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Preface 

 

This dissertation integrates molecular typing, epidemiology, and agent-based modeling methods 

to characterize trends in the transmission of tuberculosis (TB) in a rural state in the southern 

United States, to assess the validity of molecular typing data as a marker of transmission in this 

population, and to gain insight into the relationship between host and microbial population factors 

and the information that molecular typing provides.  The first chapter introduces the 

epidemiology, transmission, and natural history of TB infection, as well as the principals of strain 

typing methods, current issues in the control of TB in the US, and the use of mathematical and 

simulation models in the study of TB. Epidemiology is by nature a multi-disciplinary field, and 

this sometimes broad-ranging introductory chapter is a reflection of that.   

 

In addition to the brief background provided in the introduction, detailed background sections on 

the transmission and natural history of TB infection (Appendix 1), and the molecular typing of 

TB (Appendix 2), can be found at the end of this dissertation.  These detailed appendices provide 

key background to inform decisions that were made in the formulation of an Agent-Based model 

of TB transmission, which is presented in Chapter IV of this dissertation.   

 

Following the introduction are reports of three studies addressing different aspects of the 

molecular epidemiology of TB, each with a unique research approach.  Chapter II presents an 

investigation of TB incidence trends in Arkansas between 1996 and 2003, in which molecular 

typing was used as a tool to estimate the relative importance in changes in active TB transmission 

to overall disease trends. Chapter III reports the results of a validation study, in which extensive 

epidemiologic interviews, medical records, and TB control records were reviewed to establish 

evidence of epidemiologic linkages between patients infected with isolates that exhibited the 

same molecular typing pattern as the isolate from at least one other case in the study population. 

By comparing these pieces of information, host and microbial factors that were strongly 

correlated with the validity of molecular typing results in this population were identified.  Chapter 

IV describes the development of an agent-based simulation model of TB transmission where 

molecular typing patterns were explicitly represented.  Insights that were gained through the 

analysis of this model, which clarify the relationship between M. tuberculosis strain diversity, 
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typing marker stability, host demographic factors, and the validity of molecular typing data, are 

described.  Finally, Chapter V presents a discussion of the overall findings of these three 

investigations, and of their contribution to the current understanding of issues related to the 

molecular typing of M. tuberculosis.  
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Abstract 
 

Molecular typing is increasingly integral to tuberculosis (TB) control programs,  

providing public health practitioners with a tool to characterize transmission patterns,  

track the emergence and spread of strains of particular medical and public health  

importance, and to identify transmission venues that contribute to the persistence of M.  

tuberculosis in populations. While molecular typing is already used extensively as a tool  

for TB control in many diverse populations across the globe, the sensitivity of molecular  

typing-based measures to characteristics of both the host and microbial populations is  

not well understood. To better characterize the relationship between key host and  

microbial factors and the validity of molecular typing measures, and to generate insights  

that may inform the design of a rational typing system for TB control, this dissertation  

work employs a multi-disciplinary research strategy which integrates molecular,  

epidemiologic, and computer-simulation data. In the rural, stable population of Arkansas, we 

found that a declining incidence of TB between 1996 and 2003 resulted primarily from a 

declining incidence of TB due to the reactivation of remotely acquired infection, rather than 

recently acquired infection.  This work suggested the influence of a strong cohort effect on 

disease patterns in this population.  A validation study of molecular typing in this same 

population, in which extensive epidemiologic interview data were compared to molecular typing 

results, identified a number of host and microbial factors associated with the validity of typing 

results.  This study also suggested the presence of a regionally endemic strain family which was 

associated with false positive molecular typing results.  Using an agent-based model of TB 

transmission, we conducted the first quantitative assessment of the importance of the diversity 

and stability of molecular typing markers, as well as historic and demographic characteristics of 

the host population, to the validity of typing results. The results of these investigations contribute 

to an improved understanding of the dynamics of TB transmission in rural populations of the 

United States, and also highlight key factors that should be considered in the interpretation of 

molecular typing results in all populations.  Additionally, these results may inform the 

development of more rational approaches to the design of molecular typing systems used in TB 

control. 
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Chapter I 

 

 Background  

 

 

 ‘‘If the number of victims which a disease claims is the measure 

of its significance, then all diseases, particularly the most 

dreaded infectious diseases, such as bubonic plague, Asiatic 

cholera, et cetera, must rank far behind tuberculosis.’’ 

-ROBERT KOCH, 1882 

 

Global epidemiology of tuberculosis 

 

Tuberculosis (TB) is a long familiar foe to human kind– references to the disease can be found in 

the writings of Hippocrates, and evidence of infection has been identified in prehistoric human 

remains, both in the old and new world [1]. Despite the development of effective chemotherapy 

in the 1950s, this “captain of all these men of death” remains a leading cause of mortality 

worldwide.  In 2005,  an estimated 8.8 million new cases of TB and 1.6 million deaths due to the 

disease occurred globally [2].   Estimates suggest that one-third of the world’s population is 

infected with Mycobacterium tuberculosis, the bacterium that causes TB disease [2]. The burden 

of TB falls disproportionately on the developing world, with more than 95% of new cases, and 

99% of deaths due to the disease, occurring in low and middle-income countries [3]. The 

increasing prevalence of multi-drug resistant (MDR) TB, and the recent recognition of 

extensively-drug resistant (XDR) TB, further magnifies the dark shadow cast by this ancient 

infection.  

 

Epidemiology of TB in the United States 

 

As in many developed nations, the incidence of TB in the United States (US) declined 

dramatically over the last century, with the rate of active disease falling from 53.0 per 100,000 in 

1953, when TB reporting began in the US, to 4.6 per 100,000 in 2006 (CDC 2007).  Despite 

tremendous gains, the problem of TB in the US has not disappeared: 

13,767 cases were reported in 2006 [4], a rate of 4.6 cases per 100,000 individuals.   
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While infrequently seen in the mainstream, TB remains firmly entrenched in the poorest and most 

marginalized of the US population [5]. Historically, the burden of TB has fallen most heavily on 

disadvantaged populations.  This pattern remains true in the US, with high levels of the disease 

seen among homeless, drug-injecting, and prison populations [6]. HIV infected individuals, 

already at higher risk of developing TB disease upon infection due to depressed immune function 

(leading to an increased risk of developing primary or reactivation disease following infection 

with M. tuberculosis) [7], often fall into other high-risk groups, magnifying this pattern[8, 9]. 

Strong racial disparities are seen in the distribution of TB in the US: while 12.3 percent of the US 

population self-identifies as African American, more than 45 percent of cases reported among the 

native born population in the US occur in this group. The global TB epidemic exerts a substantial 

influence on the prevalence and incidence of TB in the US, and  more than half of all cases 

reported in the US in2005 occurred in individuals born outside of the country [4].  

 

Etiology of TB disease 

 

TB is caused by infection with bacterium of the Mycobacterium tuberculosis complex, which 

includes M. tuberculosis, M. bovis, M. africanum, and M.microti. In humans, M. tuberculosis is 

the most important cause of TB, with rare reports of disease caused by M. africanum [1].  M. 

bovis, which is an important cause of disease in cattle and deer populations, can cause disease in 

humans that is clinically, radiologically, and pathologically indistinguishable from disease caused 

by M. tuberculosis, and was once an important cause of TB disease in children. M. bovis is no 

longer considered to be an important cause of disease in humans, as a result of the introduction of 

pasteurization processes for milk and milk products, and the control and eradication of M. bovis 

in animal populations in the early part of the 20
th
 century [10]. 

 

M. tuberculosis was first isolated in pure-culture by Robert Koch in 1882.  Like other members of 

the genus Mycobacterium, M. tuberculosis is a slow-growing intracellular bacillus, characterized 

by a lipid-rich cell wall and a unique, lipid-rich outer membrane which acts as an effective barrier 

to prevent the entry of antimicrobials into the cell and helps the organism to resist phagocytosis 

by cells of the host immune system [11].  The mycobacteria are aerobic, non-motile, and do not 

form spores.  The characteristic high-lipid content of their cell wall results in distinctive staining 

properties, allowing mycobacteria to be identified by acid-fast staining techniques.  In culture, the 
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doubling time of mycobacteria is 12-36 hours, and a detectable concentration of organisms is 

present after growing for an average of 15.4 days in liquid culture [11].  

 

Transmission and pathogenesis of M. tuberculosis infection  

 

(A detailed review of the epidemiology of transmission disease outcome, which provides detailed 

supporting information for the architecture of the agent-based model presented in chapter IV of 

this dissertation, can be found in Appendix 1) 

 

TB transmission occurs via droplet nuclei, tiny particles containing M. tuberculosis which are 

produced when individuals with respiratory TB infections sneeze, speak, sing, or induce sputum.  

Droplet nuclei can remain airborne for time spans ranging from minutes to hours, and result in the 

transmission of M. tuberculosis when inhaled into the lungs of a susceptible individual [1]. 

Although droplet nuclei may also be produced by the manipulation of tubercular lesions or 

processing tissue in the hospital or laboratory, such events are rare, and individuals with non-

respiratory infections do not generally represent a transmission risk [12]. 

 

Following infection, an individual may develop infection within a short interval (“primary 

disease”), many years later (“reactivation disease”), or not at all [7].  The highest risk of 

developing active TB disease occurs in the first 24 months following infection, and an estimated 

5-10% of newly infected individuals will develop disease within this interval (primary 

progressive disease). The other 90-95% will be able to contain the infection, though not clear it, 

through a successful cell-mediated immune response that walls off the organisms in formations 

called granulomas.  These infected, disease-free individuals are then in a state of latent infection.  

While many will never go on to develop tuberculosis disease, an estimated 5-10% will, with the 

disease re-activating at a time of decreased immunity [12]. 

 

Although active tuberculosis infection most often affects only the lungs (85% of infections in 

HIV negative individuals), the disease can manifest in almost any organ system, including the 

central nervous system, lymphatic system, bones and joints, and the genitourinary tract [7].  

Disseminated tuberculosis, in which many organs are simultaneously involved, can also occur.  

Extrapulmonary disease is more common in HIV infected individuals, accounting for more than 

50% of cases among these individuals [13].  Among HIV negative individuals, extrapulmonary 

disease is particularly common among women and young children [14]. 
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With rare exception2, only individuals with active, respiratory forms of the disease transmit 

infection, and individuals with a higher number of bacilli in their sputum pose a greater 

transmission risk.  These individuals are often identified by a positive sputum smear (and hence 

are referred to as “smear positive” cases), when acid-fast bacilli are detected by microscopy [12].  

Certain clinical characteristics are associated with higher quantities of bacilli in the sputum.  

Cavitary disease, which is characterized by extensive necrosis of bronchial airways, allows the 

discharge of infectious material into the airways.  Patients with cavitary disease have a greater 

frequency of cough, and are more likely to have a positive sputum smear [12]. While the infection 

risk presented by smear-negative cases was long considered inconsequential, recent reports 

suggest that transmission from these cases may be responsible for a significant proportion of 

disease in some populations [15].  

 

Treatment and Disease Recurrence 

 

Standard treatment for TB involves antibiotics taken in combination over a long course of 

therapy.  The most standard “short course” treatment regimen consists of a 2 month course of 

therapy with isoniazid, rifampicin, pyrazinamide, and ethambutol, followed by a 4 month course 

of  isoniazid and rifampicin [16].  This treatment regiment is highly effective.  However, 

following treatment with standard short course chemotherapy, active TB recurs in 2 to 7% of 

cases [17]. It was long held that, following a primary infection with M. tuberculosis, an individual 

acquired relative immunity against subsequent re-infection [18].   All subsequent episodes of 

active disease at any point in an infected individual’s life, and at any anatomic site, were 

considered to be due the reactivation of dormant bacilli of the original infecting strain. While this 

is often the case, a number of reports in recent decades have documented the occurrence of re-

infection events in individuals who had a previously resolved case of active TB [19-23]. 

Strain typing of M. tuberculosis  

 
(A detailed review of the strain typing methods in M. tuberculosis, which provides detailed 

supporting information for the motivation and formulation of the agent-based model presented in 

chapter IV of this dissertation, can be found in Appendix 2.) 

 

Principles of epidemiologic typing 
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The ability to subdivide bacterial species groups into smaller and more homogenous groups of 

related organisms is critically important in evolutionary, biomedical, and epidemiological 

research. In epidemiology, fine-grain classification of bacterial relationships allows the 

identification of subgroups, often identified as “strains”, of medical and public health importance: 

for example, strains more likely to cause severe disease, or which are resistant to commonly used 

antibiotics.  If isolates of a bacterial pathogen can be subdivided at a fine enough scale, isolates 

related by a transmission event may be identified, allowing investigators a powerful tool to study 

patterns of infection spread.  The techniques and approaches of epidemiologic typing overlap 

considerably with those of molecular taxonomy, phylogeny, and population genetics [24], but are 

ultimately driven by more immediate, applied goals. Strain typing methods have proven 

invaluable to epidemiologic researchers and practitioners alike, providing a tool to identify 

factors important in determining the distribution of disease, the transmission, manifestation, and 

progression of infection, and to identify novel opportunities to intervene in and interrupt disease 

spread [24].   

 

History of strain typing and early M. tuberculosis strain typing methods 

 

The earliest tools to subdivide bacterial species were based on phenotypic assays.  The 

development of the first “strain typing” technique is often credited to Rebecca Lancefield, who 

developed a serologic assay that subdivided the hemolytic streptococci, known then as 

Streptococcus haemolyticus, based upon the expression of cell-surface antigens [25].  At the time, 

Streptococcus haemolyticus was known to cause disease in both humans and animals. Using the 

serotyping system she developed, Lancefied was able to demonstrate that a subgroup of this 

species, now known as group A streptococci, was specific to humans and human disease, 

including pharyngitis, scarlet fever, rheumatic fever, nephritis and impetigo.   

 

The value of a strain-typing as an epidemiologic tool for the study of TB was recognized early, 

but efforts to develop a serotype-based strain typing technique were stymied, as M. tuberculosis 

was shown to comprise a single homogenous serogroup [26]. The recognition of the selective 

sensitivity of M. tuberculosis isolates to lysis by a number of distinct mycobacteriaphages, 

therefore, was a welcome discovery which lead to the first viable strain-typing tool for TB [27, 

28]. This technique involved infecting a given M. tuberculosis isolate with a panel of 

mycobacteriaphages, and determining the sensitivity of the isolate to each, on the basis of cell-
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lysis.  The binary “yes/no” lysis scores for each phage were concatenated into a string, which 

represented the “phage type”.  While never widely used on a population-based scale, phage 

typing did prove useful in the investigation of TB outbreaks and laboratory cross-contamination 

[29, 30]. Phage typing suffered, however, from a limited number of phage-types that could be 

generated using known mycobacteriaphages, greatly hampering the resolution with which this 

technique could differentiate M. tuberculosis strains.  Typing techniques based on other 

phenotypic characteristics, such as metabolic features and susceptibility to antibiotics, were 

similarly limited by the limited number of strain-types that could be resolved [31]. 

 

Genotypic typing assays for M. tuberculosis 

 

The development of molecular techniques to sequence and manipulate nucleic acids presented a 

watershed to the development of TB typing tools, allowing variability on a genotypic, rather than 

phenotypic, level to be assayed.  Directly assaying genotypic variability is particularly 

advantageous, as it also overcomes the problem that a single organism may express multiple 

phenotypes, depending on the environmental conditions it experiences.  Genotype-based typing 

assays, referred to as molecular typing techniques, allow substantially higher levels of resolution 

than could be attained using phenotypic methods, while at the same time resulting in more robust, 

and hence reproducible, strain types.   

 

Molecular typing techniques for M. tuberculosis exploit variable regions in an otherwise highly-

conserved genome to generate DNA ‘fingerprints’ which are specific to a particular strain. The 

most commonly used technique makes use of the transposable element IS6110, which varies in 

both copy number and location throughout the genome [32]. Other commonly employed 

techniques include spacer oligonucleotide typing (“spoligotyping”), which assays the pattern of 

conserved sequences in a direct-repeat locus[33], and pTBN12 typing, which assays the number 

and distribution of a polymorphic GC-rich tandem repeat sequence (PGRS)[34].  pTBN12 typing 

and spoligotyping are often used as secondary typing methods for IS6110 isolates with few copies 

of the IS6110 element, as the variability, and hence, discriminatory power, of IS6110 is reduced 

in these strains [34].  They are also used as secondary typing techniques for isolates with IS6110 

fingerprints that are nearly identical (differing by 1 band in the pattern) [35].  Recently, MIRU-

VNTR, a typing technique which assays the number of tandem repeats at a number of repetitive 

loci throughout the TB genome [36], has begun to supplant IS6110 typing as the most common 



 7 

molecular typing technique for TB, and has been adopted as the primary molecular typing method 

for routine TB typing in the US [37]. 

Advances achieved through molecular typing 

 

The ability to identify relationships between M. tuberculosis isolates at a fine scale has allowed 

considerable advancements in the understanding of the natural history, pathogenesis, and 

epidemiology of M. tuberculosis infection, providing a tool to investigate questions that previous 

research methods were unable to address.  Studies utilizing molecular typing tools have shown, 

for example, that an individual can be infected with a new strain of the organism following a 

primary disease episode (exogenous re-infection), and can be simultaneously infected with 

multiple distinct strains, implying that complete immunity to infection does not develop 

following active disease [19, 38, 39]. Molecular typing studies have confirmed that M. 

tuberculosis may reactivate following decades of latent infection [40], and have revealed  that 

transmission of M. tuberculosis can occur in casual settings, without the prolonged contact 

between infectious case and susceptible individual that was previously considered essential for 

transmission to occur [41].  

 

One of the most important applications of molecular typing techniques is to the identification of 

TB disease due to recent transmission in the population [42-44].  By distinguishing disease due to 

recent infection from that due to the reactivation of latent infections, molecular typing provides a 

powerful tool for applied TB epidemiology and TB control.    

 

Control of TB in the US  

 

While the incidence of active TB disease in the US is one to two orders of magnitude lower than 

that in many high-burden countries, such as the estimated 75 per 100,000 in Brazil and 639 per 

100,000 in Cambodia [45], restraining the spread of TB in the US depends still on consistent, 

vigilant public health attention.  In the 1970s and 1980s, following a period of declines in the 

global prevalence of TB infection, and soon after Surgeon General William H. Stewart famously 

noted in 1965 that “it is time to close the book on infectious diseases”, TB control programs, both 

in the US and abroad, were effectively dismantled [3].  Not long after, in the late 1980s and 

1990s, rates of TB resurged.  Between 1985 and 1992, the incidence of TB in the US increased by 

20 percent [8]. 
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In 1989, the CDC announced the goal of eliminating TB from the United States by the year 2010.  

After a resurgence of TB in the early 1990s, the feasibility of this goal was re-evaluated by the 

Institute of Medicine in 1998, which concluded that while still feasible, it would require 

“aggressive and decisive action beyond what is now in effect”[46].  Behind this ambitious goal is 

a plan that calls for the prevention of transmission of TB through timely diagnosis and treatment 

of those with active disease, rapid recognition of TB transmission through the use of DNA 

fingerprinting methods, and rapid outbreak response to quell further transmission.  Additionally, 

the plan calls for consistent monitoring and evaluation of the progress towards the goal of 

tuberculosis elimination. 

 

The patterns of TB transmission that allow TB to persist in the contemporary US setting are 

unlike those of a half-century ago, when the substantial bulk of transmission is thought to have 

occurred within the household setting [47-49]. Transmission in hospitals, prisons, nursing homes, 

and homeless shelters is increasingly important in sustaining transmission in the US [50-54].  In 

addition to these venues, where TB transmission is relatively well characterized, evidence 

suggests that transmission in previously unsuspected contexts contributes to sustained 

transmission [49, 55], and transmission in casual encounters, once considered improbable, may 

also play an important role [48, 56].  These non-traditional transmission events often elude TB 

control investigations [57], as the sites and circumstances where such transmission occurs are not 

well understood.  

 

In order to most effectively focus TB control efforts towards pockets of transmission that are 

perpetuating the infection, the identification of transmission occurring in previously unsuspected 

circumstances is essential.  The complex natural history of TB infection presents an obstacle to 

TB control programs—even if all transmission in a population has stopped, there still may be 

disease due to the reactivation of infections that were the result of historic transmission.  In any 

interval, the incident cases of TB in a population will be due to both active transmission in the 

population (which public health efforts may be able to contain), and the re-activation of 

historically acquired infections (which public health efforts aimed at interrupting transmission 

would be unable to prevent).   

 

Traditionally, TB control programs have relied upon contact tracing investigations to identify 

sources of ongoing transmission in a community.  These investigations are time and labor 
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intensive, relying on patient interviews to identify close contacts of a recently reported case of 

active TB. Current contact tracing evaluation protocols follow a “stone in a pond”, or concentric 

circle model, which was developed at a time when most contacts occurred within the home and 

family [47, 58, 59].  This approach is limited in its ability to detect transmission outside of 

conventional settings: by design, the settings and contexts in which transmission linkages are 

looked for are those where they are expected to be found. As changing transmission patterns shift 

transmission away from these expected venues, and as an increasingly marginalized population of 

TB patients may be less likely to trust, and therefore cooperate with, public health authorities, the 

effectiveness of contact tracing is increasingly limited. As few as 5-10% of cases linked by recent 

transmission are identified as such through routine contact investigations [42, 60-62].  Given its 

limitations, contact tracing alone is unlikely to be sufficient to clearly characterize TB 

transmission patterns that contribute to sustained transmission of TB in contemporary US settings 

[55].  

 

Adequate TB control resources must be directed towards every incident TB case, in order to 

ensure effective treatment, limit the risk of transmission to others, and identify recently infected 

contacts that may benefit from prophylactic isoniazid (INH) treatment.  For the purpose of TB 

control, however, cases due to recently acquired infection may be more important, as they often 

indicate transmission that is still ongoing in a community.  Further investigation of such cases 

may reveal yet-undetected cases of active TB infection that are perpetuating transmission, as well 

as informing an improved understanding of transmission in the current context. 

 

Molecular typing is increasingly integral to TB control programs, providing public health 

practitioners with a tool to effectively focus limited TB control resources to reduce ongoing 

transmission. By allowing cases related by transmission to be identified, molecular typing has 

contributed not only to the control of outbreaks, but has also enhanced our understanding of the 

locations and contexts in which TB transmission may occur. To this end, the CDC has made the 

universal genotyping of incident TB cases a priority, and with this support, the routine integration 

of molecular typing into population-based TB surveillance programs is becoming the norm in the 

US [63]. 

   

Population-based (or Universal) strain typing of M. tuberculosis isolates provides a powerful tool 

for TB control staff tool to characterize transmission patterns in a population.  Through the 

application of population-based molecular TB typing, investigators have identified transmission 
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in settings where it was previously not thought to occur, including transmission from a cadaver 

during autopsy [64], among unacquainted individuals who frequented the same bar, but had no 

clear contact with one another [65], unacquainted individuals visiting the same work site [41], 

and between individuals whose only contact was singing in the same church choir [66]. Such 

observations have deepened our understanding of TB transmission, and highlighted the 

deficiencies of traditional contact tracing methods to identify these transmission links [41, 57, 

62]. This tool has also allowed investigators to the burden of disease due to active transmission in 

a population, to identify trends in active transmission over time [67-69], and clarify risk factors 

for recent transmission [43, 55]. 

 

Validation of molecular typing to identify recent transmission 

 

In the investigation of TB outbreaks, where strain typing of TB was first applied, the 

interpretation of genotyping data is straightforward: M. tuberculosis isolates from cases suspected 

to be linked by transmission are genotyped: identical “molecular fingerprints” are considered to 

confirm a transmission link, while discordant fingerprints negate it.  

 

In the context of a population-based typing program, however, interpreting genotyping data is 

more complicated.  In this setting, TB control staff will rarely have information on the 

epidemiologic relationships among cases prior to the consideration of genotyping data.  In the 

absence of such epidemiologic data, genotyping data are relied upon to direct the attention of TB 

control staff towards “clusters” of related cases that warrant further investigation and TB control 

efforts. 

 

Numerous reports from population-based typing programs have documented “clusters” of cases 

related by genotype pattern, but among which epidemiologic investigation reveals no linkage 

between cases [70-72]. In one such report, additional, rigorous epidemiologic investigation 

identified links between cases in genotype-linked clusters that had been missed by conventional 

contact tracing methods [57], suggesting that linkages between individuals for whom contact 

information is difficult to obtain, or between whom transmission occurred during casual contact, 

may explain such clusters.  In some settings, “clustered” cases may be linked by transmission that 

occurred many years or even decades in the past [70]. Another explanation is that the resolution 

of the genotyping tool used is insufficient to discriminate between unlinked cases in a given 

population. In this context, cases may be “clustered” by one genotyping method but be unrelated 
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by transmission. Using a genotyping tool with a higher level of discrimination, such false clusters 

may be shown to contain unrelated isolates [73]. 

