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AN ATLAS OF STEINER NETWORKS

CHAPTER I: INTRODUCTION
Statement of Steiner’s Problem

The Steiner problem is that of finding a shortest path joining an arbitrary
number of points. The solution is a graph-theoretic tree of minimum length,
and it may include points not given in the original set. It is precisely this latter
possibility that distinguishes the Steiner problem from others, such as the trav-
eling salesman problem, although both of these, and other network optimization
problems, are NP-complete. Any new point, chosen to reduce total network
length joining the original set of points, may be chosen from an infinite set of

positions. Hence, the enormity of the problem.

An efficient algorithm to find Steiner trees has long been sought. Much
of the research on it appears in the mathematics literature and in the applied
mathematics and telephone engineering literature [1]. A Steiner network is a
network of minimum construction cost. Because it also tends to focus conges-
tion, it is economically desirable as a routing strategy when the cost of network

construction outweighs other network costs.

Potential arenas in which Steiner networks might prove useful are in the
theoretical underpinnings of Geographic Information Systems [2]. If centers of
gravity are used as a centering scheme in a triangulated irregular network, then
it is desired to have no centroid lie outside a triangular cell. Thus, no cell should
have angle greater than 120° and so the Steiner network (where all angles are
exactly 120°) will serve as an outer edge (a limiting position) for acceptable
triangles to be induced on a surface. It is at this point that the geometry
and graph theory of the minimal tree come face-to-face with the fundamental

triangular units (simplexes) of combinatorial topology.

Conceptual Background

To find a path from one place to another is a problem of enduring interest

that has stimulated a variety of literary and mathematical response. Literary



support for the permanence of human concern with this problem may be drawn
from Greek mythology as well as from traditional children’s stories. The thread
Ariadne gave to Theseus provided him a solution for escape from the labyrinth
after he had slain the Minotaur; Hansel and Gretel hoped to trace their path
into the forest from a trail of bread crumbs, while Alice tried in vain to discover
a path to a hilltop so she might see the garden of live flowers [3]. The maze
characterizes a simple expression of this mathematical problem: to move from
location A to location B along a path that twists around a set of barriers with
fixed spatial position [4]. Mazes and labyrinths have survived as popular forms
of entertainment and as interesting hedge formations in formal gardens. More
rigorous analysis of mazes has produced varying sets of mathematical rules for
their solution [5]. However, with any style of solution, the puzzle is considered
solved once the existence of a path from A to B, satisfying the given spatial
constraints, has been determined. If that solution is unique then the maze
is completely solved in a formal sense and therefore generates no immediate
questions for further development.

If the maze admits more than one path as a solution then the following
question and extensions of it arise naturally and lead to solutions for classes
of problems more complex than the original one. Of all the paths through the
maze, which is the shortest (or, dually, the longest)? If the physical landscape
represents the spatial constraints of the maze, then this question might be in-
terpreted as that of finding the shortest route for traveling from one location
to another, with distance measured in time, cost, Euclidean space or whatever
seems appropriate. If each route is to include a specified set of intervening lo-
cations as part of the given spatial structure, then the original problem leads
to the “traveling salesman” problem, which in theory can be solved, but which
requires large numbers of calculations when even only a relatively small number
of intervening locations are included [6].

None of these concerns requires the path to branch. If the path connecting
two or more places branches in order to pass through intervening locations, the

problem remains to determine which of all these tree-like paths is shortest; this



is the minimal spanning tree problem. The earliest efficient algorithms for the
solution of this problem were given by Kruskal and Prim; they rely on indexing
the edge set according to length and on replacing, recursivly, edges in circuits
of any candidate tree [7].

Both traveling salesman and minimum spanning tree paths in a finite dis-
tribution of points generally assume uniformity of carrying capacity among all
possible routes. If varying carrying capacities are assigned to alternate routes
then economic considerations may be imposed on the fundamental geometric
and spatial structure of this problem. The general diagrammatic exposition of
such a structure is as a directed graph with paths from A to B assigned num-
bers representing carrying capacities of various segments of each path. If A is
viewed as a source of supply for a set of locations and if B is viewed as a col-
lecting point, or sink, of demand for another set of places, then one can ask
how to transmit maximal flow across this network in order to satisfy the de-
mand at the second set of locations. In this way the simple maze problem is
transformed into the “transportation problem” [8]. Gaspard Monge, the French
descriptive/projective geometer of the eighteenth century was apparently the
first to tackle it [9]. More recent interest dates to the early 1940’s with Hitch-
cock’s determination of the optimal economic distribution of flow from a set of
sources to a set of sinks, and in the late 1940’s to Koopmans’ and Dantzig’s use
of linear programming [10]. Dantzig’s simplex method of linear programming
is effective for solving the transportation problem; however, it is not always ef-
ficient computationally for it may involve rejecting a large number of choices
in order to find optimal routing [11]. In the case of Steiner’s problem, the ob-
jective function fails to be well-defined when there are more than three points
in the prescribed, initial, set of n locations. And, even if topological tree type
is specified, the linear programming process itself is NP complete, producing
unwieldy sets of equations for even fairly small values of n. Further, the rate
at which the complexity increases, as n increases, parallels the NP completeness
of the Steiner problem, itself. In contrast to the approach of linear program-

ming of maximizing an objective function over an entire set of feasible solutions



determined at the outset, Bellman’s dynamic programming permits decisions re-
garding optimum solution to be made at a set of stages during the actual solution
process, often permitting reduction in numbers of calculations to be made [12};
again though, it does not appear well-suited to Steiner’s problem. Ford and
Fulkerson’s max-flow, min-cut theorem permits solution of the transportation
problem by observing that flow along a given path of the network is constrained
by the link in that path with minimum carrying capacity [13]. In contrast to the
two previous approaches, Ford and Fulkerson use economic constraints on the
spatial structure of the network (represented as a graph), to determine optimal
economic gain from the network. Modifications and generalizations of Ford and
Fulkerson’s theorem range from extension of it to a set of sources and sinks, to
modification of carrying capacities of the links to accommodate a set of different
capacities en each link [14].

The entire class of problems discussed above, from paths through a maze to
various solutions of the transportation problem, are such that an appropriate
small shift in intermediate vertices of the graph, or in basic spatial constraints,
could produce an improvement in optimal path length or flow through that net-
work. This sort of observation leads naturally to a search for a set of intervening
points, such that a network (of given topological form) is minimal with respect
to the metric under consideration and is such that no shift in any of the inter-
mediate points could improve path length. This notion is a generalization of
Steiner’s problem [15]. Steiner’s original problem consists of determining the
path of shortest length in the Euclidean plane, linking three vertices, v;, vy, and
vs. If v1, v9, vs form a triangle with one angle greater than or equal to 120°, then
the shortest path is along the two sides of the triangle that form that angle. Oth-
erwise the minimal network is formed by locating a point S,, (a Steiner point),
in such a way that |S,Vi| + |S,V2| + |S;V3| is minimized; the lines S,V;, S,V and
S,V will be said to form the Steiner network on (V;1%V3) and these lines form
angles of 120° at S,, relative to each other.

The generalized Steiner problem consists of finding a set of points 51,...,5,

such that the network connection among a given set of points Vi,...,V,, p <n,
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is minimized [16]. The network that minimizes such connections will be called a
Steiner network; its general form is such that every set of three edges incident
with S;, 1 <i <p will form angles of 120° relative to each other. In the general
case the Steiner network will be an absolute minimum, selected from a set of
relative minima, each of which is minimal for a particular style of connection
(i-e., is minimal for a particular topological type). Each of the relative minima
is a candidate for the Steiner network.

