
i } 0. 1147 F.02813 %.14 0,060
cq 52.51 10 B3 4.E5 0.000
s = 1659 Bosg = BT.6%  B-sglacd) = 85.0%

fhalysis of Variance

SRCE oF g [ F P
Fasrees s § oy 3 4263057 14713149 5l.e2  0.004
Ermr 22 EOST44 27534

Total 25 4869700

EXRCE e SHD 85

= 1 3250683

o 1 25T

o4 | E4£T337

b, =2 cl Fit Stdev.Fit Residial 5 .Resid
13 = 12.0 350 .4 83.0 =341.4 =227
13 42ah 1450.0 1525.1 131.0 =73.1 =0.T4 X
21 529 10e0, 0 T23.3 &2.6 336.7 2.8

B denotes an cos. with a larmge st, resld,
¥ derctes an chs, whose X value gives 1t large influance,

Within the limits of acceptable and slight rounding error, these results agree
with those reported in Upton and Fingleton (1985, p. 275).

Results for the SAR model are as follows:

* HE * 247 1s highly corpelated with cther predictor wariables
T MOTE W Cl8 1= highly corpelated with other predictor warisbles
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The regression equation is
Ol = - BBl C47 + 0,148 ClE + 0.102 17 = 27.1 8

Predictor Coef Stdev  temtic p
Noconetant

a7 —BED, 5 415,86 =247 0,050
clé 01470 0.04115 3.5 ¢.002
(- 4.10173 b.02Ea] 3.80 0,001
1B 27.08 12,48 2.17 0,041
8 = 154.7

Falysis of Varlance

SOORCE e e M3 F P
Regression 4 i e o | TEEEM JL. T o 00%
Ermor 22 S2E5T] F3935

Total 26 A5ea58

SARCE oF s 58

=47 1 ai2a12

ELE 1 200TESS

=17 1 ZERST

CLH 1 112614

Urusual Chserations
T, =) cls Fit stdaw.Fit Residm] 5 .Resid
2 1.05 1718 478.3 at.1 -£56.5 =2.13R
13 0.26 10228 1062.2 171.5 =39.7 =041 X
il Q.26 T21.5 1596 43,7 4018 2.TIR

R dercbes an cbs. with a large s5. mesid,
X darctes an cbe. whose X value glves it lamge influence.

R Q. TS0000
faL] 23535.4

within the limits of acceptable and slight rounding error, these regression
coefficient results also agree with those reported in Upton and Fingleton
(1985, p. 293). But, the standard errors, the mean Square error, and the t-
statistics are not correct. The final MINITAB macro, which is discussed in
Chapter 5, will present the correct values for these assorted statistics; the
problem here primarily has to do with degrees of freedom.

These foregoing results now will be augmented, in order to emphasize
scme of the advantages of the MINITAB macros being presented in this
Discussion Paper. First, MC results based upon the matrix C are provided by
the macro a:CLASSIC.REG; for these data they are

Moman Cosfficient (MO} caloulated for reslidusls; pointed as kd
Bvpectad value of MC for mesiduals

Varlanoe of MC for residsals

t-score calailated Sfor MCr primted as k%, df prirced as k10
K& 0341540
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ES £, 5EE5T
Ko 22 00ah

Supleo-Wilk test for nemmelity pecformed on resldusls
Correlation of C50 and C45 = 0,993

These results indicate that (a) there is significant spatial autrocorrelation
in the regression residuals cbtained with a traditional OLS solution (the t-
statistic equals 2.57, which is greater than the 5% critical value of 2.07,
and (b) these residuals come from a population whose frequency distribution

should conform to a normal distribution (the modified Shapiro-Wilk statistic

equals 0.993, which is greater than the 5% critical value of approximately
0.992) .

The three-stage estimation procedure promoted by the MINITAB algorithm
yields slightly more precise results than are reported in Upton and Fingleton
(1983, p. 293). The iterations generated by the algorithm presented in
Section 4.1, for this problem, are summarized in the fellowing tabulations:

LET K20 = -.9 LET K20 = .6l LET K20 = .741
IET K21 = .1 LET K21 = .01 LET K21 = .001
p MSE p MSE p MSE
-.9 32248.3 .61 24390.7 741 23939.1
-.8 31172.8 .62 24339.0 . 742 23938.4
-7 30397.5 .63 24289.2 .743 23937.8
-.6 29802.6 .64 24241.5 . 144 23937.2
-.5 29322 .7 .65 24196.1 . 145 23936.7
-.4 28917.7 .66 24153.2 . 1486 23936.2
-.3 28558.4 .67 24113.3 . 747 23935.8
-.2 28221.5 .68 24076 .4 . 748 23835.5
-.1 27886.3 .69 24042.9 . 7489 23935.2
0.0 27533.8 .70 24013.3 .750 23935.0
.1 27145.9 .11 23987.7 .751 230934.8
2 26706.7 12 23966.7 152 23934.8
.3 26204 .7 13 23950.6 L7153 23934 7%
.4 25639.4 .74 23939.9 . 754 23934.8
.5 25031.7 .75 23935.0* . 755 23934.9
B 24444 0 .76 23936.5 . 126 23935.1
.7 24013 . 3% 77 23945.0 .157 23935.3
.8 24018.9 .78 23%9¢61.1 . 758 23935.7
.8 25117.2 .79 23985.4 . 758 23936.1

Consequently, the maximum likelihood estimate of the spatial autocorrelation
parameter is p = 0.753, which is slightly larger than what Upton and
Fingleton (1985, p. 293) report. The appropriate SAR results for this more
precise estimate of the spatial autocorrelation parameter are

= MJIE * CAT L= highly cormelated with cther poedictor variables
¥ MOTE * ClE Ls highly correlated with other predictor wrisbles

The mgression eguation is
CL5 = = BST ST + 6,148 Cl6 + 0.102 €17 + 27.0 ¢l

Fredistar Coaf Sndew e=ratio P
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Woconstant

oe7 457 .4 415.7 =2 06 9.051
1 9.14775 0.04117 3.54 0,062
2T 0.I0LES o.02eT4 3.74 0,081
ull ZE.55 12.48 2,18 .04z
5 = 1467

