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CHAPTER 1  

INTRODUCTION 

1.1 THESIS STATEMENT 

The posture of the hand can be predicted with a 3-D kinematic model that uses a 

contact algorithm with appropriate finger joint movement patterns.  It is the thesis of this 

work that the 3-D kinematic model can be used for ergonomic analyses of predicting 

hand posture, estimating hand space envelope, and assessing tendon excursion during 

specific tasks. 

 

1.2 RESEARCH OBJECTIVES 

The goal of this research was to evaluate the above thesis.  Towards this end, 

the following objectives were established. 

 Development of a 3-D kinematic model:  Develop a 3-D kinematic model of the hand 

with a contact algorithm to predict hand posture for a given hand size, object 

properties, and task properties. 

 Estimation of a hand space envelope:  Simulate the required space for a specific 

task, using the 3-D kinematic model. 

 Quantitative analysis of finger movements during reaching and grasping:  Analyze 

the finger movement patterns which depend on object properties and grip types. 
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 Investigation of the relationship between tendon excursion and the risk of MSDs 

(musculoskeletal disorders): Investigate the association of tendon excursion and the 

risk of MSDs by time-based analysis. 

 

1.3 RATIONALE 

The human hand is an essential part of our interactions with the environment 

during activities of daily living, work, and leisure.  We use our hands to grasp, hold, 

manipulate an object, or support the body (MacKenzie and Iberall 1994; Brand and 

Hollister 1999).  In industrial environments, proper design of work objects and work 

space that considers the properties of the hand is necessary to increase workers’ 

productivity, safety of workers, and efficiency.  In spite of the importance of the hand, 

models of the hand have not reached the sophisticate level of current models of the 

whole body (Armstrong, Choi et al. 2008).  Considering the usefulness and importance 

of human modeling for proactive injury prevention, development and improvement of 

better hand models may be of great value in solving many current ergonomics problems. 

Ergonomic analyses of hand function remain a challenge for engineers and 

designers.  The hand strength is closely related to hand posture as different hand 

postures change the characteristics of the muscles which determine the force and 

moment at each joint of the hand (Mathiowetz, Kashman et al. 1985; Imrhan and Loo 

1989; Crosby, Wehbe et al. 1994; Josty, Tyler et al. 1997; Blackwell, Kornatz et al. 1999; 

Yan and Downing 2001).  The required work envelope for the hand is also determined 

by hand posture which, in turn, is affected by properties of the grip object and hand size 

(Choi, Grieshaber et al. 2007; Grieshaber 2007).  Knowledge of hand posture is 

imperative for tendon excursions – which have been implicated in the etiology of 

repetitive trauma disorders (Moore 2002) - to be predicted, because tendon 
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displacement is determined by the joint angles of the finger (Landsmeer 1961; 

Landsmeer 1961; Armstrong and Chaffin 1978).   

Many studies have been conducted to qualitatively describe hand posture by 

relating to object size, required force, and purpose of grip  (Napier 1956; Landsmeer 

1962; Cutkosky 1989; Grieshaber 2007).  Only a few quantitative studies of hand 

posture have been completed.   Buchholz developed a kinematic model using ellipsoids 

to evaluate prehensile capabilities (Buchholz and Armstrong 1992).  The model was 

used to simulate and predict the prehensile posture of the hand for power grasp of 

objects that can be described as ellipsoids or elliptical cylinders.  Lee and Zhang (2005) 

suggested a model to predict hand posture using optimization under the premise that the 

hand configuration in a power prehension best conforms to the shape of the object.  

These models explained how the grip posture varies in power grip, but were not 

sufficient to explain other types of postures (e.g., lateral pinch, pulp pinch).  Also, they 

cannot be applied to object shapes that cannot be represented mathematically.  Using a 

contact algorithm to find a posture is effective for complicated object shapes, because 

the object geometry can be easily imported to the model in the form of an array of points.  

Recently, some researchers and commercial softwares have used a contact algorithm to 

predict hand posture (Pollard and Zordan 2005; Endo and Kanai 2006; Miyata, Kouchi et 

al. 2006); however, posture predictions using these models have not been evaluated.  

Also, it is not clear how hand movement is modeled, which affects posture prediction 

(Armstrong, Choi et al. 2008). 

