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CHAPTER 1 

INTRODUCTION 

With the ever-increasing availability and decreasing costs of high-throughput SNP 

genotyping, contemporary genetic association studies now incorporate more information 

than anyone would have imagined even five years ago.  While SNP genotyping was once 

performed sparingly and painstakingly for highly localized genetic regions harboring 

candidate genes or strong linkage results, it is now performed automatically, abundantly, 

and, increasingly, genome-wide.  

 While statistical geneticists once focused their efforts on elegant methods for 

extracting the maximum amount of information from sparse genotype data, these efforts 

have shifted.  As genotyping technology soars ahead, the problem of sparse data has been 

all but eliminated, yet the demand for statistical methods remains strong.  Even with the 

high density of current SNP chips, methods to extrapolate from this information to infer 

genotypes for even more SNPs are under development (Li et al. 2007, Marchini et al. 

2007).  On the other hand, the very richness of the available data presents new problems 

which must be addressed, in particular the still unresolved problem of how to extract the 

right information and draw meaningful conclusions from the almost overwhelming 

amount of data. 

 The problem of multiple testing is well-known and methods for adjustment pre-

date most of us (Bonferroni 1936).  Until recently, however, the available methods for 

multiple-testing adjustment required the assumption of independent tests, an assumption 

that has become less and less realistic as the density of SNP genotype data has increased.  

In Chapter 2, I address the problem of adjusting for multiple tests in genetic association 
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studies where substantial correlation between tests is the norm.  Recent approaches to this 

problem have enlisted simulations or permutations of the data to approximate the 

behavior of correlated test statistics under the null hypothesis of no genetic association.  I 

present a new approach that attains the same accuracy as these methods but requires 

much less computation and is orders of magnitude faster.  Seaman and Müller-Myhsok 

(2005) have shown that when multiple SNPs are tested for association, the score statistics 

have a multivariate normal distribution in the common case where association tests are 

based on generalized linear models.  I show that this is also true when testing multiple 

SNPs for association with multiple traits under multiple genetic models.  I derive the 

appropriate covariance matrix and present a method for computing multiple-testing-

adjusted P-values directly from the multivariate normal distribution, rather than through 

simulation.  This method achieves the target type I error rate in a variety of simulations, 

and demonstrates a nearly one-to-one relationship with permutation-based P-values 

computed in the course of a large candidate gene analysis (Gaulton et al. 2007) 

performed as part of the Finland-United States Investigation of NIDDM Genetics 

(FUSION) study (Valle et al. 1998). 

As technological advances have made it possible to genotype many SNPs, follow-

up of interesting results in independent samples has become a more feasible option.  It 

has also become less of an option and more of an obligation, since with the large number 

of tests in a typical study, even extremely significant results should be treated with 

caution.  Methods for combining results from multiple studies are well-established (for 

example, Mantel and Haenszel 1959, Mantel 1963), but meta-analyses based on genetic 

association tests are subject to the same problem described above and will require 

adjustments for multiple correlated tests.    

In Chapter 3, I extend the method presented in Chapter 2 to adjust meta-analyses 

involving correlated association tests for multiple testing.  I present variants of the 

method to address study design issues present in most meta-analyses, such as data 
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missing-at-random, selection of only the best results for follow-up, or two-stage design, 

where only results passing a pre-designated significance criteria are followed up in 

consecutive samples.  Simulations based on haplotype data collected as part of a five-

sample meta-analysis demonstrate that even when the number of tests is large and 

correlation between tests is substantial, these methods can provide accurate control of the 

type I error rate for meta-analyses in a variety of settings. 

With the recent strides in genotyping technology, it is likely that the quality of 

genotype data has continued to improve as well.  However, detection of errors in the data 

remains difficult, especially for case-control studies involving unrelated individuals.  The 

extent to which genotype error influences the power and validity of association tests, and 

how much error may be tolerated, remain important questions in the context of both case-

control and family-based association testing.  A related issue is missing genotype data.  

Since data missing at the individual level are often the result of no-call procedures 

designed to weed out potential genotype errors, they are unlikely to be missing-at-

random, which means that the available non-missing data may not be an accurate 

representation of the true distribution of genotypes. 

In Chapter 4, I address these related issues of genotype error and missing 

genotype data, with particular attention to the fact that both errors and missing genotypes 

are likely to occur at differential rates depending on an individual’s true genotype.  

Common problems such as the presence of unknown variants in the primer region have 

been observed to affect most major genotyping platforms (Koboldt et al. 2006), and may 

lead to the misclassification of heterozygous genotypes as homozygous genotypes due to 

failure of one allele to amplify, as well as to the loss of genotypes due to failure of both 

alleles to amplify.  As the least frequent genotypes, minor allele homozygotes may be 

more likely to be misclassified or classified as no-calls by genotype-calling algorithms, 

since precision is lower for these genotypes.  Using replicate Sequenom data collected as 

part of the FUSION study and replicate unfiltered HapMap data created as part of the 
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HapMap quality control exercises (International HapMap Consortium 2005, Online 

Supplement), I assess the degree of differential rates of genotype error and missing data 

across a large number of genotyping platforms.  I find strong evidence for both 

differential error and loss of genotypes, and find that the extent and patterns vary 

considerably across platforms.  To investigate the tolerance of case-control and family-

based association tests for incomplete and lower-quality data, I perform simulated 

association tests in which genotype errors and missing genotypes are sampled based on 

the differential rates of error and missing data observed in initial genotyping attempts in 

the Sequenom data.  I find that for case-control association tests, although the test for 

equal allele frequencies is quite sensitive to incomplete data, the Cochran-Armitage test 

for trend (Cochran 1954; Armitage 1955) is remarkably robust to all levels of incomplete 

data, and the main reason to resolve incomplete data in this case is to avoid power loss.  

For family-based association tests, however, I find that the transmission/disequilibrium 

test (TDT) was highly sensitive to data quality, and that the rate of type I error more than 

doubled when only 5-10% of individuals had missing genotypes.  Finally, I assess the 

effect of the observed distribution of genotype errors and missing data across SNPs on a 

genome-wide association study, where extremely bad data for a single SNP could 

potentially alter the conclusions of the entire study.  I find that for the allele frequency 

test and especially the TDT, the expected study-wide false positive rate in a genome-wide 

study is inflated due to genotype error and missing data.  The target type I error rate can 

be obtained with the TDT if extremely stringent quality control measures are 

implemented.  I conclude by recommending 1) the use of trend tests in place of the allele 

frequency test, and 2) future work on appropriate levels of quality control for the TDT, or 

alternatively the use of a model which accounts for differential rates of genotype error 

and missing data.
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CHAPTER 2 

SO MANY CORRELATED TESTS, SO LITTLE TIME!  RAPID ADJUSTMENT 

OF P-VALUES FOR MULTIPLE CORRELATED TESTS 

This chapter has been published with the same title in the American Journal of Human 

Genetics (2007, v. 81, pp 1158-1168). 

Contemporary genetic association studies may test hundreds of thousands of 

genetic variants for association, often with multiple binary and continuous traits or under 

more than one model of inheritance.  Many of these association tests may be correlated 

with one another due to linkage disequilibrium (LD) between nearby markers and 

correlation between traits and models.  Permutation tests and simulation-based methods 

are often employed to adjust groups of correlated tests for multiple testing, since 

conventional methods such as Bonferroni correction are overly conservative when tests 

are correlated.  We present here a method of computing P-values Adjusted for Correlated 

Tests (PACT) that attains the accuracy of permutation or simulation-based tests in much 

less computation time, and show that our method applies to many common association 

tests based on multiple traits, markers, and genetic models.  Simulation demonstrates that 

PACT attains the power of permutation testing and provides a valid adjustment for 

hundreds of correlated association tests.  In data analyzed as part of the Finland-United 

States Investigation of NIDDM Genetics (FUSION) study (Valle et al. 1998), we observe 

a near one-to-one relationship (r2 > .999) between PACT and the corresponding 

permutation-based P-values, achieving the same precision as permutation testing but 

thousands of times faster. 
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2.1 Introduction 

Improvements in genotyping technology and the accompanying reductions in genotyping 

cost have led to an unprecedented wealth of genetic data to analyze.  In genome-wide 

association (GWA) studies, it has become routine to genotype hundreds of thousands of 

SNP markers.  Even candidate gene studies may now involve hundreds or thousands of 

SNPs.  Studies may test multiple binary and continuous outcome variables for genetic 

association – for example, one or more diseases and a set of disease-related quantitative 

traits.  It is also possible to test each SNP for association in several ways – for example, 

by allowing competing models of inheritance when the true model is unknown.  The 

ability to perform so many tests brings with it a greater potential than ever before to 

identify disease-predisposing variants, but also a new set of issues regarding the most 

efficient way to use the available information. 

An important issue affecting large-scale association analyses is how best to adjust 

for multiple testing, given the likely correlation between many of the tests.  With the 

density of SNPs in contemporary candidate gene and GWA studies, linkage 

disequilibrium ensures that there often will be correlation between tests performed on 

nearby SNPs.  Additionally, phenotypic traits collected for a particular study are likely to 

be correlated, and tests based on different models of inheritance such as the recessive and 

dominant model will certainly be correlated.  A danger of using traditional methods such 

as Bonferroni correction in this context is that truly interesting findings may be rendered 

insignificant by an overly severe correction.   

For L independent tests with a pre-set significance level, α, approximately αL of 

the tests will appear significant by chance alone.  Without adjustment for multiple testing, 

the expected Type I error rate for the group of tests (the probability that at least one test is 

significant given no true association) is 1 – (1 – α)L ≈ αL, rather than α, the target type I 

error rate.  The best P-values can be adjusted for multiple testing with the Bonferroni 
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procedure, which effectively multiplies the best P-value (Pmin) by L, or the more precise 

Šidák procedure, which computes the adjusted P-value as 1 – (1 – Pmin)L and guarantees a 

type I error rate of α for independent tests (Šidák 1967).  

While Bonferroni and Šidák adjustments are valid in the case of independent 

tests, they tend to be overly conservative in association studies where the tests are 

correlated.  A valid adjustment for multiple testing must account for the correlation 

between tests.  Permutation tests provide a valid adjustment if the data are permuted in a 

way that simulates the null hypothesis but maintains the original correlation structure.   

Randomly permuting and re-analyzing the data many times and comparing the 

permutation-based results to the original results allows estimation of the probability of 

observing a P-value as small as the original minimum, given the correlation between 

tests.  This solution is attractive due to its simplicity and robustness, and is often 

considered the gold standard for analysis.  However, in the context of large association 

studies, permutation is likely to require too much computation time, so computationally-

efficient alternatives are desirable.   

Some proposed alternatives have focused on extending the Bonferroni or Šidák 

adjustments to account for the correlation between tests.  When the L tests are correlated, 

the true probability of observing a P-value as small as Pmin is smaller than the Šidák 

estimate 1 – (1 – Pmin)L because there is less variation between test statistics than if the 

tests were independent, making extreme test statistics less likely.  In effect, it is as though 

fewer tests were performed; for this reason, several studies suggest replacing L in 1 – (1 – 

Pmin)L with an estimate of the effective number of independent tests (Cheverud 2001; 

Nyholt 2004; Li and Ji 2005).  However, the suggestion that a single parameter fully 

captures the correlation structure has been rejected in the majority of cases when tested 

on SNPs in LD (Dudbridge and Koeleman 2004; Salyakina et al. 2005).  Salyakina et al. 

also found in simulation studies of the method of Nyholt (2004) that the “nominal 5% 

type I error rate varied from under 3% to over 7%” and that while this approach “may be 
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useful as an exploratory tool, it is not an adequate substitute for permutation tests” (p. 

19).  

A shortcoming of methods based on an effective number of tests is that they do 

not account for the distribution of the test statistics.  The Šidák-adjusted P-value has 

identical form regardless of distribution, which is appropriate for independent tests; 

however, the analogous probability for correlated tests depends on the joint distribution 

of the test statistics, and any valid extension of the Šidák method must take this into 

account.  If the test statistics follow an asymptotic multivariate normal distribution, as is 

true for many tests, the adjusted P-values may be computed as multivariate normal 

probabilities.  This strategy has previously been used in survival analysis (Wei et al. 

1989; Wei and Glidden 1997) and clinical trials (James 1991) for ten or fewer correlated 

tests.  More recently, Lin (2005a) and Seaman and Müller-Myhsok (2005) have 

employed this strategy in the genetics literature to adjust P-values from a larger number 

of tests.  In these studies, as in permutation tests, replicates of the test statistics are 

simulated under the null hypothesis of no association.  However, these methods achieve 

greater speed than permutation tests by simulating the test statistics directly from the 

asymptotic distribution rather than permuting and re-analyzing the entire dataset in each 

replicate.   

Here we present an alternative method of P-value adjustment that attains even 

greater speed by avoiding the need for simulation altogether.  We propose comparing the 

observed test statistics directly to their asymptotic distribution through numerical 

integration. We show that for many common association tests the joint distribution of the 

test statistics is multivariate normal with a simple covariance structure even for 

association tests involving multiple correlated traits, markers, and genetic models.  We 

demonstrate through simulations and through analysis of data from the Finland-United 

States Investigation of NIDDM Genetics (FUSION) study (Valle et al. 1998) that this 
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method attains the same accuracy as permutation tests or their simulation-based 

counterparts and is orders of magnitude faster than these methods.   

2.2 Methods 

2.2.1 P-values Adjusted for Correlated Tests (PACT) 

Consider L tests of association with test statistics 1,  ,  LT TK and P-values P1, …, PL; 

denote the ordered P-values (2) (3) ( ) ... min LP P P P≤ ≤ ≤ ≤ .  It is common to focus interest 

on the smallest P-values.  However, each individual P-value is based on a single 

hypothesis test that does not account for the fact that L tests were actually performed.  

The Šidák (1967) P-value, 

     PŠidák ( )1 1 ,L
minP= − −     (2.1) 

estimates the probability of observing at least one P-value ≤ minp under the null hypothesis 

for L independent tests.  We suggest here an estimator of this probability for correlated 

tests which we denote PACT (P-value Adjusted for Correlated Tests).  While PŠidák depends 

only on Pmin, PACT is based on the joint distribution of all L statistics 1,  ,  LT TK  and their 

correlation structure.   

As we show in the next section, many common association tests are based on or 

related to test statistics that are asymptotically distributed as multivariate normal with 

known covariance matrix.  We assume here that the vector of test statistics ( )~ ,N 0 Σ&Τ  

where ~&  denotes asymptotic (large sample) distribution, 0 is an L-dimensional vector of 

zeroes, and Σ is an L×L correlation matrix.  Then, ( )1i iP T= −Φ  for one-sided tests 

and ( )( )2 1i iP T= −Φ  for two-sided tests, whereΦ is the standard normal distribution 

function. 
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To adjust the minimum observed P-value Pmin to reflect that L correlated tests 

were performed, we compute the probability of observing at least one P-value as small as 

Pmin under the null hypothesis of no association, given that ( )~ ,N 0 Σ&Τ  when the null 

hypothesis is true.  Denoting this probability ,ACTP  and letting 1,..., LZ Z be random 

variables from the multivariate normal distribution with covariance matrix ,Σ  

( ) ( )( )

( )
( )

1
1

1
1

1 max ,..., 1      for one-sided tests
2.2

1 max ,..., 1 for two-sided tests,2

L min

ACT min
L

P Z Z P
P PP Z Z

−

−

⎧ − < Φ −
⎪

= ⎨ ⎛ ⎞⎛ ⎞− < Φ −⎪ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎩

   

with the obvious generalization to a combination of one and two-sided tests.  Figures 1a 

and 1b illustrate the probabilities for one and two-sided tests when L = 2.  The elliptical 

lines represent the contours of the bivariate normal density function. ,ACTP is the 

probability that a random point from this distribution will fall within the shaded area. 

 Applying the sequentially rejective multiple test procedure of Holm (1979), the 

ordered P-values (2) (3) ( ) ... min LP P P P≤ ≤ ≤ ≤ may be adjusted and tested for significance 

one at a time, starting with Pmin.  We first adjust Pmin for multiple testing by computing 

PACT as in equation (2.2). If ,ACTP α<  the null hypothesis is rejected for the test 

associated with Pmin and we proceed to (2).P   To adjust (2)P  for multiple testing, we can 

remove the test associated with Pmin from consideration, since the null hypothesis for this 

test has been rejected.  We can now compute (2)
ACTP according to the formula in equation 

(2.2) but replacing Pmin with P(2), L with 1L − , and Σ with the covariance matrix between 

the remaining 1L −  tests.  If (2) ,ACTP α<  we then reject the null hypothesis associated 

with (2)p and compute (3)
ACTP with (2)P removed from consideration, continuing in this fashion 

until ( )k
ACTP α≥ for some k, at which point we conclude that all remaining tests are 

insignificant.  A good example of this kind of sequential testing in the multivariate 

normal case can be found in Wei et al. (1989). 
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2.2.2 Asymptotic Multivariate Normality of Common Association Test Statistics 

Adjustment for multiple correlated tests with PACT requires that test statistics are 

asymptotically distributed as multivariate normal with known covariance matrix.  

Seaman and Müller-Myhsok (2005) have shown that for association tests based on M 

markers, one can apply the result that a vector of score statistics has a multivariate normal 

asymptotic distribution under the null hypothesis (McCullagh and Nelder 1989).  We 

extend this result to include association tests based on correlated traits by deriving the 

asymptotic distribution for tests of association between M markers and K binary and 

continuous outcome variables.  We show that this result can also be readily applied when 

multiple genetic models are tested.  Although we focus on score tests, these results also 

apply to Wald and likelihood ratio tests, since they are asymptotically equivalent to the 

score test (Cox and Hinkley 1974). 

 For each individual (i = 1, …, N), let [ ]1 2
T

i i i iKY Y Y=Y L be a vector of K 

trait variables (where T indicates transpose) which may include both quantitative traits 

and binary traits such as disease status. Let Gi be a genotype vector containing allele 

counts of 0, 1, or 2 for each of M markers, and let Xi be a covariate vector that contains 1 

as the first element and can also include environmental and demographic variables such 

as age and sex.   

Many of the commonly used tests for association between traits and genotype are 

based on or related to the score statistics from a generalized linear model.  Such tests 

include the simple test of equal allele frequency for cases and controls, the Cochran-

Armitage test for trend (Cochran 1954; Armitage 1955) and linear and logistic regression.  

A key assumption of generalized linear models is that  

( ) ( )| ,ik i i ikE Y h η=X G , 
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where h is a function and T T
ik i k i kη α β= +X G , where kα  is a vector of covariate effects 

that includes an intercept term and kβ  is an M-dimensional vector of genetic effects.  

Under this assumption, a linear combinationηik of genotypes and covariates provides all 

the information necessary to predict the mean trait value, but the relationship between 

predicted trait value and ikη  may be non-linear.  For example, in a trend test or logistic 

regression model, ( )
1

ik

ikik
eh

e

η

ηη =
+

. 

 If K traits are tested for association with M genotypes, the KM-dimensional vector 

of score statistics is 

( )
1

N

i i i
i

β
=

= ⊗∑U Y - Y G% , 

where iY%  is the vector of predicted trait values given covariates, assuming no genetic 

association, and ⊗  represents the Kronecker product.  As we show in the appendix, 

( )~ 0, ,β βU V& N  where βV can be estimated as ( ) 1
,

−⎡ ⎤Ω⊗ −⎢ ⎥⎣ ⎦
GG GX XX XGT T T T  the 

Kronecker product of the sample covariance matrices of traits and genotypes, 

conditioning on covariates.  Here [ ]1 2 N=G G G GL  and [ ]1 2 N=X X X XL  

are matrices of genotypes and covariates and ( )( )
1

N T

i i i i
i=

Ω = − −∑ Y Y Y Y% % is the trait 

covariance matrix, conditioned on X.  