FRTE oF 25 |, ] F B
Fecressimn 4 2726034 81504 3168 0.000
Ermor 22 L= 21510

Total Zh 3105257

SNRCE GF SED 35

ceT 1 SE2E23

=2l 1 1acdzol

T 1 241881

18 1 166351

Drissual Theermtions

ks, ca? cls Fir Srdev Fit Residua! 5 Besid

2 L.03 163.0 06,2 82.1 -241.2 =2.13R
15 0,25 68,1 1p05.6 1i5.1 =37.5 =0.41 X

il 0.25 682,49 anz.o 41.3 ao.9 2.T1R

B denctes an obs, with a lasge == . mesid,
¥ odenctes anoobs, whose X value gives it lamge influesse,

As one can see, and as one should expect, these calculations differ anly
slightly from those reported in Upton and Fingleton (1985, p. 293).
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APPENDIX 4-A,

CALIFCRNIA DATA FROM UPTCN AND FINGLETON

County Number of Mazinmm Eigenvalues of Island
Plant Species Area Elevation Latitude Isolation Weights Matrix

1 205 134 3950 28.2 1.00
2 163 98 4600 29.0 .90
3 420 96 2470 34.0 - .87
4 340 84 1560 34.0 .14
5 392 75 2125 33.3 - .01
6 235 56 1965 32.9 - .27
7 120 22 910 33.2 - .19
8 190 14 830 34.0 - .70
9 42 2.8 490 27.9 0.00

10 40 1.0 635 33.4 0.00

11 62 0.9 470 30.5 0.00

12 4 0.2 130 29.8 0.00

13 12 0.1 360 37.7 0.00

14 40 0.02 60 37.1 0.00

15 39 2.5 660 28.3 0.00

16 70 1.1 930 34.0 0.00

17 83 1.0 670 32.4 0.00

18 72 0.5 315 31.8 0.00

19 1450 4260 6535 33.0 0.00

20 1400 3324 5860 36.2 0.00

21 1060 529 2610 38.1 0.00

22 1200 1386 3810 37.3 0.00

23 640 320 3110 34.1 0.00

24 680 110 3985 34.4 0.00

25 640 a5 930 37.8 0.00

26 370 5.9 750 37.9 0.00
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Appendix 4-A, Continued

Connectivity Matrix
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Stochastic Version of Lower Ei

ght-hand Partition of Connectivity Matrix
20 21 22 23 24 25 26

19

County

2751
0000
0000
6941
Q000

0000 0.3016 0.6409

1708 0,1665 0.1427
0000 0.475% 0

0000 0.C000 0.0000

€928 0.0000 0

7658 0.0000 0.0000 O
0000 0.0000 0.0000 O
0000 0.0000 0.5838 0

0000 ©
0752 0
0000 O
0000 O
0000 O

--------

0000 O
3285 0
0453 0
0000 0
0000 0
0000 O
0938 0
0456 0

0000 1
1162 0
0000 O
1693 0
0000 O
0000 0
2041 0
3649 0

llllllll

0.0000 0.0000 0
0.0000 0.0000 O
0.0000 0.0082 0
0.0000 0.0797 0
0.213%9 0.0933 0
0.0000 0.2342 0
0.0000 0.0080 0
0.0000 0.0057 0

15
20
21
22
23
24
25
26
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CHAPTER 5.
COMPARISON OF OLS AND SAR RESULTS:
EVALUATING THE SAR SOLUTION

Two questions remain to be answered here. First, if the t-statistics
obtained with the modified OLS regression are incorrect, then what are the
correct t-statistics? Similarly, what is the t-statistic for the spatial
autocorrelation parameter estimate? Second, deoes this more camplicated
regression modelling approach really make an important difference in an
analysis? Answers to these sorts of questions will be outlined in this
chapter.

In calculating the t-statistics for SAR regression coefficients, ane
needs to determine their correct covariance matrix, the correct mean square
error, and the correct number of degrees of freedom. The correct asymptotic
covariance matrix is given by [X°(I - W)"(I - pW)X] 6. Although this matrix
is a function of the estimated spatial autocorrelation parameter value and the
mean square error value, it does not covary with either the asymptotic
variance of p or the asymptotic variance of &. The mean square error
estimate, &, is computed from the sum of square error term, which can be
written as (¥ - §)*(¥ - ¥); the value for this term that is produced in
Chapter 4 is based upon the filtered vector (I - PW ¥, which is why it is
incorrect. For an SAR model, the vector of predicted ¥ values may be written
as

¥ = WY + (I-[pNXb ,

where the spatial autocorrelation parameter estimate is cobtained from the
iterative and interactive procedure cutlined in Chapter 4. BAgain, cne should
note that the Jaccbian term does not appear here, since it is used cnly in
calculating the estimate p, and is not part of the model specification. The
predicted vector ¥ also can be correlated with the cbserved vector Y in order
to determine the multiple correlation coefficient goodness-of-fit measure for
this final regression equation. 2nd, since cre degree of freedom should be
subtracted for each parameter that is estimated, an additional degree of
freedom is lost for the estimate of the spatial autocorrelation parameter; the
MINITAE regression procedure does not realize that this estimate has been
obtained, and thus fails to adjust degrees of freedom for it. Divisien by the
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number of degrees of freedom will render an unbiased estimate of the mean
square error; Upton and Fingleton (1985, p. 285) use the maximum likelihood
estimate of this parameter, which instead involves division by n. In
addition, the standard error of p is cbtained by calculating the square root
of a fraction whose mmerator is (n/2), and whose dencminator is

i=n
(n/2) {tr[(T - p)WWIT - W) = (- A2/ (1 - pA)?} - {tr[W(T - A=)
i=1
This fraction results from a matrix inversion. If the term tr[W(I - o) ] is
zero, then this fraction reduces to
i=n
LAEr[(T - fW)7WW(I - 7] - (- 2 A%/ (1 - ph)?}
i=]
This later simplification furnishes a useful approximation for when extremely
large numbers are involwed, and hence the matrix in question numerically is
not able to be inverted.

Whether or not the SAR results are an improvement over conventional OLS
results may be assessed by seeing whether or not inferences about parameters
change, given the correct t-statistics, and whether or not the percent of
variance accounted for in variate Y increases by a marked amount. At this
point in an analysis, though, attempts to diagnose remanent spatial
autocorrelation are ill-advised. Although the final regression residuals may
be tested for normality, Cliff and Crd (1981, p. 240) note that

... the standard tests for autocorrelation cease to be valid when
the model contains an autoregressive component. ... The greater
complexity of the estimation procedures for spatial models [as
opposed to time series models] is such that no satisfactory
technique has been developed to handle the prcblem [of testing for
residual autocorrelation once an autoregressive component has been
added)] .