 

A major limitation in the application of molecular clustering data to identify active transmission 

is the lack of epidemiologic validations of marker systems in population-based studies, and 

evaluations in different populations with different disease burdens and transmission dynamics.  

While considerable effort has been put into the development of new typing techniques, 

evaluations of these tools have been limited, often relying on comparisons with other typing 

methods [74-76].  As no current method provides a ‘gold standard’ for comparison, such 

evaluations cannot substantiate the use of these markers to draw inferences regarding the 

epidemiologic relationships between isolates.   

 

Ideally, molecular typing data would be validated using population-based samples of M. 

tuberculosis isolates, with multiple samples representing diverse populations. Genotyping results 

would be compared to data on the actual transmission relationships between the sampled cases, 

and the sensitivity, specificity, and both positive (PPV) and negative predictive value (NPV) of 

clustering for recently transmitted cases, would be calculated. These measures are used to assess 

the validity of diagnostic tests, with the PPV indicating the probability that an individual who 

tests positive truly has the disease or disorder in question, and the NPV indicating the probability 

that an individual who tests negative truly does not have the disease or disorder in question [77]. 

With data from a diverse range of populations, it would be possible to evaluate the sensitivity of 

these measures to key features of the host population, bacterial population, and molecular typing 

system used. Unfortunately, even in an ideal study setting, data on actual transmission linkages is 

unattainable.  Epidemiologic investigations of transmission linkages between cases provide data 

that is invariably ambiguous and often incomplete, and transmission events that occur in 

unsuspected contexts, or by casual contact, are unlikely to be identified [57]. Additionally, these 

investigations are sufficiently time and resource intensive that few validations of population-

based genotyping data against epidemiologic data have been undertaken [42, 70, 78]. Even with 

the best available epidemiologic data, only the PPV can be determined, and, as it is inevitable that 

true transmission links between clustered cases will be missed, even that measure cannot be 

stated with confidence. 

 

Mathematical and simulation modeling in TB research  
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Some of the best insight into the utility of molecular typing data to identify recent vs. remote 

transmission has come from mathematical models and computer simulations of TB transmission.  

Simulations are particularly powerful in the context of TB epidemiology as they can provide what 

is elusive in epidemiologic investigations in the field: an underlying distribution of cases that 

represents the “truth”.  From this distribution, data can be sampled following various strategies, 

and inferences made from sampled data can then be compared to the true distribution.  Using this 

approach, investigators have shown that including less than the full proportion of cases in a 

sample leads to underestimates of recent transmission, as does sampling cases over a short time 

period [79]. In addition to providing a known distribution of cases from which to sample, 

mathematical and simulation models of transmission allow investigators to perform sensitivity 

and uncertainty analysis, varying parameters relevant to transmission and observing the impact 

that these factors have on both the dynamics of disease in a population and the accuracy of 

measurement tools and sampling strategies.  Equation-based models of TB have been 

successfully employed to address questions at multiple levels, including the dynamics of TB 

transmission in large populations [80], infection outcomes on the level of individual hosts [81], 

and cellular interactions between M. tuberculosis and cells of the host immune system [82].  

Molecular typing has been infrequently taken on by equation-based models. One model that did, 

by Vynnycky et al., assessed the impact of the age distribution in a population and the historic 

risk of TB infection over the life of that population on the predictive value of clustering statistics 

[83].   

 

Models can provide great insight into the behavior of dynamic systems.  The inferences drawn 

from any model, however, rely heavily upon the validity of the assumptions underlying the 

model.  When data on the system being modeled are sparse, confident assumptions can be 

difficult to make.  For example, it is widely believed that, within a latent granuloma, M. 

tuberculosis is in a dormant state, with little or no replication [84]. Evidence from an 

investigation of epidemiologically linked TB cases in the Netherlands, which found identical 

IS6110 RFLP patterns in isolates separated by decades of latency, is consistent with this 

understanding of latent infection [40].  However, latent infection has recently been characterized 

as a dynamic microenvironment, with continuous activation of the immune response to restrain 

replication of the bacteria [85], and it has been suggested that both dormant and replicating M. 

tuberculosis might be present in latently infected individuals within different types of lesions 

[84].   
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To best address uncertainty such as that surrounding the dynamics of latent infection, sensitivity 

analysis, which allow an investigator to determine how robust a given model is to violations in 

the underlying assumptions, is essential.  Sensitivity analysis has the objective of 

comprehensively and quantitatively evaluating the response of a particular model output to 

variation in selected inputs.  Sensitivity analysis can identify critical parameters in a system and 

flaws in model design.  In her EBM of molecular TB typing, Vynnycky [83, 86] allowed for the 

mutation of molecular fingerprint patterns, and designed her model based on the assumption that 

the rate of mutation of strains involved in latent infections was identical to that observed in strains 

involved in active infections.  Whether or not molecular typing patterns evolve during latency is 

unclear, and this assumption is likely to exert a strong influence on the molecular typing results 

generated by a model.  A sensitivity analysis of this assumption might show, for example, that 

Vynnyky’s assumption of a constant rate of mutation throughout latent infection is not of 

importance to the conclusions she derived from the model.  Because such an analysis wasn’t 

presented, however, it is difficult to accept her results with confidence.  

 

While EBM methods have provided considerable insight to the study of TB, the limitations of this 

modeling approach make them ill-suited to the study of genotyping data, where the many key 

components of the system-- individual hosts as well as bacterial strains – would quickly 

overwhelm a compartmental model.  Additionally, many of the assumptions of a system 

demanded by EBMs – including random, instantaneous mixing of the population and an infinite 

population size – present considerable obstacles to the study of genotyping and “clustering”, 

where the social mixing patterns of the human host population is of key importance.   

 

Agent based models (ABMs), which are also known as Individual-based models (IBMs), are a 

relatively young modeling approach that is increasingly applied to the study of complex, adaptive 

systems.  In contrast to EBMs, ABMs take a “bottom up”, rather than “top down” approach to 

representing systems.  ABMs represent the elements of a system as discrete entities with unique 

characteristics, rather than representing the distributions of individual attributes characteristic of 

EBMs [87].  ABMs aren’t limited by assumptions of infinite population size or instantaneous 

total mixing made by EBMs, and the implementation allows for social mixing patterns to be more 

realistically specified.  Additionally, because ABMs don’t rely on a compartmental structure, they 

can handle significantly more complexity.   
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Two major ABMs have been developed for the study of TB.  One focuses on dynamics at a 

cellular level, representing the process of granuloma formation in a TB-infected lung [88].  This 

ABM was uniquely able to represent the granuloma formation process, capturing the complex 

spatio-temporal interaction of bacteria, immune cells, and immune effectors. The second ABM 

was applied to the study of the molecular epidemiology of TB, with the goal of evaluating the 

hypothesis that the bacterial strains involved in large clusters are more transmissible or 

pathogenic than strains involved in small clusters [89]. This ABM simulated TB transmission in a 

hypothetical population, and tracked the identity of individual strains as they were transmitted.  

Data generated from this ABM suggested that cluster size varied with a range of host and 

population characteristics, and that a large range in cluster size would occur in a setting where all 

strains were of equal transmissibility and pathogenicity. While not applied to the evaluation of the 

validity of clustering as a measure of recent transmission, this model illustrated the utility of the 

ABM method to such an end. 
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Rationale and Research Objectives  

 

The majority of studies of the molecular epidemiology of TB, and particularly studies that have 

validated molecular typing results against epidemiologic evidence of transmission linkages have 

taken place in large urban populations.  Evidence from low-incidence populations suggests that 

the dynamics of TB transmission, and the validity of molecular typing-based measures of recent 

transmission, may vary considerably between large urban populations and rural populations.  

Large urban centers typically have very high levels of in and out migration, and serve populations 

from broad geographic areas, providing many opportunities for the introduction of diverse strains.  

By contrast, reports from a number of rural, low incidence populations suggest a high prevalence 

of regionally endemic strains, and low overall strain diversity [90, 91].   Endemic strain 

transmission, and a highly homogeneous M. tuberculosis strain population that may result, has 

also been described in high incidence settings such as Russia and South Africa [92, 93]. The low 

level of strain diversity resulting from endemic transmission is likely to present an obstacle to 

molecular typing, making it more difficult to discriminate between isolates that are not related by 

recent transmission events.  While molecular typing is already used extensively as a tool for TB 

control in rural areas of the United States, the dynamics of tuberculosis transmission in these 

populations, and the sensitivity of molecular typing-based measures to key characteristics of these 

populations, are not well understood. To clarify understanding of TB transmission and molecular 

typing in rural-low incidence areas, and to generate insights that may inform the design of a 

“rational” typing system for TB control, we have employed a multi-disciplinary research strategy 

which integrates many types of data, including molecular, epidemiologic, and computer-

simulation data.   
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Chapter II 

 

What’s driving the decline? A molecular epidemiologic analysis of tuberculosis trends in a 

rural, low-incidence population
1
 

 

Introduction 

 

Following a resurgence in the late 1980s, the incidence of tuberculosis (TB) in the United States 

has been in steady decline, decreasing by 44 percent between 1993 and 2003 [94] and reaching a 

historic low of 4.8 cases per 100,000 in 2005, the lowest rate since national reporting began in 

1953 [95].  TB incidence rates are not consistent across populations, however, and gaps in 

incidence between different race/ethnic groups and between US and foreign born persist [95].  In 

order to best focus resources towards the goal of the elimination of TB in the United States, it is 

important to understand what factors have driven the decline, and how these factors vary across 

sub populations.   

 

Because of the complex natural history of TB, incident cases in a population may be due to 

infections that were acquired recently, and therefore represent evidence of active chains of 

transmission, or they may be due to the reactivation of latent infections acquired years or even 

decades ago [7].  Clinically, it may be difficult to distinguish between recently acquired and 

reactivated disease [96], but the frequency of each type in the population has important 

implications for infection control.   

 

                                                 
1
 This chapter was previously published as a manuscript in the American Journal of Epidemiology: 

France AM, Cave MD, Bates JH, Foxman B, Chu T, Yang Z. What's driving the decline in tuberculosis in 

Arkansas? A molecular epidemiologic analysis of tuberculosis trends in a rural, low-incidence population, 

1997 2003. Am J Epidemiol. 2007 Sep 15;166(6):662-71. Epub 2007 Jul 11. 
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DNA genotyping of M. tuberculosis isolates provides a tool to draw inferences about the 

transmission history of a clinical isolate.  Cases infected by isolates with identical or highly 

similar DNA genotyping patterns, identified as clusters, reflect a common chain of transmission 

[90], and are considered to be caused by the same strain.  Clusters occurring within a short time 

period are considered to reflect active transmission followed by rapid progression to clinical 

disease. A number of studies have used clustering analyses to estimate the proportion of disease 

that results from recent transmission [42-44, 97].  

 

In the diverse, urban population of San Francisco, investigators used molecular genotyping to 

analyze TB trends between 1991 and 1997.  Based on a decline in the incidence of clustered TB 

cases over time, the authors concluded that the reduction in the overall incidence of TB in San 

Francisco was driven by decreasing levels of active transmission, owing to the successful 

implementation of enhanced TB control programs in that population  [67].   

 

We took a similar analytic approach to investigate TB trends in a very different population: the 

mostly rural, highly stable population of the state of Arkansas.  In Arkansas, the reported 

incidence of TB declined from 7.9 cases per 100,000 in 1997 to 4.7 cases per 100,000 in 2003.  It 

is uncertain whether the decline in TB incidence in Arkansas can, like that of San Francisco, be 

attributed to a decrease in recent transmission.  We hypothesize that, in the very distinct 

populations of San Francisco and Arkansas, the relative contribution of active transmission and 

reactivation of latent infections to the overall burden of TB may differ despite similar trends in 

the overall incidence and comparable control efforts.    
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Methods 

 

Arkansas demographics 

 

Demographic information used to characterize the population of Arkansas was obtained from the 

2000 United States census data [98]
 
and the Institute for Economic Advancement at the 

University of Arkansas, Little Rock.  National and state TB rates were obtained from Centers for 

Disease Control surveillance [99-105].  Metropolitan statistical areas (MSA), defined by 

Arkansas’ Office of Management and Budget were used to indicate urban areas: non-MSAs were 

considered to be rural.  MSA areas included Fayetteville-Springdale-Rogers, Fort Smith, 

Jonesboro, Little Rock-North Little Rock, Memphis, Pine Bluff, and Texarkana.  All counties 

within these MSA were considered urban, while all counties outside of these MSA were 

considered rural. 

 

Study Population 

 

All patients culture-positive for M. tuberculosis, for which the first positive culture was collected 

between 1 January 1996 and 31 December 2003, were included in the study population.  For each 

of these cases, standard demographic information was collected using the Centers for Disease 

Control and Prevention’s “Report of a Verified Case of Tuberculosis” form.  Annual case rates of 

TB were calculated per 100,000 using yearly population estimates from the National Center for 

Health Statistics.  Race and ethnicity were based on self-report.  Options for race were white, 

black, American Indian/ Alaska native, and Asian/ Pacific Islander.  Options for ethnicity were 

Hispanic and Non Hispanic.  These options were specified by the Centers for Disease Control and 

Prevention’s “Report of a Verified Case of Tuberculosis” form. This study was approved by the 

Health Sciences Institutional Review Boards of the University of Michigan and the University of 

Arkansas for Medical Sciences. 
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Genotyping 

 

For each culture-confirmed isolate, IS6110 restriction fragment length polymorphism (RFLP) 

patterns were determined using standard procedures, as previously described [106].  For all 

isolates with fewer than six IS6110 bands, and for isolates with six or more IS6110 bands that 

differed from another IS6110 pattern by one band, spoligotype patterns were also generated, 

following standard protocol [33]. 

  

Cluster Definition 

 

Clusters of cases sharing identical or highly similar fingerprints may include cases for whom 

epidemiologic evidence of recent transmission between other cases in the cluster cannot be found 

[70, 107], or among whom epidemiologic evidence suggests a transmission event that occurred in 

the remote past [70].  In order to increase the specificity of our clustering measure for recent 

transmission, we used a time-restricted definition of clustering in addition to the standard 

definition of clustering, which we refer to here as the conventional clustering definition. 

 

A ‘conventional’ cluster was defined as two or more patients whose isolates were identified as 

related by IS6110 RFLP and spoligotyping.   Related isolates were defined as follows: isolates 

with more than five IS6110 bands with identical IS6110 RFLP patterns or IS6110 RFLP patterns 

differing by one band but with identical spoligotype patterns, or isolates with five or fewer bands 

with both identical IS6110 RFLP patterns and identical spoligotype patterns.   

 

A case was considered to be part of a ‘time-restricted’ cluster if it was clustered by the 

conventional definition with another isolate diagnosed within the one year period prior to its 

diagnosis date.  In the literature, the cut-off to distinguish recent from reactivation disease is 

arbitrary, ranging from one year [67] to as many as five years in some studies [81, 108].  We 

chose a one year period for our definition of clustering to yield the greatest possible specificity of 

our definition, and also to allow our analysis to be directly comparable to previous reports 

regarding clustering trends over time [67].   

 

Statistical Analysis 
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The time-restricted cluster definition was used as our cluster definition for all of our analysis of 

trends over time. Annual TB incidence rates and chi-squared analysis of demographic variables 

by time-restricted cluster were generated using SAS version 9.1 [109]. Confidence intervals for 

yearly TB case rates were generated assuming a Poisson distribution, using the method described 

by Buchanan 2004 [110].  

 

All isolates for which molecular fingerprint data were available were included in a  

Kaplan-Meier analysis of the distribution of the time between diagnosis dates of matching  

fingerprints, as suggested by Jasmer and colleagues in 1999 [67].  This survival analysis was used 

to estimate the probability that an isolate with a matching DNA fingerprint pattern occurred 

within a given time period following each culture-confirmed case.  “Failure time” was the time 

between diagnosis dates of consecutively matching fingerprints.  Isolates that did not match 

another isolate in the study by the end of the study period were censored.    
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Results 

 

Demographics 

 

In 2000, the population of Arkansas was 2,673,400 [98].  This population is largely rural, with 

just 29.3 percent of the population living within a MSA in 1990, compared with 77.5 percent of 

the US population [111]. This population is also relatively stable: in 1990, 88 percent of Arkansas 

residents over 5 years old had lived in the state in 1985, 79 percent had lived in the same county, 

and 54 percent lived within the same house, compared to 70 percent, 63 percent, and 42 percent, 

respectively, in the total US population [112].   

 

TB Cases 

 

Arkansas reported 1402 incident cases of TB between 1996 and 2003.  Of the reported cases, 

1025 (73.1 percent) were confirmed by bacterial culture.  

 

Genotype Patterns and clustering of isolates 

 

IS6110 RFLP patterns were generated for 997 case isolates (71.1 percent of the culture-confirmed 

cases) and 264 (26.5 percent) of these had fewer than six IS6110 bands.  Spoligotype patterns 

were generated for each isolate with fewer than six IS6110 bands as well as for any isolate with 

greater than six bands whose IS6110 fingerprint differed from another by one band.   

Using the conventional cluster definition, 551 of 997 (55.3 percent) cases were clustered with at 

least one other case in the population, resulting in 115 clusters. Thirty-four (30 percent) of these 

clusters were defined on the basis of identical IS6110 fingerprints with fewer than six bands 

along with identical spoligotypes, while 81 were defined on the basis of IS6110 patterns with six 

or more bands that were identical or which differed by one band but had identical spoligotype 

patterns.  The size of the clusters ranged from two isolates, accounting for 57 (49.6 percent) 

clusters to, 35 isolates (one cluster).   The time-span of individual clusters ranged from one year 

to the full eight years of the study period.  A Kaplan-Meier analysis of the distribution of the time 

between diagnosis dates of matching isolates found that, among all isolates for which another 

isolate a with a matching fingerprint was identified during the remaining study period, 73.6 

percent (312 of 424) were identified within one year, while 87.0 percent (369 of 424) were 
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identified within 2 years.  Of 551 isolates, 127 matched at least one other isolate in the study 

population, but were the last case in the cluster during the study period, and therefore were not 

included in the Kaplan-Meier analysis.   

 

Of the 551 isolates clustered by conventional methods, 312 matched the isolate of a case that was 

diagnosed within the same one year period, and were thus considered clustered by our time-

restricted cluster definition.   

 

Epidemiological and clinical characteristics of clustered cases 

 

Cases considered clustered by IS6110 and spoligotype that were not considered clustered using 

the one year restriction were significantly less likely to have cavitary disease and more likely to 

be in older age categories (with a two-sided p-value < 0.05 ) than were cases that were considered 

clustered using the one year restriction (Table 2.1).  Additionally, these cases were less likely to 

be homeless, heavy alcohol users, HIV positive, and sputum-smear positive than were cases that 

were considered clustered using the one year restriction, although none of these associations were 

significant at the p < 0.05 level. 

 

Incidence trends 

 

The incidence of culture confirmed TB in Arkansas declined by 2.7 cases per 100,000 between 

1997 and 2003 (from 5.9 cases per 100,000 in 1997 to 3.2 cases per 100,000 in 2003, Figure 2.1).  

This overall decline resulted from a decline in both clustered cases, which declined by 1.0 case 

per 100,000 (from 2.0 cases per 100,000 in 1997 to 1.0 cases per 100,000 in 2003), and unique 

cases, which declined by 1.7 cases per 100,000 (from 3.9 to 2.2 cases per 100,000).   

 

Stratification by age showed the largest decline in the incidence of TB in those aged 65 and older, 

with the overall incidence of culture-confirmed TB in this age group declining from 19.9 cases 

per 100,000 in 1997 to 8.5 cases per 100,000 in 2003, an absolute decline of 11.4 cases per 

100,000 (Figure 2.2a).  In this age group, the absolute decline of unique cases over this period 

was 1.8 times the absolute decline of the clustered cases (unique cases declined from 14.5 per 

100,000 in 1997 to 7.1 cases in 2003, while clustered cases declined from 5.4 cases per 100,000 

in 1997 to 1.3 cases per 100,000 in 2003).  In the 20 to 64 age group, the overall incidence of 

culture-confirmed TB declined by 1.5 cases per 100,000 (from 5.0 cases per 100,000 in 1997 to 
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3.5 cases per 100,000 in 2003).  In this age group, the absolute decline of unique and clustered 

cases was identical at 1.0 cases per 100,000 in each: unique cases declined from 3.0 to 2.0 cases 

per 100,000 and clustered cases declined from 2.4 to 1.4 cases per 100,000 (Figure 2.2b).  

 

The incidence of culture-confirmed TB was consistently higher in blacks than in whites in 

Arkansas (Figure 2.3a, 2.3b).  The magnitude of the decline in the overall incidence of culture-

confirmed TB was greater in blacks than whites: in blacks, the incidence declined from 13.8 to 

6.5 cases per 100,000 (a difference of 7.3 cases per 100,000) over the period 1997 to 2003, while 

the incidence in whites declined from 4.0 cases per 100,000 to 2.4 cases per 100,000 (1.6 cases 

per 100,000). The decline in the incidence of TB in blacks was dominated by a decline in the 

incidence of unique cases, with the decline in unique cases 3.6 times the decline in clustered cases 

(unique cases declined from 8.4 to 3.0 cases per 100,000, while clustered cases declined from 5.3 

to 3.5 cases per 100,000).  In contrast, in whites, the magnitude of the decline in clustered cases 

(from 1.3 to 0.5 cases per 100,000) was the same as the decline in unique cases (from 2.7 to 1.9 

cases per 100,000).    

 

The incidence of culture-confirmed TB was higher among the rural than the urban population for 

each year except 2001 (Figure 2.4 a, b).  Between 1997 and 2003, the overall incidence of 

culture-confirmed TB declined by 3.0 cases per 100,000 in rural counties ( from 6.9 to 3.9 cases 

per 100,000 ) and 2.5 cases per 100,000 in urban counties ( from 5.0 to 2.5 cases per 100,000 ).   

 

In rural counties, the decline in unique cases was 2.0 times the decline in clustered cases (a 

decline of 2.0 cases per 100,000 in unique cases and of 1.0 per 100,000 in clustered cases).  In 

urban counties, the decline in unique cases was 1.4 times the decline in clustered cases (a decline 

of 1.4 cases per 100,000 in unique cases and 1.0 per 100,000 in clustered cases).   



 24 

Discussion 

 

Incident TB cases may result from an infection with M. tuberculosis acquired recently, or from 

the reactivation of a latent infection acquired in the remote past.  Distinguishing clinically 

between these types of disease is frequently not possible, although they have different 

implications for TB control programs.  We used molecular genotyping data to estimate the 

relative contribution of recent and remotely acquired infection to the yearly incidence of TB in 

Arkansas.  This analysis indicates that decline in the incidence of TB in Arkansas between 1997 

and 2003 was most likely due to a decline in the incidence of reactivated latent infections in 

individuals over age 65.  This decline was primarily seen in blacks, and was most prominent in 

rural areas of the state. 

 

The steep decline in reactivation cases in the oldest age category (age 65 and older), and the 

minimal decline in reactivation cases in those aged 20-64, suggests that a cohort effect may be 

responsible for the decreased incidence of TB in Arkansas.  With a steep decline in the incidence 

of TB in Arkansas (and the United States) in the first half of the 20
th
 century, each successive 

birth cohort was exposed to a lower risk of infection with M. tuberculosis.  As a result, the 

prevalence of latent TB infection is likely highest in the oldest individuals in the population, and 

decreases with decreasing age.  The declining incidence of TB in the population may reflect 

earlier birth cohorts leaving the population as more recent birth cohorts enter it.  This is similar to 

what has been reported in the Netherlands [69], a population that also experienced a steep decline 

in the incidence of TB early in the 20
th
 century.   

 

The marked decline in the incidence of TB in non-Hispanic blacks is a welcome finding.  In the 

US, the burden of disease has fallen disproportionately on this group, with an incidence of TB 

eight times higher than that seen in non-Hispanic whites in 2002 [100].  However, this decline 

does not appear to be the result of reduced transmission in this population – the incidence of 

clustered cases declined minimally over the study period.  Rather, a decline in the incidence of 

reactivated latent infections is driving this trend.  While the numbers in our study were too low to 

stratify race/ethnic groups by age, the race-stratified yearly incidences of unique cases suggest 

that the cohort effect is predominately seen in the non-Hispanic black population, as the incidence 

of reactivated TB in non-Hispanic blacks declined steeply, while declining minimally non-

Hispanic whites. 
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Molecular epidemiologic investigations have consistently identified non-Hispanic black race as a 

risk factor for molecular clustering [43, 91, 113].  It has been suggested that higher frequencies of 

excessive alcohol use, drug use, incarceration, and infection with HIV, all identified risk factors 

for clustering, may be responsible for the higher rates of TB seen among non-Hispanic blacks 

than non-Hispanic whites [113].  While not discounting the importance of known risk factors, our 

results suggest that, in Arkansas, higher rates of TB currently observed in non-Hispanic blacks 

are as much the result of historic trends as of contemporary risk behaviors.  Historically, the 

incidence of TB has been higher in blacks than whites, both in Arkansas and United States.  

