GelMaGielMaGalNaGel
6 IMaGe IM
eIMaGelMateiMatielMa
IHaGe iMat
WalielMaGelMabellabe
IMatie IMabe
elMalielMabelMate
IMabe IMaGe
[ MalbeIMaGelMake
fale IMaGe
aGeiMatie I MabelMabel
IMabe Iy
e [ HatieIMateIMaGelMa
IHabe IMaG
alie[MaGelMabelMaGe
IHaGe IMaGe
elMaGelMabelMaGe
IHatze IMaGe
IHaGelMalelWNaGe
Habe iMae
aGelMabelMabelMaGel
i IMaGe IM
o [MabieIMalGelMalbelMa
IMaGe IMat
Walie I MalieIMabelMabe
IMate IMaGe
helMabelMaGelMabe
IHate IHaGe
I MaGelMalelMate
IMaGe
2GelMabelaGelMatel
IMaGe I
IMaGelMaGelMatielMa
IMatGe IMaG
alielMalhelMabelMate
IMaGe IMate
FefMalielMalelMabe
IMate IMaGe
[ HatieIMabelNaGe
[iatie IMaGe
bGelMalbe I Matie [ MaGel
7e IMabGe N
eI HalielMabelMatelHa
IHate IMaly
ﬁa&&!ﬁ?&&e!ﬁaﬁe!ﬁaé‘e
IMabe IHate
FelMaGelMabelNabe
IKaGe IMaGe
[ MaGelMaGelMNaGe
ate IMaGe
GelMaGelKalbelMabel
56 IMate I#
p [ MaGelMabelMateiMa
IHate IMaG
MalelMabeiMaGelMabe
IMaGe IMate
7eiMabelMabeIMabe
IMaGe IHaGe
I MalelMatielMabe
rfaé?e IMaGe

Institute of Mathematical Geography

MONOGRAPHS

Essays on
Mathematical Geography
Volume Il
Sandra Lach Arlinghaus
Monograph #14




ESSAYS ON MATHEMATICAL GEOGRAPHY — III

Sandra Lach Arlinghaus

June, 1991

Institute of Mathematical Geography

f

47
X

4
Gopsage s

Monograph #14

Institute of Mathematical Geography
Ann Arbor, MI



TO
DAVID EDWARD VOORHEES ARLINGHAUS
on the occasion of his birth

June 7, 1991



Essays on Mathematical Geography

©Copyright held by the Institute of Mathematical Geography, 1991. All rights reserved.

Monographs published by the Institute of Mathematical Geography (IMaGe) 2790 Briarchff
St., Ann Arbor, MI, 48105, are printed by Digicopy, Inc., 1110 S. University Ave., Ann Arbor,
MI 48104. They are printed on recycled, archival quality, paper, using a Xerox DocuTech
which can scan original photos and figures directly into the text. The typesetting is prepared
by IMaGe using TEX, the computerized typesetting program trademarked by Donald Knuth
and the American Mathematical Society. IMaGe Monographs are refereed by professionals

whatever is appropriate.

in mathematics and in geography

ISBN 1-877751-50-2



Volume 111

AUTHOR’S PREFACE

This volume contains a series of essays, or attempts (“essayer,” Fr.), to show how omne
might align various mathematical concepts with real-world situations. The point of demon-
strating how alignment might be made, rather than showing only a finished product that can
conceal how these associations are made, is to reveal the art in the process that can lead to
science. In so doing, effort is made to bear in mind the importance of “the fit of ideas” ‘Mac
Lane, 1982] — of craftsmanship in fitting mathematical tools to real-world settings that is
critical in determining success.

These essays, some more complete than others, represent efforts at this process bridging
a period of about twenty years. They follow in nature the two previous volumes of essays of

this sort.
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Mac Lane, Saunders. “Proof, Truth, and Confusion.” The 1982 Ryerson Lecture. The
University of Chicago. Reprinted in Solstice, Winter, 1991, Ann Arbor: Institute of
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CHAPTER 1

Table for Central Place Fractals

I. Introduction

Previous published research demonstrates how to use fractal [Mandelbrot, 1983, and
elsewhere in reference to fractals] geometry to generate entire central place hierarchies, for
arbitrary Léschian numbers, using a single fractal generator for an entire hierarchy [Arling-
haus, 1985; Arlinghaus and Arlinghaus, 1989]. Thus, it is assumed that the reader has seen
or has access to material that will show at least the diagrams of how the classical K = 3,
K =4, and K = 7 hierarchies can be generated using fractal generators (Figure 1.1 sug-
gests the procedure for the K = 4 central place hierarchy). When fractals are used, it is
also possible to calculate how much space is filled by the net so created when the iteration

is carried out as an infinite process.

/ N\

Figure 1.1. Fractal generation of the K = 4 central place hierarchy

6
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Often, however, the mathematics behind the diagrams remains unseen by those who
focus on diagrams in texts. This essay is an effort to represent the mathematical theorems
as a “procedure” that can be stated in capsule form in a table.

II. Pattern of Central Pléce K-values

Central place K -values, as is well-known, measure the square of the distance between
successive settlements of the same hierarchical level: with “distance” being measured as the
number of units separating locations. The basic “unit” is the distance between adjacent
points in a triangular lattice. Thus, it is convenient to coordinatize the iriangular lattice
using oblique axes with the z and y axes inclined at 60 degrees to one another. The line
y = z bisects the first quadrant at an angle of 30 degrees to either axis (Figure 1.2). Because

the lattice points are at vertices of equilateral

39 63 93 2
® @ — 3x“+9x+9;b=3; D=.27
28 4 76
® .9 @ 3%’ +6x+4;b=2D=-12
37
° _‘2___ 3x?+3x+1;b=1; D=-3
27 48 5
’ Hax ;b=0; D=0

Figure 1.2. Triangular lattice showing two equations to generate entire point

sets

triangles, it is evident that one way to partition the points in the lattice 1s by a semes of
lines parallel to the line y = . When this is done, it is possible to characterize the set of

K -values in a manner that is an alternate to Dacey’s Diophantine equation

that generates exactly the set of all K -values [Dacey, 1965]. The point to seeking an alternate

algebraic expression is to use the second equation, together with the first, in order to solve

7



Volume I11

both equations for z and y, given K . Indeed, the equation
322 + 3bz + b2, b=101,...,n

also generates exactly the set of all K -values [S. Arlinghaus, 1985, 1989]. It does so by
partitioning the set into K -values that fall along lines parallel to y = z; when b = 0, the
equation generates the K -values along the line y = z. When b = 1, the equation generates
the K -values along the line translated one unit (in the appropriate direction) parallel to the
line y = z. When b = n, the equation generates the K -values along the hne translated n
units (in the appropriate direction) parallel to the line y = z (Figure 1.2). When the two
sets of equations are used together, many of the “unsolved” problems in the geometry of

central place theory yield solution [Arlinghaus and Arlinghaus, 1989].

For now, the latter equation is used to outline a procedure, derived from the theorem
that produced that equation, that will permit the unique determination of the size and shape
of a fractal generator for an arbitrary A . This unique determination is based only on the
number-theoretic properties of the arbitrarily-selected value K.

ITI. Outline of Procedure.
K-values on the y-axis
To find the generator size and shape for any ordered pair on the y-axis, (0, VK ), proceed

as follows.