Sequential questioning of the original problem of finding a path from one
place to another led along a path, through a class of problems, in which the
given spatial constraints were such that the network improvement was possible
by altering those constraints; that questioning jumped to the generalized Steiner
question as a basis for generating a set of questions in which spatial barriers are
to be determined in such a way that absolute optimal path selection is forced.
This also follows from comparison of the simplest form of Steiner’s problem with
the simplest form of the original problem (the maze).

Because all improvements in any network approaching the Steiner network
lead to the same Steiner network within the given set of points, the Steiner
network might be viewed as a spatial invariant within the set of points it connects.
Consequently, it would be useful as a standard against which networks to be built

could be measured.

Whether or not the Steiner network connecting a set of points {V7,...,V,},
using a set of Steiner points {Si,...,Sp}, is invariant under transformations of
{V1,...,Vs} is unclear. That is, if 7 is a mapping such that

oV, .. Vel = [V, VY, nmeZT
is defined by
Vir=V}, 1l<igm 1Z£jsm,

then conditions under which an appropriate extension of 7, applied to {S1,...,5.},
lead to the Steiner network of {V{,..., V] }, appear unclear.
This sort of consideration appears to be of fundamental importance, for iden-

tification of spatial network invariants leads to principles on which to determine
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geographical network location. The Steiner network is a spatial invariant around
which general principles of network location might be built; it is the purpose of
this work to examine in detail the formal, rather than the applied, nature of

teiner networks and to present the results in a way that permits the non-
mathematician to replicate these results.

Thus, the following chapters present detailed treatments of aspects of the
Steiner problem which, hopefully, suggest how to deal with those specific cases
not covered here. Chapter II presents a complete analysis of Steiner’s origi-
nal problem for the triangle. Chapter III presents an algorithm exhibiting the
detailed geometric construction of candidates for the Steiner network of the
generalized Steiner problem. The proof of the algorithm is by mathematical
induction; a variety of candidate trees will be exhibited as Figures (in place of
the more traditional “Plates”) in this Atlas. Chapter IV discusses the case for
six points, showing how a wide variety of different candidate networks, including
degenerate forms, come into being. Chapter V presents directions for some ex-
tensions of Steiner structures. Enumeration problems, including criteria for the
selection of topological structure for Steiner networks, are considered in some
detail.

Considerable effort has been made to illustrate steps of the proofs. The rea-
son for this is that although procedures for locating candidates for the generalized
Steiner network are available within the mathematical literature, the history of
the problem is one that is riddled with difficulties. Melzak published an al-
gorithm in 1961 showing the existence of a solution to the generalized Steiner
problem, but did not exhibit it in detail [17]. Gilbert and Pollak later state that
the generalized Steiner problem is solvable and extend Melzak’s procedure in
an effort to deal with degenerate Steiner networks (paths that follow, in some
part, the set of linkages available along the convex hull of the original set of ver-
tices) [18]. In articles post-dating Melzak’s work, geographer Werner claims to
make progress at solving this problem. However, his reasoning appears circular
although he, himself, can evidently figure the positions of Steiner networks, and

his grasp of the degenerate appears superficial [19]. In a later article, Cockayne



states that Melzak’s procedure is incorrect but does not say why it is [20]. The
detailed proof presented here is compatible with that of Cockayne. Textbooks
written in the 1970’s, and in use and cited in the 1980’s, perpetuate these diffi-
culties. In geography, Abler, Adams, and Gould (1971) give no key references in
their undergraduate text (perhaps understandably) to the literature surround-
ing this problem and rate it simply as “unsolved” [21]; nor do Haggett, Cliff, and
Frey (1977), in their graduate text [22]. In the engineering/applied mathematics
literature, Lawler (1976) cites both Melzak and Cockayne in his references, but
does not mention the content of either article specifically, nor of the difficulty in
dealing only with Melzak’s approach [23].

Development of the solution for locating the Steiner network parallels that
of the solution for the maze; once existence is determined the problem is aban-
doned. As with the maze, examination of alternate paths could lead to different
sets of questions. In this case, the alternate paths might be considered candi-
date Steiner networks that were not the Steiner network. Adopting Courant and
Robbins’ idea of viewing a Steiner network as a boundary of a surface suggests
that rejected Steiner candidate networks, as well as the Steiner network itself,
may be minimal forms as boundaries of a variety of geographical surfaces. In
particular Courant and Robbins view a Steiner network in the plane as the trace
formed in a plane by a soap fillm stretched among n vertical rods connecting
two parallel glass plates, each with boundary the convex hull of the n points
[24]. Experiments with soap film by the Belgian physicist Plateau, in which the
soap film is viewed as a boundary, led to determining the shape of a minimal
surface from a given boundary [25]. Viewing a candidate for a Steiner network
as a boundary of an area, one can ask what the minimal spatial form for such an
area should be. Classification of areas served by networks might be achieved by
grouping areas into a particular taxon if they are minimal areas bounded by a
candidate Steiner network of a given topological type. In this way the problem
of topological form associated with enumeration of Steiner networks would be
turned into an asset, for it could be used to uncover similarity in spatial struc-

ture of disparate regions. This sort of abstract approach is precisely that which
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underlies the application of using Steiner trees to generate a triangulation each
of whose cells contains its centroid. |

This sort of general, abstract viewpoint is consistent with Werner’s concern
for topological considerations in network development and with Bunge’s view of
topology as fundamental to the study of spatial relations [26]. Further, it is con-
sistent with the position of the study of topology within mathematics. In fact, if
the prefixes of the pair of words ‘topography’ and ‘geology’ are switched, the pair
‘geography’ and ‘topology’ is obtained, suggesting that knowledge of topologi-
cal structure underlying human “landforms,” such as transportation networks,
is as vital to understanding their evolution, spatial form and relations to one
another, as is knowledge of geological structure to understanding associations of

landforms composing the topographic surface of a region.
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CHAPTER II: NETWORKS OF MINIMAL TOTAL LENGTH IN THE TRIANGLE

For Jacob Steiner, the geographical challenge of connecting three villages, 17,
Va, V3, by a network of roads of minimum total length produced a geometrical
response [1]. In Steiner’s solution there are two logical possibilities; either the
network of minimal total length consists of only two sides of the triangle (V;1513)
(Figure II.1.a), or it does not (Figure IL1.b). If it does not, then there exists
an interior intersection point S, (the Steiner point), within the triangle (ViV2V3),
such that the sum
(1) ViSp + VoS + V35,
is minimal. The network consisting of vertices V3, V5, V3 and S,, linked by edges
V1Sp, V2Sp, V35p, is the Steiner network (Steiner tree) in the triangle (V112173),
induced by the Steiner point, S,. This Steiner tree spans the vertices Vi, V5, V3,
Sy and is the minimal spanning tree. The set of trees spanning V3, V3, 13, that
consist of two edges of the triangle (V;12V73), as in Figure IL.1.a, will be called
degenerate networks connecting those vertices. Thus a network of minimal total

length connecting the vertices 11, Va, V3 is either
a) the Steiner tree on V7, V3, V3; or,
b) a degenerate network.

The cases where a degenerate network appears in a triangle are known [2]
and occur when one of the angles of the triangle is greater than or equal to 120°.

As in the case with three vertices, the general problem of connecting n ver-
tices, V1, Vs, ..., Vs, by a network of minimal total length will respond, as well, to
geometrical solution. The general solution is more complex in structure than is
the solution for n = 3. In order to expose the reader to the style of procedure
to be developed in the general case, the solution for n = 3 will be presented in
great detail.

For n = 3, the development of the network of minimal total length and of the
conditions under which that network is a Steiner tree is reproduced below and
is based on the style of proof of J. E. Hoffmann, as found in Coxeter [3]. It is
this style that motivated the generalization that is to follow.