 The P-values from individual association tests are generally based on test 

statistics that are normalized to have variance one.  A vector of L score statistics βU is 

easily transformed to a normalized vector of test statistics T by computing each element 

of T as ,

,

β

β

=
U
V

l
l

ll

T , where ,lβU is the lth element of βU and ,llβV  is the lth element along 

the diagonal of βV  for l = 1, …, L; it is also common to work with 2 1
, , ,l l ll lT β β β

−= U V U .  It 
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is easy to show that ( )~ 0,N R&T , where R is the correlation matrix corresponding to the 

covariance matrix .βV   Using this fact, PACT can then be computed as in equation (2.2) 

given only Pmin and R.  R in turn can generally be estimated as a simple function of the 

sample correlation matrices of traits and markers, conditioned on any covariates.  

Appropriate estimates of R  are shown for a few examples in Table 2.1.   

 The above model may be trivially extended to include tests based on multiple 

genetic models.  For example, if a marker is tested for association in three ways, 

assuming an additive, dominant, and recessive model, it can be assigned three elements in 

Gi, each containing the appropriate genotype code.  For instance, the genotype codes for 

an individual with two copies of the reference allele would be 2, 1, and 1 for the additive, 

dominant, and recessive model respectively.  The score statistics and covariance matrix 

are then computed as usual.  

2.2.3 Computation of PACT 

Computation of ACTp in (2) requires integration of the multivariate normal density 

function.  Although the integral has no closed-form solution, multivariate normal 

probabilities can be integrated numerically when the covariance matrix is known or can 

be estimated.  Genz (1992; 1993) and Genz and Bretz (2002) have developed a 

computationally efficient method for numerical integration of the multivariate normal 

distribution which is available as Fortran code that can handle integrands of up to 1000 

dimensions (Genz 2000).  This Fortran code has been incorporated into the package 

‘mvtnorm’ (Genz et al. 2007) in the R software environment (R Development Core Team 

2007), and the latest version of ‘mvtnorm’ (versions ≥ 0.8-0) provides sensible estimates 

of the multivariate normal integral for up to 1000 dimensions (Genz et al. 2007).  We 

apply Genz’s algorithm as implemented in ‘mvtnorm’ to estimate PACT for several 

common association tests.  In the interests of computational efficiency, we may choose 
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the requested precision level depending on the magnitude of the P-values and the nature 

of the analysis.  For example, one may desire a quick low-precision analysis for 

exploratory purposes or for clearly non-significant results, but want to devote more 

computational resources to a high-precision final analysis.  Our R code for computation 

of PACT is available online at http://csg.sph.umich.edu/boehnke/p_act.php. 

2.2.4 Assessment of Type I Error Rate and Power 

To estimate the type I error rate and power of adjusting for multiple testing with PACT, we 

performed simulations that involved both binary and quantitative traits.  In each case, we 

estimated type I error by simulating 100,000 datasets under the null hypothesis, where 

trait was assigned at random independent of genotype.  Similarly, we estimated power by 

creating 10,000 replicate datasets where trait was influenced by genotype.  For each 

simulation, we performed the relevant set of association tests and computed three overall 

P-values:  PACT and PŠidák, as in equations (2.1) and (2.2) above, and Pperm.  To calculate 

Pperm, we first created 1000 permutations of the original data by randomly shuffling 

individual genotype vectors while leaving the trait data and any covariates intact.  In this 

way, the permuted samples simulated the null hypothesis of no association, but 

maintained the original correlation between genotypes, between traits, and between traits 

and covariates.  We tested each of these 1000 samples for association and estimated Pperm 

as the proportion of samples with a minimum P-value as low as that observed in the 

original data.  Although 1000 permutations is much lower than we would use in practice, 

it is sufficient for estimating type I error and power at the significance level α = .05 we 

chose to use.  

 Binary trait simulations:  We simulated case-control status for 1389 individuals 

genotyped for 20 HNF1A SNPs as part of the Finland-United States Investigation of 

NIDDM Genetics (FUSION) study of the genetics of type 2 diabetes (Valle et al. 1998).  
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HNF1A is one of six genes known to be involved in maturity-onset diabetes of the young 

(Fajans et al. 2001) and was analyzed by FUSION as a potential candidate gene for type 

2 diabetes (Bonnycastle et al. 2006).  Of the 20 SNPs genotyped for the study, most had 

been chosen to be non-redundant (r2 < .8) and as Figure 2.2 shows, only moderate LD 

was present. 

For type I error estimation we randomly assigned case-control status in each 

simulation.  For power estimation we chose one of the 20 SNPs as a disease SNP and 

randomly assigned case-control status according to a multiplicative model of disease risk 

for each individual, where genotype relative risk (GRR) was chosen to ensure a roughly 

equal number of cases and controls and a correlation of ~.12 between case-control status 

and the disease gene.  This corresponded to a GRR of 1.2 if the disease SNP was our 

most common SNP, with a minor allele frequency (MAF) of .48, and a GRR of 1.4 if the 

disease SNP was our least common SNP (MAF = .04).  Individuals missing genotype 

data for the disease SNP were assigned the mean GRR.  To model the common situation 

in which the genotyped SNPs are proxies for a disease-predisposing variant that was not 

genotyped, we then omitted the disease SNP from consideration and tested only the 

remaining 19 SNPs for association when estimating power.  For estimation of the type I 

error rate there was no disease SNP, so in this case we tested all 20 SNPs.   

 We first tested each of the 19 or 20 SNPs for association with a Cochran-

Armitage test for trend, which assumes an additive model of disease risk.  In each case, 

we computed PACT, PŠidák, and Pperm to adjust for the 19 or 20 tests.  Since 215 individuals 

were missing data on at least one genotype, we performed each association test using 

only individuals with data for the SNP being tested, but estimated the covariance matrix 

using genotype data from all individuals, with missing genotype data for each SNP filled 

in with the mean allele count for that SNP. 

Using the same data, we also tried testing every SNP under the additive, 

dominant, and recessive models and adjusting for all of the tests with PACT, PŠidák, and 
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Pperm.  For SNPs with < 20 minor allele homozygotes, we omitted the relevant dominant 

or recessive model from analysis.  This led to the exclusion of four models, for a total of 

56 tests before also removing the disease SNP from consideration.  

For the same 1389 genotyped individuals, we simulated 5 correlated binary traits  

according to a probit model.  For each simulation, we first generated 5 equally correlated 

random variables Zi1, …, Zi5 from the multivariate normal distribution for each individual 

i.  For j = 1, …, 5, each binary trait Yij was defined as 1 if Zij > 0, and 0 otherwise.  The 

resulting 5 binary traits were equally correlated with one another, with all pairwise 

correlations ≈ .7.  For power estimation, we allowed one trait to be influenced additively 

by the disease SNP by defining it to be 1 if Zij + ( )iG G β−  > 0 and 0 otherwise, where 

iG  is disease allele count (0, 1, or 2) for individual i and G is the mean allele count over 

all individuals with genotypes for the disease SNP.  For individuals missing genotypes 

for the disease SNP, we set iG G−  to zero.  We then used Cochran-Armitage trend tests 

to test each of the 20 SNPs for association with each of the 5 traits, for a total of 100 tests 

(or 95 when the disease SNP is omitted).  We again used PACT, PŠidák, and Pperm to adjust 

for the 95 or 100 tests. 

  Quantitative trait simulations:  We first simulated datasets of 2000 individuals 

with 10 correlated quantitative traits and genotype data for a single SNP with allele 

frequency .5.  We assigned trait values ijY  according to the linear model 

ij j i j i ijY X Gα β ε= + +  where Gi is the allele count for individual i, Xi is a covariate 

generated as a linear function of Gi and a random normal component such that the 

correlation between Xi and Gi  ~ .25, ijε  is a random component, and jα and jβ are 

parameters that determine the effect of the covariate and genotype on trait j.  For each 

trait, jα was drawn from a normal distribution tightly centered around a fixed effect size 

so that covariates had a similar, though not identical, effect on the ten traits.  We set 
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0jβ =  for j = 1,…,10 when computing type I error and 1 0β >  and 0jβ =  for j = 2,…, 

10 when computing power.  We simulated [ ]1 2 10
T

i i i iε ε ε ε= L  from the 

multivariate normal distribution ( )0,N YR  with one of the five correlation structures 

shown in Figure 2.3.  For each simulation, we tested the SNP for association with each 

trait separately with a linear regression of the trait value on allele count and the covariate.  

We used the results from the 10 tests to compute PŠidák, PACT, and Pperm.  We performed 

simulations for lower (.2), higher (.7), and extremely high (.99) values of ρ. 

 We next randomly drew HNF1A genotypes for each individual and simulated ten 

traits using a similar linear model with no covariates.  We tested the traits for association 

with the 20 HNF1A SNPs, for a total of 200 tests.  We estimated type I error as in our 

previous simulations; to estimate power we simulated a model where 1iY  is influenced by 

the least common of the 20 SNPs (MAF = .04).  When 200 tests were involved, 

estimation of Pperm was too computationally intensive, so in this case we estimated PŠidák 

and PACT only 

 Finally, we performed both the single-SNP and 20-SNP simulations for a set of 5 

binary and 5 continuous traits.  We generated 10 multivariate normal random variables 

according to the model ,ij j i j i ijZ X Gα β ε= + +  with Xi, Gi, ijε , jα , and jβ defined as 

above.  We defined the 5 continuous traits as ij ijY Z= for j = 1, …, 5 and the 5 binary traits 

by setting 1ijY =  if ijZ > 1.25 and 0 otherwise for j = 6, …, 10.  Each binary trait had a 

prevalence of  ~ .1 and we chose the covariance of iε such that all pairwise trait 

correlations were between .5 and .7.  We estimated type I error and power as in previous 

simulations. 

 Performance of other methods:  We also used the simulations described above to 

estimate the type I error rate for two methods which estimate an effective number of tests 

(see Introduction).  For the method of Cheverud (2001) and Nyholt (2004), we computed 
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the effective number of tests as ( ) ( )( )1 1 1 /L Var Lλ+ − − , where L is the number of tests 

performed and ( )Var λ  is the variance of the eigenvalues from the correlation matrix 

between the tests.  For the method of Li and Ji (2005), we computed the effective number 

of tests as ( ) ( )( )
1

1
L

i i i
i

I λ λ λ
=

≥ + − ⎢ ⎥⎣ ⎦∑ , where ( )1iI λ ≥  is 1 if the absolute value of the 

ith eigenvalue iλ  ≥1 and 0 otherwise, and iλ⎢ ⎥⎣ ⎦  is the largest integer iλ≤ .  For each 

method, we computed a multiple-testing adjusted P-value by substituting the effective 

number of tests for L in the Šidák formula.  We then estimated the type I error rate as 

described above. 

2.2.5 Comparison between PACT and Pperm in FUSION Data 

To assess how closely estimates of PACT correspond to gold standard estimates based on 

Pperm, we analyzed 3575 SNPs in and near 224 candidate genes which were genotyped on 

1161 type 2 diabetes (T2D) cases and 1174 normal glucose-tolerant controls from the 

FUSION study (Gaulton et al. 2007).  We first tested the 3007 SNPs having ≥ 20 

individuals in each of the three genotype classes for association with T2D using the 

additive, dominant, and recessive models and controlling for age category, sex, and birth 

region as covariates.  For each SNP, we estimated both PACT and Pperm to adjust for the 

three tests, providing 3007 comparisons between  PACT and Pperm.   

We next tested all 3575 SNPs for association with 18 quantitative T2D-related 

traits (residualized on age category, sex, and birth region) on the 1174 controls.  For each 

SNP, we estimated both PACT and Pperm to adjust for the 18 correlated tests, providing 

3575 comparisons between  PACT and Pperm.  To provide additional comparisons between 

PACT and Pperm for highly significant tests, we simulated 9 additional SNPs with minimum 

P-values of 1×10-5, 5×10-6, 2.5×10-6, 1×10-6, 5×10-7, 2.5×10-7, 1×10-7, 5×10-8, and 

2.5×10-8 and adjusted these minimum P-values for multiple testing with PACT and Pperm.     



 

 19

For all comparisons, we computed PACT at increased precision for more significant 

SNPs, and under the assumption that covariates were independent of genotype.   For Pperm, 

we performed 1,000,000 permutations for the 10 most significant SNPs, 100,000 for the next 

190 significant SNPs, and 10,000 for all other SNPs.  For the 9 SNPs simulated to be highly 

significant, we performed 10,000,000 permutations. 

2.3 Results 

2.3.1 Type I Error Rate and Power for Simulated Data 

Table 2.2 presents estimates of type I error rate (first row) and power (subsequent rows) 

for PŠidák, PACT, and Pperm when the 20 HNF1A SNPs are tested for disease association.  

The estimates in the first row (based on 100,000 simulation replicates each) show that 

both PACT and Pperm have type I error rates ~ .05 and are thus valid in all cases considered: 

when the 20 SNPs are tested for association with a binary trait under an additive model or 

under three competing models, or when the SNPs are tested for association with 5 

correlated binary traits.  Tests based on PŠidák are conservative in each case.  A similar 

pattern was observed for α-levels of .01, .001, and .0001, or when the true model was 

dominant or recessive (data not shown).   

 Each of the next four rows of Table 2.2 present power estimates with a different 

SNP modeled as the disease-predisposing SNP: the most common SNP (MAF=.48), a 

moderately frequent SNP (MAF=.20), the least common SNP (MAF=.04), and the SNP 

least well predicted by a linear function of the others.  The power estimates (based on 

10,000 simulation replicates each) show that tests based on PACT have near identical 

power to permutation tests and are consistently more powerful than Šidák (or Bonferroni) 

adjustment.  Results were similar for the other 16 SNPs (data not shown). 
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Table 2.3 presents estimates of type I error rate and power for tests of association 

with traits correlated as in Figure 3 with ρ = .7; data are presented for 10 quantitative 

traits in rows 1-5 and for 5 binary and 5 quantitative traits in row 6.  The leftmost panel 

shows that when a single SNP is tested for association, PACT and Pperm provide valid tests 

and PŠidák is overly conservative except when traits are independent, as in the first row.  

The next panel shows the familiar pattern of near identical power for PACT and Pperm, 

while PŠidák has reduced power in each situation except independence.  The two panels on 

the right show that results are similar even when 20 correlated SNPs are tested for 

association with 10 correlated traits, for a total of 200 tests.  Similar results were also 

observed for lower levels of correlation (ρ = .2, data not shown) and extremely high 

levels of correlation (ρ =.99) (data not shown).  As expected, the power gains of PACT and 

Pperm over PŠidák were smaller when ρ = .2 and greater when ρ = .99. 

We ran additional simulations testing up to 1000 equicorrelated quantitative traits 

(ρ = .7) for association with a single SNP and a covariate (data not shown).  For 300, 400, 

and 500 tests, estimated type I error rate was .0121 .0112, and .0102 for PŠidák and .506, 

.0499, and .0517 for PACT, suggesting that PACT can achieve the target type I error rate for 

several hundred tests, while PŠidák is increasingly conservative.  For 600, 750, and 1000 

tests, estimated type I error rate was .0102, .0093, and .0086 for PŠidák and .0550, .0593, 

and .0648 for PACT, indicating a possible bias or reduction in the precision of PACT when 

the number of tests is extremely large. 

For the two methods based on the effective number of tests (data not shown), we 

found that the method of Cheverud (2001) and Nyholt (2004) tended to be overly 

conservative and the method of Li and Ji (2005) was anti-conservative in all cases except 

when tests were completely independent.  When a binary trait was tested for association 

with 20 HNF1A SNPs, the type I error rates for the two methods were .0389 and .0613 

for just the additive model or .0297 and .0667 when three genetic models were tested.   

When ten traits were tested for association with a single SNP and a covariate, both 
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methods had a type I error rate ~ .05 when traits were independent; for the other trait 

correlation structures the type I error rate ranged from .0460 to .0504 for the 

Cheverud/Nyholt method and from .0615 to .0666 for the method of Li and Ji,.    

2.3.2 PACT and Pperm in FUSION Data 

Figures 2.4 and 2.5 show the relationship between PACT and Pperm in the context of a FUSION 

study of 3575 SNPs in 224 candidate genes for type 2 diabetes (Gaulton et al. 2007).  PACT 

and Pperm are plotted on a log scale to emphasize the smallest P-values (upper right of figure).  

We obtained the values of PACT and Pperm in Figure 2.4 by testing each SNP for association 

under the additive, dominant, and recessive models and adjusting the minimum P-value from 

these three tests for multiple testing.  We obtained the values of PACT and Pperm in Figure 2.5 

by testing each SNP for association with 18 correlated T2D-related traits, and adjusting the 

minimum P-value for each SNP for the 18 tests.  Figure 2.5 also includes data for 9 highly 

significant simulated SNPs, indicated by filled circles.  In all cases, PACT and Pperm track each 

other quite closely, with all points falling very near the identity line (r2 > .999 for both 

figures).   

2.3.3 Computation Speed: Comparison Between Methods 

Because the goal of our proposed method is to estimate P-values with the same accuracy 

and precision as permutation tests in less time, we timed computation of P-values at a 

constant level of precision.  We compared timings for PACT, Pperm, and one of the 

simulation-based methods (see Introduction) that has been shown to attain the accuracy 

of permutation tests – the direct simulation approach (DSA) of Seaman and Müller-

Myhsok (2005).  We implemented all three methods in R, using the code for the DSA 

provided on the authors’ website.  For each method, we measured the time required to 

compute an adjusted P-value for a fixed Pmin (chosen such that PACT, PDSA, or Pperm ≈ 
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.0001) at a given level of precision (standard error ≤ .00001).  Attainment of this level of 

precision requires ~ 1,000,000 permutations for Pperm and ~ 1,000,000 simulations for 

PDSA.  Since the speed of Pperm depends on sample size, we present timings for three 

typical sample sizes.  For computational efficiency, we tested for association with a 

simple Cochran-Armitage test for trend; models requiring additional computation such as 

logistic or even linear regression would have penalized the permutation tests to a much 

greater degree.  For example, if we had instead tested for association with a logistic 

regression model of trait on genotype with age and sex as covariates, the timings for PACT 

and PDSA would show no noticeable change, but computation of Pperm would have taken > 

300 times longer. 

Table 2.4 compares timings for PACT, Pperm, and PDSA for three representative 

situations.  The first row shows timings when 200 autocorrelated tests are adjusted for 

multiple testing.  This example is meant to approximate the correlation between a series 

of non-redundant SNPs along a chromosome, since correlation is generally high between 

neighboring SNPs and decays with distance.  In this case, computing PACT is ~ 60 times 

faster than PDSA and thousands of times faster than Pperm.  Similar timings for 20, 40, 60, 

80, and 100 autocorrelated tests demonstrate that the computational time required 

increases approximately linearly in the number of tests for all three estimators (data not 

shown).  We also computed PACT for even smaller P-values and greater dimension.  

Adjustment of a minimum P-value of 10-8 with PACT with standard error ≤ 10% of 

estimate required 11 seconds for 200 autocorrelated tests, 25 seconds for 500 tests, and 

70 seconds for 1000 tests.  The same computation for only 200 tests would have required 

> 3 hours for PDSA and 100-800 hours for Pperm, depending on sample size.   

The second row presents the computational time required to test the 20 HNF1A 

SNPs for association.  In this case, PACT can be computed 60 times faster than PDSA and 

up to 5000 times faster than Pperm.  The third row uses the information from the second to 

consider the prospect of 20,000 independent blocks of 20 SNPs with the correlation 
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structure of HNF1A, illustrating what might occur if we tested sets of SNPs from every 

gene in the human genome.  In this situation, permutation testing is essentially infeasible 

except with massive amounts of parallelization, while the same analysis can be 

performed with PACT in a single afternoon. 

2.4 Discussion 

Permutation testing, when performed appropriately, provides an unbiased test of the null 

hypothesis and is widely considered the gold standard to which other estimators and tests 

may be compared.  Its main disadvantage is the time and computational resources 

required to obtain precise P-value estimates, so alternative tests that provide similar 

results with less computational burden can be quite attractive, particularly when a large 

number of tests is involved, or when data are frequently reanalyzed in light of new 

samples or genotypes.   