1. Find the equation of the line parallel to ¥ = z through (0, vK). It is:

322 + 3vVKz + (\/I?)z

2. Find the discriminant, D, of this quadratic form:
D=(3VK)?-4-3(VK)? = -3K.

3. Find an integral value, 7, as follows:

a. If K =0(mod3), then j = vVK/3.

b. If K # 0(mod3), then j = (VK —1)/3 or j = (VK —2)/3 whichever is an integer
{clearly not both).
4. Table 1.1 then shows how to determine the number of fractal generator sides for an

arbitrary K -value (determining whether or not an arbitrary integer is in fact a K -value—that

8
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Table 1.1
K -value Number of Generator Shape —
Generator # of Hex-steps
Sides
D =1mod4 D =0mod4
. : 2+47, 2444
K =0mod3 2+14j [243] [244]
K # 0mod3
j even 3+45 [%ﬂ [5—":?4—3}
j odd 3+ 4j (254 =

The brackets denote the greatest integer function.

is of the form z? + zy + y?—is a separate matter (Arlinghaus and Arlinghaus, 1989). If the
integer is congruent to 0 mod3 (evenly divisible by 3) then the number of generator sides is
2 4 47 . Thus, for example, if K = 36, then by step 3a above, 3 = VE /3 =6/3 = 2. Hence,
the number of generator sides is 2 + 4 -2 = 10. Suppose the integer is not congruent to
Omod 3. Whether or not the associated value of j is even or odd, the number of generator

sides 1s 3 + 47. For example, if K = 16, 7 = ‘/1?3_1 = —4—5—1— = 1, from step 3 (note that

[I%——z = 2/3, not an integer as noted at the close of step 3 above). In this case, then, there
are 3+ 4.1 = 7 sides in the fractal generator for a X = 16 hierarchy. Or, if K = 64,
§ = ‘/I_g_z = a_gg = 2 from step 3, so that there are 3 + 4 -2 = 11 sides in the fractal

generator for a K = 64 hierarchy. To determine the number of generator sides the parity of
7 does not matter; this will not be the case in determining generator shape. Table 1.2 shows

j-values and number of fractal generator sides for a sample of K -values on the y-axis.

5. Table 1.1 also shows how to determine the generator shape. All that is required
in addition to the number-theoretic properties of K (and related values, 7 and D) is the
notion of a “hex-step.” A hex-step is a step composed of two adjacent sides of a regular
hexagon. All fractal generators are composed of hex-steps; typically, a generator has a rising
sequence of hex-steps to a single edge plateau at the summit followed by a declining sequence
of hex-steps. The question of shape then involves issues such as symmetry and whether or
not the generator begins with a rise or a flat part of the hex-step. There are three basic

configurations of hex-step patterns for generators associated with K -values on the y-axs.

a. The generator exhibits bilateral symmetry with respect to an axis perpendicular to the

9



Volume IT1

Table 1.2
K -value 7 -value Number of
Generator
Sides
= = = = = = =
0mod3 Omod3 ¥E (/E-1 (KD (043 0mod3
even odd even odd 2+4;7 3443
4 0 3
9 1 6
16 1 7
25 1 7
36 2 10
49 2 11
64 2 11
81 3 14
100 3 15
121 3 15
144 4 18

generator plateau and bisecting the generator plateau. Such generators begin and end

with a rise (Figure 1.3.a). The generator for the K = 4 hierarchy is the simplest of this

sort.

b. The generator does not exhibit bilateral symmetry. There are two possibilites:

i. The generator begins on the left with a rising part of a hex-step in the rising sequence,
and ends on the right with a tucked-under part so that the last element is a half-hexagon
(Figure 1.3.b). The generator for the K = 3 hierarchy is the simplest of this sort; indeed, it

is only a partial form of this type.

ii. The generator begins on the left with a flat part of a hex-step in the rising sequence,
and ends on the right with a tucked-under part so that the last element is a hali-hexagon
(Figure 1.3.c). The generator for the K = 7 hierarchy is the simplest of this sort-again, a

partial form of this type. For larger values, the structure is more fully revealed.

The generators for the classic K = 3, K = 4, and K = 7 hierarchies serve as a guide

10
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Table 1.2, continued

# of hex-steps — shape
D =-3K K =0 K #0mod3
= = 7 even J odd
D=0 D=1 D=0 D=1

Omod4 lmod4 142 Gtd (i) (44 (G445

—12 2

—27 3
—48 3

—T75 4
—108 b}

—147 5
—192 6

—243 7
—300 7

—363 8
—432 g

to the basic form for any K value. In that regard, they serve as a “primitive” triple for

underlying number-theoretic form, too.
The possibilities in a. and b. above occur as follows:

a. The case of bilateral symmetry occurs exactly when K is not congruent to O0mod 3 and
D is congruent to 0mod4 and 7 is even
or (exclusive)

D is congruent to 1mod4 and 7 is odd

5445

The number of hex-steps in this case is | ]. The brackets denote the greatest integer
function (“floor” function).
b.

i. This case occurs when K is congruent to 0 mod 3. In this case the number of hex-steps
is 14 25.

ii. This case occurs exactly when K is not congruent to Omod3 and

D is congruent to Omod4 and 7 is odd

11
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Figure 1.3. Three basic generator types: a. K = 4 type; b. K =3 typejc. K =7
type.

or (exclusive)
D 1s congruent to 1mod4 and j is even
The number of hex-steps in this case 1s [§_T4l] The brackets denote the greatest integer
function (“floor” function).

Thus, number-theoretic properties of K permit one to deduce the exact size and shape
of a fractal generator needed to produce an entire central place hierarchy for an arbitrary
K -value on the y-axis. Table 2 shows calculations associated with shape for a sample of
y-axis K -values.

K-values not on the y-axis

Attached to each y-axis K -value is an infinite number of other K -values lying along a
ray extending from a y-axis K -value parallel to the ine y = z. These values satisfy exactly
some equation of the form 3z% + 3bz + b2. To determine the size and shape of a fractal
generator producing an entire central place hierarchy for a given K (not on the y-axis),
first, find the y-axis entry corresponding to the chosen K and the fractal generator for this

value;

12
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then, determine the distance of K from the y-axis entry {as number of lattice points); and,

finally, add, to the rising side of the y-axis generator one hex-step per unit of displacement

from the y-axs.
Thus, for example, choose K = 63.

This value of K lies on the line 3z2 + 9z + 9 (and not on any other hne of this form—
see Arlinghaus and Arlinghaus, 1989). The y-axis entry 1s for K = 9. Extend the fractal
generator of 6 sides for the K = 9 hierarchy-not bilaterally symmetric and beginning with
a rise —by 3 -2 sides (3 hex steps) on the rising side of the generator. Three hex-steps were

used because 63 is the third lattice point over from the y-axs.

This simple extension means that for any K, the size and shape of the fractal generator
can be completely determined using the number-theoretic properties of the situation — and,
therefore, that the size and orientation of central place layers of hexagons are completely
determined. The characterization therefore permits problems previously unsolved in the
literature to be completely solved— such as Dacey’s twin K -value problem and others (Ar-
linghaus and Arlinghaus, 1989). In addition, because the manner of characterization involves
self-similarity, it is possible to calculate the fractal dimension for any central place hierarchy;
what that dimension measures is how much the net fills space as the process is refined—as
smaller and smaller hexagonal cells of the proper size and orientation are introduced. Thus,
when the fractal dimension, F,is calculated as

_ logn

B log \/I?
where 7 is the number of generator sides and K is the number of self-similar regions, it
is an easy matter to calculate that for K = 3 the number n of generator sides 1s 2 and
the number K of self-similar regions is 3 so that in this case F' = 1.262.... Similarly
when K = 4, there are 4 self-similar regions and a fractal generator with 3 sides, so that
F =1585..., and when K = 7, there are 7 self-similar regions and a fractal generator with
3 sides, so that F = 1.129.... Fractal dimensions for higher K values can be found readily
as functions including values from a table like Table 1.1 that show how many sides are in a

fractal generator associated with a given K.

Interpretations for what the fractal dimension might mean in a central place context are
wide-ranging and, of course, subjective. In any interpretation, however, what that dimension

does measure is the extent to which a plane region is filled by the lines of the given hierarchy

13
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when the iteration is viewed as an infinite process. Of the three dimensions calculated above,
the K = 7 hierarchy has the least space-filling associated with it, suggesting support for the
classical subjective view of it as being organized along an “administrative” principle in which
boundaries of high-order central place market areas do not subdivide the central places next

lower in the hierarchy; high order central places retain control over their own baihwick.

14
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CHAPTER 2 *

Tiling According to the “Administrative” Principle
I. Introduction
The creation of central place hierarchies using a fractal generator is achieved by using a
single generator, suitably scaled, to produce self-similar regions at various scales. Thus, for

example, the “linear” broken-line generator of four segments of equal length produces the

K =T hierarchy (Figure 2.1).