A kinematic hand model can be used not only for predicting hand posture but 

also for estimating the hand space envelope and tendon excursions, both of which are 

directly related to the hand geometry and movements.  Information about hand space 

envelope can help designers and engineers to design work space and work objects 
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avoiding obstruction problems.  Obstruction problems occurs when performing a task in 

narrow and confined or crowded space.  Examples of obstruction problems are such 

jobs as joining parts (e.g., hose placement in an engine compartment, connector 

assembly) or using tools (e.g., vehicle maintenance, oral surgery).  Obstructions 

penetrating hand space often interfere with workers’ ability to perform the task and 

results in loss of productivity and workers’ safety.  Therefore, a model to estimate hand 

space envelope for varying hand size, object size, and behaviors is needed to design a 

work environment minimizing interference from obstructions.   

Tendon excursion has been used as one of the measures that indicates the risk 

of upper extremity musculoskeletal disorders such as carpal tunnel syndrome and 

tendinitis (Moore, Wells et al. 1991; Marras and Schoenmarklin 1993; Wells, Moore et al. 

1994; Wells, Moore et al. 1994; Sommerich, Marras et al. 1996; Marklin and Monroe 

1998; Serina, Tal et al. 1999).  Highly repetitive motion leads to high tendon excursions 

which cause biomechanical stress on the tendon and surrounding tissues.  Many models 

to predict tendon displacement for given finger joint angles have been proposed 

(Landsmeer 1961; Landsmeer 1961; Landsmeer 1962; Armstrong and Chaffin 1978).  

However, to predict tendon excursions during some specific movements, we first need 

accurate prediction of hand posture.     

In summary, development of a kinematic model that predicts hand posture is 

fundamental and necessary to estimate hand strength, required space envelopes, and 

tendon excursions for a specific task.  A well-developed model of the hand will be highly 

helpful to engineers by helping them to approach the ergonomic issues proactively.   

 

1.4 DISSERTATION ORGANIZATION 
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This dissertation combines a series of four manuscripts, along with introductory 

and concluding chapters.   

Chapter 2 describes the development of a 3-D kinematic model of the hand that 

predicts hand posture, including a detailed description of the model and validation of the 

model through experiments, and a discussion of the sensitivity of the model to various 

input parameters. 

Chapter 3 describes the estimation of a hand space envelope during a hose 

placement task.  By prediction of hand posture using the 3-D kinematic model and 

modeling of behavioral characteristics of the hose placement task, a required space was 

estimated.  The simulated space envelope was validated by comparing it with the 

measured space envelope. 

Chapter 4 presents a quantitative analysis of finger movements during reaching 

and grasping.  Spatial and temporal variables that depict finger motion during grasping 

were investigated so that the resulting data can be applied to actuation of the 3-D 

kinematic model.  

Chapter 5 addresses the relationship between tendon excursion and the risk of 

MSDs by investigating hand activity level and tendon excursions at the wrist.  Re-

analysis of Latko’s data (Latko, Armstrong et al. 1999) was performed through a time-

based analysis.  This study illustrates the potential use of the 3-D kinematic model for 

estimating tendon excursions caused by finger motions as well as wrist motions.   

Finally, Chapter 6 concludes the dissertation with a summary of major findings, 

general discussions of the results, and suggestions for future studies.    

Appendix A includes a detailed description of the model structure in the Visual 

C++ environment.   
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CHAPTER 2  

DEVELOPING A 3-DIMENSIONAL KINEMATIC MODEL OF THE HAND TO 

PREDICT HAND POSTURES 

Abstract 
 

The objective of the study is to develop a 3-dimensional kinematic model of the 

hand that predicts hand posture.  A 3-dimensional kinematic model of the hand was built 

using Visual C++ environment and OpenGL graphics.  The hand was modeled as open 

chains of rigid bodies with 25 DOF’s.  The GUI of the model was designed to include 

human, object , and task attributes.  A simple contact algorithm was applied to the model 

to find contacts between hand segments and object surface while rotating joint angles of 

fingers.  Two different joint angle rotation algorithms – “variable rotation method” in 

which observed joint rotation rates were used, and “constant rotation method” in which 

all joints rotate at constant rates – were applied to the model.   Joint angles of all fingers 

and thumb were measured for 16 subjects (11 males, 5 females) with motion capture 

system during a power grip and a pulp pinch grip.  Three differently sized cylindrical 

objects were used.  A sensitivity study was performed to investigate the effects of object 

size, object location, object orientation, hand size, and skin deformation on predicted 

postures.  The average difference between predicted and measured joint angles ranged 

from -10.0º to 9.1º.  The coefficient of determinant  (R2) between predicted and 

measured joint angles was 0.76 for the power grip and 0.88 for the pinch grip.  The joint 

rotation algorithm affected prediction accuracy : application of the “variable rotation 
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method” improved the model’s accuracy by 20% compared with the “constant rotation 

method.”  The sensitivity study showed that hand posture is more sensitive to object 

size, orientation, and location than hand size and skin deformation.   
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2.1 INTRODUCTION 