While conventional distribution-based statistical tests typically require minimal 

computational resources, permutation tests are often employed when the asymptotic 

distribution of the statistic is unknown or difficult to model.  However, for many of the 

tests commonly used in genome-wide association studies, the asymptotic joint 

distribution of the test statistics is known, making analytical methods possible.  As we 

show above, the asymptotic distribution of test statistics from association tests between 

correlated traits, markers, and models is often multivariate normal with known 

covariance matrix.  However, the most significant test statistic from a group of 

multivariate normal test statistics has a distribution function that while known, cannot be 

computed analytically due to the lack of a closed-form solution to the multivariate normal 

integral.  Lin (2005a) and Seaman and Müller-Myhsok (2005) have suggested simulation-

based approaches that can approximate the null distribution of ordered test statistics much 

more quickly than permutation tests.  Our PACT method relies on numerical integration of 
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the distribution function and can approximate the null distribution much more quickly 

than permutation or simulation-based approaches.  

The data presented here suggest that tests based on PACT are appropriate 

substitutes for those based on permutation testing, since PACT consistently attains 

essentially identical results to permutation-based P-values both in simulated data and 

over thousands of association tests performed as a part of a large candidate gene study 

(Gaulton et al. 2007).  While Lin (2005a) and Seaman and Müller-Myhsok (2005) have 

also demonstrated that their estimators (denoted here PLin and PDSA) provide valid tests 

and attain the accuracy of Pperm, PACT demonstrates greater gains in computational 

efficiency.  PACT is typically thousands of times faster than permutation-based P-values at 

a given level of precision.  This makes PACT potentially useful in the contexts of both 

large-scale candidate gene studies, where thousands of tests may be performed, and 

genome-wide association studies, where millions of tests may be performed.  Since the 

precision of this method can be traded for speed, PACT can be tailored both to initial 

exploratory tests where speed is especially important and to more definitive tests where 

greater precision is needed; it can also be computed at increased precision for more 

interesting results.   

Like any estimator, PACT is not appropriate for every analysis.  It was designed to 

adjust the minimum P-value and other ordered P-values for a large number of 1-df tests.  

An advantage of this method is that it allows easy identification of the particular traits, 

variants, and genetic models associated with the most interesting results.  This approach 

is especially relevant if we are looking for a small number of reasonably large genetic 

effects.  If we instead expect a large number of very small effects, a joint analysis of all 

associations simultaneously might be more appropriate.  Typically these methods are 

based on multi-degree-of-freedom tests, which are outside the scope of PACT, but PLin and 

PDSA remain useful alternatives to permutation testing in these situations.  For example, 

the DSA software (Seaman and Müller-Myhsok 2005) computes an adjusted P-value for 
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product methods (see Fisher 1932; Zaykin et al. 2002) as well as for the minimum P-

value.   

The validity of PACT (as well as PLin and PDSA) depends on knowledge of the 

correct asymptotic distribution.  While many common association test statistics are 

asymptotically multivariate normal, use of the asymptotic distribution requires reasonably 

large sample sizes and cell counts and may not be appropriate in all cases – for example, 

dominant or recessive models with a rare minor allele. The solution we have employed 

here and elsewhere (Bonnycastle et al. 2006; Willer et al. 2007; Gaulton et al. 2007) is to 

drop dominant or recessive models with low cell counts from analysis; another solution 

would be to rely on exact tests such as Fisher’s exact test for these models.  A related 

issue is that sample size must be substantially larger than the number of tests for 

asymptotic properties to hold; however, simulations have shown that PLin can achieve the 

target type I error rate when the number of tests far exceeds the sample size (Lin 2005a).  

For situations where the asymptotic distribution is unknown or the sample size is too 

small for asymptotic properties to hold, however, permutation testing may be the 

appropriate choice.  The algorithm of Kimmel and Shamir (2006), which relies on 

importance sampling to sample from the null distribution in a way that mimics 

permutation testing, can also be computed thousands of times faster than permutation 

tests and does not require assumptions about the asymptotic distribution.  A direct 

comparison of the asymptotic methods discussed here and this importance sampling 

method has not been performed but would be of great interest. 

 The validity of PACT and PDSA also depends on accurate estimation of the 

covariance matrix.  Improper handling of missing trait or genotype data is one factor that 

can lead to biased covariance estimates.  While it is rare for samples to contain complete 

genotype and trait data for every individual, only individuals with complete data can be 

used in computation of sample covariance matrices; otherwise the matrices may not be 

positive-definite.  However, exclusion of individuals with incomplete data may lead to 
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biased estimates of the covariance matrix.  Seaman and Müller-Myhsok (2005) suggest 

performing the entire analysis with missing genotype data imputed, but Lin (2005b) 

argues that imputation can adversely impact type I error.  Lin’s estimator is based on 

individual contributions to the score statistic, and he treats missing data for an individual 

by setting the individual component of the appropriate score statistic(s) to zero.  In the 

case of PACT, an analogous approach is to test each trait and marker using only individuals 

with complete data for that trait and marker, but to estimate the covariance matrix of the 

tests using the full sample, with missing data for marker m (or trait k) filled in with the 

mean genotype score for marker m (or the mean value for trait k), conditional on 

covariates.  Although >15% of individuals in our first set of simulations (Table 2.2) were 

missing data on at least one genotype, PACT achieved the target type I error when this 

approach was used. 

Valid covariance matrix estimation also depends on how many tests are 

considered at once.  The numerical integration method implemented in the package 

‘mvtnorm’ (Genz et al. 2007) has proved reliable in testing of 750-dimensional integrals 

(Genz 2007), and we observed that high levels of precision are possible for up to 1000 

dimensions.  However, even with reliable numerical integration, precision of the 

covariance estimates may suffer as the ratio between the number of parameters in the 

covariance matrix and the number of usable samples increases.  In our simulations, tests 

based on PACT with samples of 2000 were consistently valid for dimension 200, and 

appeared to be valid in examples with 300–500 tests.  However, in the examples we 

considered with 600–1000 tests, PACT did not achieve the target type I error rate.  Further 

investigation of the appropriate upper limits on dimension and how they relate to sample 

size is warranted.  Seaman and Müller-Myhsok (2005) treat 0.1 as the upper limit for the 

ratio of number of tests (L) to sample size (N), which seems an appropriate rule of thumb 

since the eigenvalues of a sample covariance matrix resemble the eigenvalues of the true 

matrix quite closely when L ≤ N/10 (Schäfer and Strimmer 2005).  Given conventional 
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sample sizes, large-scale candidate gene studies are quite feasible within such a limit, and 

we have already used PACT in several (Bonnycastle et al. 2006; Willer et al. 2007; 

Gaulton et al. 2007). 

With genome-wide association studies becoming a priority, there is also potential 

for PACT to be useful on a larger scale.  One possible strategy is to break up large analyses 

into roughly independent blocks of hundreds of tests each (Seaman and Müller-Myhsok 

2005).  If we then compute PACT for each group of tests, the Šidák procedure can be used 

to adjust the most significant values of PACT for the number of blocks via the sequential 

Holm (1979) procedure (see Methods).  As long as the correlation between the blocks of 

tests is reasonably low, little power will be sacrificed by approximating in this way since 

PACT has accounted for the correlation within the blocks.  Use of the PACT method in such 

a framework has the potential to facilitate exploration of the genome by highlighting our 

most significant findings without imposing an overly severe penalty when hundreds, 

thousands, or millions of association tests are performed.   
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Appendix 

Written in terms of covariate effects ( )α , the KM-dimensional vector of score statistics is 

( ) ( ) ( )( )
1 1

,0
N N

i i i i i i
i i

hβ α
= =

= ⊗ = ⊗∑ ∑U Y - Y G Y - η G%% % , 

where iη%  is the vector 1 2

TT T T
i i i Kα α α⎡ ⎤⎣ ⎦X X X% % %L and kα% is the maximum-likelihood 

estimate of kα when kβ  is restricted to zero.  A first-order Taylor expansion gives us 

( ) ( ) ( ) ( )1 1 1,0 ,0 ,0β β βα α α α α
α
∂ ⎛ ⎞≈ + −⎜ ⎟∂ ⎝ ⎠

U U U% %n
nn n

 

where α% and α  are the stacked vectors 1 2

TT T T
Kα α α⎡ ⎤⎣ ⎦% % %L  and 

1 2

TT T T
Kα α α⎡ ⎤⎣ ⎦L , respectively.  The multivariate central limit theorem (Cramér 

1946) may be applied to show that ( ) ( )( )
1

1 ,0 ~ 0,
N

i i
i

N Var h
n β α

=

⎛ ⎞⎛ ⎞
⊗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ iU Y - η G&  

where iη  is the vector 1 2

TT T T
i i i Kα α α⎡ ⎤⎣ ⎦X X XL .  Since under the null hypothesis 

( )i h iY - η  and G are independent with mean zero, ( )( )
1

N

i i
i

Var h
=

⎛ ⎞⊗⎜ ⎟
⎝ ⎠
∑ iY - η G  can be 

estimated efficiently by TΩ⊗GG where ( )( )
1

N T

i i i i
i=

Ω = − −∑ Y Y Y Y% % .  It is also easily 

shown through Taylor expansion of ( )α αU % that 

( ) ( )( )( )( )1
~ 0, i in N Var hα α

−
− ⊗iY - η X% & where ( )( )( )i iVar h ⊗iY - η X  can be 

estimated by 1 T−Ω ⊗XX .  Finally, ( ) ( )1 ,0 ' Th
n β α

α
∂ ⎛ ⎞ = ⊗⎜ ⎟∂ ⎝ ⎠

iU η GX , which has sample 

analogue TΩ⊗GX .  Hence,  

( ) ( )1 ,0 ~ 0, ,  β βαU V% & N
n

where 
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Table 2.1: The covariance matrix of test statistics R: three examples 
 

Traits Markers R  
2 traits with 

correlation ρ  Single SNP 
1

1Y

ρ
ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R  

Single trait 2 SNPs with 
correlation r 

1
1G

r
r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R  

2 traits with 
correlation ρ  

2 SNPs with 
correlation r 

1
1

1

Y G

r r
r r

r r
r r

ρ ρ
ρ ρ

ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥⊗ =
⎢ ⎥1
⎢ ⎥
⎣ ⎦

R R  



 

 

Table 2.2: Type I error rate and power when 20 HNF1A SNPs are tested for association with binary traits  
 

 

 

 

 

 

 

 

 

 

 

 

 

a 2
totalr = proportion of variance in disease SNP allele count explained by the other 19 SNPs 

b 2
maxr = maximum pairwise 2r between disease SNP and the other 19 SNPs 

    One binary trait tested 5 binary traits tested
    on additive model  on three models on additive model 

Disease SNP MAF 2
totalr 2

maxr PŠidák PACT Pperm  PŠidák PACT Pperm PŠidák PACT Pperm 

None (Type I error) – – – .0301 .0503 .0507  .0247 .0500 .0508 .0259 .0495 .0502
Most common SNP .48 .88a .78b .899 .927 .925  .859 .911 .910 .806 .857 .859 
Moderately frequent SNP .20 .93 .19 .419 .535 .538  .338 .482 .484 .280 .385 .377 
Least common SNP .04 .91 .79 .878 .916 .915  .811 .874 .874 .686 .772 .773 
SNP least predicted by others .05 .42 .35 .387 .475 .476  .296 .401 .402 .220 .304 .299 
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Table 2.3: Type I error rate and power when 10 correlated quantitative traits are tested for association 
 

 Ten traits tested for association with: 
 one SNP and a covariate 20 correlated HNF1A SNPs 
 Type I error rate Power Type I error rate Power 

Trait correlation structure PŠidák PACT Pperm PŠidák PACT Pperm PŠidák PACT PŠidák PACT 
Independent traits .0498 .0499 .0496 .819 .819 .816 .0325 .0514 .780 .821 
Equicorrelated traits .0302 .0502 .0503 .826 .880 .878 .0216 .0507 .778 .852 
Autocorrelated traits .0393 .0494 .0495 .820 .842 .839 .0274 .0499 .777 .833 
Independent blocks of traits .0386 .0497 .0501 .824 .850 .848 .0264 .0501 .779 .836 
Negatively correlated blocks .0327 .0496 .0500 .825 .870 .868 .0234 .0503 .779 .846 
5 binary, 5 quantitative traits .0341 .0491 .0488 .825 .864 .860 .0263 .0517 .781 .844 
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Table 2.4: Computation time required to estimate a P-value of .0001 with standard error ≤ .00001 
 

 
 

 PACT PDSA  Pperm  
Correlation structure  (any N)  (any N)  N = 200 N = 1000 N = 2000
200 autocorrelated SNPs  3.54 s 212 s 1.75 hrs 10.8 hrs 13.9 hrs 
HNF1A with 20 SNPs 0.71 s 43.8 s 825 s  2044 s 1 hr 
20,000 HNF1As with 20 SNPs each 3.94 hrs 10.1 days 0.52 yrs 1.29 yrs 2.28 yrs 
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Figure 2.1: Bivariate normal probability represented by PACT when L = 2 for i) one-sided tests, 
and ii) two-sided tests   
i)                                                                ii)  

             
 
 
Note – Elliptical lines represent the contours of a bivariate normal density function with positive 
correlation.  Shaded area represents the space (extending to infinity) over which the probability 
PACT is measured. 
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Figure 2.2: Linkage disequilibrium (r2) between 20 SNPs from HNF1A 
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Figure 2.3: Correlation structures used in simulations of 10 correlated traits 
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Figure 2.4: Estimates of PACT and Pperm  for 3007 SNPs tested for disease association under 3 genetic models 
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Figure 2.5:  Estimates of PACT and Pperm  for 3584 SNPs tested for association with 18 quantitative traits 
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CHAPTER 3 

ADJUSTMENT OF META-ANALYSES FOR CORRELATED TESTS 

The recent wave of large-scale genetic association studies has led to a host of positive 

genetic association results.  The need for validation through testing in independent 

samples has in turn led to an increased focus on meta analysis.  Meta analyses of genetic 

association studies based on multiple SNPs and traits are subject to the same multiple 

testing issues as single-sample studies, but depending on the study design, it is generally 

more difficult to adjust for these tests.  Procedures such as Bonferroni may control the 

type I error rate, but will generally provide an overly harsh correction given the likely 

correlation between tests, while permutation testing is often not possible in a meta-

analysis framework.  We present methods of adjusting for multiple correlated tests for 

four study designs which are commonly employed in meta analyses of genetic association 

tests.  We show through simulation that these methods accurately control the rate of type 

I error and achieve improved power over multiple testing adjustments which do not 

account for correlation. 

3.1 Introduction 

In Chapter 2 we described PACT, a multiple-testing adjustment which provides a faster 

alternative to permutation testing and accounts for the correlation between tests.   PACT 

can be used to adjust the most significant P-values or test statistics from tests of K traits 

for association with M genetic variants.  We showed that in a generalized linear model 

framework, the K × M test statistics had asymptotic distribution ( )0,N R , where R is the 
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correlation matrix corresponding to the covariance matrix ,βV  the Kronecker product of 

the sample covariance matrices of traits and genotypes, conditioned on covariates.  Here 

we show that this result readily extends to meta analyses – an important case where 

permutation testing is often difficult due to coordination of analyses across centers, and 

may not be possible when only SNPs passing specific criteria are followed up in 

additional samples.  

 For tests of K traits for association with M markers in J independent samples, 

several common meta test statistics are available.  The test statistic of Mantel and 

Haenszel (1959) is often applied, although an extension to tests of trend (Mantel 1963) is 

also available and is more general.  A trend test assesses the impact of a dose variable 

with integer levels 0,…,D on a binary response variable with the score statistic from a 

logistic regression (Cochran 1954; Armitage 1955).  For D = 1 this test is equivalent to a 

simple chi-square test for independence.  Trend test statistics are also commonly used to 

test SNPs for association with a binary trait under an additive model of association (with 

D = 2 and doses representing allele counts). 

 Methods based on weighted sums of the test statistics are applicable to a wider 

variety of models since they require only that the distribution of the summed test statistics 

is known (which is generally the case when test statistics are 2
1χ  or normally distributed 

and are summed across independent samples).  These methods can be applied to tests 

with quantitative or binary response variables, and dose variables that are continuous 

rather than integer-valued; they can also be applied to a variety of more complicated 

models.  Weighted-sum methods are especially useful in genetic studies which may 

involve quantitative traits, environmental and demographic covariates, and continuous 

dose variables such as imputed genotype dosage scores (Li et al. 2007).    

 Since it is common in multi-sample studies for the availability of SNP or trait data 

to vary across samples, we address this issue in the context of PACT.  Data may be 
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unavailable in certain samples pre-hoc due to study design, constrained resources, or 

failed assays.  This type of unavailability is similar to missingness-at-random, and we 

show that it is quite easy to deal with in the context of computing meta-statistics and 

adjusting them for multiple testing with PACT. 

 SNP or trait data may also be missing not-at-random for an entire sample or 

samples.  Multi-sample studies often consist of an initial sample, on which many tests 

may be performed, and one or more follow-up samples, which only test SNPs or traits 

passing a pre-set significance criterion in the initial study.  Skol et al. (2006, 2007) 

present a weighted-sum meta test statistic that accounts for the conditional selection of 

SNPs for follow-up samples.  Here, we show that PACT  can be used to adjust for multiple 

correlated tests in this context, as well as in the case where only the best SNP is chosen 

for follow-up. 

 We show through simulation that our method provides a valid adjustment for 

correlated meta-analysis statistics in a number of situations: with Mantel-Haenszel and 

weighted-sum meta statistics, with binary or continuous traits, and with genotypes 

missing for an entire sample at random, through follow-up of only the best SNP, or 

through threshold-based selection of follow-up SNPs.   

3.2 Methods 

Below, we describe extensions of PACT that can be can be used for meta-analysis of 

multiple traits tested for association with multiple SNPs using either the Mantel-Haenszel 

trend test (which requires traits to be binary and uses a specific model) or a weighted-sum 

meta statistic (which allows binary or continuous traits and allows a general class of 

models).  We then describe methods for handling the case where not all tests are 

performed in all samples (either at random or due to selection of specific tests for follow-

up.)  
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3.2.1 Mantel-Haenszel extension to trend test 

Given counts of nd1 cases and nd0 controls at each dose d = 0,…,D, and defining marginal 

counts 0 1,  d d dn n n+ = + 0 0
0

,  
D

d
d

N n
=

= ∑ 1 1
0

,
D

d
d

N n
=

= ∑ and 0 1,N N N= +  the test statistic for a 

trend test (Cochran 1954; Armitage 1955)  is: 

2 2
1

1 1 1
0 0 0 0 2
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The corresponding Mantel-Haenszel meta-statistic for J samples is then  
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1,
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where nd1,j, N1,j, and Nj are the counts of cases with dose d, total count of cases, and total 

count respectively for sample j (Mantel 1963).   

 If we express these counts in terms of Yi, Gi, and Xi where for individual i Yi is a 

binary indicator variable equal to 1 for cases and 0 for controls, Gi is the allele count (0, 

1, or 2 for an additive model, or 0, 1 for a dominant, recessive, or allele-based model) of 

a single SNP tested for association, and ( )1 2, ,...,i i i iJX X X=X  is a J-dimensional sample-

indicator vector that contains 1 as the jth element and 0 for all other elements if 

individual i belongs to sample j, then ( )1,
1

N

d j i i ij i
i

dn YG X I G d
=

= ⋅ =∑  and 1,
1

N

j i ij
i

N Y X
=

=∑ .  

The Mantel-Haenszel meta test statistic can then be rewritten as 
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under the null hypothesis that Yi is independent of Gi, but not Xi, or equivalently,  

   ( )1 1

2 2

1

~ 0,1

N J

i i j j j
i j

J

j j j
j

YG N Y G
N

N ω σ

= =

=

−∑ ∑

∑
&    (3.1) 

where ( )2 1j j jY Yω = −  and 2 2 2

1

1 N

j i ij j
ij

G X G
N

σ
=

= −∑  are the respective trait and genotype 

variances estimated for sample j.   

