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José Costa, Rui Castro, Paulo Tabuada, Eduardo Silva and Pedro Granja.

Finally I would like thank my girlfriend Emile Yane, I owe her my deepest gratitude.

She has been a driving force. She has been there with love and support through good and

bad times and kept me cheerful for the past few years. All the nights she stayed awake next

to me while I worked, all the places and foods we experienced together, all the culture she

introduced to me, for those I will forever thank her. She is the love of my life, my Tang

empress.

The work on this thesis was supported by The University of Michigan, The University

of Pennsylvania, by DARPA/ONR N00014-98-1-0747, by DARPA/SPAWAR N660011-03-C-

8045 and by Fundação para a Ciência e Tecnologia - Portugal, with the fellowship PRAXIS

XXI/BD/18148/98.

iii



AGRADECIMENTOS

Gostaria de agradecer a toda a minha famı́lia e amigos que me ensinaram as experiências

da vida e me ajudaram a criar a minha personalidade. Os meus amigos de infância: Nuno
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ABSTRACT

Robot autonomous navigation is a very active field of robotics. In this thesis we propose

a hierarchical approach to a class of underactuated robots by composing a collection of local

controllers with well understood domains of attraction.

We start by addressing the problem of robot navigation with nonholonomic motion

constraints and perceptual cues arising from onboard visual servoing in partially engineered

environments. We propose a general hybrid procedure that adapts to the constrained motion

setting the standard feedback controller arising from a navigation function in the fully

actuated case. This is accomplished by switching back and forth between moving “down”

and “across” the associated gradient field toward the stable manifold it induces in the

constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions

under which the new procedure brings initial configurations to within an arbitrarily small

neighborhood of the goal. We summarize with simulation results on a sample of visual

servoing problems with a few different perceptual models. We document the empirical

effectiveness of the proposed algorithm by reporting the results of its application to outdoor

autonomous visual registration experiments with the robot RHex guided by engineered

beacons.

Next we explore the possibility of adapting the resulting first order hybrid feedback

controller to its dynamical counterpart by introducing tunable damping terms in the control

law. Just as gradient controllers for standard quasi-static mechanical systems give rise to

generalized “PD-style” controllers for dynamical versions of those standard systems, we show

that it is possible to construct similar “lifts” in the presence of non-holonomic constraints

notwithstanding the necessary absence of point attractors. Simulation results corroborate

the proposed lift.

Finally we present an implementation of a fully autonomous navigation application for

a legged robot. The robot adapts its leg trajectory parameters by recourse to a discrete

gradient descent algorithm, while managing its experiments and outcome measurements

autonomously via the navigation visual servoing algorithms proposed in this thesis.

xiv



CHAPTER 1

Introduction

The ability to navigate is a fundamental aspect to the successful survival of an animal

species. Ranging from bird or mammal migration to bees returning to their honeycombs,

navigation is the next fundamental step once locomotion is achieved. Throughout the years,

research has lead us to believe that animals use various navigation techniques for both the

local scale, e.g. locating food nearby or achieving manipulation, and the global scale, as in

migration. In particular, bees are known to modify their global navigation mechanism when

returning to the honeycomb, depending on the weather [DG81, Gou86, Gou98, MGS+05].

They can switch from a landmark based approach to detecting the polarization of the sun’s

light in the sky. Not only are the sensors different but the navigation paradigm also changes.

In the robotics community it is common to accept the navigation paradigms to be metric

(also called grid-based by some authors [Thr98]), topological or hybrid. Parallels can be

found in nature for these paradigms, most notably the human: local navigation, typically

metric, is accomplished using vision or touch. Global navigation, typically topological, uses

landmarks, e.g. doors, sidewalks, street names, hills, trees, etc.

Metric navigation — In a perfect metric world a robot navigates by knowing the

exact distances away from landmarks, obstacles and its desired position. When doing

manipulation, in general the important parameters are the joint limits and geometry of

the objects being manipulated. In practice, due to the difficulty of exactly representing or

parameterizing the surrounding environment, it is common to use simplifications based on

either deterministic or stochastic approaches.

Stochastic approaches for metric navigation arise naturally due to the imperfect nature

of sensor measurements. When navigating in unknown environments and relying solely on

onboard sensors, it is reasonable to represent the world as a grid and the position of the

robot or manipulating arm as a probability distribution function in that grid. This type

of modeling has been successfully applied in many real world robotic applications using

occupancy grids as in [Elf89,AdRMF99,Ols00,SKP05,BC06] or non-parametric approaches

such as particle filters as in [FTBD01,CLLH07,GSB07].

The deterministic approach normally relies on finding an approximate model for the

1



surrounding environment or workspace. Mathematically this is accomplished by defining the

configuration space of the robot to be an embedded manifold in the Euclidean space. (We

define configuration space or configuration manifold to be the obstacle-free locations where

the robot can safely navigate and/or manipulate). Koditschek and Rimon [Kod87c,RK92]

developed a class of general bounded n-dimensional “workspaces” that result in compact

manifolds. We use this representation of the world throughout this thesis. Although the

deterministic approach cannot model the sensor error and uncertainty, using techniques such

as visual servoing for robot navigation can result in excellent practical results. Moreover,

there are many situations where the obstacles that either dent or puncture the configuration

space are actually known à priori, such as field of view obstacles for cameras or joint limits for

actuators. In these situations one can find closed form representations for the configuration

space since the obstacles do not change over time nor are they acquired by exteroceptive

sensors. The deterministic approach also has the advantage of being able to allow for a

tight integration between the robot’s motion model dynamics and its energy exchanging

interaction with the environment by describing the world as compact manifolds. This way,

a large body of work on differential geometry spanning back to the sixteenth century can

be applied throughly. In the subsequent sections we provide solid argumentation for the

real work utility of this approach.

Although the control strategy used for navigation is intimately related to the represen-

tation of the configuration space, it is important to distinguish between navigation and the

map building process. The recent work accomplished on SLAM (Self localization and map

building) [DWB06,BDW06] merges the two concepts by implementing navigation with the

purpose of building a map of the environment and vice versa. However, in many applica-

tions a map can be provided à priori giving more freedom to choose the types of control

strategies that can be utilized for metric navigation. In this thesis we use that assumption

and rely on well structured environments, resulting in very robust feedback controllers that,

although being modeled for continuous wheeled robots, perform very well in a discretely

actuated legged robot.

Topological navigation describes the world from a graph theory point of view. Each

node represents a particular situation, location or landmark of the environment, and each

arc represents a direct path between two landmarks. This strategy becomes very relevant

when the configuration space of the robot is very large and complex. Implementation results

can be found in [Mat90,KB91,EM92,KW94,PK94,Tor94,YB96,Zim96].

Hybrid topological/metric navigation — Given the different strengths and weak-

nesses of both metric and topological approaches, it is common to use both in a hybrid way.

See Thrun [Thr98] for a thorough comparison of both approaches. In this framework one

decouples the normally locally continuous dynamics dealing with manipulation, obstacle

avoidance and basic locomotion, from the normally global topological navigation, dealing

with the high level “map reading”. In general the classes of algorithms utilized in such a

2



hybrid way arise from different fields of mathematics.

In this thesis we start by introducing a novel class of robust feedback controllers for

local outdoor navigation of a legged robot guided only by visual cues. Conceptually, there

are three broad problems associated with this task. First, the requirement for perceptu-

ally reliable landmarks, an instance of the long-standing “early vision” problem that we

explicitly avoid by engineering the visual beacons that comprise the physical landmarks.

Second, the transformation of discrepancies between perceived and desired visual landmark

appearance into feedback forces capable of “safely” correcting the errors in pose that cause

them is effected by a monocular camera via a slightly generalized extension of prior work.

Finally, the effective application of these restoring forces in a manner that respects both

the constrained control authority over rigid body motion afforded by a legged gait and the

perceptual requirements.

In Chapter 3 we pursue a solution linking the second and third problem by encoding

the perceived discrepancies in terms of artificial potential functions. For fully actuated

systems, potential-dissipative force fields offer a natural and direct generalization of linear

proportional-derivative servo control for general mechanical systems [Kod91]. The wide pop-

ularity of such PD controllers attests to their robustness against sensor noise and imperfect

models. However, for underactuated systems when the number of independently actuated

degrees of freedom decreases relative to the dimension of the total configuration space, there

is no general method for applying PD control. For autonomous outdoor robots, it is crucial

to develop perception-driven controllers, yet in consequence of ubiquitous power-to-weight

limitations, autonomous robots are intrinsically underactuated. Hence, we draw the great-

est practical motivation for extending PD methods to underactuated settings precisely in

such contexts as visual servoing for a rugged and underactuated outdoor vehicle like the

hexapod, RHex [SBK01].

This thesis presents an extension of PD control to the class of two-actuator, three-degree-

of-freedom mechanical systems that includes the simple “unicycle” kinematics crudely de-

scriptive of the horizontal plane behavior of RHex. By so modeling the robot as a drift-free

constrained kinematic system and by treating the perceptual limitations of a monocular

camera observing the robot’s horizontal plane pose as incurring obstacles in the robot’s

configuration space, we arrive at the formal problem of set point regulation in the face of

simultaneously nonholonomic motion constraints and holonomic perception constraints. We

approach this problem by merging aspects of the work developed for nonholonomic systems

with well verified visual servoing algorithms. The next two sections give an account on

these two topics.
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1.1 Nonholonomic mechanics

Bloch et al. [Blo03] presents an in-depth bibliographic review and history of nonholo-

nomic systems from a mathematician’s perspective. In this introduction we put more em-

phasis on the applied control for robotic platforms. We start by introducing the main

concepts of nonholonomic mechanics and present the most general set of equations with

nonholonomic constraints. We then proceed by adding structure until reaching specific

robotic applications, discussing the contemporary bibliography throughout the exposure.

Lie algebra theory is a very common tool on the study of nonholonomic systems, however,

we choose not include a thorough description of its definition in this thesis since it is only

relevant for the introduction and future work. For a reference on Lie groups and Lie algebras

see [Cur70,DK99,Bak02,Hal03,EW06].

From Bloch et al. [Blo03], the study of nonholonomic systems dates back to the late

nineteen century when Voss [Vos85] and Hertz [Her94] introduced the distinction between

holonomic and nonholonomic systems. Vierkandt [Vie92] and Chaplygin [Cha97] provided

the first analysis of the rolling disk and sphere, traditional examples of nonholonomic sys-

tems. The accepted general formulation for systems with nonholonomic constraints, af-

ter Korteweg [Kor99], is the Lagrange–d’Alembert equations that we review below. Let

q = (q1, . . . , qn) be generalized coordinates in the configuration manifold Q. Consider a sys-

tem with constraints given by the following m equations, linear in the velocity field, where

m < n and j = 1, . . . , m:

n∑

i=1

aj
i (q)q̇

i = 0. (1.1)

If there exist functions hj that only depend on the positions, such that hj(q) = 0, and its

time derivative

n∑

i=1

∂hj

∂qi
q̇i = 0, (1.2)

determine the same constraint distribution as the constraints (1.1), then one says that the

constraints are holonomic or integrable. In this case the system lives in a submanifold of

the configuration manifold. This submanifold is defined implicitly by the set of equations

hj(q) = 0. If no such functions hj exist then the constraints are called nonholonomic

or nonintegrable. The Lagrange–d’Alembert equations, also called nonholonomic equations,

take the form

d

dt

∂L

∂q̇i
−

∂L

∂qi
=

m∑

j=1

λja
j
i , (1.3)

together with equation (1.1), where λj are the Lagrange multipliers. For the derivation of
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the previous equation see Bloch et al. [Blo03].

1.2 Nonholonomic Control

The philosophy behind nonholonomic systems lies in controlling the unactuated state

variables by appropriately steering the actuated subset of the state variables, normally de-

noted base or shape variables. Since in general the base variables can be readily stabilized,

it is common to build controllers that “loop” in the base space (the invariant manifold

of the base variables). Researches have approached this problem from different perspec-

tives, notably using classical nonlinear control tools such as Lyapunov analysis, or recurring

to geometric control using Lie group/algebra techniques. The controlled version of the

Lagrange–d’Alembert equations (1.3) is:

d

dt

∂L

∂q̇i
−

∂L

∂qi
=

m∑

j=1

λja
j
i +

l∑

j=1

bj
iuj , (1.4)

n∑

i=1

aj
i (q)q̇

i = 0 j = 1, . . . , m. (1.5)

Some of the work in controllability and stability of the controlled Lagrande–d’Alembert

include Sussmann [SJ72], Hermann [HK77], and Murray [MS93, MLS94]. When the La-

grangian L is defined for a mechanical system by taking the form of K − V , i.e. Kinetic

energy minus the Potential energy, and the Kinetic energy takes its traditional quadratic

form K = q̇T M(q)q̇, one can rewrite equations (1.4),(1.5) using the nonholonomic mechan-

ical system equations:

M(q)q̈ + c(q, q̇) = AT (q)λ + B(q)u (1.6)

A(q)q̇ = 0 (1.7)

Bloch et al. [BR92] is a classical reference on stabilization and control using this set

of equations. Contemporary applied articles that follow this formalism include Wang

[WGL04], Dong [DK05], Beji [BB05], and Li [LGM07] for adaptive control; Oya [OSK03],

Chwa [Chw04], Anupoju [ASO05], Chang [CC05], Coelho [CN05], Tsai [TWC06], and Tan-

ner [Tan06] in tracking control. Other authors use this set of equations in specific topics

including Lin in fuzzy control [LHC05], Faulring in a haptic display modeling [FLCP07],

Ghommam in a vessel stabilization [GaABD06] and Salermo in a Segway-style vehicle con-

trol [SA07].

Equations (1.6)-(1.7) encapsulate both the dynamical and kinematic aspects of nonholo-

nomic systems. In many practical cases, however, it is reasonable to ignore the dynamics,

i.e. the masses and inertias, and analyze only the kinematic equations. The most commonly
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used wheeled robotic systems result in the nonholonomic affine kinematic model,

q̇ = f(q) + g(q)u, (1.8)

or the nonholonomic drift-free kinematic model,

q̇ = B(q)u. (1.9)

1.2.1 Aspects of controllability

The general notion of controllability (existence of an admissible input u(t), t ∈ [0, T ]

such that q(0) = q0 and q(T ) = qf , q0, qf ∈ Q) is in general very difficult to verify for

arbitrary systems. The properties of accessibility and reachable sets have been introduced

to address the local structure of the system at hand. See Sussmann [SJ72] and Bloch [Blo03],

page 177, for their definitions. Accessibility is simpler to verify and in specific situations

can imply controllability. This is true for “well behaved” drift free systems. Consider the

expanded form of the drift-free equation (1.9):

q̇ = X1(q)u1 + · · · + Xm(q)um (1.10)

Let ∆1 = span{X1, . . . Xm} be the distribution associated with the previous drift-free

system. Define the filtration of ∆1 to be the chain of distributions ∆i by

∆i = ∆i−1 + [∆1, ∆i−1] (1.11)

with

[∆i, ∆i−1] = span {[Xj , Xk] : Xj ∈ ∆i, Xk ∈ ∆i−1} (1.12)

and [Xj , Xk] = DXjXk − DXkXj the function Lie bracket. A filtration is called regular

if in a neighborhood U of q0 each of its distributions have constant rank in U . A control

system is called regular if its associated filtration is regular. Since for all i, ∆i ⊂ TR
n then

there exists an integer p < n such that ∆i = ∆p+1 for all i ≤ p + 1. The smallest such p is

called the degree of nonholonomy of the system. We obtain the important result:

Theorem 1.1 (Chow’s theorem for regular systems). Let system (1.10) be regular. Then,

there exist admissible controls u to steer system (1.10) between two given arbitrary points

q0, q1 ∈ U iff for some p

∆p(q) = TqR
n ≃ R

n,∀q ∈ U (1.13)

This theorem is sometimes called the Lie algebra rank condition (LARC) or accessibility
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rank condition. It states that controllability of system (1.9) is achieved if

dim∆p(q) = n (1.14)

The distribution ∆p(q) can be constructed using the Phillip Hall basis (for more information

see [Aus67,Lau93]). The class of systems analyzed in this thesis are assumed to be regular,

equipped with real analytic vector fields, allowing the direct application of Theorem 1.1.

1.2.2 Classical nonholonomic control results for drift-free systems

Laumond’s book [Lau98] includes a complete bibliographic reference of the accomplish-

ments in applied nonholonomic control with emphasis to cars with multiple trailers and

chain systems. The paper-collection book by Li and Canny [LC93] gives a good account of

the state of the art in the early nineties. We revise here the classical work of Lafferriere

and Sussemann [LS93] on nilpotent systems and Murray and Sastry [MS93] on steering

with sinusoids. Both approaches take advantage of particular structural elements of the Lie

bracket of the system’s vector field algebra.

Let q be a point on a manifold and suppose X is a vector field well defined in a neigh-

borhood of q. Then there exists a unique1 curve γ such that γ(0) = q and γ̇(τ) = X(γ(τ)).

Define the exponential of αX, with α ∈ R, to be the point γ(α) denoted by eαXq. Then eαX

is an operation on the manifold that results in following the vector field X for an α amount

of time. Given two vector fields X and Y , applying eX+Y is the equivalent of following the

vector field X+Y for a unit time. If the vector fields are not involutive, i.e. [X, Y ] 6= 0, then

following X + Y is not equivalent to following first X and then Y . The Baker-Campbell-

Hausdorff formula captures this property and relates the two representations:

eαXeαY = eαX+αY + 1
2
α2[X,Y ]+O(α3) (1.15)

The higher order terms are functions of the higher order brackets of the vector fields. Using

the log function for simplicity one can re-write equation (1.15) as:

log(eαXeαY ) = αX + αY +
1

2
α2[X, Y ] +

1

12
α3[X, [X, Y ]] −

1

12
α3[Y, [X, Y ]]

= −
1

48
α4[Y, [X, [X, Y ]]] −

1

48
α4[X, [Y, [X, Y ]]] + . . . (1.16)

A system is called nilpotent of order p if any p+1 composition of brackets of the system’s vec-

tor fields Xi vanishes, i.e. if [Xµ(1), [Xµ(2), . . . [Xµ(p), Xµ(p+1)], . . . ] vanishes for any integer

function µ(i). Lafferriere and Sussemann take advantage of the Baker-Campbell-Hausdorff

formula and nilpotent systems to find sequences of motion eα1Xµ(1)eα2Xµ(2) · · · eαkXµ(k) (piece-

wise continuous control) that can reach any point exactly. This is due to the fact that the

1See Curtis [Cur70] for proof.
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higher order brackets of the system vanishes and equation (1.15) becomes exact. Although

most systems are not nilpotent, Lafferriere and Sussemann present a mechanism for trans-

forming particular systems into a nilpotent form by feedback.

Murray and Sastry [MS93] start from an optimal control perspective to find sinusoidal

inputs to steer the chain form system (a class of nonholonomic systems that we describe in

Appendix B.1.2). The idea for their algorithm is the following:

1. Steer the directly actuated variables to their desired values ignoring the evolution of

the unactuated variables.

2. Using sinusoids at integrally related frequencies find an input that steers the unactu-

ated variables to their desired values. By choice of the input the directly actuated

variables are unchanged.

Many extensions to this idea followed, notably Sørdalen [rda93] shows the conversion of the

kinematics of a car with n trailers into a chained form, and Tilbury et al. [TMS95] steers

all the coordinates simultaneously.

1.2.3 Contemporary results using geometric control

The idea of looping in the base variables to achieve motion on the unactuated state

variables was carefully explored formally by Bloch [Blo03] and Marsden [MR99]. Later,

Ostrowski [Ost96], Shammas [Sha06] and others, applied this theory to a class of rolling

robots. In this body of work one partitions the n-dimensional configuration manifold Q into

two parts: an l-dimensional Lie group G and an n− l dimensional base space M, arising as

a quotient space in the sense that M = Q/G. This formulation works particularly well for

robot control since they generally either live in the plane SE(2) or in 3D space SE(3), both

of which clearly have a Lie group structure. The base space M will normally contain the

actuated degrees of freedom of the robot. Looping in the base space will result in motion

in the group, i.e. motion in the physical world. This partition generates a principal fiber

bundle structure, denoted Q(M, G). If the configuration manifold can be written as the

Cartesian product of the group with the base spaces, Q = G × M, then the manifold Q

is called trivial principal fiber bundle. The previous decomposition allows moving from a

2n-dimensional systems equations in the Lagrangian form, to a n + p < 2n reduced form.

The dynamics described by the latter system of equations have the form of a reconstruction

equation for the group element g ∈ G, an equation for the nonholonomic momentum p, and

the equations of motion for the reduced variables r defined in the base space M. In terms

of these variables, the equations of motion have the functional form:

g−1ġ = −A(r)ṙ + B(r)p (1.17)

ṗ = ṙT α(r)ṙ + ṙT β(r)p + pT γ(r)p (1.18)

M(r)r̈ = −C(r, ṙ) + N(r, ṙ, p) + τ (1.19)
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Please see [BKMM96] for the derivation of the previous equations2. The important aspect

of this set of equations (besides being reduced order) is the decoupling of the group variables

g from the base variables r in equation (1.17), normally called the action of the group on

the shape. Equations (1.18),(1.19) encapsulate solely the virtual moment p and the shape

variables. Ostrowski [Ost96], and later Shammas [Sha06] follow the classification from

Bloch et al. [BR92] for different types of nonholonomic systems that simplify equations

(1.17)–(1.19). We summarize them in Table 1.1.

Table 1.1: Classification of nonholonomic systems.