12
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Let P be any point in the interior of the triangle (V;115V3). It is desired to

locate P so that the sum
(2) ViP +VoP + V3P

is minimized. The sum (2) will be transformed into a sum of the same to-
tal magnitude representing a different geometrical configuration that i1s easy to
minimize. Suppose that the triangle (V;PV3) is rotated [4] about the point V7,
where the direction of rotation is chosen in such a way that the side V7V, of the
triangle (V1 PV5) never passes through the interior of the triangle (1;V,V3) (Figure
I1.2). This rotation takes place within the plane containing the triangle (11V2V3).
The motion of the triangle (V1PV?) resulting from this rotation will be said to be
‘away from’ the triangle (V1V2V3). Since it follows that (Figure II.2)

VJVi = V3V, where V, represents V3 rotated about V3

V,P' = VoP where P' represents P rotated about Vi;

VP =P

As a direct result of this rotation, it follows that the length in (2) is the same

as the length represented by the sum
(3) ViP + V4P + V3P

The transformation of rotation has not changed the Euclidean length, but it has
altered the structure of incidence relations in the original network (Figure IL3).

Suppose that the points P and P' are connected (Figure I1.4), forming the
triangle (;PP'). This triangle is isosceles, for, V;P' = V1P since length is pre-
served by the rigid motion of rotation. We have not yet chosen the angle through
which the triangle (V1 PP') is to be rotated. Since this flexibility in selection is
available, the choice will be made to transform the sum (3) into one that is easy

to minimize. If equation (3) can be transformed into
(4) PP'+ VyP' + V3P,

this sum is minimized when V,, P', P and V3 (all in the Euclidean plane) are

collinear, as is obvious from Figure II.4, although it is not apparent in the
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Figure II.3
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Figure IL.4

Figure II.5
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equation itself. Choosing the angle of rotation to be 60° permits the desired
transformation of (3) into (4). For, if /P'ViP = 60°, then the isosceles triangle
(V1PP') is forced to have each angle equal to 60°, since the base angles of an
isosceles triangle are equal (/ViP'P = /V1PP' = 60°). Since all three angles of
the triangle (V;PP') are equal, so are all three sides; the triangle (V:PP') is an
equilateral triangle. Therefore, as lengths, PV; = PP'. Thus, (3) can be written

as
(4) PP' +V,P'+ V3P.

That is, S, must lie on the line V,V3 (Figure IL5.a). To locate S, on V;V; another
configuration which also contains S, must be found. By construction comparable
to the above, one such geometric configuration is the line V,/Vy, where V317 is
rotated about V; through an angle of 60° away from the triangle (1/115V3). In this
case, the Steiner point S, is the intersection of these two lines. However, this
somewhat obvious solution does not generalize in an obvious way, and so was
rejected.

As an aid in the search for another geometrical configuration containing S,
the following additional observations based on the minimization procedure given
above (Figure II.5.b) are useful [5]. Since the points V,, S, (corresponding to
P' in Figure I1.4) S,, V3 are collinear, it follows that /5,5,V3 = 180°. Because
£5,5,V1 = 60°% it follows that /V15,V; = 120°. Also, since £V35,5, = 180° and
[V18,5p, = 60°, then /V,S.V, = 120°. Because angular measure is invariant under
rotation, it follows that /V15,V5 = 120°. Thus, /V,S5,V3 = 120°. Hence, 5, is that

point where
(5). [ViSpVa = {VaSpVs = LV35,Vy = 120°

From (5) the point S, can lie anywhere along an arc of a circle, between V; and
Vs, (Figure IL.6.a), and be such that /V715,V, = 120°. Because an angle inscribed
in a circle subtends an arc of twice its angular measure, it follows that the long
arc from V; to V3 has measure 240°, for it is subtended by /V;S5,V3. Thus the

short arc from V; to V, has measure 120° and is therefore subtended by an angle
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of 60° (Figure 11.6.b); and, in particular, it is subtended by /VV,V5. Thus S, lies
on the circumscribed circle of the equilateral triangle (17V,Vs). Therefore, the

circumcircle of the triangle (1"'11/'2'1/'2) intersected with V,V; gives S,. Or,

(6) (circumcircle AV1VyVa) A (VaVa) = Sp.

In the construction described above for determining the location of 5, on the
line V,V3, it is possible that the intersection of the segment 1V, may intersect
the circumcircle of the triangle (171,V3) outside the triangle (V,V5V3) (Figure
I1.7). Such a situation could occur only when V,V; does not pass through the
interior of the triangle (V;V,V3). This can happen only if the measure of one angle
of the triangle (V;V2V3) is greater than or equal to 120° [6]. For, if /V115V; > 120°,
then /V,V,Vs < 180° so that V,V; does not pass through the interior of the triangle
(17V2173). In this case, the network of minimal total length connecting the vertices
V1, Va, Va consists of two sides of the triangle (V;V,V3); that is, it is one that is
degenerate.

Thus a network of minimal total length among three vertices Vi, Vs, V3, is:

a) the Steiner tree on Vi, V3, V3 if the polygon containing these vertices has

no angle with measure greater than or equal to 120°.

b) a degenerate network, if the polygon containing Vi, Va2, V3 has some angle

with measure greater than or equal to 120°.

It is important to notice that for degenerate networks, there are three possible

candidates for the network of minimal total length:
a) V1V, VaV3
b) ViVs, ViVs
c) V3Vi, Vil
The shortest of this set of three is the network of minimal total length, to
be used whenever the degenerate network is appropriate. The construction for

producing the Steiner tree on the vertices Vi, Vs, V3 gives the network of minimal

total length directly, in the case of a triangle.
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CHAPTER III: NETWORKS OF MINIMAL TOTAL LENGTH, IN GENERAL

The observations made in Chapter II for the three vertex case motivate the
following outline of solution for the general problem of finding the network of

minimal total length linking a finite set of vertices, 1,Vy, ..., V.
1) Connect Vi,Va,...,V, to each other to form an n-sided polygon (n-gon), P.
a) if P is convex, then it is unique.

b) if P is concave, then there exist a finite number of other concave polygons

distinct from P, that can be formed on V7,Vs, ..., V.

2) Within P, be it convex or concave, the following considerations show that
for n > 3 it will generally be necessary to have more than one Steiner point
within P whenever the network of minimal total length is other than a set of

(n — 1) edges of P.

When n = 1, the minimal total network length is the distance between a point

and itself, or, zero.

When n = 2, the minimal total network length is the distance between two
points (e.g. a straight line segment in the plane, an arc of a great circle on a

sphere, etc.). The connection, here, is drawn as a straight line in a plane.

When n = 3, the minimal total network length is determined as above and
the network has the general structure of the graph in Figure IL.1.b when every
angle has measure less than 120°, and has the structure of the graph in Figure
II.1.a otherwise.

As n increases, the level of complexity of the procedure increases; n = 11is a
less developed form of the next higher case, as is n = 2. Thus, one might suspect
that similar constructions for higher values of n could introduce new problems
in construction. In particular, for n > 3 how many Steiner points interior to the
n-gon should be used when the total network length is not minimized by a set
of (n — 1) consecutive edges of the n-gon? In the case n =3 it is clear that more
than one interior point S, cannot produce a shorter Steiner tree than the one

associated with S,. Extra point(s) introduce alternate paths linking the same
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places and consequentily the total network length is not minimal. In the same
way, in any larger n-gon, (n — 2) is the largest number of interior points that
can lead to a Steiner network [1]; more points lead to redundant edges (Figure
II1.1). Fewer than (n — 2) points can minimize total network length; these cases
are either degenerate (with part or all of the network consisting of sides of P) or
are compressed (with one or more Steiner points superimposed (Figure IIL.2))
forms of the case with (n — 2) interior points. The most powerful form of proof
will be obtained by considering the most general case, so it will be assumed,
that when interior intersection points are required, there are (n — 2) of them
labeled P, ..., P(,_y) within an n-gon Vi, ..., Vy, and that they are linked together
as a cubic tree [2]. (A tree that is not cubic, is not disconnected, does not
contain loops, and is based on (n — 2)-interior multiple intersections can exist;
however, such a tree contains at least one vertex of degree two and is therefore

homeomorphic to a cubic tree.)