 Both the single-sample and multiple-sample tests for trend shown above are 

generalized linear models.  The single-sample trend test statistic provides a test of the 

null hypothesis of independence between Yi and Gi ( )0β =  in the logistic model 

( ) ( )|
1

i

ii i i
eE Y G h

e

η

ηη= =
+

 where i iGη α β= +  and α  and β  are scalar parameters.  The 

multiple-sample Mantel-Haenszel statistic provides a test of the null hypothesis that Yi 

and Gi are independent conditional on the sample indicator Xi by testing 0β =  using a 

similar logistic model with fixed effects, where T
i i iGη α β= +X  and α is now a J-

dimensional parameter vector of sample fixed effects.  The score statistic from this test is 

the numerator from equation (3.1):  

( )
1 1 1

N J N

i i j j j i i i
i j i

YG N Y G Y Y Gβ
= = =

= − = −∑ ∑ ∑U %  

where i jY Y=%  is the predicted value of Yi conditional on Xi, and denominator of equation 

(3.1) provides an estimate of the variance of this statistic βV .   

 While the above example deals with a single trait tested for association with a 

single genotype, we have shown in Section 2.2.2 that when multiple traits are tested for 

association with multiple markers in a single sample, the vector of score statistics 
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( )~ 0,Nβ βU V& .  Below, we show that this multivariate normality result readily extends 

to the case of multiple samples in a meta analysis. 

 For j = 1, …, J independent samples, let ( )1 2, ,...,i i i iKY Y Y=Y  be a vector of K 

binary trait variables for individuals i = 1, …, N.  Let Gi be an M-dimensional genotype 

vector containing the genotype codes for individual i for each of M markers.  We assume 

for now that the same markers are genotyped for all J samples, an assumption that we 

will relax in later subsections.  ( )1 2, ,...,i i i iJX X X=X  is the J-dimensional sample-

indicator vector defined above.  Our single-sample score statistic vector (see Section 

2.2.2) is then: 

( ) ( ), ,
1

~ 0, ,
N

j ij i j i j
i

X Nβ β
=

= ⊗∑U Y - Y G V&  

where , jβV can be estimated as ,j j jN Ω ⊗Σ  the Kronecker product between the sample 

covariance matrices of Yi and Gi from sample j.    

 The vector of score statistics for the meta-analysis of all J samples may be 

obtained by summing the single-sample score statistics: 

,
1 1 1

,
J N J

j i i j j j
j i j

Nβ β
= = =

= = ⊗ − ⊗∑ ∑ ∑U U Y G Y G  

and because the J samples are independent,  

,
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.
J J

j j j j
j j

Nβ β
= =

= = Ω ⊗Σ∑ ∑V V  

As the sum of J multivariate normal vectors, the vector of Mantel-Haenszel test 

statistics ( )~ 0,Nβ βU V& , so we can compute PACT for the most extreme Mantel-Haenszel 

statistic using the correlations between the standardized test statistics ,

, ,

β

β

= km
km

km km

MH
U
V
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For an association test of a single binary trait with M markers, this reduces to   
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3.2.2 Weighted-sum statistics 

In this section, we show how PACT may used to adjust meta-statistics created as weighted 

sums of normally distributed test statistics from J independent samples.  These statistics 

do not assume a specific model, so we address the common situation where all statistics 

are asymptotically equivalent to score statistics from GLMs – a general case which 

covers most types of normally distributed statistics estimated in genetic studies.  This 

implies that if L tests are performed in each sample j = 1, …, J, the L-dimensional vector 

of standardized score statistics for sample j has a multivariate normal distribution: 

( )
( )

( )

( )

( )
( )( ),1 ,

,11 ,

,..., ~ 0,
j j

j jL

j j
LL

Nβ β

β β

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

U U
T R

V V
&  

where ( )jR , the covariance matrix of the test statistics, can be estimated as the sample 

correlation matrix between the traits and/or genotypes being tested (see Section 2.2.2).  It 

is common to create a meta test statistic based on a weighted sum of normally distributed 

test statistics across samples.  For example, a weighted sum of the standardized test 

statistics for test l across J samples ( lWS ) would have the form ( )j
l jl l

j
WS w T=∑ .  Since 

the vector of weighted-sum meta statistics for the L tests ( )1 2, ,..., LWS WS WS=WS is a 

weighted sum of J multivariate normal vectors, it will itself be distributed multivariate 
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normally.  The independence of the J samples guarantees that ( ) 2
l jl

j

Var WS w=∑  for l = 

1,…,L, and it is easy to show that the correlation between the meta statistics for tests k 

and l is ( )j
jk jl kl

j

w w∑ R .  The square root of the sample proportion jN
N

is often used to 

weight standardized normal test statistics in which case ( ) 1lVar WS =  and the correlation 

between test statistics k and l is 1
j kl

j

N
N ∑ R . 

3.2.3 Missing data and incomplete genotyping across samples 

To estimate PACT in the presence of missing data at the individual level, we have 

suggested in Section 2.4 that each association test can be performed using all available 

observations, and setting the individual component of the score statistic for missing 

observations to zero for purposes of variance estimation.  In the context of genetic 

association studies, this would involve estimating variance on the full dataset with 

missing values for trait k set to the sample mean trait value kY and missing values for 

marker m set to the sample genotype mean mG .   

 A similar approach can be applied in a meta-analysis framework, where the 

complete set of traits or markers is not necessarily available in every sample.  Assuming 

that the availability of traits or markers in certain samples is independent of results in 

other samples (an assumption which will be relaxed in the next subsection), unavailable 

traits or markers can simply be treated as missing data.  If trait k is not analyzed in 

sample j, then the score statistics and variance can be computed with Yik set to zero for all 

individuals in sample j.  Similarly, if marker m is not analyzed in sample j, then βU and 

βV  can be calculated with Gim set to zero for all individuals in sample j, which will 

effectively set to zero the mth element of the score statistic ( )
,

j
mβU  and all covariances 
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and variances involving marker m in sample j.  This allows computation of the meta test 

statistics and covariance estimates based only on samples with data for the relevant traits 

and markers while ensuring a positive-definite covariance matrix. 

 To demonstrate with a simple example, we consider the case where a single 

binary trait is tested for association with SNP A and SNP B in one sample and only with 

SNP A in a second sample (where SNP B can be assumed to be lost due to a random 

reason such as a failed assay).  Assuming that sample 1 consists of individuals i = 1, …, 

N1 and sample 2 consists of individuals i = N1 + 1, …, N, the vector of score statistics for 

the Mantel-Haenszel tests will be: 

( ) ( )

( )
1

1 2
1 1 2 2

1

1
1 1

1

.

N

i iA A A
i

N

i iB B
i

YG N Y G N Y G

YG N Y G
β

=

=

⎡ ⎤
− −⎢ ⎥

⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎣ ⎦

∑

∑
U  

The variance of the score statistic can be estimated as:  

( ) ( )
( ) ( )

( ) ( ) ( )
( )1 1 2

1 1 1 2 2 21 1
1

01 1 1 ,
0 0

J
AA AB AA

j j j
j AB BB

Y Y N Y Y N Y Yβ

σ σ σ
σ σ=

⎡ ⎤ ⎡ ⎤
= − Σ = − + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
∑V  

so the vector of standardized Mantel-Haenszel test statistics will be 

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

1

1 2
1 1 2 2

1

1 2
1 1 1 2 2 2

1
1 1

1

1
1 1 1

1 1

1

σ σ

σ

=

=

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥− + −⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

∑

∑

N

i iA A A
i

AA AAA
N

B
i iB B

i

BB

YG N Y G N Y G

N Y Y N Y YMH
MH

YG N Y G

N Y Y

MH  

Both the numerator and denominator of MHA contain an additional component due to the 

N2 additional individuals tested on SNP A.  We can then adjust the two statistics for 

multiple testing using PACT and the fact that the correlation between MHA and MHB is 
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( )

( ) ( )
( )

( ) ( )

1

2 2 21 2 1

1 1 1

1
1

AB

AA AA BB

N Y Y
N Y Y

σ

σ σ σ
⎛ ⎞−

+⎜ ⎟⎜ ⎟−⎝ ⎠

. 

The correlation between the meta statistics is smaller than ( ) ( ) ( )1 1 1/AB AA BBσ σ σ , the 

correlation between the trend test statistics from sample 1, since the component of MHA 

based on individuals i = N1 + 1, …, N  is independent of MHB.  The lower correlation will 

cause the PACT correction to be somewhat more severe, which is appropriate given that 

additional testing was performed. 

 Missing data and incomplete genotyping across samples can be handled similarly 

in meta statistics created as weighted sums of standard normal test statistics.  If the 

sample proportion square roots jN
N

are used as weights, then we can simply establish 

different weights for each test l = 1,…,L.  Define the weight for test l as ,l j

l

N
N

, where 

,l jN  represents the number of non-missing observations for test l in sample j (and will be 

zero if a variable needed for test l is missing sample-wide) and ,l l j
j

N N=∑ .  Using these 

weights, the weighted-sum meta statistic can then be computed as described in section 

3.2.2. 

3.2.4 Replication samples 

The previous section addressed the case where traits or genotypes are unavailable in 

certain samples for reasons independent of any observed results.  In the example 

presented, the decision to type only SNP A in the second sample was considered to have 

occurred independently of any observed results in the first sample, perhaps due to a failed 

assay.  This is a common scenario in multi-sample studies, and fortunately it does not 

create much of a problem in the meta-analysis. 
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 Another common scenario in meta-analyses involves the genotyping of many 

markers in an initial study, followed by the genotyping of only a subset of markers in 

follow-up studies.  We show below that PACT can be used to control the study-wide type I 

error even when tests are correlated in two common scenarios: the case where the best 

result from a group of tests is followed up in additional samples, and the case where all 

tests exceeding a pre-set significance level are selected for follow-up. 

 Best result selected for follow-up – While not necessarily a best practice, it is a 

common practice to follow up automatically the most significant result in an initial study 

for further testing.  If the best result is not especially strong, this can lead to wasted 

resources and publication bias.  However, at least the latter problem can be avoided since 

the type I error of the resulting meta-analysis can be easily controlled with PACT.    

 If L tests are performed in an initial sample, and only the best result is followed 

up in J – 1 additional samples, it is important to adjust the initial best result for multiple 

testing before its inclusion in a meta statistic, but the remaining J – 1 samples are 

independent and do not require adjustment for multiple testing.  In this situation, PACT can 

be computed to adjust the best result from the initial sample for multiple testing.  If we 

then compute a Z-score from PACT as though it were a standard normal quantile: 

1 1
2

− ⎛ ⎞= ±Φ −⎜ ⎟
⎝ ⎠

ACT
ACT

PZ , 

where the sign matches that of the initial test statistic, we can then estimate the weighted-

sum statistic as usual, but with ACTZ  in place of ( )1T : 

( ) ( )1
2

                                          .                                         3.2
J

j
ACT j

j
WS w Z w T

=

= +∑  

Since PACT has a U(0,1) distribution under the null hypothesis of no association, ACTZ ~ 

N(0,1) under the null hypothesis, so the type I error rate will be accurately controlled by 

this adjustment.  Appendix A shows that under the alternative hypothesis, ACTZ is 
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generally not normally distributed.  If the best result in sample 1 is the result of a true 

association, 1) the expected value of ACTZ will be larger than the actual effect size, since 

this result is only observed conditional on being larger than all other test statistics, and 2) 

the variance of ACTZ will be < 1.  Both 1) and 2) will be increasingly true for larger L.  As 

we show in Appendix A, the sample proportion square roots jN
N

are not necessarily the 

power-maximizing weights in this situation, and there is no closed form solution for the 

optimal weights.  A recursive solution can be obtained, but will depend on the effect size 

(which is unknown) and desired critical value, as well as several integrals which depend 

on L and require numerical rather than analytical computation.  Furthermore, the analysis 

in Appendix A assumes independent tests; this problem will naturally become even more 

complicated in the presence of correlation.  A simpler solution would be to employ a 

more appropriate and powerful study design (see Two-stage design below).  Hence, we 

do not belabor this point but instead investigate the efficacy of this method using the 

sample proportion square roots jN
N

as our weights – a strategy which is less powerful 

than the hypothetical alternative strategy involving optimal weights, but should lead to 

unbiased type I error rates. 

 Two-stage design  –  A generally more appropriate study design involves 

selecting tests for follow-up based on pre-set criteria.  In a genetic association context, 

two-stage design involves the selection of all markers with test statistics exceeding a 

carefully chosen cutoff for follow-up analysis.  Skol et al. (2006, 2007) show that if 

( )1 ~ 0,1z N  is a test statistic observed in an initial study and only SNPs for which 

1 1z T>  are tested in a replication study, the conditional probability of the weighted meta-

statistic 1 2
joint 1 2

N Nz z z
N N

= +  reaching significance, ( )joint joint joint 1 1|P P z T z T= > > , 
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can be obtained through integration of the conditional normal CDF.  The overall P-value 

for the joint analysis is then ( )1 joint 1 1 1,  where PP P P z T= >  and 1 joint and P P  are both 

computed under the null hypothesis. 

 A similar method can be applied to a meta-analysis involving correlated tests, and 

PACT can be used conditionally in this context to adjust for the correlation between tests 

while taking the conditional selection of tests into account.  The appropriate adjusted P-

value for the best observed meta statistic is the joint probability that under the null 

hypothesis, at least one of the L tests 1) passes the pre-set cutoff in the initial sample, and 

2) is at least as extreme as the best observed meta statistic jointT : 

{ }( )2 ,1 1 , joint joint             ,  for some 1,2,...,                      (3.3)ACT s l lP P z T z T l L− = > > ∈    

Defining the L initial test statistics as 1,1 2,1 ,1, ,..., Lz z z  and the L joint test statistics (which 

are only observed if the corresponding initial statistic passes the cutoff T1) as 

1, joint 2, joint , joint, ,..., Lz z z , the set of 2L initial and joint statistics has a multivariate normal 

distribution with covariance matrix 

( ) ( )

( ) ( )

1 1
1

1 2
1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦∑ j

j

w

w w

R R

R R
 

where ( )jR  and wj are the sample correlation matrices and weights for sample j as defined 

in section 3.2.2.  PACT-2s (equation 3.3) can then be computed as a sum of multivariate 

normal probabilities or a much less computationally intensive approximation which 

yields near-identical results (see Appendix B).  

3.2.5 Simulations 

To assess the validity and power of the Mantel-Haenszel (MH) and weighted-sum (WS) 

meta statistics, we simulated haplotype association tests in an initial sample and four 

replication samples.  In each simulation, we randomly drew 6-SNP haplotypes from a 
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larger sample of individual haplotypes.  To simulate realistic variation between samples, 

we drew haplotypes from 5 different samples collected as part of a case-control meta-

analysis; this allowed the correlation between haplotypes, and hence between haplotype 

association tests, to vary between samples as it would in a typical meta-analysis.  

Haplotypes were inferred in the original data using MACH 1.0 (Li et al. 2007).  One of 

the five samples contained data on only 5 of the 6 SNPs; for this sample, we also used 

MACH to impute data for this SNP based on haplotype frequencies from the HapMap 

(CEU sample).  For the initial sample, which contained data on 2632 haplotypes, we 

randomly drew 2000 haplotypes to represent 1000 individuals.  In the follow-up samples, 

which included 1404, 1810, 1818, and 2206 haplotypes, respectively, we drew haplotypes 

for 500, 650, 750, and 900 individuals.  We simulated a single binary trait, as described 

below. 

 In the simulated initial sample, we tested each common haplotype involving 

between one and six SNPs for association with a Cochran-Armitage test for trend, for a 

total of 170 unique tests.  169 of these tested haplotypes were present and polymorphic in 

the four follow-up samples.  We tested these 169 haplotypes for association with the 

binary trait in the four follow-up samples and used PACT to adjust the most significant P-

values in each simulated meta-analysis.   

 We assessed type I error by performing 10,000 simulations where the binary trait 

tested for association was assigned independently of genotype, and we compared the 

10,000 observed P-values to the expected sample quantiles.  For assessment of power, we 

created 1000 simulation replicates where the binary trait was influenced by a single 

haplotype.  To do this, we simulated the binary trait yij  for individual i in sample j such 

that yij = 1 if ( ) ( )( ) 0j j
ij j im mZ G Gβ+ − >  and 0 otherwise, where Zij is a normal random 

variable, ( )j
imG  is the number of copies of haplotype m possessed by individual i, with 
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mean ( )j
mG , and jβ  is an effect size drawn from the uniform distribution for each sample, 

to allow for heterogeneity of effects between samples. 

 We computed type I error and power for four different study designs.  In the first, 

all 169 haplotypes were tested on all 5 samples.  We computed Mantel-Haenszel and 

weighted-sum meta statistics for each of the 169 haplotypes, and adjusted the most 

significant meta statistic for association using PACT as described in section 3.2.2. 

 For the second study design, we assumed that SNPs in the four follow-up samples 

were unavailable for random reasons, such as failed assays.  We allowed each SNP to be 

missing in each follow-up sample with probability 0.1.  A missing SNP meant that all 

haplotype combinations containing this SNP were missing and thus unavailable for 

testing.  On average, samples were missing 0, 1, 2, 3, 4, or 5 SNPs 53%, 35%, 10%, 

1.4%, 0.1%, and 0.002% of the time.  We then computed the meta statistics and PACT 

assuming data were missing-at-random, as described in section 3.2.3. 

 For the third study design, we assumed that only the best haplotype from the first 

sample was followed up in subsequent samples.  We computed PACT  to adjust the best P-

value from the first sample for 169 correlated tests, and computed the weighted sum of 

the N(0,1) test statistics from the 5 samples as in equation (3.2), using 

1 1
2

− ⎛ ⎞= ±Φ −⎜ ⎟
⎝ ⎠

ACT
ACT

PZ  as the statistic for sample 1.  

 For the fourth study design, we assumed a two-stage design where only 

haplotypes with individual association test P-values < .1 were re-tested in the four 

follow-up samples.  In practice the number of haplotypes passing the criteria for further 

testing in each simulation under the null hypothesis ranged from 0 (in 20% of 

simulations) to 108, with a median of 10.  For the haplotypes which were tested in all 

samples, we computed meta test statistics as described in section 3.2.2 and adjusted the 

most extreme meta test statistic for multiple correlated tests and conditional haplotype 
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selection with PACT as in equation (3.3), using the approximation described in Appendix 

B.   

3.3 Results 

3.3.1 Type I error rate for different study designs 

We computed meta test statistics for 169 haplotypes tested for association in 10,000 

simulated 5-sample meta-analyses.  For each simulation, we adjusted the best meta P-

value in each simulation for multiple testing with PACT as described in Section 3.2.2.  

Adjusted P-values for Mantel-Haenszel tests and weighted-sum test statistics are plotted 

against their theoretical quantiles in Figure 3.1 (i). Values of PACT  follow the identity line 

quite closely for the entire range of P-values, indicating that the appropriate type I error 

rate is maintained at all levels of significance.  The distributions of unadjusted P-values 

(the best meta P-value in each simulation before adjustment for multiple testing) and 

Šidák-adjusted P-values are also plotted, demonstrating that relying on unadjusted P-

values would lead to greatly inflated rates of type I error (for example, .62 at an α-level of 

.05), while Šidák-adjusted P-values provide conservative tests, with a type I error rate of 

.01 at an α-level of .05. 

 We next treated the five samples as an initial sample and four follow-up samples, 

and we allowed the six SNPs underlying the haplotypes to be missing-at-random (MAR) 

in the follow-up samples, where each SNP in each sample had a .1 probability of being 

MAR and a missing SNP meant that all haplotype combinations involving alleles of that 

SNP were missing as well.  We computed the meta statistics and PACT for both Mantel-

Haenszel and weighted-sum test statistics as described in Section 3.2.3, and plotted PACT 

against its quantiles in Figure 3.1 (ii).  Again, PACT demonstrates a near one-to-one 

relationship with its quantiles, indicating that the appropriate type I error rate can be 

achieved for any α-level. 
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 Returning to the complete data case (ie, no SNPs missing-at-random), we 

considered two cases where only key results are selected for follow-up.  In the first case, 

we allowed only the haplotype combination showing the strongest association in the first 

sample to be followed up in the next four samples.  We computed PACT for each 

simulated meta-analysis as in equation (3.2) and plotted the values against their quantiles 

in Figure 3.2 (i).  As above, PACT tracked the quantiles very closely both when Mantel-

Haenszel test statistics and weighted-sum statistics were used, indicating that the correct 

type I error rate is achieved for all α-levels. 