/\/

Figure 2.1. Fractal generator for a K = 7 hierarchy

The fractal strategy permits the calculation of the extent to which the boundary fills a plane
region as the iteration is allowed to become infinite [Mandelbrdt, 1983] (and elsewhere in
reference to fractals). One might, however, view the creation of these central place patterns
as a matter of tiling, or “patterning,” the plane with suitably shaped boundary pieces. If the

broken-line fractal generator were chosen as a boundary pattern, rules for placing it in the
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plane, that would generate the K = 7 pattern could be specified but because of the “linear”
nature of the shape, the set of rules would necessarily be more complicated than would
the fractal iteration. Instead, it is possible to choose as a pattern, rather than as a fractal
generator, a piece of a different shape that is not homeomorphic to the fractal generator. The
pattern generator, itself, “fills” more space than does the corresponding fractal generator;
the pattern generator for K = 7 is a three-armed star (3-stars, from an underlying triangular

grid). When 3-stars are hooked together, a net of hexagons arises (Figure 2.2).

When suitably-scaled 3-stars are also hooked together and then superimposed on the larger

hexagons, two layers of the K = 7 hierarchy emerge (Figure 2.3).

Figure 2.2. Single layer of 3-stars

Indeed, using this pattern-piece generates all the lines of a K = 7 hierarchy, as a net traced
out by the arms of these 3-star “spiders” hooked arm-to-arm forming ranks to cover the

plane in an unambiguous manner, with smaller spiders hanging off every bend and endpoint

17
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Figure 2.3. Layers of 3-stars produce K = 7 layering

of its larger counterpart (as do the young of so-called hanging “spider” plants). Thus,
an alternate method of generating the K = 7 hierarchy from self-similar pieces provides
extra detail; when all lines are present, the boundary will fill a two-dimensional piece of

space. Thus, the strictly fractally-generated hierarchy (of Figure 2.1), of fractal dimension

18
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(1.1291501 in this case), provides a skeletal structure on which to hang the rest of the detail
(Figure 2.3).
II. A K =7 Tiling on a Square Grid

There are, of course, an infinite number of tilings and patterns that one might produce
in the plane [Griinbaum and Shephard, 1987]. A natural next step is to attempt to extend
the ideas of fractal generation of central place hierarchies in various directions, including in

that of using underlying plane tilings other than the equilateral triangle.

Consider an underlying grid composed of squares. Create the corresponding fractal
“K = T” construction using a square initiator (instead of an hexagomal initiator) and a
generator composed of four segments of equal length, arranged in a zig-zag pattern with one
maximum and one minimum, scaled to fit the initiator. Figure 2.4 shows such a configuration.
When the generator is applied successively to each of the four sides of the initiator, the
resulting boundary shape contains the equivalent of eight self-similar copies of the previous
stage (a square) (Figure 2.4b). Scaling the generator and applying it successively to each
side of Figure 2.4b produces Figure 2.4c containing the equivalent of eight regions self-similar
to Figure 2.4b. This sort of “interlocking cross” pattern is similar, but not identical, to some
of the base grids from which Escher designed intricate patterns of birds in flight emerging

from backgrounds of fields [Schattschneider, 1990].

This construction produces an iteration of eight (rather than 7) self-similar new regions
each time. Thus, when the fractal dimension D measuring the extent to which a boundary

fills space when the iteration is carried out indefinitely, 1s calculated as

_ logn

B log VK
if follows that for the construction suggested in Figure 2.4, D = 1_10%% — % S L)
the boundary fills more space than does the corresponding construction using a hexagon as
an initiator on an underlying triangular lattice. Again, the fractal comstruction gives the

skeletal form of the hierarchy; greater detail may once again be systematically created as a
construction similar to that afforded by the 3—stz.1:|:s above.

A four-armed star (4-star—familiar geometric ornament found adorning Greek pottery,
Amerindian art, and Third Reich flags (in orientation opposite to the Amerindian) [Encyclo-
pedia Britannica, 1967]) can be placed in evenly-aligned rows and columns to cover an entire

plane region (Figure 2.5); such placement also outlines a set of first teragons (as suggested
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Figure 2.4. Fractally-generated square tiling sequence. a. Square initiator.
b. First teragon formed by applying generator to initiator-it contains eight self-
similar copies of the preﬁous stage. c. Second teragon formed by applying scaled
generator to first teragon—it contains eight self-similar copies of the previous

stage.

by the shading of one in Figure 2.5). Further, when an added 4-star (dotted in Figure 2.5) is
introduced within each teragon, in the only possible way, the detail of the tiling is produced.
Iteration of this technique, hanging suitably-scaled 4-stars from every bend and endpoint
of larger 4-stars, produces successive layers in the corresponding hierarchy (Figure 2.6). As
in the case with the underlying triangular lattice, the fractal iteration on a square lattice
permits measuring how much of the plane will be filled by a skeleton of a hierarchy; the
iteration by stars introduces extra detail suggested by the fractal iteration.
ITI. Fractal dimensions

It is an easy matter to consider fractal constructions for counterparts to the K = 3
and K = 4 constructions on a square lattice—in both cases, they are uninteresting and even
the simple skeletal boundary is space-filling. Thus, only the K = 7 case was displayed in

the previous section. Higher values should also be non-trivial and are a topic for future
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Figure 2.5. 4-stars used to cover a plane region; shading shows that they sur-
round first teragons from Figure 2.4

21
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Figure 2.6. Scaled 4-stars used to create a hierarchy corresponding to the
fractally-generated one of Figure 2.4; shaded region suggests a second teragon

(Figure 2.4c)

effort; here, the K = 7 counterpart was focused on because it was the first one of interesting

geometric structure.

Fractal dimensions permit comparisons between a K = 7 hierarchy of hexagons and
a K = 7-like hierarchy of squares-the former of dimension 1.1291501... and the latter of
dimension 1.33.... One reason for being interested in making such a comparison might arise
in an electronic environment. Squares are the fundamental picture element (pixel) currently
employed; there has been considerable discussion as to the merits of using an hexagonal
pixel, instead (as the optimum close-packing). Without considering important issues that
involve printer construction and changing of existing technology, the fractal dimension alone
can offer some insight involving differences in pixel shapes (which might then be used in

conjunction with other issues). Layers in the sort of geometric hierarchy of squares and
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hexagons suggested in Figures 2.4 and 2.1 represent the idea of increasing the resolution on
a cathode ray tube (crt). Thus, suppose that the size of a square pixel on a crt is that of the
square in Figure 2.4a. To see better a segment of the crt, one might increase the number of
cells on the crt so that more detail can be seen; the method of doing this is to increase the
pixel number by lines parallel to the sides of the previous network. Because content is carried
on the pixel interiors, and not on the pixel boundary, and because the method of improving
picture definition is one that is space-filling (totally filled by boundary), there is a point of
diminishing returns in refining pixel size to increase picture definition. At least, this 1s the
case when such refinement is done in a space-filling manner. When 1t 1s not, in which case
new, finer nets are twisted relative to the background of older nets, the skeletal boundary
does not fill two dimensions. Thus, increasing the number of pixels, when doune with regard
for space-filling characteristics of the pixel boundaries, can offer continually improved picture
definition. When squares are used in this manner, the K = 7-like construction works in this
regard; however, when the actual K = 7 construction, with hexagonal pixels, 1s used, there
is even less filling with boundary so that, in this regard, the hexagonal pixel construction
is superior to that using the square. So, one direction for application of this material is in
an electronic environment [Arlinghaus, 1990]; another might be in site selection for locally

unwanted land uses.