Because of this argument, the final SAR regression residuals determined with
the algorithm presented in this Discussion Paper will not be tested for the
presence of additional spatial autocorrelation.

5.1. The estimation algorithm

Individual vectors of the matrix (I - (W)X are produced by the macro
MINITAB a:TRANSZ.X, whose code appears as

a:TRANSZ . X

let ckl9 = ckl7 - k20*cklB
let k17 = k17 + 1

let k18 = k18 + 1
let k19 = k19 + 1
end

This macro differs from the macro a:TRANS.X in that it does not divide each
vector by the Jacobian term that is needed in order to properly estimate the
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spatial autocorrelation parameter; the Jaccbian is not part of a model
specification, just part of an estimaticn procedure. The matrix inverse
portion of the asymptotic regression coefficients variance term can be
obtained by using the MINITAR subcommand XPXINV with the command REGRESS,
which will calculate [X'(I - pW)"(I - pW)X]™. Meanwhile, the REGRESS
subcommand CCEF C61 will store the sample regression coefficients b in MINITAR
colum Cél. Including additional columns on the REGRESS command line allows
predicted values to be captured; here these predictions are stored in MINITAR
column C30. These predicted values are for the filtered Y variate, and are

calculated as (I - Xb. The eigenvalue term
i=n
-2 A - phy)?
i=1

needed for the asymptotic variance estimate of the spatial autccorrelatisn
parameter estimate is calculated with the MINITAE command

LET K30 = —SUM((C48**2) / ((1 — K20*C48) **2))

The matrix trace tr[W(I - pW)™) needed for the asymptotic variance
calculations is cbtained with the MINITAB commands

MULT K20 M2 M5
DIAG C49 M4

SUB M5 M4 M6
INVERT M& M7

MULT M2 M7 MB
DIAG M8 C45

LET K31 = SUM(C45)

Once the matrix [W(I - fW)” is calculated (MINITAB matrix M8), the matrix
trace tr[(I - pW) WW(I - (W) ™) also needed for the asymptotic variance
calculaticns is cbtained with the MINITAE cormands

TRANS MB MS

MULT M9 M8 MO0
DIAG ML0 C45

LET K32 = SUM(C45)

Sin:etTEpredictedvectnr?istheswnufﬂmtermsﬁH!and (I - pW)¥b, which
is stored in MINITABR column C30, it is calculated with the MINITAE command

LET C32 = K20*C51 + C30

recalling that K20 is the spatial autocorrelation parameter estimate, and
column €51 is constructed by the subroutine a:TRANSZ.X. The correct mean
square error can be calculated now with the MINITABR command

LET K15 = SIM((C1l - C32)**2) /(K1 - K3 - 1)
where Kl is the number of areal units, K3 is the mmber of regression
parameters (including the intercept), and the additional degree of freedom is

subtracted because of the estimate p. The correct standard errors for the
regression coefficients are calculated with the MINITAER command
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LET C63 = SQRT (K15*C62)
while the corresponding t-statistics are calculated with the MINITAR command
LET Ct4 = Cel/Ce3
The multiple correlation coefficient is computed with the MINITAE command
CORR C1 C32
Finally, the t-statistic for the estimate p is secured by first executing
either the macro a:DEPSE.RHO or a:INDEPSE.RHO, which returns the appropriate
mumber K31, and then using the MINITAB command
LET K35 = K31/K15

211 of these comnands are contained in the macro entitled a:FINAL.SAR; the
code for this file appears as

a:FINAL.SAR
let k17 =1
let k18 = 51
let k19 = 15

exec 'a:trans?.x’ k3

mult mZ2 c49 50

let c47 = c49 - k20*c50

let k19 = k19 - 1

NOTE regression model with filtered errors
regress cl5 k3 c47 clé—ckl9 c31 c30;
noconstant;

¥pxinv mll;

coef ctl.

let k30 = —sum((c48*%*2) /((1 — k20*c48) *x2))
malt k20 m2 m5

diag c49 md

sub m5 md mé

invert mé m7

mult mZ m7 mé

diag mB8 c45

let k31 = sum(c45)

trans m8 m%

malt m9 m8 miQ

diag ml0 c45

let k32 = sum(c45)

let ¢32 = kZ20*c51 + 30

let k15 = sum((cl - c32)#**2) / (k1 - k3 - 1)
NOTE correct mean square error

print k15

NOTE correct regression coefficients (c6l), standard errors (c63),
t-statistics (c64)

diag mll ck2

nn i
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let c63 = sqgrt (k15*ck2)

let cé4 = chl/cE3

print c6l c63 c64

NOTE correlation between the expected and observed values
corr cl c32

NOTE Shapiro-Wilk statistic for filtered residuals

let c33 = ¢l - c32

nscores ¢33 ¢34

corr c33 c34

NOTE 1f k35 is very close to zero, then execute a:INDEPSE.FHQO; otherwise
execute a:DEPSE.RHD

let k35 = k31/kl5

print k35

end

The value of constant K31 is returned from a subroutine. Before it is
returned, though, instructicons appear on the CRT screen notifying the user of
the mumerical value for tr[W(I - pw)™]; if this value is near zero, then the
matrix inversion will be problematic. Hence, a value close to zero means that
the macro a:INDEPSE.RHO should be executed; its code appears as

a: INDEPSE .EHD

NOTE spatial autocorrelation parameter estimate (k20), t-statistic
(k36), df (k37)

let k35 = 1/sqgrt (k32-k30)

let k36 = k20/k35

let k37 =kl - k3 -1

print k20,k36,k37

end

A value substantially different from zero means that the macro a:DEPSE .RHO
should be executed; its code appears as

a:DEPSE .RHO

NOTE spatial autocorrelation parameter estimate (k20), t-statistic
(k36), df (k37

let c38(1) = k1/(2* (k15%*2))
let c38(2) = k31/k15

let c39(1) c38(2)

let c39(2) = k32-k3(0

copy ¢38-c39 mll

invert mll ml2

copy ml2 c38-c39

let k35 = sqrt(c39(2))

let k36 = k20/k35

let k37 kl - k3 -1

print k20,k36,k37

end

i nn

These executions terminate the SAR algorithm.
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5.2. Illustrative evaluations for selected problems from Chapter 4

Only two examples discussed in Chapters 2 and 3 exhibit a significant
level of spatial autocorrelation. Specifying an SAR model for the remaining
examples is questionable. Accordingly, only those two situations in which
significant spatial autocorrelation is present will be evaluated in this
section.