Mixed systems equations (1.17)–(1.19)

Principally kinematic
g−1ġ = −A(r)ṙ (1.20)

ṙ = u (1.21)

Purely dynamic
g−1ġ = B(r)p (1.22)

plus equations (1.18),(1.19)

When a principal fiber bundle structure is available and the Kinetic energy takes its

typical quadratic form, the mixed system equations (1.17)–(1.19) are equivalent to the

mechanical systems equations (1.6),(1.7). Moreover, the principally kinematic equations

(1.20),(1.21) are equivalent to the 1st order affine equations (1.8).

Recently, Morin and Samson [MS03] presented an interesting feedback control solution

for principally kinematic systems by introducing the notion of transverse functions f . These

functions exhibit the property that their Jacobian is always orthogonal to the group distri-

bution. By creating a new set of variables θ that live in a n − m–torus (variables that will

induce loops in the base space), together with the special crafted transverse functions result

in a full rank Jacobian H that allows for inverse dynamics. This way feedback control can

be accomplished for an intermediate system ż = Z(z) that results in practical stability for

the group variables, i.e. stability up to a arbitrary small neighborhood ǫ of the goal. Let

gh : G×G → G be the group product and Lgh : h 7→ gh, Rgh : h 7→ hg be the left and right

translations respectively. Using Morin’s notation, let z, g ∈ G, ǫ > 0, let Xi be left-invariant

vector fields, and define the intermediate variable to be z = gf−1
ǫ with

ġ =
m∑

i=1

Xi(g)ui + P (g, t), (1.23)

2The term g−1ġ is written TgLg−1 ġ where ThLg is the tangent space of the left translation [EW06].
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an nonholonomic affine system with drift term P (g, t) (equivalent to a principally kinematic

system). They prove the existence of a map fǫ : U × T
n−m → G, where U ⊂ G is a

neighborhood of the identity e in G parameterized by ǫ, such that:

Gfǫ(θ) = span{X1(fǫ(θ)), . . . , Xm(fǫ(θ))} ⊕ dfǫ(θ) (1.24)

i.e. The Jacobian matrix H(θ) =
[

X1(fǫ(θ)) . . . Xm(fǫ(θ))
∂fǫ

∂θ1
(θ) . . . ∂fǫ

∂θn−m
(θ)

]

is full rank. Using this result they find a controller for system (1.23) by following the steps:

g = zfǫ ⇔ ġ = TzRfǫ ż + TfǫLz ḟǫ

⇔ TzRfǫ ż =
m∑

i=1

Xi(g)ui + P (g, t) − TfǫLz

n−m∑

j=1

θ̇j
∂fǫ

∂θj
(θ)

⇔ ż = (TzRfǫ)
−1

[
TfǫLz

m∑

i=1

Xi(fǫ)ui

︸ ︷︷ ︸
Xi is left-invariant

+P (g, t) − TfǫLz

n−m∑

j=1

θ̇j
∂fǫ

∂θj
(θ)

]

⇔ ż = TgRf−1
ǫ

TfǫLz




m∑

i=1

Xi(fǫ)ui + TgLz−1P (g, t) −
n−m∑

j=1

θ̇j
∂fǫ

∂θj
(θ)





︸ ︷︷ ︸
Since H is invertible then replace by TgL

z−1TzRfǫZ(z)

⇔ ż = Z(z)

The resulting system input is

[
u

−θ̇

]
= H(θ)−1TgLz−1 (TzRfǫZ(z) − P (g, t)) . (1.25)

Note that since the function Z(z) is arbitrary it can possibly be chosen to encode obstacles

up to a neighborhood ǫ, however, at the time of writing of this thesis, this option has not

been not explored by the authors. I hope to address this structure in future work due to

its promising properties.

1.2.4 Examples: the Heisenberg system and the Unicycle

The Heisenberg system or nonholonomic integrator [Bro82,Bro83], originated from quan-

tum mechanics algebra, is a canonical example that has played an important role in the

development of nonholonomic mechanics and control. Let q = (x1, x2, x3). For the velocity

constraint equation

ẋ3 = x2ẋ1 − x1ẋ2 (1.26)
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one can find the maximal set of independent vectors that verify (1.26), resulting in the

system

q̇ = B(q)u =




1 0

0 1

−x2 x1




[
u1

u2

]
, (1.27)

or in full form:

ẋ1 = u1

ẋ2 = u2 (1.28)

ẋ3 = x1u2 − x2u1

Bloch [Blo03] provides an example of optimal control on this particular system. The Heisen-

berg system can be generalized to SO(n+1), with x, u ∈ R
n and Y ∈ SO(n) by the following

equations:

ẋ = u (1.29)

Ẏ = [u, x] (1.30)

If we represent Y as a matrix group element, then equation (1.30) can be written as matrix

commutator:

Ẏ = xuT − uxT (1.31)

In [BD97,BDK00], Bloch et al. present a stabilization solution for the generalized Heisen-

berg system.

The planar unicycle, illustrated in Figure 1.1, is by far the most referenced and imple-

mented kinematic nonholonomic system. Many specific controllers have been developed for

this system. Kim et al. [KT02] compare the performance of some of these algorithms via

experimental validation. Recently, some interesting work has spawn in flocking and pur-

suit topics using unicycle-like robots, as in Vidal et al. [VSS04], Marshall et al. [MBF04],

and Moshtagh et al. [MJ07]. The unicycle is defined by the following velocity constraint

equation, with q = (x, y, θ):

ẏ cos(θ) − ẋ sin(θ) = 0, (1.32)
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Figure 1.1: The kinematic unicycle on a plane.

resulting in the system

q̇ = B(q)u =




cos(θ) 0

sin(θ) 0

0 1




[
u1

u2

]
, (1.33)

or in full form:

ẋ = cos(θ)u1

ẏ = sin(θ)u1 (1.34)

θ̇ = u2

We utilize the unicycle model in most of the simulation work developed for this thesis since

it provides a very simple (although only loosely accurate) motion control model for RHex’s

robot horizontal plane behavior.

1.2.5 Classification and Complexity

The notion of algorithmic complexity from a nonholonomic control point of view has

been addressed by Risler et al. [Ris96], Laumond [LR96], and others. In particular, Frédéric

Jean [Jea01] discusses various proposals of its definition and shows that the degree of non-

holonomy is an important measure for the complexity of a stabilizing algorithm. In this

section, together with Appendix B, we group and revise the most commonly cited kine-

matic nonholonomic systems in an attempt to understand what are the important classes

of systems that one should tackle. In Figure 1.2, accompanied by Table 1.2, we plot the

various systems on a degree of nonholonomy versus dimension graph. By enumerating the

most common systems in this fashion we observe that the “worst” complexity occurs in the

diagonal (there can be no systems below the diagonal since one needs at least two vector

fields to realize a Lie bracket). However, only the cars with trailers and chained systems

(known to be equivalent up to a change of coordinates [rda93]) lie on the diagonal, with the

exception of the recently modeled needle system [IKC+06]. This table shows that most of

the systems are clustered in particular degree of nonholonomy/dimension pairs, although

in theory one should be able to construct specialized systems to fill in all the pairs. One
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can also observe that most systems have a degree of nonholonomy 1 or 2. In fact, due to

algorithmic complexity, systems with a high degree of nonholonomy will most likely not be

efficient, and therefore should be avoided. In general, by adding more actuators one can

reduce the degree of nonholonomy and therefore its complexity.

Table 1.2: Legend for Figure 1.2. See Appendix B for a complete reference of the parameters
presented in this table.

Degree of
System nonholonomy Dimension

H(n) Heisenberg systems with n ≥ 2 inputs 1 n(n + 1)/2

U The kinematic unicycle 1 3

R Hopping robot in flight 1 3

Sat Satellite with 2 control inputs [WS95] 1 3

Hi(n) Hirose snake with n links [Hir93] 1 2n + 2

Sh(n) Shammas snake with n links [SCR05] 2 n + 2

Sub(n) Submarine with n control inputs {1,2} 6

J(n) Mod Jacobi n control inputs 2 n(1 + 3n + 2n2)/6

B The ball-plate system 2 5

F The fire truck 2 6

O(n) One chain system of dimension n ≥ 3 {1,2,3,. . . } n

C(n) Car with n trailers {2,3,. . . } 4 + n

N Needle [IKC+06] 4 6
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Figure 1.2: Classification of common nonholonomic systems.

We finalize this section with Figure 1.3. Here we present graphically the stratification

of nonholonomic systems presented in Section 1.2. We start at the top with the general

Lagrange–d’Alembert equations. Adding structure results in increasingly specialized sys-

tems for whom more control algorithms are available. The blocks on the right of Figure 1.3

represent the contemporary developments utilizing the method of reduction [Ost96]. The

classes of systems addressed in this thesis are encapsulated in the boxes with the thicker

solid borders.
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Lagrange–d’Alambert

d

dt

∂L

∂q̇i
−

∂L

∂qi
=

m
X

j=1

λjaj
i+

l
X

j=1

bj
i uj

n
X

i=1

aj
i (q)q̇

i = 0 [Blo03]

Nonholonomic mechanical
systems

M(q)q̈+c(q, q̇) = AT(q)λ+B(q)u

A(q)q̇ = 0

[BR92], Chapter 4

Reduction — fiber bundle
structure and left invariant

Lagrangian

[Ost96]

1st order affine systems

q̇ = f(q) + g(q)u

1st order affine with group
structure

ġ =
m∑

i=1

Xi(g)ui + P (g, t)

[MS03]

Drift free systems

q̇ = B(q)u

[LS93]

Chain systems

ẋ1 = u1

ẋn = xn−1u2

[MS93]

Principally Kinematic

TgLg−1 ġ = −A(r)ṙ

ṙ = u

[SCR05]

Heisenberg system

ẋ = u

Ẏ = [x, u]

[BDK00]

Feedback control in R
3

f1(q) := −H∇ϕ(q)

f2(q) := σA ×∇ϕ(q)

Chapter 3

Figure 1.3: Stratification of nonholonomic system equations with relevant references.
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1.3 Visual Servoing

The notion of visual servoing, controlling the motion of a robot by using computer

vision data, has been studied intensively in recent years due to the advances in computing

platforms.

Some of the configurations used in visual servoing include a camera attached to a robot,

an exterior fixed camera looking at the robot’s motion, or for example, a mechanical arm

with a camera attached at its extremity (normally called eye-in-hand). In this thesis we

focus on the first: the motion of the robot inducing motion on the camera.

The classical approach to visual servoing, described in the tutorial papers by Chaumette

and Hutchinson [CH06,CH07], encodes the previous configurations by minimizing an error

e associated with a vector of visual features s ∈ B ⊂ R
k in relation to a set of fixed features

s∗ in the following manner:

e(t) = s(m(t), a) − s∗, (1.35)

where m(t) is a vector of measurements and a encodes additional known parameters of

the system. There exists two main techniques to solve this problem: image-based visual

servoing (IBVS) and position-based visual servoing (PBVS). One identifies the difference

between these two approaches by either building the controller in the image feature space or

in the robot’s configuration space. The advantages and disadvantages of both approaches

are described in detail in [CH06]. In practice the feature set s and its goal location s∗

will either be defined by features directly extracted from the image or they will live in the

3D world after a pose computation step. This thesis takes an image-based visual servoing

approach by extracting centroids of colorful objects in the image plane directly. The full

image processing pipeline developed for this thesis is presented in detail in Chapter 6.

1.3.1 Image-based visual servoing

Suppose one has a fully actuated robot with a camera attached to it, and a set of well

defined features or landmarks scattered throughout the surroundings of the robot. Typically,

the set of image features s relates to the camera pose q via a nonlinear transformation c,

denoted the camera map.

s = c(q). (1.36)

The spacial velocity of the camera vc = q̇ (normally vc ∈ R
n is defined in se(2) or se(3) ,

i.e., n = {3, 6}) will induce a velocity in the image features ṡ:

ṡ = Lsvc. (1.37)
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The matrix Ls = Dc ◦ c−1(s) ∈ R
k×n, denoted iteraction matrix or feature Jacobian. As-

suming that the velocities vc are the inputs for the robot, i.e. it is fully actuated, then a

simple exponential stabilizer can be found by letting

vc = −λL†
se, (1.38)

where L†
s = LT

s (LsL
T
s )−1 is the pseudo-inverse of Ls. The variation of the error e is

ė = Lsvc = −λLsL
†
se ≤ 0 (1.39)

In practice since Ls and L†
s are not exactly known, approximations are built for both

matrices. A large body of work is dedicated to model and approximate the iteraction

matrix for different types of image features as in the references within [CH06,CH07].

Due to the structure of IBVS, controllers built in the image space may result in non-

optimal trajectories in the configuration space. This is due to the fact that vision based

controllers are normally built to “minimize” the trajectories of the features in the image

plane of the camera, “ignoring” the configuration space of the robot. This problem does

not occur in the PBVS paradigm.

1.3.2 Position-based visual servoing

In this paradigm the camera features are used to compute a vector s in SE(2) or SE(3)

that in general, represent the pose of the features in the local body coordinates. Hence, the

camera map c is a transformation in SE(n) resulting in a square iteraction matrix. Using

the same linear controller as before, we obtain the following equation for the error variation:

ė = Lsvc = −λLsL
−1
s e = −λe ≤ 0 (1.40)

For this configuration one obtains exponentially decreasing speeds and most likely geodesic

trajectories in the configuration space, depending on the parameterization of s. This results

in good trajectories in the configuration space and less good trajectories of the features in

the camera image plane.

1.3.3 Visual servoing via exact changes of coordinates

When a known diffeomorphism3 c exists between the feature space B and the robot’s

configuration space Q, the visual servoing problem becomes considerably simple. Let c :

Q → B be C1 such that s = c(q), with q ∈ Q and s ∈ B. Choose ϕ : B → R
+ to be a

positive definite function in B for s∗, such that ϕ(s∗) = 0 and ϕ(s) > 0,∀s 6= s∗. Using the

3For definition see Section 2.1
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negative gradient of ϕ ◦ c(q) as a velocity input results in the error variation equation:

ė = −Ls ∇q (ϕ ◦ c(q))|q=c−1(s) =

= −Dc ◦ c−1(s)DcT ◦ c−1(s)∇sϕ(s)

= −K∇ϕ(s) ≤ 0 (1.41)

where K = DcDcT is positive definite since c is a proper diffeomorphism. If a PBVS

algorithm is being utilized, then the camera map c will be a rotation R plus translation t.

The iteraction matrix is Ls = R and equation (1.41) becomes

ė = −RRT∇ϕ(s) = −∇ϕ(s) ≤ 0 (1.42)

1.4 Navigation with perceptual limitations and motion con-

straints

As described before, both the IBVS and PBVS control schemes have advantages and

disadvantages. While the IBVS can be good for maintaining the integrity of the features

on the image plane, it may result in non-optimal trajectories of the robot. The PBVS

on the other hand, can result in poor feature trajectories in the image plane and good

trajectories of the robot. These shortcomings become even more relevant in the presence

of obstacles in the image plane. These obstacles normally refer to feature occlusions by

leaving the camera field of view or by object self-occlusion. From this perspective, the

IBVS seems more appropriate since one can model the iteraction matrix and the camera

velocity controllers to accommodate for such obstacles directly. However, in the presence

of motion constraints, such as nonholonomic, it is expected that the PBVS scheme be

better suited since its controllers are built in the same manifold as the robot’s configuration

manifold. In this thesis we take an IBVS approach by developing a class of diffeomorphic

camera maps and building gradient controllers directly in the image feature space.

Few researchers have addressed the dual problem of motion constraints and perceptual

limitations. Among these we find the work of Kantor [KR03], Murrieri [MFB04], Bhat-

tacharya [BMCH04] and Folio [FC05]. However, these authors assume a particular set of

constraints for which a feedback control law is subsequently developed to take into account

the special form. Murrieri et al. develops a collection of specialized Lyapunov based con-

trollers for a wheeled vehicle, with perception limited by the monocular camera’s field of

view. Folio et al. proposes switching between three controllers that each deal with the

visual servoing task at hand, beacon occlusion or obstacle avoidance. However this task

is facilitated by a pan camera mechanism on a cart-like car, resulting in the problem of

stabilization in SE(2) with 3 available inputs. Kantor et al. combine Ikeda’s variable con-

straint control [INMA99] with the notion of sequential composition of controllers [BRK99]
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to drive the robot RHex to a specified goal location. This approach results in efficient

trajectories but can be difficult to reuse on systems with different motion models and/or

different perceptual constraints. Bhattacharya et al. take a geometric approach and find

minimum length paths, but again, implemented for a specific configuration space.

1.5 Contributions of the thesis

In this thesis, we take a few steps toward a more general approach to perception-based

servoing that decouples the (typically holonomic) perceptual constraints from the (typ-

ically nonholonomic) kinematic constraints by adapting an “arbitrary” navigation func-

tion [Kod92] to an “arbitrary” nonholonomically constrained first order mechanism operat-

ing in the configuration space comprising the navigation function’s domain. The encoding

of holonomic constraints via navigation functions is a very effective means of construct-

ing “designer” basins around specified goal points for fully actuated first and second order

mechanisms. For example, in visual servoing applications, the navigation function takes

into account external constraints like limited field of view, obstacles, and so on. We are

most immediately motivated by the prospect of extending Cowan’s [CWK02] work on nav-

igation with triple-beacon landmarks to the robot RHex, but we introduce a more general

framework for nonholonomically constrained visual servoing via PD control. We offer two

other examples of navigation functions arising from perceptual apparatus that provide some

feeling for the virtue of the more general view.

This thesis makes four specific contributions. First, we adapt Cowan’s construction of

a navigation function for moving landmarks viewed by a stationary monocular camera to

the “inside out” case of a moving monocular camera viewing a fixed landmark. This entails

generalizing the “camera map” for convex landmarks to the more general setting relevant

to outdoor mobile robotics with landmarks formed by any triplet of beacons in general

position (i.e., whose convex hull encloses a set with non-empty interior on the plane).

Second, we construct a hybrid controller for arbitrary navigation functions applied to

arbitrary drift-free three dimensional control systems with two independent control inputs.

The resulting switching feedback law guarantees “practical stability” (in the sense of Morin

and Samson [MS03]: convergence to an arbitrarily small specified neighborhood of the goal)

with the added guarantee that no obstacle will ever be encountered along the way. We

offer very general (and easily verified) sufficient conditions under which the basin (the set

of initial configurations brought into the goal’s small neighborhood) includes a far larger

“local surround” bounded by the “highest” level set of the navigation function that is still a

topological sphere. We present additional “global” conditions (albeit much more narrowly

adapted to the specific examples at hand) sufficient to guarantee that the basin includes all

initial conditions except possibly a set of measure zero. Note that in general, there is no

guarantee that these conditions will prevail, and we can make no general statements about
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the global versions of this problem. However, one of the central motivations for embracing

navigation functions and their associated controllers is the possibility of developing further

abstracted compositions using suitably arranged “deployments” of their computable basins,

such as the “back-chaining” sequential composition in [BRK99], that we present in Section

2.3 and implement in Section 6.4.

Third, we implement an instance of this visual servoing framework on the robot RHex

[SBK01] in general outdoor terrain viewing through a monocular camera landmarks com-

prised of three beacons in arbitrary general position. We provide extensive experimental

data to document the robustness of the algorithm against the inaccuracies in the (very crude)

control model and the many practical sources of noise in the sensor suite’s acquisition of

the naturally illuminated outdoor scene.

Fourth, we study the possibility of adapting the first order hybrid feedback controller for

nonholonomic constrained systems, developed in Chapter 3, to their dynamical counterpart.

The simulations presented support the proposed lift.

The content of this thesis has been published in the following articles: Chapter 3 in

[LK04,LK05,LK07], Chapter 4 in [LK06], Chapter 5 in [CLK00,LK03] and part of Chapter

6 in [WLB+04].

1.6 Organization of the thesis

A summary of the mathematical background recommended for reading this thesis is

introduced in Chapter 2. We present some notions of differential geometry in Section 2.1,

including the definitions of differential manifold, diffeomorphisms, foliations, and Morse

functions. We also revise the center manifold theorem for flows and the singular perturbation

theorem. In Section 2.2, we establish the main tool utilized for point stabilization in this

thesis: the definition of a Navigation function. We finish in Section 2.3 by revising the

notion of Sequential Composition, utilized in the real world implementation described in

the experimental sections of Chapter 6.

The main contributions of this thesis appear in Chapters 3 and 4. Starting in Chapter 3,

we introduce a hybrid controller for stabilization of drift free nonholonomically constrained

systems in R
3, defined in punctured configuration spaces. Starting in Section 3.1.1 with a

number of preliminary technical developments, we subsequently present our general mathe-

matical result in Section 3.1.2. Namely, we lay out the hybrid algorithm, state the sufficient

conditions for convergence from the “local surround”, and provide more specific sufficient

conditions for essential global convergence at the price of less general assumptions appro-

priate to the particular case — necessarily so, because a “general extension” would include

a constructive solution of the global navigation problem which we are far from claiming to

encompass within the scope of this thesis. Simulations for various configuration spaces are

presented in Section 3.5.
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In Chapter 4 we review some mechanical system equation properties. Next we adapt the

embeding of gradient dynamics to nonholonomically constrained mechanical systems in Sec-

tion 4.1, and adapt the embbeding of generic reference dynamics in Section 4.2. Simulations

and discussion are presented in Section 4.3.

We present the ingredients of the specific RHex servoing problem in Chapter 5. In

Section 5.1 we introduce the camera map arising from a monocular camera’s view of a

three-beacon landmark, and in Section 5.2 the navigation function associated with it.