3) To determine the network of minimal total length in P (assuming that it
is other than a sequence of (n — 1) edges of P) separate the (finite) set of all
possible paths into a set of classes based on the possible topologically—different
forms that the minimal spanning tree can take; label the set Ty,...,T,. Find the
minimal length of each representative for each class. The minimal tree for each
class will be a “first-level candidate” Steiner tree; the Steiner tree will be the
absolute minimum of this set of “first-level candidate” relative minima (Figure
I11.3). Each “first level candidate” will be the minimum of a set of “second level

candidates” derived from each topological class, as shown below.

Thus, it remains to show how to derive the set of second level candidates
for an n-sided polygon P. Each second level candidate is a tree that is minimal
relative to some connection pattern within P. An algorithm for locating second
level candidates is proved below using procedures of mathematical induction.
Constructions following parts of the proof, exhibited as Figures of the Atlas,
will illustrate how the proof leads to the actual location of these second level

candidate-networks. A typical second level candidate is a tree connecting the
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n vertices of P, Vy,...,V, to the (n —2) interior intersection points Py, ..., P(;_3).
The sub-tree which links the (n —2) interior points will be referred to as an (n —2)
spanning tree (Figure IIL.4).

To exhibit a wide range of technique in proof, vital for adapting the general
procedure to variety in topological structure of the (n — 2)-spanning tree, we
proceed by proving the general construction for n odd and assume that the
(n — 2)-spanning tree has no interior intersection points of degree greater than
two (see Appendix to this chapter). The case of n even will then be proved and
it will be assumed in that case that the (n — 2)—spanning tree has the maximal
number of interior points of degree three and has maximal branching. Thus,
procedure for either extreme should suggest how to deal with the intermediate

cases. The next (odd—numbered) case occurs when

Th = 3.

Let Pi, Py, P3 be any three points that are in the interior of the pentagon
(V1, Vs, Vs, Vs, V5) and are linked as a cubic tree with Vi, Vs, V3, Vi, Vs as shown in

Figure II1.5.1. Then it is desired to minimize the sum
3 2

(7) ViPr+ VsPs + 3 VinyPi+ Y PiPjaa
=1 =1

the total length of the cubic tree. Rotate the triangles (V1VoP;) and (ViP3Vs)
through 60°, about V2 and Vj respectively, toward the exterior of the polygon
(Figure I11.5.2). Under this rotation, the triangle (V3P,V}) is transformed into
the triangle (V2P]V/) and the triangle (V,P3V5) is transformed into the triangle
(VaP3iV)). It follows that

ViP, = VP!

VoPy = P P| since AV,P;P] is equilateral
and

VePs = VP

P3Vy = P3P, since AV4P3P; is equilateral.

Thus,
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3 3
min(ViP1 + PsPs + Y ViyPi+ Y PiPip)

=1 v=1
(8) — 'rnin(T"lI_Pi -+ P{Pg -+ P1P2 + le"?. + Py Ps + -P3P:; 7 P?zII-E’)

Retrieving the graph theoretical structure of this tree, it is clear that the net-
work represented by the edges in (8) (Figures IIL.5.3.a and IIL.5.3.b) has the
same basic topological form as (is homeomorphic to) the general cubic tree with
three endpoints and one interior intersection (Figure IIL.5.3.c}). Thus the sum is
minimized by the minimal total network length connecting the vertices 17,13, 7/
and this can be found using the procedure of the case n = 3 on the triangle
(V{V3V!). This triangle will be referred to as the polygon of the first rotation
associated with this pentagon [3].

Because the network on the pentagon is minimized by the minimal tree on
AVIV3V{ it follows that

[VIPyVy = [P PyP3 = [V{PyV3 = 120°

and that

[V1P\Vy = [V!P!V, (by rotation) = 180° — 60° = 120°

and /V5P3V, = 120° by a similar argument.

Rotate V;V5 and V,Vs through 60° to produce V] and V{, the vertices forming
the polygon of the second rotation associated with this pentagon, (Figure IT1.6.1).
Then, using the construction for the case n = 3 find the Steiner point of AV/V3V{,
(Figure II1.6.2). This will be S;,. Linking S,, to the vertices of the polygon of
the first rotation produces a second-level candidate for the Steiner network of
the polygon of the first rotation (in this case uniquely). Then, points 5,, and S,
will be determined as the intersections of S,V with the circumcircle of AV;V|Vs
(Figure ITL.6.3), and of S,V with the circumcircle of AV V;Vy, forming a second
level candidate for the Steiner network in the original polygon—some of which
is incident with that of the Steiner network in the polygon of first rotation.

Three assumptions underlie this procedure: first, the Steiner point 5, of

AV][V]V;s is inside the triangle; second, S,, is contained in the original pentagon
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(it could conceivably lie in that part of the triangle which does not overlap
the pentagon), and third the intersections ((S,,V{) A (circumcircle AV1V,VY)) and
((Sp, Vi) A(circumecircle AV,VsVy)) lie within the pentagon. Figure II1.6.4 illustrates
a case where the third assumption is violated, but the first two hold, producing a
degenerate second level candidate for the network of minimal total length in this
pentagon. Notice that the two pentagons in figures IIL.5 and III.6 are identical;
only the labeling of the vertices has been changed and, therefore, the sides that
are rotated to form a different polygon of first rotation. Thus, from the same
pentagon one construction yields a degenerate case while another does not.

An even more degenerate case is produced in the pentagon 111,V3V,V; (Figure
I11.6.5) when V1V, and V3V, are rotated through 60° to produce AV{V V5 in which
/V]VsV] > 120°. Thus Vs = Sp,, and V|V; intersects circumcircle 117V, outside
the pentagon so that S, = Vi. Thus, this second level candidate for the Steiner
network consists of VoV, V1Vs, V55p,, Sp3V3, SpyVa. These three networks are three
distinct second level candidates for the Steiner network on the original pentagon.

Retrieve the graph theoretic structure of the (n — 2)-spanning tree and note
that in the case n = 3, the (n — 2)—spanning tree was a point. For n = 5 the
(n —2)-spanning tree was homeomorphic to a straight line, and was unique. This
will not continue to be true for higher values of n and, indeed, is one of the
complexities arising from generalization. In the case n = 7 there will be two

homeomorphically irreducible (n —2)-spanning trees (see Appendix).

Suppose n =T.