Because active TB can result from infection acquired many years or even decades in the past, the 

legacy of historic TB transmission may be felt in a population for generations.  Similarly, 

reductions in transmission will continue to have effects on overall disease incidence for many 

years.  A concerted and continuous program to treat recently infected close contacts of newly 

diagnosed cases, as well as other high risk individuals having latent infection, has been in place in 

Arkansas for more than three decades.  The observed decline in the incidence of TB in non-

Hispanic blacks appears to be the result of reductions in transmission and the treatment of latent 

infections over several decades.  An additional factor working to reduce the risk for reactivation 

among non-Hispanic blacks could be an improvement in the overall health status of this 

population. 

 

Arkansas differs from the rest of the United States, particularly from the urban areas in which 

molecular typing for TB has been validated as a measure for recent transmission.  While the 

majority of the US population lives in urban areas, only a minority of the population of Arkansas 

does.  The pattern of TB incidence also differs.  In urban areas of the United States, the incidence 

of TB was 24 percent higher than the national rate in 2003 [99], while in the same year in 

Arkansas, the incidence of TB was 23 percent higher in the rural areas than the state overall.  As 

the bulk of Arkansas’ population resides in rural counties, the decline in the incidence of TB in 

these counties between 1997 and 2003 appears to be a key driver of the overall decline in TB in 

Arkansas.   

 

Our results differ from those of a previous investigation conducted in San Francisco [67], in 

which the investigators concluded that the decline in the incidence of TB in that population 

between 1991 and 1997 was due primarily to a decline in active transmission in that city.  It is not 

surprising that a similar analysis of two very different populations finds divergent results: the 

transmission dynamics between the rural, highly stable population of Arkansas are likely quite 
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different from a diverse urban population like San Francisco.  The molecular typing methods we 

used differed slightly from those used by Jasmer and colleagues: while we used spoligotyping as 

a secondary typing method, they used pTBN12 typing.  Spoligotyping is somewhat less 

discriminatory than pTBN12 typing [114], therefore this difference could influence our cluster 

classifications, resulting in a higher estimate in the amount of clustering, particularly among 

isolates with fewer than six IS6110 bands.  However, it is unlikely that this methodological 

difference resulted in the distinct time-trends identified in our respective study populations. 

 

The use of “clustering” of cases that exhibit identical or similar DNA fingerprint patterns as a 

measure of recent transmission has been used most widely in diverse, urban populations: of the 

limited studies that attempt to validate the approach against epidemiologic data, the great majority 

have been conducted in these same populations [42, 78]. However, the predictive value of 

clustering for recent transmission may vary across diverse populations. Evaluations of molecular 

clustering in rural, stable populations suggest that, in these settings, clusters of cases sharing 

identical or highly similar fingerprints may include cases for whom epidemiologic evidence of 

recent transmission between other cases in the cluster cannot be found  [70, 107], or among 

whom epidemiologic evidence suggests a transmission event that occurred in the remote past  

[70].  Additionally, a contact investigation combined with molecular fingerprinting analysis in 

Arkansas [115] showed evidence of a single strain of M. tuberculosis persisting in a rural area of 

the state over many decades.  Repetitive cycles of transmission and infection with a single strain, 

followed by reactivation or progression to disease, could result in a cluster of cases linked in part, 

but not entirely, by recent transmission.  These studies suggest that, in using molecular clustering 

as a measure of recent transmission in Arkansas, some amount of misclassification is inevitable.  

By restricting our definition of clustering to cases with matching fingerprints that were diagnosed 

within a year of one another, we attempted to increase the specificity of this measure for recent 

transmission.  Indeed, a comparison of known risk factors for recent transmission found that each 

factor assessed was more commonly found among clustered cases diagnosed within a year of one 

another than among cases clustered by fingerprint alone that were diagnosed more than one year 

apart.  However, in the absence of epidemiological contact tracing data to verify this, we cannot 

conclude that our restricted measure is more specific for recent transmission. 

 

Because of the uncertainty regarding molecular typing in this population, we must interpret our 

results with caution.  However, we have no reason to believe that misclassification will differ 

between years in our study.  Therefore, we are confident in using these tools to follow trends over 
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time.  Particularly among the oldest populations is our study, the signal is very strong, which 

leads us to believe that, while not a perfect measure, our current definition of molecular clustering 

is allowing us to detect important factors driving trends in TB in Arkansas.  

 

Effective TB control programs are essential to reaching the goal of TB elimination in the US.  

Our results suggest that, while the overall incidence of TB declined in Arkansas between 1997 

and 2003, the decline in the active transmission of M. tuberculosis infection was not as important 

as the decrease in the reactivation rate. Both rates declined, the former as a result of prompt and 

highly effective treatment of newly identified cases and the latter as a result of effective treatment 

of latent infection.  In Arkansas and other rural, low-incidence populations, improvements in the 

effective identification and interruption of active pockets of transmission will be essential to 

reaching TB elimination goals
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Tables 

Table 2.1.     Table 2.1.  Known risk factors for TB transmission by clustering definition.  

Comparison of the frequency of previously identified risk factors for clustering among 1) all TB 

cases identified as clustered, 2) cases clustered within a 1 year time interval, and 3) cases 

clustered but with more than 1 year between clustered cases, Arkansas, 1997 to 2003. 

 

Risk 

factor 

All clustered 

(%) 

Clustered within 1 

year (%) 

  

Clustered outside 1 

year (%) 

OR  95 % CI 

Sputum 

smear + 

 

219/550  (40.0) 130/312  (41.7) 89/238 (37.4) .836 0.59, 1.18 

Cavitary 

disease 

 

178/490  (36.3) 114/278  (41.0) 64/212 (30.2) .62 0.42, 0.90 

HIV+ 

 
25/349 (7.2) 18/212  (8.5) 7/137 (5.1) .58 0.23, 1.42 

Homeless 

 
23/546 (4.2) 15/310  (4.8) 8/236 (3.4) .69 0.29, 1.66 

Excessive 

Alcohol 

Use 

104/532  (19.6) 64/302 (21.2) 40/230 (17.4) .78 0.51, 1,21  

Injection 

Drug Use 

 

2/363 (0.6) 2/0 (1.0) 0/159 (0.0) na  

Male 

 
368/551  (66.8) 211/312 (67.6) 157/239 (65.7) 1.09 0.76, 1.56  

Age >65 

 
200/550 (36.4) 93/311 (29.9) 107/239 (44.8) 1.9 1.33, 2.70 

 

Odds ratios and 95% confidence intervals compare risk factor frequencies between cases 

clustered within one year and cases clustered but with more than 1 year between clustered cases.
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Figures 

 

Figure 2.1.  Annual incidence of all culture confirmed, unique (non-clustered), and clustered TB 

cases in Arkansas, 1997 to 2003.  Clustering based on the time-restricted definition.   
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Figure 2.2.  Annual incidence of  culture confirmed, unique (non-clustered), and clustered TB 

cases by age group, Arkansas 1997 to 2003. Clustering based on the time-restricted definition. 

Panel a, Age 20-64; panel b, Age 65+ 

 

Figure 2.2, panel a.   

0

5

10

15

20

25

30

1997 1998 1999 2000 2001 2002 2003

Year

C
a

s
e

s
 p

e
r 

1
0

0
,0

0
0

 p
o

p
u

la
ti

o
n

, 
A

g
e

 2
0

 t
o

 6
4

All Culture-Confirmed Clustered Unique 

 



 31 

Figure 2.2, panel b. 
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Figure 2.3.   Annual incidence of culture confirmed, unique (non-clustered), and clustered cases 

of TB in non-Hispanic whites (panel a) and non-Hispanic blacks (panel b), Arkansas, 1997 to 

2003.  Clustering based on the time-restricted definition. 

 

Figure 2.3, panel a. 
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Figure 2.3, panel b.  
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Figure 2.4.   Annual incidence of culture confirmed, unique (non-clustered), and clustered cases 

of TB in rural counties (panel a) and urban counties (panel b), Arkansas, 1997 to 2003.  

 

Figure 2.4, panel a. 
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Figure 2.4, panel b. 

0

1

2

3

4

5

6

7

8

9

10

1997 1998 1999 2000 2001 2002 2003

Year

C
a

s
e

s
 p

e
r 

1
0

0
,0

0
0

 p
o

p
u

la
ti

o
n

, 
U

rb
a

n
 

C
o

u
n

ti
e

s

Total Urban Unique Urban Clustered Urban

 



 36 

Chapter III 

 

Microbial and host predictors of tuberculosis case clustering: implications for the design 

and interpretation of population-based molecular typing programs

 

Introduction 

 

Molecular typing has become an essential tool in the study of M. tuberculosis, both in basic 

research and in applied public health investigations.  When integrated into routine, population-

based tuberculosis (TB) surveillance, molecular typing presents a powerful tool to identify 

patterns of infection: by allowing cases related by a recent transmission event to be identified, the 

spread of drug-resistant clones can be tracked [116], the proportion of disease due to recent 

transmission can be estimated [72, 117, 118], and, of particular importance to TB Control 

programs, outbreaks can be rapidly identified [118, 119].  Despite the increasing reliance on 

molecular typing methods to identify TB cases linked by recent transmission, however, the 

relationship between molecular typing data and transmission relationships remains poorly 

understood.   

 

Numerous reports from population-based typing programs have documented “clusters” of cases 

related by molecular typing pattern that show no epidemiologic linkage between cases [70, 71]. In 

some cases, further investigation has shown such “unexplained clusters” to consist of truly linked 

cases, where case connections had been missed by conventional contact tracing methods [57]. 

Such clusters point to transmission occurring beneath the radar of traditional TB control 

programs, such as in marginalized populations where patients may mistrust public health 

authorities or who may not know the names of many contacts [120, 121], in a context not 

recognized by the traditional contact tracing protocol, or through casual contact [41, 56].  Often, 

however, further investigation finds that “unexplained clusters” do not reflect recent transmission 

events: transmission might have occurred many years or even decades in the past [70], or the 

particular molecular typing tool used might provide insufficient resolution to discriminate 

unlinked cases in a given population [73]. 
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Distinguishing molecular case-clustering that reflects true transmission linkages (referred to here 

as “true clustering”) from erroneous linkages (“false clustering”) is critical to the effective use of 

molecular typing to direct limited TB control resources.  The probability that a clustered case 

truly reflects recent transmission (measured by the predictive value positive (PPV)) may be 

influenced by a complicated array of factors, including characteristics of the host population [55, 

70], the local pathogen population [90, 92, 122], the molecular typing tool and clustering 

definition used [35, 75], and the time period over which cases are evaluated [79].  To date, 

however, evaluations of molecular typing approaches have most often focused either solely on 

microbial factors [123-125], or solely on host population factors [55, 70], and none have 

addressed the interacting effects of these factors. 

Evolution of the M. tuberculosis genome is largely clonal [126] [127], and distinct evolutionary 

lineages are highly associated with particular geographic regions [128-132].  In a given 

geographic region, the composition of the infecting M. tuberculosis strain population may reflect 

both contemporary and historically distant migration patterns of the human host population [127, 

133].  In many regions TB transmission appears to be dominated by regionally endemic M. 

tuberculosis strains [90, 92, 134], with little genetic variation between M. tuberculosis case 

isolates, even those clearly unrelated by transmission.   Reports from host populations that have 

experienced continuous immigration and emigration show relatively high levels of M. 

tuberculosis “background” diversity (the diversity amongst isolates thought to be unrelated by 

transmission) [122], while geographically isolated populations have been characterized by highly 

homogeneous M. tuberculosis strain populations [135].   

In addition, diversity in the molecular markers that are exploited by molecular typing methods 

(including IS6110 RFLP, spoligotyping, and MIRU) varies by evolutionary lineage [125, 136].  

For example, using spoligotyping, which assays variation in the Direct Repeat (DR) locus, 

molecular markers that show high diversity among non-Beijing lineages show little diversity 

among isolates of the Beijing family [92, 124, 137], with the result that typing methods based on 

these markers cannot discriminate between unrelated Beijing-family isolates.   

In the United States (US), where the human population has diverse ancestral origins, a higher 

diversity of M. tuberculosis spoligotype families is seen than that seen in geographic regions with 

human populations of more homogeneous ancestry [132, 138, 139].  The diversity is not uniform: 

both historic and contemporary migration patterns vary widely across different populations in the 

US, particularly between urban and rural areas. Reports from urban populations with high levels 
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of immigration, such as San Francisco, demonstrate high M. tuberculosis strain diversity [127].  

By contrast, reports from rural populations in both the US and Canada (demographically similar 

populations which both experience low rates of TB), show levels of clustering substantially 

higher than would be expected based on the low incidence of active TB disease [90, 91, 134].  

Regionally endemic strains appear to dominate transmission in some rural populations [90, 91], 

and epidemiologic investigations suggest that clustering in rural populations is less likely to 

reflect recent transmission than it is in urban populations [70, 90].  The low positive predictive 

value (PPV) of clustering in rural areas may be due to low background diversity in the circulating 

population of M. tuberculosis.  With current information, however, it is not possible to 

distinguish the effects of M. tuberculosis population structure from effects of the host population 

demographics or the molecular typing method used. 

 

We investigated the impact of host behavioral, clinical, and demographic factors, as well as 

pathogen population characteristics and molecular typing method, on the predictive value of 

molecular typing in Arkansas by reviewing extensive epidemiologic interviews and genetic 

typing data collected over the five year period from 1996 to 2000.  Arkansas is, a southern US 

state characterized by a rural, historically stable population.  Arkansas has a higher than expected 

level of case clustering and low PPV of clustering for recent transmission, suggesting patterns of 

transmission very different than those described in large urban populations in the US [35, 70, 

115]. 

 

Methods 

 

Arkansas demographic characterization 

 

We obtained Arkansas population and demographic data from the 2000 US Census (Census 

2000), and state TB and HIV/AIDS and Centers for Disease Control and Prevention Surveillance 

Reports (CDC HIV 2000, TB 2000). Census Bureau Metropolitan Statistical Areas (MSAs) 

defined by Arkansas’ Office of Management and Budget were used to determine urban areas; 

non-MSAs were considered to be rural areas. The MSAs identified included Fayetteville-

Springdale-Rogers, Fort Smith, Jonesboro, Little Rock-NorthLittle Rock, Memphis, Pine Bluff, 

and Texarkana. All counties within these MSAs were considered urban, while all counties outside 

of these MSAs were considered rural. 
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Study sample description and demographic characterization 

 

Study patients were persons with an incident case of culture-confirmed TB reported in Arkansas 

between 1996 and 2000.  If multiple isolates were collected for any single patient, only the first 

isolate was included in our analysis.   

 

Arkansas reported 976 incident cases of TB between January 1, 1996, and December 31, 2000 

(CDC TB Surveillance Reports). Of these, 721 were culture confirmed, and molecular typing 

results were generated for 705 (97.8%).  Five patients suffered a relapse of active disease within 

this study period: for each of these patients, only the first episode of disease was considered in 

our analysis.  Each isolate for all relapse cases was genotyped: in each case, the episode of 

relapse disease produced an isolate with an identical pattern to the initial disease isolate. 

Therefore, restricting our analysis to only the first reported case in the study period, for a total of 

971 cases and 700 genotyped isolates in the study period, had no impact on the designation of 

clusters.  

 

Four hundred and eleven (42.3%) of cases lived in one of seven MSAs at the time of their 

diagnosis.  Sixty-two percent of cases were males, and 44% were age 65 or older at diagnosis. 

Non-Hispanic whites made up 49% of cases, non-Hispanic blacks, 36%, Hispanics, 7.8%, Asian 

Pacific Islanders, 6.4%, and American Indian/Alaska Natives, 0.5%.  Eleven percent of cases 

were foreign-born, and 6.3% were infected with a drug-resistant isolate.  Thirty-three (3.4%) of 

patients had had a prior diagnosis of TB disease. 

 

This study was approved by the health sciences institutional review boards of the University of 

Michigan and the University of Arkansas for Medical Sciences. 

 

Genotyping 

 

IS6110 restriction fragment length polymorphism (RFLP) patterns were determined using 

standard procedures, as previously described [32], for 700 of all 716 (97.7%) culture-confirmed 

cases (excluding the five relapse cases previously noted). For all 196 isolates with fewer than six 

IS6110 bands (28 % of those typed) and for isolates with six or more IS6110 bands that differed 

from another IS6110 pattern by only one band, pTBN12 patterns were also generated, following a 
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standard protocol [140].  Spoligotyping patterns were generated for 697 (99.6%), following 

standard protocols [33]. 

 

Compared to the 700 genotyped cases, the 17 cases that were culture confirmed but not 

genotyped were significantly more likely to be diagnosed with extra-pulmonary disease, (Odds 

Ratio 4.42, 95% CI 1.61, 12.15), and to have been born outside of the United States (Odds Ratio 

3.63, 95% CI 1.15, 11.43). 

 

Cluster definition 

 

We evaluated clustering using IS6110 RFLP alone, spoligotype alone, IS6110 RFLP with 

secondary typing by pTBN12 RFLP (IS6110-pTBN12), and IS6110 RFLP with secondary typing 

by spoligotype (IS6110-spoligotype).  For both IS6110 RFLP alone and spoligotype alone, a 

cluster was defined as two or more cases with an identical typing pattern.  For both methods 

combining IS6110 with a secondary typing technique, separate cluster definitions were used for 

isolates with five or fewer IS6110 RFLP bands (low band isolates), and isolates with 6 or more 

IS6110 RFLP bands (high band isolates).  For low band isolates, a cluster was defined as a cluster 

of two or more cases with isolates identical by both IS6110 RFLP and the secondary typing 

method (pTBN12 or spoligotype).  For high band isolates, a cluster was defined as two or more 

cases with identical IS6110 RFLP patterns, or cases with IS6110 RFLP patterns differing by a 

single band, but identical by the secondary typing method.   

 

Investigation of epidemiologic linkages among clustered cases. 

 

As a sentinel surveillance site in the CDC's National Tuberculosis Genotyping and Surveillance 

Network, the state of Arkansas conducted a population-based sentinel study of TB which 

included all incident culture-positive TB patients in the state from 1996- 2000. Active case 

finding relied on local mycobacteriology and hospital infection control records for all facilities in 

the state, hospital IDC-9 discharge codes for TB, pharmacy records for prescriptions of a 

combination of two or more anti-TB drugs, coroners’ records that showed TB as a diagnosis, and 

AIDS surveillance reports that indicated a diagnosis of TB[141]. For each culture positive TB 

patient, a Report of a Verified Case of Tuberculosis was completed, providing standard 

demographic information. Race/ethnicity was based on self-report.  
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Detailed data on patient demographics, social history, clinical characteristics, and risk factors 

related to TB transmission and disease were obtained by review of medical and public health 

records for all culture-confirmed TB cases for which an isolate was genotyped and found to be 

clustered with that of another case in the study period using IS6110- pTBN12, or with IS6110 

RFLP with spoligotype as a secondary method.  In addition, notes from interviews of clustered 

cases were reviewed to identify epidemiological contacts between clustered cases.  These 

interviews, conducted by ADH TB control employees, followed an extensive standardized 

questionnaire which included questions on patients’ demographic characteristics, history of 

current and previous residence and employment, history of previous TB and tuberculin skin test 

(TST) results, dates of symptom onset and diagnosis, hospitalizations, completion of treatment, 

laboratory results, chest radiograph findings, and known TB risk factors (including substance 

abuse, alcohol abuse, and stays in long term facilities such as homeless shelters, detoxification 

centers, or correctional facilities, travel history, types and sites of social and leisure activities, 

underlying illness, and concurrent immunosuppressive conditions or treatment).  In cases for 

which extensive interviews were not conducted, medical records and case contact tracing records 

were reviewed to identify epidemiological contacts. 

 

Of 330 cases with an isolate clustered by IS6110- pTBN12, 232 (70.3%) had an interview 

available for review, 64 (19.4%) had medical and contact tracing records available, but no 

interview, and 34 (10.3%) had no records available.  Of the 34 cases with no records available, 

sufficient information was provided in the records of other cases in the same cluster to establish 

epidemiologic linkages for 28 (82.4%).  Insufficient information was available to classify 8 cases, 

6 of which had no records available, and 2 of which were interviewed, but were in a cluster with 

missing information for all other cases in the cluster.  In total, epidemiologic linkage status was 

classified for 322 (97.6%) of 330 clustered cases. 

 

Cases for whom a record review was conducted in place of an interview were more likely to be 

foreign born (Odds Ratio = 4.6, 95%CI 1.49, 14.29), to reside in a MSA at the time of diagnosis 

(Odds Ratio = 1.94, 95%CI 1.11, 3.45), to receive treatment for their TB from a private provider 

rather than the health department (Odds Ratio= 5.26, 95% CI 1.96, 14.29), and to have a drug-

susceptible isolate (Odds Ratio 3.4, 95% CI 1.31, 9.59).  There were no significant demographic 

or clinical differences between cases for which no record was found and cases for which either an 

interview or a record review was available.   
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Epidemiological linkage classification 

 

Based on available information, each case that was part of a cluster was classified as having a 

definite epidemiologic link, a probable epidemiologic link, or having no identified link to, any 

other case in the same cluster.   

 

A definite epidemiologic link was defined as one between patients within a cluster who lived in 

the same household or shared the same indoor airspace when at least one of the patients was 

judged to be infectious [35]. 

A probable epidemiologic link was defined as a link that did not fit the criteria for definite 

epidemiologic link, but for which interview suggests either a direct exposure of one infectious 

patient to another in the cluster, or a circumstance whereby cluster patients were in the same 

location at the same time [70].  

 

Information was abstracted into a Microsoft Access database (Microsoft Corp, Redmond, WA). 

 

Spoligotype family assignment 

 

Spoligotype-defined families are well described [132], and individual families often show strong 

phylogeographic associations. Because these family classifications can be used to characterize the 

population genetics of local M. tuberculosis isolates, we classified the spoligotype family for each 

isolate in our study sample.  Spoligotype patterns were analyzed with 'Spotclust' [142], which 

implements a mixture model built on the SpolDB3 database. This model takes into account 

knowledge of the evolution of the DR region and assigns spoligotype patterns to families and 

subfamilies.   

 

Statistical Analysis 

 

We compared the distribution of demographic and clinical characteristics among patients with 

clustered and unique isolates, and epidemiologically-linked to non-linked clustered cases, using 

the χ
2
 test or Fisher's exact test, as appropriate.  Unless otherwise noted, clustering designations 

included in all statistical analysis were based on IS6110- pTBN12 typing. Predictive value 

positives (PPVs) were calculated to determine the probability that, given inclusion in a cluster, a 
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definite or probable epidemiologic linkage was identified between a given case and at least one 

other case in that cluster. 

 

The diversity of molecular types was estimated using the Hunter-Gaston Discrimination Index 

(HGI) (also referred to as Simpson’s Index of diversity) [143], calculated by the following 

formula: 
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where D is the numerical index of discrimination, N is the total number of strains in the typing 

scheme, s is the total number of different strain types, and nj is the number of strains belonging to 

the jth type.  D can be interpreted as the probability that any two isolates drawn at random will be 

of different molecular types.  For the purposes of presentation, we used 1-D, which can be 

interpreted as the probability that any two isolates drawn at random will exhibit the same 

molecular type.  

 

We used multiple logistic regression analysis to assess the importance of demographic, clinical, 

and strain characteristics in predicting false clustering among cases with no known relationship to 

other cases in the sample.  For this model, our study sample was restricted to unique isolates and 

clustered cases for which no linkage was found.  A stepwise logistic regression with forward 

selection was performed.  Independent variables with a probability of < .10 by the Wald statistic, 

after adjusting for other variables in the model, were included in the model.   Independent 

variables included in the stepwise model were then re-run in a logistic model which included age 

and race to adjust for confounding.  Gender was not included in this model as it was not 

associated with either clustering or the identification of epidemiologic linkages in our study 

sample.  Because spoligotype-defined strain families varied in the number and diversity of 

IS6110 RFLP bands, and because band number is strongly correlated with the validity of IS6110 

RFLP clustering measures, we included a binary low band number/high band number variable in 

all models that included strain family as a predictor. 

 

All statistical analysis was conducted using SAS version 9.1.3 (SAS Institute Inc. SAS. Version 

9.1.3 Cary, NC: SAS Institute Inc, 2006) 
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Results 

 

Arkansas Demographics  

 

In 2000, the population of Arkansas was 2,673,400, with 77.8% of the population self-described 

as Non-Hispanic White, 15.7% Non-Hispanic Black, and 4.7% Hispanic, 1.1% Asian, and 0.7 % 

American Indian/Alaska Native.  The foreign-born population in Arkansas is relatively small: in 

2000,  2.8% compared to  11.1% of the US population.  The Arkansas population is somewhat 

more stable than the overall US population: among US-Natives, 63.9% of Arkansas residents in 

2000 were born in Arkansas, while 60% of the US population was born in the same state in which 

they currently reside.  Arkansas has a largely rural population, with 49.5 percent of the population 

residing in a county falling within an MSA, while 50.5 percent lived in non-MSA counties 

(Census 2000). 