 Finally, we performed the meta-analysis with a two-stage design, where all 

haplotypes with association P-values < .1 in the initial sample were tested in the four 

follow-up samples.  We computed PACT for each simulation as in equation (3.3) and 

plotted the values against their quantiles in Figure 3.2 (ii).  For simulations where no 

haplotype had a P-value < .1, which was the case in 21.5% of simulations, no meta-

analysis was performed, so the meta P-value in these cases is set to 1.  For simulations 

where a meta-analysis was performed, PACT once again tracks its quantiles quite closely, 

indicating that it achieves the correct type I error rate for all reasonable α-levels.           

3.3.2 Power for different study designs 

A comparison of the power of the methods described above is presented in Figure 3.3 for 

1000 simulated meta-analyses based on (i) Mantel Haenszel test statistics and (ii) 

weighted-sum test statistics.  For comparison purposes, the leftmost pair of bars 

represents power for the single-sample analysis.  All four meta-analysis study designs 

considered here demonstrate a clear gain in power over the single-sample analysis, with 

the complete data meta-analysis (all SNPs genotyped and all haplotypes tested) showing 

the greatest gains.  Due to substantial correlation between tests, which is typical in 

haplotype analysis, adjustment for multiple testing with PACT leads to large gains in 
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power over Bonferroni or Šidák adjustment, with gains of nearly 80% for the scenario 

where only the best haplotype combination is followed up. 

 Although the sample proportion weights were not necessarily the optimal weights 

for the study design which follows up only the best result, our implementation of PACT for 

this study design did show substantial gains in power over the alternatives of Šidák 

correction or PACT applied to just the first sample (which is equivalent to assigning a 

weight of 1 to the first sample and zero to all subsequent samples.)  To investigate the 

effect of increasing or decreasing w1, the weight placed on the adjusted test statistic from 

the initial sample, we re-ran our power simulations with w1 increased or decreased by .02, 

.05, or .10.  In each case, we adjusted the weights for other samples proportionally so that 

the squared weights continue to sum to one.  In each set of simulations, we observed that 

there was a cutoff, which we denote αswitch, such that for critical values < αswitch, greater 

power was achieved with decreased values of w1, while for critical values > αswitch, 

greater power was achieved with increased values of w1.  This seems surprising, but is 

consistent with the relationship between the critical value and optimal weights implied by 

the analysis in Appendix A.  The level of αswitch varies depending on L and on whether we 

simulated correlated or independent tests, but it often fell within the range of reasonable 

critical values.  For example, for 10 independent tests and the same effect sizes as in 

Figure 3.3, αswitch, ≈ .01, implying that if the target type I error rate is in the .01 – .05 

range, it is more powerful to increase w1, but if the desired type I error rate < .01, then it 

is more powerful to decrease w1.  For the same effect size, αswitch increases with L and 

decreases if tests are correlated. 

 Next, to assess whether application of PACT to these four study designs alters the 

rank ordering of significant results, we compare estimates of PACT  from the weighted-

sum meta analysis shown in Figure 3.3 (ii), to the estimates of the Šidák P-values.  

Comparisons are plotted in Figure 3.4.  For the full meta-analysis case where every test is 

performed in every sample (Figure 3.4 i), the relationship is one-to-one.  Although the 
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Šidák test is clearly more conservative in the presence of correlation, the rank ordering of 

significant P-values remains the same whether PACT or a Šidák adjustment is used.  When 

data are missing-at-random (ii), the pattern is similar but the relationship is no longer 

one-to-one due to the noise generated by the missing data.  When only the best result is 

followed up (Figure 3.4 iii), there are some simulations where PACT is significant even 

though the Šidák-adjusted P-value is 1.  In this case, the Šidák adjustment does more 

poorly than usual because it is essentially adjusting the meta-statistic for the number of 

tests performed in the first sample, even though only a single test is performed in the 

remaining samples.  For two-stage analysis, the rank ordering of PACT and the Šidák-

adjusted P-values is again the same.  Similar results were observed for the Mantel-

Haenszel statistics (data not shown).   

3.4 Discussion 

We have presented a new set of tools for adjustment of multiple correlated association 

tests in meta-analyses for a variety of common study designs and for any number of 

independent samples.  In simulations of a large number of highly correlated haplotype 

association tests, our methods attained the appropriate type I error rates for a range of 

study designs and were substantially more powerful than Šidák adjustments, which do 

not account for correlation between tests.   

 For the four study designs we discussed, three have pre-hoc designs and are 

generally considered good research practice (two-stage design and the full meta-analysis 

with and without missingness-at-random), while the one post-hoc study design – 

automatic follow-up of the most significant result – is inefficient and likely to lead to 

wasted resources.  It is also potentially biased if the multiple tests performed on the initial 

sample are not properly adjusted for.  Since this study design is more likely accident than 

design, arrived at for a variety of reasons including human nature, we felt it was still 
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worthwhile to provide an adjustment that would allow studies falling into this trap to be 

dug back out, at least partially.  Controlling the type I error rate will prevent false 

positives and further devotion of resources to unpromising results; however, it cannot 

compensate for the decreased power of this study design compared to alternatives such as 

a two-stage design.  Nonetheless, this study design did surprisingly well in terms of 

power under the simulated situations we observed, especially considering that the weights 

used (square root of sample proportion) were not necessarily power-maximizing for our 

meta test statistic.  Recursive computation of the optimal weights would require 

assumption of an effect size, as well as specification of a particular critical value to be 

used and other computations that depend on the number of tests and the extent of 

correlation between the tests.  Whether this could be done presents an interesting question 

for future research.  Another relevant question is whether such an endeavor would even 

be worthwhile when better study designs requiring fewer assumptions are available.  As 

replication of significant results becomes more and more routine, meta-analyses are often 

incorporated into the initial planning of studies, thus averting the pitfalls of post-hoc 

design. 

 In conclusion, well-designed meta-analyses have become increasingly common 

given the wealth of available data and the drive to combine information as a means of 

affirming valid results and ruling out spurious ones.  Given the current emphasis placed 

on replication of important association results in independent samples, we feel that these 

methods are timely and have the potential to be useful in a variety of settings. 
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Appendix A: Distribution of ZACT under the alternative hypothesis for independent 
test statistics 
 
Consider a test statistic Z1 ~ N(a,1) and L - 1 independent test statistics Z2, …, ZL ~ 

N(0,1).  Define Z|max| as the test statistic with the largest absolute value.  Since the tests 

are independent, PACT will be asymptotically equivalent to the Šidák-adjusted P-value: 

( )( )max1 2 1≈ − Φ −
L

ACTP Z  

and we can define  

( ) 1
max 1

2
− ⎛ ⎞= Φ −⎜ ⎟
⎝ ⎠

ACT
ACT

PZ sign Z . 

It can then be shown through the appropriate transformation that  

 

( ) ( )

( ) ( ) ( )( )
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1
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1 1
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φ φ
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φ φ
∞

−

−
= =

− + − Φ −⎡ ⎤⎣ ⎦∫
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ACT
L

Z a Z
f Z Z Z

Z
L x a x a x dx

,  

which is N(0,1) under the null hypothesis that all L test statistics have mean 0, since a = 0 

in this case.  Under the alternative hypothesis, a ≠ 0, so this distribution is not normal, but 

the mean and variance of ZACT can be obtained through a Taylor series expansion: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1max

1

0

2
1max

|  

1 2 1
     where 2 ;    1,  ' 0

2

| 1  where 0,  ' 0,

β

β φ β β

δ δ δ

∞
−

= =

⎛ ⎞+ Φ −
⎜ ⎟= Φ > >
⎜ ⎟
⎝ ⎠

= = − > >

∫

ACT

L

ACT

E Z Z Z L a

x
L x x dx L L

Var Z Z Z L a L L

 

where ( )δ L  is the sum of ( )2β L and two additional integrals which depend on L  and 

lack closed-form solutions. 

 Now consider the case where Z1, …, ZL and Y1, …, YL are realizations of the same 

L independent test statistics tested on two different samples of n1 and n2 individuals: 
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( ) ( )

( ) ( )
1 1 2

1 2 2

~ ,1 ,  ,..., ~ 0,1

~ ,1 ,  ,..., ~ 0,1

ε

ε

L

L

Z N n Z Z N

Y N n Y Y N
 

If we only performed one test in each sample, the weighted sum statistic 21λ λ+ −l lZ Y  

would be distributed ( )( )2
1 21 ,1λ λ ε+ −N n n for l = 1 or N(0,1) for l = 2, …, L.  We 

can then maximumize power while maintaining the appropriate type I error rate by 

choosing 1

1 2

λ =
+
n

n n
. 

 If instead we perform all L tests in the first sample, and then follow up the test 

with the most extreme test statistic, the simple weighted-sum statistic 21λ λ+ −l lZ Y  

(where max=lZ Z ) is not N(0,1) under the null hypothesis.  The adjusted statistic 

( )21 ~ 0,1λ λ+ −ACT lZ Y N  under the null hypothesis, allowing control of the type I error 

rate.  Under the alternative hypothesis, the adjusted statistic has mean 

( )2
1 21λβ λ ε+ −n n  and variance 2 21 δ λ− a .  The inflated mean alone would imply 

an increase in the optimal weight for sample 1: 1

1 2

βλ
β

=
+
n

n n
.  However, due to the 

presence of λ in the variance, there is no longer a closed-form solution for the optimal λ .  

Optimal weights can be obtained through recursion, but they will depend on the unknown 

quantity ε, as well as β, δ, n1, n2, and the desired significance level α.   
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Appendix B:  Approximation for PACT-2s 

The probability { }( )2 ,1 1 , joint joint,  for some 1,2,...,ACT s l lP P z T z T l L− = > > ∈  from equation 

(3.3) may be computed as 1 minus the piecewise sum of the probabilities of all possible 

events where there is no { }1, 2,...,l L∈ for which both ,1 1 , joint joint and l lz T z T> > .  This 

method requires the computation of 3L separate probabilities, and hence is feasible only 

for small L.  However, if the correlation between tests in the initial sample ( )1R is similar 

to ( )2∑ j
jw R , the weighted sums of all correlations, a good approximation to (3.3) is 

available.   

 To perform this approximation, we adjust the minimum P-value Pmin from the 2-

stage meta-analysis in two steps.  We first adjust for the 2-stage test by computing the 

probability ( )1 1 joint joint' ,P P z T z T= > > that a single test passes both the initial cutoff in 

the first sample and attains the magnitude of the best test statistic observed in the 

combined samples, jointT .  This probability can be easily computed as the sum of four 

probabilities using the fact that the joint distribution of z1 and zjoint is bivariate normal 

with correlation w1.  We can then convert this probability to an adjusted test statistic 

( )' 1 '/ 2T P= − .  For the second step, we adjust 'T  for the L tests that were performed by 

computing PACT assuming L tests with correlation matrix ( )1R . 

 To test the performance of the approximation, we computed 2ACT sP −  using both 

the exact method and the approximation described above for 1000 simulations of a 

reduced-dimension version of the analysis presented in Figure 3.2 (ii), where only 8 of 

the 169 haplotypes were included.  As Figure 3.A.1 shows, we obtained near-identical 

results using the two methods, demonstrating that the approximation is very close in a 

situation with heterogeneous samples and high correlation between tests.   
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Figure 3.A.1  Comparison of PACT-2s estimated for 8 correlated tests as either a piecewise 
sum of probabilities or a faster 2-step approximation 
 



 63

Figure 3.1: Quantiles of most significant P-values from 10,000 simulated meta-analyses.  
In each simulation, 169 haplotypes were tested in 5 samples and PACT was computed from 
a sample-size-weighted meta test statistic. 
 
(i) All 169 haplotypes tested in initial sample and four follow-up samples using: 
 
     Binary trait tested, using   Quantitative trait tested, using 
 Mantel-Haenszel test statistics  weighted-sum test statistics 

 
 
(ii) SNPs (and corresponding haplotypes) missing at random in follow-up samples: 
 
     Binary trait tested, using   Quantitative trait tested, using 
 Mantel-Haenszel test statistics  weighted-sum test statistics 
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Figure 3.2:  Quantiles of most significant P-values from 10,000 simulated meta-analyses.  
In each simulation, 169 haplotypes were tested in initial sample and selected haplotypes 
followed up in 4 additional samples.    
 
(i) Best haplotype in initial sample followed up, PACT computed as in equation (3.2). 
 
     Binary trait tested, using   Quantitative trait tested, using 
 Mantel-Haenszel test statistics  weighted-sum test statistics 

 
 
(ii) P-values < .1 in initial sample followed up, PACT computed as in equation (3.3). 
 
     Binary trait tested, using   Quantitative trait tested, using 
 Mantel-Haenszel test statistics  weighted-sum test statistics 

 
Note – Meta P-values of 1 indicate that none of the 169 SNPs passed the cutoff in the 
initial sample, and hence a meta-analysis was not performed. 
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Figure 3.3: Power to detect a heterogeneous genetic effect in an initial sample and four 
follow-up samples. 
 

(i) Mantel-Haenszel meta statistic 
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(ii) Weighted-sum meta statistic 
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Note – a MAR indicates that SNPs (and corresponding haplotypes) were missing-at-
random in the follow-up samples, as described in section 3.2.5 
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Figure 3.4: Joint distribution of PACT and Šidák P-values from weighted-sum meta-
analyses 
 
All 169 haplotypes tested in initial samples and four follow-up samples: 
 
  i) No missing data    ii) Data missing-at-random 

   
 
 
Only select results followed up in all samples: 
 
 iii) Single best result followed up  iv) All P-values < .1 followed up 
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CHAPTER 4 

 

EVIDENCE AND IMPACT OF DIFFERENTIAL RATES OF GENOTYPE 

ERROR AND MISSING GENOTYPE DATA IN SNP ASSOCIATION STUDIES 

Many common methods of SNP genotyping are more prone to certain types of errors than 

others.  For example, on many genotyping platforms heterozygous genotypes are at 

greater risk for being incorrectly assigned as another genotype or dropped due to 

ambiguity.  Using replicate genotype data from a variety of genotyping platforms, we 

investigate the extent to which rates of genotype error and missing data differ depending 

on true genotypes.  We find that rates do differ significantly across genotypes, and that 

depending on the genotyping platform, either heterozygotes or minor-allele homozygotes 

have the highest rates of genotype error and missingness.  We use simulation to 

investigate the impact of the observed distributions of errors and missing data on three 

common tests of association.  We find that genome-wide analyses based on allele 

frequency tests and transmission/disequilibrium tests may have inflated study-wide false 

positive rates, while trend-based tests of association are generally robust to the presence 

of differentially missing and erroneous genotypes.  We conclude by reinforcing the 

recommendation of Sasieni (1997) that trend tests should be used as a more robust 

alternative to the allele-frequency test, and recommending stringent quality control or 

direct modeling of genotype error and missingness for transmission/disequilibrium tests.  

4.1 Introduction 

Recent advances in SNP genotyping have resulted in remarkable improvements in 

genotyping throughput, cost, completeness, and accuracy.  Nonetheless, genotype error and 

missing data remain a concern even in high throughput labs, and especially in other labs.   
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 Genotyping error in SNPs may occur due to human error, unanticipated reactions 

with the primers, weak PCR amplification, or poor clustering.  The first three of these 

factors may also result in genotypes classified as missing due to lack of a discernible 

signal.  Missing genotype data may also be created deliberately to ensure data quality, 

often through an error detection process that removes inconsistent genotypes or a no-call 

procedure that removes ambiguous genotypes.  For data on related individuals, errors 

may be detected through checks for Mendelian inconsistency; however, Mendelian 

checks do not catch most errors in SNPs (Gordon et al. 1999) and are not possible in the 

context of unrelated cases and controls.  For data on unrelated individuals, error detection 

at the individual level is generally not possible; instead, a no-call procedure is used to 

remove experimentally ambiguous genotypes, and the quality of the entire plate of 

genotypes is assessed through quality control (QC) filters such as checks for data 

completeness, Hardy-Weinberg equilibrium (HWE), and concordance between quality 

control duplicates.  

 Much of the ambiguity that leads to genotype error and missing genotypes is due 

to low signal resulting from weak amplification or a failed primer reaction.  Many 

common SNP genotyping platforms -- including Sequenom, Affymetrix, Illumina, 

Perlegen, MIP (Molecular Inversion Probe), and pyrosequencing -- use a procedure that 

measures a separate signal for each allele and calls genotypes based on signal intensities.  

Homozygotes genotyped on these platforms generally have a strong signal for one allele 

and no signal for the other, while heterozygotes have weaker signals for both alleles.  The 

weaker heterozygote signals are more likely to blend into the noise, especially if they are 

further weakened by inefficient amplification.  Signal ambiguity can lead to an incorrect 

genotype call or a no-call, the latter resulting in missing data.  If one allele signal is too 

weak to observe, the heterozygote will be mistyped as a homozygote; if both are too 

weak, it will be classified as missing.  Homozygotes are at lower risk for this type of 

error and missingness because of their generally stronger signal intensity.   
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 A common source of signal ambiguity is the failure to amplify one or both alleles 

due to an unrecognized variant in the primer region.  Koboldt et al. (2006) examined the 

primer sequences used for SNPs genotyped in Phase I of the HapMap (International 

HapMap Consortium, 2005) for recently discovered variants, and found that the presence 

of SNPs in the primer region was predictive of increased genotype error (specifically 

heterozygotes scored as homozygotes) and no-call rates.  The pervasiveness of the SNP-

in-primer problem varied with genotyping platform due to differences in average primer 

lengths across platforms. 

 Ambiguity is also present in translation of the raw signal data into called 

genotypes.  SNP genotypes are commonly called by algorithms which cluster individuals 

into three genotype categories based on signal intensity scores.  Extremely poor 

clustering that affects an entire plate of genotypes is often detectable through HWE 

testing and other quality control measures.  Misclassification of genotypes at the 

individual level is less detectable and is most likely to occur when the dispersion of 

intensity scores within a cluster is high.  Similarly, genotypes belonging to highly 

variable clusters are more likely to appear ambiguous in terms of cluster membership and 

to be classified as no-calls.  Since clusters with the fewest data points will tend to have 

the highest variance, minor allele homozygotes may be at the greatest risk of being 

classified as no-calls or misclassified into the incorrect cluster, especially for rare minor-

allele SNPs.    

 It is well-known that heterozygotes are often at greater risk of being mistyped 

(Cutler et al. 2001, Mitchell et al. 2003) and missing (Hirschhorn and Daly 2005, Hao 

and Cawley 2007) for the reasons described above.  However, in the literature on SNP 

genotyping error, studies allowing for differential rates of error have been the exception 

rather than the rule.   

 Studies of the effects of SNP genotyping error on case-control association tests 

have typically assumed error models that do not allow for differential rates of error by 
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genotype.  For example, Gordon and Ott (2001) have shown that for a random-allele 

model of genotyping error, misclassification of genotypes reduces power of the test for 

equal allele frequency between cases and controls but does not affect the rate of type I 

error.  However, this random-allele model, which assumes that genotyping error occurs 

independently for each allele, is a unique case in that it guarantees that Hardy-Weinberg 

equilibrium is maintained, even for very high rates of error.  Sasieni (1997) has shown 

that the allele frequency test is sensitive to HWE violations, so the conclusions of Gordon 

and Ott may not generalize to other models of genotype error. 

 Ahn et al. (2006) considered a model of differential rates of genotype error in an 

investigation of how different types of genotype error affect the power of the Cochran-

Armitage test for trend (Cochran 1954; Armitage 1955).  They found that the errors 

leading to the greatest loss of power are those involving misclassification of the more 

common homozygote.  They addressed the power of the test rather than its validity 

because the trend test provides an unbiased test in the presence of genotype 

misclassification if 1) the null hypothesis of no genetic association is true and 2) the 

probabilities of misclassification are identical for cases and controls (Brenner 1992).  The 

Cochran-Armitage test for trend is also robust to violations of HWE (Sasieni 1997).  