Finally, in Chapter 6 we apply the foregoing constructions to the central motivation for

the experimental work developed in this thesis: the specific case of a visual servo algorithm

for the robot RHex. We start by describing the perceptual software and hardware in Section

6.1 along with the specific controller implementation in Section 6.2. We present statistics

documenting the successful indoor and outdoor implementations in Sections 6.3 and 6.4.

We close with the concluding remarks and future work in Chapter 7.
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CHAPTER 2

Mathematical Background

In this chapter we present most of the necessary tools and constructions required for the

understanding of this thesis. The following definitions, borrowed from differential topology

and differential geometry fields, can also be found in most nonlinear control books such

as [GH83,Arn89,Kha96,Son98,Sas99,MR99,Blo03,BL05].

2.1 Differential equations on manifolds

Throughout this thesis we call q ∈ M ⊂ R
n the state variable that lives in some set M .

Let (2.1) be a general differential equation with f globally Lipchitz:

q̇ = f(q) (2.1)

Definition 2.1. A space M is an n-manifold if each q ∈ M lies in some open set homeo-

morphic to some ball Br(o) ⊂ R
n. An n-manifold is said to have dimension n.

Let M be a n-manifold. By definition, for any q ∈ M we have U open in R
n and a

homeomorphism φ : U → M into M with φ(U) being an open neighborhood of q. We call

such a pair (U, φ) a chart. A Collection of charts that cover M is called an atlas. Two

charts φ : U → M and ψ : V → M are said to overlap smoothly if either φ(U) ∩ ψ(V ) = ∅,

or ψ−1 ◦ φ is a diffeomorphism.

Definition 2.2. M is a differentiable manifold if it has an atlas of smoothly overlapping

charts.

Definition 2.3. A diffeomorphism φ is a map between manifolds which is differentiable and

has a differentiable inverse. Two manifolds M and N are diffeomorphic, written M ≃ N , if

there is a diffeomorphism φ from M to N .

Given the previous notions, an important theorem that captures the invariant manifold

structure of a vector field f with a local kernel, that also applies directly to constrained
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drift-free nonholonomically constrained systems that which we are mostly interested, is

presented by Guckenheimer et al. [GH83] and is stated as follows:

Theorem 2.4 (Center manifold theorem for flows). Let f be a Cr vector field on R
n

vanishing at the origin f(0) = 0 and let A = Df(0). Divide the spectrum of A into three

parts, σs, σc, σu with

Reλ






< 0 if λ ∈ σs,

= 0 if λ ∈ σc,

> 0 if λ ∈ σu.

(2.2)

Let the (generalized) eigenspaces of σs, σc and σu be Es, Ec and Eu, respectively. Then there

exist Cr stable and unstable invariant manifolds Ws and Wu tangent to Es and Eu at 0

and a Cr−1 center manifold Wc tangent to Ec at 0. The manifolds Wu,Ws and Wc are all

invariant for the flow of f . The stable and unstable manifolds are unique, but Wc need not

be.

The consequences of this theorem have the largest impact on the work presented in this

thesis, since for drift-free nonholonomically constrained systems with any time-invarient

feedback control law (or any other constrained kinematic system) it will always exhibit a

Center / Stable manifold structure (assuming that the feedback controller is not unstable).

This theorem also indicates how to compute 1st order approximations for such manifolds.

Definition 2.5. [Rol76] Let M be a n-manifold and let F = {Fα} denote a partition of M

into disjoint pathwise-connected subsets. Then F is called a foliation of M of codimension

m (with 0 < m < n) if there exists a cover of M by open sets U , each equipped with a

homeomorphism φ : U → R
n or φ : U → R

n
+ which throws each nonempty component of

Fα ∩U onto a parallel translation of the standard hyperplane R
n−m in R

n. Each Fα is then

called a foliation leaf and is not necessarily closed or compact.

Foliation structures appear in Chapter 3 as a result of attempting to use navigation

functions directly on systems with constraints.

Now consider the system with perturbation α and q = (q1, q2) ∈ R
n:

[
q̇1

q̇2

]
:= hα(q) =

[
h1(q)

αh2(q)

]
(2.3)

Theorem 2.6 (Singular perturbation theorem [Fen79]). Consider the system (2.3) with

0 ≤ α ≪ 1. Suppose that for α = 0, (2.3) admits an equilibrium manifold of dimension m,

0 < m < n, denoted by W0
h and for all q∗ ∈ W0

h, the Jacobian matrix, Dqhα|(q∗,0) admits

n − m eigenvalues with a strictly negative real part. Then, for every open and bounded

subset Ω of W0
h, there exists an open neighborhood U of Ω in R

n, such that, for α positive

and small enough, the perturbed system (2.3) admits an attractive invariant sub-manifold

Wα
h contained in U and close to W0

h.
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The previous theorem establishes that under appropriate conditions the “slow” dynamics

of hα, defined in equation (2.3), approaches the center manifold of h0 as α goes to zero. This

result is important in Chapter 3 to help understand the structure of the center manifold in

the configuration space of the system. For a tutorial treatment of Singular Perturbations

please see [Wig94] or [Kha96].

We end this section with the notion of a Morse function, important for the definitions

to come:

Definition 2.7. Let M be a smooth manifold. A critical point of a map ϕ : M → R at

q ∈ M is called non-degenerate if the Hessian matrix Hϕ (in any local coordinate system)

at q is non-degenerate.

A smooth function ϕ : M → R is called Morse if all of its critical points are non-degenerate.

Morse functions exist on any smooth manifold, and in fact form an open dense subset of

smooth functions on M .

2.2 Navigation functions

The use of total energy as a Lyapunov function for mechanical systems has a long

history [Kod89b] stretching back to Lord Kelvin [TT86]. The notion of total energy presup-

poses the presence of potential forces arising from the gradient of a scalar valued function

over the configuration space. In this thesis we focus our interest on “artificial cost func-

tions” introduced by a designer to encode some desired behavior, as originally proposed by

Khatib [KM78,Kha86]. However, we take a global view of the task, presuming a designated

set of prohibited configurations — the “obstacles” — and a designated set of selected con-

figurations — the “goal,” which we restrict throughout the thesis to be an isolated single

point. One can achieve the global specification through the introduction of a Navigation

Function (NF) [Kod92] — an artificial potential function that attains its maximum on the

entire boundary of the obstacle set, and its only local minimum exactly on the isolated goal

point:

Definition 2.8. [Kod89a] Let Q ⊂ R
n be a smooth compact connected manifold with

boundary, and q∗ ∈ Q be a point in its interior. A C2 Morse function, ϕ : Q → [0, 1] is

called a navigation function if

1. ϕ takes its unique minimum at ϕ(q∗) = 0;

2. ϕ achieves its maximum of unity uniformly on the boundary, i.e. ∂Q = ϕ−1[1].

Such functions are guaranteed to exist over any configuration space of relevance to

physical mechanical systems [KR90], and constructive examples have been developed for a

variety of task domains [RK92,KB01,CWK02,KBK04]. NF-generated controls applied to

completely actuated mechanical systems force convergence to the goal from almost every ini-

tial condition and guarantee that no motions will intersect the obstacle set along the way. In
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the dynamical setting, where the role of kinetic energy is important, they achieve a pattern

of behavior analogous to that of similarly controlled corresponding quasi-static dynamics.

For example, in the one degree of freedom case, the dynamical setting is represented by the

familiar spring-mass-damper system

mq̈ + cq̇ + kq = 0 (2.4)

and the corresponding quasi-static model arises through a neglect of the inertial forces,

m → 0 in (2.4), yielding

cq̇ + kq = 0 (2.5)

To illustrate the nature of NF-gradient-based controllers in this simple setting, take

the configuration space to be Q := {q ∈ R : |q| ≤ 1} with navigation function ϕ(q) :=
1
2kq2, implying that {0} = ϕ−1[0] is the goal and {−1, 1} = ϕ−1[1] the obstacle set. We

imagine that both systems, (2.4), (2.5), arise from application of the NF-gradient control

law, u := −∇ϕ, to the respective open loop,

u = mq̈ + cq̇ (2.6)

or

u = cq̇. (2.7)

We observe that ϕ is a global Lyapunov function for (2.5), guaranteeing that all initial

conditions give rise to motions that avoid the obstacle set while converging asymptotically

on the goal set. Analogously, the total energy, µ := 1
2 q̇2 + ϕ(q) is a Lyapunov function

for the velocity-limited extension of Q, X := µ−1[0, 1] =
{
(q, q̇) ∈ R

2 : µ(q, q̇) ≤ 1
}
. This

guarantees that all initial conditions in X give rise to motions that avoid the obstacle (and,

in fact, are repelled from the entire boundary, µ−1[1]) while converging asymptotically on

the zero velocity goal set, µ−1[0] = {(0, 0)}. These results will be carefully studied in

Chapter 4 when we present the lift of the kinematic algorithms developed in this thesis to

the dynamical setting.

Navigation functions, due to their smooth structure, can be pushed through changes

of coordinates, enlarging the domain of applications beyond the construction methods de-

veloped in [RK91]. Practical implementations include [CWK02] and those described in

Chapter 6. Let ϕ be a navigation function defined in M and let N be a manifold isomor-

phic to M endowed with the diffeomorphic map c : N → M . Let q ∈ M and p ∈ N . One

can write a navigation function for N using the composition rule:

ϕ̄(p) := ϕ ◦ c(p) (2.8)
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With velocities defined by the pullback:

∇ϕ̄(p) = DcT (p)∇ϕ ◦ c(p) (2.9)

The collection of the previous results allows for a very rich set of tools that we explore in

the robotics framework in this thesis.

2.3 Sequential composition

For most practical systems it is difficult to fully encode the robot and environment

workspaces via a single navigation function (or any other control function). It is reasonable

to partition the workspace into smaller and simpler tasks that can be studied in more detail.

One such method denoted Sequential Composition [BRK99], naturally extends the results

obtained for navigation functions to more complex topologies by defining a partition of the

workspace and associating different navigation functions to each partition element. These

concepts may be formalized as follows. Let Φi be a controller with domain of attraction

D(Φi) and goal G(Φi). We say that controller Φi prepares controller Φi+1, denoted by

Φi º Φi+1, if the goal of the first lies in the domain of attraction of the second: G(Φi) ⊂

D(Φi+1). To guarantee that the robot can handle any situation, its workspace, denoted

by W, should be covered by the domains of attraction of the set of controllers: W ⊂
⋃

Φi⊂U D(Φi). Sequential composition can be readily implemented in a robotic platform via

state machines by associating each domain of attraction to a state. We present one such

implementation in Section 6.4.
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CHAPTER 3

Kinematic machines in R
3

In this section we introduce a hybrid controller for stabilization of drift free nonholonom-

ically constrained systems in R
3. We present a set of verifiable conditions that guarantee

stabilization for the successive application of a two step controller: the first moves on level

sets of a gradient function, escaping the system’s center manifold and obstacles in the config-

uration space, and if possible reaching the goal’s stable manifold; the second uses a gradient

control law to reach the goal. The objective of this section is to develop a class of robust

algorithms that are subsequently implemented on the legged robot RHex. The emphasis is

on developing a feedback control algorithm that encodes perception constraints side by side

with motion constraints in a seemly manner.

Consider the class of smooth and piecewise analytic, three degree of freedom, drift-free

control systems

q̇ = B(q)u, q ∈ Q ⊂ R
3; u ∈ R

2, (3.1)

where B ∈ R
3×2 and Q is a smooth and piecewise analytic, compact1, connected three

dimensional manifold with a boundary, ∂Q (that separates the acceptable from the forbid-

den configurations of R
3), possessing a distinguished interior goal point, q∗ ∈ Q. In this

section we will impose very general assumptions on B and construct a hybrid controller that

guarantees local convergence to an arbitrarily small neighborhood of the goal state while

avoiding any forbidden configurations along the way. In the next section, we will introduce

more specialized assumptions that extend the basin of attraction to include almost every

initial configuration in Q.

We find it convenient to rewrite (3.1) using the nonholonomic projection matrix [LK04],

1We consider the configuration space Q to be a compact set since this requirement is built into the
definition of a navigation function. The changes of coordinates for the camera maps are mostly defined in
SE(2) because they are valid there. In general, as in the present application, due to the limitations of the
vision sensors, the workspace is always bounded, hence its closure is compact.
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H into the image of B:

H(q) = B(q)B(q)† = B(q)
(
B(q)T B(q)

)−1
B(q)T (3.2)

q̇ = H(q)v, q ∈ Q ⊂ R
3; v ∈ R

3 (3.3)

Throughout this section it is assumed that B has rank two at each point.

3.1 Two controllers and their associated closed loop dynam-

ics

It is useful to compare the unconstrained system q̇ = v with the constrained version (3.3).

Let ϕ be a navigation function defined in Q. For the input v = −∇ϕ the unconstrained

system is globally asymptotically stable at the origin. Using ϕ as a control Lyapunov

function yields ϕ̇ = −‖∇ϕ‖2. Given this result, a naive approach to attempt stabilizing

system (3.3) is to use the same input v = −∇ϕ.

Define the vector field f1 : Q → TQ such that f1(q) := −H(q)∇ϕ(q) and the system

q̇ = f1(q) = −H(q)∇ϕ(q) (3.4)

Since H has a 1-dimensional kernel and D2ϕ is full rank at q∗ it follows that (3.4) has a 1

dimensional center manifold

Wc := {q ∈ Q : H(q)∇ϕ(q) = 0} , (3.5)

as corroborated by explicitly computing2 the Jacobian of f1 at q∗:

Df1|q∗ = −DH ∇ϕ|q∗︸ ︷︷ ︸
=0

−HD2ϕ = − HD2ϕ
∣∣
q∗

(3.6)

Using ϕ as a Lyapunov function, La Salle’s invariance theorem states that system (3.4) has

its limit set in Wc:

ϕ̇ = −∇ϕT H∇ϕ

= −‖H∇ϕ‖2

{
= 0 if q ∈ Wc

< 0 if q /∈ Wc
(3.7)

Figure 3.1 illustrates the topology associated with (3.4): the projection H imposes a co-

dimension 1 foliation complementary to the center manifold. The stable manifold, Ws, is

2note the abuse of notation in equation (3.6): DH is actually a tensor.
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the leaf containing the goal, q∗. The input

u1 := −B(q)†∇ϕ(q) (3.8)

alone cannot stabilize system (3.4) at the origin, since no smooth time invariant feedback

controller has a closed loop system with an asymptotically stable equilibrium point [Bro83].

Nevertheless, for any initial condition outside Wc an infinitesimal motion in the direction of

f1 reduces the energy ϕ. If there can be found a second controller that “escapes” Wc without

increasing ϕ, then it is reasonable to imagine that iterating the successive application of

these two controllers might well lead eventually to the goal. We now pursue this idea by

introducing the following controller,

u2 := B(q)† [A(q) ×∇ϕ(q)] , (3.9)

leading to the closed loop vector field3

q̇ = H(q)f2(q) = f2(q) (3.10)

f2(q) := A(q) ×∇ϕ(q),

where A(q) can be computed by the normalized cross product of the columns of B :=

[B1 B2]:

A(q) :=
B1 × B2

‖B1 × B2‖
(3.11)

Note that the nonholonomic constraint expressed in (3.1) can be represented by the implicit

equation AT (q)q̇ = 0. Since the (Lie) derivative of ϕ in the direction of f2 is

Lf2ϕ = ∇ϕ(q)T (A(q) ×∇ϕ(q)) = 0, (3.12)

it follows that f2 is ϕ-invariant — i.e. the energy, ϕ, is constant along its motion. Moreover

Hf2 = (I −AAT )(A×∇ϕ) = A×∇ϕ = f2, verifying that f2 indeed satisfies the constraint

(3.1).

3.1.1 Assumptions, a Strategy, and Preliminary Analysis

Having introduced two vector fields — one which is energy decreasing; the other energy

conserving — we now sketch a strategy that brings initial conditions of system (3.1) to

within an arbitrarily small neighborhood ǫ of the goal, by way of motivating the subsequent

definitions, and claims that arise in the formal proofs to follow. Let Φf1
t and Φf2

t denote the

flows of f1 and f2 respectively. The point stabilization strategy is as follows:

3Below we show that ∀q : Hf2 = f2
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Wc

q∗

leaves

Figure 3.1: Conceptual illustration of the flow associated with equation (3.4). Each leaf is
an invariant manifold with all trajectories collapsing into Wc.

1. If q0 ∈ Wc then follow a constant direction f0 in image(H) for a finite amount of time

t0 such that Φf0
t0

(q0) /∈ Wc and ϕ ◦ Φf0
t0

(q0) < 1 for all t ∈ (0, t0).

2. If q0 6∈ Wc and ϕ(q0) > ǫ

2.1) Use a scaled version of f2 for time τ2 to escape a δ-neighborhood of Wc, keeping

the energy ϕ constant.

2.2) Use controller f1, for time τ1, to decrease the energy ϕ, stopping at a γ-neighborhood

of Wc such that Φf1
τ1 (q) /∈ Wc and γ < δ.

We now introduce a number of assumptions, definitions and their consequences that will

allow us to formalize each of the previous steps:

A1. Q is a smooth compact connected manifold with boundary.

A2. ϕ is a navigation function in Q.

A3. H has rank two, uniformly throughout Q.

Assumption A1 gives the proper setting for the existence of a navigation function in the

configuration space. Assumption A3 assures the foliation sketched in Figure 3.1.

Define the local surround of the goal, illustrated in Figure 3.2, to be the closed “hollow

sphere”, Qs := ϕ−1[Iǫs], with Iǫs := [ǫ, ϕs] whose missing inner “core” is the arbitrarily small

open neighborhood, Qǫ := ϕ−1[I0ǫ]; I0ǫ := [0, ǫ), and whose outer “shell”, Q1 := ϕ−1[Is1],
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with Is1 := (ϕs, 1], includes the remainder of the free configuration space. ϕs is defined to

be the largest level such that all the smaller levels, ϕ0 ∈ (0, ϕs), are homeomorphic to the

sphere, S2, and are all free of critical points, ‖∇ϕ‖−1[0] ∩ ϕ−1[(0, ϕs)] = ∅.

The restriction to ϕ-invariant topological spheres precludes limit sets of f2 more complex

than simple equilibria in the local surround. In the examples of sections 3.5.2 and 3.5.4, we

provide more specialized conditions that allow us to guarantee that the algorithm brings

almost every initial condition in the “outer” levels, Q1 into the local surround, Qs and,

thence, into the goal set Qǫ.

Lemma 3.1. Given the previous assumptions

f−1
1 [0] ∩ Qs ≡ f−1

2 [0] ∩Qs ≡ Wc ∩Qs. (3.13)

Proof. If q ∈ f−1
2 [0] then ∇ϕ = αA, where α is a non-zero scalar, hence ∇ϕ ∈ kerH and

q ∈ Wc as defined by (3.5).

To formally express the “δ-neighborhood” described in the stabilization strategy, we

start by defining the function ξ : Q− {q∗} → [0, 1]:

ξ(q) :=
‖H(q)∇ϕ(q)‖2

‖∇ϕ(q)‖2
(3.14)

The quantity ‖H(q)∇ϕ(q)‖2 evaluates to zero only in Wc − {q∗}. Therefore, in a small

neighborhood of Wc the level sets of ‖H(q)∇ϕ(q)‖2 define a “tube” around Wc. The

denominator of (3.14) normalizes ξ such that 0 ≤ ξ ≤ 1. Moreover, it produces a “pinching”

of the tube at the goal q∗.

Lemma 3.2. For all ϕ0 ∈ Iǫs , ϕ−1[ϕ0] intersects the unit level set of ξ, i.e., ξ−1[1] ∩

ϕ−1[ϕ0] 6= ∅.

Proof. Observe that ξ(q) = 1 is equivalent to the condition ∇ϕT Q∇ϕ = 0 where Q := I−H.

Now consider the family of vector fields

hα(q) := −[Q(q) + αH(q)]∇ϕ(q), (3.15)

q̇ = hα(q), (3.16)

Note, for α > 0 the goal point q∗ is globally asymptotically stable over the domain Qǫ ∪Qs,

since ϕ is a Lyapunov function for (3.16),

ϕ̇ = −∇ϕT (Q + αH)∇ϕ =

= −∇ϕT (Q(1 − α) + αI)∇ϕ = (3.17)

= −(1 − α)∇ϕT Q∇ϕ − α‖∇ϕ‖2 ≤ −α‖∇ϕ‖2
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Qs

Qǫ obstacle Q1

ǫ

ϕs

Figure 3.2: Illustration of the local surround Qs of the goal in white. The thin lines represent
various levels of ϕ. This image is presented in the plane for readability purpose. However
it should be interpreted as a section of Q ⊂ R

3

and ϕ has no other critical points other than q∗ in Qǫ ∪ Qs.

Next, observe that ξ−1[1] = W0
h is a center manifold for h0. Hence, according to

Fenichel’s Singular Perturbation Theorem there persists a “slow stable manifold” of hα,

Wα
h , that is arbitrarily close to ξ−1[1] as the positive scalar α approaches 0. Configurations

q0 ∈ ϕ−1[ǫ] ∩Wα
h , that are arbitrarily close to q∗ on this invariant set are associated with

reverse time trajectories Φhα
−t(q0) that pass through every level set ϕ−1[ϕ0], for ϕ0 ∈ Iǫs

since ϕ̇ ◦ Φhα
t (q0) < 0 according to the previous paragraph. It follows that Wα

h intersects

every level set, ϕ−1[ϕ0], for ϕ0 ∈ Iǫs and α = 0 as well.