  

The proportion of Arkansans living with HIV/AIDS is slightly lower than that in the overall US 

population, with 3,648 residents of Arkansas (0.14% of the population) reported to be living with 

HIV/AIDS in 2000 [9], compared to 450,151 individuals in the US as a whole (0.16% of the 

population).   In 2000, the incidence of TB in Arkansas was higher than the US average, with a 

rate of 7.4 cases per 100,000 [144], compared to a rate of 5.8 per 100,000 in the US.   

 

Genotyping 

 

An IS6110 RFLP pattern was generated for all 700 (100%) genotyped isolates.  The number of 

IS6110 RFLP bands ranged from 1 to 22, with 196 isolates (28%) having less than 6 bands, 227 

(32.4%) having 6-11 bands, and 277 (39.6%) with 12 or more bands.  A pTBN12 RFLP pattern 

was generated for 181 of 196 (92.4%) of low IS6110 band isolates, and for 132 of 504 (26.2%) of 

high IS6110 band isolates.  A spoligotype was generated for 697 (99.6%).   

 

We evaluated the level of clustering using four different typing definitions: IS6110 RFLP alone, 

spoligotyping alone, IS6110- pTBN12 RFLP, and IS6110 –spoligotype (Figure 3.1).  The 

proportion of isolates that were clustered ranged from a high of 80.8% clustered using 

spoligotype alone to a low of 47.1% using IS6110 RFLP -pTBN12.  Maximum cluster size 

corresponded to the proportion of clustered isolates by a given technique, with the largest IS6110 

RFLP-pTBN12 cluster having 17 isolates, and the largest spoligotype cluster having 97 isolates. 
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The proportion of isolates that was clustered varied according to the number of IS6110 bands. 

Isolates with fewer than six bands showed consistently higher levels of clustering, despite the use 

of a secondary typing technique for these isolates (Figure 3.2).  

 

Characteristics of cases clustered by IS6110 RFLP with secondary typing by pTBN12 

 

Clustering occurred significantly more often in cases that were aged 20-64 or residing in a 

correctional facility at the time of diagnosis, of non-Hispanic black race, or US-born.   

Additionally, cases reporting either homelessness or excessive alcohol use in the year prior to 

diagnosis were significantly more likely to be clustered.  Clustering was significantly associated 

with a number of host demographic characteristics; including age group, race/ethnicity, and 

country of birth (Figure 3.3a). Additional host factors, including residence in a correctional 

facility at diagnosis, reported homelessness in the year prior to diagnosis, reported alcohol abuse 

in the year prior to diagnosis, and a positive sputum smear, were also significantly associated 

with clustering (Figure 3.3b). 

 

Investigation of Clustered Patients 

 

Of 322 clustered cases for which epidemiologic linkage could be classified, a definite link was 

identified for 84 (26.1%), a probable link for 19 (5.9%), and no link was found for 219 (68.8%).   

The PPV of clustering ranged from a low of 0.17 using spoligotyping to a high of 0.32 using 

IS6110 RFLP and pTBN12.   

 

The PPV for typing by IS6110 - pTBN12 varied by the number of IS6110 bands, ranging from a 

low of 0.240 for isolates with five or fewer bands to a high of 0.405 for isolates with 12 or more 

IS6110 bands (Figure 3.2).  The PPV of clustering using IS6110 alone, spoligotype alone, 

pTBN12 alone, and IS6110 -spoligotype, varied considerably.  The highest PPV, of 0.411, was 

attained by IS6110 RFLP alone among isolates with 12 or more IS6110 bands.  IS6110 RFLP 

alone also provided the highest predictive value for isolates with 6-11 IS6110 bands.  The higher 

PPV by IS6110 RFLP alone than by IS6110 RFLP with secondary pTBN12 typing is possible 

because this method considered only isolates with identical IS6110 RFLP patterns as clustered, 

while IS6110 RFLP with secondary pTBN12 considered isolates with 6 or more IS6110 bands 
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which differed by one band, but which had an identical pTBN12 pattern to another case, to be 

clustered. 

 

Because IS6110 -pTBN12 is considered the gold standard in TB typing in addition to showing the 

highest PPV in our study sample, we used this method to define clustering in our univariate and 

multivariate analysis of host and microbial factors associated with clustering and epidemiologic 

linkage. 

 

Based on IS6110 -pTBN12, the PPV of clustering was significantly associated with age, ranging 

from a high of 0.750 in the 0-19 age group to a low of 0.096 in the 64 to 85 age group (Figure 

3.3a).  The PPV was also significantly associated with both race/ethnicity and country of birth, 

rural vs. urban residence (Figure 3.3a), and alcohol abuse in the year prior to diagnosis (Figure 

3.3b).  

 

Epidemiologic linkages were significantly more likely to be identified for cases in younger age 

groups, for non-Hispanic blacks and Asian/Pacific Islanders, and for cases residing in rural areas 

at the time of diagnosis.  Epidemiologic linkages were also significantly more likely to be found 

for cases reporting excessive alcohol use in the year prior to diagnosis. No clinical characteristic 

was significantly associated with the identification of an epidemiologic linkage.   

 

Spoligotype families 

 

SpotClust assigned 697 spoligotyped isolates to 29 strain families, with more than half in one of 

four common families.   The most common family in our study sample was T1, accounting for 

190 (27.3 %) isolates, followed by X1 (9.5%), X2 (9.0%), and LAM9 (8.5%).  Four additional 

families S (7.3%), Haarlem3 (5.9%), Beijing (5.2%), and X3 (4.3%) were also common, and 

more than 75% of all spoligotyped isolates were classified into these 8 most common families.  

 

Clustering was significantly associated with the spoligotype family of the infecting isolate.  

Among the four most common spoligotype families, cases infected with an X2 family isolate 

were most likely to be clustered, and cases infected with X1 family isolates were least likely to be 

clustered (Figure 3.4).  The PPV of clustering varied substantially, though not statistically 

significantly (p=0.16) by spoligotype family (Figure 3.4), with the highest overall PPV, 0.61, in 

isolates of the S family, and the lowest PPV, 0.19, in isolates of the LAM9 family.  
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In order to consider the hypothesis that some proportion of false clustering might occur due to the 

presence of regionally endemic strain(s) and subsequent strain homogeneity, we evaluated the 

strain composition among clustered, US-born cases for which no evidence of a transmission 

linkage was identified.  Among the 211 US-born clustered cases for which no epidemiologic 

linkage was found, age at diagnosis was significantly associated with the spoligotype family of 

the infecting strain (p < 0.0001, Figure 3.5).  Spoligotype family X2 predominated in those aged 

85 and over, while spoligotype family T1 predominated in those aged 20-44.   

 

We assessed the "background diversity" of isolates in our study sample by examining the 

diversity of molecular types found among case-isolates with no identified transmission 

relationship with any other case-isolate in the study sample (therefore including both non-

clustered isolates and clustered isolates for which no epidemiologic link was identified): among 

truly unrelated isolates, an ideal typing tool would identify all isolates as unique (D = 1.0).  

Background diversity varied substantially across spoligotype families, using either IS6110 -

pTBN12 or IS6110 -spoligotype (Figure 3.6a), and using IS6110 or pTBN12 alone (Figure 3.6b).  

The variation between strain families differed by different typing methods – for example, isolates 

in family X2 were most likely to be clustered at random using IS6110 alone or IS6110-

spoligotype, while isolates in the Beijing  were most likely to be clustered at random using 

pTBN12 alone or IS6110-pTBN12. 

 

Multivariate analysis of falsely clustered cases 

 

Because we were interested in identifying factors associated with false clustering among isolates 

not related by transmission, and because transmission-linked cases violate the assumption of 

independent observations required by multivariate logistic regression, we included only cases 

unlikely due to recent transmission (cases with a unique isolate by IS6110-pTBN12 and cases 

clustered by this method but for which no evidence of a transmission linkage was identified) in 

our multivariate analysis.  Compared to cases with unique isolates, apparently “falsely clustered” 

cases were significantly more likely to have reported excessive alcohol in the year prior to 

diagnosis, to be between the ages of 20 and 64, of non-Hispanic black race, and to live in the 

Northeast region of the state, after adjusting for all other variables in the model (Table 3.1).  

Additionally, clustered but unlinked cases were less likely to be infected with an isolate with 
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more than six IS6110 bands, and their infecting isolate was over four times more likely to be of 

the X2 or Beijing family than of the T1 family. 

 

Discussion 

 

Strain diversity is a pre-requisite for molecular typing of M. tuberculosis isolates to effectively 

discriminate related from unrelated cases. While most geographic regions are characterized by 

highly homogeneous strain populations when defined by spoligotype [138], the spoligotype 

patterns reported from the United States are diverse, corresponding to the diverse geographic 

origins of the US population. The results we have presented here demonstrate that regionally 

endemic clones may persist at high prevalence, even within the diverse, dynamic population of 

the US.  

 

Decreasing strain diversity (or a decrease in the “types” that can be resolved by a given molecular 

typing method) increases the probability that two unrelated isolates will exhibit the same 

molecular typing pattern by chance, thereby increasing the probability of false clustering.  The 

strong link between diversity in M. tuberculosis and geography complicates typing not only 

because of the highly homogenous strain populations that often result, but also because the level 

of resolution provided by a particular typing tool may vary across different evolutionary lineages 

of the pathogen. Our observation of a disproportionate frequency of “unexplained clustering” 

among isolates of the X2 family is consistent with evidence that the diversity and evolution of 

typing markers may depend on the genetic background of the strain [125, 136].  While the 

influence of the genetic background of the X2 strain family has not been specifically investigated, 

ample evidence from isolates of the Beijing strain family demonstrates that such lineage-specific 

differences do occur [92, 137].   

 

It is possible that the X2 strain family is endemic to a region which is not confined to Arkansas. 

The group of X2-family isolates in our study sample includes a sub group characterized by a 

prominent 2-band IS6110 pattern, NATFP 00016.  This IS6110 pattern, which accounted for 5% 

of all isolates genotyped across the seven sites of the National Tuberculosis Genotyping 

Surveillance Network between 1996 and 2000 [139], was the most common RFLP pattern 

identified in Alabama, a southern US state with both historic and contemporary migration 

patterns similar to Arkansas [134].  It  is speculated that this pattern identifies an endemic group 
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of related strains that spread throughout that population during the TB epidemic of the 19
th
 and 

early 20
th
 centuries [134].    

 

Global distribution patterns of the X strain family lend support to the speculation that a sub-

family of this lineage, X2, may have been circulating in Arkansas and surrounding regions for 

generations. The X strain family is highly prevalent both in the British Isles as well as in former 

colonies, which suggest that the X family may be of British origin [132].  The Arkansas River 

Valley was settled in large measure by immigrants of Scotch-Irish heritage [145], so it is not 

surprising that a historically prevalent family may also have roots in the British Isles.  The X2 

family was not identified in California, despite a high incidence of TB in that state [139], 

suggesting that its spread in the United States may have occurred in the remote past.   

 

Even under the best circumstances, epidemiologic investigations are unlikely to identify all 

transmission linkages.  Individuals in high-risk populations may be reluctant to cooperate with 

public health officials to provide contact information[47], leading to missed linkages.  

Transmission may have also occurred via casual contact, which is unlikely to be identified by 

epidemiologic investigation [56].  Such un-identified transmission links are of critical importance 

to TB control efforts, as undetected transmission may allow ongoing transmission, as source 

cases go unrecognized and untreated. While a large amount of undetected ‘true’ recent 

transmission could plausibly explain our results, it seems unlikely that a sufficiently large 

proportion of all cases had undetected or misclassified transmission links.  Additionally, the 

majority of X family isolates had fewer than 6 IS6110 bands: as isolates with less than 6 IS6110 

bands are more likely to be falsely clustered than isolates with 6 or more IS6110 bands [140], we 

considered the possibility that the association we observed between the X family and false 

clustering.  However, this does not appear to be the case. In a multivariate model of cases 

assumed to be due to remote transmission (those with either a unique IS6110-pTBN12 type, or 

clustered but with no link identified), the association between false clustering and strain family 

was robust after adjustment for age, race, geographic region of the state, alcohol abuse, 

homelessness, and the number of IS6110 bands. 

 

This same multivariate analysis, however, does suggest that some proportion of the clustered 

cases for which no link was identified may be due to true recent transmission, as younger age, 

excessive alcohol use, and non-Hispanic Black race, all previously identified as risk factors for 

recent transmission in the US [43], were all significantly more likely be infected with a clustered 
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isolate, but with no identified transmission link, than to have a unique isolate.  It is likely, 

therefore, that some proportion of the “unexplained clustering” we observed is the result of 

transmission linkages that were not identified in the course of epidemiologic investigation.  This 

underscores the need for further work to identify gaps in current epidemiologic contact tracing 

approaches.  

 

Ideally, a measure of the sensitivity and specificity of clustering for recent transmission would 

allow us to separate the effects of differences in the prevalence of recent transmission and true 

differences in resolution between groups.  Such a measure would allow us to better characterize 

the relationship between strain diversity and the validity of molecular clustering, which may have 

been inconsistent in our study due to confounding between strain-family and the prevalence of 

recent transmission.  However, these measures require knowledge that is beyond the limitations 

of current tools in the study of TB epidemiology: the clear identification of all “true positives” 

and “true negatives” in the population, as a gold standard against which to compare the test 

results.  While our current study is insufficient to provide conclusive evidence, we find a 

compelling argument that the X2 family is endemic in Arkansas, and that its prevalence 

compromises the validity of clustering detected molecular typing in this population. 

 

The observation of homogenous strain populations in the US suggests that any widely used 

molecular typing technique must be able to discriminate between unrelated isolates from 

homogenous strain populations.  A technique that has been demonstrated to discriminate between 

a diverse set isolates collected from across the globe may not be up to such a task [123]: 

validation sets, therefore, should consistently include unrelated isolates from homogenous strain 

populations.  Differences in the diversity of molecular markers across strain families, along with 

differences in transmission dynamics in different population groups, suggests that the design and 

interpretation of molecular typing programs must be informed by an understanding of the local 

host and pathogen populations.  Such differences present an obstacle to the development of a 

universal global typing technique. 
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Tables 

 

Table 3.1. Associations of host characteristics and SpotClust-assigned strain family with false 

clustering, among unique or clustered, unlinked isolates. 

  

Variable Adjusted OR 95% CI 

Alcohol   

Yes 2.11 (1.04, 4.25) 
No 1.00  

Homeless   

Yes 3.94 (0.86, 18.14) 

No 1  

Age   

0-19 0.85 (0.09, 8.53) 

20-44 5.13 (2.37, 11.07) 

45-64 3.09 (1.52, 6.27) 

65-84 1.68 (0.89, 3.17) 

85 + 1.0  

Race   

Non-Hispanic White 1.0  

Non-Hispanic Black 1.87 (1.09, 3.19) 

Other 0.30       (0.12, 0.75) 
Spoligotype family   

T1 1.0  

Beijing 4.95 (1.84, 13.34) 

Haarlem3 2.51 (1.01, 6.26) 

LAM9 3.14 (1.44, 6.86) 

Other 1.91 (1.04, 3.51) 

S 1.62 (0.62, 4.25) 

X1 0.65 (0.25, 1.67) 

X2 4.75 (1.75, 12.87) 

Region   

Northeast 1.97      (1.07, 3.63) 

Northwest 0.94      (0.47, 1.84)) 

Southeast 1.06        (0.53, 2.14) 

Southwest 0.73        (0.37, 1.42) 

IS6110 RFLP Bands   

Less than 6 1.0  

6 or more 0.524 (0.28, 0.99) 
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Figures 

 

Figure 3.1.  Impact of typing method on the PPV of clustering. The proportion of TB cases 

diagnosed in Arkansas between 1996 and 2000 that were involved in a cluster (light bars), the 

proportion of cases for which a transmission link was identified (dark bars), and the PPV (end of 

bar), varied by the typing method used. 
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Figure 3.2.  Impact of IS6110 copy number on clustering. The proportion of TB cases diagnosed 

in Arkansas between 1996 and 2000 that were involved in a cluster (light bars), the proportion of 

cases for which a transmission link was identified (dark bars), and the PPV (end of bar), varied by 

the number of IS6110 elements and the secondary typing method used. 
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Figure 3.3a.   Host demographic characteristics associated clustering or the identification of 

epidemiologic linkages for clustered cases. The proportion of TB cases diagnosed in Arkansas 

between 1996 and 2000 that were involved in a cluster (light bars), the proportion of cases for 

which a transmission link was identified (dark bars), and the PPV (end of bar), varied by host 

demographic group. Only characteristics that were significantly associated with either clustering 

or the PPV of clustering are represented in the figure. 
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Figure 3.3b.   Host clinical characteristics and risk behaviors associated with clustering or the 

identification of epidemiologic linkages for clustered cases. The proportion of TB cases 

diagnosed in Arkansas between 1996 and 2000 that were involved in a cluster (light bars), the 

proportion of cases for which a transmission link was identified (dark bars), and the PPV (end of 

bar), varied by host demographic group. Only characteristics that were significantly associated 

with either clustering or the PPV of clustering are represented in the figure. 
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Figure 3.4.  Spoligotype-defined strain family and predictive value of clustering.  The proportion 

of TB cases diagnosed in Arkansas between 1996 and 2000 that were involved in a cluster (light 

bars), the proportion of cases for which a transmission link was identified (dark bars), and the 

PPV (end of bar), by spoligotype-defined strain family. 
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Figure 3.5. Falsely clustered cases by age and spoligotype family. Association between age 

group and spoligotype family among clustered, US-born TB cases for which no transmission link 

was identified, Arkansas 1996 - 2000. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0-19 20-44 45-64 65-84 85 up

x2 x3 x1 beijing t1 other

 



 58 

Figure 3.6.   Background diversity by spoligotype family. Probability that two non-transmission 

related isolates, drawn at random, will exhibit the same molecular type by a) pTBN12 RFLP or 

IS6110 RFLP alone, b) IS6110 RFLP with secondary pTBN12 RFLP or IS6110 RFLP with 

secondary spoligotyping. Calculated using the reciprocal of the Hunter-Gaston Index of Diversity 

(1-D) on the basis of incident case-isolates collected in Arkansas between 1996 and 2000 for 

which no evidence of a transmission linkage was identified.   
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Chapter IV 

 

Mutation, migration, and genetic variation in M. tuberculosis typing: separating the wheat 

from the chaff  

 

Introduction

 

Tuberculosis (TB) control programs in the United States and other developed countries 

increasingly rely upon the molecular typing of incident TB cases to direct contact investigation 

efforts.  Used in conjunction with traditional contact tracing approaches, molecular typing data 

provides a mechanism to rapidly identify sources of infection in a population, allowing for more 

timely intervention.  Typing data can bring attention to transmission events that remain 

undetected by traditional contact tracing methods, revealing previously unsuspected transmission 

venues that may be important in sustaining transmission in a population [57, 146].  Investigations 

aided by molecular typing have revealed the occurrence of transmission in bars [51, 57, 118], 

including transmission between unacquainted individuals who frequent the same bar [65], as well 

as transmission between unacquainted individuals visiting the same worksite [41], members of a 

church choir [66], residents of single-room occupancy hotels [57], and crack-cocaine abusers 

frequenting the same crack-houses [57]. 

 

While molecular typing provides an invaluable tool to the study of TB epidemiology, our 

understanding of the information these techniques can provide remains limited.  Commonly, 

“clusters” of cases whose isolates generate the same molecular typing patterns using a particular 

molecular typing tool, are considered to be related by a recent transmission event, while cases 

whose isolates generate unique molecular typing patterns are considered to have disease caused 

by the reactivation of a remotely acquired latent infection.   However, population-based 

investigations have identified cases that are clustered by molecular typing for which no evidence 

of a transmission linkage can be identified [70, 90], and cases with clear transmission linkages 

that exhibit unique molecular typing patterns [35, 147, 148].  Evidence suggests that the 

likelihood of “false clustering” (clustering of cases that are unrelated by a recent transmission) is 

influenced by demographic characteristics of the host population[70] [90] [44, 135, 149], the 

relative burden of TB in the host population [83, 150-152], characteristics of the local M. 
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tuberculosis population [153] [114] [136], and the particular molecular typing method used [37, 

73, 75]. 

 

Mycobacteria of the M. tuberculosis complex are characterized by an unusually high degree of 

conservation in their housekeeping genes [126], and a clonal population structure.  One of the 

greatest limitations to the development of effective molecular typing techniques for M. 

tuberculosis has been the identification of molecular markers with sufficient variability to 

distinguish between M. tuberculosis strains.  An ideal typing marker would be sufficiently 

variable to distinguish unrelated cases, and evolve at a pace fast enough that isolates from 

unrelated cases are distinct, but not so fast as to obscure the relationship between case isolates 

that are truly related by transmission.  What level of diversity and evolution might satisfy these 

criteria is unclear, and, despite the focus of considerable resources towards the identification and 

characterization of novel molecular typing markers [36, 123, 154, 155], this fundamental question 

has never been addressed. Perhaps more fundamentally, whether any single rate of marker 

evolution could be simultaneously both sufficiently slow to minimize false negatives and 

sufficiently rapid to minimize false negatives has not been established. 

 

In recent years, increasingly sophisticated tools and M. tuberculosis genome sequence data have 

allowed the identification of a growing number of diverse genetic polymorphisms with potential 

as genetic typing markers.  Many of these polymorphisms are tandem repeats of between 40 and 

100 base pairs (bp), variously called Variable Number Tandem Repeats (VNTR), Mycobacterial 

Interspersed Repetitive Units (MIRU), and Exact Tandem Repeats (ETR).  These polymorphic 

loci are thought to be the most variable structures in the M. tuberculosis genome[156], and an 

increasingly favored genetic typing approach, most commonly referred to as MIRU or MIRU-

VNTR, relies on the PCR amplification of a “typing panel” of between 5 and 29 of these loci.  

The number of repeats at each locus is determined, and these data are concatenated into a digital 

string that can easily be communicated and compared across laboratories. This approach is highly 

analogous to microsatellite typing in higher eukaryotes, and the high-throughput methods that 

were originally developed for typing of these organisms has been adapted to use with M. 

tuberculosis [157].  MIRU-VNTR is rapid, economical, and reports suggest that results are highly 

reproducible [155].  At the same time, this technique presents potential to provide a highly 

flexible level of discrimination, as the number of loci included in, or interpreted from, the typing 

set could be varied. 
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An optimized MIRU-VNTR typing set may achieve very high levels of discrimination, and has 

the potential to allow the user to ‘tune’ discrimination to suit the needs of a given application.  

With current knowledge, however, we are unable to fully harness the power of this tool.  While 

we may have a tool powerful enough to achieve a specified level of discrimination, we are not 

any closer to understanding what level of discrimination would best suit the needs of 

epidemiologic typing. The level of diversity used to determine the potential of each of these 

alleles as a typing marker remains an arbitrary one, set at a time when the few typing tools 

available, mainly based on phenotypic rather than genotypic assays, achieved limited levels of 

discrimination[143].   

 

To inform the design and interpretation of an optimized MIRU-VNTR typing panel, it is essential 

that we clearly understand the aim we are tying to achieve.  What would an ideal typing system 

look like?  Epidemiology provides clear guideposts for the evaluation of tests: the sensitivity, 

specificity, predictive value positive (PPV), and predictive value negative (NPV) are key 

measures by which to compare alternative testing approaches. Calculating these measures 

requires a gold standard against which to compare test results, however, and no currently 

available test or evaluation can accurately identify the “truth” against which to compare 

molecular typing results: cases of active TB truly linked by recent transmission.  The handful of 

validation studies that have been conducted have been limited to investigations of transmission 

linkages among cases known to be linked by molecular clustering, allowing estimations of the 

PPV of clustering as a measure of recent transmission. The sensitivity, specificity, and NPV of 

clustering, however, cannot be evaluated in empirical investigations, given the inherent ambiguity 

of even the highest quality epidemiologic data.  These limitations of empirical validation studies 

preclude the rigorous comparison of various molecular typing methods and strategies, and present 

an obstacle to the development of more accurate molecular typing techniques. 

 

Model representations of real-world systems provide a powerful opportunity to gain insight into 

questions that cannot be effectively addressed through investigation in real populations. Agent-

based stochastic computer simulation models in particular allow investigators to effectively 

conduct systematic experiments in a system in which the “truth” is known.  Unlike equation-

based models (EBMs), a formalism more widely applied to the modeling of epidemiological and 

biological systems, agent-based models (ABMs) represent elements of the system as discrete 

elements which interact with other elements of the model according to a specified set of rules. 