Hence, the influence of genotype error on trend tests is limited to a decrease in the power 

to detect a genetic effect (attenuation bias).   

 The transmission/disequilibrium test (TDT), however, can exhibit substantial bias 

in the presence of differential rates of genotyping error.  Mitchell et al. (2003) have 

shown that several models of undetected genotyping error can lead to apparent over-

transmission of the common allele, including both the random-allele model discussed 

above and a model where all error is due to miscalling heterozygotes as homozygotes.  

However, they noted that the latter model required higher error rates to produce the same 

magnitude of distortion as the random-allele model. 
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 A related issue is the sensitivity of association tests to missing data and in 

particular to rates of missingness which vary by genotype.  This topic has not been 

addressed until recently, probably because the simplest scenario -- random loss of 

genotypes -- is merely a problem of reduced power due to a diminished sample size.  

However, differential rates of missing genotypes can lead to problems much like those 

associated with differential rates of genotype error.   

 For the TDT, Hirschhorn and Daly (2005) found that transmission distortion 

similar to that observed by Mitchell et al. (2003) could occur even in the absence of 

genotyping error if genotypes were missing at different rates.  In particular, the 

proportion of false positives vastly exceeded the desired type I error rate when 

heterozygous genotypes were missing at a greater rate than homozygous genotypes.  

They noted that this was also the case for other scenarios involving differential rates of 

missingness, such as when the rate of missingness was largest for minor-allele 

homozygotes.  In a recent study addressing the impact of differential dropout rates 

between heterozygotes and homozygotes, Hao and Cawley (2007) observed a similar bias 

in the expected transmission ratio which increased with the ratio of rates of missingness 

between heterozygotes and homozygotes.  

 Hao and Cawley also investigated the impact of differential rates of missing 

genotypes on a trend test for association and found that the odds ratio remained unbiased 

even when the rate of missingness was ten times greater for heterozygotes than 

homozygotes.  This is consistent with Sasieni’s (1997) endorsement of the trend test as a 

robust test for association compared to the commonly used test for equal allele frequency, 

which is sensitive to departures from HWE.   

 Allele frequency tests and trend tests are asymptotically equivalent when HWE 

holds.  However, trend tests are based on genotype frequencies while the allele frequency 

test is based on an allele frequency estimate which requires the assumption of HWE.  

This distinction is particularly relevant to the problem of differential rates of genotype 
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error and missing genotypes, since these differential rates lead to distortion in genotype 

frequencies and hence in HWE.  Nevertheless, previous studies on the effects of 

differential rates of missing genotypes and genotype error on the validity and power of 

association tests have emphasized tests for trend or the TDT, but not the allele frequency 

test.  In section 4.2.1, we investigate the properties of the allele frequency test under a 

simple model where data are missing only for heterozygotes.  We demonstrate 

theoretically that differential rates of missing genotypes can invalidate the allele 

frequency test, although noticeable bias generally requires substantial levels of error.  We 

present similar results for a simple model of differential genotype error.   

 To assess the extent to which differential rates of genotype error and missingness 

are realistic in practice, in section 4.2.3 we measure and compare rates of genotype error 

and missing data among heterozygotes and both major and minor-allele homozygotes for 

a variety of genotyping platforms and allele frequencies.  To do this, we take advantage 

of two existing datasets where replicate genotyping has been performed:  a set of 1388 

384-well plates of genotypes obtained using the Sequenom platform for the FUSION 

study (Valle et al. 1998), and a set of >200,000 plates of 30 trios each genotyped by three 

or more centers as part of the HapMap (International HapMap Consortium 2005, 2007).  

The FUSION data include the final resolved genotype calls, which can be treated as the 

consensus or true genotypes.  For the HapMap data, we develop an EM algorithm which 

infers true genotypes from the replicate genotype data, accounting for the relatedness of 

individuals.  In both FUSION and HapMap data, we find clear evidence of differential 

rates of genotype error and missingness; in particular, we find that rates of genotype error 

and missing genotypes are higher for heterozygotes and minor allele homozygotes than 

for major-allele homozygotes.  In the HapMap data, we observe substantial variation in 

rates of genotype error and missingness between platforms. 

 We next explore the impact of data completeness on the validity and power of 

association studies, given the types of genotype error and differential rates of missing 
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data that may occur on incomplete plates of genotypes.  Many studies impose a set of 

plate-wide QC criteria that includes removing or re-genotyping plates with low genotype 

success rates.  Since substantial resources may be spent re-genotyping incomplete plates, 

we investigate the efficacy of this endeavor in section 4.2.4.  We use simulations to 

assess type I error rates and power in an association-testing framework for a range of 

genotype completeness, given the rates of error and missingness by genotype observed on 

initiall plates of FUSION genotypes.  The impact of incompleteness on validity and 

power varies depending on the type of analysis desired.  For allele frequency tests, even a 

small proportion of missing genotypes is sufficient to distort HWE and yield anti-

conservative tests.  However, trend tests attain the correct type I error rate even when up 

to 80% of genotype data are missing due to no-calls,  although they do lose power in this 

situation due to the 80% reduction in sample size.  For TDT analyses, however, even 

relatively low rates of missing genotypes (.05–.10) cause the rate of type I error to more 

than double in our simulations.  

 Finally, we investigate the distribution of genotype error and missingness rate 

across plates of genotypes, and find that 70% of the genotype errors in the Sequenom 

(HapMap) data are concentrated in <1% (~2%) of the plates.  This is worrisome because 

in a large-scale association study, interest is typically focused on the SNP or SNPs 

showing the strongest evidence of association; hence, systematic but undetected error for 

a single SNP could impact the conclusions of an entire study.  We perform simulations to 

investigate the impact of the observed distribution of genotype error and missingness on 

the study-wide false positive rate of a genome-wide.association study.  We observe 

inflated rates of type I error when the allele frequency test is used to test for case-control 

association, particularly for platforms exhibiting greater rates of genotype error.  The 

removal of plates failing HWE checks does not eliminate this bias; however, the 

Cochran-Armitage test for trend achieves the correct type I error rate for all platforms.  

For a TDT-based genome-wide association study, the observed distributions of error and 
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missingness lead to study-wide false positive results in every simulation.  However, the 

target type I error can be attained with the imposition of strict plate-wide QC measures.  

We conclude that the non-uniform distribution of genotype errors and missing data across 

both genotypes and plates has the potential to invalidate association studies, particularly 

the allele frequency test and the TDT, so additional precautions should be taken when 

using these methods. 

4.2 Methods 

4.2.1 Impact of differential rates of missing genotypes and genotype error on type 
I error rate on the test of equal allele frequencies 

 
Assume that true genotypes AA, AB, and BB are in HWE with allele frequencies p and q 

and true genotype frequencies p2, 2pq, and q2.  In this case, allele frequency can be 

estimated from observed genotype frequencies: 

1ˆ ˆ ˆ
2AA ABp p p= + . 

This estimate of p is unbiased under HWE but is generally biased when HWE is violated, 

since HWE is required for the allele counts to follow a binomial distribution (Sasieni 

1997).  If heterozygotes are missing at rate m and no other genotypes are missing or 

mistyped, it is easy to show that our estimate of p will be biased: 

( ) 1ˆ
1 2

mqE p p
mpq

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

. 

Figure 4.1 i) shows this bias due to preferential missingness of heterozygotes (or of 

homozygotes, although this is atypical) for a range of allele frequencies.  While small in 

absolute terms, this bias can be a large portion of the estimated p for low allele 

frequencies. 

Define N as the number of individuals for whom genotypes were attempted and n 

as the number of genotypes observed (that is, N minus the number of missing 
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heterozygotes).  The usual variance estimate ˆ ˆ(1 ) / 2p p n−  is not appropriate if a portion 

of heterozygotes are missing, since the allele counts do not follow a binomial distribution 

in this case (Sasieni 1997).  We use the delta method to approximate the true variance: 

( )
3

1 2
ˆ( )

2 (1 2 )
pq m mpq

Var p
N mpq
− +

≈
−

. 

The expectation of the conventional estimate is approximately 

( )2

3

1ˆ ˆ(1 )
2 2 (1 2 )

pq m m pqp pE
n N mpq

− +−⎛ ⎞ ≈⎜ ⎟ −⎝ ⎠
,  

so the approximate ratio of true to estimated variance can be expressed as 

2

1 2
1

m mpqk
m m pq

− +
=

− +
. 

Note that the ratio is independent of sample size, and that k = 1 when m = 0.  Because the 

incorrect variance is used when calculating the t-statistic, the usual allele frequency test 

statistic ~ (0, )dt kZ N k⎯⎯→ , and the resulting test will be biased with expected type I 

error  

1.96( 1.96) 2P kZ
k

⎛ ⎞> = Φ −⎜ ⎟
⎝ ⎠

. 

Figure 4.1 ii) shows the expected rates of type I error for the allele frequency test when 

there is a proportional loss of heterozygotes or homozygotes.  The allele frequency test 

will be anti-conservative when heterozygotes are more likely to be missing than 

homozygotes, and overly conservative if homozygotes are more likely to be missing. 

 A similar derivation can be performed to allow for differential rates of genotype 

error.  Figure 4.1 iii) shows the expected rates of type I error when heterozygotes are 

erroneously genotyped as homozygotes, and vice versa.  Since the allele frequency test is 

dependent only on allele counts, the scenario where heterozygotes are misclassified as the 

major and minor allele homozygote in equal numbers leads to a valid test.  However, this 

case seems implausible given the likely sources of the error, since it would imply that the 
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two alleles each failed to amplify with equal probability.  In general the allele frequency 

test will be biased when genotype error rate varies by true genotype.  If heterozygotes 

have a larger (smaller) probability of error than homozygotes, the allele frequency test 

becomes anti-conservative (overly conservative), especially for SNPs with low MAF.   

4.2.2 Samples 

To estimate empirical rates of error and missingness by genotype, we take advantage of 

replicate genotype data from two distinct datasets.  Our first sample contains replicate 

mass spectrometry genotyping data for 499 SNPs genotyped by the Sequenom Biomass 

system for the FUSION study (Valle et al. 1998) which were genotyped more than once 

and ultimately resolved with confidence.  Our second sample consists of data from the 

January 2007 HapMap release, which included files containing HapMap genotype data in 

its raw form, prior to the application of QC filters 

 For both samples, we restricted our analysis to plates which were valid according 

to a set of lenient criteria.  We did this to remove plates that would normally be discarded 

due to obvious plate-wide errors, since our main interest was in estimating the amount of 

individual genotype error and missingness on seemingly valid plates.  For the analysis 

described in section 4.2.3, we considered plates valid if  

 1.) ≥ 80% of genotypes were called (non-missing)  

 2.) the genotypes on the plate passed HWE (P > 1×10-5) 

 3.) the plate included at least 2 heterozygotes and 2 major-allele homozygotes 

 4.) plate allele frequency differed from the consensus allele frequency by < .20 

            5.) there was not an obvious allele switch 

We defined an allele switch as a plate with > 80% of homozygotes recorded as the 

opposite homozygote as the consensus.  For Sequenom genotypes, we defined the 

consensus allele frequency for each SNP as the allele frequency computed based on the 

final genotypes.  For the HapMap genotypes, we defined the consensus allele frequency 
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as the average allele frequency across all QC positive plates for each SNP, and used a 

majority rule to identify plates where allele labels had been switched.   

 For the Sequenom data passing these criteria, we defined our sample to include 

the first valid genotyping attempt for each plate, as well as the final resolved genotypes.   

Our final sample included sequential data on 1388 384-well plates that were genotyped 

more than once and ultimately resolved with confidence, either by the Sequenom 

software or manually, for a total of 485,667 final genotypes.   

 For the unfiltered HapMap data passing the above criteria, our analysis sample 

consisted of 121,713 SNPs that had been genotyped on one or both of the CEU or YRI 

samples at three or more center/platform combinations.  Including SNPs genotyped on 

both samples, our analysis sample included data on 105,686 SNPs genotyped in replicate 

for the 30 YRI trios, and 105,673 for the 30 CEU trios, for a total of 211,359 × 90 distinct 

genotypes attempted.  With three or more centers submitting genotypes for each of these 

SNPs, data were available for a total of 664,369 × 90 submitted genotypes,   Replicate 

genotyping of the same SNP by multiple centers occurred both inadvertently and as a part 

of the HapMap quality assessment exercises (International Hapmap Consortium 2005, 

Online Supplement).  Tables 4.1 and 4.2 show the counts of plates submitted in replicate 

by center, platform, and the number of replicates for the CEU and YRI samples.  

Genotyping was performed by ten centers on eight different platforms, for a total of 14 

different center/platform combinations for CEU samples and 15 center/platform 

combinations for YRI samples.   

 In section 4.2.4, we will relax the first of the above sample-definition criteria so 

we can assess the tolerance of association testing methods to lower-quality and less-

complete genotypes.  For the GWA simulation analysis in 4.2.5, we will apply all of the 

above criteria and will further restrict our sample of replicate HapMap genotypes to 

include only plates of genotypes which passed the HapMap QC filters (International 
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HapMap Consortium, 2005).  Application of these additional criteria is equivalent to 

removing plates with  

1.) ≥ 2 Mendelian inconsistencies 

2.) ≥ 2 of 5 duplicate genotypes inconsistent with original genotype 

3.) HWE P-value ≤ .001 

as well as plates that had been flagged as QC failures by the submitting centers. 

4.2.3 Estimation of rates of genotype error and missingness 

For each SNP, we labeled the major allele (defined as the allele observed most frequently 

over all valid plates for that SNP) as ‘A’ and the minor allele as ‘B’.  The conditional 

probabilities for the four possible genotype calls (AA, AB, BB, no call) given the three 

possible true genotypes can be expressed as P(observe genotype y | true genotype is x ) = 

exy and written as a 3 x 4 matrix 

11 12 13 14

21 22 23 24

31 32 33 34

e e e e
E e e e e

e e e e

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

where 1, 2, 3, and 4 are shorthand for AA, AB, BB, and no call, and each row sums to 1.   

 Replicate Sequenom genotypes:   Treating the final genotype as the true genotype, 

we computed exy for x = 1, 2, 3, y = 1, 2, 3, 4 as the proportion of all x genotypes which 

had been initially called as y, where initial call was defined as the genotype from the first 

valid plate.  e14, e24, and e34 are the respective rates of missingness for AA, AB, and BB 

genotypes.  We computed the genotype error  rate among called genotypes as (e12 + e13)/ 

(e11 + e12 + e13).when the true genotype was AA, (e21 + e23)/ (e21 + e22 + e23) when the 

true genotype was AB, and (e31 + e32)/ (e31 + e32 + e33) when the true genotype was BB. 

 Unfiltered replicate HapMap genotypes:  Since the HapMap replicate data did not 

include attempts to resolve discrepant genotypes, we used the known parent-child 
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relationships and the repeated independent observations of genotypes for each SNP to 

compute the posterior probabilities that each underlying true genotype was AA, AB, or 

BB.  To ensure that we considered only independent attempts at genotyping each SNP, 

we omitted any replicate plates having the same SNP/center/platform combination by 

randomly selecting a single plate for inclusion in our analysis. 

 We applied the Expectation Maximization algorithm to estimate a separate 

conditional error matrix jE  for each center/platform combination j = 1,…,J.  We 

initialized p, the vector of SNP allele frequencies, to the average allele frequency based 

on all called genotypes submitted on all included plates.  We also initialized ( )0
jE E= for 

all centers, where ( )0E contains naïve moment-based estimates of the conditional 

probabilities based on two plates for each SNP. 

 Expectation step:  Posterior probabilities for trios and individuals: 

For each trio i = 1,…,30 and each SNP s = 1,…,S, we define the genotypes submitted by 

center j for the mother, father, and child as { }, ,j j j j
si si si siG M F C= .  For each SNP, we 

estimate the posterior probability of each possible value for the unobserved true 

genotypes { }, ,si si si siG M F C=  conditional on the observed genotypes as the product of 

the Mendelian probability of observing Gsi and the conditional probability of all 

submitted genotypes conditional on Gsi 
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( ) ( )
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( ), , ;si si si sP M F C p is simply the Mendelian probability of genotypes , ,si si siM F C  given 

allele frequency ps; hence, any Mendelian-inconsistent true genotypes will automatically 

have a posterior probability of zero. 

 Posterior probabilities for individuals can be obtained by summing the trio 

posterior over the relevant trio members.  For instance, the posterior probability that the 

mother’s genotype is AA can be computed as 

( ) ( )1 1
,1

,
1| ,..., 1, , | ,...,i iJ J

M si si si si si si si si
c f

Post P M G G P M F f C c G G= = = = = =∑  

 Maximization step: conditional probabilities of erroneous genotypes and no-calls 

For each center, we compute updated estimates of each element of jE as  

( )
( )

, , ,

, , ,

j j jsi si sisi si si

si si si

M x F x C xM y F y C y
j s i
xy

M x F x C x
s i

Post I Post I Post I
e

Post Post Post

= = =
⋅ + ⋅ + ⋅

=
+ +

∑∑
∑∑

 

where j
siM y

I
=

 is an indicator that the reported genotype j
siM y= .  The numerator is the 

predicted number of genotypes submitted as y by center j which are truly x.  This 

expected count is computed by taking a weighted count of genotypes reported as y over 

all SNPs and individuals, where the weights are the posterior probability that the true 

genotype is x. Similarly, the denominator is the expected count of all genotypes 

submitted by center j which are truly x, which we compute by summing over all SNPs 

and individuals the posterior probability that the true genotype is x.   

 Our criterion for convergence of the EM algorithm was a difference of < 10-10 in 

the L2-norm of the 3 × 4 × J array [E1, …, EJ] over two successive iterations.  We used 

this algorithm to estimate jE  for the 15 center/platform combinations described above 

based on all submitted genotypes in the combined CEU and YRI samples.  We allowed 

SNPs that were genotyped in both the CEU and YRI samples to have different allele 

frequencies (and hence, different Mendelian probabilities) in each sample.  To estimate 

jE  separately for five allele frequency categories (.01–.05, .05–.10, .10–.20, .20–.35, and 
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.35–.50), we performed the analysis using only SNPs with consensus allele frequencies in 

the appropriate category.  We computed rates of genotype error for called genotypes 

based on the estimate of jE as described for the replicate Sequenom data. 

 The posterior probabilities for individual genotypes can also be used to establish a 

set of consensus genotypes for the HapMap samples.  All genotypes had a posterior 

probability > .5 for one of the three possible genotype, and 99.95% of genotypes had a 

posterior probability > .9999, so consensus genotypes could be determined with little 

ambiguity. 

4.2.4 Estimation of type I error rate and power by plate completeness 

Because substantial resources may be spent re-genotyping incompletely genotyped plates, 

we were interested in what kinds of bias and power loss could be expected if data from 

incomplete plates were used in analyses, given that incomplete plates are likely affected 

by differential rates of genotype errors and missingness, and what kinds of gains were 

associated with obtaining complete data.   

 To simulate realistic incomplete data, we grouped the replicate Sequenom data by 

completeness of initial plate to form eight sets of plates with missing genotype rates of  < 

2%, 2–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, and 60–80%.  Since 

the focus of this analysis was incomplete plates, we excluded plates which were initially 

complete and we included plates which had been excluded from the analysis in section 

4.2.3 due to having no-call rates >20%.  We performed 1,000,000 simulations for each of 

the eight categories.  In each simulation, we randomly drew a plate from the appropriate 

set of plates.  We used the final genotype frequencies for each plate to draw complete-

data genotypes for a simulated sample of 500 cases and 500 controls.  We then used the 

distribution of initial versus final genotype calls observed on each plate to form 

conditional probabilities of being observed as AA, AB, BB, or no-call given an 

individual’s complete-data genotype.  We used these conditional probabilities to draw 
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initial genotypes for each of the cases and controls, conditional on their assigned true 

genotypes.  

 For each simulated sample of 500 cases and 500 controls, we performed allele 

frequency tests and trend tests using both the complete data and the initial, incomplete 

data.  For each of the eight levels of plate completeness, we computed type I error rate as 

the proportion of 1,000,000 simulations with P-values < .05. 