In this proof choose the (n —2)-spanning tree that has no interior intersection
points of degree three. Therefore, let Py,...,P5 be (n — 2) points interior to
a heptagon, Vy,...,V; that are connected into a cubic tree where the (n — 2)-
spanning tree has no interior intersection points of degree three. Discarding
the graph theoretic structure and emphasizing the geometrical content of the
network, the quantity to minimize is:

5

4
(9) ViPy+ ViPs+ Y ViPi+ D PiPiyyy

=1 7=1
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the length of the cubic tree (Figure IIL.7.1). Again, by rotating triangles (V;V,P1)
and (V;VP5) through 60°, and noting equalities resulting from congruences as
before, the problem is reduced to finding the network of minimal length on the
pentagon V{V3V,V5V7, a polygon of the first rotation, or it is reduced to the case
W =5

The Steiner points, Sp,, Sps, Sp, of the pentagon V/V3V,V5V] (Figure IIL7.2) are
determined by iocating S,, as the Steiner point of AV/'V/'Vy, a polygon of the
second rotation, where V' is produced by rotating V/V3 through 60° about 17,
and V' is produced by rotating VsV through 60° about V; (Figure II1.7.3). Thus,
Sp, is determined as the intersection of V7'V]", the Steiner network of a polygon
of the second rotation, and the circumcircle of V'V,V", where /", a vertex of
a polygon of the third rotation, is produced by rotating V;V, through 60° about
V4, so that the construction for n = 3 can then be used. Thus, (Figure II1.7.4)

Spy = (Sps Vi) A (circumeircle AVV3VY'

Spy = (Sp V') A (circumcircle AVsVI'V)

giving Steiner points and network (for this second level candidate) of the polygon
of first rotation V/V3V4V5V] under assumptions similar to those mentioned in the

construction for n = 5, and
Sy = (Sp V1) A (circumeirele AV1V{V3)

Sps = (SpyV7) A (circumeircle AVeViVy)

(Figure ITL1.7.5) completing a set of Steiner points for a particular second level
candidate for the Steiner tree of the original heptagon with no assumptions
violated. Degenerate networks can arise in a variety of ways, each a different
second level candidate, and the same sort of analysis, extended, works for the
general case, as it did for the case n = 5. In the above case the (n — 2)-spanning
tree was linear in form (i.e. had no interior intersection point of degree 3 (Figure
I11.7.5)). However, it could have had an interior intersection point of degree 3

and have been connected as in Figure IV.T;.1. Thus, in this case and cases for
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n higher than this, basic topological structure of the (n —2)-spanning tree must
be specified (see Appendix) before minimization of tree type within an n-gon
can occur; that is, for n > 5, there will be mere than one first level candidate.
Additionally it will be necessary to specify how such an (n — 2)—spanning tree is
to be hooked into the original n-gon.

Higher values of n do not produce more new situations to be dealt with;
n = 7 is general—none of the essential structures is degenerate or folded up.
The form of the (n + (n — 2)) Steiner candidate tree is in full view as is that of
the (n — 2)-spanning tree. Proceed to the induction hypothesis, in which it is
assumed that the construction holds for n = 2¢ — 1 or for the kth step. It will
be proven that the construction holds for the (k + 1)st case, or when n = 2¢ + 1.

thus, the construction will be valid for any odd n.

Induction  Hypothesis :

Suppose n = 2¢ — 1, g a positive integer, and that the constructions analogous
to the earlier ones hold for all odd n up to this point: that the following quantity

has been minimized

n—2 n—3
V1P1 -+ 1/'2‘;_1}329_3 + ZV(Z'+1)P1' + Z PjP{j-{—l)
=1 =1
forallodd n=2¢—-1,n>2,n € Z%.
The (k+1) case: n=2g+1

Let Py,...,Ps,_1 be (n —2) points in the interior of the n—gon, Vi,..., V2.1
that are connected as a cubic tree with Vi,...,Vy,41, in such a way that the
(n — 2)— spanning tree has no vertices of degree three, consistent with decisions
made in earlier cases. Ignoring the graph theoretical structure and focusing on

geometrical form, it is required, therefore, to minimize

n—2 n—3
ViPy + Vag 1 Pag 1+ ZV(i+1)Pi + ZPJ'P(J'H)‘
i=1 7=1

Rotating the triangles (11VoP1) and (Vag41VagP2g-1) through 60° toward the exte-
rior of the polygon shows that (Figure IIL.8)

V1P, = V{P;
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VoP; = PP

and
Vizg+1)P(2g-1) = V(2g11)F(20-1)
I"XQQP(QQ,I) = P(Zq—l)P('éqf])
Thus,
n—2 n—3
man (V1P1 + Vagr1Pag—1 + Z V(i—}-l)Pi -+ Z PjP(J-H))
g=] J=1
2g—2 n—3
= min(V1Py + I"I‘BI;;T'IP‘JQ—I +P1Py+ Pag 1Py 1 + Z VinPi+ Z PiP(js1))
1=2 j=1

The network represented by this last sum is homeomorphic to the cubic tree
with (2¢ — 3) vertices of degree three and (2¢ — 1) vertices of degree one. Thus,

the right hand side is minimized by the minimal cubic tree on the points
Pz, 5 2 ,qu_g, I/'lfj If’v3, V4, a5 I‘;Zg—la I"zrqul

and the corresponding construction can be executed using the induction hypoth-
esis on the polygon

I T Fdl
Vo Moy Vi ¢ s Vag—as Vg

where (retrieving the graph theoretic structure and using the homeomorphism)
VIPl4 Py P} is replaced by V{P{ and Vy_ ,P2g 1+Pag-1P;5,_; is replaced by V3 ., P;,_;.

Thus the sum becomes

2¢g—2 n—3
(VIP + VagsaPago1 + D VisnPi+ 3 PiP(i4m)
=2 j:l

and this sum is minimized by the induction hypothesis.

Q.E.D., n odd.

The actual construction of such a network is conceptually identical to earlier
cases (all angles between pairs of lines intersecting at an interior point are 120°)
although it is much more complex mechanically.

Consider the case where n is even. In the case where n was odd, it was

assumed that the (n — 2)-spanning tree contained no interior intersection points
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of degree 3 (i.e. was ‘linear’). The same proof holds when n is even, if the (n —2)-
spanning tree is linear. However, since a wide variety of (n —2)-spanning trees is
available for given n, and since the (n — 2)-spanning tree, of maximal branching,
with a maximal number of interior intersection points of degree 3 is unique
for n even, (see Appendix), it seems productive to show how the basic proof
should be modified in order to accommodate networks of this type of different
basic topological structure. So, suppose n is even and that the (n — 2)-spanning
tree has the maximal number of interior intersections of degree three and has

maximal branching.

Suppose n =4

Let P; and P, be points in the interior of quadrangle (V1V5V31}) that are

connected in a cubic tree with 1, Vs, V3, V4. It is desired to minimize
PiVi + P1Va + PoVa + PaVy + P1P>

the total length of the cubic tree (Figure II1.9.1). From the rotation of triangles
(V1VyPy) and (VsVyP,) through 60° toward the exterior of the polygon, it follows
that

VoPy = V4P|

ViPy = V4P| = P{ P,
since AV1P;P] is equilateral, and
VyP; = VP!
VaPy = Py P,
Thus.
min(P1Vi + P1Va 4+ PoVi + PoVy + P1Py) = min (Vo Py + PPy + P1P; + PoPy + PyP;)

and this right hand sum is minimized when VaP{P1P2P3V, is a straight line.
Then it follows by rotation that
[ViP1Vs = [V{PIV, = 180° — /V,P1P; = 180° — 60° = 120°.
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Also, /V,P1Py = 180° — /V,P1P! = 120°. Similarly, /ViP;V; = /PiPyV3 = 120°.
To locate S, and S,,, (Figure I11.9.2), rotate ViV, and V3V, through angles of
60° about an endpoirt away from the interior of the quadrangle to V{ and 17,
vertices of the polygon of the first rotation. Then construct the circumcircles of
AV1V,RV] and AVaV,V;. The intersections of the two circumcircles with V/Vy will
produce two Steiner points for this second level candidate (again assuming that
these intersections exist within the quadrangle) and these induce a second level

candidate for the Steiner network in the original quadrangle.