Interactions occurring at the individual level generate larger, system-wide behavior of ABMs, and 
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this “bottom up” structure is uniquely suited to represent the complex interaction of biological 

and social systems that drives epidemiologic processes.  ABMs (also known as individual based 

models, or IBMs), have been widely applied to the study of biological systems, including 

complex interactions between the host and pathogen governing granuloma formation in lung 

tissue following infection with M. tuberculosis [88].  To date, one ABM has been applied to the 

study of the molecular epidemiology of TB, to evaluate the hypothesis that M. tuberculosis strains 

involved in large clusters are more transmissible or pathogenic than those involved in small 

clusters [89].  This ABM simulated TB transmission in a hypothetical population, and tracked the 

identity of individual strains as they were transmitted.  While this ABM was not applied to 

evaluate the validity of clustering as a marker of recent transmission, and was not formulated in a 

way that would allow such an application, it illustrated the potential utility of the ABM method 

towards this end. 

 

To better characterize the impact of typing marker diversity and stability on the validity of 

“clustering” as a marker of recent transmission, and to gain insight into the influence of host 

demographic factors and pathogen population structure on the occurrence and validity of 

clustering, we developed an ABM of tuberculosis transmission which tracks the identity of 

individual strains as they are transmitted through a simulated population. This model was 

informed by the theoretical framework of a previously described ABM of TB transmission [89], 

but extends and modifies key features of this model in fundamental ways.  Our model explicitly 

represents molecular typing markers, and allows markers to mutate over the course of infection.  

The typing system represented is  based on MIRU-VNTR, and allows for various aspects of the 

typing panel, including the number of loci, the average allelic diversity at each loci, and the 

mutation rate for a given loci, to be modified and evaluated.  Using this model, we consider the 

diversity of molecular ‘types’ achieved by a range of different typing panels, and evaluate the 

relationship between this diversity and the validity of clustering.  We investigate these 

relationships in three distinct, population-specific transmission scenarios, allowing us to explore 

the sensitivity of clustering to population-specific factors. Lastly, we consider the conflicting 

goals of minimizing false clustering while maximizing sensitivity to recent transmission, asking 

whether a single typing panel can simultaneously achieve these aims. 

 

Model description and methods  

 

Simulation Model 
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An explicit description of the model rules in outline form can be found in the appendix at the end 

of this chapter. 

 

A model was developed to simulate the dynamic transmission of discrete "strains" of M. 

tuberculosis through a population of human hosts. The model specifies a population of discrete 

individuals, each characterized by variables indicating age, TB infection status and infection state 

(if infected), household, and neighborhood.  If infected with TB, an individual is further 

characterized by a variable linking it to its infecting bacterial “isolate”, which itself carries an 

identifier corresponding to the parent strain from which it descended.   A typing system to resolve 

infecting isolates, characterized by variables indicating the number of loci assessed, the initial 

allelic diversity and level of instability observed at each loci, and the maximum possible number 

of alleles for each loci, is also specified. The model is run in time-steps of one week, at which 

time processes governing the transmission of M. tuberculosis, progression to disease following 

infection, and vital dynamics of the population occur according to a specified set of parameters.  

Strains are tracked as they are transmitted through the population, and incident infections and 

cases of active disease are monitored and recorded.  “Clustering” of cases, based on the specified 

typing system and study period, is determined, allowing the validity of this measure to be 

assessed across a range of simulated scenarios. 

 

Initialization of the model 

 

At the initialization of each model run, a simulated population of individual “agents” is created, 

with each individual assigned an age, household, and neighborhood according to specified 

distributions (for example, the age distribution for the Arkansas-based transmission scenario 

follows the most recent age distribution reported by the US Census for that state). This 

formulation of host contact structure is analogous to that presented in an earlier ABM of TB 

transmission [89]. HIV infection status is assigned according to the specified prevalence. Each 

individual is also assigned a group of friends from the same neighborhood and age group (ages 0-

9, 10-19, 20-44, 45-64, and 65+), following a normal distribution around a specified average 

number of friends. This average, and the distribution around it, was based on named contacts 

identified in the course of TB contact tracing investigations, reviewed in the course of a previous 

investigation (described in Chapter III of this dissertation).  Neighborhood members, household 
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members, and friends remain essentially fixed throughout each model run, modified only by birth, 

death, and migration. 

 

While cases of active TB are reported more often in men than in women, the reasons for this 

difference are unclear [158].  Because the relationship between gender and the parameters 

governing the transmission and progression of M. tuberculosis infection is unknown, gender was 

not specified in the model. Neighborhood size, corresponding to definitions of neighborhood used 

previously in studies of neighborhood and health, is 500 agents [159].  Household size is 

specified based on census estimates in the specific population represented in the model.  In order 

to ensure that no household is composed entirely of children (and to ensure the between-age 

group mixing that occurs within the typical household setting), the age distribution within 

households is specified such that any given household with one more agents under 18 years old 

will also include at least one agent over age 25. 

 

The annual risk of infection (ARI) is the risk that, in a given year, a previously uninfected 

individual will become infected with M. tuberculosis.  The ARI has historically provided a key 

measure of tuberculosis transmission, and is commonly estimated either from consecutive 

tuberculin survey data in a single cohort, or from tuberculin survey data in multiple cohorts for a 

single time point (with the assumption of a constant risk of infection over the lifetime of the 

cohorts) [108].  Based on the specified initial ARI, and trend in ARI over time, agents created at 

the initialization of each model run are “seeded” with a prevalent latent infection.  This is 

implemented in an age-specific manner, such that each agent experiences the cumulative 

infection risk corresponding to the calendar years over which that agent was alive. The identity of 

each isolate is specified, and the time since infection, which determines the risk that that infection 

will progress to active disease, is recorded.  Because latently infected individuals who were 

infected through the same chain of transmission will have closely related isolates, a proportion of 

initially infected individuals are infected with isolates of the same strain (and thus identical at all 

typing markers).  The proportion of individuals in the model initially infected with such a 

“clustered” isolated is specified, based on estimates of the proportion cases in a population that 

are truly related by transmission.  In accordance with historic transmission patterns, initial latent 

cases within the same household, or which have a similar time since infection (e.g., were infected 

close in calendar time) [108], are more likely to be clustered at the initiation of the model run.   
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The number of loci included in the typing panel is specified, with a value of 12 loci chosen to 

correspond to the size of the standard MIRU typing panel [37]. The diversity of alleles, or values, 

present at each loci is specified based on a best-case estimate reported in a group of diverse 

isolates collected from locations across the globe [123]. Based on this allele diversity, each 

initially infecting isolate is assigned a value for each of the loci included in the typing panel.  The 

first value for each allele is randomly drawn from a uniform range between 1 and a specified 

maximum number of alleles.  As dictated by the specified level of allele diversity at each locus, 

each isolate is either randomly assigned an already existing allele value for that locus, or a new 

value.  New allele values for a given locus draw the lowest or highest current allele value, and 

add or subtract one repeat, as possible within the given range and resulting in a new value. This 

stepwise mutation pattern is consistent with observations of the distributions of variability at 

MIRU loci [125]. As they correspond to the physical number of repeats present at a given locus, 

allele values cannot be below 1, and cannot be higher than the maximum number of alleles 

specified.   

 

Each locus is assigned a mutation rate drawn from a normal distribution around the specified 

mutation rate. Mutation rate governs the probability an allele will change in any one week 

interval over the course of active infection, and is specified based the rate of MIRU allele change 

observed in serial isolates collected from patients with active TB disease [160].  Bacterial 

replication is not explicitly represented in the model. 
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The model run. 

 

The model is run in time-steps of one week. At each time step, general population processes 

occur: individuals enter the model through birth and immigration, leave the model through death 

and emigration, and age.  At the same time, processes relevant to TB transmission occur: 

individuals contact other individuals, transmit infection, develop active disease, and recover, and 

infecting bacteria mutate to create variant allele profiles, with specified probabilities. Upon 

infection, an individual acquires a variable that indicates the identity of the infecting strain.  

Parameter definitions and default values are defined in Table 1. 

 

For a schematic illustration of model flows, see Figure 4.1.  Please also refer to Appendix 1, in 

addition to parameter estimates and variable descriptions included in this section, for a more 

comprehensive background on the processes represented in the model. 

 

Transmission of infection 

 

The probability of contact between a susceptible and infected individual is a function of the social 

contact structure of the population, as well as the prevalence of active, infectious disease in the 

population.  Little information on any actual social contact structure (as relevant to TB 

transmission) is available.  Historically, most TB transmission is thought to have occurred within 

the home and family [58, 59], however, recent reports have documented the occurrence of 

transmission through casual contact [41, 56].  We defined a contact in our model as a relationship 

with the potential to facilitate the transmission of M. tuberculosis. The social contact structure 

represented by the model is consistent with evidence that the majority of transmission occurs 

within the household, but that transmission also occurs between close non-household contacts, 

and may occur between casual contacts.  Each individual belongs to a household and 

neighborhood: an individual is in contact with every member of that household, as well as a fixed 

group of age-group specific friends in the same neighborhood, at every time-step.  In addition, an 

individual may come into “casual” contact with another individual in the same neighborhood, 

and, less frequently, with an individual in another neighborhood. Consistent with transmission 

rates observed in contact tracing studies [161-163], the risk of transmission is highest between 

household contacts, with transmission between friends or casual contacts occurring at a specified 

fraction of that between household contacts.   
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Among individuals with respiratory forms of active TB disease, the detection of acid-fast bacilli 

(AFB) in the sputum provides a relative indicator of the infectiousness of the case [12].  Sputum-

smear positive cases (in which AFB is detected in the sputum) are more likely to transmit disease 

than are sputum-smear negative cases [15, 164]. Both smear positive and smear negative cases 

are represented in the model: transmission from smear negative cases is defined relative to 

transmission from smear-positive cases. 

 

Progression from infection to active disease 

 

In order to simplify the model, only respiratory forms of active disease are explicitly represented, 

as only these forms of disease may transmit infection.  The risk of progressing to extrapulmonary 

disease (briefly reviewed in Appendix 1) is essentially ignored: the risks of progression that are 

used specify only the risk of progressing to respiratory forms of disease.  Risks of progression are 

specified according to age group and the number of years since infection.  Consistent with models 

presented by Sutherland[108] and Vynnycky and Fine [81], the risk of progressing to active 

disease is highest the first year following infection and declines each subsequent year to the fifth 

year following infection (corresponding to the risk of rapid or primary progression).  Although 

over a slightly longer interval following infection than is often described (5 years as compared to 

2), the declining risk by year means that the risk of primary progression is highest in the first two 

years after infection, corresponding to the conventional model of disease progression.  From the 

6
th
 year following infection on, the risk of infection remains constant, at a level corresponding to 

the risk of developing reactivation disease. Each new active case of disease is designated as either 

sputum smear positive or sputum smear negative. This designation depends only on age. 

 

Re-infection 

 

Consistent with available evidence, primary infection is not assumed to provide any protection 

against subsequent re-infection[17, 19-23, 81], with the exception that individuals in the first five 

years since any infection event (primary or otherwise) cannot be re-infected (consistent with 

previous TB transmission models [108]][81]).  In any other state, any individual in the model is 

equally susceptible to infection or re-infection, given contact with an infectious individual.  While 

not providing protection against re-infection, a primary infection does provide protection against 

developing active disease subsequent to a re-infection event.  This protection is reflected in the 

estimates of the age-specific risks of progressing to disease following a re-infection event, which 
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are those estimated by Vynnycky and Fine [81]. Our formulation of re-infection is consistent with 

that used by Vynnycky and Fine, as well as Sutherland [165]. 

 

Once infected with a given strain, individuals are assumed to be infected with that strain for the 

duration of their life.  Because of re-infection, therefore, individuals may be infected with more 

than one strain.  A multiply infected individual, however, risks disease only from the most 

recently infecting strain.  

 

Consistent with the theoretic models that informed our formulation of re-infection, disease 

following the reactivation of a latent infection, or “endogenous disease”, is disease with onset 5 

or more years after infection, or the most recent re-infection.  Therefore, after the 5
th
 year post re-

infection, the probability of developing reactivation disease is identical to the rate of reactivation 

disease.  At 5 years post re-infection, reactivation due to the original infecting strain can no 

longer occur [81, 108].  

 

Duration of infectious period 

 

We have calculated an estimated average duration of the infectious period from data on the 

average delay to diagnosis (including both patient and health care delays) and the average 

duration from initiation of treatment until the resolution of infectiousness (measured by culture 

conversion).  Using 75 days average median delay to diagnosis [166], and 35 days median time 

between initiation of chemotherapy and culture conversion [167] gives a median infectious period 

of 110 days, or approximately 16 weeks.   

 

A single parameter, the recovery probability, controls the duration of the infectious period.  

According to a preliminary diagnostic model experiment, a recovery probability of ~0.06 gives an 

average infectious period of approximately 16 weeks  [166]. 

 

Relapse 

 

Following recovery, an individual moves to a “recovered” state.  In this state, an individual is 

susceptible to re-infection, as well as to reactivation disease caused by the initial infecting 

organism.   
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Case fatality 

 

In the United States in 1989, the case fatality for TB  was 8.38 deaths per 100 TB cases; this was 

an increase from the lowest TB case fatality recorded in the United States, which was 7.08 per 

100 TB cases in 1981 [168]. Case fatality is related to age, with a higher risk of death due to TB 

in older individuals.  In order to approximate these case fatality rates, the weekly risk of death 

due to TB was calculated relative to the average duration of disease.  For the purposes of the 

model, this is identical to the average duration of infectiousness. Weekly age-specific risks of 

death due to TB were calculated based on a disease duration of 16 weeks.   

 

Vital dynamics 

 

Individuals agents can migrate into or out of the model, die, and give birth to new agents.  Birth 

rates are specified according to reported population-specific estimates of total fertility rate (TFR), 

and only agents of reproductive age can give birth to new agents.  Rates of immigration and 

emigration are based on population-specific census estimates, where available.  

 

Implementation of the model  

 

The ABM was implemented in JAVA, using the Recursive Porous Agent Simulation Toolkit 

(Repast). The model is updated asynchronously, on a time-scale of one week.  The program runs 

for a simulated time period of 20 years.  Table 4.1 summarizes values for all model parameters 

used to simulate the specific transmission scenario of Arkansas.  Table 4.2 summarizes parameter 

differences between three population-specific transmission scenarios; Arkansas, Malawi, and 

Afghanistan. 

 

Model measurements 

 

Over the course of each simulation, the model generates calculations including measurements of 

the incidence and prevalence of disease, the proportion of cases that are clustered by molecular 

typing, the validity of clustering, and the diversity of molecular typing patterns among both 

incident cases of active TB disease and among all prevalent TB infections.  All calculations are 

based on the model-specified study duration.  The study duration defines the time period over 



 71 

which cases are evaluated, thus defining the study population in which both clustering and 

transmission linkages are identified. 

 

Four key measurements of the validity of clustering are calculated: PPV, NPV, sensitivity, and 

specificity.  These measurements are calculated as follows:  

 

 Linked by 

transmission to 

another case 

diagnosed during the 

study period 

Not linked by 

transmission to 

another case 

diagnosed during the 

study period 

 

Clustered (Identical 

typing pattern to that 

of at least one other 

case diagnosed within 

the study period) 

A B A + B 

Non-clustered 

(Unique typing 

pattern within the 

study period) 

C D C + D 

 A + C B + D  

 

PPV = 
B A 

A

+

 

NPV = 
D  C

D

+

 

Sensitivity = 
C A 

A

+

 

Specificity = 
D  B

D

+

 

 

For a more straightforward interpretation, we also present the false-positive rate (FPR = 1 – 

specificity) and the true positive rate (TPR = sensitivity), rather than sensitivity and specificity, in 

some sections of our results. 
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The diversity of molecular typing patterns was estimated using the Hunter-Gaston Discrimination 

Index (HGI) (also referred to as Simpson’s Index of diversity) [143], calculated by the following 

formula: 
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where D is the numerical index of discrimination, N is the total number of strains in the typing 

scheme, s is the total number of different strain types, and nj is the number of strains belonging to 

the jth type.  D can be interpreted as the probability that any two isolates drawn at random will be 

of different molecular types.   

 

All calculations for each run were calculated during the last time-step of the model, with a study 

population defined according to the model-specified study duration. 

 

Experiments 

 

In all experiments, including those conducted as part of model validation and sensitivity analysis, 

simulations for each set of experimental conditions (defined by a specific parameter values) were 

replicated with 5 model runs.  All model measurements were averaged over these 5 runs, and the 

standard deviation (SD) was calculated. 

 

Evaluating the validity of the model 

 

With the purpose of testing the basic assumptions of our model across a range of simulated 

scenarios, we generated population-specific transmission scenarios representing three diverse 

settings: Malawi, characterized by both a high burden of TB and a high burden of HIV infection, 

Afghanistan, characterized by a high burden of TB and a negligible burden of HIV, and Arkansas, 

a southern US state characterized by a low burden of TB and a low burden of HIV.  Population-

specific parameters used to generate each of these scenarios are presented in Table 2. 

 

Sensitivity and Uncertainty analysis 

 

Many of the parameters in our model could be confidently estimated from demographic and 

surveillance data.  Parameters governing certain key aspects of the transmission and natural 
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history of TB infection, however, are less well understood, and the values used in the model for 

these parameters are less certain.  We explored the sensitivity of our key model measures: 

including the sensitivity, specificity, PPV, and NPV of clustering as a marker of recent 

transmission, to key parameters.  These parameters were identified on the basis of two criteria: 

first, uncertainty in the parameter estimate, and second, a biologically plausible relationship with 

the outcome.  For these parameters, we evaluated the correlation between the given parameter and 

each outcome measure listed above.   The parameter range evaluated was chosen based on 

biologically plausible values each individual parameter might take.  For parameters where 

uncertainty was high, we explored the entire range of possible values, while for more confidently 

estimated parameters, a more limited range of plausible values was explored.  With the exception 

of HIV, which was evaluated against the background of the transmission scenario based on 

Malawi, all parameters were evaluated against the background of the transmission scenario based 

on Arkansas. 

 

The parameters evaluated can be classified into two groups: parameters governing host factors, 

and parameters governing microbial factors (Table 3). 
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Results 

 

Validation of the model to country-specific settings 

 

Transmission-related statistics generated from the model together with available empiric 

measurements of these same statistics for each setting is presented in Table 4.3.  In each case, 

model-generated estimates compared well to empiric measurements without varying other model 

parameter values.  Estimates of the prevalence of latent infection showed the highest level of 

agreement with measured values, while estimates of ARI% showing the highest discrepancy.   

 

Sensitivity Analysis  

 

HIV prevalence 

 

Increasing HIV prevalence was positively correlated with incidence, prevalence, and ARI%.  

Interestingly, increasing HIV prevalence was actually associated with a slight decline in the 

proportion of disease due to recent infection, while at the same time corresponding to a slight 

increase in the proportion of clustered cases. Increasing HIV prevalence was positively correlated 

with sensitivity, and a slight negatively correlated with specificity. However, no association was 

seen between the prevalence of HIV and the PPV or NPV. 

 

Transmission probability 

 

Similarly to HIV, increasing the transmission probability was positively correlated with 

incidence, prevalence, and ARI%.  It was also associated with a higher proportion of disease due 

to recent transmission, and a higher proportion of clustering.  Additionally, it showed a strong 

correlation to sensitivity and PPV, but no association with specificity or NPV. 

 

ARI% and ARI% trend 

 

A higher initial ARI% was associated with a higher incidence and prevalence of disease – this 

trend was magnified with increasing levels of ARI% trend (since ARI% trend reflects the historic 

yearly decline in the ARI%, a higher value for this parameter corresponds to a higher prevalence 

of infection among increasingly older birth cohorts, with the birth cohort born the year prior to 
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the model initiation showing a prevalence that corresponds to experiencing 1 year at the initial 

ARI%).  The impact of ARI and ARI trend was highly dependent on the level of true 

transmission-clustering at initiation.  If all initial infected cases (active and prevalent) were linked 

by transmission to another case in the population, increasing ARI% showed a strong positive 

association with clustering.  By contrast, when no initial infected cases were linked by 

transmission to another case in the population , increasing ARI% showed a strong negative 

association with clustering.  The opposite pattern was observed for the relationship between 

ARI%, initial transmission-linkage and specificity: an increasing ARI% corresponded to 

increasing specificity of clustering for recent transmission when few initially infected cases were 

linked by transmission, was low, while it corresponded to a decreasing specificity when many 

initially infected cases were linked by transmission.  Both NPV and PPV increased with 

increasing initial ARI%, although unstable estimates at low values of initial ARI% meant that this 

trend was only clearly observed when the yearly trend in ARI% was greater than 0.1. 

 

Recovery probability 

 

An increasing weekly probability of recovery was associated with declining incidence, 

prevalence, and ARI%, as well as a declining proportion of disease resulting from recent 

transmission.  No clear association was seen, however, between recovery probability and 

clustering, or with the sensitivity, specificity, PPV, or NPV of clustering as a measure of recent 

transmission. 

 

Maximum number of alleles 

 

No association was seen between the maximum number of alleles and clustering, or with the 

sensitivity, specificity, PPV, or NPV of clustering as a measure of recent transmission. 

 

Mutation rate during latency 

 

No association was seen between the maximum mutation rate during latency and clustering, or 

with the sensitivity, specificity, PPV, or NPV of clustering as a measure of recent transmission. 

 

Migration 
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Increasing migration was associated with increasing overall diversity when the proportion of 

initial infected cases (active and prevalent) that were linked by transmission to another case in the 

population was high, but was associated with decreasing overall diversity when the proportion of 

initially transmission-linked cases was low.  No clear relationship was observed between the rate 

of migration and the proportion of clustered cases, nor with the sensitivity, specificity, PPV, or 

NPV of clustering as a measure of recent transmission. 

 

Historic transmission patterns 

 

The proportion of initial infected cases (active and prevalent) that were linked by transmission to 

another case in the population was strongly associated with the validity of clustering when more 

than 80% of initially infected cases were linked by transmission. When the proportion of initially 

infected cases were linked by transmission increased beyond this level, the overall diversity of 

molecular types began to fall rapidly, the NPV declined sharply, and the false positive rate 

increased sharply.  The PPV and sensitivity, however, were not affected.   

 

This initial proportion of clustered cases also appeared to modify the impact of other model 

parameters, including ARI% and the rate of migration, on diversity and clustering. 

 

Key Characteristics of Interest 

 

Population-specific transmission setting and study period 

 

For each population-specific setting, we assessed clustering results across a range of simulated 

study periods.  In these model settings, proportion of case clustering was sensitive to both the 

population-specific transmission scenario and the study duration over which molecular typing 

results and transmission linkages were considered (Figure 4.3). The variation in the levels of 

clustering and recent transmission was greatest when the duration of the study was long.  In the 

transmission settings corresponding to both Afghanistan and Malawi, the PPV of clustering for 

recent transmission increased with increasing duration of study period (Figures 4.4).  The FPR of 

clustering showed a slight positive correlation with increasing study period in Afghanistan, but no 

clear association with study period in Malawi (Figure 4.4).  Measures for Arkansas were unstable, 

and are not included in Figure 4.4 as no clear trend was observed between study period the 

validity of clustering in this setting. 
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Polymorphism at individual MIRU loci 

 

The overall diversity of molecular types present in the population, as measured by the HGI, was 

positively correlated with increasing diversity at individual alleles in all three population-specific 

transmission scenarios considered (Figure 4.6). In each scenario, the overall diversity increased 

consistently sharply between as the average diversity at individual alleles increased from 0 and 

0.1, and rose consistently thereafter, until the upper limit of pattern diversity was reached after an 

average individual allele diversity of approximately 0.8.   The relationship between individual 

allele diversity and the total pattern diversity differed when only the molecular types that were 

observed in the population (those associated with an incident case of respiratory disease) were 

considered. In this case, the observed diversity of types increases following an approximately 

sigmoid curve, with the upper limit of pattern diversity reached as the average individual allele 

diversity rose above 0.75.    

 

The false positive rate of clustering remained steady, at approximately 1.0, when individual allele 

diversity values were between 0 and 0.6 (Figure 4.5).  As average individual allele diversity rose 

above 0.6, however, the false positive rate declined in each population-specific transmission 

scenario.  The decline was greatest in the Arkansas-specific transmission scenario, and least in the 

Malawi-specific transmission scenario.  In parallel with the false-positive rate, the PPV of 

clustering remained steady in each transmission scenario until an individual allele diversity of 

0.7, beyond which the PPV increased dramatically in the Arkansas scenario, slightly in the 

Afghanistan scenario, and not at all in the Malawi scenario.  In each scenario, the true positive 

rate was consistently close to 1.0 regardless of the average individual allele diversity. 