Landfills, management of toxic or radioactive wastes, and other land uses that are gener-
ally perceived as locally undesirable are also landuses that benefit from some sort of cohesive
(rather than divided) central administrative control in order to avoid turf wars based on
whose “back yard” is being infringed upon. Thus, one might consider placing unwanted land
uses in a central position within a configuration relatively unfilled by boundary; the more
a region is filled by boundary the more likely the boundary is to interfere. Thus,a K =7
orientation for a hierarchy of increasingly fine land subdivisions suggests placing unwanted
uses at the centers of the snowflake-like teragons, independent of scale. Indeed, the hierar-
chy, which reflects change in scale of the unwanted use corresponds to change in land parcel
area as one moves from rural to urban: a suburban home generally sits on a “field” smaller
than does a farmhouse, and a central city home generally sits on a “field” smaller than does
a suburban home. This obvious and well-known rural/urban scale-change fits well with the
corresponding scale change in the geometric hierarchy; it is appropriate to draw on this fit

when locating unwanted landuses is important, because they too exhibit the same scale phe-
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nomenon. Now much of our land survey and our street sysiem is laid out along rectangular
axes; thus, the hierarchy depicted in Figures 5 and 6 might be of greater actual use in siting
locally unwanted land uses than would that of Figure 1, even though the fractal dimension
of 1.1291501 for the hexagonal layout indicates that the likelihood of crossing a boundary
is 56.5% while in the corresponding square layout the fractal dimension is 1.33 so that the
boundary-crossing likelihood is higher at 66.7%. One would have to consider if the trade-off
between having the geometry “fit” the parcel shape was worth an increased likelihood of
split control-again, choosing the proper abstract tool to fit the real-world circumstance 1s

critical.
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CHAPTER 3

Moiré Maps
Usually one thinks of finding Moiré patterns in broad expanses of silken fabric; as the
material folds softly in the light, ripples of pattern give the silk an appearance of pools
of darker and lighter color. Indeed, rippled patterns that produce a wavy appearance in
the underlying material are not limited to cloth; they might equally appear in maps, under

certain conditions.

Elementary laboratory courses in Physics often demonstrate quite aptly that the pattern
of waves in a ripple tank can be altered by changing the boundaries of the margins and interior
of the tank. A geographic pattern of ripples will also be governed by the “tank” or region

that contains them. Basin shape influences ripple pattern.

The following example arose in considering congestion along arterials in Ann Arbor that

have bus routes.

1. Designate points of heavy concentration of bus use; typically, these include hospitals,
shopping malls, large educational institutions, and the central bus terminus. Each of these
locations will have a weight assigned to it, based on the number of possible transfers available
at a given location. Thus, if three different routes enter a given location, there are six possible
buses, three inbound and three outbound from which a passenger might choose. Because
the passenger can at most go from one bus to another (not backing up on the same route
number), the number of possible transfers is to four other buses-inbound and outbound on
two other routes; thus, there are 6 times 4 possibilities. Generally, if there are n distinct
routes (counting inbound and outbound as separate routes) at a stop that is not the central
terminus then there are n times n — 2 possible transfers at that location; at the central
terminus, there are n times n — 1 possible transfers (Table 3.1). Thus, a location served by
three different route lines (inbound and outbound) would be assigned a “transfer” weight
of 24. More generally, what is required is to be able to weight designated locations in some
consistent manner that is based on whatever real-world issue is under consideration—in this
case, congestion and the movement of people [see also, for other related material, Arlinghaus

and Nystuen, 1989].

Table 3.1 shows a set of distinguished locations in Ann Arbor each assigned a transfer

weight based on how many bus lines pass through each.

26



Essays on Mathematical Geography

Table 3.1, based on 1985 data

Location # of bus routes Transfer weight
1. Westgate Shopping Mall Two 4.2 =8
2. Pioneer High School Three 6-4=24
3. University of Michigan, central campus  Three 6-4=24
4. University of Michigan, athletic campus Three 6-4 =24
5. Briarwood Mall Three 6-4 =24
6. Arborland Mall Two 4.2=28
7. Packard Road Shopping Two 4:2=8
8. Meier’s Shopping Two 4-2=28
9. Central bus terminus Twelve 1211 = 132
10. Broadway shopping Three 6-4=24
11. University of Michigan héspital Three 6-4=24
12. Veterans’ Administration Hospital Three 6-4=24
13. Huron High School Two 4.2=38
14. University of Michigan, north campus Two 4.2=28
15. Plymouth Road Mall Two 4.2=28
16. Plymouth Green Mall Two 4-2=238
7. Washtenaw Community College Two 4.2=28
18. St. Joseph Hospital One 2-0=0
19. Ypsilanti High School One 2-0=0
20. Eastern Michigan University Three 6-4 =24
21. Ypsilanti terminus Three 6-4=24
22. Ypsilanti shopping area Two 4-2=28
23. Beyer Hospital Two 4.2 =
24. Willow Run High School One 2:0=
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2. Using the locations from 1 a consistent procedure, based in part on transfer weights
and the balance of load between adjacent transfer points and in part on local transit demands
and similar factors, was used to create basins surrounding each transfer point (Map 3.1).
This sort of map is a common tool—polygons partition the plane forming service regions of
some sort. What was not involved in determining the polygon placement was the Euclidean

distance from a transfer point.

3. Contour the surface within each region, using some yvardstick for determining con-
tour interval that remains constant throughout the map and that was not used in basin
formation. Here, each basin was contoured using Euchidean distance into thirds, measured
from each transfer point, into sub-basins with the edges parallel to the basin margin. This
sort of partition was chosen to reflect the relatively regular designation by the Ann Arbor
Transportation Authority of “time points” along each route, for which published times are
announced (but not for stops in between time points). When this procedure was executed,

the map in Figure 3.2 was the result.
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o

Figure 3.1. Basins surrounding bus transfer points — Ann Arbor/Ypsilanti,
1985. Numerals refer to left hand column of Table 3.1
29
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When the method of contouring the regional basins has to do with the process underlying
the partition into basins (as in this case), basin shape influences ripple pattern. When a
different measure is superimposed, in a way that plays “across” the underlying grain of the
basins, the effect is a Moiré pattern. In the Moiré map of Figure 3.2, the tight contour lines

suggest “folds” in the underlying surface bounding pools of heavy bus passenger congestion.
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CHAPTER 4 ~

Triangle Partitioning

To partition a trangular cell (V;V2V3) into subtriangles with common vertex P4, m
which each subtriangle contains an assigned percentage of the areal, perimetric or angular
measure of the entire cell (V1V5V3) (Figure 4.1), is geometrically straightforward. The
interest in exhibiting the details of these constructions lies in drawing together fundamental
geometric and geographic ideas to form a foundation from which further exploration of more

complex geographical problems may proceed.

Vo

Figure 4.1

Area, perimeter, and angle, basic concepts familiar from Euclidean geometry, have nat-
ural geographic counterparts in area, boundary, and direction. Although formal procedure
will be presented to partition a triangle with respect to each of area, perimeter, and angle,

only partition with respect to perimeter will be developed.

A boundary (perimeter) separates an area into two distinct areas (assuming that it does
not cross itself: that is, that it is a Jordan curve). Or, a boundary belongs to exactly one of
the two areas it separates. Or, a boundary between two areas consists of all elements common
to both areas. That is, a boundary is both a barrier to and transmitter of movement. This
view of a boundary suggests that formal partitioning of a geometrically simple area such as a

triangle might be extended to be of use in a geographically more complex region, for locating
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transportation and communication networks, for they also are barriers to and transmitters

of movement.
Partition with respect to area
The following construction presents a method of partitioning a triangle (V112V3) of area

A into three subtriangles Vi, Vz,, Ve, with a common vertex, P4, such that the area V. =

X;A/100, i=1,2,3 (Figure 4.2). The X; are preassigned percentages with Ezj X; =100

V2
h
i 13
/'Efz £ Ix
~-~ X 2
AR
/ “""-.._‘___
VI_ V3

Figure 4.2

Exzistence of Py
Let ki3 denote the altitude of AV;V3Vy from Vi (Figure 4.3).
Then A = (h13|V1V3|)/2. Locate a point Pz, on hjz such that
d(Pz,, (V1V3)) = (X2/100)h 13
where this length is measured from V;V3 A his. Thus AV1P;, V3 contains X2% of A since
area of AV1P,, Vs = (1/2[V1V3[)(h13(X2/100)) = A(X2/100),

which will be labelled as A,,. The locus of points such that V;V3 and Ag, are constant
is a straight line l,, (Figure 4.2) through P., parallel to V;V3. The line I;, must contain
the desired point P4. For, if Pg, is any point on [, , clearly the two triangles (V1V3Pg,)

and (V1V3P;2) have the same area, A,,, since they have the same altitude and identical
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I
*2

Figure 4.3

base. A similar construction will yield a point Py, and a line Iz, associated with it such
that [, |[VoV3. Since P4 must also lie on l5, , the intersection lz, Alg, must produce a point
P4 (Figure 4.3) satisfying the original conditions (the symbol ‘A’ denotes the intersection
of two geometric entities). This reasoning is not valid in an arbitrary space; two lines must

intersect in exactly one point.
Enumeration possibilities for P4

Suppose [, |[V1V3 and suppose I, |[VoVs with I, Alz, producing a P 4. If instead, I,
had been chosen such that l.,|/V2V3, a new point P 4" would be produced that satisfied the
requirements of the problem, provided X3 # X;. (If X3 = X, then P4 and P 4 induce
the same partition in AV:V,V3). The difference in appearance in the triangle would be
permutation of the triple (123) to (132) (derived from the subscripts of Va,, Va,, Vzg (Figure
4.4).