Corollary 3.3. For all ϕ0 ∈ Iǫs the level set ϕ−1[ϕ0] intersects every level set of ξ, i.e.,

ξ−1[α] ∩ ϕ−1[ϕ0] 6= ∅ for all α ∈ [0, 1].

Proof. Choose q1 ∈ ξ−1[1] ∩ ϕ−1[ϕ0] as guaranteed to exist by Lemma 3.2. Choose q0 ∈

ξ−1[0] ∩ ϕ−1[ϕ0] as guaranteed to exist since ξ−1[0] coincides with Wc, the center manifold

of f1, which intersects each level set ϕ−1[ϕ0] twice. Since for all ϕ0 ∈ Iǫs the set ϕ−1[ϕ0] is

simply connected then there can be found a continuous curve, c : [0, 1] → ϕ−1[ϕ0] connecting

q0 and q1. The function ξ ◦ c(α) must vary continuously between 0 and 1 and the result

follows as claimed.

Lemma 3.4. A sufficient condition for the Jacobian of f2(q) evaluated at Wc −‖∇ϕ‖−1[0]

to have at least one eigenvalue with non-zero real part is that the control Lie algebra on B

spans R
3.

Proof. Let J(v) be the 3 × 3 skew symmetric matrix associated with the vector v. We

will show that the rank condition implies a nonvanishing trace by explicitly computing the
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eigenvalues of Df2|Wc :

Df2 = J(A)D2ϕ − J(∇ϕ)DA

Df2|Wc = J(A)[D2ϕ − ‖∇ϕ‖DA] (3.18)

Now consider the change of coordinates R = [A, A⊥], where R defines a rotation matrix

and A⊥ = [A2 A3] are orthogonal to A. Find the eigenvalues of Df2:

det(Df2 − λI3) = det(RT Df2R − λI3)

= det

([
0

AT
⊥J(A)

]
[D2ϕ − ‖∇ϕ‖DA]R − λI3

)
(3.19)

Using Cramer’s rule we obtain:

= −λ det
(
AT

⊥J(A)[D2ϕ − ‖∇ϕ‖DA]A⊥ − λI2

)
(3.20)

One zero eigenvalue can be immediately factored out from the previous expression leaving

as the second factor the characteristic polynomial of a 2×2 matrix whose trace we compute

as:

trace
(
AT

⊥J(A)[D2ϕ − ‖∇ϕ‖DA]A⊥

)

= trace
(
AT

⊥J(A)D2ϕA⊥

)
+ (3.21)

−‖∇ϕ‖trace
(
AT

⊥J(A)DAA⊥

)

Since D2ϕ is symmetric, the first term in the sum just presented can be shown to vanish

by noting:

trace
(
AT

⊥J(A)D2ϕA⊥

)
=

= trace

([
AT

2

AT
3

]
J(A)D2ϕ

[
A2 A3

])

= trace

([
AT

3

−AT
2

]
D2ϕ

[
A2 A3

])

= AT
3 D2ϕA2 − AT

2 D2ϕA3 = 0 (3.22)

Equation (3.21) becomes:

= −‖∇ϕ‖trace
(
AT

⊥J(A)DAA⊥

)

= −‖∇ϕ‖AT
3 (DA − DAT )A2 (3.23)
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Since AT A2 ≡ 0 and AT A3 ≡ 0 we obtain the relations using the Lie derivative:

LA3(A
T A2) =

(
AT

2 DA + AT DA2

)
A3 = 0 (3.24)

LA2(A
T A3) =

(
AT

3 DA + AT DA3

)
A2 = 0 (3.25)

Replacing the previous relations into (3.23) we obtain:

−‖∇ϕ‖AT
3 (DA − DAT )A2

= −‖∇ϕ‖
(
AT DA2A3 − AT DA3A2

)

= −‖∇ϕ‖AT [A2, A3] (3.26)

Since the span of {A2, A3} is equal to the span of {B1, B2} then there exist continuous

functions αi(q), βi(q) such that Ai = αiB1 + βiB2, and (3.26) becomes

= −‖∇ϕ‖AT ((α2β3 − α3β2)[B1, B2] + M1B1 + M2B2)

= γ(q)AT [B1, B2], (3.27)

where M1, M2 are matrix functions with left kernel A that contain derivatives of αi, βi and

γ(q) 6= 0, ∀q /∈ ‖∇ϕ‖−1[0] is a continuous function. If the matrix |B1 B2 [B1, B2]| is full

rank then AT [B1, B2] 6= 0.

Lemma 3.5. The Jacobian of f2(q) evaluated at Wc ∩Qs has two non-zero real part eigen-

values with the same sign.

Proof. Let Lα = ϕ−1[α], α < ϕs. The function f2|Lα is a flow on a topological sphere.

By Lemma 3.1 and Corollary 3.3 it only has two critical points with index +1 (Poincaré-

Hopf [Arn73]). Therefore Df2|Wc∩Qs has two non-zero real part eigenvalues with the same

sign.

Now consider the implicit equation,

ξ(q) = ξ∗ ⇔ ‖H(q)∇ϕ(q)‖2 = ξ∗‖∇ϕ(q)‖2 (3.28)

At the goal any ξ∗ satisfies (3.28). Although ξ is not defined at q∗, all of its level sets

intersect at q∗. Finally, define the parameterized cone Cγ around Wc, and its complement

Cc
γ := Q− Cγ − {q∗}, by:

Cγ = {q ∈ Q− {q∗} : ξ(q) ≤ γ} (3.29)

We follow by imposing conditions on H and A such that the vector field f2 can afford the

needed “escape” from Wc.
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Lemma 3.6. Suppose system (3.1) satisfies assumptions A1-A3 and, hence, the previous

lemmas. Then, there exists a function σ : Q → R that renders the system

q̇ = σ(q)A(q) ×∇ϕ(q) = f̄2(q) (3.30)

unstable at Wc ∩ Qs.

Proof. Let Ξ : Q → C; Ξ(q) 7→ max(Re({λ1, λ2, λ3})) return the eigenvalue with largest

real part of the Jacobian of f2 evaluated at the closest point to q that lives in Wc. Consider

the function σ : Qs → R such that

σ(q) =

{
1 if Re(Ξ(q)) > 0

−1 if Re(Ξ(q)) ≤ 0
(3.31)

Partition Qs into its two pieces, Q+ = {q ∈ Qs : σ(q) = 1} and Q− = {q ∈ Qs : σ(q) = −1}

where Q+ ∪Q− = Qs and Q+ ∩ Q− = ∅.

In Wc ∩ Q+ two eigenvalues of Df̄2 have positive real part, rendering (3.30) unstable.

In Wc ∩ Q− we get that Df̄2 = −Df2. Therefore the two nonzero real part eigenvalues of

Df̄2 have a positive sign, also rendering (3.30) unstable.

Corollary 3.7. Under the conditions of the previous lemma, there can be found a τ ∈ (0,∞)

such that for all q0 ∈ ξ−1[δ/2] we have ξ ◦ Φf̄2
τ (q0) ≥ δ.

Proof. Since Wc ∩ Qs is unstable, for every level Lα with α < ϕs and qα ∈ Lα ∩ Wc

there exists an κ+(α) > 0 and a neighborhood Bκ+(qα) := {q ∈ Qs|‖q − qα‖ ≤ κ+} such

that every trajectory of f̄2 with initial condition inside Bκ+(qα) −Wc will eventually leave

Bκ+(qα). Let δ be the largest scalar such that Cδ ⊂ N+ :=
⋃

α Bκ+(qα). Let κ− > 0 be the

largest scalar such that N− :=
⋃

α Bκ−(qα) ⊂ Cγ , with 2γ = δ. The set N := N+− int (N−)

is compact. Therefore, since N ∩Wc = ∅, trajectories of f1 and f̄2 traverse N in finite time.

Let τ0(q0) := min{t > 0 | ξ ◦ Φf̄2
t (q0) = δ}. Then define τ := max {τ0(q0)|q0 ∈ N}.

Figure 3.3 illustrates the steps used in the previous proof. Trajectories starting inside

N − Cc
γ will traverse ∂Cγ and ∂Cδ in finite time.

3.1.2 A Hybrid Controller and Proof of its Local Convergence

Given the previous result define the time variables τ1, τ2 and the scalars γ < δ such that:

τ1(q, γ) :=

{
min

{
t > 0 | ξ ◦ Φf1

t (q) = γ
}

if q ∈ Cc
γ

0 otherwise
(3.32)

τ2(q, δ) :=

{
min

{
t > 0 | ξ ◦ Φf̄2

t (q) = δ
}

if q ∈ Cδ −Wc

0 otherwise
(3.33)

35



I.e., τ1 is the time to reach the γ neighborhood of Wc using vector field f1 and τ2 is the

time to reach the boundary of Cδ using vector field f̄2, thus escaping the γ neighborhood of

Wc. This results in the following maps:

Φf1
τ1 : Cc

γ → ∂Cγ (3.34)

Φf̄2
τ2 : Qs −Wc → Cc

δ ⊂ Cc
γ , (3.35)

where C is the closure of C. With δ = 2γ define the map P : Qs −Wc → ∂Cγ

P (q) = Φf1

τ1(·,γ) ◦ Φf̄2

τ2(q,2γ)(q) (3.36)

and consider the recursive equation:

qk+1 = P (qk). (3.37)

The set ∂Cγ can be interpreted as a Poincaré section for the discrete system (3.37). We are

now ready to present the final result:

Theorem 3.8. There exists an iteration number, N : Qs → N such that the iterated hybrid

dynamics, PN brings Qs to Qǫ.

Proof. Define

N := min {n ∈ N|0 ≤ N ≤ Nǫ|ϕ ◦ Pn(q0) ≤ ǫ} , (3.38)

and ∆ϕ(q) := ϕ ◦ P (q) − ϕ(q). Since Qs is a compact set, it follows that |∆ϕ| achieves

its minimum value, ∆ǫ, on that set, hence at most Nǫ := ceiling(ϕs − ǫ)/∆ǫ iterations are

required before reaching Qǫ.

Note that all initial conditions in the pre-image of the “local surround”, R :=
⋃

t>0 Φf1
−t(Qs−

Wc) are easily included in the basin of the goal, Qs, by an initial application of the con-

troller u1. While it is difficult to make any general formal statements about the size of R,

we show in the next section that for all the examples we have tried, the “missing” initial

conditions, Q−R = Z, comprise a set of empty interior (in all but one case Z is actually

empty) because all of Wc, excepting at most a set of measure zero, is included in Qs. In

configuration spaces with more complicated topology, there is no reason to believe that this

pleasant situation will prevail. To summarize, we rewrite the strategy presented in Section

3.1.1 using now the explicit input controls:

1. ∀q0 ∈ Wc use the input

u3 :=
[

α1 α2

]T
, (3.39)
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Figure 3.3: Illustration of the construction used in the proof of Corollary 3.7.

for a small amount of time t3, where α1, α2 are scalar constants not both simultane-

ously zero, such that ϕ ◦ Φf3
t3

(q0) < 1 and Φf3
t3

(q0) /∈ Wc, with f3(q) := B(q)u3.

2. ∀q0 ∈ Qs−Wc, follow successive applications of (3.37), i.e. use the inputs to equation

(3.1):

u1(q) := −B†(q)∇ϕ(q) (3.40)

u2(q) := σ(q)B†(q)J(A(q))∇ϕ(q) (3.41)

3. ∀q0 ∈ R−Qs, use the input u1 for time t until Φf1
t (q0) ∈ Qs.

Having discussed the volume of convergence, the next most crucial question bearing on

the practicality of this scheme, speed of convergence, will also be addressed on a case by

case basis in Section 3.5.4 using two additional formal ideas that we now present.

3.2 Limit cycles in the level sets of ϕ

In many practical applications, switching between controllers f1 and f2 using a small

δ-neighborhood is far too conservative. It may be possible to escape Wc by more than just

the small collar ξ−1[δ]. In Section 3.5.4 we show an example where the trajectories of f2

flow from Wc∩ϕ−1[ϕ0] with positive real part eigenvalues, where ϕ0 < ϕs is some energy, to

Wc∩ϕ−1[ϕ0] with negative real part eigenvalues, crossing in between the stable manifold at

the goal Ws. If we could recognize the passage into Ws and switch off controller u2 (i.e. turn

Ws into an attractor of a suitable modified form of f2) then a final application of controller

u1 is guaranteed to achieve the goal state, q∗. The hope of reworking the form of u2 so that

the resulting closed loop vector field, f2, has its forward limit set solely in Ws thus raises the

question of when there exists limit cycles in the level sets of ϕ for the flow of f2. More impor-

tantly, we seek a condition that guarantees that every trajectory of f2, starting in a small

neighborhood of Wc, can intersect Ws either by forward or inverse time integration of sys-
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tem (3.10). Note that f2 generates a planar flow, making the Bendixon’s criteria a natural

candidate for such conditions. Several authors [Fec01b,Fec01a,Li00,GG00] have developed

extensions to Bendixson’s criteria for higher dimensional spaces, obtaining, in general, con-

ditions that preclude invariant sub-manifolds on some set. For systems with first integrals,

such as some classes of systems that result from nonholonomic constraints, the conditions

simplify to a divergence style test. Feckan’s theorem (see Appendix A and [Fec01b]) states

that in open subsets where divf2 6= 0 there can exist no invariant submanifolds of any level

precluding cyclic orbits. Note that the previous result does not preclude quasi-periodic

orbits. In Section 3.5.3 we give an example that, by having ϕs < 1, results in quasi-periodic

orbits on a torus. Using Cauchy-Riemann, the divergence of the vector field f2 results in:

div(f2) = div (A(q) ×∇ϕ(q))

= (∇× A(q))T ∇ϕ(q)

= AR(q)T∇ϕ(q) (3.42)

In the examples described here, the set D :=
{
q ∈ Q : AR(q)T∇ϕ(q) = 0

}
is a 2-manifold

that contains the goal. If D ∩ Wc = {q∗} and D is not itself invariant for f2 then we are

guaranteed that there exists no limit cycles on the level sets of ϕ.

3.3 Euler-Poincaré characteristic or index on spheres

We revise here informally some results from index theory that shed light into the types of

equilibria, sources, sinks, or saddles, that can occur in the planar flow of f2 at Wc. Corollary

3.7 assumes that Z = ∅. However, by analyzing the type of equilibria on the planar vector

fields f2 (since they reside in level sets, locally homeomorphic to planes) one can infer on

the volume of Z.

Proposition 3.9 (Andronov et al. [AVK66,GH83]).

• The index of a sink, a source, or a centers is +1.

• The index of a hyperbolic saddle point is −1.

• The index of a closed orbit is +1.

• The index of a closed curve not containing any fixed points is 0.

• The index of a closed curve is equal to the sum of the indices of the fixed points within

it.

Theorem 3.10 (Arnold [Arn73]). The sum of the indices of all the singular points of a

field on the sphere is independent of the choice of field. This sum equals 2.
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Figure 3.4: Euler-Poincaré characteristic on spheres. The letter “s” stands for source, “k”
for sink, “h” for hyperbolic saddle, and “c” for center. a) example of one sink (+1) and one
source (+1), A = [x2 − x1 1]. b) example of one hyperbolic saddle (-1), one source and
two sinks (+3), A = [x2 x1 0]. c) example of two hyperbolic saddles (-2) and four centers
(+4), A = [−x2x3 − x1 0].

Given Lemma 3.1 and observing that close to the origin the Center Manifold Theorem

states that Wc is 1-dimensional, therefore intersecting low energy level sets of ϕ in two

unique points, we conclude that f2 will have 2 equilibria points on the “small” spheres

close to the origin. Theorem 3.10 along with Lemma 3.4 and Proposition 3.9 show that such

equilibria must be either a sink or a source in order to have index +2. If one of the equilibria

is a hyperbolic saddle then there must exist 3 other sinks or sources to sum the index to

+2, contradicting Lemma 3.1. Figure 3.4 illustrates different equilibria configurations on

spherical level sets for different nonholonomic constraints defined in R
3. Only the constraint

in figure Figure 3.4.a) verifies assumption A3, resulting in a single source and a sink. The

examples of figures 3.4.b)-c) fail Lemma 3.1.

3.4 Computational heuristic substitutes for σ

The σ function introduced in Lemma 3.6 modifies the flow of f2 rendering the center

manifold unstable. Having that property is sufficient for stabilization, but more can be

accomplished. By careful craft of σ, one can minimize the number of switches between

controllers f1 and f̄2 necessary to reach the desired neighborhood of the goal. If the stable

manifold Ws matches the zero set of σ and Ws is made attractive by f̄2 for any point in Qs

then one gets Φf1
∞ ◦ Φf̄2

∞(Qs) = q∗, i.e., only 2 steps are necessary to reach the goal. Note

however, that if the zero set of σ intercepts Wc more than one time, then there exists the

possibility that the system will not progress to the goal. In this section we present practical

computational heuristic substitutes for σ with zero sets that locally approximate Ws.
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3.4.1 Divergence

Following the results obtained in Section 3.2, using the divergence operator seems nat-

ural. In the neighborhood of the center manifold, if the eigenvalues have all negative real

part, then the divergence will be negative, reversing the flow of f2. If the real part of the

eigenvalues are all positive the divergence operator will not reverse the flow. Even in the

event of the eigenvalues having simultaneously positive and negative real parts, the sign of

the divergence will not change the instability. Define the function σ1 : Q → R by

σ1(q) := div(f2) = AR(q)T .∇ϕ(q). (3.43)

3.4.2 Maximizing ξ

Another way of escaping Wc is to follow the direction that maximizes ξ. By definition

its maximum is the unity. Let the function σ2 : Q → R be defined by:

σ2(q) := ∇ξ(q)T f2(q). (3.44)

Using V (q) = ξ(q) ≥ 0 as a candidate control Lyapunov function for the system q̇ =

σ2(q)f2(q) we observe that

V̇ = ∇ξT
(
∇ξ(q)T f2(q)

)
f2(q) (3.45)

= ‖∇ξ(q)f2(q)‖
2 ≥ 0

The function σ2(q) destabilizes (3.30) at Wc if there exists a ξ∗ > 0 such that the set

{V̇ (Cξ∗ −Wc) = 0} does not define an invariant manifold (following La Salle’s).

3.4.3 Stable manifold approximation

The third heuristic computation of σ presented here aims directly at approximating

the stable manifold so to minimize the number of switches between controllers f1 and f̄2.

Suppose there exists a function G : Q → R whose pre-image G−1[0] is Ws. Using the same

argumentation as in equations (3.44) and (3.45), and replacing ξ by G(q)2, we obtain:

σ3a(q) := −∇(G(q)2)T f2(q). (3.46)

Again, taking V (q) = G(q)2 ≥ 0 as a candidate control Lyapunov function, we observe that

the system q̇ = σ3a(q)f2(q) will have its forward limit set in Ws if ∀q ∈ Q −Ws : V̇ (q) =

−‖2G(q)∇G(q)T f2(q)‖
2 6= 0. Note that it is possible for the zero set of ∇(G(q)2)T f2(q) not

to be contained in Ws, breaking the desired result. In some cases however, it is possible to
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use the function

σ3b(q) := sG(q) (3.47)

where s ∈ {−1, +1}. The sign s is chosen so that Wc can be made unstable, i.e. in a

neighborhood of Wc the signs of div(f2) and G should match.

In general, finding an exact approximation of Ws by an algebraic implicit equation is

unattainable since that requires solving a set of partial differential equations [GH83]. We

proceed by finding a k-order polynomial approximation to Ws, denoted by Ŵs
k. Without

loss of generality, we assume that the goal is at the origin, q∗ = 0, and the tangent of Ws

evaluated at the origin is the span of the first two canonical base vectors4. Let h be the

“aligned” version of f1. We seek to find a function5 g : R
2 → R such that its graph is Ws,

i.e., x3 = g(x1, x2). Define the implicit function G as:

G(x1, x2, x3) := g(x1, x2) − x3 (3.48)

Let ĝk be a k-order polynomial approximation of g at the origin parameterized by γi,j :

ĝk(x1, x2) =
∑

i,j≥0
i+j≤k

xi
1x

j
2

i!j!
γi,j (3.49)

and let ĥk be the k-order Taylor expansion of h at the origin:

ĥk(x1, x2, x3) =
∑

i,j,l≥0
i+j+l≤k

xi
1x

j
2x

l
3

i!j!l!

(
∂i

∂xi
1

∂j

∂xj
2

∂l

∂xl
3

h

)
(3.50)

For the system q̇ = h(q) the manifold G(q) = 0 is invariant. Therefore for trajectories that

start in G(q) = 0 we obtain

Ġ(q) = ∇G(q)T h(q) = 0. (3.51)

Replacing g by ĝk, h by ĥk, and x3 by ĝk(x1, x2) we obtain the following approximation

equation:

([
∂ĝk

∂x1

∂ĝk

∂x2
−1

]
· ĥk

)
◦ (x1, x2, ĝk) = 0 (3.52)

Equation (3.52) is polynomial in γi,j and in xi. Since by assumption the tangent space of

4It is always possible to align the tangent of Ws at the goal with the span of the first two canonical base
vectors by means of a translation p = q − q∗ and a rotation R. The matrix R is obtained by applying the
Gram-Schmidt orthogonalization on the matrix of the eigenvectors of Df1(q)|q=q∗ with eigenvalues sorted
by absolute magnitude.