 

Marker instability and the number of markers in a typing panel 

 

In order to gain insight into the relationship between marker stability and the number of markers 

included in a typing panel on the validity of clustering as a measure of recent transmission, we 

examined combinations of these parameters in a setting where all initially infecting cases were 

clustered, and where no novel strains were introduced by immigration.  At levels of marker 

instability above 0.00005, the observed level of diversity in molecular types increased sharply 

(Figure 4.8).  Increasingly higher allele instability corresponded with a sharp decline in the false 
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positive rate, but also with a sharp decline in the true positive rate.  PPV remained steady with 

increasing allele instability, while NPV declined slightly (Figure 4.7). 

 

Discussion 

 

For the purposes of epidemiologic typing, molecular typing markers “should be sufficiently 

polymorphic to distinguish unrelated strains yet be stable enough to identify isolates of the same 

strains”[160]. Using an agent-based model of TB transmission which explicitly represents 

molecular typing based on MIRU-VNTR, we have generated the first quantitative insights into 

just what “sufficient” polymorphism and “enough” stability may be, describing the relationship 

between the diversity and stability of individual typing markers and the validity of molecular 

“clustering” as a marker of transmission relationships.  Our simulation data suggest that 

underlying, “base” allele diversity, and diversity resulting from highly unstable typing markers, 

impact the validity of clustering measures in distinct ways, and that the mechanism by which 

marker diversity is generated in a population should be carefully considered when identifying 

potential typing markers, and when interpreting the results of molecular typing investigations.  

Additionally, we describe the importance of population-specific factors on the validity of typing 

measures, and suggest that a single universal typing panel is unlikely to provide consistent and 

valid results across diverse global populations. 

 

In a single geographically defined population, diversity in the alleles identified at a given typing 

marker may result from a long history of evolution and divergence within that population, from 

rapid marker evolution occurring over short time scales, or from the introduction of novel strains 

from distant populations. The strong phylogeographic associations observed in the global 

population structure of M. tuberculosis [132] suggest that, on the small geographic scale most 

relevant to TB transmission, the latter two process most likely contribute to the diversity seen. Of 

the simulated transmission scenarios we evaluated, high levels of “existing” marker diversity, 

such as that achieved through the introduction of novel strains from diverse populations, provided 

optimal typing results compared to diversity achieved through the rapid accumulation of changes 

in highly unstable markers. 

 

Diversity achieved through increasing allele stability presents a trade off: while increasing 

instability decreases the probability that bacterial isolates from unrelated cases will exhibit 

identical molecular typing patterns, it also increases the probability that bacterial cases from truly 
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related cases will be unique.  This presents a concern for TB control programs in particular, 

which increasingly rely on molecular typing tools to direct limited TB control resources. Failing 

to identify pockets of recent transmission, as will occur at any true positive rate below 1.0, may 

blind investigators to important transmission venues in a population, result in undiagnosed, 

infectious cases of active TB remaining under the radar, or both.  In the hypothetical scenario for 

which we evaluated this question, a TPR of 1 corresponded to, at best, a FPR of more than 0.9.  

Misclassifying 90% of unrelated cases as due to recent transmission in the population, as would 

occur at this level, would effectively overburden any TB control program.  

 

By contrast, high levels of “existing” marker diversity allowed for a reduced FPR without a 

parallel reduction in the TPR.  Importantly, we observed a critical threshold value in the average 

individual allele diversity, below which overall diversity is low, and the specificity of clustering 

as a measure of transmission is negligible.  Diversity increases dramatically once average allele 

diversity exceeds this value, however, and specificity increases in parallel.  For the 12-loci typing 

panel assessed in our model, this threshold value appears to be an HGI of approximately 0.7.  

Population factors modified this relationship, however, and the lowest FPR achieved, using a 12-

loci typing panel with typing markers that are perfectly diverse in unrelated isolates (HGI = 1.0), 

ranged from less than 0.10 in the low-TB, low-HIV setting of Arkansas, to above 0.7 in the high 

HIV, high TB setting of Malawi.   

 

This finding has significant implications for the interpretation of results generated with current 

MIRU typing panels, and for the selection of MIRU loci for new typing panels.   

Multiple reports have described low levels of MIRU allele diversity among the Beijing family of 

isolates, which is highly prevalent in Asia and the countries of the former Soviet Union [169]. 

While the average diversity of alleles at individual MIRU loci is as high as HGI = 0.74 in some 

isolate populations [124], the diversity of alleles at many individual MIRU loci is below HGI = 

0.15 among isolates of the Beijing family [170].  The Beijing family has been associated with a 

number of outbreaks of multi-drug resistant (MDR) TB in recent years [169], and studies in 

animal models have suggested that it may be associated with increased virulence [171].  A 

recently proposed global standard MIRU typing panel, however, did not include MIRU loci with 

high diversity in Beijing family isolates, although a number of such loci have been identified 

[123, 137, 154]. In order to be valuable as a public health tool, any global standard typing panel 

will have to effectively discriminate isolates of the Beijing family. 
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While the problem of low MIRU allele diversity is best characterized in the Beijing family, allele 

diversity may vary substantially across TB strain families [125] .  The diversity of proposed 

typing panels is routinely assessed using highly selected collections of TB isolates from diverse 

geographic locations [123, 157].  As isolates in any single geographically localized population 

will be considerably less diverse than such a collection, and will often have a clonal, highly 

homogeneous population structure, it may be more reasonable to assess the diversity of proposed 

typing panels in population-based collections drawn from a single geographic location, which 

better reflects the context in which TB typing tools are most often employed. 

 

In observational studies, it is not possible to accurately identify and unambiguously classify the 

transmission relationships between cases.  The major strength of this investigation is it’s reliance 

on an ABM of TB transmission, which simulates a “world” in which the true status of each case 

is known, and transmission relationships between cases can be characterized unambiguously.  

This ABM was specified to best represent the transmission and natural history of TB, as well as 

social and vital dynamic processes, of three real populations.  Such model representations of the 

“real world” however, are approximations of reality, and are limited by the assumptions that they 

make about the systems they represent.   

 

Wherever possible, we based our model formulation on available data and well-vetted theoretical 

models of TB transmission and pathogenesis, and measurements of host population processes.  

For some components of the system we modeled, however, such as the probability of 

transmission given contact between an infectious and susceptible individual, little data is 

available, and the model was informed using a best-estimate from the available literature.  Given 

such uncertainty, a critical component of our investigation is a sensitivity and uncertainty analysis 

to determine how sensitive our key outcome measures are to variation in the parameters that 

govern key model processes.  The analysis presented here represents only an initial sensitivity 

and uncertainty analysis, and a more rigorous evaluation in the future is essential to interpreting 

our results with confidence. 

 

Our sensitivity analysis revealed that parameters reflecting the historic patterns of disease 

transmission in a population were strongly associated with the validity of clustering as a marker 

of cases linked by recent transmission.  These parameters: the annual risk of infection, yearly 

trends in the annual risk of infection, and the amount of “historic clustering” (the proportion of 

latently infected individuals in a population who are linked by transmission to another individual 
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in that population), influence the proportion of latently-infected individuals in a population, the 

age-distribution of those cases, and the distribution of distinct M. tuberculosis strains among 

latently infected individuals. The annual risk of infection, while not perfect, is consistently 

estimated in many populations, using well-tested methods [108].  By contrast, the level of 

“historic clustering” is uncertain, and estimates based on current levels of clustering can be made 

only in settings where molecular typing investigations have been previously undertaken.   

 

Our initial sensitivity analysis did not identify any association between either the mutation rate 

during latency or the weekly recovery probability and clustering.  However, both of these 

parameters were evaluated in the context of a transmission scenario based on the population of 

Arkansas.  In this low-incidence setting, the population of infecting isolates will be small, and 

low numbers of cases mean that measures are often unstable.  It is likely that, in a setting with a 

higher burden of TB, both of these parameters may influence both the level of clustering and the 

validity of molecular clustering estimates. 

 

A major assumption of our model is that all incident cases of respiratory TB will be reported and 

that all cases will yield a viable culture from which a molecular type can be generated.  Perfect 

case ascertainment, however, is unrealistic: even if every incident case were identified, some 

proportion will not yield a viable culture. Incomplete sampling will result in the misclassification 

of some clustered cases as unique [79].  Our model estimates, therefore, will be higher than 

empiric measurements from population-based genotyping studies.   

 

While this report presents analysis only of the independent effects of these individual parameters, 

it will be important to investigate associations between these and other key parameters and the 

impact of these individual and joint relationships on the key results presented here.  Additionally 

it will be essential to further characterize our key results in the three population-specific 

transmission scenarios we considered.  For example, we considered the impact of the number of 

loci included in a typing panel, and the stability of individual typing loci, in a hypothetical 

transmission scenario, which did not provide insight into the influence of diverse population 

factors on this relationship.  Further, population-specific simulation experiments will be 

necessary to better understand how important this trade-off may be in real transmission-scenarios, 

and whether it is more relevant in some transmission contexts than others.   At the same time, a 

number of the parameters we considered only in a sensitivity analysis warrant further 

investigation in their own right, such as the population-prevalence of HIV and the average 
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duration of infectivity.  These parameters may also have important interactions with the key 

relationships with other model parameters which were not identified in the univariate analysis 

presented here. 

 

In conclusion, this is the first investigation directly assessing the relationship between diversity 

and the validity of molecular typing as a marker of recent transmission, and the first model-based 

evaluation of the sensitivity, specificity, PPV, and NPV of molecular typing in population-based 

epidemiologic studies.  We have demonstrated the relationship between diversity in typing 

markers and key measures of the validity of molecular typing data. While far from conclusive, 

these results provide key insights that may inform the interpretation of results from population-

based molecular typing studies, and contribute to the development of a typing system that makes 

most effective use of current knowledge.  
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Tables 

 

Table 4.1.   Parameter definitions for the model 

Parameter Value Unit Reference 

I. Parameters governing population size and social contact structure 

Initial Host Population Size 50,000 agents  

Average Neighborhood Size 500 agents Local neighborhood size as defined 

in some studies of local 

neighborhood and health [159] 

Average Household Size 2.8 agents Based on 2000 US Census  

Average Number of Friends 10 agents Based on the number of non-

household contacts identified by 

tuberculosis cases in during 

contact-tracing investigations in 

Arkansas between 1996 and 2000. 

(Average of 10, range of 0 to 112) 

HIV prevalence 0.0014 Prevalence Based on 2000 CDC HIV/AIDS 

Surveillance estimate for 

Arkansas[9] 

Probability of within-neighborhood 

casual contact 

0.02  

Probability of outside of neighborhood 

casual contact 

0.01  

Estimated based on assumptions 

that casual transmission, while 

possible, occurs relatively 

infrequently. 

II. Parameters governing the initial specification of prevalent infections 

Annual Risk of Infection Percent (ARI%) 0.0015 Based on unpublished data 

previously cited [89] 

Annual trend in ARI% prior to initiation 

of model (ARI%trend) 

0.015 Based on unpublished data 

previously cited [89] 

Initial prevalence of active infections 1.5 per 100,000 Based on the annual incidence of 

active respiratory TB disease and 

the average duration of disease 

Proportion of initially specified infections 

(active and latent) that are linked by 

0.3 Based on data from Arkansas 

reviewed in chapter III of this 
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transmission to another infected case in 

the population. 

dissertation. 

III. Parameters governing host population vital dynamics 

Birth Rate 0.0331/year for agents 

aged 15-44 

Based on the general fertility rate in 

the US for the year 2003. Modified 

(divided by half) as gender is not 

specified in model 

Death Rate  Modified from US Vital Statistics: 

Death rates by age and sex in the 

US, 1995.  Averaged across gender. 

 Group   

 Age 0 to 9 0.0007 /year  

 Age 10 to 19  0.0004 /year  

 Age 20 to 44  0.003 /year  

 Age 45 to 64  0.02 /year  

 Age 65 and up 0.1 /year  

Immigration rate 0.15 /year Based on 2000 US Census figures 

for Arkansas: 1.5% of the total AR 

population is foreign-born and 

entered between 1990 and 2000, 

giving a rate of 0.15% per year. 

Emigration rate 0.15 /year Set to balance immigration 

IV. Parameters governing the risk of transmission given contact 

Probability of transmission given contact   [163] 

 Household contacts  0.06 /week  

 Non-household 

contacts 

0.001 /week  

Risk of transmission from smear negative 

case, relative to smear positive cases. 

 

0.2  [164], [15] 

 

V. Risk of progression to active disease following infection 

Following Primary Infection    [81, 165] 

Within 1st year of infection    
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 Age 0 – 10 2.48 /year  

 Age 11-19 5.57 /year  

 Age 20 up 8.66 /year  

Within 2
nd

 year of infection    

 Age 0 – 10 1.02 /year  

 Age 11-19 2.28 /year  

 Age 20 up 3.55 /year  

Within 3
rd

 year of infection    

 Age 0 – 10 0.32 /year  

 Age 11-19 0.72 /year  

 Age 20 up 1.13 /year  

Within 4
th
 year of infection    

 Age 0 – 10 0.21 /year  

 Age 11-19 0.48 /year  

 Age 20 up 0.74 /year  

Within 5
th
 year of infection    

 Age 0 – 10 0.07 /year  

 Age 11-19 0.16 /year  

 Age 20 up 0.24 /year  

Following re-infection    

Within 1st year of infection    

 Age 0 – 10 4.25 /year  

 Age 11-19 4.68 /year  

 Age 20 up 5.11 /year  

Within 2
nd

 year of infection    

 Age 0 – 10 1.74 /year  

 Age 11-19 1.92 /year  

 Age 20 up 2.10 /year  

Within 3
rd

 year of infection    

 Age 0 – 10 0.55 /year  

 Age 11-19 0.61 /year  

 Age 20 up 0.66 /year  

Within 4
th
 year of infection    
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 Age 0 – 10 0.37 /year  

 Age 11-19 0.40 /year  

 Age 20 up 0.44 /year  

Within 5
th
 year of infection    

 Age 0 – 10 0.12 /year  

 Age 11-19 0.13 /year  

 Age 20 up 0.14 /year  

Beyond 6 years after infection or re-

infection (latent reactivation) 

   

 Age 0 – 10 9.8 x 10
-

8
 

/year  

 Age 11-19 0.0150 /year  

 Age 20 up 0.030 /year  

Probability that an incident case is 

sputum-smear positive 

  Based on data from Norway, 1951-

69, as previously described [81] 

 Age 0 – 10 0.1 /case  

 Age 11-19 0.4 /case  

 Age 20 up 0.8 /case  

Relapse probability following recovery 

from active disease 

0.0359 /year [17] 

Probability of death from TB during 

active disease 

  Based on age specific case fatality 

rates, US, 1989. 

 Age 0 -14 0.0005   

 Age 15-19 0.00063   

 Age 20-24 0.0013   

 Age 25-44 0.0032   

 Age 45-54 0.0045   

 Age 55-64 0.0066   

 Age 65+ 0.0123   

V. Molecular typing technique and bacterial  alleles at typing loci. 

Number of Loci in typing panel 12  Based on current standard MIRU 

typing panel [36] 

Weekly rate of allele change observed in 5.249E-  Estimated from [160] 
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serial samples 05 

Relative rate of allele change during 

latent infection 

0  Based on limited available 

evidence (see appendix II), plan to 

evaluate. 

Average individual allele diversity, based 

on HGI 

0.74  Highest average identified in non-

Beijing isolates [124] 

Maximum number of alleles 14  Estimate from available literature 

[124, 125, 137, 170] 
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Table 4.2.   Parameters to generate population-specific transmission scenarios 

 

 Arkansas Malawi Afghanistan 

++Age distribution    

0-14 9 49.7 44.6 

15-64 77.1 47.7 53.0 

65+ 13.9 2.6 2.4 

Birth Rate 

(per 1000 individuals of reproductive 

age) 

33 970 1034 

†ARI% 0.0015 0.015 0.03 

†ARI trend 0.015 0.01 0 

HIV prevalence 0.0014 †0.1492 †0.0001 

*Initial clustering 0.3 0.7 0.5 

‡Average household size 2.8 4.3 8.0 

†Weekly probability of recovery 0.060 0.022 0.020 

    

† Estimate used in prior ABM of TB[89]  

* Estimates for initial clustering in Arkansas based on molecular epidemiologic data included in 

this dissertation.  Estimates for Malawi were based on data reported from a molecular 

epidemiologic investigation of TB in that country [152].  Estimate for Afghanistan was based on 

a best guess, as no data on recent transmission or molecular clustering are available. 

++ Age distribution and birth rate for Arkansas is based on 2000 US Census.   

(DP-1. Profile of General Demographic Characteristics:  2000 

Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data) 

Estimates for Malawi and Afghanistan based on data compiled by UNICEF 

(http://www.unicef.org/infobycountry/index.html) 
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Table 4.3.   Key parameters identified for initial sensitivity analysis. 

 

Host-related parameters 

Parameter Description Model value Range 

evaluated 

tP Weekly probability of transmission from a smear-positive 

infectious host to a susceptible household member 

0.06 0.01 to 1.0 

ARI% Annual risk of infection experienced by the simulated 

population each year prior to the initiation of the model 

0.0015 (for 

Arkansas) 

0 to 0.004 

ARItrend Annual decline in the ARI% experienced by the simulated 

population prior to initiation of the model  

0.01 0 to 0.04 

HIVp Prevalence of HIV infection in the population 0.1492 (for 

Malawi) 

0.0001 to 

0.1492 

reProb Weekly probability that an actively infected individual 

recovers to a latent state 

0.06 (for 

Arkansas) 

0.01 to 0.1 

Microbe-related parameters 

mNA Maximum number of alleles allowed at any single typing 

locus 

14 5 to 50 

mRl Rate of allele change at an individual loci during latent 

infection, relative to rate during active infection 

0 0.1, 1 
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Table 4.4   Comparison of model-generated and empirically measured TB transmission statistics 

for three population-specific transmission settings. 

 

 Incidence (per 

100,000) 

Prevalence ARI% % clustered PPV 

Arkansas      

Measured 5.1 0.05 0.005 47.1* 0.320* 

Model 4.6 0.043 0.007 54.7 0.139 

Malawi      

Measured 401 0.299 0.015 72.0* -- 

Model 569 0.276 0.029 87.9 0.284 

Afghanistan      

Measured 333 0.410 0.030 -- -- 

Model 160 0.394 0.015 50.3 0.402 

* Measured clustering and PPV statistics are based on typing with IS6110 RFLP, which is 

considered more discriminatory than the 12-loci MIRU panel the model results presented here 

were based on.   
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Figures 

 

Figure 4.1.    Variability in the number of repetitive units at molecular typing loci based on 

MIRU-VNTR.  In ABM, the specific allele value for each locus corresponds to the number of 

repetitive elements present.  Figure modified from Frothingham, 1998 [172]. 

 

 

Loci value = 3 

Loci value = 5 
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Figure 4.2.    Schematic illustration of model flows. Infection states, represented by variables in 

the model, are represented here by compartments, similarly to a stock and flow diagram 

representing an equation-based model. 
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Figure 4.3.   Estimated and actual recent transmission by population and study duration. 

Comparison of the proportion of cases truly related by recent transmission to clustering-based 

estimates of recent transmission in three population-specific transmission scenarios represented in 

an agent-based computer simulation. 
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Figure 4.4.   Validity of clustering by population and study duration. Study duration and the 

validity of clustering as a measure of transmission in two population-specific transmission 

scenarios represented in an agent-based computer simulation. 
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Figure 4.5.   Rate of allele change and the validity of clustering.  Allele stability and validity of 

clustering as a measure of transmission in a hypothetical transmission scenario represented in an 

agent-based computer simulation. 
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Rate of allele change and the validity of clustering as a 
measure of transmission, using a 12 loci typing pattern. 
Rate of allele change corresponds to the weekly probability of marker change in at individual typing loci over 
the course of active infection. Measures presented represent averages over five model runs of a total simulated 
period of 20 years, and an initial population of 50,000 agents. All measurements calculated at the last model 
step, over a study period equivalent to 4 years.  Error bars represent one standard deviation. 
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Figure 4.6.    Rate of allele change and typing pattern diversity. Allele stability and the diversity 

of molecular typing patterns observed in a hypothetical transmission scenario represented in an 

agent-based computer simulation. 
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Figure 4.7.   Allele diversity and the validity of clustering.  Average individual allele diversity 

and the validity of clustering as a marker of recent transmission in three population-specific 

transmission scenarios represented in an agent-based computer simulation. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.6 0.7 0.75 0.8 1

tr
u
e 
p
o
si
ti
ve
 r
at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.6 0.7 0.75 0.8 1

fa
ls
e 
p
o
si
ti
ve
 r
at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.6 0.7 0.75 0.8 1

p
re
d
ic
ti
ve
 v
al
u
e 
p
o
si
ti
ve

True positive rate (sensitivity)

Diversity of alleles at individual 
typing loci and the validity of 
clustering as a marker of recent 
transmission.

Measures presented represent averages over five model runs 
of a total simulated period of 20 years, and an initial 

population of 50,000 agents. All measurements calculated at 
the last model step, and include a study period equivalent to 
4 years.  Error bars represent one standard deviation.

initial diversity at individual typing loci (HGI)

predictive value positive

False positive rate
(1 – specificity)

initial diversity at individual typing loci (HGI)

 



 98 

Figure 4.8.   Allele diversity and typing pattern diversity.  Average individual allele diversity and 

the diversity of typing patterns seen in three population-specific transmission scenarios 

represented in an agent-based computer simulation. 
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Appendix. Explicit description of model rules in outline form  

 

The Model has the following components: 

 

(1) The entities of the model, consisting of discrete human agents and discrete 

Mycobacterium tuberculosis agents (with each M. tuberculosis agent representing a 

clonal population of bacteria infecting one human case). 

(2) The contact structure that governs the interaction of the agents, as represented by a group 

of neighborhoods, and households within those neighborhoods. 

(3) The rules that govern the dynamics of the system, representing the social and biological 

interactions of the entities 

(4) The time-scales on which these rules are executed 

 

I. Initialization: conditions at the start of a simulation 

a. Create a population of discrete human hosts (default = 20,000) 

i. Randomly assign each host an “age” based on the age structure of the 

state of Arkansas at the 2000 Census, or the age distribution specified. 

ii. Create a number of neighborhoods sufficient to divide the initial number 

of human hosts into approximately evenly sized neighborhoods of 500 

agents each, randomly assign agents to a neighborhood (neighborhood 

size based on prior studies of neighborhood effects on health[159]). 

iii. Create households within each neighborhood with an average household 

size normally distributed around the specified average household size 

(default = 5 agents) (Mean = average household size, SD = average 

household size/3), until each agent assigned to a household. 

iv. Check age distributions within households, re-distributing as necessary 

to ensure no household is made up entirely of children. 

v. Assign each host a group of friends, randomly chosen from the host’s 

neighborhood and age-group (ages 0-9, 10-19, 20-44, 45-64, and 65+). 

b. Based on the specified age of each initial agent, calculate the probability of 

infection for each calendar year of life experienced by that agent (according to 

ARI% and ARI % trend).  If multiple pre-model infection events occur, consider 

only the most recent infection.  For each initially infected agent: 
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i. Infect with a unique Mtb “isolate” (one discrete entity representing the 

clonal population of infecting bacteria).   

ii. Randomly assign each Mtb isolate to a strain: if the initial level of 

clustering is 1, all isolates are assigned to the same strain, if 0, all isolates 

are assigned to a different strain.  The range of iClust values between 0 

and 1 assigns some proportion of isolates to the same strain and some 

proportion to unique strains. 

iii. If a given individual is selected to be initially infected with a clustered 

isolate, check if any other agents in the same household have already 

been infected.  If yes, infect the first agent with the same strain already 

present in the household.  If no, infect the first agent with the most 

recently assigned strain. 
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II. Overview: Timing and Order of Events 

a. All rules that govern model events are executed in 1-week time intervals: 

i. Vital Dynamics of the human host population 

1. Aging  

2. Births 

3. Deaths 

4. Immigration 

5. Emigration 

6. Maintenance of friendships 

ii. Transmission of M. tuberculosis 

1. Contact events between human hosts  

a. Contact within households 

b. Contact between friends in a neighborhood 

c. Casual contact within a neighborhood 

d. Casual Contact outside of neighborhood 

2. Transmission according to specified probability 

iii. Disease progression of infected individuals 

iv. Marker mutation at bacterial loci specified by the typing system 

v. Incident infections and cases of active disease are recorded, and 

infection, disease, and strain-clustering measures are calculated. 

vi. HIV prevalence is maintained (by brute force, not transmission: if the 

HIV prevalence dips below the level specified, random non-HIV infected 

individuals are converted to HIV positive status until the desired 

prevalence is achieved. 

vii. All time-keeping variables are updated. 

1. time since infection 

2. time since development of disease 
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III. Rules governing vital dynamics of human host population  

a. Aging 

i. After 52 steps in one age (measured by year), human host moves to next 

age. 

b. Births 

i. Every human host aged 15-44 may generate a new human host according 

to the specified fertility rate 

1. Based on general fertility rate statistics, divided by 2 as gender is 

not represented in the model. 