The first illustration in which significant non-zero spatial
autocorrelation has been uncovered is the inference about the population mean
problem. First the following MINITAB command must be executed:

LET K20 = .578

This is the value of the spatial autocorrelation parameter estimate identified
in the three-stage iterative and interactive estimaticon procedure outlined in
Chapter 4, which uses the MINITABE macro a:CLASSIC.SAR. The inference about
the population mean prcblem requires the making of a slight adjustment to the
MINITAB computer code presented in Section 5.1; the regression command
appearing on the ninth line must be rewritten as

REGRESS C15 K3 C47 C31 C30;
This modified form of the final solution is housed in the macro a:FINALM,SAR;

all other problems use the macro a:FINAL.SAR. Hence, executing the MINITAE
macro a:FINALM.SAR for these data generates the CRT screen display

mgrassion medel with fllitared ercocs

The mgression eqation is
C15 = SEET 47

Pradictor Coaf Stdev  t-mtio p
Nocomstant

47 oRET a3 1.1 3.100
5 = 11544

Falysis of Varlarce

FECE e o3 85 ME F <]
Reqression 1 51078338 251078304 1.88 0198
Ermor 15 1598944384 133262960

Tatal 16 Z2L022656

nusual hesrarions
axE. 4T sl Fit Stdev.Fit Pesifal St Reald
o 0422 imaEl 3961 2636 35319 3.188

B denctes an obs, with a lamge st. mesid,

*WOTE v ALL VALIES IN COLIMY ARE ITDENTICAL
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Therefore the estimate of the population mean has changed from 9746 to 9387,

The correct inferential statistics for this problem are as follows:

COITECT MBAT ST BITOE
s 14ZFTEIT2E

orrect regression coefficients (ofl), standard errors (o63), t-statistics (o64)
W 6L CEY o4
1 #8712  TO7e.ET  1.37606

sotrelat lon betwesn the expected ard cbserved valuas
Correlstion of C1 and C32 = 0,654

In other weords, the correct mean sguare error is 142781728 rather than
177323184, the OLS population mean estimate appears to be slightly inflated,
and nearly 43% of the variance exhibited by the Y variable can ke
statistically explained by its spatially lagged term. The standard error of
the sample mean seems too low, as well, increasing from 3329 to 7079. This
change in the standard error estimate has completely reversed the statistical
inference for this problem. In the OLS analysis this mean is determined to be
significantly different from zero; in this SAR analysis it is found not to be
significantly different from zero. Consequently, overlocking the positive
spatial autocorrelation latent in the geographic distribution of density of
coffee production in the Mayaguez Agricultural Administrative Region of Puerto
Rico leads cne to erroneocusly infer that it is non-zero in the population.

The new residuals still suggest the absence of a normal distribution in
the populaticn.

Shaplro-wlls statistie for filtered residmls
Corpelatlon of C33 and C34 = §,813

The appropriate critical Shapiro-Wilk statistic value here, conservatively
speaking, is approximately 0.9343. This failure to satisfy the normality
assumption should be viewed as quite troublescme.

Finally, the spatial autocorrelation parameter estimate is significantly
different from zero,

Af K35 L5 very close to zero, then exsate a:OEPSE. RE: othervlse exesite a:06F = FFD
K35 3. DODGOa02S

spatial autocorrelation parameter estimate (c20), t-statissis (k3E) , <f [(k3T) B0 0.578000
F36 2. B4E72
=T 14,0000

Because K35 is so close to zero, the MINITAE macro a:INDEPSE.RHD was selected
for execution. The appropriate critical t-statistic value here is 2.14,
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The second instance in which significant non-zero spatial
autocorrelation has been uncovered is the z-score regression problem. This

final step of the analysis is initiated with the following MINITAR command
execution:

LET K20 = .6005

This is the value of the spatial autocorrelation parameter estimate identified
in the three-stage iterative and interactive estimation procedure outlined in
Chapter 4, which uses the MINITAB macro a:CLASSIC.SAR. Executing the MINITAR
macro a:FINAL.SAR for this data generates the CRT screen display

meqresslon model with filtered ermors

The regression eguation is
Cl% = 0,032 S47 + 3.49% C16

Predictar Coaf Stday t-mtis -]
Nooonstant

247 0.0316 0.4625 Q.47 0,947
e 0. 4853 0.1850 .54 .02

8 = Q. TIET

fralyels of Variancs

SOURCE F =g 5 F P
Regression 2 3.5231 1. 7616 3.3 0070
Erzor 14 7.6352 a,5457

Total 16 11.163

SORCE oF sED 82

47 1 0.0022

16 1 35209

Funal bservations
O, ca7 fs Fit Stdev.Fit Besidal 5.Resid
i} 0.400 2,847 1.0%4 0.458 1.5 2.T5RX

E derotes an obs, with a large ==, msid,
% dempbes an obs, whose X valoe gives it lamge influence.

*HOIE * ALL VALIES IN CULIMN AFE IDENTICAL

Therefore the two regression coefficients embrace the following changes:

b, has gone from 0 in OLS (by construction) to 0.0316 in SAR
b, has gone from 0.546 in OLS to 0.495 in SAR

This second value no longer is equivalent to a traditiocnal correlation
coefficient, though.
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The correct inferential statistics for this problem are as follows:

DITECT mean SJuanE error
Lk 058731

moTTect regression coefficients (efl), standard errors (063), t-sta=lsties (o4}
Rw CEL CE3 g

1 D.0315%66  C.480356  0.085T1

2 0.495301  0.20334Y 2. 447TH

errelation betwesn the expected and chserved walues
Correlation of Cl and C32 = 0,717

In other words, the correct mean square error is 0.5876 rather than 0.8672,
the OLS sample correlation between the two variables in question appears to be
slightly inflated, and conditionally nearly 22% of the variance exhibited by
the ¥ variable can be statistically explained by its spatially lagged term.
The standard error of the correlation coefficient seems too large, as well,
decreasing from 0.2239 to 0.2023.