5In general this function may not exist outside a neighborhood of the origin
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Ws at the origin is the plane x3 = 0, we immediately obtain:

h(0) =
∂h

∂x1

∣∣∣∣
q=0

=
∂h

∂x2

∣∣∣∣
q=0

= 0, and (3.53)

γ0,0 = γ1,0 = γ0,1 = 0 (3.54)

The 2nd order terms of γi,j are obtained by solving the following equation evaluated at the

origin, where hi is the i-th component of h:




γ0,2

γ1,1

γ2,0


=




∂h2

∂x2

∂h1

∂x2
0

∂h2

∂x1

∂h1

∂x1
+

∂h2

∂x2

∂h1

∂x2

0
∂h2

∂x1

∂h1

∂x1




−1

·




1

2

∂2h3

∂x2
2

∂2h3

∂x1∂x2

1

2

∂2h3

∂x2
1




(3.55)

Note that a measure of the curvature of Wc at the origin is given by γ2
1,1 − γ2,0γ0,2. The

higher order terms of γi,j are obtained recursively by incrementally increasing k in equation

(3.52) and solving for γi,j with i + j = k.

The computational process for stable manifold approximation presented in this sec-

tion is readily generalizable to n-dimensional systems by defining the implicit function

G : R
n → R

n−m to be G(q) = g(x1, . . . , xm) − [xm+1 · · ·xn]T , with g : R
m → R

n−m.

In similar fashion, Equations (3.49) to (3.52) can be written for a n-dimensional system

where the computation process remains the same. Please see [LK04] for a reference on the

n-dimensional computational algorithm implemented for this thesis.

3.5 Simulations

In this section we present simulations for the Heisenberg system using a norm-like navi-

gation functions that results in spherical level sets. This allows for very simple closed form

expressions of the σ functions introduced in Section 3.4. We proceed with numerical exam-

ples of the unicycle with a norm-like navigation function and two real robotic navigation

applications utilizing 1 and 3 beacons for visual servoing.

3.5.1 The Heisenberg System

The Heisenberg system, revised in Section 1.2.4, assumes the following set of equations

for R
3:

ẋ1 = u1

ẋ2 = u2 (3.56)
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ẋ3 = x1u2 − x2u1

The nonholonomic constraint is written in the form ẋ3 = x1ẋ2 − x2ẋ1, resulting in

A(q) = (1 + x2
1 + x2

2)
−1

[
x2 −x1 1

]
. (3.57)

Consider the following simply connected configuration space: let Q = {q ∈ R
3 : ‖q‖ ≤ 1}

and

ϕ(q) = x2
1 + x2

2 + x2
3 = ‖q‖2. (3.58)

We conclude that ϕ is a navigation function in Q since ϕ(∂Q) = 1 and ϕ has a unique minima

at the origin. Note that all the level sets of ϕ are spheres, hence ϕs can be stretched to the

boundary of Q resulting in R ≡ Q. The remaining quantities are computed from A and ϕ:

BT (q) =

[
1 0 −x2

0 1 x1

]
(3.59)

H(q) =
1

1 + x2
1 + x2

2




1 + x2
1 x1x2 −x2

x1x2 1 + x2
2 x1

−x2 x1 x2
1 + x2

2


 (3.60)

ξ(q) =

(
x2

1 + x2
2

) (
1 + x2

1 + x2
2 + x2

3

)
(
1 + x2

1 + x2
2

) (
x2

1 + x2
2 + x2

3

) (3.61)

For the navigation function (3.58) the center manifold of (3.4) is Wc = {q ∈ Q : x1 = 0 ∧ x2 = 0}

and the stable manifold is Ws = {q ∈ Q : x3 = 0}. The heuristic computations of σ de-

scribed in Section 3.4, are:

σ1 = x3
2 + x2

1 + x2
2

(1 + x2
1 + x2

2)
3/2

(3.62)

σ2 = x3
2ξ−1

(1 + x2
1 + x2

2)
3/2

(3.63)

σ3a = x3
2(x2

1 + x2
2)√

1 + x2
1 + x2

2

(3.64)

σ3b = x3 (3.65)

In the particular case of the Heisenberg system with a norm-like navigation function, the

stable manifold can be described by the equation x3 = 0, appearing as a subset of the zero

sets of each of the σi functions. Using the method described in Section 3.4.3 one obtains

G(q) = x3. For function σ3b the sign is chosen such that σ3b = +x3. Since all the functions
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σ are approximately scaled versions of each other we use:

σ(q) = x3 (3.66)

Following the analysis of Section 3.2 we find the zero set of div(f2) = σ1 to be Ws. This

set is not invariant for f2, therefore precluding limit cycles anywhere in Q. Assuming that

the north hemisphere of the level sets of ϕ is repellent, we observe that trajectories starting

there will travel to the south hemisphere, always intercepting the stable manifold of f1 in

the equator. The control functions for the input of (3.1) are:

u1(q) = −2




x1 +
x2x3

1 + x2
1 + x2

2

x2 +
x1x3

1 + x2
1 + x2

2


 (3.67)

u2(q) = 2x3

[
x2 + x1x3

−x1 + x2x3

]
(3.68)

Table 3.1 illustrates simulation results for different pairs of δ and ǫ defined in Section

3.1.2. Since the zero set of function σ matches the stable manifold, all the simulations

for whom ξ is maximized result in convergence in a single iteration. Bloch et al present

in [BDK00] a general solution for the stabilization of the Heisenberg system in R
n. It is

interesting to compare their approach with the one presented here. In their paper, two

variables x and Y represent the unconstrained and constrained variables respectively. In R
3

these are x = [x1 x2] and Y = x3. The algorithm described, in the general form, alternates

from minimizing ‖x‖ with ‖Y ‖ constant to minimizing ‖Y ‖ with ‖x‖ constant. Similarly, in

our algorithm we seek to maximize ξ while keeping ϕ constant, alternating with minimizing

ϕ. The main difference lies in the “energy” function used as a measure of convergence,

either ‖Y ‖ or ϕ. The prior has the advantage of being defined in R
n. The latter has

the advantage of allowing more general energy functions. Figure 3.5 illustrates comparative

simulation results for the Bloch-Dracunov-Kinyon algorithm and the one presented in this

paper. One can observe that the state variable plots are similar. In both cases the con-

strained variable x3 is first driven to zero, in effect reaching the stable manifold. Next, x1

and x2 are simultaneously driven to zero without changing x3. Here, the difference lies in

the trajectories living in a cylinder ‖x‖ = const. or a sphere ϕ(q) = const. during the initial

step.

3.5.2 Unicycle with a norm-like Navigation Function

Consider the unicycle systems equation (1.34) with the same simply connected config-

uration space Q = {q ∈ R
3 : ‖q‖ ≤ 1} and navigation function ϕ(q) = ‖q‖2. Below we

present the σ3 function for different approximation levels k. Note that for this particular
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Figure 3.5: a)-c) Simulation of the Bloch-Dracunov-Kinyon algorithm. d)-f) Simulation
of the algorithm presented in this chapter.

configuration all the σi functions differ from each other.

σ3 =






x if k = 1

x +
yθ

2
if k = 2

x +
yθ

2
+

yθ3

48
if k = 4

x +
yθ

2
+

yθ3

48
+

yθ5

480
if k = 6

(3.69)

Table 3.1 compiles the simulation results. One can conclude, as expected, that the number of

iterations of (3.37) required to reach a fixed neighborhood of the goal dramatically decreases

when δ increases. Moreover, although σ1 and σ2 do a good job at escaping Wc, they require

more iterations on average than the higher order approximation of Ws. The best results,

in terms of iteration number, are obtained for σ3 when k ≥ 2, where the approximation of

Ws is very good. Figure 3.6 illustrates two representative simulations with the same initial

condition and different order of approximation of the stable manifold. Again as expected,

using a higher order approximation results in faster convergence to the goal after iterating

controllers f2 followed by f1.
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Table 3.1: Simulations for the Heisenberg systems and a unicycle with a norm type nav-
igation function. Each entry corresponds to the average number of switches “N” from
a random initial condition 5 meters away from the goal for 50 simulations. We use the
parameter γ = 10−3.

δ = 0.2 0.5 1

ǫ = 1 cm 1 mm 1 cm 1 mm 1 cm 1 mm

Heisenberg

σ = x3 3.4 12.8 1.9 4.4 1.0 1.0

Unicycle

σ1 27.9 37.8 9.9 13.2 2.9 3.1

σ2 29.3 41.0 9.8 12.9 2.7 3.2

σ3, k = 1 28.7 38.5 10.3 12.5 2.7 3.0

σ3, k = 2 28.2 38.3 9.7 13.5 1.3 1.8

σ3, k = 4 29.9 37.8 10.6 13.4 1.3 1.5

σ3, k = 6 30.2 37.9 9.2 13.8 1.4 1.5

3.5.3 A single beacon visual servoing problem

We present here a simulation of the visual servoing problem of positioning a robot in

relation to a single engineered beacon. This problem has been addressed by Kantor [KR03]

and Bhattacharya [BMCH04], as discussed in the introduction. Their alternative solution

approach can be readily compared to the present scheme. Since the visibility set (the

complete configuration space) is not a topological sphere, this example also provides a

simple illustration of the additional effort required to reason about initial conditions outside

the “surround”. Figure 3.2 illustrates how the level sets, which are topological spheres (the

components of Qs), form a proper subset of the toroidal visibility set in this case.

We applied the algorithm developed in Section 3.1 to this problem, using again, the

unicycle motion model. The navigation function is developed in double polar coordinates

and is brought back to SE(2) by the change of coordinates c : SE(2) → S1 × S1 × R
+:




η

µ

d


 = c(x, y, θ) :=




arctan(y/x)

θ − arctan(y/x)√
x2 + y2


 (3.70)

The navigation function reflects the following physical attributes of the sensor:

1. The robot must be in an interval of distances away from the beacon, so as to not get

too close or too far away from it, specifically dm < d < dM .

2. The robot’s camera must face the beacon at all times, encoded as µm < µ < µM ,
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Ŵs

2

Wc

(b)

Figure 3.6: Simulation of a unicycle with a norm-like navigation function using: a) 1st order
approximation of stable manifold b) 2nd order approximation of stable manifold. The point
q0 represents the initial condition, qs the switching from controller f2 to controller f1, qf is
the final point, and q∗ is the goal location.

where µm, µM are the field of view boundaries of the camera in polar coordinates.

Consider the potential function:

¯̄ϕ :=

(
2 − cos(η − η∗) − cos(µ − µ∗) + (d − d∗)2

)k

(1 − cos(µ − µm))(1 − cos(µ − µM ))(dM − d)(d − dm)
(3.71)

For the previous potential function we have:

• The goal location in SE(2), denoted by (x∗, y∗, θ∗), is mapped by c to (η∗, µ∗, d∗). We

thus assume that the final orientation of the robot is important.

• The cosine functions are used here, e.g. (1− cos(µ− µm)), since the state variables η

and µ live in S1. The desired goal is actually (η∗+2k1π, µ∗+2k2π, d∗) with k1, k2 ∈ N.

• k is a shaping term.

By construction, ¯̄ϕ explodes at the obstacles and is zero at the goal. The resulting navigation

function ϕ̄ : S1 × S1 × R
+ → [0, 1] is the squashed version of ¯̄ϕ, with κ > 0:

ϕ̄ :=
¯̄ϕ

κ + ¯̄ϕ
(3.72)

In the configuration space Q ⊂ SE(2), the navigation function ϕ is the composition

ϕ(q) := ϕ̄ ◦ c(q) (3.73)

and the gradient is the pullback: ∇ϕ(q) = DcT (q)∇ϕ̄ ◦ c(q). Note that by imposing a
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Figure 3.7: Simulation of the hybrid controller operating in the visible set of a single beacon
landmark, described in Section 3.5.3. The initial configuration is q0, the controller switches
at time ts in position qs and the final configuration is qf . a) Configuration space plotted
on (x, y, µ) for readability purpose. b) Top view. The visual beacon is represented by the
large black dot. The gray areas violate the visual constraints. c) and d) State variables
and energy plots.

minimum distance to the beacon dm, the configuration space is not simply connected. It is

in fact homeomorphic to a solid torus as illustrated in Figure 3.7. This results in ϕs < 1.

Here, some level sets are topological torus and others topological spheres. However, it is

observed that the center manifold Wc is a circle, every level set homeomorphic to the sphere

intersects Wc and every level set homeomorphic to the torus does not intersect Wc. Since

for all points in the domain Q, by following the flow of function f1, have its limit set in

Wc then one can argue that the domain of attraction for the hybrid stabilization algorithm

presented here is the entire Q up to a zero measure set. In fact, experience shows that

better trajectories (in the sense of minimum number of “back and forward” parallel parking

motion for the vector field f2) are obtained if the energy level ϕ is kept very high, i.e., in

the torus level sets. There, the trajectories define quasi-periodic orbits that intersect the

stable manifold Ws indefinitely.

For the simulations presented here, we consider the interesting parameters to be the
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mean error position defined by:

mean error position := meani

[
‖qi

f − q∗‖
]
, (3.74)

where qi
f is the final position reached on the ith run; and the mean arc-length ratio, which

compares the performance against a fully actuated robot that can always follow a straight

line to the goal. For continuous time the mean arc-lenght ratio is defined by:

mean arc-length ratio := meani




∫ tif
0 ‖q′(qi

0, t)‖dt

‖qi
0 − q∗‖



 , (3.75)

where tif is the final time and q′(qi
0, t) the derivative of the trajectory starting at the initial

position qi
0 for the ith run. For the 383 simulations run of a single beacon visual servoing

problem, we obtained a mean error position of 4.3cm and a mean arc-length ratio of 4.1.

These results seem promising since we utilized a 1st order approximation to the stable

manifold.

Note that in Figure 3.7 the robot executes a parallel parking maneuver in the plane.

Although it is well known that for the unicycle the parallel parking motion is required to

move sideways, the trajectory obtained on the plane is a natural consequence of moving on

a level set of the navigation function. Moreover, the navigation function enforces that the

robot does not hit the obstacles, since doing that would require puncturing the level sets

away from the goal.

3.5.4 The 3 beacon visual servoing problem

We now present simulations of the main visual servoing application described in this

thesis, implemented in the RHex robot, where a vision sensor is designed to observe the

position of three known artificial beacons that comprise a landmark. We defer the details

of the camera map associated with the vision sensor to the entire Chapter 5 in order to

give a better flow of the exposure of the developments on this thesis. We describe here the

navigation function utilized and the results of the numerical simulations.

Consider the following potential function ¯̄ϕ : I → R
+,

¯̄ϕ :=

(
(ζ1 − ζ∗1 )2 + (ζ2 − ζ∗2 )2 + (ζ3 − ζ∗3 )2

)k

(ζM − ζ1)(ζ1 − ζ2)(ζ2 − ζ3)(ζ3 − ζm)(ζ1 − ζ3 − ζd)
, (3.76)

See Figure 5.2(a) in Chapter 5 for an illustration of the above parameters. For the previous

potential function we consider the following:

• The vector (ζ∗1 , ζ∗2 , ζ∗3 ) defines the goal in the image projection space I, normally

measured by taking a “snapshot” of the beacons at the desired position.

• k is a positive constant scalar shaping. In both simulations and experiments we take
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k = 1. For more information on the shaping parameter see [Kod92].

• ζm and ζM are the field of view obstacles. These are computed based on the aperture

of the camera’s lenses.

• The denominator encodes the obstacles by “exploding” ¯̄ϕ when the 1st beacon reaches

the left field of view boundary (ζM − ζ1); the 1st and 2nd beacon intercept (ζ1 − ζ2)

and so forth. Notice that since the beacon angles are ordered in the image projection

space then the beacons 1 and 3 cannot intercept unless 1 and 2 or 2 and 3 intercept

first, thus, allowing for a simpler denominator of the navigation function.

• The term (ζ1−ζ3−ζd) is introduced to limit the distance away from the set of beacons,

where ζd is a positive scalar. Notice that the difference of the angles ζ1−ζ3 will become

smaller as the robot increases its distance from the beacons. The following formula

gives a rough idea of how to approximately compute the parameter ζd given the

distance between beacons 1 and 3, denoted by db, and the robot’s maximum distance

away from the beacons, denoted by dmax, both with units in meters:

ζd = 2 arcsin

(
db

2dmax

)
(3.77)

The resulting navigation function follows the same “squashing” and change of coordinates

as in equations (3.72) and (3.73). A representative numerical simulation is illustrated in

Figure 3.8. Since the potential function ¯̄ϕ, presented in equation (3.76), is defined in a

convex set and has a unique critical point at q∗, all of its level sets are topological spheres.

For the 368 simulations implemented we found the mean error position to be 5.3cm and the

mean arc-lenght ratio to be 2.9, again using a 1st order stable manifold approximation. In

Chapter 6 we present the experimental implementation of this system along with Table 6.1

that compares the performance of the simulations with the real-world experiments.
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for readability purpose. b) Top view. The visual beacons are represented by the large black
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CHAPTER 4

Dynamic machines in general settings

In this chapter we discuss the “lift” of the algorithm proposed in the previous chapter for

nonholonomically constrained dynamical systems. The resulting corollaries arise naturally

from the ideas introduced in [Kod87a]. Let (4.1) and (4.2) be the mechanical system

equations for fully actuated systems [Gol50] and nonholonomically constrained systems

[BR92] with q, u ∈ R
n and v ∈ R

m, m < n:

M(q)q̈ + c(q, q̇) = u (4.1)

M(q)q̈ + c(q, q̇) = A(q)T λ + B(q)v (4.2)

A(q)q̇ = 0

Where M is the mass matrix, c the coriolis term, A and B represent the actuation con-

straints defined in Chapter 1, and λ is a vector of Lagrange multipliers. We start by recalling

some notation and lemmas required for the subsequent proofs. Using the “stack-kronecker

notation” [Mac46,Bel65,Kod87b] consider the following linear map:

Ḿq : x 7→ [x ⊗ I]T DqM
S (4.3)

and the skew-symmetric value operator:

Jq(x) := Ḿq(x) − ḾT
q (x) (4.4)

Lemma 4.1 ( [Kod87a]). For any curve, q : R → Q, and any vector, x ∈ Tq(t0)Q,

Ṁq|t0x = Ḿq(t0)(x)q̇|t0 (4.5)

Lemma 4.2 ([Kod87a]). Given a lagrangian with kinetic energy, κ, with no potential forces

present, and with an external torque or force actuating at every degree of freedom as specified
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by the vector, τ , the equations of motion may be written in the form:

M(q)q̈ + c(q, q̇) = τ (4.6)

where

c(q, x) = C(q, x)x (4.7)

and

C(q, x) :=
1

2
Ṁ(qx) −

1

2
Jq(x) (4.8)

Notice that the representation of the coriolis and centripetal forces in terms of the

bilinear operator valued map C only coincide at q̇ with the quadratic expression c(q, q̇). In

general they are not the same.

Corollary 4.3 ([Kod87a]). For any motion q : R → Q, and any tangent vector, x ∈ TQq(t),

xT

[
1

2
Ṁ(q) − C(q, q̇)

]
x ≡ 0 (4.9)

Proof. From the previous lemma,

xT

[
1

2
Ṁ(q) − C(q, q̇)

]
x = −

1

2
xT Jq(q̇)x = 0 (4.10)

4.1 Embedding the limit behavior of gradient dynamics

Controller f1(q) = −H(q) ·∇ϕ(q), introduced in Section 3.1, aims to reach a fixed point

in the center manifold Wc. In order to lift the controller into a 2nd order system, Theorem

4.4, concerning limit sets of gradient dynamics, is complemented with Corollary 4.5. Let

the state variables p1, p2 represent q, q̇ respectively and let P = T Q be the tangent bundle

of Q for system (4.1).

Theorem 4.4 (Koditschek [Kod87a]). Let ϕ be a Morse function on Q which is exterior

directed on the boundary ∂Q, surpasses the value µ > 0 on the boundary, and has a local

minima at the points G := {qi}
n
i=1 ⊂ Q. Let K2 > 0 denote some positive definite symmetric

matrix. Consider the set of “bounded total energy” states

Pµ :=

{[
p1

p2

]
∈ P : ϕ(p1) +

1

2
pT
2 Mp2 ≤ µ

}
(4.11)
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Under the feedback algorithm

u := −K2p2 − DϕT (p1) (4.12)

Pµ is a positive invariant set of the closed loop dynamical system within which all initial

conditions excluding a set of measure zero take G as their positive limit set.

Let H be the nonholonomic projection matrix. Define Q(q) := I − H(q) to be the non-

holonomic converse projection matrix. Notice that ker(A) = ker(Q) and therefore Q(q)q̇ = 0.

Let Wc
0 := {q ∈ Wc ∧ q̇ = 0}. As shown in Section 3.1, Wc is the center manifold of the

system q̇ = −H(q)∇ϕ(q). Rewriting equation (4.2) with a new input v := B(q)†u we obtain:

M(q)q̈ + c(q, q̇) = A(q)T λ + H(q)u

A(q)q̇ = 0 (4.13)

Corollary 4.5. Let K2 = K̄2H(q) with K̄2 > 0 denoting a positive definite symmetric

matrix. Under the conditions of Theorem 4.4 all the initial conditions of the system (4.13),

excluding a set of measure zero, take Wc
0 as their positive limit set.

Proof. Let V = ϕ(q) +
1

2
q̇T M(q)q̇ be a Lyapunov function for (4.13). Then

V̇ = Dϕq̇ +
1

2
q̇T Ṁ q̇ − q̇T

(
HK2q̇ + HDϕT + HCq̇

)
+ q̇T AT λ︸ ︷︷ ︸

=0

= DϕQq̇︸ ︷︷ ︸
=0

+ q̇T Jq q̇︸ ︷︷ ︸
=0

−q̇T HK2q̇

= −q̇T HT K̄2Hq̇ (4.14)

HT K̄2H is a semi-definite positive matrix. V̇ is null when either q̇ = 0 or Hq̇ = 0. Since

A(q)q̇ = 0 ⇒ Hq̇ 6= 0 then the largest invariant set is the interception of the previous sets

with Wc
0 resulting in Wc

0. La Salle’s theorem guarantees that (4.13) with input (4.12) takes

Wc
0 as the forward limit.