The number of possible distince P4 would depend upon the nature of the triangle

(V1V2V3) under consideration:

i. If V1V, V3 is a general triangle (Figure 4.5), then the intersections of the sets of lines
{l, 1=1,23|[;||ViVs}
{li'-,": 1’ = 1: 2: 3 I lZi,HV.2V3}

{I.", 1=1,2,3|1|[ViVa}
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o v \/
V] 3 1

Figure 4.4
[ i I (B ]

XI X

Figure 4.5

produce six distinct points Py, ... Pyg,, given by
Toy A basy oy Alay"
Loy Nlzy'y  lzg Nz
b Dby L B lsy

each of which satisfies the original conditions for P4. Each P; 7 =1,
a different set of V;, 7 =1,2,3 such that

i -
areaVl,, = areaV;, 1 =1,2,3,

36
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Figure 4.6

but V. is not necessarily congruent to any of the V,,.z.'. Then Pg4,, P 4,, P4y induce one
orientation in the pattern of V., Vz,, Vo, and P4,, P4,, P 44 induce the opposite orientation

(Figure 4.6).
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ii. f AV;V,V5 is isosceles, then the intersections of the appropriate sets of lines produce
three points P4, P4,, P4, which are unique up to reflection of AV;V5V3 in its angle bisector
through the third angle, while if AV;V,V73 is equilateral, the intersections of the appropriate
sets of lines produce two points Py, , P4,, which are unique up to a central rotation of 120

degrees.

Partition with respect to perimeter

The smallest percentage of the perimeter that 23:1 [V;P|, can represent occurs when
P is the Steiner point (minimizing total shortest length from P (interior to the triangle) to

each of the vertices of the triangle) of AV;VoV3.

1. Lower and upper bounds for the general sum E?:l |ViP|, can be determined as

follows.

Let p denote the perimeter of AV;V5V3. Since S, is within AV Vo173, it follows that
ViSpl + ViSel > ViV5| i #31; 47 =123

2. Therefore, 2 x Z?:] [ViSp| > p is a lower bound. Also, since P is within AV315V3,

it follows that, for particular z,7, %

ViP |+

V;P | <

ViVil + [ViVal i#7 #k

and similarly for other permutations of i, j, and k. Combining inequalities, it follows that

3. 2% Zf—il [ViP| < 2 x p is an upper bound. Combining the above inequalities with

3
ViSpl <

1 =1

3
ViP|

7

gives
3

3
p<2x Y [ViSpl<2x ) [ViP|<2xp

i=1 =1
Dividing by two throughout produces an upper bound for the general sum and also a lower

bound for the Steiner network:
3 3
p/2< Y [ViSp|< Y [ViP|<p
=1 =1
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3

Thus the total network length induced by P ranges between .., [V;Sp| and a least upper

bound L, < p. In the Steiner problem, it is decided, a prior:, to minimize this length. If,
instead, the desired network length induced by P is chosen, a priori as X, where

3

D

=1

Vilpl< X €L,

then a set of network location problems similar to, but distinct from, finding networks has

been formed.

Suppose it is desired that the internal perimeter of AV;PV; should contain B;% of
B, i+#j+#k; 1,7,k =1,2,3 where the B}, are determined a priori and Zi:l B = 100,
and B is the length of the boundary of triangle (V1V2V3). (The internal perimeter of
AV;PV; is the sum of the lengths of line segments V;P and ;P .) The following procedure

will determine a point P in the interior of AV;15V3 such that
AVp, = AV)PV; has internal perimeter Ip, containing B 1% of B
AVp, = AV PV3 has internal perimeter /p, containing B>% of B

AVp, = AV PV, has internal perimeter Ip, containing B 3% of B
Existence of P; Figure 4.7

A triangle (V1PV3) with internal perimeter /p, and base V1V is constructed by locating
Pp, at the intersection interior to AV;VVs of two circles each of which has radius of length
1/2B2% of B, one of which is centered at ¥} and the other at V3. The internal perimeter of
triangle (V1Pp,V3) is B32% of B, and, the locus of points described by Pp, such that V1V
and By are constant, is an ellipse ep, passing through Pp, with foci at V; and V3. The
point P lies on ep,. A similar construction will yield a point Pp, and an associated ellipse
ep, with foa V3 and V3. Since P also must lie on ep, , the intersection of ep, and ep, 1s
a location for the point P.

Enumeration of possibilities for P depends on the structure of AV;V,V3 and proceeds

as in the previous section of this chapter.
Partition with respect to angle

The following procedure will determine a point P in the interior of AV3V3V3 such that

< VoPV3 = (X1/100)360
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Figure 4.7
< ViPVs = (X2/100)360
< V1PVy = (X3/100)360

where ELI X; =100 (Figure 4.8).

Figure 4.8

Locate a point P, such that < ViP,,V3 = (X2/100)360 where P, lies on the perpen-
dicular bisector of V1V3 and also on I, where [ passes through V; and forms an interor
angle of ((180 — (X3/100)360)/2)° with V1V3.

The locus of points P, such that < V1P,,V3 is constant is the circumcircle Cs about
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AV1P;,V3. The point P must e on Cy. Construction of a point P, and of the circle
C, passing through P,_;, Vi, V3 produces another circle on which P must lie. Thus
the intersection of C; and C interior to AV;V5V3 produces the required point P, and
enumeration of possible locations for P depends on the structure of AV;31,V3 and proceeds

as in the first section of this chapter.

This chapter has presented in detail, technique for determining the location of a point
P within a triangle V1V2V3 (with no angle less than or equal to 120 degrees) so that the
set of sub-triangles formed along lines of partition of AV1V3V3 induced by P represent pre-
assigned percentages of the areal, perimetric, or angular measure associated with AV315Vs.
Partitioning with respect to area might be used to emphasize the content of the space under
consideration. Partitioning with respect to perimeter might be used to emphasize boundaries

of, or, networks in, the space under consideration.

* This Chapter is based on material from S. Arlinghaus, “On Geographic Network
Location Theory,” Ph.D. Dissertation, Department of Geography, University of Michigan,
1977.
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An Enumeration of Candidate Steiner Networks

Algorithms for constructing Steiner networks, networks of shortest total length, rely on
choosing the shortest network from a set of candidate networks, each a best possible form
within particular topological constraints. To enumerate the number of possible candidates
from which to choose the Steiner network, for a distribution of n points V7, ...V, the number
of separate types of topological classes will be counted. It will be assumed that the Steiner
trees being counted are non-degenerate, that there are (n —2) Steiner points Sy,... 5,2 In

each, and that the (n — 2) spanning tree is of a particular topological type.

There are two different problems that can anse:

1. the ({(n — 2) spanning tree (Figure 5.1) may be hooked into the distribution of n

points in a variety of distinct ways (Figure 5.2);

2. the sides of the polygon that are chosen to be rotated through 60 degrees may be

selected in a variety of ways.

Figure 5.1

The procedure that follows will count the number of possible candidates with an (n —
2) spanning tree of given topological form that is hooked into the set of n vertices in a
preassigned manner. These constraints would be specified by the spatial relations of the

problem under consideration.
Proposition 5.1.
Suppose that:

1. P is a polygon with n vertices Vi,...Vp;

2. n is an odd positive integer;

3. the (n — 2) spanning tree is linear in topological form; and,

4. the (n —2) spanning tree is to be hooked into P in such a way that
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Figure 5.2
i. the two “small” triangles formed by connecting the two vertices of degree one of the
linear (n — 2) spanning tree to P are separated by exactly one side of P.

ii. no two edges linking vertices of degree 2 or the (n-2) spanning tree to P lie on

opposite sides of the (n-2) spanning tree.
Then there are n X (n —2) x (n —4) x ... x 5 possible distinct candidates.