The new residuals still suggest the presences of a normal distribution
in the population.

Srapdre-Wllk statistic for filtered resisuals
Correlation of (33 and 4 = 4 046

The appropriate critical Shapiro-Wilk statistic value here, conservatively
speaking, is approximately 0.9302.

Finally, the spatial autocorrelation parameter estimate is significantly
different from zero.

if k33 is very close to zare, then esecte a:DNEPSE.FID; cthendise execute aiDEFs D
B35 6.57024

spatlal mtocorrelation parsmeter estimate [(k20), t-statistic (k36 , of (k37 K20 4, 00500
e 297807
E17 130000

The value of K35 indicates without a doubt that the MINITAB macro a:DEPSE.RHO
should be selected for execution. The appropriate critical t-statistic value
here is 2.16.

5.3. Benchmark output for the California plant species data

Again the results reported in Upton and Fingleton (1985) are cduplicated
here in order to verify that the MINITAB computer code macros generate correct
results.
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Once the three-stage iterative and interactive estimation of the spatial
autocorrelation parameter is completed, using the macro a:CLASSIC.SAR, then
its value must be set equal to the constant K20. Because Upten and Fingleton
(1385) have used the value of 0.75, then the MINITAE command

LET K20 = .75

needs to be executed. Next the final regression results are cbtained by
executing the MINITAB command

EXEC "a:FINAL.SAR"
which results in the following CRT screen displays:

reqression model with flltered errors
* HOTE C4T 18 highly correlated with other predictor varlatles
" MOTE + QB is highly correlated with other predictar wariables

Tha megression eguatlon iz
Cl5 = — 851 C47 + 0,148 Ci6 « 0,202 C1T + 27.1 CIB

Predictor Coaf Stddey t-mtls =]
Rooonstar

o4 =360 .0 41%.6 =2.47 Q.05
CiE 0. 147ET 0. 04115 .59 Q.002
CLV 010073 002681 3.80 0.001
14 £7.06 12,44 2.17 £.041

5 = ]46.4

dalysis of Varlance

HRTE oF 55 Mg F <]

Regression L] 21330 4358 1.7 LUME i

Error 22 473836 21438

Total 2B 11266

SORCE CF 5B 55

AT 1 5ET256

ZiE L iB0eTTE

il 1 244054

14 1 10133e

Ormamm ! ChEservations

s, cav 15 Fit f=dav.Fit Basidual 5 Resid
2 1.00 1630 406.3 2.1 =243.3 =113

149 2.2% F70.0 106Y. 7 115.2 -37.7 =041 X
21 0.25% a8d.4 3032 41.4 g2 2.7k

R demotes an chs. with a large ==, esid,
X denotes an cbs, whose X value gives it large Snfluanca,

These results are followed by the display of the correct mean square error.
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COITeCh MEdn SGUATE erTor
K15 £25363.6

This value agrees with that reported by Upton and Fingleton (1985, p. 293),
within the limits of acceptable and slight rounding error, because it is the
unbiased counterpart to the biased estimate, which is computed as (21/26) *K15
= (21/26)*22563.6 = 18224.5 [Upton and Fingletcon (1985, p. 275) divide this
value by 10%].

The correct standard errors and corresponding t-statistics for the
regression coefficients, and the correct multiple correlation coefficient are
displayed next.

orrect reqresslon coefficlents (of]), stamdard errors (0E3), testatistios

=54)
R CEL CEd CB4
1 =Bb60.931 485,383 =2.02385
2 b 248 o 042 3.51083
3 B 102 0027 3.TOTe0
i Z2T.GEL 12,768 2,115
correlat lom Detwsen the svpected and cbserved wlues
Cozrelation of CL and CH2 = {0,551

Once more these standard errors and t-statistics agree with those presented in
Upton and Fingleton (1985, p. 293), within the limits of acceptable and slight
rounding error, when multiplied by V21/26. In other words,

425,393*0.898717 = 382.3
0.042*0.898717 = 0.038; t = 3.91
0.027*0.898717 = 0.025; t = 4.13

12.769*%0.898717 = 11.476; t = 2.36

Meanwhile, B = (0.951)°

0.904.

Succeeding this CRT screen display is one for the normality test
results.

Shaplro-Wilk statistic for filtered resismls
Correlatlon of C33 and CO4 = 3,884

Clearly this model assumption is satisfied for these California plant species
data; Upton and Fingleton (1985) do not report this statistic.

Finally, using the unbiased mean square error estimate rather than the
blased estimate that is employed by Upton and Fingleton (1985), such that the
sample size in the denominator is replaced with the mmber of degrees of
freedom, the test of the spatial autocorrelation parameter estimate, p, may be
undertaken. First the value of tr[W(I - pW)™7]/& is displayed on the CRT
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SCIeerl.

if k33 is very close to zers, then execute a:TNDEPSE.FHD; otherwlse exemite a:DEPSE BEHD
B35 0.000244072

Since this value is not approximately zero, although it is quite small, the
macro a:DEPSE.RHO is selected for execution; this value equals 0.000302184 if
the biased mean sguare error estimate is used, which agrees with the
corresponding calculation alluded to by Upton and Fingleton (1985, p. 299).
Consequently, the final CRT screen display is

Spatlal atotormelation parameCer estimate (k20), t-statlstie (k36), of (k3T K20 0. 750000
E3E 5. 57784
37 21,0000

This t-statistic value agrees with that reported by Upton and Fingleton (1985,
p. 233), within the limits of acceptable and slight rounding error. It will
be the same regardless of which mean square error estimate is used; as is
established in the introduction to this chapter, the asymptotic variance of p
1s not directly dependent upon &', although it is indirectly dependent upon
the quantity tr[W(I - pW)™]/6 through the matrix inversion operation. If
either 0.0002 or 0.0003 are considered very close to zero, then this t-
statistic changes to 5.66 (the difference between these two t-statistic values
is attributable to specification error).