4.2 Embedding of more general dynamics

We now seek to lift the controller f2(q) defined in Section 3.1 to a 2nd order system. We

do so by adding once again a level regulator term, so that the reference dynamics attracts

to a particular level set. First recall the embedding of general reference dynamics: let f be

a reference vector field with Lyapunov function µ, and let F (p) := p2 − f(p1). Consider the

control algorithm,

u = −K2F − DµT + MDfp2 + Cf (4.15)
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which applied to the mechanical system (4.1) yields a closed loop form, ṗ = h(p),

h(p) :=

[
p2

Dfp2 − M−1
[
K2F + CF + DµT

]
]

(4.16)

Theorem 4.6 (Koditschek [Kod87a]). If µ is a strict Lyapunov function for f on Q, then

V := µ +
1

2
F T MF (4.17)

is a strict Lyapunov function for h on P.

In system (4.13) the set of images of H for each point on Q is the tangent bundle of

Q. Therefore, since H is a projection operator then ∀x ∈ P we have H(px).x = x. Define

H̄ = M−1HM and Q̄ = M−1QM . For system (4.13) with input (4.15) the closed loop is

written in the following way:

h(p) :=

[
p2

H̄Dfp2 − M−1
[
HK2F + HCF + HDµT + QCp2 − AT λ

]
]

(4.18)

Corollary 4.7. Suppose Hf = f , i.e. the reference vector field respects the nonholonomic

constraints. If µ is a strict Lyapunov function for f on Q for system (4.13), then

V := µ +
1

2
F T MF (4.19)

is a strict Lyapunov function for h on P.

Proof. First note that Q.f = 0; Q.p2 = 0; A.f = 0.

V̇ = Dµ p2 +
1

2
F T ṀF + F T MQ̄Dfp2 + (4.20)

−F T
(
HK2F + HCF + HDµT + QCp2

)
+ F T AT λ

= DµHf − F T HK2F − fT Q(MDfq̇ − Cf)︸ ︷︷ ︸
=0

+ fT AT λ︸ ︷︷ ︸
=0

= Dµf − F T K2F (4.21)

According to the hypothesis, the first term is negative except on the largest invariant set of

F = 0. The second term is always negative except in F−1[0]. The interception of the two

results in the limit set of q̇ = f(q).

The previous result shows that as long as the reference dynamics respects the nonholo-

nomic constraints we can apply Theorem 4.6 directly.

Notice that Corollary 4.7 also applies to controller −H(q).∇ϕ(q). In general, such

restrictive dynamics are not necessary for that controller, so using Corollary 4.5 provides a
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Figure 4.1: The vertical rolling disk.

better tool since we are only interested in the limit set.

4.3 Simulations

In this section we present simulation examples for the dynamic unicycle or vertical

rolling disk depicted in Figure 4.1. Since we are interested in simulations in a dynamic

setting we follow Bloch’s vertical rolling disk [BKMM96], defined in the configuration space

Q = R
2 ×S1 ×S1 = SE(2)×S1 with coordinates q = (x, x, θ, φ), mass m, inertias I, J , and

disk radius R. The equations of motion for the vertical rolling disk are:

(mR2 + I)φ̈ = u1

Jθ̈ = u2, (4.22)

with the constraint equations:

ẋ = R cos(x)φ̇

ẏ = R sin(x)φ̇. (4.23)

Differentiating (4.23) in time and replacing φ̈ from (4.22), one obtains a complete set of

equations of motion that verifies the nonholonomic constraints for initial conditions that

also verify (4.23):

ẍ = −R sin(θ)θ̇φ̇ +
R cos(θ)

mR2 + I
u1

ÿ = R cos(θ)θ̇φ̇ +
R sin(θ)

mR2 + I
u1 (4.24)
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This system is now written in the form M(q)q̈ + c(q, q̇) = B(q)u for which Corollaries 4.5,

4.7 apply directly. The A(q) and B(q) matrices are:

A :=




−
I + mR2

R
− sin(θ)

0 cos(θ)

0 0

cos(θ) 0




; B :=




R cos(θ)

mR2 + I
0

R sin(θ)

mR2 + I
0

0 1

1 0




(4.25)

Although the algorithms presented in Chapter 3 are defined only in R
3, by close inspection

of A and B one realizes that, for this particular example, by choosing a R
4 navigation

function defined only by the first three parameters of q we will obtain the “same” controller

as in R
3. Let ϕ be a navigation function such that ∇ϕ = [ϕx, ϕy, ϕθ, 0]T . Next compute

the R
4 cross product of A and ∇ϕ:

×(A,∇ϕ) =
4∑

i,j,k,l=0

ǫijkl∇ϕjAk1Al2êi (4.26)

=
−1

cos(θ)




ϕθ cos(θ)

ϕθ sin(θ)

−ϕx cos(θ) − ϕy sin(θ)

−
I + mR2

R
θ




, (4.27)

where ǫijkl denotes the permutation tensor, êi are the canonical basis vectors and Ai,j is

the ith row, jth column of A. We now compare with the function f2, defined in equation

(3.10) for the R
3 unicycle with A3 = [− sin(θ), cos(θ), 0]T and ∇ϕ3 := [ϕx, ϕy, ϕθ]

T :

f2 = A3 ×∇ϕ3 = (4.28)

=




ϕθ cos(θ)

ϕθ sin(θ)

−ϕx cos(θ) − ϕy sin(θ)


 (4.29)

The two previous computations produce, in effect, the same behavior for the variables x, y

and θ. For each fixed coordinate φ in Q ⊂ R
4 one obtains a copy of the topology of SE(2).

Therefore, from here on, although the configuration space is defined in R
4, we will only be

interested in x, y, and θ.
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4.3.1 Navigation function

We revisit here the navigation problem addressed by Kantor [KR03] and Bhattacharya

[BMCH04], described in Section 3.5.3. Let h be a change of coordinates from Q ⊂ SE(2)×S1

to double polar coordinates times S1 that we denote by P with coordinates p = [η, µ, d, φ]T :




η

µ

d

φ




= h(x, y, θ, φ) =




arctan (y/x)

θ − arctan (y/x)√
x2 + y2

φ




(4.30)

Again, the obstacles are introduced in the field of view so that the robot maintains a range

of distances to the beacon and keeps facing it:

µm < µ < µM ; dm < d < dM (4.31)

Consider the same potential function as the one described in equation (3.71):

¯̄ϕ :=

(
2 − cos(η − η∗) − cos(µ − µ∗) + (d − d∗)2

)k

(1 − cos(µ − µm))(1 − cos(µ − µM ))(dM − d)(d − dm)
(4.32)

and its “squashed” navigation function version ϕ̄ : P → [0, 1]:

ϕ̄ :=
¯̄ϕ

κ + ¯̄ϕ
(4.33)

The navigation function written in the Q coordinates is ϕ(q) = ϕ̄ ◦ h(q) and its derivative:

∇ϕ(q) = DhT (q) · ∇ϕ̄ ◦ h(q) (4.34)

We choose to present the Kantor-Bhattacharya example as the canonical illustration

of our ideas due to the interesting topology of the configuration space. Since Q is not

simply connected, the level sets of ϕ change from topological spheres close to the goal q∗

to topological tori close to the boundary of Q. Initial conditions starting in the tori will

generate quasi-periodic orbits when f2 is used. In the dynamical setting this provides a

good example of the applicability of Corollary 4.7, resulting in the generation of reference

dynamics that attract to a particular level set.

4.3.2 Kinematic rolling disk

We first simulate the previously described system in a kinematic setting by solving the

system:

q̇ = B(q)u, (4.35)

58



5 10 15 20 25 30

-4

-2

2

4

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

replacemen

tsts tf

x

y

θ

φ

qi

qs

qf

q∗

ϕ−1[ϕ∗]

ϕ

positions energy

trajectories

Figure 4.2: Kinematic simulation of the vertical rolling disk.

and using the control functions f1, f2 defined in Section 3.1:

u1(q) := f1(q) = −H∇ϕ (4.36)

u2(q) := σ(q)f2(q) = ×(A,∇ϕ)σ (4.37)

Figure 4.2 illustrates the resulting simulation where the initial condition is q0 = [1, 1,−
3π

4
, 0]T ,

the body parameters are I = J = m = R = 1, the obstacles are µm = −π
4 ; µM = π

4 ; dm = 1;

dM = 3, and σ(q) = x. The manifold Ŵs
1 = {q ∈ Q : x = 0} is a good local approximation

for the stable manifold Ws of the system q̇ = f1(q) at the specific goal q0 = [0,−2, π/2, 0]T .

One can observe that from the initial time to ts the controller f2 keeps the energy constant

while moving exactly in the level set ϕ−1[ϕ∗], with ϕ∗ = 0.98. At time ts we switch to

controller f1 and the resulting final position is very close to the goal. Looking at φ in the

“positions” graphic one observes that the robot does a back and forward motion, necessary

to the parallel park maneuver. This comes as a natural consequence of moving in the surface

of the torus shown in the “trajectories” plot.
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4.3.3 Dynamic rolling disk

For the dynamic setting we solve the system defined by equations (4.22) and (4.24):

M(q)q̈ + c(q, q̇) = H(q)u, (4.38)

with control functions (4.12) and (4.15):

u1(q, q̇) := −K2q̇ −∇ϕ (4.39)

u2(q, q̇) := −K2F − DµT + MDf2q̇ + Cf2, (4.40)

where F (q, q̇) := q̇ − f2(q) and µ := α(ϕ − ϕ∗)2.

The stable manifold for the full system (4.38) with input (4.39) can be found using the

same process as in Section 3.4.3 by, again, defining the vector field p = (p1, p2) = (q, q̇) and

writting equation (4.38) as

ṗ2 = M−1(p1) [H(p1)u(p1, p2) − c(p1, p2)] (4.41)

ṗ1 = p2 (4.42)

or in compact form ṗ = F (p). However, we find that for this particular set of simulations

the stable manifold approximation defined by Ŵsk
1 :=

{
q ∈ Ŵs

1 , q̇ = 0
}
⊂ T Q gives a good

approximation for the true stable manifold (we assume that the approach to the true stable

manifold is acomplished at low speed so that the approximation defined for the quasi-static

system remains valid).

The first simulation, depicted in Figure 4.3, uses a high gain α = 5000 in the function

µ to track the level set as close as possible while the controller f2 is in use. This results in

a good tracking but very jerky steering motion, visible in the first part of the “velocities”

and “trajectories” plots. The damping matrix K2 is set to the identity matrix, resulting in

low damping, as observed in the intervals [ts, tf ] of the “positions” and “velocities” plots.

For the second simulation in the dynamic setting, depicted in Figure 4.4, the parameter

α = 250 provokes a less accurate tracking of the desired level set ϕ∗, when using f2, as

one can observe in the “energy” and “trajectories” plots. However, the resulting motion is

smoother then the previous simulation. For the controller f1, the damping matrix K2 = 10I

slows down the approach to the desired goal, eliminating any oscillations, as seen in the

“energy” plot.

The damping matrix K2 and the Lyapunov function µ are the design parameters for the

control of equation (4.38).
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Figure 4.3: Dynamic simulation of the vertical rolling disk.

61



5 10 15 20 25

0.2

0.4

0.6

0.8

1

5 10 15 20 25

-4

-2

2

5 10 15 20 25

-1

1

ts

tsts tftf

x

y

θ

φ

ẋ

ẏ

θ̇

φ̇

qi

qs

qf

q∗

ϕ−1[ϕ∗]ϕ

positions velocities

energy trajectories

Figure 4.4: Dynamic simulation of the vertical rolling disk.
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CHAPTER 5

Visual Servoing for fully actuated robots

We describe in this chapter a visual sensor designed to observe the position of three

known artificial beacons that comprise a landmark. In Chapter 6 these ideas are applied to

the hexapedal robot RHex considered as operating in the (three degree of freedom) plane.

We use the term “beacon” to denote any perceptually reliable marker that offers fixed

bearing information. Our beacons are “artificial” — brightly colored objects that easily

stand out against natural outdoor settings, depicted in figure 5.1 — because we seek to

avoid the well known problems of early vision that lie outside the intended scope of present

work. We use the term “landmark” to denote the composition of three beacons into a source

of sensory information sufficient to extract and regulate full relative pose on the plane.

This point of view represents an adaptation and slight generalization of the fixed camera,

moving beacon visual servoing algorithms introduced by Cowan et al [CWK02]. In contrast,

we address the “inside out” version of that problem arising from the task of registering a

mobile robot vehicle relative to some fixed landmark in the visual field (we assume that the

camera is fixed to the robot’s frame). The resulting camera map incorporates (a transformed

copy of) the full relative pose. Its gradient will be used to generate a servo controller that

forces convergence to (some arbitrarily small specified neighborhood of) any desired visible

pose along “safe” transients guaranteed to maintain the view along the way.

We find that it is sufficient to identify a beacon with the location of its centroid projected

onto the plane. Given three such centroids, without any loss of generality, we define their

composed landmark parameter space B ⊂ (R+)2 ×S1 by fixing the world frame so that the

second beacon is at the origin and the remaining beacons lie along lines going through the

origin that define congruent angles (see figure 5.2(a)):

B := {(ρ1, ρ2, α) ∈ (R+)2 × S1 | ρ1 > 0, ρ2 > 0, 0 ≤ α < π} (5.1)

The coordinates of each beacon bi in the world frame are:

[
b1 b2 b3

]
=

[
ρ1Rαê2 0 ρ2R

T
α ê2

]
, (5.2)
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Beacons Goal

Figure 5.1: The visual servoing problem: the robot RHex aims to reach the goal navigating
by use of the colored beacons for visual cues.

where Rα = [cos(α) − sin(α); sin(α) cos(α)] is the standard 2× 2 rotation matrix and ê2 is

the canonical base vector [0 1]T .

5.1 Camera map

Here we define the camera map to be the transformation that relates the pose (position

and orientation) of the robot in the world frame (SE(2)) to the pinhole projection of the

beacons in the camera’s image plane.

For convenience, we treat the camera image plane as (a subset of) the unit sphere, S2,

and drop the azimuthal component, thereby projecting all pinhole camera readings onto

the great circle, S1 ⊂ S2, corresponding to bearing in the horizontal plane. In this manner,

a beacon’s pinhole image is parameterized by the angle of the ray that connects it to the

camera center when projected onto the horizontal plane. We denote by Y ⊂ T 3 this image

projection space — the triple of angles of each of the beacons in a landmark. Note that,

although a physical camera has a flat image plane, that we denote by I, we prefer to work

with a ray’s angle computed by the transformation ζi = arctan(ιi) + π/2, where ζi is the

ith angle and ιi is the coordinate measured by the camera in meters (after pre-processing

using a lens calibration model), as illustrated in figure 5.2(a).

Because subsequent computations involving robot pose associated with the camera map

are most easily expressed in polar coordinates, we find it expedient to introduce a new

space1, P ⊂ T 2 × R
+, diffeomorphic to the robot configuration space with coordinates

w = (φ, ψ, β) (see figure 5.2(a)), where T 2 is the 2-dimensional torus. The motivation to

introduce such a coordinate system arises from the fact that in P the set of self-occlusions

1The introduction of the intermediate space P distinguishes the present construction [LK03] from the
one implemented in [CWK02].
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Figure 5.2: Simply connected configuration space introduced by Cowan et al. a) The
beacons are represented by the gray circles named (b1, b2, b3). b) Configuration space plotted
in the Image projection space.

appears as a literal (2 dimensional) torus, providing significant geometrical insight into the

self-occlusion problem.

Having adopted a representation for the beacon configuration and the robot configura-

tion space it is now necessary to determine for a given beacon, the set of robot configurations

for which occlusion-free servoing can be accomplished. Define the facing set F as the set

of configurations for which the robot lies “in front” of the set of beacons, i.e. the beacons

appear to face the robot sensor. Intuitively the beacons must keep a certain order in the

camera projection line I. Define the function ̺i : P → R
2 that returns a vector that goes

through beacon bi for a given configuration w = (φ, ψ, β).

̺i(w) := RφRψbi + βRφê2 (5.3)

The facing set is then defined by (5.4) where J is a skew symmetric matrix:

F := {w ∈ P | ̺i(w)T J̺j(w) > 0; i < j} (5.4)

Define the visible set V as the set of configurations for which the beacons are in the

field of view (FOV) of the camera sensor, where ζmin, ζmax are the FOV camera parameters

illustrated in Figure 5.2(a) and function arctan is assumed to take into account which

quadrant its argument is in.

V := {w ∈ P | ζmin < arctan(̺i(w)) < ζmax, i = 1, 2, 3} (5.5)

The previous sets arise from geometrical insight, necessary for the vision implementa-

tion, but are not sufficient to fully characterize the set of configurations for which pose
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Figure 5.3: Illustration of the intermediate space P. The thick black lines represent the
intersection of the visible set with the facing set. a) convex beacon configuration. b) linear
beacon configuration. c) concave beacon configuration. For the concave configuration the
obstacle set O disconnects the workspace W.

computation can be accomplished. In fact, as shown later, the camera map may not always

be injective in F ∩ V. This is due to the generalization of [CLK00] by allowing any beacon

configuration. It is shown here that the injectivity is lost at worst on the zero set of the

function Θ (a factor in the determinant of the jacobian of the camera map, described next)

in which set the inverse image can have cardinality 2. We then introduce the obstacle set

O using the function Θ:

Θ(w) : B × P → R

w 7→ ρ1 sin(α − ψ) + ρ2 sin(α + ψ) + β sin(2α)

O := {v ∈ B, w ∈ P | Θ(w) = 0}

If the polar configuration space is understood topologically as a thickened torus, then

the obstacle set will in general be a thin torus that disconnects P. If the three beacons are

collinear then O becomes a cylinder. Figure 5.3 illustrates the solid torus sliced by the FOV

of the camera sensor. This exemplifies the dependence of the pose computation afforded

by a given landmark upon the particular physical configuration of its constituent beacons.

For convenience, in this work, we maintain a linear beacon configuration since it proves to

result in the largest robot workspace.

Define the workspace W ⊂ P by

W := (F ∩ V) −O, (5.6)

To reconstruct the pose of the robot in the world frame, with coordinates (xw, yw, θw), a

composition of changes of coordinates is implemented. We denote the change of coordinates

from the intermediate space to the image projection space by intermediate camera map
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cB : P → Y,

cB(w) :=




arctan(̺1(w))

arctan(̺2(w))

arctan(̺3(w))


 , (5.7)

Proposition 5.1. The intermediate camera map cB is locally a diffeomorphism.

Proof. It is easy to see that cB is locally continuous and differentiable. It is enough to show

that |DwcB| 6= 0 in W:

DwcB =




∇ arctan(̺1)
T .Dw̺1

∇ arctan(̺2)
T .Dw̺2

∇ arctan(̺3)
T .Dw̺3


 (5.8)

with

∇ arctan(̺)T = −
̺T J

̺T ̺
(5.9)

Dw̺i = [RφJRψbi + βRφJê2 RφRψJbi Rφê2] (5.10)

then:

∇ arctan(̺i)
T .Dw̺i =

[
−

̺T
i JJ̺i

̺T
i ̺i

̺T
i RφRψbi

̺T
i ̺i

̺T
i Rφê1

̺T
i ̺i

]

=

[
1

βêT
2 Rψbi + bT

i bi

̺T
i ̺i

bT
i RT

ψ ê1

̺T
i ̺i

]
(5.11)

using equation (5.11):

DwcB =




1
ρ1βêT

2 RψRαê2 + ρ2
1

̺T
1 ̺1

ρ1ê
T
2 RT

αRT
ψ ê1

̺T
1 ̺1

1
ρ2βêT

2 RψRT
α ê2 + ρ2

2

̺T
2 ̺2

ρ2ê
T
2 RαRT

ψ ê1

̺T
2 ̺2

1 0 0




(5.12)

=




‖̺1‖
−2 0 0

0 ‖̺2‖
−2 0

0 0 1







‖̺1‖
2 ρ1β cos(ψ + α) + ρ2

1 −ρ1 sin(ψ + α)

‖̺2‖
2 ρ2β cos(ψ − α) + ρ2

2 −ρ2 sin(ψ − α)

1 0 0




therefore:

|DwcB| = ‖̺1‖
−2‖̺2‖

−2 det

[
ρ1β cos(ψ + α) + ρ2

1 −ρ1 sin(ψ + α)

ρ2β cos(ψ − α) + ρ2
2 −ρ2 sin(ψ − α)

]
(5.13)
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= ρ1ρ2‖̺1‖
−2‖̺2‖

−2 (β sin(2α) + ρ1 sin(α − ψ) + ρ2 sin(α + ψ)) (5.14)

=
ρ1ρ2Θ

‖̺1‖2‖̺2‖2
(5.15)

Proposition 5.2. The cardinality of the inverse map cB−1
is unique.