2. New human hosts are  

a. Uninfected 

b. Age 0 

c. Same household and neighborhood as parent 

c. Deaths (general) 

i. Every human host may die at any time step, according to an age-specific 

probability 

1. Removed from all lists in model 

d. Immigration 

i. For each human host currently in the model, a new agent will enter the 

model according to the specified immigration probability. 

1. Move to neighborhood of the human host whose presence 

‘triggered’ the immigration event 

a. if no other immigrants in the neighborhood, start a new 

household 

b. if other immigrant households in the neighborhood, 50% 

probability of starting a new household, 50% probability 

of moving into an already established immigrant 

household. 

2. Latently infected at entry according to the specified probability 

that an immigrant is infected 

a. Infecting M.tuberculosis is always of a unique strain 

b. Allele diversity is the same as that specified for the 

simulated population. 
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c. Time since infection assigned as a function of age, 

randomly assigned as a function of the immigrant host’s 

age from a normal distribution with a mean of ¼ (age) 

and a standard deviation of ¼ (age). 

e. Emigration 

i. Every human host may leave the model at any time step, according to the 

specified probability of emigration. 

f. Maintenance of friendships 

i. Friendships are maintained throughout the lifetime of the human host, 

ending only at death or immigration. 

ii. All friendships are bi-directional. 

iii. Any host whose # of friends dips below a minimum allowed range (set 

for each agent) will make a new friend with another agent in the same 

neighborhood. 

iv. Any host below a maximum allowed range will become friends with any 

agent who “tries” to make friends. 

v. New human hosts (immigrants and births) randomly make friends with 

other hosts in the same age group and neighborhood that have not 

exceeded their maximum range of friends. 

 

IV. Rules governing M. tuberculosis transmission 

a. Effective contact events between human hosts 

i. Contact within households 

1. At each time step, each human host with active disease contacts 

with every individual in the same household 

ii. Contact between friends 

1. At each time step, each human host with active disease contacts 

each of its friends. 

iii. Casual contact within neighborhoods 

1. At each time step, each human host with active disease comes 

into contact with random members of the same neighborhood 

according the probability of random neighborhood contact. 

iv. Casual contact between neighborhoods 
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1. At each time step, each human host with active disease may visit 

another neighborhood in the model with the specified probability 

of casual outside of neighborhood contact 

a. Given a visit to another neighborhood, each actively 

diseased host will come into contact with members of 

that neighborhood according to the same probability of 

casual contact within the hosts own neighborhood. 

b. Probability of transmission given contact 

i. Given a contact event between a host with active disease and another 

host in the model, transmission may occur according to the following 

rules: 

1. Diseased hosts with sputum smear positive disease will transmit 

infection according to the specified transmission probability 

2. Diseased individuals with sputum smear negative disease will 

transmit infection at a reduced probability (20% of the full 

transmission probability) 

3. Hosts with active disease, or who have been infected within the 

last 5 years, may not be infected. 

4. Transmission may occur between diseased hosts and hosts in the 

uninfected, latently infected, or recovered states. 

a. Transmission between household contacts occurs at the 

full transmission probability. 

b. Transmission between friends and casual contacts 

(within and outside of the neighborhood) occurs at a 

specified fraction of the transmission probability. 

c. Transmission 

i. If a transmission event occurs, a new M. tuberculosis entity is created.  

This entity: 

1. Is assigned to the same strain as the infecting strain 

2. Is assigned the same “molecular fingerprint”, and the same allele 

value for each typing loci, as the infecting strain 

3. Variable identifying this isolate is passed to the infected agent 

4.  “Time since infection” is set to 0 
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V. Rules governing disease progression 

a. Once infected, human hosts may develop respiratory tuberculosis disease (non-

respiratory disease is not considered) according to the following rules: 

i. Individuals infected (or re-infected) within the last 5 years may: 

1. Develop primary disease  

a. Dependent on  

i. age, 

ii.  type of infection (primary vs. re-infection), 

iii.  year since infection.   

b. A multiply infected individual is only at risk of 

developing disease from the most recent infecting strain 

c. A newly diseased host will be assigned to a “sputum 

smear positive” or “sputum smear negative” state 

according to an age-specific probability. 

d. A newly diseased host will be infectious only with the 

most recently infecting strain. 

ii. Individuals infected 5 years, who did not develop primary disease in this 

interval, progress to latent disease at the end of the 5
th
 year following 

infection. 

iii. Lantently infected individuals (or re-infected) 6 or more years in the past 

may: 

1. Develop reactivation disease  

a. Dependent on  

i. Age 

ii. HIV status 

b. A multiply infected individual is only at risk of 

developing disease from the most recent infecting strain 

c. A newly diseased host will be assigned to a “sputum 

smear positive” or “sputum smear negative” state 

according to an age and HIV status -specific probability. 

d. A newly diseased host will be infectious only with the 

most recently infecting strain. 

2. Become re-infected and move to the “recently infected” state. 
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iv. Individuals with active disease may: 

1. Recover from disease according to the specified recovery 

probability, 

2. Die from TB disease according to an age specific probability. 

v. Individuals recovered from active disease may: 

1. Develop relapse disease (with the same strain that last caused 

disease) according to the specified relapse probability 

2. Become re-infected and move to the “recently infected” state. 

 

VI. Measures of infection, disease, and strain clustering 

a. At each step of the model: 

i. New infection and disease progression events are recorded 

ii. Infection-related statistics are calculated; 

1. Annual risk of infection 

2. Prevalence of latent infection 

3. Total prevalence of infection 

iii. Disease-related statistics are calculated: 

1. Incidence of disease (cases per 100,000 human hosts) 

2. Prevalence of active disease 

3. Risk of disease following infection 

4. Proportion of disease resulting from re-infection 

iv. Strain-clustering statistics are calculated according to the specified study 

period: 

1. Proportion of cases that are “clustered” by strain. 

a. “n” method 

b. “n-1” method 

2. PPV, NPV, Sensitivity, and Specificity of “clustering” in the 

study period for a transmission linkage with a case in the same 

cluster. 

a. Also calculated by age group 

3. Diversity calculations, using the Hunter-Gaston index of 

diversity [143] are calculated for; 

a. All infections in the model 

b. All isolates that have caused active disease 
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c. Average individual allele diversity 
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Chapter V 

 

Conclusion 

 

 

Molecular typing is a powerful tool for the study of the transmission and epidemiology of TB, 

and is increasingly integral to TB control programs.  While much of this dissertation work takes a 

critical eye towards the inferences that are drawn from molecular typing data, the ultimate goal of 

this work is to contribute to refined typing tools and analytic techniques that will allow 

investigators and public health practitioners to most effectively employ this tool.  By identifying 

key factors that may compromise the assumptions on which molecular typing applications are 

based, this work may contribute to the development of yet more powerful typing strategies. 

 

The interpretation of molecular typing is most often boiled down to a simple binary classification: 

a case isolate is determined to be either clustered, or unique.  This simple categorization belies the 

complex interplay of systems that influence whether or not an individual case-isolate is clustered 

and, I believe, prevents many practitioners from questioning the validity of the inferences they 

draw from molecular typing data. 

 

The patterns generated using molecular typing tools result from a complex interaction of host and 

pathogen populations. Bacterial population genetics and evolution, host demographics, and host 

social contact patterns will all influence whether or not a case is clustered – and this is before 

considering the molecular typing system itself.  Added to this complexity are the myriad 

complications of TB epidemiology.   Identifying chains of TB transmission in a population is at 

its best highly informed guesswork, as clear transmission linkages cannot be unambiguously 

identified.  Given these limitations, it is perhaps less surprising that, despite increasingly 

sophisticated molecular methods, the relationship between molecular typing data and the 

epidemiologic relationships it is used to predict remains poorly understood.   

 

Many of the key players in the development and application of TB typing tools focus entirely on 

one side of the molecular typing equation—as either microbiologists or public health 

practitioners, their loyalties are often clear.  As a result, rigorous evaluations of TB typing tools 
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typically present a narrow perspective.  The hope of this dissertation, with its highly 

interdisciplinary approach, is that it will represent a first step towards bridging this divide. 

 

Using three different analytic approaches, the investigations presented here all cast light on this 

tight interrelationship between host and pathogen populations, each from a slightly different 

angle.  Taken together, these results demonstrate that patterns in one of these systems cannot be 

understood without considering the influence of the other. 

 

All three papers included in this dissertation demonstrate the importance of historic patterns in the 

transmission of M. tuberculosis on contemporary patterns in TB disease, and suggests that 

historic patterns influence the validity of molecular typing measures of recent transmission in a 

population. 

 

Prior investigators had applied molecular typing to the study of trends in the incidence of active 

TB disease [67, 69].  The first paper presented in this dissertation, however, was the first to apply 

molecular typing to the study of TB trends in a rural population, and the first to clearly 

demonstrate the impact of historic disease patterns on contemporary disease trends.  These results 

have clear implications for the evaluation of TB control programs, where declining rates of 

disease are generally considered to reflect the successful containment of active transmission.  

While a highly effective TB control program in Arkansas had been very successful at containing 

transmission there, our analysis demonstrated that some key populations may still be slipping 

beneath the radar.   

The observation that historic trends project considerable momentum, possibly driving TB disease 

patterns many years into the future, is an insight that may allow public health practitioners to 

more accurately project future disease patterns, and to design intervention strategies and allocate 

resources accordingly. 

 

The second paper of this dissertation identified a number of factors that were correlated with the 

validity of molecular typing results.  Among the most interesting of the factors we identified was 

the impact of a family of endemic strains, which may be closely related to the major finding from 

the first paper.  A family of endemic strains, which appear to have been historically transmitted in 

Arkansas, showed an increasing prevalence with increasing age.  At the same time, this strain 

family appeared to be independently associated with very low levels of typing diversity and a low 

predictive value of typing for recent transmission.  It seems plausible that the same historic 
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patterns responsible for the sharp cohort effect we observed in the rate of reactivation disease 

may also be associated with the distribution of this endemic strain family.   

 

Finally, our observations related to diversity and the validity of typing results is likely to be one 

of the most significant contributions of this dissertation work.  With the diversity that can be 

reasonably achieved by a typing system seemingly every increasing, it seems rational to clarify 

the level of diversity that an ideal typing tool should attain.  Previously, the only metrics for 

typing diversity were arbitrary [143, 157], and these were only infrequently cited in the 

evaluation of TB typing markers, even when diversity was calculated [124, 137, 170].  While this 

dissertation work represents only a first step towards clarifying the relationship between diversity 

and typing resolution, we have identified what appears to be a critical value in the level of 

individual MIRU allele diversity.  Our early model experiments suggest that this value may 

delineate markers that contribute only negligibly to the ability of a typing panel to discern 

epidemiologic relationships from markers that contribute substantially to this aim. 

 

Along with our model observations of the impact of allele diversity, numerous observations of 

low levels of MIRU allele diversity in specific populations [92, 124, 170], suggest that it may not 

be possible to identify a single typing panel that is optimal for all populations.  We did not have 

MIRU typing results for the isolates we analyzed from Arkansas.  It would be interesting to see if 

the low levels of diversity we observed in the X2 Spoligotype family using IS6110 RFLP 

corresponded to a low level of diversity by MIRU.  As molecular typing is more widely used to 

guide TB control programs, it will be critically important to characterize the association of 

different strain families with diversity by available typing tools, as well as to identify the 

composition of the M. tuberculosis population in a given setting. 

 

At this time, the use molecular TB typing tools is, with rare exception, limited to resource rich 

countries.  There is a grim irony to this, as 99% of all TB deaths worldwide occur in the world’s 

poorest countries [3].  While TB contact tracing is arguably less important in situations where 

more fundamental faults of resources and infrastructure may present obstacles to diagnosis and 

treatment, the availability of molecular typing tools may still provide a critical tool in resource-

limited settings.  For example, when XDR TB was identified in Uganda in September of 2007, it 

was not possible to discern whether these resistant strains had developed independently in 

Uganda, or had been imported from South Africa.  Nor was it possible, after a handful of initial 

reports identified its presence in Uganda, to assess the extent to which XDR TB had spread 
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throughout the country.  A major promise of more rapid, efficient, and economic molecular 

typing tools, such as MIRU-VNTR, is that these technologies may someday be within the reach 

of the populations that need them the most.
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Appendix 1 

 

Transmission and natural history of M. tuberculosis infection 

 

Representing the transmission of Mycobacterium tuberculosis in a simulation model requires a 

comprehensive understanding of the transmission and natural history of tuberculosis disease.  

Such an understanding, along with a consideration of the research questions the model will be 

asked to address, is essential to determine which key features of the transmission system must be 

represented in the model, and which features may be simplified.  

 

This appendix briefly outlines the major processes important in the transmission of M. 

tuberculosis, as well as the progression to and recovery from active disease.  For each process, 

the current understanding of the process will be described at a level relevant to the representation 

of this process in the model, and key literature will be briefly reviewed.  In the “methods” section 

of the main section this paper, the implementation of these processes, along with relevant 

parameter estimates, are described. 

 

Transmission 

 

The transmission of infection with M. tuberculosis is central to the epidemiology of tuberculosis 

disease.  Despite its fundamental importance, the transmission event is perhaps the least 

understood component of the natural history of TB.  This lack of understanding results from the 

tremendous complexity of the transmission event itself, which depends on a complex array of 

factors, and from the difficulty in studying infection events on a population level. The high 

proportion of subclinical M. tuberculosis infections, long latency period, and difficulties in 

unambiguously identifying recently infected individuals have long limited epidemiologic 

investigations of TB transmission.  Assessments of infection risk have relied primarily upon 

estimation techniques applied to other, more accessible data, such as the age-specific prevalence 

of latent infection [173, 174]. 

 

TB transmission occurs via the airborne route, by the inhalation of microscopic (< 5 µm in 

diameter) droplet nuclei carrying viable M. tuberculosis bacilli [175]. Following expulsion into 

the environment by an individual with active, infectious TB disease, these droplet nuclei can 

remain airborne for time spans ranging from minutes to hours. Whether or not an infection occurs 
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when an individual breathes air that has been contaminated by an infectious tuberculosis patient  

depends on a number of factors, including the infectiousness of the infected (determining the 

number of viable bacilli expelled into the air), the size, ventilation, and UV exposure of the 

airspace (determining the density of bacilli in the air and the length of time they remain present 

and viable), the ability of the bacterium to remain viable in the environment, the susceptibility of 

the exposed individual, and the duration of the exposure. 

 

The above factors will impact the probability of a transmission event given contact between an 

infectious and susceptible individual.  Transmission can only occur, however, if a susceptible 

individual comes into contact with an infectious individual. The probability of such a contact 

event occurring will depend critically on both the prevalence of active, infectious disease in the 

population, as well as on the social contact structure which determines the interaction of 

individuals in the population.   

 

Exposure: Type and duration of contact 

 

What constitutes an effective contact? 

 

Tuberculosis has long been associated with overcrowded conditions [176], and this association 

continues to be observed in contemporary settings [177, 178].  Interestingly, while associations 

have been observed between tuberculosis disease and an increasing number of dwellers per 

bedroom and a small housing unit size, after adjusting for other factors [178], an association 

between tuberculosis disease and “district” or “neighborhood” level overcrowding has not been 

observed in a number of studies that investigated it [178, 179]. These results suggest the 

importance of close, prolonged contact in determining transmission.  This suggestion is consistent 

with the historic pattern of TB transmission which informed the current contact tracing protocols 

central to TB control programs in the United States [47, 58, 59, 180], in which most transmission 

events occurred within the home and family. 

 

Transmission of M. tuberculosis through casual contact has been documented, however [41], and 

some studies of the molecular epidemiology of tuberculosis have suggested that casual 

transmission is responsible for a non-negligible proportion of incident cases [181].  As the 

incidence of tuberculosis in the United States and other developed countries continues to decline, 



 115 

transmission occurring within the home and family may be less important than transmission 

occurring outside the home [57, 121]. 

 

Quantifying the risk of transmission across different types of contact is not possible given the 

current understanding of the myriad factors influencing transmission.  While the risk of 

transmission has been observed to depend on the duration, frequency, and intimacy of contact, 

and the setting in which contact occurs (including such factors of the volume of air space and the 

frequency of air exchange) [175], understanding of the net effect of these factors to determine the 

relative probability of infection is unclear.   

 

Data from household contact studies provides among the most straightforward data on the risk of 

infection: the risk of transmission given non-household or casual contact is much more difficult to 

assess.  Even data from household contact investigations can provide ambiguous results of the 

transmission risk, however: particularly in high-incidence settings, an individual who converts 

from a negative to positive skin test (suggesting acquisition of M. tuberculosis infection) in the 

course of exposure to an infectious case in the same household may have acquired infection from 

the household contact, or from an infectious source outside of the household.   

 

In investigations of household contacts, investigators have noted an increasing risk of infection 

with increasingly intimate contact (defined by the average distance of contact), with 42% of 

close/intimate contacts, 34% of close/regular contacts, and 13% of a not close/sporadic household 

contacts having a positive TST at the time of the contact investigation, compared to 16% of a 

healthy population sample without any household contact.  According to only “strongly positive” 

TST reactions ( ≥20mm), the same study found evidence of recent infection in 27% of very 

close/intimate contacts, 13% of close/regular contacts, 0% of not close/sporadic contacts, and 0% 

of the healthy population controls [161]. 

 

Data from a number of studies have fairly consistently found an estimated risk of infection from a 

household contact of approximately 30% over the course of disease [162, 163].  Using contact 

tracing data that identified non-household contacts as well as contacts, Gryzybowski and 

colleagues found a risk of infection to non-household contacts of approximately 5% over the 

course of disease [163]. 
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Annual Risk of Infection 

 

While the risk of contact by type/duration of exposure is essentially impossible to estimate given 

current data, the overall population-level risk of tuberculosis infection can be estimated from data 

that, by comparison, is attainable and relatively unambiguous.   

 

Central to this approach is the idea that the prevalence of tuberculin reactivity for a birth cohort 

reflects the accumulation of tuberculosis infection since birth.  Given consecutive tuberculin 

survey data from a single cohort (or tuberculin survey data for a single year, with the assumption 

of a constant infection risk across the lifetime of that cohort), the “Annual Risk of Infection” 

(ARI) can be estimated [108, 165]. 

 

In the United States, available estimates of the ARI have come from tuberculin surveys in 

military recruits.  Estimates for the most recent time period suggest an ARI between 0.04 (White 

Navy recruits, 1990), and 0.06 (All navy and marine recruits, 1986) [182].   

  

Re-infection  

 

It was long held that, following a primary infection with M. tuberculosis, an individual acquired 

relative immunity against subsequent re-infection [18].  All subsequent episodes of active disease 

at any point in an infected individual’s life, and at any anatomic site, were considered to be due 

the reactivation of dormant bacilli of the original infecting strain.   

 

As early as 1976, however, evidence surfaced that called this traditional understanding into 

question.  In that year, using phage typing, an early molecular strain typing technique, Bates 

[183] reported on a patient with TB infection at multiple sites, from which multiple distinct 

strains were isolated.  Two decades later, as molecular typing techniques for M. tuberculosis were 

refined and came into wider use, evidence of exogenous re-infection, in which an individual 

previously treated for and apparently cured of an infection with one strain developed active 

disease with another, distinct strain of M. tuberculosis, was reported [12].  In the last decade, 

investigations of exogenous re-infection have been numerous, and have included both molecular 

epidemiologic investigations documenting the phenomenon [20, 21, 23], mathematical models 

illustrating the role that exogenous re-infection has played in temporal trends in the incidence of 

tuberculosis [81, 165, 184], and experiments in animal models [185, 186]. 
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The relative importance of re-infection to the overall incidence of TB in a population depends 

upon the risk of infection in that population (itself a function of the prevalence of active, 

infectious tuberculosis cases), as well as the population prevalence of factors that increase the risk 

of progression from infection to active disease, such as HIV infection.  In the United States and 

other low-incidence countries where the risk of infection is low, the role of infection also appears 

to be low – a study of recurrent TB in San Francisco found only 4% of recurrent cases of active 

TB disease to result from re-infection [17].  As the incidence of TB rises, however, the 

importance of re-infection rises in tandem: accounting for 10%, 16%, and 33% of recurrent cases 

in the moderate-incidence countries of Switzerland, Italy, and Spain, respectively, and accounting 

for 60% of all recurrent cases in the high-incidence country of South Africa [14].   

 

Based on results from experiments in guinea-pigs, which showed that animals previously infected 

by M. tuberculosis that were re-inoculated with the bacilli consistently developed local lesions 

(suggesting successful infection), but were less likely to suffer haematogenous dissemination 

following a re-infection event (suggesting a decreased risk of disease), Vynnycky and Fine, in 

their model of the natural history of tuberculosis infection, assumed that a primary tuberculosis 

infection did not modify the risk of subsequent infection events, but did alter the risk of 

progressing to disease following such a re-infection event [81].  They note that this is consistent 

with an explanation for the protective effect of BCG vaccination given by Sutherland and 

colleagues [187], which attributed the protective effect not to the prevention of infection, but to 

protection against subsequent haematogenous dissemination. They did, however, assume that, in 

the first 5 years following infection where an individual is at high risk of developing subsequent 

disease, re-infection could not occur.  This second assumption was made in order to simplify the 

model.   

 

Natural History of tuberculosis infection  

 

Progression from infection to active disease 

 

Following successful infection with M. tuberculosis, the majority of individuals will mount a cell-

mediated immune response that successfully contains the infection.  These infected, disease-free 

individuals are then in a state of latent infection: viable organisms remain, and may "reactivate" 

to cause active disease at a later time.  Individuals who are not able to mount a successful 
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immune response following infection will progress directly to disease, often referred to as 

"primary progressive disease".  Although the relative frequency of each of these disease types is 

difficult to measure, a number of studies have generated estimates of both the relative importance 

of each type of disease, and the risk of developing each following infection.  It is commonly cited 

that the lifetime risk of developing disease following infection is 5-10%, with  roughly half of 

that risk occurring in the first 2 years after infection.  Indeed, these figures are quoted so widely 

that they seem to be considered common knowledge: the studies from which they were estimated 

[188, 189] are only infrequently cited in support.      

 

Annual risk of progression from infection to disease 

 

The annual risk of development of active disease has been observed to vary by age [188], as well 

as by time sense infection and the host immunity.  Sutherland drew on tuberculosis data from 

Dutch adult males in 1952 to 1970 to estimate age-group specific risks of progression by year 

since infection [189].  In addition, his was the first model to explore the role of exogenous re-

infection, and in addition to risks of disease progression, he estimated the level of protection 

conferred by an initial infection against subsequent re-infection (Table A.1.1). 

 

While it is thought that the risk of progression might increase in old age, the magnitude of this 

possible increased risk is unknown, as available data is largely from school age children and 

younger adult populations.  Available estimates of age-specific risks, therefore, are limited to 

broad age groups. 
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Table A.1.1. Estimates of annual risks of development of tuberculosis and the percentage 

protection from distant primary infection in the Netherlands.  From: Sutherland 1976 [190]. 

 

 

 

Vynnycky and Fine extended Sutherland's original work to estimate the age-specific annual risks 

of developing 'primary', 'endogenous', and 'exogenous' disease using data on the incidence of TB 

in England and Wales from 1900 to 1990, and the relative risk of progression by time since 

infection [81].  This model is the most comprehensive and rigorously validated of the two: we 

therefore find its estimates the most compelling to inform our model. 

 

Progression to disease following re-infection 

 

By fitting their model to data on the incidence of respiratory forms of TB reported in England and 

Wales between 1900 and 1990, Vynnycky and Fine estimated that a previous TB infection 

confers a 16% protection against developing disease following a re-infection event in 15 year 

olds, and a 41% protection in those aged 20 and older [81]. 

 

While estimates from Vynnycky and Fine’s model are the most rigorous available on the risk of 

disease due to re-infection, their modeling approach presents some limitations.  The equation-

based model structure they used implicitly assumed that individuals in the population mix 

randomly.  Further, they assumed that the risk of infection did not vary by age.  Because social 

contact patterns may generate sub-populations where the risk of infection is high, the importance 

of re-infection might be greater than their estimates suggest [184].  The likely effect of these 

assumptions would be to underestimate the true level of protection against subsequent disease 

that is conferred by a primary infection. 
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Table A.1.2.   Model estimates of the risk of developing disease following infection or re-

infection, by age and year since infection.  From: Vynnycky 1997[81]. 
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Figure A.1.1. Relationship between years since conversion and risk of progressing to active 

disease. From: Vynnycky 1997[81]. 