The interested reader should consult Upton and Fingleton (1985) for a

discussion of the differences between these SAR results and their OLS
counterparts, as well as an evaluation of this SAR solution.
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CHAPTER 6.
SUMMARY

The executicn sequences of macros for each of the problems treated in
this Discussion Paper have the following concatenations:

miltiple
regression

EXFC "a:START. !
EXEC '"a:CLASSIC.REG'
EXEC "a:START.SAR'

LET K20 = ?
IET K21 = .01
EXEC 'a:CLASSIC.SRAR' 19
LET K20 = 7
LET K21 = .001
EXEC "a:CLASSIC.SAR' 19
IET K20 = ?
EXEC "a:FINAL.SRRS
EXEC ' a:INDEPSE.RHD'

or

' a:DEPSE . RHO'

analysis of
variance
EXEC 'a:START. !
EXEC ’a:REG.AOV
EXEC 'a:START.SARS
IET K20 = ?
IET K21 = .01
EXEC "a:CLASSIC.SAR’ 19
LET E20 = ?
LET K21 = 001
EXEC 'a:CLASSIC.SAR' 19

IET K20 = ?

77

inference about a
population mean

EXEC 'a:START. !
EXEC 'a:REG.MJ"
EXEC 'a:START.SARS
IET K20 = 7
IET K21 = .01
EXEC ’a:CLASSIC.SAR'
LET K20 = 7
LET K21 = .001
EXEC 'a:CLASSIC.SAR'
ILET K20 = ?
EXEC 'a:FINALM, SAR’
EXEC ’a:INDEPSE.RHO'
or
' a:DEPSE . RHO'

19

19

two—groups discriminant
function analysis

EXEC 'a:START. !
EXEC ’'a:CLASSIC.REG'
EXEC 'a:START.SAR'

LET K20 = ?

IET K21 = .01

EXEC 'a:CLASSIC.SAR' 19
LET K20 = 7

LET K21 = .001
EXEC 'a:CLASSIC.SAR' 19
IET K20 = ?



EXEC ’a:FINAL.SAR’
EXEC 'a:INDEPSE,RHO'
or
*a:DEPSE.RHO'

bivariate
correlation

EXEC "a:START.
EXFC ’a:REG.COR’
EXEC 'a:START.SAR'
LET K20 2
LET EKZ1 .01
EXEC "a:CIASSIC.SAR' 19
LET K20 = 2
LET K21 = ,001
EXEC "a:CLASSIC.3AR' 19
LET K20 = 2
EXEC 'a:FINAL.SARS
EXEC 'a:INDEPSE.RHD'
or
' a:DEPSE,RHO'

i

Cliff and Ord

EXEC "a:START.TST'

EXEC fa:CIASSIC.REG
LET C1 LOGTEN (C1)
IET C2 LOGTEN (C2)
EXEC fa:CLASSIC.REG’

0o

Mearwhile, the examples from Cliff and Ord (1981)
(1985) have the execution sequences

EXEC fa:FINAILM.SARS
EXEC 'a:INDEPSE.RHO'
or
'a:DEPSE.RHD/

trend surface models

EXFC ' a:5TART. d
EXNEC ' a:LINEAR TSM'
EXEC ’a:QUADRATI ., TSM’
EXEC Ta:CUBIC,TSM"
EXEC 'a:START.SARS

LET K20 = 7

IET K21 = .01

EXEC ’"a:CLASSIC.SAR’ 19
IET K20 = ?

IET K21 = .001
EXEC "a:CILASSIC.S2R' 19
LET K20 = ?
EXEC fa:FINAL,SARS
EXEC 'a:INDEPSE.RHD'
or
' a:DEPSE.RHO!

Upton and Fingleton

EXEC fa:UFEXAMP . TST/
EXEC fa:CLASSIC.REG’
EXEC 'a:UFSTART.SARS
EXEC "a:CLASSIC.SAR' 19
LET K20 = .61

IET K21 = .01

EXEC "a:CLASSIC.SAR! 15
IET K20 = ,741

IET K21 = .001

EXEC "a:CLASSIC.SAR' 19
LET K20 = .75

EXFC 'a:FINAL.SAR'

EXFC ’a:DEPSE.RHO/

and from Upton and Fingleton

Finally, the two complete examples from the Puerts Rican data set have the
execution seguences
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inference about a
population mean for
density of coffee production

EXEC ' a:DEMOMAY MU'
EXEC 'a:REG.MJ'

EXEC 'a:START.SARS

LET K20 = .51

IET K21 = .(1

EX¥EC "a:CLASSIC.SAR' 19
LET K20 = ,571

LET K21 = .001

EXFC 'a:CLASSIC.SAR' 19
LET K20 = .578

EXEC 'a:FINAILM.SRAR'
EXEC a:INDEPSE.RHO'

correlation between density
of sugarcane production and
density of number of farm families

EXFEC 'a:DEMOMVAY . COR'
EXEC 'a:REG.COR'

EXEC "a:START.SARS

IET K20 = .51

LET K21 = .01

EXFC "a:CLASSIC.SAR' 19
LET K20 = ,591

ILET K21 = .001

EXEC "a:CLASSIC.SAR! 19
LET K20 = .6005

EXEC fa:FINAL.SAR'

EXEC 'a:DEPSE.RHD'

All files in this chapter are identified as being located on Disk Drive
A because that is where they are housed, and from where they are retrieved,
when the digital companion for this workbock is accessed.
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APPENDIX A.
MSE PILOTS VERSUS
SPATTAL AUTOCORREIATION ESTIMATES

MSE

3.50E+08+ *
_ x
2.80E+08+ *
—_ *
_ "
-_ *
2.10E+08+ *
_ *
- * *
- * k. k3
— * *® *4++342 a
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- - - - : -- rho
=0.70 -0.35 0.00 0.35 0.70

mean square error (MSE) for the inference about a mean problem

MSE
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- x
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mean square errcr (MSE) for the analysis of variance problem
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mean square error (MSE) for the discriminant function analysis problem

MSE
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mean square error (MSE) for the correlation problem
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mean square errcr (MSE) for the linear trend surface model problem

MSE
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mean square error (MSE) for the classical regression problem
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mean square error (MSE) for the quadratic trend surface model
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mean square error (MSE) for the Upton & Fingleton data problem
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ORDER FORM

Digital forms of the software, entitled "GRIFFITH’S MINITAR MACROS FOR
SPATIAL STATISTICS," housed in ASCII files located on high-density, dual
sided, double density 5.25" diskettes, may be purchased by contacting the
following person:

Ms. Ann Hammersla

Director of Technology Transfer
Office of Sponsored Programs
Skytop Cffice Building

Syracuse University

Syracuse, New York  13244-5300

This digital form of the MINITAR macros is designed for PC use, t is
uploadable to mainframes with few modifications, and is priced as follows:

% 100 for commercial buyers

$ 40 for academic institutions/persons

$ 20 for students (verification of student status must accompany the
order)

The reduced prices are offered exclusively to recognized educational
institutions, students, and employees thereof. Syracuse University, at its
sole discretion, reserves the right to refuse any order. All macros are
provided "as-is," without warranty of any kind, either expressed or implied.
Flease allow up to four weeks for delivery.