Proof. Consider the projected points w1 = [φ1 ψ1 β1] and w2 = [φ2 ψ2 β2]. Then:

(Rφ1Rψ1bi + β1Rφ1 ê2)
T J (Rφ2Rψ2bi + β2Rφ2 ê2) = 0, i = 1, ..., 3 (5.16)

which is equivalent to:






(ρ1Rφ1Rψ1Rαê2 + β1Rφ1 ê2)
T J (ρ1Rφ2Rψ2Rαê2 + β2Rφ2 ê2) = 0

(β1Rφ1 ê2)
T J (β2Rφ2 ê2) = 0(

ρ2Rφ1Rψ1R
T
α ê2 + β1Rφ1 ê2

)T
J

(
ρ2Rφ2Rψ2R

T
α ê2 + β2Rφ2 ê2

)
= 0

(5.17)

Using the second equation:

(β1Rφ1 ê2)
T J (β2Rφ2 ê2) = 0 ⇔ β1β2 sin(φ1 − φ2) = 0

⇒ φ1 = φ2 + kπ, k ∈ N (5.18)

Then,

{
ρ1(β2 sin(ψ1 + α) − β1 sin(ψ2 + α) + ρ1 sin(ψ1 − ψ2)) = 0

ρ2(β2 sin(ψ1 − α) − β1 sin(ψ2 − α) + ρ2 sin(ψ1 − ψ2)) = 0
(5.19)

Let βi sin(2α) + ρ1 sin(α − ψi) + ρ2 sin(α + ψi) = ωi 6= 0. Substituting in the previous

equation we obtain:

{
ω2 sin(ψ1 + α) − ω1 sin(ψ2 + α) = 0

ω2 sin(ψ1 − α) − ω1 sin(ψ2 − α) = 0
, sin(2α) 6= 0 (5.20)

Eliminating ω1 and ω2 from the previous equantion results in:

sin(2α) sin(ψ1 − ψ2) = 0, ω1 6= 0, ω2 6= 0, sin(2α) 6= 0

⇒ ψ1 = ψ2 + kπ, k ∈ N (5.21)
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Going back to equation (5.19) with ψ1 = ψ2 we obtain:

{
(β2 − β1)ρ1 sin(α + ψ) = 0

(β2 − β1)ρ2 sin(α − ψ) = 0
⇒ β1 = β2 (5.22)

Lemma 5.3. cB is a smooth and smoothly invertible map from the workspace W into Y.

Proof. Propositions 5.1 and 5.2.

The use of the intermediate space P provides a simple closed form expression for (cB)−1,

the camera map inverse valid in cB(P−O). To find its inverse the same constructive method

is used as in [Cow01]. Knowing that ̺T J̺ = 0 we have:

̺T
i JRφ(ρiRαi

Rψ + βI)ê2 = 0 (5.23)

in particular:

α1 = −α3 = α; ρ2 = 0 (5.24)

β̺T
2 JRφê2 = 0 ⇔

⇔ Rφ = δ1

[
J̺2 −̺2

]
(5.25)

The constant δ1 = ±1 is chosen so that −π
2 < φ < π

2 resulting in:

φ = ζ2 +
π

2
(5.26)

Let Y ′ =
[

ρ1̺
T
1 Rα1 0 ρ3̺

T
3 Rα3

]
and Y =

[
̺1 ̺2 ̺3

]
. Then:

ρi̺
T
i Rαi

JRψRφê2 + β̺T
i JRφê2 = 0

⇔
[

Y ′T Y T
] [

JRφRψ ê2

βJRφê2

]
= 0 (5.27)

Let Y †
⊥ be the orthogonal complement of the subspace generated by the lines of Y †,i.e.

Y †
⊥ lives in the null space of Y †, with Y † = (Y Y T )−1Y the pseudo-inverse of Y T . Since[
Y †T Y †

⊥

T
]

is full rank then the previous expression is equivalent to:

[
Y †

Y †
⊥

] [
Y ′T Y T

] [
JRφRψ ê2

βJRφê2

]
= 0

⇔

[
Y †Y ′T I

Y †
⊥Y ′T 0

] [
JRφRψ ê2

βJRφê2

]
= 0 (5.28)
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Solving for Rψ we get:

x = δ2
Y ′Y †

⊥

T

‖Y ′̺⊥‖
(5.29)

Rψ = RT
φ

[
Jx −x

]
(5.30)

Simplifying we obtain ψ:

ψ = arctan(δ2R
T
φ JY ′Y †

⊥

T
) (5.31)

Again δ2 = ±1 is chosen so that −π
2 < ψ < π

2 . Finally solving for β in (5.28) we get:

Y †Y ′T J
[

Jx −x
]
ê2 + βJRφê2 = 0

⇔ β‖JRφê2‖ = ‖Y †Y ′T J
[

Jx −x
]
ê2‖

⇔ β =
‖Y †Y ′T JY ′Y †

⊥

T
‖

‖Y ′Y †
⊥

T
‖

(5.32)

In the obstacle set O we have ‖Y ′Y †
⊥

T
‖ = 0. In summary, the inverse camera map results

in the following expressions:

φ = ζ2 +
π

2

ψ = arctan(δRT
φ JY ′Y †

⊥

T
) (5.33)

β =
‖Y †Y ′T JY ′Y †

⊥

T
‖

‖Y ′Y †
⊥

T
‖

Numerical simulations in [LK03] suggest that in general it is possible to accomplish global

convergent occlusion-free navigation even in the presence of a disconnecting obstacle set O.

In particular, for a concave beacon configuration it is expected that in a small neighborhood

of O the camera map jacobian is small, potentially introducing large errors in the pose

computation. Figure 5.4 illustrates the pose computation error by adding a random noise

vector with gaussian distribution to the computation of the inverse camera map, hence

simulating noise from a camera. One can notice that the error increases with distance from

the beacons and the proximity to O. Figure 5.5 illustrates the deformation obtained from

“pushing” spheres centered at different initial conditions in I through the inverse camera

map, giving a sense of how a small perturbation in I may result in a very large uncertainty

region in SE(2).

The final camera map from world coordinates Q ⊂ SE(2) to image projection space Y
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is:

c := cB ◦ cC , (5.34)

where cC : Q → P maps the world frame, with coordinates (xw, yw, θw), to the intermediate

space P.

cC : Q → P

(xw, yw, θw) 7→




arctan(
yw sin(θw) − xw cos(θw)
xw sin(θw) + yw cos(θw)

)

θw − arctan(
yw sin(θw) − xw cos(θw)
xw sin(θw) + yw cos(θw)

)

√
x2

w + y2
w




(5.35)

Let cA : I → Y be a map from the camera image line to the image projection space:

cA : I → Y

(ι1, ι2, ι3) 7→




arctan(ι1) + π/2

arctan(ι2) + π/2

arctan(ι3) + π/2


 (5.36)

The following diagram summaries the composition of all the maps to achieve the robot’s

pose in SE(2):

I
cA

−−−−→ Y
cB−1

−−−−→ W
cC−1

−−−−→ Q (5.37)

5.2 Navigation function on the image projection space

Building a navigation function that imposes the boundaries of F and V is best accom-

plished in Y space. Let ϕ̄ be a potential function:

ϕ̄ : Y → [0, 1]

ζ 7→
¯̄ϕ(ζ)k

ǫ + ¯̄ϕ(ζ)k
(5.38)

with:

¯̄ϕ(ζ) :=

(
(ζ1 − ζ∗1 )2 + (ζ2 − ζ∗2 )2 + (ζ3 − ζ∗3 )2

)m

(ζmax − ζ1)(ζ1 − ζ2)(ζ2 − ζ3)(ζ3 − ζmin)
(5.39)
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By construction, the function ϕ̄ equals unity on the boundary of Y and has a global minima

at the goal (ζ∗1 , ζ∗2 , ζ∗3 ). ϕ̄ is continuous and differentiable, and it can be shown that it

is a navigation function in Y as defined in [KR90]. The parameters ǫ, k and m shape

the function ϕ̄ to allow fine tuning of the resultant velocity vector field. (ζmin, ζmax) are

the FOV constraints described in Figure 5.2(a). For more details see Section 3.5.4. The

navigation function written in the configuration space is:

ϕ := ϕ̄ ◦ cB ◦ cC (5.40)

Assuming a fully actuated body, the previous navigation function can be implemented in

Q ⊂ SE(2) by the following differential equation, with the projection of the beacon centroids

in the image plane as measurements v:

q̇ = −∇ϕ = −DcCT
DcBT

∇ϕ̄ ◦ cA(v) (5.41)
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CHAPTER 6

Empirical validation

In this chapter we present the results of the implementation of the visual servoing al-

gorithm developed in the previous chapters for the RHex robot. In Section 6.1, we outline

the hardware and software components that comprise the image processing pipeline. It is

important to keep in mind that this perceptual apparatus must remain fairly simple since

it is located entirely onboard the robot and runs in real time as we detail below. In Sec-

tion 6.2 we describe the controller implementation, emphasizing the two extensions to the

simple version of the algorithm presented in Section 3.1.1 that compensate for the signifi-

cant sensor noise and limitations in control authority inherent in this physical setting. We

explain why the resulting closed loop (hybrid) behavior is still governed by the correctness

results of Chapter 3, notwithstanding these real world adjustments. Finally, we present two

applications: return home and auto-tuning. We include tables and figures of data summa-

rizing our extensive experimental results for both indoor and outdoor implementations of

the complete system.

6.1 The Perceptual Hardware and Software

The entire visual sensor suite is implemented on a second dedicated onboard 300MHz

PC104 stack, running Linux, connected by local ethernet to the (QNX based) motor control

stack documented in [SBK01]. We implement the following computational pipeline on this

second stack at a 10 Hz update rate:

1. Video acquisition: is accomplished by a Sony DFW300 camera via a firewire connec-

tion.

2. Image processing library: Early vision is accomplished using the SVision library that

I developed for the RHexLib infrastructure code. It is inspired by Hager’s XVision

[HT98], albeit considerably stripped down in comparison. We implement the following

image processing methodology:

• color calibration (this step is executed only at startup): A lookup table is used
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a) b) c)

Figure 6.1: a) Color threshold classes in YUV color space; b)-c) Preview of the multi-color
blob tracker.

for color classification in the YUV color space (the standard TV NTSC color

space) with size 256× 256× 256. Different color classes are acquired by selecting

different objects in the GUI’s camera view. After a color class is acquired its

size is increased1 by a pre-defined amount in the luminance direction of the HLS

color space (Hue, Luminance and Saturation) so as to maximize robustness to

daylight changes, specifically, switching from shade to direct sun exposure.

• blob extraction: the standard 4-neighbor connected components algorithm is

used as presented in [BB82]. A vector of mass, centroid and labeling class is

returned per blob found.

• lens correction: the standard Heikkilä [HS97] lens model is used. Calibration is

performed at startup using a flat checkerboard surface.

3. Image stabilization: The centroid information provided by the image processing li-

brary follows a post-processing roll correction. Since it assumed that the beacons

project into a line, following Figure 5.2(a), roll correction is accomplished by fitting a

line to the 2D centroid of the 3 blobs (chosen by size and class) and attaching a frame

to it. The beacon coordinates are defined in relation to that frame. The following

simplified expression is used in the experimental implementation, where (Xi, Yi) are

the centroids of the three beacons in the image plane:

ζi = arctan

(
Xi + δYi

1 + δ2

)
+ π/2, (6.1)

with,

δ :=

∑
Xi

∑
Yi − 3

∑
XiYi

(
∑

Xi)2 − 3
∑

X2
i

. (6.2)

1The color’s acquired simply-connected volume is projected into the Hue and Saturation plane and then
spread over an interval in the Luminance axis.
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In the simulations developed in Section 3.5.4 the robot is assumed to live in the plane

and therefore no pitch is considered. However, in the experimental implementation

there can be large disturbances that pitch the robot enough for the beacons to leave

the field of view either from the bottom or from the top of the image. We coded a

state machine, described below, that in case of “emergency” will stop and rotate the

robot in place until it relocates the beacons. This simple procedure corrected for all

the temporary failures that occurred due to excessive pitching.

4. Supervisory state machine: The transitions between the controllers f1 and f̄2 are im-

plemented using a standard state machine formulation. The robot is initiated with

controller f̄2. A transition occurs if the robot crosses the stable manifold approx-

imation switching to controller f1. If f1 fails to bring the robot to a pre-defined

neighborhood of the goal location, i.e. reaches the center manifold outside the goal’s

neighborhood and a fixed amount of time has passed, then another transition occurs,

switching back to controller f̄2. The robot stops when it reaches the goal’s neighbor-

hood. As mentioned before, the state machine will also deal with particular emergency

situations.

6.2 Controller Implementation

The control algorithms use the camera map exactly as defined above in Section 5.1.

However the substantial perceptual noise and limitations in control authority associated

with our physical RHex environment require two additional complications in the controller

implementation.

First, although the horizontal plane behavior of the robot RHex is reasonably well

approximated by the unicycle mechanics presented in Section 1.2.4, the limited number of

gaits available for any given terrain [WLB+04] typically dictate that the available fore-aft

speed control be limited to a few discrete velocity magnitudes. Thus, a more accurate model

of control authority would replace u1 in equation (1.34) with a variable taking its values

in a discrete set. Fortunately, gradient vector fields can be scaled in an arbitrary (albeit

sign definite) manner with no change in steady state behavior. Namely, for any gradient

field, f(x) = −∇ϕ and any positive scalar valued function, σ(x), observe that ϕ remains

a Lyapunov function for the scaled field σ(x)f(x). Our implementation using a discrete

magnitude field can now be modeled by σ(x) := σ0/||f(x)||.

Second, in systems where noise is introduced via imperfect perception or actuation, the

vector field f2 looses its ϕ-invariance. Although a thorough-going treatment of the stochastic

version of our problem lies well beyond the scope of this paper, the reliance on gradient

vector fields once again affords an intuitively simple “regulator” against these undesirable

(and, ultimately, dangerous) fluctuations in proximity to the obstacles. Namely, suppose
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that the noise is additive and zero mean. Rewrite equation (3.30) as:

q̇ = f̄2(q) + v(t) (6.3)

Define the new input f̂2 as:

f̂2 := f̄2(q) + β (ϕ∗ − ϕ(q)) f1(q) (6.4)

= σJ(A)∇ϕ + β (ϕ∗ − ϕ) H∇ϕ,

where β is a positive scalar and ϕ∗ is the desired target level set, normally chosen to be

slightly less then 1. The dynamics of ϕ for q̇ = f̂2(q) + v(t) are:

ϕ̇ = ∇ϕT f̄2︸ ︷︷ ︸
=0

+β(ϕ∗ − ϕ)∇ϕT H∇ϕ︸ ︷︷ ︸
γ

+∇ϕT v︸ ︷︷ ︸
w

= βγ(ϕ∗ − ϕ) + w (6.5)

As q(t) evolves over time, ϕ(q(t)) converges to a neighborhood of ϕ∗ if γ > 0 and w is small in

proportion. In practice this means that the robot will stay in the proximity of the target level

set ϕ∗ while it is in motion, escaping the center manifold. The experiments performed on

RHex, described next, revealed that adding the second term to the vector field (6.4) is indeed

necessary. The robot was unable to follow a particular level set when f̄2 was solely used.

In contrast, note that f1 is energy dissipative, hence standard arguments from Lyapunov

theory establish its robustness against these sorts of perturbations without the requirement

of any further modification.2 Although formal robustness analysis is generally not available

for nonlinear systems, the nondegenerate gradient systems of the kind introduced in this

paper are structurally stable, hence “small” perturbations away from the nominal model

are guaranteed to result in only “small” perturbations in the limit set.

The resulting modified input of (3.41) used in the experiments, before applying the

scaling required for RHex’s discrete actuation presented in the beginning of this section, is:

up := B† [σJ(A) + β (ϕ∗ − ϕ) I]∇ϕ (6.6)

As a final note we would like to remind the reader that throughout this thesis we consider

only the problem of point stabilization and avoid the tracking problem. In the experimental

implementation the robot eventually “tracks” a level set of the navigation function but still

does not track any particular fixed trajectory. Tracking changes completely the structure of

the problem since in general, time-invariant vector fields can no longer be used for control.

2Specifically, the Lie derivative of ϕ along f̂1 := f1 + v is “usually” negative — except possibly in a small
neighborhood of the center manifold whose size is regulated by the relative magnitude of f1 and the variance
of v. It follows that this neighborhood remains an attractor “on average”.
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6.3 Return home

The set of experiments presented in this section relates to the problem of having the

robot “return home”, in effect, an implementation of point stabilization. We divide the

experimental results into two parts:

The first data set, a trace of the visually perceived pose and energy level resulting from

application of controller f2, depicted in figures 6.2–6.6, gives a feeling for the robustness

of these gradient style controllers as the robot roughly but reliably traces out the desired

trajectory in the face of notable sensor noise, the inevitable perturbations from uneven

ground, as well as the very severe parametric uncertainty arising from the crudeness of the

unicycle model used to describe the horizontal plane behavior of RHex. At a far distance

from the beacons, the pose estimation performs poorly, as seen in the high variance of the

data. Three set of experiments, depicted in figures 6.2–6.4, are conducted outdoors using

RHex’s onboard camera only, according to the procedure documented above in Section

6.2, for two different target levels. The remaining two experiments, figures 6.5–6.6, were

conducted indoors. Here the ground truth trajectory is presented side by side with the

robot’s perceived trajectory. One clearly observes the regularity of the robot’s real trajectory

in the face of high noise pose measurements.

The second data set — a graphical and tabular summary of convergence from several

different initial configurations — portrays the nature of “practical stability” [MS03] assuring

convergence to a small neighborhood of the goal pose with the guarantee of maintaining

visibility (never losing sight of the triple-beacon landmark) along the way. This experiment

was conducted indoors with the ground truth data acquired by an overhead camera running

at 30Hz. Quantitatively, the interesting parameter to measure is the mean arc-length ratio

of the path, defined in discrete time by:

mean arc-length ratio := meani

[ ∑
k ‖q

i
k − qi

k−1‖

‖qi
0 − q∗‖

]
, (6.7)

where k spans the indexes of the samples for the ith experiment. Table 6.1 compiles the

experimental results and Figure 6.7 illustrates the robot’s real trajectory obtained via a

ground truth system.

No chattering effect was observed in any of these experiments. This is due to the state

machine formulation (that prevent f1 and f̄2 to switch in an “incoherent” fashion) and

RHex’s actuation model, realizing discrete steps. Note however that in wheeled vehicles

chattering may occur when controller f̄2 is used very close to the goal, i.e. with a very small

energy. Since f̄2 will reside on a very small level set of the navigation function, this results

in very small oscillations around the goal.

Table 6.2 presents a summary of all of the experiments presented in this section.
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Table 6.1: Comparison between simulations of a unicycle and experiments executed using
the robot RHex for the three beacon problem.

# Mean error position Mean arc-length ratio

Simulations 368 5.3 cm 2.9

Experiments

a) 5 17.6 cm 9.3

b) 5 17.8 cm 6.2

c) 5 17.6 cm 6.5

d) 5 26.1 cm 5.2

e) 5 11.5 cm 5.5

f) 5 27.9 cm 4.9

Table 6.2: Summary of experimental data for the return home application.

Controller Figure Ground Location Target energy Data source

f2

6.2 grass outdoors ϕ∗ = 0.9 onboard

6.3 packed dirt outdoors ϕ∗ = 0.9 onboard

6.4 packed dirt outdoors ϕ∗ = 0.8 onboard

6.5,6.6 cement indoors ϕ∗ = 0.8 ground truth, onboard

f1 and f2 6.7 cement indoors ϕ∗ = 0.8 ground truth
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Figure 6.2: Subset of representative experiments on grass. Target energy is ϕ∗ = 0.9
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Figure 6.3: Subset of representative experiments on packed dirt. Target energy is ϕ∗ = 0.9
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Figure 6.4: Subset of representative experiments on packed dirt. Target energy is ϕ∗ = 0.8
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Figure 6.5: Subset of representative experiments indoor using ground truth. Target energy
is ϕ∗ = 0.8
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Figure 6.6: Subset of representative experiments indoor using ground truth. Target energy
is ϕ∗ = 0.8
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Figure 6.7: RHex’s ground truth measurement experiments. Different goal locations q∗ are
represented by the gray triangles. The initial configurations q0 are represented by the thick
line white triangles and the final configurations qf by the solid black triangles.
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6.4 Auto tuning

Legged robots, due to the intermediate ground contact motion, have in general an

infinite dimensional space of leg trajectories that can be chosen for different applications.

Such types of trajectories include different gates such as walking, jogging, running, prancing,

bouncing, etc. or specific applications such as gates for optimal endurance, speed, slopes,

etc. Saranli et al. [SBK01] developed a piecewise continuous leg trajectory model for the

RHex robot. Later, I participated in an effort with Weingarten [WLB+04] to implement

a self-tuning algorithm based on the Nelder-Mead descent [NM65] on the parameter set

introduced by Saranli. In this work we addressed optimization for speed, endurance and

walking slope angles of RHex. I describe in this section my contribution to this project.

We have integrated the controller presented in Section 6.2 into a parameter tuning

infrastructure by recourse to engineered beacons, bright red vertically striped panels as

depicted in Figure 6.8. The sequential composition of the constituent continuous controllers

(see Section 2.3) is implemented by a supervisor defined by the standard finite state machine

illustrated in Figure 6.9. Transition events between discrete supervisor states occur when the

robot reaches (or, via surrogate means, supervisor states ”believes” itself to have reached,

in the cases noted below wherein it lacks the sensory modality to measure the relevant

aspects of its state directly) its goal inside the domain. In critical situations the user can

also trigger events.

The three primary supervisor states in an optimization trial are: servo-home, stabilize

and experiment. Additional states are added to deal with undesired events. The numbered

states illustrated in Figure 6.8 are described next:

• Servo home Domain of attraction: Entire workspace. The controller assumes that

the robot is in any upright configuration inside the optimization area (in all experi-

ments reported here we have used a 15 × 2m corridor). If no beacons appear on the

robot’s FOV then it rotates in place until it finds an appropriate constellation of 3

beacons. The corridor is so engineered with beacons that for every location therein,

some interval of heading angles is guaranteed to afford a clear view of an appropriate

constellation. It is for this reason that the domain of attraction arising from the servo

home controller includes the entire workspace.