Suppose n =6

Let P1, Py, P3, Py be points in the interior of the hexagon (1, V,...,Vs) (Figure

I11.10.1) that are joined as a cubic tree with V7,...,Vs. It is desired to minimize
V1P + VaPy + V3Pa + V4Py + V5 P3 + VsPs + P1Py + PoPy + P3Py,

From the rotation of triangles (V1P;V3), (VaPal), (V5P3Vs) through 60° toward the
exterior of the polygon, it follows that

ViPy =V{P}; V3P =VoP| = PP]

V3P2 = V;;Pé; V4P2 = V:;Pz’ = P2P2'
VsP3 = ViP;j;, VgP3 = VgP; = P3Py

Thus,
min(ViPy + VaPy + VaPy + ViP3 + Vs Py + VeP3 + P1Py + P2Ps + P3Py)

= min(V{P} + PiP1 + P1Py + V3Py + P3Py + P3Py + Vg Py + P3Pg + P3Ps)

The network represented by the edges in this last sum is homeomorphic to the
cubic tree with one vertex of degree three and three vertices of degree one. Thus,
the right hand side is minimized by the Steiner tree on the triangle (V{V;V}), a
polygon of the first rotation, in which alternate sides of the hexagon are rotated
through 60° in the manner described above, to produce vertices V{, V3, Vy (Figure

111.10.2). The Steiner point, S;,, of this triangle of the first rotation is determined
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by rotating one of its sides (V;V for example) through 60° about Vy, producing

V), a vertex of a polygon of the second rotation. Then the intersection
(Tt},"ll,’??:') A (ci?“cum.ci?‘cle A{i';‘i‘;,l/g)

will produce the Steiner point of AV/V{VY, or S,,, inducing a Steiner network in

the polygon of the first rotation. Then,
Sp = (Sp Vi) A (circumeircle AVIV{V2)
Spy = (Sp. Vi) A (circumcircle AVsVaVy)
Sps = (Sp, Vi) A (circumcircle AV5VVs)

This second level candidate for the Steiner network induced in this hexagon is

non-degenerate.

Suppose n =8

Let Pi,...,Ps be (n —2) points interior to an octagon that are connected in

the desired way. Minimize

4
Z(Pinz'q 4+ P;Vai_1) + P1Ps + PaPs + P3Pg + PyPg + PsPe.

=1

Again, from the rotation of the triangles (V1V3P1), (V3 4P3), (VsVePs), (V7VsPy)
through 60°, and from equalities resulting from congruent triangles, the problem
is reduced to finding the network of minimum length on quadrangle V VV;Vy
(Figure IIL.11.1).

The Steiner points, Sy, Sp, of this quadrangle are located as in the case n =4
(Figure IT1.11.2). The vertices V{" and V;' are produced by rotating V{V] and
VIV through 60°. Then,

Sps = (V{'VE") A (circumeircle AV V'Vy)
Spe = (VI'VE) A (circumcircle AVgV5'Vy)

determining the Steiner points for this second level candidate in the quadran-
gle derived from the octagon (under assumptions leading to a non-degenerate

network) and

By = (SpE,Vf) A (circumeircle AV1V{Vs)
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Spy = (SpsVa) A (cireumcircle AV3V3Vy)
S = (S5 Vi) A (circumeircle AVViVe)
Spy = (SpsVi) A (circumcircle AV7V;Vs)

producing a complete set of Steiner points for this second level candidate in the
octagon V7, Vs, ..., Vs.
The above examples provide motivation for the following proof. Generally,

when n is even, the unique factorization [4] of n into powers of primes may be

written

=B gt s PR Py e Py Primies
a1,...,a, integers greater than or equal to zero, ap # 0, a positive integer. Notice
that pf* -...-p% is an odd number, for it contains no powers of 2 since n was

uniquely factored. The general proof for n even will be by induction on the size

of aq.

Suppose ap=1

Then n = 2-p{* -... - pd” for at least one of o; # 0. In this case, the general
cubic tree contains n/2 or p7'-....p" “small triangles.” By rotating these outward
from the polygon through 60°, the desired minimum will be represented by the
length of the minimal tree on the polygon with p{*-....p2" vertices, as determined
above. The cubic tree on this polygon can be minimized by procedures from the

case where n is odd.

Induction  hypothesis

Suppose a minimal cubic tree can be constructed in any polygon with n sides,

a1

where n = 2% .p7" . ... .p? and 0 < ap < s, s is a positive integer.

Suppose g =8+ 1 Then,

— g aq ay __ gs+1 o
o =5 290 2y o, D s BT ap e, =P,

The general cubic tree on a polygon with this number of sides contains n/2
or 2°.pt .. ... p2 “small triangles.” Rotate these outward from the polygon,

producing a set of vertices for a polygon with 2°.p{* -....p2" sides. The desired
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minimum will be represented as the length of the minimal cubic tree in the
polygon defined by these 2°-p7' .... .p2 vertices. This tree can be found by the
induction hypothesis.

Q.E.D., n even.

The procedure presented above allows us to determine that path of minimal
total length among a set of n points, V1,Vs,...,V,. Assuming that these points
are connected to form a polygon P, the proof provides a method for calculating
the shortest form of a network, with given structure of the (n —2)-spanning tree,
in P, for a particular choice of m edges of P (m < n); m = number of vertices of
degree 1 in the (n —2)-spanning tree. Each of these shortest networks was called
a second level candidate and we can now completely determine the set of second
level candidates for any set of n points. The enumeration problems that remain,
in moving from the set of second level candidates to the network of minimal total
length in P may be unwieldy, for n large. Lacking specific theorems for removing
these problems, it may be useful to use local geographical limits in particular

cases and to find mathematical solution within geographical constraints.

46



REFERENCES

1. R. Courant and H. Robbins, What Is Mathematics? (London: Oxford Uni-
versity Press, 1941), pp 360-361.

2. A cubic tree is a tree in which each interior intersection point has degree
three, where the degree of a point refers to the number of edges of the graph
incident with it. Refer to: F. Harary, Graph Theory (Reading: Addison-Wesley,
1969), pp. 14-15.

3. Suppose that P is an n-sided polygon with vertices Vi,...,V,. Suppose
that a subset of distinct sides of P, {(V4:Vy)|l < ¢ < r} are rotated as foilows
(r < n): each V,;}; is rotated about V,; through an angle of 60°, in the plane.
Under this rotation V,;V}; becomes V,;V}.. The set of vertices of the polygon of
the first rotation consists of {(V;)[2 <i < r} {(Vi;)[V}; # V&', 1 <j <r} and
the polygon of the first rotation, P', is formed by linking these vertices in the
obvious way. A polygon of the second rotation P" of P is the polygon of the first

rotation of P'. Higher levels are defined by similar recursion of definition.

4. S. Mac Lane and G. Birkhoff, Algebra (New York: The Macmillan Com-
pany, 1967), pp. 154-55.

47



APPENDIX: ENUMERATION OF (N — 2)-SPANNING TREES

The following examples suggest the variety of types of (n —-2)--spanning trees

avatlable for a given n.

Ezample 1:

Suppose n = 10 (and, (n —2) = 8). Below are the (n — 2)-spanning trees,
grouped according to number of vertices of degree 3.

0 VERTICES OF DEGREE 3

e———>—o— o5 6 0

1 VERTEX OF DEGREE 3

ry

All of which have the same basic structure as the graph below.

2 VERTICES OF DEGREE 8

LXYY

All of which have the same basic structure as the graph below.

g
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8 VERTICES OF DEGREE 3

And, this is a different structure.