 

 

(b) Observed and assumed relationship between the rate at which individuals experience their 

first primary episode/exogenous disease in each year following infection/reinfection relative to 

that during the first year after infection/reinfection. These were estimated from the distribution of 

the time interval between `tuberculin conversion' and disease onset of those who were tuberculin-

negative at the start of the UK MRC BCG trial.The 'relative risk' for a given year after 

'conversion' is taken to be the ratio between: (i) the proportion of the total disease incidence 

among initially tuberculin-negative individuals which occurred in that year following 

'conversion', and (ii) the corresponding proportion which occurred during the first year after 

'conversion' 

 

Site of disease 

 

In the pre-AIDS era in the United States, approximately 85% of TB cases were limited to 

pulmonary involvement [191].  More recent studies describe a proportion of exclusively 

pulmonary disease ranging from 62% in the Netherlands between 1993 and 2001 [192] to 78% in 

Hong Kong in 1996 [193] to 88% in Arkansas between 1996 and 2000 [194]: in the United States 

in 2001, 80% of disease was exclusively pulmonary [195].  Differences in definitions may 

explain some of this variation: pleural disease, for example, was considered as a manifestation of 

pulmonary disease by Yang and colleagues, while a manifestation of extrapulmonary disease by 

both te Beek and colleagues and Noertjojo and colleagues.  Additionally, the wide variety of 
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clinical manifestations of extrapulmonary TB causes difficulty and delay in diagnosis [196, 197], 

presenting the potential for differential case ascertainment across populations. Beyond 

methodologic differences, however, population differences are likely largely responsible for the 

range in prevalence of exclusively pulmonary vs extrapulmonary disease.  The risk of 

extrapulmonary disease has been observed to vary by nationality [192], age, gender, 

race/ethnicity, and HIV status [192, 193, 196]. In HIV infected individuals, extrapulmonary 

disease accounts for more than 50% of cases [13].  Among HIV negative individuals, 

extrapulmonary disease is particularly common among women and young children [14].   

 

Infectiousness of an active case 

 

Active tuberculosis disease can manifest in a number of anatomical sites, but, with rare exception, 

only patients with active pulmonary, laryngeal [7], or pleural [198] disease may transmit the 

infection. 

 

Sputum Smear 

 

Among individuals with respiratory forms of active tuberculosis disease, the detection of acid-fast 

bacilli (AFB) in the sputum provides a relative indicator of the infectiousness of the case [12].  

Detection of AFB on sputum smear indicates the presence of a high quantity of bacilli in the 

sputum: the threshold for detecting AFB using light-microscopy is 5000-10,000 bacilli/mL [199].  

 

Sputum smear has long been used as an indicator of the infectiousness of a patient with 

respiratory disease, with cases with a higher number of bacilli in the smear considered to present 

a higher risk of transmission [12].  The transmission risk presented by smear-negative cases has 

been considered to be low and, in the extreme, recommendations for some TB control programs 

have suggested that smear negative disease does not present a transmission risk [200]. 

 

The minimum infecting dose for tuberculosis is very low, estimated to be fewer than 10 

organisms [199].  The potential for transmission from smear-negative cases suggested by this low 

infecting dose (relative to the high quantity of bacilli necessary for AFB to be detected on sputum 

smear) has been corroborated by evidence from molecular epidemiologic investigations 

demonstrating transmission from smear negative cases.  These epidemiologic studies of all 

culture confirmed cases of active tuberculosis in Vancouver [15] and San Francisco [164], 
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estimated cases of smear-negative pulmonary tuberculosis to be at least 21% and 22% as likely as 

smear-positive cases to transmit infection, respectively: in the San Francisco study, the 95% 

confidence interval for this estimate was 0.16-0.32 [164]. 

 

Data from culture-confirmed cases of TB diagnosed between 1991 and 1996 in San Francisco 

showed that, in that population, 48% of pulmonary disease yielded a positive sputum smear.  

Pulmonary disease accounted for 93% of all positive sputum smears, suggesting that 7% of 

positive sputum smears in this study sample resulted from cases with extrapulmonary disease 

[164]. While the definitions of pulmonary and extrapulmonary TB used by the authors were not 

stated, it is reasonable to assume that extrapulmonary cases with thoracic involvement were 

included as ‘extrapulmonary’ cases, accounting for the contribution of this group to smear-

positive cases.   

 

These data are generalizable to few populations beyond San Francisco, however, particularly 

since 23% of the culture-confirmed TB cases in this study were HIV positive.  HIV status has 

been reported to be inversely related to the risk of having a positive sputum smear: after adjusting 

for other factors influencing smear status, HIV positive individuals diagnosed with active TB in 

Catalonia, Spain, between 1996 and 1997 were only half as likely to have a positive sputum 

smear as were HIV negative individuals diagnosed with active TB [201]. Beyond HIV status, age, 

gender, and alcohol abuse have all been observed to impact sputum smear status [201].  

 

In estimating parameters for their equation-based model of the natural history of tuberculosis 

infection, Vynnycky and Fine [81] plotted data on the age-specific prevalence of sputum-smear 

positive disease from males in Norway between 1951 and 1969.  Similarly to the study from 

Spain, these data illustrate a substantially lower risk of developing smear positive disease in 

individuals in the youngest age groups.  However, while Godoy et al. found a higher risk of 

smear-positive disease among middle-age groups than among the oldest age group in their study 

(>44 years), the Norwegian data illustrate a steadily increasing risk of smear-positive disease 

from age 20 on.  The Spanish study included all forms of active disease, while Vynnycky and 

Fine plotted only respiratory forms of TB.  The conflicting results in the older age-groups may be 

due to this methodologic difference. 
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Figure A.1.2  Relationship between Age and Proportion of Respiratory TB Cases that are Smear-

Positive, Norway 1951-1969.  From: Vynnycky 1997[81]. 

 

Observed and assumed proportion of total respiratory disease incidence among cases of age a 

attributable to sputum-positive forms, d+(a). All lines (excluding the heavy solid line) show the 

relative contribution of sputum-positive disease to age-specific notifications of pulmonary 

tuberculosis in males in Norway (1951±69). Source: Dr K. Styblo (TSRU) and Dr K. Bjartveit 

(Norwegian National Health Screening Service).   

 

Duration of infectivity 

 

The length of time for which an individual with active tuberculosis disease remains infectious is 

critically important to the risk of transmission from that individual.  The duration of the infectious 

period will be influenced by three major components; i) the length of time between the 

development of active, infectious disease, and the initiation of treatment, ii) the length of time 

between the initiation of treatment and the conversion of the patient to a non-infectious state, and 

iii) the risk of mortality due to tuberculosis disease.   

 

This framework assumes, of course, that all infectious individuals eventually initiate treatment, 

and that, once treatment is started, all patients successfully complete treatment.  Neither of these 

assumptions is likely to be the case in most settings.  Therefore, the proportion of active TB cases 

that go untreated, and the proportion of patients that successfully complete treatment, will both 

influence the average duration of infectivity in a population. 
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Delay to diagnosis 

 

The delay between the onset of symptoms of active tuberculosis disease (assumed here to 

correspond to the start of the infectious period) and diagnosis/treatment is composed of two 

factors: i) the patient’s delay between the onset of symptoms and seeking medical care (“patient 

delay”), and ii) the delay to accurate diagnosis once care is sought (“health care delay”).   

 

Table A.1.3. Delay to diagnosis of tuberculosis cases: selective summary of the literature.  “Total 

delay” refers to the delay between symptom onset and diagnosis of TB.  “Patient delay” refers to 

the delay between the onset of symptoms and first health care visit.  “Health care delay” refers to 

the delay between the time the patient first sought care and the time the diagnosis of TB was 

made. 
 

Author (Year) Setting Duration of delay (median or mean, as 

indicated) 

Sherman (1999)[166] All culture-positive tuberculosis 

patients without 

previous treatment for 

tuberculosis (n = 184), New 

York City, April 1994. 

Median delay of 57 days  

(Range: 4 – 764) 

Golub (2005)[202] Tuberculosis (TB) patients 

reported to the 

Maryland Department of Health 

and Mental Hygiene 

from 1 June 2000 to 30 

November 2001. (n = 158) 

Median total delay of 89 days, composed of a 

median patient delay of 32 days (range 0–539 

days), and a median health care delay  of 26 

days (range 0–519 days). 

 

Sarmiento(2006)[203] Harlem Hospital Directly 

Observed Therapy 

(DOT) Program, New York 

City. 

Cross-sectional survey of the 

help-seeking behavior 

of TB patients within 2 months 

of their enrollment 

into DOT from May 2001 to 

December 2004. 

(n=39) 

Total delay between symptom onset and 

diagnosis of TB =18.0 weeks 
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Time from initiation of treatment and resolution of infectiousness 

 

Sputum smear status is generally regarded as the main indicator of infectiousness, and is tracked 

over the course of treatment as an indicator of contagiousness.  Patients smear negative at the 

initiation of treatment are considered to be noninfectious after two weeks of treatment [204], 

while initially smear positive patients are considered to be noncontagious once a negative sputum 

smear is obtained on treatment [205].  In a hospital based study conducted between 1997 and 

2001 in Alberta, Canada, the average time to sputum smear conversion among HIV seronegative 

patients with initially smear-positive tuberculosis was 46 days.  Even under the optimal treatment 

conditions under which these cases were managed, however, the time to smear conversion varied 

widely, ranging from 8 to 115 days.   

 

Sputum smear conversion is only a relative indicator of noninfectiousness, however --culture 

conversion is considered as an indicator of absolute noninfectiousness.  In the hospital-based 

study in Alberta, only 34.4% of patients had converted by culture by the time they had converted 

by sputum smear [205].  Hospital-based studies conducted in both Ankara, Turkey, and in 

Madrid, Spain, both reported similar times to sputum and culture conversion: 59.4 ± 32.2 days to 

smear conversion and 57.1 ± 29.9 days to culture conversion in the Turkey study [206], and 34± 

26 and 38 ±32 days in the Spain study [167].  In these studies, the time to smear and culture 

conversion was independently associated with the presence of diabetes [206], high bacillary 

counts in sputum smears at diagnosis, cavitary disease, and infection with a drug-resistant strain 

[167].  

 

Recurrence of disease following successful treatment 

 

Following treatment with standard short course chemotherapy, active tuberculosis recurs in 2 to 

7% of cases [17].  Some proportion of these cases are likely to be due to re-infection events: this 

proportion likely varies widely across populations, however, as it will be dependent upon the risk 

of infection (itself a function of the prevalence of active, infectious tuberculosis cases in a 

population), as well as the population prevalence of factors that increase the risk of progression 

from infection to active disease.  
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In populations where the risk of infection is low, the majority of recurrent TB is likely due to 

recurrence of disease from a primary infection, rather than reinfection.  A molecular 

epidemiologic study of tuberculosis in the Netherlands between 1994 and 1997 suggested that, 

among patients having suffered active TB disease prior to 1981, 25% of new disease episodes be 

attributable to recent re-infection [207].  In cases from two prospective clinical trials of TB 

treatment regimens, a molecular epidemiologic analysis found a relapse rate in HIV negative 

individuals of 3.59 per 100 patient years, compared to a rate of disease due to reinfection of 0.12 

per 100 patient years In HIV positive individuals, the relapse rate was 4.09 per 100 patient years, 

with a rate of disease due to reinfection of 0.27 per 100 patient years [17].   
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Appendix 2 

 

Diversity and Discrimination: Molecular typing markers for M. tuberculosis   

 

Fundamentally, all typing methods rely on diversity: without diversity in the characteristics or 

markers they assess, all organisms typed by a given method will appear the same.  The 4.4 MB 

genome of M. tuberculosis is highly conserved, and the population is a largely clonal one, with 

little sequence polymorphism in structural genes[126].  Horizontal gene exchange, which occurs 

extensively in many bacterial pathogens, such as Escherichia coli and Neisseria gonorrhea, is 

rare in M. tuberculosis [208, 209]. Genetic regions known to be highly variable in other 

mycobacteria have been found to be invariant in M. tuberculosis and an early report found only 

four synonymous nucleotide substitutions among more 200,000 base pairs (bp) of DNA that was 

sequenced from diverse M. tuberculosis strains [210]. This lack of genetic variation surprised 

initial investigators, given the substantial phenotypic variability in the species. Research since 

these early reports has suggested that the M. tuberculosis genome is less homogeneous than 

originally suspected, with comparative genomic studies identifying variability in the form of 

genetic insertions, deletions, and repetitive elements [156, 172, 211].   

 

A number of genotype-base molecular typing techniques have been developed for TB, each 

exploiting regions of variability in the M. tuberculosis genome.  These techniques can be broadly 

categorized into two groups: those based on restriction-fragment length polymorphism (RFLP) 

analysis, which require culturing the very slow-growing M. tuberculosis, and those based on PCR 

amplification, which can be preformed on a smaller number of bacteria and therefore do not rely 

on culture.  These techniques vary greatly in turnaround time, reproducibility, ease of 

communicating and comparing results, and the diversity of patterns generated [34].   

 

Insertion elements 

 

A number of insertion sequence (IS) elements, have been identified in the M. tuberculosis 

genome.  IS elements are mobile genetic elements that encode genes that enable their 

transposition. While IS elements are characterized by their potential to translocate within the 

genome, the stability of the IS elements so far identified in M. tuberculosis appears to vary 

greatly, with the majority exhibiting little variation across strains [34].  One IS element, however, 
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identified as IS6110, is characterized by a high mobility, and substantial diversity in the number 

and distribution of elements present in the M. tuberculosis genome [212]. 

 

A large amount of variation in the M. tuberculosis genome has been associated with the insertion 

(IS) element IS6110.  This IS element is highly variable in number and distribution throughout 

the M. tuberculosis genome, with the number of copies in the genome varying between 0 and 25 

[34].  IS6110 appears to contribute to large sequence polymorphisms (LSPs), as recombination 

between IS6110 elements can result in the deletion of the genetic region between the two 

elements [136].  IS6110 has a higher level of transpositional activity than other IS elements 

identified in M. tuberculosis, and often inserts into coding regions [213].   While IS6110 can 

integrate anywhere in the M. tuberculosis genome, “hot-spots” for insertion have been identified, 

indicating that the distribution of this element throughout the genome is not random [214].   

 

IS6110 RFLP typing 

 

IS6110 RFLP typing, which assesses diversity in the number and distribution of the IS6110 IS 

element throughout the M. tuberculosis genome, is considered to be the “gold standard” in TB 

typing.  In this RFLP-based method, typing patterns are generated by restriction digest of M. 

tuberculosis genomic DNA followed by Southern hybridization using an IS6110 probe [215].  

Despite a slow turnaround time, relatively high expense, and the difficulty in communicating and 

comparing the gel-based patterns that this technique generates, these patterns are highly 

reproducible, and the diversity of patterns generated is considered to distinguish well between 

epidemiologically related and unrelated isolates. 

 

Discrimination based on this technique, however, cannot be considered ideal for the purposes of 

epidemiologic typing.  The diversity of patterns generated by this method depends on the number 

of IS6110 elements present, owing to insertion “hot-spots” which constrain diversity when fewer 

than six IS6110 elements are present [153].  These low-copy number isolates are therefore less 

diverse by IS6110 RFLP, and agree less well with epidemiologic data, than isolates with six or 

more IS6110 elements [114]. Additionally, a study of serial isolates collected from patients over 

time found that changes in IS6110 RFLP pattern were less likely in low-copy than high-copy 

isolates [216].   The rate of pattern change (molecular clock) that is best suited to epidemiologic 

typing of TB is unclear, and while IS6110 is  often described as stable enough to distinguish 

epidemiologically related from unrelated isolates [217], a number of reports have described 
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changes in IS6110 RFLP patterns occurring between isolates that were known to have been 

directly related by transmission [147] [35].  Different rates of pattern change between low copy 

and high copy isolates complicate the interpretation of epidemiologic typing data.  Additionally, 

the molecular clock may vary according to the genetic background of the strain [218, 219], 

further complicating the interpretation of typing results based on this method.   

 

Repetitive polymorphic sequences  

 

DR locus 

 

In an investigation to characterize a putative IS element (IS987), Hermans et al.[220] identified 

an unique locus in the M. tuberculosis genome, which is characterized by the presence of multiple 

direct-repeat (DR) sequences of 36 bp, with non-repetitive “spacer DNA” regions, of  35 to 41 bp 

in length, between each repeat. One of the DR sequences was split by the IS element that was the 

initial focus of their investigation, IS987.  This locus, termed the “DR locus”, was shown to be 

highly conserved within species of the M. tuberculosis complex, and also unique to this complex, 

as it was not identified in any other mycobacteria.  Further investigation of the DR locus revealed 

that M. tuberculosis strains vary in the number of DRs and in the presence or absence of 

particular spacers [221].  

 

Spoligotyping 

 

Spoligotyping, a typing technique based on the PCR amplification of the unique spacer sequences 

between direct repeats of the DR locus, is a rapid, highly reproducible typing technique [217].  

However, the level of discrimination provided by spoligotyping is low relative to other common 

techniques.  While it is somewhat more discriminatory than IS6110 RFLP for low-band isolates, 

this technique is rarely used for epidemiologic typing, other than in conjunction with IS6110 

RFLP as a secondary typing method for low-band isolates. 

 

Although not well suited to epidemiologic typing, spoligotyping is widely used to characterize  

phylogenetic and geographic distribution of M. tuberculosis strains [28, 29], and to assess the 

diversity of the M. tuberculosis population in a given region [222].  Spoligotyping is limited in its 

use as a marker for phylogenetic studies, as the evolution of individual loci in the DR region is 

not independent (Contiguous blocks of spacers can be lost in single deletion events), transposition 
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of insertion sequences can lead to convergence of spoligotype patterns, and evolution is 

unidirectional (spacers can be lost, but not gained) [136].  However, owing in part to the ease and 

economy of the technique, a global database of spoligotyping results is actively maintained [132], 

facilitating international comparisons and communication about spoligotype-defined strain 

families. 

 

PGRS 

 

A whole-genome comparison of two sequenced strains of M. tuberculosis, CDC1551 and H37Rv, 

found high levels of polymorphism in genes of the PE/PPE gene family [32].  Genes of this 

family, some of which have been implicated in virulence or host immune response, comprise 

approximately 5% of the M. tuberculosis genome [33], and represent a major source of genetic 

variability across the species  [223].  The polymorphic GC-rich tandem repeat sequence (PGRS), 

which is present in multiple genomic clusters throughout the genome, is associated with genes of 

the PE/PPE family, and possibly contributes to the antigenic variation that has been associated 

with this family of genes [34]. 

 

pTBN12 typing 

 

While not evaluated as a stand-alone typing technique, pTBN12 typing is one of the most 

common secondary typing techniques used alongside IS6110 RFLP typing to improve 

discrimination among low-band isolates.  This RFLP-based technique employs a recombinant 

plasmid, pTBN12, which carries an insert of PGRS as a probe. RFLP patterns generated reflect 

the number and distribution of the PGRS sequence in the genome [34].  While time and labor 

intensive, this technique provides results that agree well with epidemiologic data for low band 

isolates [140, 224]. 

 

Exact Tandem Repeats, Variable-Number Tandem Repeats, and Mycobacterial Interspersed 

Repeat Units 

 

The publication of the complete sequence from M. tuberculosis strain H37Rv allowed for a more 

systematic investigation of genetic variability.  Using this published sequence, Frothingham and 

colleagues  [225] identified regions of tandemly repeated DNA sequence.  Such regions had 

previously been identified in a diverse array of other organisms, ranging from humans to bacteria, 
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and were noted to be highly variable.  In humans, variability in this type of locus was already 

being exploited as a marker to facilitate genetic mapping as well as forensic and paternity testing.  

In their first report, Frothingham et al. [225] described 6 exact tandem repeat regions (ETR), each 

with a unique repeat sequence of between 53 and 79 bp, and which was highly polymorphic in 

their testing panel of 48 strains from diverse geographic locations.  While initially only a limited 

number of these tandem repeat sequences were identified, in recent years more than 31 additional 

tandem repeat sequences of between 40 and 100 base pairs (bp) have been identified in the M. tb 

genome.  These tandem repeat sequences, variously called Variable Number Tandem Repeats 

(VNTR), Mycobacterial Interspersed Repetitive Units (MIRU), and Exact Tandem Repeats, are 

thought to be the most variable structures in the M. tuberculosis genome families [156]. 

 

MIRU-VNTR 

 

Variability in number of repeats at tandem-repeat loci is exploited in an increasingly favored 

genetic typing approach, most commonly referred to as MIRU or MIRU-VNTR.  This approach 

is highly analogous to microsatellite typing in higher eukaryotes, and the high-throughput 

methods that were originally developed for typing of these organisms has been adapted to use 

with M. tuberculosis.  This PCR-based technique characterizes the number of repeats at each of a 

series of independent loci, resulting in a highly reproducible digital pattern that can be easily 

catalogued and communicated [215].  Initial typing sets for MIRU-VNTR and MIRU-VNTR like 

systems such as ETR were based on very limited sets of loci, and resulted in low levels of 

discrimination.  More recent incarnations of this method use a combination of these original loci 

in addition to more recently identified loci to create typing panels of 12, 15, 25, or 29 loci [123, 

226], which promise substantially higher levels of discrimination.  As this rapid, economical, and 

highly flexible technique may achieve levels of discrimination comparable to IS6110 RFLP 

(assuming the identification of an optimal panel of typing loci), MIRU-VNTR has been heralded 

as the successor to IS6110 RFLP [74, 215].  MIRU-VNTR typing based on a 12-locus panel has 

already replaced IS6110 as the primary typing method for routine TB surveillance in the United 

States [37], and a proposal has been made for the institution of a 15-locus typing panel as an 

international standard [123].   

 

Considerable debate remains regarding the composition of the optimal MIRU-VNTR typing 

panel, particularly if a single panel is to be accepted as an international standard.  As the diversity 

and stability of MIRU loci appears to vary according to genetic family [125], it is questionable if 
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a single typing panel could provide optimal discrimination to differentiate epidemiologically 

related from unrelated isolates across diverse global populations.  This issue is of particular 

concern in populations with a high prevalence of isolates belonging to a specific family known as 

the Beijing family, which is dominant across many countries in Asia and former Soviet Union, 

and a variant of which has been associated with multiple outbreaks of multi-drug resistant (MDR) 

TB in the United States ([169, 227, 228].  In the Beijing family, many of the MIRU loci included 

in standard typing panels exhibit very low levels of polymorphism [45, 46].  MIRU loci which 

exhibit higher levels of polymorphism in the Beijing family have been identified [137, 170], but 

these loci are not included in the MIRU-VNTR typing panel currently used for routine typing in 

the United States, nor in the optimized panel proposed as an international standard [38]. 

 

Stability of MIRU loci 

 

Variation in MIRU loci appears to exhibit stepwise variation in the number of repeats, with 

change occurring by the gain or loss of single repeat units [156].  The mechanism by which this 

change occurs has not been proven, but it has been suggested that, in eukaryotic organisms, 

slipped-strand mis-pairing (SSM) of the DNA polymerase might be the cause [229].  The absence 

of a mismatch repair system in  M. tuberculosis [230] may foster variation by this mechanism.  

While variation in many MIRU loci is consistent with this model [11, 41], the rarity with which 

strand-slippage mutation events occur for repeats as large as those occurring at the MIRU loci, it 

has been suggested that homologous recombination may be a major mechanism for the generation 

of variation at MIRU loci [156].  The level of polymorphism at individual MIRU loci ranges 

substantially, and evidence suggests that the rate of change of individual loci varies, and that this 

variation is dependent on the genetic background of the isolate [125].  A direct calculation of the 

rate of change at these loci is not possible, and the best evidence in vivo comes from 

investigations of serial isolates in persistently infected patients.  In a study of patients with 

persistent disease who remained infectious for up to 2,185 days, serially collected isolates from 

55 of 56 patients exhibited identical MIRU profiles, using a standard 12-loci panel.  The single 

patient with a variant MIRU profile had two serial isolates with 11 identical loci, but which 

differed at MIRU allele 26 by a single repeat difference.  In this same study sample, 11 of 56 

patients had serial isolates with minor variations in their IS6110 banding patterns [160], 

suggesting that patterns based on this 12 loci MIRU typing panel are less stable than patterns 

based on IS6110 RFLP.    
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Stability of typing patterns in latent infection 

 

There is considerable uncertainty regarding the state of M. tuberculosis during latent infection. 

Latent infection has recently been characterized as a dynamic microenvironment, with continuous 

activation of the immune response to restrain replication of the bacteria [85].  Whether or not M. 

tuberculosis replicates during latent infection, and the extent of replication that may occur, is 

unknown.  It has been suggested that both dormant and replicating M. tuberculosis might be 

present in latently infected individuals within different types of lesions [84].   

 

Whether or not molecular typing patterns evolve during latency, a question with clear 

implications for the interpretation of molecular typing data, is similarly uncertain. Evidence from 

an investigation of epidemiologically linked TB cases in the Netherlands with years to decades 

separating the date of suspected infection from the date of disease onset suggest that IS6110 

RFLP patterns are stable over the course of latent infection[40].  While no similar investigations 

have been made using other molecular typing techniques, in vitro evidence suggests that MIRU 

loci evolve slowly in anoxic culture conditions that may be similar to the conditions M. 

tuberculosis experiences within a latent granuloma [156]   
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