Proof:

There exist n different unordered pairs of sides of an n-gon with one side separating the

two for if the sides of the n-gon are numbered clockwise, on alternate sides, then the desired

set of unordered pairs is

{(1,2),(2,3),...,((r — 1),n), (n, 1)}(Figure 5.3)

which has n elements.

For each of the n choices, there are (n —2) choices at the next level and then (n —4) for

each of the (n — 2) and so on, down to 5 (there is only one Sp, is a given triangle). Q.E.D.

Proposition 5.2

Suppose that:

1. P is a polygon with n vertices;

2. n is an even number, and

3. the (n — 2) spanning tree in P has maximal branching.
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Figure 5.3

Then there are n x (m —2) x(m —4) x... x5 possible distinct networks where m = n/2%0
and ag 1s the exponent representing the maximum number of 2’s that can be factored out

of n.
Proof.

Decompose n into the unique product of powers of prime factors, using the Fundamental
Theorem of Anthmetic, as

no= 2% ¥ 9% 3 <o X 92T,

p; odd primes, a; integers greater than or equal to 0, ag # 0. The number of possible
networks is

2°0 xm x(m—2)x(m—4)x--+ x5

where m = (n/2%0), for there are two choices for ways to select alternate sides as long as n
is divisible by two (ap times), and, then we are left with a polygon with an odd number of
sides; that 1s, one with p;%! X pa®2 X --- X p,°" sides. Then count the rest of the networks

using Proposition 5.1, yielding the above formula which may be rewritten
nx{m—2)x(m—4)x--- x5

Q.E.D.

The hypotheses of these two propositions are highly restrictive. This fact suggests that

if geographic constraints impose the restrictions in a natural way in a given problem, then,
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for example, the figure of 105 possible topologies for 6 vertices and 4 Steiner points, cited
by Gilbert and Pollack [1968], can be reduced to six possibilities using Proposition 5.2

Definition.

The following construction will associate a number, called “3-length,” with each vertex

V; of a convex polygon (Figure 5.4).

v
2 V3 v, v

(a)
(5)

Figure 5.4

Connect vertex V; to every point of the polygon, creating a partition of the polygon
into (n — 2) triangles. Find the Steiner point of each of these (n — 2) triangles; link these

together and measure the length, giving the 3-length associated with V5.
Conjecture.

In a polygon P with an odd number of sides, the minimal second level Steiner candidate
network of a topological type that exhibits bilateral rather than radial symmetry will have
a vertex of degree one that is incident with an axis of symmetry located at that vertex of
P with which minimal 3-length is associated. (There should be an extension of this to even

numbers that are not congruent to 1(mod 3) and to even numbers that are not of the form

3 % 270).

* This Chapter is based on material from S. Arlinghaus, “On Geographic Network
Location Theory,” Ph.D. Dissertation, Department of Geography, University of Michigan,
1977.
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CHAPTER 6 ~

A Topological Generation Gap

Point set topology offers interesting ways to capture qualitative real-world concepts that
are not usually characterized using mathematics (Arlinghaus, 1986). The “open set” is
fundamental to point-set topology; loosely, an open set might be viewed as a disc without
a circular boundary. Choose a point within the disc-no matter how close one gets to the
boundary, there is always some smaller disc that can be centered on the selected point and
vet remain within the larger disc. There is a uniformity to the open set; thus, it might be
regarded as an abstract ideal for a geographically uniform region.

The definition of a “topology” 1s given below. Note that most geographic works employ
the word topology to refer to some sort of connection pattern linking a set of locations. This
conventional usage is, at best, weak; it does not generally address any of the fundamental
issues required-such as what are the open sets and what are the relationships between subsets

of open sets.
Definition 6.1 (after Kelley and Mansfield).

Let X be a non-empty set and let 7 be any collection of subsets of X'. Then the
collection 7 is a topology for X':

a. f X €7 and ¢ € T

b. if Gy € T forall X € A, it follows that |J,c4 € 7. That is, arbitrary unions of elements
of T are once again elements of 7.

c. if G1,Gy,...,Gp €T and n € Z%, it follows that () ; € 7. Finite intersections of

elements of 7 are once again elements of 7.

The members of 7 that satisfy these conditions are open sets; thus, a topology on a set X
is a collection of subsets chosen so that the whole set itself and the empty set are members of
the topology and so that unions of an arbitrary number of subsets in the topology are also in
the topology, and so that finite intersections of members of the topology are in the topology
as well. Loosely speaking, the topology offers a sort of a closed system on the underlying

set, within which much interaction can occur.

The example below shows why there is a need for the finiteness characteristic associated

with intersections stated in part c. of Definition 6.1.
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Let X = [0,1), the half-open interval that includes 0 as one endpoint but does not
include 1 at the other end.
Let 7={0,2)|n € Z¥} U .
a. ¢ €T; X €T since 1 is a positive integer and [0, 1) =[0,1) € 7.
b. the union of any collection of right-half open intervals, from 7, is again right-half open
and has 0 as the left-hand endpoint.

c. finite intersections of right-half open intervals from 7 are once again right-half open

intervals and have 0 as left-hand end; however, an infinite intersection would yield

No.2)={0} ¢ 2

ne€z

Because the set whose single element is 0 is not a member of the topology, this infinite

intersection is not a member of the topology; hence, the reason for the finite intersection

property.

Definition 6.2 (after Kelley and Mansfield)

If 7 is a topology for the set X , then the pair (X, 7') is called a topological space, and,
as noted, the sets of 7 are called the open sets of T .

Definition 6.3—(after Mansfield)

A subset F of X is closed relative to 7 if and only if the complement of I (all elements
of X not in F') is one of the open sets of 7.

Definition 6.4—(after Mansfield)

Within the set of real numbers with a topology of open intervals as open sets, a nonempty
subset is bounded if it is both bounded above (there is an upper bound larger than or equal
to all members) and if it is bounded below.

Heine-Borel Theorem (after Taylor)

Let S be a bounded and closed point set, and let S be covered by a collection of open
sets, 7. Then a finite number of open sets may be chosen from the collection in such a way
that S is covered by the new finite collection.

Let S = {set of all human beings}; an element of S is closed since it contains its own
boundary, and so since there are a finite number of human beings, the union § of a finite

number of closed sets is also closed. Also S is bounded by the planet.
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Let 7 = {all views of the world}. This set has an infinite number of elements, covering

all possible human situations.

Select a finite set 7y from 7T if Ty covers S (i.e., if the Heine-Borel theorem holds), this
forms a set of values from which members of S may draw, and produces “rational” behavior.
If the set T; does not cover S (i.e., if the Heine-Borel theorem does not hold) no world view
is available at some points and this produces “irrational” behavior. The intersection of sets

from 7 produces areas of conformity.

Suppose S is the Cantor set of the excluded middle. The idea of this set can be expressed
as follows. Take the closed interval from O to 1. First, partition it into thirds and throw away
the open middle interval. Next, use each of the two remaining “offspring” closed intervals
and repeat the procedure. Repeat the procedure indefinitely, through successive levels of
“offspring” intervals, yielding the “Cantor” set (Kelley, p. 165). This set, 5, 1s closed and
bounded. But it cannot be covered by a collection of open sets. If the manner in which
this set is formed is viewed as a sequence of generations, then the failure of the Heine-Borel
theorem on this set may be likened to the failure to be able to cover the “generation gap”

with a set of values compatible with both ends of this gap.

* Based on unpublished material by the author from 1974-76.
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CHAPTER 7 ~

Synthetic Centers of Gravity: Conjecture

The center of gravity of a triangle is the point of intersection of the medians (line joining
a vertex to the midpoint of the opposite side) of the triangle. For higher levels of polygons,
the integral calculus supplies methods for finding the center of gravity. Calculus methods
require the introduction of coordinates which may not be desirable. The construction below
offers a way to find the center of gravity for a convex polygon; 1t 1s presented as an open
conjecture, because the construction has not yet been proved (or disproved). It appears
that the following synthetic comstruction, expressed in terms of a couple of examples, will
generalize.