Payment must be in U. S. dollars, drawn on a U. S. bank, and payable to
Syracuse University. Prices and availability subject to change without
notice. Orders must be prepaid, or accompanied by a purchase requisition.

ADDRESS:

STATUS: [ ] commercial, [ ] academic, [ ] student (attach verification)
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INSTITUTE OF MATHEMATICAL GEOGRAPHY [IMaGe}
2790 BRIARCLIFF
ANN ARBOR, MTI 48105; U.5.A.

“Imaginalion s more important than knowledge”
Albert Einstein

IMaGe MONOGRAPH SERIES-1888 PRICE LIST
Exclusive of shipping; prices listed and payable in U.S. funds.

1. Mathematical Geography and Global Art: the Mathematics of David Barr's “Four Corners Project,”
Sandra L. Arlinghaus, Director of IMaGe, and John D. Nystuen, Professor of Geography and
Urban Planning, College of Architecture and Urban Planning, The University of Michigan,
Ann Arbor, MI 48108. IMaGe@umichum; Nystuen@umichum. 1986. $8.95.

This monograph contains Nystuen’s calculations, actually used by sculptor David Barr
to position his abstract tetrahedral sculpture within the earth, as well as a Preface by Barr.
Placement of the seulpture vertices in Easter Island, South Africa, Greenland, and Indonesia
was chronicled in film by The Archives of American Art for The Smithsonian Institution.
In addition to the archival material, this monograph also contains Arlinghaus’s solutions to
broader theoretical questions—was Barr’s choice of a tetrahedron unique within his initial
geographic constraints, and, within the set of Platonic solids?

2. Down the Mail Tubes: the Pressured Postal Era, 1853-196. , Sandra L. Arlinghaus, Director of
IMaGe. IMaGefiumichum. 1986. $£0.95.

The history of the pneumatic post, in Europe and in the United States, is examined for
the lessons it might offer to the technological scenes of the late twentieth century. As Sylvia
L. Thrupp, Alice Freeman Palmer Professor Emeritus of History, The University of Michigan,
commented in her review of this work “Such brief comment does far less than justice to
the intelligence and the stimulating gquality of the author's writing, or to the breadth of her
reading. The detail of her accounts of the interest of American private enterprise, in New
York and other large cities on this continent, in pushing for construetion of large tubes in
systems to be leased to the government, brings out contrast between American and European

views of how the new technology should be managed. This and many other sections of the
monograph will set readers on new tracks of thought.”

3. Essays on Mathematical Geography, Sandra L. Arlinghaus, Director of IMaGe. 1986. $15.85.

A collection of essays intended to show the range of power in applying pure mathematics
to human systems. There are two types of essay: those which employ traditional mathematical
proof, and those which do not. As mathematical proof may itself be regarded as art, the former
style of essay might represent “traditional” art, and the latter, “surrealist” art. Essay titles
are: “The well-tempered map projection,” “Antipodal graphs,” “Analogue clocks,” “Steiner
transformations,” “Concavity and urban settlement patterns,” “Measuring the vertical ecity,”
“Fad and permanence in human systems,” “Topological exploration in geography,” “A space
for thought,” and “Chaos in human systems-the Heine-Borel Theorem.”

4. A Historwol Gazetleer of Southeast Asis, Robert F. Austin, Director of Automated Mapping
and Facility Management Systems, Baystar Service Corporation, 311 Park Place Blvd. Suite
650, Clearwater, FL 34619. 1986. $12.95.

Dr. Austin’s Gasetteer draws geographic coordinates of Southesst Asian place-names
together with references to these place-names as they have appeared in historical and literary
documents. This book is of obvious use to historians and to historical geographers specializing
in Southeast Asia. At a deeper level, it might serve as a valuable source in establishing place-
name linkages which have remained previously unnoticed, in documents deseribing trade or
other communications connections, because of variation in place-name nomeneclature.



5. [FEssays on Mathematical Geography-If, Sandra L. Arlinghans, Director of IMaGe. IM-
aGe@iumichum. 1987, $12.95,

Written 1n the same format as IMaGe Monograph #3, that seeks to use “pure” mathe-
matics in real-world settings, this volume contains the following material: “Frontispiece—the
Atlantic Drainage Tree,” “Getting a Handel on Water-Graphs,” “Terror in Transit: A Graph
Theoretic Approach to the Passive Defense of Urban Networks,” “Terrae Antipodum.” “Ur-
ban Inversion.” “Fractals: Constructions, Speculations, and Concepts,” “Solar Woks,” “A
Preumatic Postal Plan: The Chambered Interchange and ZIPPR Code,” “Endpiece.”

6. Theoretical Market Areas Under Euclidean Distance, Plerre Hanjoul, Hubert Beguin, and
Jean-Claude Thill: respectively, Electrical Engineer and Ph.D. candidate in Sciences, Uni-
versity of Louvain-la-Neuve; Professor of Economic and Quantitative Geography, University
of Louvain-la-Neuve; National Fund for Scientific Research (Belgium). Address: Université
Catholique de Louvain, Batiment Mercator, Place Pasteur 3, B-1348, Louvain-la-Neuve, Bel-

gium. Beguin@buecllnll, 1988. (English language text; abstracts written in French and in
English.) $15.85.

Though already imitiated by Rau in 1841, the economic theory of the shape of two-
dimensional market areas has long remained concerned with a representation of transportation
costs as linear in distance. In the general gravity model, to which the theory also applies, this
corresponds to a decreasing exponential function of distance deterrence. Other transportation
cost and distance deterrence functions also appear in the literature, however. They have not
always been considered from the viewpoint of the shape of the market areas they generate,
and their disparity asks the guestion whether other types of functions would not be worth
being investigated. There is thus a need for a general theory of market areas: the present
work aims at filling this gap, in the case of a duopoly competing inside the Euclidean plane
endowed with Euclidean distance.