 To estimate power, we re-performed the above analysis, but assigned complete-

data genotypes for cases with probabilities P(AA) - ε, P(AB), and P(BB) + ε, where ε was 

chosen such that association tests had power ~ .8 when performed on complete data.  In 

this case, we estimated power as the proportion of 1,000,000 simulations with P-values < 

.05. 

 To assess the impact of realistic incomplete data on the TDT, we also created 

1000 simulations of 1000 trios, and performed the TDT on the subset of trios which were 

informative.  In each simulation, we randomly drew a plate from the appropriate set of 

Sequenom plates, and simulated parental genotypes for the 1000 trios based on final 

genotype frequencies on the plate.  Child genotypes were simulated directly from true 

parent genotypes assuming Mendelian inheritance.  We then simulated observed 

genotypes for all individuals based the conditional probabilities of genotype error and 

missingness inferred from the distribution of initial versus final genotype calls on the 

Sequenom plate.  We performed the TDT on all informative trios based on the complete 

data.  We performed it again using the incomplete data, after first removing all 

Mendelian-inconsistent trios and incompletely genotyped trios.  Type I error rate was 

estimated for each level of incompleteness for both initial and final genotypes as the 

proportion of simulations with P-values < .05. 
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4.2.5 Estimation of type I error rate for genome-wide association testing 

To assess the impact of the observed patterns of genotype error and missingness on 

genome-wide association (GWA) studies, we simulated genotype data for ~300,000 

SNPs.  To allow the rates of error and missingness to vary realistically across SNPs, we 

randomly drew a plate-wide estimate of the error probability matrix E for each simulated 

SNP.  The plate-wide estimates of E were based on observed rates of error and 

missingness from plates of HapMap SNPs passing QC.  We used the plate-wide 

probabilities of error and missingness to randomly induce missing genotypes and errors 

into our simulated genotypes, and then tested all SNPs for association. 

 Construction of plate-wide estimates of E:  We computed separate estimates of E 

for 642,879 plates of attempted genotypes in the HapMap CEU and YRI data which had 

consensus MAF > .01 and passed both our QC measures (see section 4.2.2) and the set of 

QC measures defined by the HapMap.  Each plate contains 90 genotypes from either the 

CEU or YRI sample for a particular SNP (s = 1, …, S ) and center (j = 1, …, 15).  A 

simple estimate of the error probability matrix for each plate, 
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can be constructed by comparing observed genotypes to the consensus genotypes inferred 

from the posterior probabilities computed by our EM algorithm.  For example, we can 

compute the conditional probabilities e31
s,j, e32

s,j, e33
s,j, and e34

s,j as the proportion of BB 

consensus genotypes called as AA, AB, BB, or missing.  A problem with this simple 

estimate is that with 90 individuals, SNPs with MAF < .2 will generally have fewer than 

10 BB genotypes, so often only very crude estimates of e31
s,j, e32

s,j, e33
s,j, and e34

s,j will 

result. 
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 To smooth these crude estimates, we fit a logit model to the data that allows the 

rate of each type of error to vary across plates as a log-linear function of true MAF (ps) 

and includes random effects for each plate and for each individual.  We fit a separate 

model for each true genotype.  For example, for the s
BBn  individuals with consensus 

genotype BB for SNP/plate s, the number of missing genotypes has a ( ),
34Bin ,s s j

BBn e  

distribution, where ,
34

s je  is the rate of missingness for BB genotypes on the plate for SNP 

s submitted by center j.  For all combinations of SNPs s = 1, …, S and individuals i = 1, 

…, 90 where the consensus genotype is BB, we fit the model 

( )
( )

,
34

exp
1 exp

μ β ε δ
μ β ε δ
+ + +

=
+ + + +

s s is i

s s i

p
e

p
 

where ( )2~ 0, εε σs N  and ( )2~ 0, δδ σi N  are plate-specific and individual specific 

random effects.  The  j superscript is omitted in the model above because we fit the model 

separately for each center.  For each plate, we then obtain ,
34

s je as the average of the 

predicted rates ,
34

s ie  over the s
BBn  individuals.  Although MAF is included in the model 

as a log-linear covariate (ps), we also fit the model separately for four categories of 

consensus MAF (.01–.10, .10–.20, .20–.35, and .35–.50) to allow all parameters to vary 

flexibly with allele frequency.  

 We fit similar models to estimate plate-specific rates corresponding to each of the 

conditional probabilities in jE .  We fit a separate set of such models to estimate jE  for j 

= 1, …, 15, which allows us to estimate and store a separate set of plate-wide error 

probabilities for each of the 15 center/platform combinations. 

 Simulation of GWA samples: We computed genotype frequencies for 310,151 

autosomal SNPs genotyped on >2000 cases and controls from the FUSION study (Scott 

et al. 2007) on the Illumina HumanHap300 BeadChip.  Based on these genotype 

frequencies, we simulated 310,151 independent genotypes (“true genotypes”) under the 
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null hypothesis of no association, either for 1) 10,000 replicate samples of 1000 cases and 

1000 controls, or 2) 1000 replicate samples of 1000 trios.   

 To draw a stratified sample of 310,151 of the 642,879 HapMap-based plate-wide 

estimates of the conditional error matrix E, we first sorted the plate-wide estimates into 

bins according to the consensus HapMap MAF (89 categories representing minor allele 

proportions ranging from 2/180 to 90/180) and the center/platform which provided the 

raw genotypes.  For 15 center-platform combinations × 310,151 SNPs, we randomly 

drew a plate-wide probability matrix ,s jE  from the bin corresponding to center j and to 

the allele frequency of the simulated GWA SNP.   For HapMap SNPs with no BB 

consensus genotypes, the plate-wide estimates were missing estimates of  e31
s,j, e32

s,j, 

e33
s,j, and e34

s,j.  When such a plate-wide estimate was drawn, we re-drew estimates of e31, 

e32, e33, and e34 from another plate, but kept the original estimates of the other conditional 

probabilities in , .s jE   For MAFs < .045, BB consensus genotypes were rare, so we 

combined the eight bins corresponding to MAF < .045 when re-drawing estimates of e31, 

e32, e33, and e34. 

 We next used a multinomial distribution based on the assigned plate-wide 

probability matrix ,s jE  to randomly induce genotype errors and missing genotypes into 

each simulated GWA SNP.  Through this process, we obtained 16 sets of GWA data to 

analyze in each replicate: one set of simulated “true” genotypes and 15 sets of “observed 

genotypes”, each corresponding one of the 15 center/platform combinations. 

 Estimation of GWA study-wide type I error rates based on case-control 

association:  We tested each SNP in each of the 16 samples for association with case-

control status using either the allele frequency test or the Cochran-Armitage test for trend 

(Cochran 1954; Armitage 1955), and used the Šidák method (Šidák 1967) to adjust the P-

value of the most significant SNP genome-wide for the number of SNPs tested.  We 

repeated this analysis on 10,000 replicate GWA samples, each time recording the 

adjusted minimum P-value for each of the 16 analysis samples.  To estimate the study-
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wide type I error rate, we computed the proportion of replicates where the Šidák-adjusted 

P-value < .05.  We performed this analysis both with and without a HWE check which 

restricted the set of analysis SNPs to include only SNPs passing HWE (PHWE > .001) on 

the control sample.   

 Estimation of GWA study-wide type I error rates based on the TDT:  In each 

analysis sample, we computed the TDT statistic for every SNP with at least 100 

informative trios.  The number of informative trios available for each TDT varied with 

the MAF of the SNP being tested, as well as the loss of trios due to Mendelian 

inconsistencies or missing data.  For each of the 16 analysis samples, we computed the 

Šidák-adjusted P-value for the most significant TDT statistic genome-wide.  To assess 

the impact of the distribution of genotype error and missing data on smaller-scale 

analyses, we also computed Šidák-adjusted P-values for the largest TDT statistic out of 

1000, 100, or 10 randomly selected SNPs.  For comparison purposes, we also recorded 

the P-value of a single SNP, selected at random.  We repeated this analysis on 1000 

replicates of each of the 16 GWA samples.  We performed this analysis both with and 

without the application of QC filters.  When QC filters were applied, we restricted the set 

of analysis SNPs in each sample to those with ≤ 2 Mendelian-inconsistent trios and at 

least 95% completeness.  For comparison purposes, we also tried further restricting the 

set of SNPs to those with 99% completeness and no Mendelian inconsistencies.   

4.3 Results 

4.3.1 Replicate Sequenom data 

In a sample of 485,667 genotypes on 499 SNPs from the Sequenom Biomass genotyping 

system in the FUSION study that were ultimately resolved with confidence, models of 

identical genotype error rates and identical missingness rates across genotypes were 

strongly rejected (p<<.0001).  The rate of missing genotypes was highest for 

heterozygous genotypes: 3.4% of heterozygotes were initially no-calls, compared to 2.1% 
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of AA or major allele homozygotes and 2.3% of BB or minor allele homozygotes.  Figure 

4.2 shows the initial rates of missingness by final genotype both overall and broken down 

by allele frequency categories.  In all categories, heterozygous genotypes are the most 

likely to initially be missing.  BB homozygotes are generally slightly more likely than 

AA homozygotes to be missing, especially for lower allele frequencies. 

 In contrast, the rate of genotype error among called genotypes was the highest 

among minor allele homozygotes.  0.52% of BB homozygotes were initially misclassified 

as an incorrect genotype, which was equally likely to be AA or AB. 0.37% of 

heterozygotes were initially called as homozygotes, while only 0.20% of AA 

homozygotes were initially misclassified as another genotype.  Figure 4.3 shows rates of 

genotype error by final genotype overall and broken down by allele frequency.  

Genotypes homozygous for the minor allele have the highest rates of genotype error at all 

allele frequencies, followed by heterozygous genotypes. 

 Genotype errors and missing genotypes were not evenly distributed across plates.  

62% of the 1388 plates passing our criteria for inclusion were initially complete, and 86% 

of no-call genotypes were concentrated in just 20% of the 1388 plates.  Similarly, 96% of 

plates had no initial genotype error, and 70% of genotype errors occurred on the 8 most 

error-prone plates. 

 Because scarce resources are often spent resolving bad or incomplete plates, we 

investigated the potential gains in power and validity of association tests associated with 

these efforts.  Figure 4.4 i) compares expected type I error rates for case-control 

association tests based on simulated samples with incomplete versus complete genotype 

data.  The initial incomplete data reflect the differential rates of genotype error and 

missingness observed in our Sequenom data, as described in section 4.2.4.  Type I error 

rate for the allele frequency test is represented by the solid bars, and it is clear that the 

allele frequency test is biased in favor of rejection when the data are not fully resolved.  
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However, trend tests, represented by shaded bars, are robust to the variations in data 

quality and provide unbiased tests for all levels of genotype completeness.   

 Since trend tests can generally be used in place of the allele frequency test, valid 

case-control SNP association tests may be achieved even with low-quality initial data, 

although this does not generalize to more complicated association tests, such as those 

involving haplotypes.  In the context of case-control association tests, however, power 

loss may be the main reason to worry about the quality and completeness of genotypes.  

Figure 4.4 ii) compares expected power for the simulated initial and resolved genotype 

data.  The power of both allele frequency and trend tests clearly decreases as the no-call 

rate increases.  However, the power losses are mild for plates with >90% complete data.  

 The TDT is much more sensitive to low data quality than case-control association 

tests.  Figure 4.5 shows the expected type I error rates when the TDT is performed on 

initial versus complete genotype data.  Even when the data are 90 – 95% complete, the 

observed type I error rate can be more than double the nominal type I error rate.  It 

appears that requirements for genotyping completeness should be much more stringent in 

the case of the TDT than for case-control association tests unless the error can be 

appropriately modeled in the analysis. 

4.3.2 HapMap data 

For the 664,369 × 90 replicate genotypes submitted by the HapMap centers, respective 

rates of missingness for inferred true AA, AB, and BB genotypes were 0.7%, 1.1%, and 

1.2%.  Figure 4.6 i) shows the rates of missingness for all three genotypes overall and 

broken down by allele frequency.  In contrast to the Sequenom data, the BB homozygotes 

have the highest rates of missing genotypes for all allele frequencies. 

 Figure 4.6 ii) presents rates of genotype error estimated using the HapMap data.  

As with the Sequenom data, BB homozygotes are the most likely to be misclassified 

overall (0.36%) and for all allele frequency categories, followed closely by 
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heterozygotes, which are erroneously genotyped 0.33% of the time.  Major allele (AA) 

homozygotes are misclassified as another genotype only 0.10% of the time.   

 Figure 4.7 presents rates of genotype error and missing data by inferred true 

genotype, broken down by platform and by the center submitting the genotype.  Rates of 

genotype error vary significantly with genotype for every platform and center (P << 

.0001), and missing data rates vary significantly with genotype for every center (P << 

.0001) except for the Sanger Center (P = .045).  However, the patterns of differential 

genotype error and missingness differ across platforms.  For plates assayed using the 

Perlegen and Sequenom platforms, heterozygous genotypes are the most likely to be 

misclassified or missing.  For Perlegen genotypes, this pattern is consistent with the 

known sensitivity of the amplicon long-range PCR structure of the Perlegen design to 

undetected variants in the primer region (International Hapmap Consortium 2007, Online 

Supplement).  For other platforms, BB homozygotes are more likely than other genotypes 

to be missing (Affymetrix and MIP) or misclassified as an incorrect genotype 

(GoldenGate, Affymetrix, and FP-TDI).  These patterns are similar when broken down 

by allele frequency (data not shown), although for low MAFs, BB genotypes are the most 

likely to be lost to genotype error or missing data on all platforms.   

 The above analysis is based on 664,369 plates of genotypes which passed the set 

of criteria described in section 4.2.2.  We chose somewhat lenient criteria in order to 

assess the types of errors that may occur in raw genotype data.  However, the more 

stringent QC measures defined for the HapMap data (International HapMap Consortium 

2005) are probably closer to the types of filters applied to genotype data in large-scale 

association studies. Strengthening our criteria to include the HapMap QC filters reduces 

our analysis set to 642,879 plates of genotypes.  We applied our EM algorithm to 

estimate rates of error and missingness for this reduced set of plates.  Compared to the 

above analysis, we observed 1) very similar rates of missingness, and 2) reduced rates of 

genotype error rates for all platforms and centers, especially the Sanger Center.  Although 
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error rates were lower across the board, the overall pattern of differential error rates by 

genotype and platform was similar to the pattern in Figure 4.7 (data not shown).   

 As with the Sequenom data, no-call genotypes and genotype errors were not 

distributed evenly across plates.  For the 642,879 plates passing the HapMap QC filters, 

87% of no-call genotypes were concentrated on just 20% of plates, and 70% of genotype 

errors occurred on just 2.1% of plates.  To assess the potential impact of this uneven 

distribution of error and missingness on large-scale association studies, we induced errors 

and missing data in simulated genome-wide SNP data based on probabilities sampled 

from the 642,879 plates of genotypes passing the HapMap QC filters. 

 Figure 4.8 shows the expected study-wide type I error rate for a genome-wide 

case-control association study given the distribution of genotype errors and missing data 

observed for each center and platform.  For studies employing allele frequency tests 

(solid-colored bars), the study-wide type I error rate is somewhat inflated and can be as 

high as .08 depending on the genotyping center.  The bias is most pronounced for the 

genotyping centers and platforms which show the highest incidence of genotype error in 

Figure 4.7 ii).  Restricting the analysis to SNPs which pass HWE (PHWE >.001) in the 

control sample only slightly mitigates this bias.  Even in the absence of errors or missing 

data (leftmost bars), the allele frequency test has a type I error rate of .059, with a 95% 

confidence interval (.054, .063) that does not include .05.  As discussed above, the allele 

frequency test is not robust to departures from HWE.  It is likely that even with our 

reasonably stringent HWE check, one or more of the ~300,000 SNPs will have sufficient 

HWE departure to inflate the type I error rate of the allele frequency test.  This appears to 

occur even in the absence of genotype error and missing data, and to be exacerbated by 

differential rates of error and missingness.  

 The estimated type I error rate of .0480 for the trend test in the absence of error 

and missing data (leftmost shaded bars) does include .05 in its 95% confidence interval 

(.0459, .0501).  When error and missing data are induced in the data, the trend test 
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achieves type I error rates within or slightly below this confidence interval, falling below 

the target rate of .05 for all centers and platforms.  Since the trend test attains the 

appropriate rate of type I error, we also investigated the impact of the observed 

distribution of genotype error and missing data on the power of the trend test in GWA 

(data not shown).  Power for all centers and platforms was slightly diminished compared 

to power in the absence of error and missing data.  Depending on the genotyping center, 

power ranged from 87% to 100% of power in the absence of error and missing data. 

 We next investigated the impact of the observed distributions of error and missing 

data on large-scale TDT studies.  Figure 4.9 shows the study-wide type I error rate for 

TDT-based association studies involving 1, 10, 100, 1000, or ~300,000 independent 

SNPs, either i) with no QC filters applied, or ii) with a reasonable QC filter (95% 

complete data, ≤2 Mendelian inconsistencies) which on average led to the removal of 

12% of SNPs.  The pre-QC results in Figure 4.9 i) are striking.  A false positive result is 

observed for the GWA for every center, in every simulation.  For comparison purposes, 

the leftmost bars show that the appropriate study-wide rate of type I error is attained 

when the “true” genotypes are tested, so the 100% false positive rate was induced by our 

addition of genotype errors and missing data.  While it is possible to attain reasonable 

rates of type I error for studies of 1, 10, or 100 SNPs, depending on the genotyping 

platform, even studies of 1000 or more SNPs are wildly anti-conservative in this 

scenario.  

 In contrast, Figure 4.9 ii) shows the study-wide rates of type I error attained once 

a QC filter has been applied.  After ~12% of SNPs with < 95% completeness and/or >2 

Mendelian inconsistencies were removed from consideration, studies of 1 – 1000 SNPs 

are now unbiased.  The GWA studies are still somewhat anti-conservative, depending on 

the center and platform, but they are much less biased than the pre-QC studies.  By 

applying an even stricter QC filter requiring >99% completeness and 0 Mendelian 

inconsistencies, we were able to achieve the target rate of type I error for the GWA 
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studies as well (data not shown), although application of this filter led to the unacceptable 

removal of an average of 37% of SNPs. 

4.4 Discussion 

Our results demonstrate that the rates of genotype error and missing genotype data vary 

considerably across genotypes, SNPs, genotyping platforms, and genotyping centers.  

Differential rates of error and missingness across genotypes can lead to bias in the allele 

frequency test due to distortion of HWE, or bias in the TDT due to distortion in the 

transmission ratio.  Given the wide variation in levels of error and missingness across 

SNPs, the tendency towards distortion can become amplified in large-scale studies, where 

even a small number of undetected bad SNPs have the potential to severely impact the 

outcome of the study.    

 However, although our results show that this scenario is possible, they also show 

that it is not inevitable.  In the case of the TDT, stringent QC filters provided one possible 

solution.  Excluding SNPs with even a single Mendelian inconsistency is conservative, 

but may be warranted given the sensitivity of the TDT to genotype error and the 

likelihood that Mendelian-detectable errors are accompanied by non-detectable errors. 

99% complete genotype data is also a strict requirement, but as Figures 4.5 and 4.9 ii) 

demonstrate, the TDT is quite sensitive to data completeness, especially given non-

differential rates of missing data.  Another possible solution with the TDT might be to 

model the differential rates of error and missingness directly, perhaps with an algorithm 

which incorporates the information from the “non-informative” trios, including trios 

discarded due to missing genotypes or Mendelian inconsistencies.  

. In the case of the allele frequency test, this kind of solution is not necessary since 

the trend test is already available as an improved version of the test.  When testing for 

case-control association with trend tests, the main consequence of incomplete or 
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erroneous genotype data will be loss of power due to reduced sample size and attenuation 

bias.   

 It is clear from our analysis and from previous work that the impact of genotype 

error and missing data on association tests varies substantially depending on the type of 

association test.  This has important implications for study design, since a QC filter that is 

appropriate for one type of association test may be too weak or too stringent for another.  