1. Given a quadrilateral A;A474344 (Figure 7.1); partition the quadrilateral into two
triangles, AjAs44 and A;A3A4 (Figure 7.1). Find the centers of gravity, G; and Ga2, of
each of these triangles (Figure 7.1).

2. Connect the centers of gravity G; and Ga2.

Conjecture. The center of gravity of A1A2A3A4 lies on the line joining G: and
G2 (Figure 7.1).

3. Repartition the given quadrilateral into triangles 414,43 and ApA344. Find the
centers of gravity, G3 and Gg, of each of these triangles and join them with a line (Figure
7.2}

4. Superimpose the two different partitions. Using the conjecture, since the center of
gravity G of the quadrilateral must lie on the line G;G5 and on the line G3G4. Thus,
G is the intersection point of these two lines (Figure 7.3) and the center of gravity of the

quadrilateral has been determined.

5. To find the center of gravity of a higher order polygon using this procedure 1s again
quite simple, requiring one dissection of the higher order m-gon into a triangle and an n —1-
gon followed by another dissection of the n-gon into a different triangle and » — 1-gon.
Iteration finds the needed location in the m — 1-goms, reducing them through successive

dissection to a triangle.

6. Thus, consider the pentagon A;AzA3AsAs (Figure 7.4). Dissect 1t mto a triangle
AjA4As and a quadrilateral A;A3A344. Find the center of gravity (G, of the triangle, and
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find the center of gravity G of the quadmlateral using the strategy in steps 1 to 4 above.
Join G and G5 (Figure 7.4). The conjecture says that the center of gravity lies on this line.

7. Repartition the pentagon into the triangle A3A43A44 and the quadrilateral A; 424445,
and find their respective centers of gravity, G3 and G4. Join the two centers of gravity

(Figure 7.5); the center of gravity of the pentagon lies along this line.

8. Superimpose Figures 7.4 and 7.5; the center of gravity lies on lines G1G» and on
G3G4 (Figure 7.6). Thus, the intersection of these two lines is the center of gravity, G, of
the pentagon.

Open questions

Prove or disprove the conjecture; prove or disprove the construction; and, independent
of the outcome of establishing the validity of the conjecture, determine sets of circumstances
in which it is important to be able to find centers of gravity without calculus techniques

(perhaps in a digital mapping environment).

* Based on unpublished work of the author from 1973.
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Figures 7.1 to 7.6. 7.1: Centers of gravity of two triangles and the line joining
them. 7.2: Centers of gravity of two triangles and the line joining them. 7.3:
Superimposition of 7.1 and 7.2—the center of gravity of the quadrilateral is shown
as the intersection of the two lines. 7.4: Centers of gravity of a triangle and
a quadrilateral and the line joining them. 7.5: Centers of gravity of another
triangle and a quadrilateral and the line joining them. 7.6: Superimposition of
7.4 and 7.5— the center of gravity of the pentagon is shown as the intersection

of the two lines.
52
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1. Sandra L. Arlinghaus and John D. Nystuen. Mathematical Geography and Global Art: the Mathe-
matics of David Barr’s “Four Corners Project,” 1986.

This monograph contains Nystuen’s calculations, actually used by Barr to position his abstract tetrahe-
dral sculpture within the earth. Placement of the sculpture vertices in Easter Island, South Africa, Greenland,
and Indonesia was chronicled in film by The Archives of American Art for The Smithsonian Institution. In
addition to the archival material, ‘this monograph also contains Arlinghaus’s solutions to broader theoretical
questions—was Barr’s choice of a tetrahedron unique within his initial constraints, and, within the set of
Platonic solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Pressured Postal Era, 1855-1984, 1986.

The history of the pneumatic post, in Europe and in the United States, is examined for the lessons it
might offer to the technological scenes of the late twentieth century. As Sylvia L. Thrupp, Alice Freeman
Palmer Professor Emeritus of History, The University of Michigan, commented in her review of this work
“Such brief comment does far less than justice to the intelligence and the stimulating quality of the author’s
writing, or to the breadth of her reading. The detail of her accounts of the interest of American private
enterprise, in New York and other large cities on this continent, in pushing for construction of large tubes in
systems to be leased to the government, brings out contrast between American and European views of how
the new technology should be managed. This and many other sections of the monograph will set readers on
new tracks of thought.”

3. Sandra L. Arlinghaus. Essays on Mathematical Geography, 1986.

A collection of essays intended to show the range of power in applying pure mathematics to human
systems. There are two types of essay: those which employ traditional mathematical proof, and those which
do not. As mathematical proof may itself be regarded as art, the former style of essay might represent
“traditional” art, and the latter, “surrealist” art. Essay titles are: “The well-tempered map projection,”
“Antipodal graphs,” “Analogue clocks,” “Steiner transformations,” “Comncavity and urban setilement pat-
terns,” “Measuring the vertical city,” “Fad and permanence in human systems,” “Topological exploration in
geography,” “A space for thought,” and “Chaos In human systems—the Heine-Borel Theorem.”

4. Robert F. Austin, 4 Historical Gazetteer of Southeast Asia, 1986.

Dr. Austin’s Gazetteer draws geographic coordinates of Southeast Asian place-names together with
references to these place-names as they have appeared in historical and lterary documents. This book
is of obvious use to historians and to historical geographers specializing in Southeast Asia. At a deeper
level, it might serve as a valuable source in establishing place-name linkages which have remained previously
unnoticed, in documents describing trade or other communications connections, because of variation in
place-name nomenclature.

5. Sandra L. Arlinghaus, Essays on Mathematical Geography-II, 1987.

Written in the same format as IMaGe Monograph #3, that seeks to use “pure” mathematics in real-world
settings, this volume contains the following material: “Frontispiece-the Atlantic Drainage Tree,” “Getting



a Handel on Water-Graphs,” “Terror in Transit: A Graph Theoretic Approach to the Passive Defense of
Urban Networks,” “Terrae Antipodum,” “Urban Inversion,” “Fractals: Constructions, Speculations, and
Concepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR Code,”
“Endpiece.”

6. Pierre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoretical Markei Areas Under Euclidean
Distance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Other transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpoint of the shape of the market
areas they generate, and their disparity asks the question whether other types of functions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims
at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean

distance.

(Bien qu’ébauchée par Rau des 1841, la théorie économique de la forme des aires de marché planaires
s’est longtemps contentée de I’hypothese de cofits de transpori proportionnels & la distance. Dans le modele
gravitaire généralisé, auquel on peut étendre cette théorie, ceci correspond au choix d’une exponentielle
décroissante comme fonction de dissuasion de la distance. Dautres fonctions de colit de transport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché qu’elles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété ameéne a se demander si d’autres fonctions
encore ne mériteraient pas d’étre examinées. Il parait donc utile de disposer d’une théorie générale des aires
de marché : ce & quoi s’attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d’une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nystuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume -displays the use of this graph theoretical tool in geography, from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
is included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
iterns listed below are previously unpublished.) Contents: “ ‘Foreward’ ” by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre—1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions” by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, q) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank-size Hierarchy: A Mathematical Interpretation, 1989.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = aef cote

An equiangular spiral can also be constructed from a Fibonaccl sequence. The urban rank-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank-additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank—size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model allows conceptualization
of a new view of the urban rank-size hierarchy in which the three largest cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, An Atlas of Steiner Networks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the



steps, visually, in a series of Figures. The proof of the Steiner construction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in Euclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.