Goal : Move the robot into a predefined home location preparing itself to start a new

trial. A navigation function drives the robot to the home position while guaranteeing

that the beacons stay in the FOV at all times.

• Stabilizing phase Domain of attraction: Locations in which the robot is behind the

home line illustrated in Figure 6.8 and a set of beacons is centered in the FOV.

Goal: Cross start line illustrated in Figure 6.8. This stage of the composition is

introduced to eliminate the transient response of the gait being tested. The controller

used is the same as in the experiment phase described next. Since we have no sensor
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Stabilizing Experiment Servo home

End line Start line Home

Figure 6.8: Illustration of a typical setup used for automated gait adaptation. A set of 3
beacons is placed at each side of a corridor. The robot moves back and forward registering
against the beacons. The lines perpendicular to the corridor represent the start location for
the stabilizing phase and the start/stop for the experiment phase.

capable of measuring directly when the transient response has ended, the goal in

this state is triggered by distance. Thus while we adhere to the formal definition

of sequential composition [BRK99] with respect to a surrogate projection of greatly

reduced dimension (a projection of the robot’s three degree of freedom configuration

in the horizontal plane), this is only a coarse substitute for the more refined goal

that would need to be defined in the underlying state space of the robot’s full 12

dimensional rigid body position and velocity.

• Experiment phase Domain of attraction: The robot must be over the start line.

Goal : Cross end line illustrated in Figure 6.8. The experiment phase drives the robot

in a straight line for a fixed length. The controller maintains a constant forward

velocity and steers the robot through the corridor so that in stays on a line as much

as possible. In order to eliminate disturbances introduced by the steering leg offsets

a dead zone is added to the yaw controller resulting in a 90% no steering motion on

slow gaits.

The recovery states illustrated in Figure 6.9 are activated when the robot temporarily

loses the beacons during a trial. Heuristically, the robot turns in the direction in which the

beacons are spotted last. If the recovery does not bring to robot back into track within a

couple of seconds then the trial is aborted and the robot returns home using the previously

described servo home controller.

The efficiency of the automatic leg parameter tuning algorithm is judged by the amount

of human interaction. Although the state machine described above accounts for almost

every foreseeable contingency, there still exist situations that require human intervention,

notably when the robot flips over, tho motor temperatures reach the point of incurring

damage or the batteries need to be changed. Thus, while not entirely displaced, the burden

on the human operator is substantially reduced, allowing useful attention to other work

while tuning progresses, thereby allowing for longer and more accurate tuning sessions.
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Figure 6.9: Illustration of state machine used for automated gait optimization. A trial
is considered successful if loop A occurs. Other loops occur if the robot loses sight of
the beacons for longer then a predefined time or a critical situation occurs. Only critical
situations require human intervention, in general the robot is able to recover by rotating in
place until the beacons appear in the field of view of the onboard camera.
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In addition to greatly relieving operator burden, the automation system is both more

reliable and accurate than the human operated version at speeds less than 1.3m/s. To test

the attributes of the vision system we ran trials at three constant speeds over an 8m linoleum

course. Table 6.3, borrowed from Weingarten’s article [WLB+04], documents the better than

doubled performance the robot achieved while significantly reducing the percentage of the

run where steering inputs are used to keep the robot on course. Furthermore, the percentage

of experiments that need to be re-evaluated (redo rate = unsuccessful runs/total runs) is

greatly reduced. At lowest speeds (approximately 0.5m/s) the vision system proved to work

entirely without human assistance as opposed to every run without vision. As the velocity

of the robot increases, it becomes more prone to flipping and thus the experimenter had

to intervene to right the robot. The automation system fails at high speeds (greater than

1.5 m/s) because of the low frame rate returned by the vision system and image blur due

to a long exposure time.

Table 6.3: Accuracy and reliability of the vision based automated parameter tuning system.

Test Speed Automated Human Trials

Trial Timing 0.5 m/s ∼ 0.2 s ∼ 0.5 s 50

(std. dev.) 1.0 m/s ∼ 0.3 s ∼ 0.5 s 50

2.0 m/s — ∼ 0.5 s 20

Steering Rate 0.5 m/s ∼ 10% ∼ 70% 10

(percentage) 1.0 m/s ∼ 40% ∼ 85% 10

2.0 m/s — ∼ 90% 10

Run Redo Rate 0.5 m/s ∼ 2% ∼ 10% 50

(percentage) 1.0 m/s ∼ 10% ∼ 10% 50

2.0 m/s — ∼ 20% 20

Human Assisted 0.5 m/s 0% 100% 50

(percentage) 1.0 m/s ∼ 3% 100% 30

2.0 m/s — 100% 5
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CHAPTER 7

Conclusions and future directions

In this thesis we present a robust visual servo suitable for registering a legged robot

with limited perception relative to engineered landmarks over rugged outdoor terrain. At

the heart of our algorithm is a provably correct hybrid controller that reuses navigation

functions developed for fully actuated bodies on kinematically constrained systems. It is

straightforward to extend the guarantee of obstacle avoidance. Verifiable assumptions are

given for convergence to an arbitrarily small neighborhood of the goal. We identify the

parameters that govern the efficiency of the control law and suggest different methods for

computing these. We present various simulations for different perceptual and motion models,

and various sets of controller parameters.

We then address a large class of dynamical systems by redeveloping the proposed hybrid

controller on a mechanical systems framework. We suggest how the vector fields developed

for kinematic systems can be lifted to the dynamic setting with the introduction of damping

and proportional gain type constants. The simulations presented suggest this lifting can be

readily realized in real applications, by proper choice of the damping and gain.

We summarize the results of an extensive empirical implementation on the legged robot

RHex that comprise of two relevant applications: set point stabilization on the plane that

we denote by return home, and automated gait parameter tuning.

• The return home application attests for the robustness of the proposed hybrid con-

troller combined with the visual sensor by conducting experiments both indoor and

outdoor as well as in different types of terrains, such as grass, dirt, or cement. We

conclude that in the presence of unfiltered high variance visual sensor noise, a crude

robot motion model, and ground perturbations, point stabilization is achievable with

very stable robot trajectories.

• We present a real world autonomous robotic application by composing a set of the

proposed hybrid controllers with carefully geometrically engineered beacons that allow

the robot to implement a gait parameter tuning procedure in a nearly autonomous

manner. We present the supervisory state-machine formulation that encodes almost
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all conceivable recoverable contingencies and guides the robot through each step of

the leg parameter tuning experiment. We conclude that the vision-based automated

tuning runs exhibit markedly increased accuracy and improved steering relative to

human-controlled experiments.

7.1 Short term applications

The work developed in this thesis can generate a range of possibilities for near and long

future exploration and study. We focus here on a possible extension to a contemporary

approach based on Lie algebra techniques, that we review in Section 1.2.3. Interpreting

nonholonomic systems from a geometric control perspective where the configuration space

has a fiber bundle structure brings many advantages due to the decoupling of the actuated

(base) variables from the unactuated (group) states. As an example, Shammas [Sha06]

developments in open-loop gait generation illustrate the ability to tackle higher dimensional

systems recurring to lower dimensional base spaces.

One branch of ideas that I plan to follow in the near future includes results from this

thesis on building “molded” energy conserving vector fields, the stabilizing and tracking

algorithm developed by Morin et al [MS03], and the principally kinematic representation

coined by Koiller [Koi92]. A class of stabilizing (and tracking) controllers for nonholonomic

systems is based on tracking reference dynamics (or isolated trajectories) by adding a per-

turbation term that deals with the directions that are not spanned by the system actuated

vector fields. Two sample frameworks based on this principle were introduced indepen-

dently by Walsh [Wal94] and Morin [MS03]. We focus on the latter here. Consider the

affine nonholonomic system:

ġ =
m∑

i=1

Xi(g)ui + P (g, t), (7.1)

As revisited in Section 1.2.3, Morin [MS03] shows that if the vector fields Xi are left invari-

ant then one can find a perturbation term fǫ with a specially crafted input that renders

the system ż = Z(z) asymptotically stable with z = gf−1
ǫ , also stabilizing g in the “prac-

tical sense”, since the perturbation term fǫ is made small. One possible idea consists in

changing the definition of fǫ by equipping it with a navigation function that encodes shape

and possible group obstacles. Since the function Z(z) can be chosen at will, one can imag-

ine generating a reference vector field based on a second navigation function that deals

exclusively with group obstacles. This may result in a framework that can simultaneously

and efficiently encode shape obstacles, such as joint limits, with group obstacles, such as

collisions, is a decoupled fashion.

A fundamental condition for Morin’s algorithm to stabilize system (C.2) is that the

vector fields Xi be left-invariant. In general, not all systems will adhere to this property. In
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Appendix C we describe a possible way of utilizing Morin’s feedback stabilizing controller

in principally kinematic systems. We end with a list of open questions for this interesting

problem:

• Can we systematically impose obstacles in the shape and in the group by manipulating

fǫ and Z(z), guaranteeing the conditions of Morin’s stabilizing algorithm?

• Can we adaptively change the “gains” of the perturbation term fǫ so that one can

execute maneuvers with large amplitudes of motion (and little oscillations) and yet

reach arbitrary small neighborhoods of the goal?

7.2 Long term applications

The successful fully autonomous navigation application presented in Section 6.4 moti-

vates the exploration of new navigation applications both in the scientific and commercial

world. Being able to have your legged robot teach itself how to walk without requiring

engineered landmarks or even having a pet robot navigating autonomously at your home

brings great opportunities for the continuation of the framework developed in this thesis.

Improvements can be done in the image processing component, allowing for natural land-

marks, or in the supervisory state machine, by using different topology-based algorithms for

navigation. Although we have at this point a clear idea of the limitations and conditions of

applicability of the class of hybrid feedback controllers developed in this thesis, we believe

there is still room for new developments such as, for example, specific high dimensional

nonholonomic systems and new motion and perception models.

92



APPENDICES

93



APPENDIX A

Fečkan’s extension of the Bendixon’s criteria

Definition A.1 (Fečkan [Fec01b]). Let M ⊂ R
l be an m-dimensional compact smooth

orientable submanifold with a nonempty border ∂M . Hence ∂M is an m − 1-dimensional

compact smooth orientable sub-manifold. Assume that m ≥ 2. Let V ⊂ R
n be a k-

dimensional smooth submanifold of R
n with empty border ∂V = ∅. Let β ∈ Lip(∂M, Rn)

be such that β(M) ⊂ V and τ = β/∂M satisfy:

I τ is injective on ∂M .

II The inverse τ−1 : τ(∂M) → R
l is Lipschitz on the set τ(∂M) ⊂ R

n.

We call the set S = τ(∂M) an m − 1-V -L-boundary of V . It is a generalization of smooth

submanifolds of V .

Theorem A.2 (Fečkan [Fec01b]). Let g1, g2, · · · , gp ∈ C2(Rn, R) be first integral of (3.10).

If V = G−1[0] is a nondegenerate level set of the mapping G = (g1, g2, · · · , gp) and in

addition divf2 6= 0 on V , then there is no n−p−1-V -L-boundary S of V which is invariant

for (3.10).
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APPENDIX B

Reference of common nonholonomic systems

We present in this appendix a collection of common kinematic drift-free nonholonomic

systems. It is not our intent to be extensive. Instead we focus on the most common models

that have a robotics application. We start, however, with a small number of abstract models

that have been studied by the nonlinear control community, due to the insight they have

brought to the development of efficient robot control algorithms. We purposely do not

include common systems such as the Roller Racer [KT95], the Snakeboard [LOMB94] or

the recent RoboTrikke [CCFK05] since they cannot be described as kinematic drift-free

systems.

B.1 Abstract models

B.1.1 “Mod Jacobi” system

The “Mod Jacobi” system, presented by Sastry [Sas99] has the property of requiring

exactly 2 levels of bracketing for spanning TR
n. Its general form defined in R

n is

ẋi = ui, i = 1, . . . , m

ẋij = xiuj , 1 ≤ i < j ≤ m (B.1)

ẋijk = xijuk, 1 ≤ i, j, k ≤ m

where,

n = m +
m(m − 1)

2
+

(m + 1)m(m − 1)

3
=

m(1 + 3m + 2m2)

6
(B.2)
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For the particular case for m = 2 we get q̇ = X1(q)u1 +X2(q)u2 with X1 = [1 0 0 x3 0]T and

X2 = [0 1 x1 0 x3]
T . The largest filtration can be found by using 2 levels of Lie brackets:

[
X1 X2 [X1, X2] [X1, [X1, X2]] [X2, [X1, X2]]

]
=




1 0 0 0 0

0 1 0 0 0

0 x1 −1 0 0

x3 0 x1 −2 0

0 x3 0 0 −1




Sastry in [Sas99] proposes a stabilization algorithm based on sinusoid control where each

set of variables {xi, xij , xijk} are stabilized in sequence, beginning with xi and ending with

xijk.

B.1.2 One Chain

The one chain system [Sas99] has the interesting property of being controllable and

having a degree of nonholonomy n − 2, therefore increasing linearly with the dimension of

the system and being the “worst case” since it requires the highest number of Lie brackets

to span TR
n. It general form is:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (B.3)

...

ẋn = xn−1u1

In vector field notation we get q̇ = X1(q)u1 + X2(q)u2 with X1 = [1 0 x2 · · · xn−1]
T and

X2 = [0 1 0 · · · 0]T . Using the notation adXY = [X, Y ] and adk
XY = [X, adk−1

X Y ] =

[X, [X, . . . , [X, Y ] · · · ]] one can show that for the vector fields in equation (B.3), with k ≤ 1,

we obtain

adk
X1

X2 =
[

0 · · · (−1)k · · · 0
]T

, (B.4)

where the nonzero entry is in the (k + 2)-th entry. The matrix

[
X1 X2 adX1X2 · · · adk−2

X1
X2

]
(B.5)

is full rank and therefore system (B.3) is controllable. This system has been addressed

by many authors, resulting in stabilizing controllers using time-varying feedback [Pom92,

Sam95], sinusoidal and polynomial control [MS93,TMS93], flatness [FLMR95], backstepping

[JP95], piecewise control [HM99,MNC92] and sliding mode control [FBP00].
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Figure B.1: The car.

B.2 Physical systems

B.2.1 Car

The car, illustrated in figure Figure B.1, is an extension of the unicycle by adding an

extra constraint equation resulting from the back set of wheels. It takes the form

ẋ = cos(θ) cos(φ)u1

ẏ = sin(θ) cos(φ)u1 (B.6)

φ̇ = u2

θ̇ =
1

l
sin(φ)u1

This system is controllable and has a degree of nonholonomy 2. The work on the car

system has been very active until today. Some of the applications include Fuzzy con-

trollers [YLML04, BMVSSO04, CLL05, DK06], trajectory tracking [WX03, TWC06], adap-

tive control [DK05,BB05], dealing with obstacles [QWP04,GVLS06], continuous curvature

paths [FS04] and feed-forward parking [MDG07]. Since the car system can be converted

into a one-chain form system a large body of work on stabilization is readily available.
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Figure B.2: The car with n trailers.

B.2.2 Car with n trailers

The car can be seen as a particular case of the car with n trailers. Following the notation

of Figure B.2, it takes the following form

ẋ = cos(θ0)u1

ẋ = sin(θ0)u1

φ̇ = u2

θ̇0 =
1

l
tan(φ)u1

...

θ̇i =
1

di




i−1∏

j=1

cos(θj−1 − θj)



 sin(θj−1 − θj)u1

Sørdalen [rda93] showed that there exists a change of coordinates that can transform the

car with n trailers system into a one-chain form system. Other authors have presented

stabilization algorithms including Tilbury [TMS93] and Samson [Sam95].
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Figure B.3: The firetruck.

B.2.3 Fire truck

The fire truck was initially presented as an example for a problem of multi-input chain

form stabilization by Bushnell et al. [BTS95]. Later Michalska and Rehman developed

feedback stabilization algorithms based on model decomposition [Reh01] and discontinuous

inputs [MR96]. The system equation take the form:

ẋ = cos(θ1)u1

ẏ = sin(θ1)u1

φ̇1 = u2 (B.7)

θ̇1 =
1

L0
tan(φ1)u1

φ̇2 = u3

θ̇2 = −
1

L1
sec(φ2) sin(φ2 − θ1 + θ2)u1

Rewriting equation (B.7) using vector fields q̇ = X1(q)u1 + X2(q)u2 + X3(q)u3 one can

compute the degree of nonholonomy 2 since the following matrix is full rank:

[
X1 X2 X3 [X1, X2] [X1, X2] [X1, [X1, X2]]

]
(B.8)
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Figure B.4: The hopping robot.

B.2.4 Hopping robot in flight

The hopping robot in flight was initially studied by Li et al. [LMR89] and later revisited

by Murray et al. [MS93]. The goal of this system is to reorient the body in midair to

achieve a specific leg approach angle and leg extension. Given the conservation of angular

momentum, and ignoring the ballistic trajectory during flight, the relevant system equations

are

ψ̇ = u1

l̇ = u2 (B.9)

θ̇ = f(l)u1

where the scalar f(l) is a function of the masses, inertias and the leg length l. This system

has degree of nonholonomy 1. Murry et al. present a solution for this system based on

sinusoid control.
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Figure B.5: The submarine.

B.2.5 Submarine

The submarine, studied by Nakamura et al. [NS91], can be interpreted as a 3-dimensional

unicycle. Using the standard notation for roll, pitch and yaw, represented by the variables

(φ, θ, ψ), takes the following system equations:




ẋ

ẏ

ż

φ̇

θ̇

ψ̇




=




cos(ψ) cos(θ) 0 0 0

sin(ψ) cos(θ) 0 0 0

− sin(θ) 0 0 0

0 1 sin(φ) tan(θ) cos(φ) tan(θ)

0 0 cos(φ) − sin(φ)

0 0 sin(φ) sec(θ) cos(φ) sec(θ)







v

ωx

ωy

ωx




(B.10)

This system is controllable and writing equation (B.10) as q̇ = X1(q)v + X2(q)ωx +

X3(q)ωy + X4(q)ωz results in the following full rank matrix:

[
X1 X2 X3 X4 [X1, X3] [X1, X4]

]
(B.11)
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B.2.6 Ball-Plate

The ball-plate mechanism was initially presented by Montana [Mon88]. Later feedback

stabilization algorithms were presented by Sampei [SMS+99], Oriolo [OV01, OV05] and

Date [DSIK04]. Matsuo [MTS99] presented a Fuzzy logic approach and Svinin [SH06,SH07]

specializes the stabilization problem by assuming only limited contact. The system equa-

tions following Oriolo’s notation are:

ẋ = u1

ẏ = u2

µ̇ =
cos(ψ)

ρ
u1 −

sin(ψ)

ρ
u2

ν̇ = −
sin(ψ)

ρ cos(µ)
u1 −

cos(ψ)

ρ cos(µ)
u2

ψ̇ =
tan(µ) sin(ψ)

ρ
u1 +

tan(µ) cos(ψ)

ρ
u2
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APPENDIX C

Notes on principally kinematic systems.

We collect in this appendix some notes relating the work of Morin & Samson on feedback

stabilization of affine systems, with the classification of principally kinematic systems. We

hope to use these results, tied closely together with the class of algorithms presented in this

thesis, for near future studies.

Definition C.1. A vector field X on a Lie group G is left-invariant if ∀g, h ∈ G,

ThLgX(h) = X(gh) (C.1)

Let G be a group and consider the affine system [MS03]:

ġ =
m∑

i=1

Xi(g)ui + P (g, t), (C.2)

where g ∈ G, the vector fields Xi are left-invariant and P (g, t) is a drift term. Consider also

the reduced principal kinematic mechanical system equations [Ost96,SCR05]:

TgLg−1 ġ = A(r)ṙ (C.3)

ṙ = u

Let Xr(g) = TeLgA(r). Using the property (TgLg−1)−1 = TeLg we verify that the vector

field Xr(g) is left invariant for any r:

TgLhXr(g) = TgLhTeLgA(r) = TeLhgA(r) = Xr(hg) (C.4)

Using this fact we can rewrite system (C.3) as:

ġ = Xr(g)u (C.5)

ṙ = u
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Equation (C.5) now resembles (C.2) up to the input integral parameterized Xr(g) vector

fields. Following Morin’s notation, let f be parameterized by r such that

f r(θ) = f r
1 (θ1)f

r
2 (θ2) . . . f r

n−m(θn−m), (C.6)

with f r
j (θj) = exp(ǫ1 sin(θj)X

r
λ(j) + ǫ2 cos(θj)X

r
ρ(j)), where Xr = Xr(e) = TeLeA(r) = A(r).

Let z = gf r
ǫ
−1 with z ∈ G. Following the same constructive steps as in [MS03] we obtain

ż = TgRf−1TfLz




m∑

i=1

(
Xr

i (f) −
∂f r

∂rj
(θ)

)
ui −

n−m∑

j=1

θ̇j
∂f r

∂θj
(θ)



 , (C.7)

with P (g, t) = 0. Let Hr(θ) be:

Hr(θ) = [Xr
1(f) −

∂f r

∂r1
(θ) . . . Xr

m(f) −
∂f r

∂rm
(θ)

∂f

∂θ1
(θ) . . .

∂f

∂θn−m
(θ)] (C.8)

If one can show that Hr(θ) is full rank then Morin & Samson’s feedback stabilizing algorithm

can be readily applied to the class of pricipally kinematic systems.
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