A good example of this is the analysis on the impact of plate completeness presented in 

sections 4.2.4 and 4.3.1.  For the TDT, genotyping completeness > 98% was necessary to 

achieve the correct type I error rate.  Given the preferential missingness of heterozygotes 

in the underlying genotype data, this makes sense, since removal of even a few 

heterozygous genotypes can bias transmission in favor of the major allele.  In contrast, 

the Cochran-Armitage test for trend achieved the correct type I error rate for all levels of 

completeness, and only suffered minor losses of power due to reduced sample size.  In 

cases like this, it almost certainly makes sense to allocate genotyping resources 

differently depending on the goal of the study.  For a TDT-based analysis, it would 

probably be wasteful not to re-genotype incomplete plates, since a meaningful analysis 

would not be possible without the complete data.  For case-control association, some 

leniency in terms of required completeness might be warranted, depending on the trade-

offs in cost between resolving incomplete plates and genotyping additional variants.  If 

the only goal of the analysis is to perform case-control association testing on SNPs with a 

trend test, efficient use of resources might involve accepting less-than-complete plates of 

genotypes, and instead diverting the resources towards the genotyping of additional 

variants or samples.  

  

 

 
 
 



94

Table 4.1:  Counts of plates submitted in replicate for CEU sample 
 

   Number of times plate is replicated by any platform and center 
Platform Center # plates 3 4 5 6 7 8 9 10 11 
Perlegen Perlegen 48,815 41,907 6450 339 46 16 25 27 4 1
BeadChip Illumina 92,858 82,649 9130 789 87 45 100 45 12 1
BeadArray Illumina 25,192 20,309 3322 504 243 464 256 79 14 1
 Sanger 26,096 21,286 3900 700 92 27 49 33 9 0
 McGill 15,449 12,230 1925 200 258 481 261 79 14 1
 Broad 5276 4692 499 40 14 4 12 12 2 1
 CHMC 5532 4872 418 47 45 46 68 30 6 0
Sequenom Broad 4178 2246 647 325 219 427 231 69 13 1
 CHMC 3078 1879 152 100 192 436 236 69 13 1
Affymetrix Affymetrix 71,322 62,892 7528 615 84 63 92 36 11 1
MIP Affymetrix 2218 1775 377 61 3 1 1 0 0 0
 BCM 9316 5869 1888 471 263 470 261 79 14 1
Invader RIKEN 21,877 17,821 2441 516 281 470 255 78 14 1
FP-TDI UCSF-WU 2257 1084 151 73 165 445 249 75 14 1
Total number of plates: 333,464 93,837×3 9707×4 956×5 332×6 485×7 262×8 79×9 14×10 1×11

94 
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Table 4.2: Counts of plates submitted in replicate for YRI sample 
 
   # of times plate is replicated by any platform/center
Platform Center # plates 3 4 5 6 7 
Perlegen Perlegen 44,993 38,440 5940 555 52 6
BeadChip Illumina 89,296 77,807 10,330 1047 104 8
BeadArray Illumina 23,217 19,019 3618 528 49 3
 Sanger 25,418 20,497 4060 739 114 8
 McGill 13,439 11,316 1907 186 27 3
 Broad 4,620 4157 430 25 8 0
 CHMC 5,901 5233 604 49 13 2
Sequenom Broad 2,797 1934 560 234 63 6
 CHMC 1,661 1385 228 43 5 0
Affymetrix Broad 22,103 17,602 3935 506 57 3
 Affymetrix 67,466 58,315 8235 812 97 7
MIP Affymetrix 2,108 1705 333 61 8 1
 BCM 7,989 5681 1858 399 48 3
Invader RIKEN 18,950 15,819 2585 467 73 6
FP-TDI UCSF-WU 947 801 125 19 2 0
Total number of plates: 330,905 93,237×3 11,187×4 1134×5 120×6 8×7
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Figure 4.1: Expected biases in the allele frequency test due to differential rates of 
missingness and genotype error 
 
i) Bias in allele frequency estimate given preferential missingness of heterozygotes or 
homozygotes 

 
ii) Expected rate of type I error given preferential missingness of heterozygotes or 
homozygotes 

 
iii) Expected rate of type I error given preferential genotype error for heterozygotes or 
homozygotes 
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Figure 4.2: Rates of missingness in replicate Sequenom data by allele frequency and true 
genotype 
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Figure 4.3: Genotype error rates in replicate Sequenom data by allele frequency and true 
genotype 
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Figure 4.4: Expected i) type I error rate and ii) power for allele frequency test and trend 
test by proportion of missing genotype data, estimated using replicate Sequenom data   
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Figure 4.5: Expected type I error rate for TDT by proportion of missing genotype data, 
estimated using replicate Sequenom data   
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Figure 4.6: Rates of i) missing genotype data and ii) genotype error in replicate Hapmap 
data by allele frequency and true genotype 
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Figure 4.7: Rates of i) missing genotype data and ii) genotype error in replicate Hapmap 
data by true genotype and genotyping platform 
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Figure 4.8:  Expected study-wide type I error rate for genome-wide case-control 
association study, given distributions of genotyping error and missing genotypes 
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Figure 4.9:  Expected study-wide type I error rate for TDT, given distributions of 
genotyping error and missing genotypes 
 
i)  All SNPs with ≥100 informative trios; no other QC filters applied 

ii) All SNPs w/ ≥100 informative trios, 95% completeness,  ≤2 Mendelian inconsistencies 
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CHAPTER 5 
 

CONCLUSION 

As our ability to obtain high quality genotype data continues to grow, so does our interest 

in large-scale genetic studies and related statistical issues.  Adjusting for multiple tests 

that are correlated becomes more and more important as we continue to genotype SNPs 

in greater numbers and density.   Large-scale meta-analyses are becoming increasingly 

common, both because they are now more feasible and because there is a greater volume 

of positive results to validate.  Although the quality of genotyping has improved and will 

continue to improve, it is still a concern, and considerable resources are still devoted to 

ensuring genotype quality in most large-scale studies.  In this dissertation, I have 

addressed these issues as follows:  

 In Chapter 2, I presented a method for dealing with multiple correlated tests in 

genetic association studies.  PACT  (P-value adjusted for correlated tests) can be computed 

for the minimum P-value or P-values from up to 500 correlated tests which may involve 

multiple SNPs, traits, and models.  We have published this method (Conneely and 

Boehnke 2007), and have made publicly available our software for computing PACT.  Our 

method has been applied to adjust P-values based on multiple SNPs, traits, and models in 

several large candidate gene studies (Bonnycastle et al. 2006; Willer et al. 2007; Gaulton 

et al. 2007).  Based on emails we have received in response to our paper and software, 

there also appears to be interest in applying this method to more general situations, 

including microarray-based and protein expression analyses.  This is entirely appropriate, 

since PACT should be applicable to a wide class of generalized linear models involving 
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single-degree-of-freedom (single-df) tests between multiple correlated explanatory and 

outcome variables.    

 Two of the main limitations to PACT are 1) that it cannot be reliably applied to 

adjust for more than ~500 tests at once, and 2) that its applicability is limited to single-df 

tests.  These limitations both present directions for future research.  Given the current 

focus on studies of genome-wide association which may involve hundreds of thousands 

of SNPs, there is high demand for an approach to adjust for genome-wide multiplicity.  

This could be accomplished with a method that groups SNPs into roughly independent 

blocks which can then be adjusted with PACT; it could also be accomplished  by 

addressing genome-wide multiplicity as a whole, perhaps through Monte Carlo methods 

such as that of Lin (2005a).  Application of PACT to multiple-degree-of-freedom tests 

would also be a useful extension given current interest in tests involving multiple SNPs 

and interactions between SNPs.  Efforts to derive the appropriate correlation matrices for 

these types of tests have been fruitless to-date due to the mathematical complexity of the 

relevant multivariate order statistic distributions.  This interesting but possibly unsolvable 

problem currently occupies a back burner, but may rear its head again one day. 

 In Chapter 3, I presented an extension to PACT that adjusts the results of meta-

analyses for multiple correlated tests which may be based on multiple SNPs, traits, and 

models.  I discuss how to apply PACT under four common study designs, including full 

meta analyses where every test is performed in every sample except where missing-at-

random, and follow-up studies where only results passing specific criteria are followed 

up.  My simulation results for adjustment of meta test statistics with PACT demonstrate 

accurate control of type I error rates and improved power over adjustment methods which 

do not account for correlation.  My simulations are based on 169 single-degree-of-

freedom haplotype association tests based on haplotypes involving the same 6 SNPs.  

Given the high levels of correlation between sets of overlapping haplotypes, this is 

another situation where PACT can be useful.  I am currently applying PACT in a meta-
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analysis involving highly correlated haplotypes, and am planning to make available 

software for adjusting meta-analyses with PACT for use in the ongoing FUSION study 

(Valle et al. 1998).   

 A limitation in one of the study designs presented in Chapter 3 is that there is no 

closed form expression for the power-maximizing sample weights for this particular 

design.  This is probably not a major limitation, since the study design in question 

(automatic follow-up of the strongest result) is a post-hoc design that should probably not 

be used at all given that better alternatives such as two-stage designs are available.  Also, 

I was able to attain the appropriate type I error rate and much-improved power over 

simple Šidák adjustment by applying my method with simple population-based sample 

weights.  Hence, while post-hoc study designs should generally be avoided, PACT can still 

be used to avoid potential biases resulting from such a design while maintaining adequate 

power.  Estimation of the optimal weights for this estimator does pose an interesting 

question for future research, though it is probably not a crucial question given the 

availability of more powerful and efficient study designs. 

 In Chapter 4, I investigated the extent to which rates of SNP genotype errors and 

missing genotype data vary depending on an individual’s true genotype, and the potential 

impact of differential rates on several types of association studies.  For two datasets 

where SNP genotyping had been performed in replicate, I observed that depending on the 

genotyping platform, either heterozygotes or minor-allele homozygotes were generally at 

greater risk of being mistyped or missing.  It was also clear that these errors and no-calls 

were not distributed uniformly across plates of genotypes, but were concentrated on a few 

especially problematic plates.  Simulations showed that inclusion of low-quality plates 

did lead to inflated rates of type I error for the allele frequency test of association and 

especially the TDT, while the trend test remained robust to low-quality plates.  It was 

also apparent that the standard practice of removing low-quality plates was effective in 

avoiding bias, although the appropriate cutoff for complete plates is probably higher for 
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the TDT than for other tests.  A similar pattern was observed for genome-wide false 

positive rates, when SNP genotypes had rates of error and missingness drawn from the 

observed distribution of plate-wide error and no-call rates.  A mild anti-conservative bias 

was observed in the false positive rate for the allele frequency test even in the absence of 

error and missingness; this is due to the assumption of Hardy-Weinberg equilibrium 

inherent in the allele frequency test.  With genome-wide data, minor deviations from 

Hardy-Weinberg equilibrium can be expected unless we remove all SNPs with even mild 

evidence of Hardy-Weinberg failure from consideration.  We suggest instead simply 

using the Cochran-Armitage test for trend (Cochran 1954; Armitage 1955), since it tests 

the same hypothesis as the allele frequency test but is robust to imperfect data.  For the 

TDT, a very strong anti-conservative bias was observed.  This bias could be controlled to 

some extent through use of standard quality control measures such as removal of SNPs 

with multiple Mendelian inconsistencies or high levels of incompleteness.  The target 

type I error rate could be achieved with the use of very stringent measures, but these 

measures led to the removal of ~37% of SNPs.  In future work, I plan to investigate 

whether an optimal combination of quality control measures exists which can achieve the 

target type I error rate with the removal of fewer SNPs.  I am also working on an EM 

algorithm which uses the information from the incomplete and Mendelian-inconsistent 

trios to directly model the differential rates of genotype error and missing data.  Given the 

lack of robustness of the TDT to imperfect data and the observed differential rates of 

genotype error and missingness, this EM-based approach has the potential to be quite 

useful. 

 



 

 109

REFERENCES 
 
Ahn K, Haynes C, Kim W, St. Fleur R, Gordon D, Finch S (2006) The effects of SNP 

genotyping erros on the power of the Cochran-Armitage linear trend test for 
case/control association studies.  Ann Hum Genet 71:249-261 

 
Armitage P (1955) Tests for linear trends in proportions and frequencies.  Biometrics 

11:375-386 
 
Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilit `a. 

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di 
Firenze 8:3-62 

 
Bonnycastle LL, Willer CJ, Conneely KN, Jackson AU, Burrill CP, Watanabe RM, 

Chines PS, Narisu N, Scott LJ, Enloe ST, et al. (2006) Common variants in maturity-
onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns.  
Diabetes 55:2534-2540 

 
Brenner H (1992) Notes on the assessment of trend in the presence of nondifferential 

exposure misclassification.  Epidemiology 3:420-427 
 
Cheverud JM (2001) A simple correction for multiple comparisons in interval mapping 

genome scans.  Heredity 87:52-58 
 
Cochran WG (1954) Some methods for strengthening the common χ2 tests.  Biometrics 

10:417-451 
 
Conneely KN, Boehnke M (2007) So many correlated tests, so little time!  Rapid 

adjustment of P-values for multiple correlated tests.  Am J Hum Genet 81:1158-1168 
 
Cox DR, Hinkley DV (1974) Theoretical statistics.  Chapman and Hall, London 
 
Cramér H (1946) Mathematical methods of statistics.  Princeton University Press, 

Princeton 
 
Cutler DJ, Zwick ME, Carrasquillo MM, Yohn CT, Tobin KP, Kashuk C, Mathews DJ, 

Shah NA, Eichler EE, Warrington JA, Chakravarti A (2001)  High-throughput 
variation detection and genotyping using microarrays.  Genome Res 11:1913-25 

 
Dudbridge F, Koeleman BP (2004) Efficient computation of significance levels for 

multiple associations in large studies of correlated data, including genomewide 
association studies.  Am J Hum Genet 75:424-435 

 
Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical 

pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980 
 



 

 110

Fisher RA (1932) Statistical methods for research workers.  Oliver and Boyd, London 
 
Gaulton KJ, Willer CJ, Li Y, Scott LJ, Conneely KN, Jackson AU, Duren WL, Chines 

PS, Narisu N, Bonnycastle L et al. (2007)  Comprehensive association study of type 2 
diabetes and related quantitative traits with 222 candidate genes.  Diabetes 
(submitted) 

 
Genz A (1992) Numerical computation of multivariate normal probabilities.  J Comput 

Graph Stat 1:141-149 
 
Genz A (1993) Comparison of methods for the computation of multivariate normal 

probabilities.  Comput Sci Stat 25:400-405 
 
Genz, A (2000) MVTDST: a set of Fortran subroutines, with sample driver program, for 

the numerical computation of multivariate t integrals, with maximum dimension 100 
(increased to 1000 – 7/07); http://www.math.wsu.edu/faculty/genz/homepage) 

 
Genz A (2007) personal communication 
 
Genz A, Bretz F (2002) Comparison of methods for the computation of multivariate t-

probabilities.  J Comput Graph Stat 11:950-971 
 
Genz A, Bretz F, Hothorn T (2007) mvtnorm: Multivariate normal and t distribution. R 

package version 0.8-0 
 
Gordon D, Heath SC, Ott J (1999)  True pedigree errors more frequent than apparent 

errors for single nucleotide polymorphisms. Hum Hered 49:65-70 
 
Gordon D, Ott J (2001)  Assessment and management of SNP genotype errors in genetic 

association analysis.  Pac Symp Biocomput: 18-29 
 
Hao K, Cawley S (2007)  Differential dropout among SNP genotypes and impacts on 

association tests 
 
Hirschhorn JN, Daly MJ (2005)  Genome-wide association studies for common diseases 

and complex traits.  Nat Rev Genet 6:95-108 
 
Holm S (1979) A simple sequentially rejective multiple test procedure.  Scand J Stat 

6:65-70 
 
International HapMap Consortium (2005)  A haplotype map of the human genome. 

Nature 437:1299-320 
 
International HapMap Consortium (2007)  A second generation human haplotype map of 

over 3.1 million SNPs. Nature 449:851-861 
 



 

 111

James S (1991) Approximate multinormal probabilities applied to correlated multiple 
endpoints in clinical trials.  Stat Med 10:1123-1135 

 
Kimmel G, Shamir R (2006) A fast method for computing high-significance disease 

association in large population-based studies.  Am J Hum Gen 79:481-492    
 
Koboldt  DC, Miller RD, Kwok PY (2007)  Distribution of human SNPs and its effect on 

high-throughput genotyping.  Hum Mutat 27:249-254 
 
Li J, Ji L (2005) Adjusting multiple testing in multilocus analysis using the eigenvalues 

of a correlation matrix.  Heredity 95:221-227 
 
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2007) Markov model for rapid 

haplotyping and genotype imputation in genome wide studies.  Nat Genet (submitted) 
 
Lin DY (2005a) An efficient Monte Carlo approach to assessing statistical significance in 

genomic studies.  Bioinformatics 21:781-787 
 
Lin DY (2005b) On rapid simulation of P values in association studies.  Am J Hum Genet 

77:513-514 
 
Mantel N (1963) Chi-square tests with 1 degree of freedom – extensions of the Mantel-

Haenszel procedure.  J Am Stat Assoc 58:690-700 
 
Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from 

retrospective studies of disease.  J Natl Cancer Inst 22:719-748 
 
Marchini J, Howie B, Myers S, McVean G, Donneely P (2007)  A new multipoint 

method for genome-wide association studies by imputation of genotypes.  Nat Genet 
39:906-913  

 
McCullagh P, Nelder JA (1989) Generalized linear models, 2nd ed.  Chapman and Hall, 

London 
 
Mitchell AA, Cutler DJ, Chakravarti A (2003)  Undetected genotyping errors cause 

apparent overtransmission of common alleles in the transmission/disequilibrium test.  
Am J Hum Genet 72:598-610 

 
Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide 

polymorphisms in linkage disequilibrium with each other.  Am J Hum Genet 74:765-
769 

 
R Development Core Team (2007) R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-
project.org) 

 



 

 112

Salyakina D, Seaman SR, Browning BL, Dudbridge F, Müller-Myhsok B (2005) 
Evaluation of Nyholt’s procedure for multiple testing correction.  Hum Hered 60:19-
25 

 
Sasieni PD (1997) From genotypes to genes: Doubling the sample size.  Biometrics 53: 

1253-1261 
 
Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance-matrix 

estimation and implications for functional genomics.  Stat Appl Genet Mol Biol 
4:Article 32 

 
Seaman SR, Müller-Myhsok B (2005) Rapid simulation of p values for product methods 

and multiple-testing adjustment in association studies.  Am J Hum Genet 76:399-408 
 
Šidák Z (1967) Rectangular confidence regions for the means of multivariate normal 

distributions.  J Am Stat Assoc 62:626-633 
 
Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than 

replication-based analysis for two-stage genome-wide association studies.  Nat Genet 
38:209-213 

 
Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage 

genome-wide association studies.  Genet Epidemiol 31:776-788 
 
Valle T, Tuomilehto J, Bergman RN, Ghosh S, Hauser ER, Eriksson J, Nylund SJ, 

Kohtamaki K, Toivanen L, Vidgren G, et al. (1998) Mapping genes for NIDDM: 
Design of the Finland-United States Investigation of NIDDM Genetics (FUSION) 
Study.  Diabetes Care 21: 949-958  

 
Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete 

failure time data by modeling marginal distributions.  J Am Stat Assoc 84:1065-1073 
 
Wei LJ, Glidden DV (1997) An overview of statistical methods for multiple failure time 

data in clinical trials.  Stat Med 16:833-839 
 
Willer CJ, Bonnycastle LL, Conneely KN, Duren WL, Jackson AU, Scott LJ, Narisu N, 

Chines PS, Skol A, Stringham HM, et al. (2007) Screening of 134 single nucleotide 
polymorphisms (SNPs) previously associated with type 2 diabetes replicates 
association with 12 SNPs in nine genes.  Diabetes 56:256-264  

 
Zaykin DV, Zhivotovskty LA, Westfall PH, Weir BS (2002) Truncated product method 

for combining P-values.  Genet Epidemiol 22:170-185 