10. Daniel A. Griffith, Simulating K = 3 Christaller Central Place Siructures: An Algorithm Using A
Constant Elasticity of Substitution Consumption Function, 1989.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines. This algo-
rithm simulates Christaller K = 3 central place structures, for a four-level hierarchy. It is based upon earlier
published work by the author. A description of the spatial theory, mathematics, and sample output runs
appears in the monograph. A digital version is available from the author, free of charge, upon request; this
request must be accompanied by a 5.5-inch formatted diskette. This algorithm has been developed for use
in Social Science classroom laboratory situations, and is designed to (a) cultivate a deeper understanding of
central place theory, (b) allow parameters of a central place system to be altered and then graphic and tab-
ular results attributable to these changes viewed, without experiencing the tedium of massive calculations,
and (c) help promote a better comprehension of the complex role distance plays in the space—economy. The
algorithm also should facilitate intensive numerical research on central place structures; it is expected that
even the sample simulation results will reveal interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space—economy; both linear
and non-linear spatial demand functions are discussed. The mathematics is concerned with (a) integration of
non-linear spatial demand cones on a continuous demand surface, using a constant elasticity of substitution
consumption function, (b) solving for roots of polynomials, (c) numerical approximations to integration and
root extraction, and (d) multinomial discriminant function classification of commodities into central place
hierarchy levels. Sample output is presented for contrived data sets, constructed from artificial and empirical
information, with the wide range of all possible central place structures being generated. These examples
should facilitate implementation testing. Students are able to vary single or multiple parameters of the
problem, permitting a study of how certain changes manifest themselves within the context of a theoretical
central place structure. Hierarchical classification criteria may be changed, demand elasticities may or may
not vary and can take on a wide range of non-negative values, the uniform transport cost may be set at
any positive level, assorted fixed costs and variable costs may be introduced, again within a rich range of
non-negative possibilities, and the number of commodities can be altered. Directions for algorithm execution
are summarized. An ASCII version of the algorithm, written directly from GWBASIC, is included in an
appendix; hence, it is free of typing errors.

11. Sandra L. Arlinghaus and John D. Nystuen, Environmental Effecis on Bus Durability, 1990.

This monograph draws on the authors’ previous publications on “Climatic” and “Terrain” effects on
bus durability. Material on these two topics is selected, and reprinted, from three published papers that
appeared in the Transportation Research Record and in the Geographical Review. New material concerning
“congestion” effects is examined at the national level, to determine “dense,” “intermediate,” and “sparse”
classes of congestion, and at the local level of congestion in Ann Arbor (as suggestive of how one might use
local data). This material is drawn together in a single volume, along with a summary of the consequences of
all three effects simultaneously, in order to suggest direction for more highly automated studies that should
follow naturally with the release of the 1990 U. S. Census data.

19. Daniel A. Griffith, Editor. Spatial Statistics: Past, Present, and Future, 1990.

Proceedings of a Symposium of the same name held at Syracuse University in Summer, 1989. Content
includes a Preface by Griffith and the following papers:

Brian Ripley, “Gibbsian interaction models”;
J. Keith Ord, “Statistical methods for point pattern data”;
Luc Anselin, “What is special about spatial data™;
Robert P. Haining, “Models in human geography:
problems in specifying, estimating, and validating models for spatial data”;
R. J. Martin, “The role of spatial statistics in geographic modelling”;
Daniel Wartenberg, “Exploratory spatial analyses: outliers, leverage points, and influence functions”;



J. H. P. Paelinck, “Some new estimators in spatial econometrics”;
Daniel A. Griffith, “A numerical simplification for estimating parameters of spatial autoregressive models”;
Kanti V. Mardia “Maximum likelihood estimation for spatial models™;
Ashish Sen, “Distribution of spatial correlation statistics”;
Sylvia Richardson, “Some remarks on the testing of association between spatial processes™;
Graham J. G. Upton, “Information from regional data”;
Patrick Doreian, “Network autocorrelation models: problems and prospects.”
Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some cases, by

an author’s Rejoinder to the Discussion.

13. Sandra L. Arlinghaus, Editor. Solstice—I, 1990.

William Kingdon Clifford, Reprint of “Postulates of the science of space”;

Sandra L. Arlinghaus, “Beyond the fractal”;

William C. Arlinghaus, “Groups, graphs, and God”;

John D. Nystuen, Reprint of “A City of strangers: Spatial aspects of alienation in the Detroit
metropolitan region”;

Sandra L. Arlinghaus, “Scale and dimension: Their logical harmony”;

Sandra L. Arlinghaus, “Parallels between parallels™;

Sandra L. Arlinghaus, William C. Arlinghaus, and John D. Nystuen, “The Hedetniemi matrix

sum: A real-world application”;
Sandra L. Arlinghaus, “Fractal geometry of infinite pixel sequences: ‘Super—definition’ resolution?”;



SOLSTICE: AN ELECTRONIC JOURNAL OF GEOGRAPHY AND MATHEMATICS
Founding Editor, Sandra L. Arlinghaus
Dairector, IMaGe
Volume I, number 1, Summer 1990
Volume I, number 2, Winter 1990
Volume II, number 1, Summer 1990

Solstice is geography’s first electronic journal. Articles are typeset using TgX so that mathematical
notation, as well as usual text, may be transmitted as an ASCII file to individuals requesting copies of
Solstice. The electronic file is transmitted, free of charge, across the bitnet network. Individuals wishing
hard copy obtain it by downloading the electronic TEX file at their own expense to produce typeset copy
on the equipment of their university. Because exactly the number of copies desired are produced, this is
an environmentally-aware method of producing journals; it is also extremely inexpensive, particularly for
mathematical typesetting.

Because the capability to transmit photos and other graphics is not yet available, individuals wishing to
have the complete document may purchase it from IMaGe at a cost of $15.95 per year. The two copies per
year (mailed on e-mail at (or near) the precise times of the Summer and Winter astronomical solstices) are
downloaded on a Xerox 9700 at The University of Michigan (on a special account for Solstice) and placed
in the on-demand monograph series of IMaGe-also an environmentally-sound publication procedure.



DISCUSSION PAPERS-ORIGINAL
Editor, Daniel A. Griffith
Professor of Geography
Syracuse University
Founder as an IMaGe series: Sandra L. Arlinghaus

1. Spatial Regression Analysis on the PC: Spatial Statistics Using Minitab. 1989. $12.95.



DISCUSSION PAPERS-REPRINTS
Editor, John D. Nystuen
Professor of Geography and Urban Planning
The Unwversity of Michigan
Founder as an IMa(Ge series: Sandra L. Arlinghaus

1. Reprint of the Papers of the Michigan InterUniversity Community of Mathematical Geographers. Editor,
John D. Nystuen. Entire volume of twelve papers: $39.95.

Contents—original editor: John D. Nystuen.

1. Arthur Getis, “Temporal land use pattern analysis with the use of nearest neighbor and quadrat methods.”
July, 1963

2. Marc Anderson, “A working bibliography of mathematical geography.” September, 1963.
William Bunge, “Patterns of location.” February, 1964.

Michael F. Dacey, “Imperfections in the uniform plane.” June, 1964.

e

. Robert S. Yuill, A simulation study of barrier effects in spatial diffusion problems.” April, 1985.

. Stig Nordbeck, “The law of allometric growth.” June, 1965.

Waldo R. Tobler, “Numerical map generalization;” and Waldo R. Tobler, “Notes on the analysis of
geographical distributions.” January, 1966.

9. Peter R. Gould, “On mental maps.” September, 1966.

10. John D. Nystuen, “Effects of boundary shape and the concept of local convexity;” Julian Perkal, “On the
length of empirical curves;” and Julian Perkal, “An attempt at objective generalization.” December, 1966.

5
6. Willian Warntz, “A note on surfaces and paths and applications to geographical problems.” May, 1965.
(é
8

11. E. Casetti and R. K. Semple, “A method for the stepwise separation of spatial terends.” April, 1988.

12. W. Bunge, R. Guyot, A. Karlin, R. Martin, W. Pattison, W. Tobler, S. Toulmin, and W. Warntz, “The
philosophy of maps.” June, 1968.
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1. Allen K. Philbrick. This Human World.



R e

Publications of the Institute of Mathematical Geography have been reviewed in

The Professional Geographer published by the Association of American Geographers;

The Urban Specialty Group Newsletier of the Association of American Geographers;
Mathematical Reviews published by the American Mathematical Society;

The American Mathematical Monthly published by the Mathematical Association of America;
Zentralblatt Springer-Verlag, Berlin

Mathematics Magazine , published by the Mathematical Association of America.
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