In order to find all the (n — 2)-spanning trees, references that enumerate
some tree-types [1] are useful, although hopefully the geographic conditions of
the problem will suggest how many vertices of degree 1, how many of degree 2

and how many of degree 3 are desirable.
Ezample 2
Suppose (n —2) = 9. There are:
a) 1 tree with 0 vertices of degree 3;
b) 5 trees with 1 vertex of degree 3;
c) 9 trees with 2 vertices of degree 3;
d) 3 trees with 3 vertices of degree 3.

Ezample 3
Suppose (n —2) = 10. There are:

a) 1 tree with 0 vertices of degree 3;
b) 7 trees with 1 vertex of degree 3;
c) 17 trees with 2 vertices of degree 3;
d) 10 trees with 3 vertices of degree;
e) 2 trees with 4 vertices of degree 3.

In the method of construction in Chapter IIT it was the ‘small triangles’
that were of concern. Therefore it is important to note that the number of
‘small triangles’ in the cubic n-tree is equal to the number of vertices of degree

1, (|V(degl)|), in the (n — 2)-spanning tree. And, this number is related to the
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number of vertices of degree 3, |V (deg3)|), chosen to be in the (n — 2)-spanning
tree:

[V(degl)| = 2 + |V (deg3)|.

Thus when n is even, (n —2) = 2g, the largest number of vertices of degree three

that the (n — 2)-spanning tree may contain is (g — 1), for from above
V(degl)| =2+ (g —1) =g +1
and
[V (degl)| + [V (deg3)| = (g + 1) + (g — 1) = 2g
the number of vertices of the (n —2)-spanning tree. When there are (g —1) such
vertices the spanning tree has maximal branching and is unique. To illustrate

the idea of maximal branching, note that the 10-spanning tree on the left (below)

possesses this characteristic while that on the right does not.

Xy

When n is odd, the uniqueness criterion does not hold. For, when (n —2) =
9¢+1, the maximal number of vertices of degree 3 is still (¢ —1), for, if the added
vertex were of degree 3, then |V (deg3)| = ¢, so [V(degl)| = g + 2 and therefore
the number of vertices of the (n — 2)—spanning tree is greater than or equal to

g+ (g +2) = 2q + 2, contradicting (n —2) = 2¢9 + L.

Thus, in order to preserve connectedness of the spanning tree, there is exactly
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one vertex of degree 2. This vertex may be placed in a variety of locations, so
that the (n — 2)-spanning tree of maximal branching with [V/(deg3)| maximal is

not unique when n is odd . |
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CHAPTER IV
GEOMETRIC CONSTRUCTIONS OF SECOND LEVEL
CANDIDATE STEINER NETWORKS: THE SIX POINT CASE

The set of figures that follows shows most of the constructions available for
deriving second level candidates for a polygon linking six vertices. The algorithm
of Chapter III is used to find these and the following legend refers to all the

figures. Definition of terms in the legend is available in Chapter IIIL
A hexagon linking the six vertices is drawn as a solid line.

The polygon of the first rotation is drawn as a dashed line with single dots

between the dashes.

The polygon of the second rotation is drawn as a dashed line with double

dots between the dashes.

The second level candidate for the network of minimal total length is drawn

as two parallel solid lines.

In what follows, discussion will be given to illustrate how to enumerate po-
tential second level candidates, and then the figures will show how to derive

them geometrically, using the algorithm of Chapter III.

There are two types of 4-spanning trees in the hexagon ViV)V3V V5V

Type 1 has one vertex of degree three and three vertices of degree 1 (i.e.,
it exhibits maximal branching).

Type 2 has two vertices of degree two and two vertices of degree 1 (i.e., it
is linear).

These are the only 4-spanning trees, for according to the Appendix to Chap-
ter ITI, the largest number of vertices of degree 3 that a 4-spanning tree may
contain is 1, forn =6so (n —2)=2-2=2g and (¢ — 1) =1.

Thus, there are two distinct topological classes, T; and T associated with the
Type 1 and the Type 2 4-spanning trees, respectively.

Within T, the only way to hook the 4—spanning tree into the hexagon is so

that the three small triangles are each separated by one side of the hexagon.
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There are two ways to do this: when the 4-tree is linked to V3V3, ViV5, and 171G
the second level candidate of Figure IV.T;.1 is generated. Alternately, when the
4-tree is linked to ViV, V3Vy and Vil%, 2 totally degenerate form arises (Figure
IV.T1.2). Figure IV.0 shows the different connection patterns (“topological”

types), and among those, that in frame (e) is the only representative of 74.

Within 7 (according to an enumeration rule to be given in Chapter V) when
n = 6, there will be six ways of hooking a linear 4-spanning tree into a hexagon,
in such a way that the ‘small triangles’ so formed are separated by exactly one
side of the hexagon (Figure V.2.a and .b). This gives rise to six ways to form
a 4-spanning tree in this style of hooking the tree into the polygon. Since the
polygon of the first rotation is a quadrangle, there are two ways to find Steiner
peints within it. Therefore two second level candidates arise for each of the six
forms. Or, this style of hooking a 4-tree into the polygon gives rise to twelve
second level candidates. A second, and final, style of hooking the 4-spanning
tree into the polygon is to have the ‘small triangles’ separated by two edges of
the polygon. There are three distinct ways in which this can occur and there
are two separate forms of each of these three ways for within a given form, each
of the two vertices of degree two can be linked to one of two remaining vertices
of the polygon. This generates six ways of hooking the 4-spanning tree into the
polygon. The polygon of the first rotation in each of these is a quadrangle; thus
there are two ways to find its Steiner points, and so there are a total of 12 second
level candidates derived from this style of hooking a 4-tree into the hexagon.

Thus, 24 second level candidates can be derived from class T5.

The outline below shows which of the following figures is representative of

the various forms described above, within class Tb:
1) the two ‘small triangles’ are separated by one side of the polygon.
a) ViV, separates the two ‘small triangles’

i) sides one and three of the polygon of the first rotation are rotated; that
is V/V{ and V,V; are rotated (Figure IV.T5.1.a.).

ii) sides two and four of the polygon of the first rotation are rotated (Figure
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() (s) (h)

Figure IV.0: vertices shown as locations around a lake’s perimeter.
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Figure IV.T;.1 V5“
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Figure IV.T;.2
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Figure IV.Ty.1.a.

58




IV.T5.1.ad1).
b) V51V separates the two ‘small triangles’
i) V]V, and V514 are rotated (Figure IV.T5.1.b.i).
ii) V{Vs and V,/Vs are rotated (Figure IV.T.1.b.i).
c) V3l separates the two ‘small triangles’
i) VJV/ and ViV are rotated (Figure IV.T5.1.c.i).
ii) 1Vy and V/V are rotated (Figure IV.T3.1.c.ii).
d) V;V; separates the two ‘small triangles’
i) V1V, and V/V{ are rotated (Figure IV.T5.1.d.i).
ii) V,V) and V1V are rotated (Figure IV.T5.1.d.ii).
e) V51 separates the two ‘small triangles’
i) V2V3; and V]V, are rotated (Figure IV.Ts.1.e.i).
i1) V|V, and V3V are rotated (Figure IV.T3.1.e.ii).
f) VsV, separates the two ‘small triangles’
i) V,V{ and V3V, are rotated (Figure IV.T.1.f.i).
ii) V4V and V,V3 are rotated (Figure IV.T.1.f.ii).
2) the two ‘small triangles’ are separated by two sides
a) V1V, and V5,V separate the ‘small triangles’

i) the vertex of degree two of the 4—spanning tree that is closest, within
the network, to the vertex of the polygon with lowest subscript (V; in this case),

is linked to V5. This vertex will be called V).

a) V,V/ and V]V; are the sides of the polygon of first rotation that are
rotated (Figure IV.T5.2.a.i.a.)