(Bien qu’ébauchée par Rau dés 1841, la théorie économique de la forme des aires de marché
planaires s’est longtemps contentée de I'hypothése de coiits de transport proportionnels & la
distance. Dans le modéle gravitaire généralisé, auquel on peut étendre cette théorie, ceci
correspond au choix d'une exponentielle décroissante comme fonetion de dissussion de la
distance. D'autres fonctions de coiit de transport ou de dissuasion de la distance apparaissent
cependant dans la littérature. La forme des aires de marché gu’elles engendrent n'a pas
toujours été etudiée ; par ailleurs, leur variété améne a se demander si d'autres fonctions
encore ne meériteraient pas d'étre examinées. Il parait done utile de disposer d’une théorie
genérale des aires de marché : ce & quoi s’attache ce travail en cas de duopole, dans le cadre
du plan euclidien muni d'une distance euclidienne.)

T. Nystuen—Dacey Nodal Analysis, Keith J. Tinkler Editor, Professor, Department of Geog-
raphy, Broek University, St. Catharine’s, Ontario, Canada L25 3A1. 1988, $15.05.

Professor Tinkler's volume displays the use of this graph theoretical tool in geography,
from the original Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler.
Some reprinted material is included, but by far the larger part is of previously unpublished ma-
terial. (Unless otherwise noted, all items listed below are previously unpublished.) Contents:
“ ‘Foreward' ” by Nystuen, 1988; “Preface” by Tinkler, 1988; “Statistics for Nystuen—Dacey
Nodal Analysis,” by Tinkler, 1879; Review of Nodal Analysis literature by Tinkler (pre-1879,
reprinted with permission; post—1979, new as of 1888); FORTRAN program listing for Nodal
Amnalysis by Tinkler; “A graph theory interpretation of nodal regions™ by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning tele-
phone flows in Washington and Missouri, 1958, 1859 with comment by Nystuen, 1988; “The
expected distribution of nodality in random (p, gq) graphs and multigraphs,” by Tinkler, 1976.

8. The Urban Rank-size Hierarchy: A Mathematical Interpretation by James W. Fonseca, Associate
Professor of Geography and Acting Dean of the Graduate School, George Mason University,
Fairfax, Virginia 22030, Jfonseca@gmuvax.bitnet. 1989. $15.85.



The urban rank-size hierarchy can be characterized as an equiangular spiral of the form
r = ae"", An equiangular spiral can also be constructed from a Fibonacci sequence. The
urban rank-size hierarchy is thus shown to mirror the properties derived from Fibonacei char-
acteristics such as rank-additive properties. A new method of structuring the urban rank-size
hierarchy is explored which essentially parallels that of the traditional rank-size hierarchy be-
low rank 11. Above rank 11 this method may help explain the frequently noted concavity of
the rank-size distribution at the upper levels. The research suggests that the simple rank-size
rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justi-
fied norm against which deviant cases may be measured. The spiral distribution model allows
conceptualization of a new view of the urban rank-size hierarchy in which the three largest
cities share functions in a Fibonacei hierarchy.

8. An Atlas of Stetner Networks, Sandra L. Arlinghaus, Director of IMaGe. IMaGe@umichum.
1989. $15.85.

A Steiner network is a tree of minimum total length joining a preseribed, finite, number
of locations; often new locations are introduced into the prescribed set to determine the
minimum tree. This Atlas explains the mathematical detail behind the Steiner construction
for prescribed sets of n locations and displays the steps, visually, in a series of Figures. The
proof of the Steiner construction is by mathematical induction, and enough steps in the early
part of the induction are displayed completely that the reader who is well-trained in Euclidean
geometry, and familiar with the concepts of graph theory and elementary number theory,
should be able to replicate the constructions for full as well as for degenerate Steiner trees.

10. Simulating K = 3 Christaller Central Place Structures: An Algorithm Using A Constant Elas-
ticity of Substiution Consumption Funciion, Daniel A. Griffith, Professor of Geography, Syracuse
University, 343 H.B. Crouse Hall, Syracuse, NY 13244-1160. Griffith@sunrise. 1989. $15.95.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines.
This algorithm simulates Christaller K = 3 central place structures, for a four-level hierarchy.
It is based upon earlier published work by the author. A description of the spatial theory,
mathematics, and sample output runs appears in the monograph. A digital version is available
from the author, free of charge, upon request; this request must be accompanied by a 5.5-inch
formatted diskette. This algorithm has been developed for use in Social Science classroom
laboratory situations, and is designed to (&) cultivate a deeper understanding of central place
theory, (b) allow parameters of a central place system to be altered and then graphic and
tabular results attributable to these changes viewed, without experiencing the tedium of mas-
sive calculations, and (c) help promote a better comprehension of the complex role distance
plays in the space—economy. The algorithm also should facilitate intemsive numerical research
on central place structures; it is expected that even the sample simulation results will reveal
interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space—economy;
both linear and non-linear spatial demand functions are discussed. The mathematics is con-
cerned with (a) integration of non-linear spatial demand cones on a continuous demand surface,
using a constant elasticity of substitution consumption function, (b) solving for roots of poly-
nomials, (c) numerical approximations to integration and root extraction, and (d) multinomial
discriminant function classification of commodities into central place hierarchy levels. Sample
output is presented for contrived data sets, constructed from artificial and empirical infor-
mation, with the wide range of all possible central place structures being generated. These
examples should facilitate implementation testing. Students are able to vary single or multiple
parameters of the problem, permitting a study of how certain changes manifest themselves
within the context of a theoretical central place structure. Hierarchical classification criteria
may be changed, demand elasticities may or may not vary and can take on a wide range of
non-negative values, the uniform transport cost may be set at any positive level, assorted
fixed costs and variable costs may be introduced, again within a rich range of non—negative
possibilities, and the number of commodities can be altered. Directions for algorithm execu-




tion are summarized. An ASCII version of the algorithm, written directly from GWBASIC,
is included in an appendix:; hence, it is free of typing errors.