B) V!V, and V,Vs are rotated; this leads to a totally degenerate network
1 4

and 1s not shown.
ii) V4 is linked to V5

a) V{Vy and V/V; are rotated (Figure IV.T.2.a.ii.a.)
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Figure IV.T5.1.b. i1
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Figure IV.T5.1.c.i

VS!I
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Figure IV.T5.1.d.i
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Figure IV.T5.1.d.ii
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Figure IV.Ty.1.ed
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Figure IV.T5.1.11
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Figure IV.T5.1.f.ii
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Figure IV.T3.2.a.i.a
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B) V/Vs and V,V, are rotated; this leads to a totally degenerate network

and is not shown.
b) 1,V3 and V3V separate the ‘small {riangles’
i) Vg is linked to Vj
a) VJVs and V{V; are rotated (Figure IV.T5.2.b.i.a.)
B) VJVs and VVy are rotated (Figure IV.T%.2.b.i.5.)
ii) Vp is linked to V3
This produces only degenerate networks and is not shown.
c) V3V, and V4Vs separate the ‘small triangles’
i) Vp is linked to V
a) V4V and V;V{ are rotated (Figure IV.T;.2.c.i.a.)
B) V1Vy and V,V{ are rotated (Figure IV.T3.2.c.i.f.}
ii) Vp is linked to 1
This produces only degenerate networks and is not shown.
Referring to Figure IV.0, it follows that:
Frame (a) is derived from Figure IV.7T5.2.b.i.a.
Frame (b) is derived from Figure IV.T.2.a.i.a.
Frame (c) is derived from Figure IV.T5.1.c.ii.
Frame (d) is derived from Figure IV.T5.2.a.i.c.
Frame (e) is derived from Figure IV.T;.1.
Frame (f) is derived from Figure IV.7T5.1.d.ii.
Frame (g) is derived from Figure IV.T.2.ci.a.
Frame (h) is derived from Figure IV.T.1.b.ii.

and that no other figures in this appendix give rise to any other second level

candidates.



Figure IV.Ty.2.a.ii.c
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Figure IV.T5.2.ci.c
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CHAPTER V: ENUMERATION OF CANDIDATE STEINER NETWORKS

The theoretical material that follows is intended to be of eventual use in ex-
amining rejected candidate Steiner networks as boundaries of geographic spaces;
the rejected network is a Steiner-like network for the geographic space contain-
ing it. To enumerate the number of possible candidates from which to choose the

Steiner network (firsi level candidates) for a distribution of n points Vy,..., Vp,

count the number of separate classes of second-level candidates that can arise,
(as each first level candidate is a representative of exactly one such class). It is
assumed that the Steiner trees being counted are non-degenerate and that there
are (n —2) Steiner points S1,...,S5n,—2 in each. Within any class of second level
candidates, the (n — 2)-spanning tree is of one topological type.

There are two different conditions that lead to different sorts of second-level
candidates within a class: 1) the (n — 2)—spanning tree (as in Figure V.1 for
example) may be hooked into the distribution of points in a variety of distinct
ways (Figure V.2); 2) the sides of the polygon that are chosen to be rotated
through 60° may be selected in a variety of ways.

The procedure that follows will count the number of possible second-level
candidates with an (n —2)-spanning tree of given topological form that is hooked
into the set Vi,...,V, in a pre-assigned manner. These constraints would be

specified by the spatial relations of the problem under consideration.

Proposition V.1

Suppose that

1) P is a polygon with n vertices V1,...,Vp;

2) n is an odd positive integer;

3) the (n — 2)-spanning tree is linear in topological form;

4) the (n — 2)-spanning tree is to be hooked into P in such a way that

i) the two “small triangles” formed by connecting the two vertices of degree

one of the linear (n —2)-spanning tree to P are separated by exactly one side of
P.
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Figure V.1

Figure V.2
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ii) no two edges linking vertices of degree 2 or the (n —2)-spanning tree to
P lie on opposite sides of the (n — 2)—spanning tree.
Then there are n-(n—2)-(n—4)-...-5 possible distinct second—level candidates.
Proof:
There exist n different unordered pairs of sides of an n-gon with one side

separating the two for if the sides of the n-gon are numbered clockwise, on

alternate sides, then the desired set of unordered pairs is

{(1,2),(2,3),...,((n —1),n),(n, 1)}

(Figure V.3) which has n elements.
For each of the n choices, there are (n — 2) choices at the next level and then
(n —4) for each of the (n —2) and so on, down to 5 (there is only one S, in a given

triangle) Q.E.D.

Proposition V.2 :

Suppose that (1) P is a polygon with n vertices, (2) n is an even number
and (3) the (n — 2)-spanning tree in P has maximal branching. Then there are
n-(m—2)-(m—4)-...-5 possible distinct networks where m =n/2% and qay is the
exponent representing the maximum number of 2’s that can be factored out of

n.
Proof :

Decompose n into the unique product of prime factors as
i 25 T e e T

where the p; represent odd primes and the «; represent integers greater than or

equal to zero with ag # 0. The possible number of networks is
2%0.m-(m —2)-(m —4)-...-5

where m = n/2%, for there are two choices for ways to select alternate sides as
long as n is divisible by two (a( times), and, then we are left with a polygon

with an odd number of sides; that is, one with p{'-p3?-....p2” sides. Then count
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the rest of the networks using Proposition V.1, yielding the above formula which

may be rewritten

n-(m—2)-(m—4)-...-5

The hypotheses of these two propositions are highly restrictive. This suggests
that if geographic constraints impose the restrictions in a natural way in a given
problem, then the figure of 105 possible topologies for 6 vertices and 4 Steiner
points, cited by Gilbert and Pollak, can be reduced to six possibilities using
Proposition V.2 [1]. If a theorem that would remove whole sets of polygons from
consideration could be developed, so that even as many second level candidates as
those in Propositions V.1 and V.2 would not have to be counted, then we would
be free to relax some of the other of those propositions constraints and move
to reducing the figures given by Gilbert and Pollak [2]. Gradually, by making
progress on each piece of this counting problem, it might be possible to efficiently
execute Steiner network construction for large n in some reasonable number of
steps. The conjecture below Washsuggested by numerous hand constructions of
Steiner networks on 6 points with 4 Steiner points (see Chapter IV). It might
lead to a theorem for eliminating large numbers of polygons from consideration,

as stated above.

Definition V.1:

The following construction will associate a number, called 3-length, to each
vertex V; of a convex polygon (Figure V.4). Connect vertex V; to every point of
the polygon, creating a partition of the polygon into (n — 2) triangles. Find the
Steiner point of each of these (n - 2) triangles; link these together and measure
the length, giving the 3-length associated with V;.

Conjecture

In a polygon P with an odd number of sides, the minimal second level Steiner
candidate network of a topological type that exhibits bilateral rather than ra-

dial symmetry will have a vertex of degree one that is incident with an axis of

symmetry located at that vertex of P with which minimal 3-length is associated.
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(There should be an extension of this to even numbers that are not congruent
to 1(mod 3) and to even numbers that are not of the form 3.2°%0),

Material in the last chapter examined existence of constructions of networks
and acknowledged that such networks are not unique; this chapter has responded

to lack of uniqueness by indicating some procedure oen how to enumerate minima.

83



REFERENCES
1. E. N. Gilbert and H. O. Pollak “Steiner minimal trees,” SIAM, Journal of
Applied Mathematics, 16, (1968), p. 11.

2. Ibid.

84



		sarhaus@umich.edu
	2005-07-16T08:17:43-0400
	Sandra Lach Arlinghaus, IMaGe Founding Director
	IMaGe
	Document is certified