 

The human hand is essential for the performance of activities of daily living, work 

and leisure.  Interactions between the human and the environment are achieved mainly 

by using the hand.  For example, people use their hand to reach, grasp, hold, and 

manipulate the object or support the body.  Despite the importance of the hand, many 

aspects of hand biomechanical models have not yet reached the level of whole body 

models.  In an age of electronic controls and devices when endless possibilities are at 

one’s fingertips, the need for the tool that enables designers to evaluate how well an 

object fits the hand is ever increasing.   

The hand posture is known to be directly related to grip strength (Mathiowetz, 

Kashman et al. 1985; Imrhan and Loo 1989; Crosby, Wehbe et al. 1994; Josty, Tyler et 

al. 1997; Blackwell, Kornatz et al. 1999; Yan and Downing 2001).  Decrease of grip 

strength will result in decrease of friction force between the hand and the object, and 

thus the object will be more likely to slip out of the hand.  Therefore, it is necessary to 

understand hand posture before investigating strength and friction forces of the hand.  

Another important aspect of the hand posture is that it is the major determinant of the 

required space for the hand (Choi, Grieshaber et al. 2007).  Because the information 

about required space for the hand can enable designers to design work space and parts 

with minimal obstruction, hand posture should be investigated in the design stage.   

Several taxonomies have been developed to categorize hand grip postures 

based on one or a few variables such as object size and force (Napier 1956; Landsmeer 

1962; Cutkosky 1989; Grieshaber 2007).  These taxonomies are helpful to account for 

variation in hand posture qualitatively, but they cannot give quantitative information.  A 

few kinematic models provide quantitative information.  Buchholz developed a kinematic 
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model using ellipsoids to evaluate prehensile capabilities (Buchholz and Armstrong 

1992).  The model was developed to simulate and predict the prehensile posture of the 

hand for power grasp of objects that can be described as ellipsoids or elliptical cylinders.  

Lee suggested a model to predict hand posture using optimization under the premise 

that the hand configuration in a power prehension best conforms to the shape of the 

object (Lee and Zhang 2005).  These models explained how the grip posture varies in 

power grip, but were not sufficient to explain other types of postures (e.g., lateral pinch, 

pulp pinch).  Also, they cannot be applied to other object shapes that cannot be 

represented mathematically.  Using a contact algorithm to find a posture is effective for 

complicated object shapes, because the object geometry can be easily imported to the 

model in the form of array of points.  Recently, some researchers and commercial 

softwares have used a contact algorithm to predict hand posture (Endo and Kanai 2006; 

Miyata, Kouchi et al. 2006); however, posture predictions using these models have not 

been evaluated.  Also, it is not clear how hand movement is modeled, which affects 

posture prediction (Armstrong, Choi et al. 2008).  Humans control the hand, a complex 

system with more than 20 degrees of freedom, using synergies (Santello, Flanders et al. 

1998).  Finger movement patterns differ according to the size and shapes of object to be 

grasped and also by the grip types (e.g., power grip, pinch grip) that humans choose.  

Predictions of posture should include consideration of such patterns to be realistic and 

avoid awkward postures predictions.  In summary, a few models can predict hand 

posture for varied hand sizes, object sizes, object shapes in quantitative manners, but 

existing models are limited in their applications.  

The objective of this study was to develop a 3-D kinematic model of the hand to 

predict hand posture, based on inputs such as human properties, object properties, and 

task properties.  We hypothesize that (1) posture prediction using a contact algorithm 



 15

matches well with observed posture, (2) posture prediction using a “variable rotation 

algorithm” – observation-based joint rotation – improves prediction accuracy, and (3) 

hand postures are affected by object size, object location, object orientation, hand size, 

and skin deformation level.  The first two hypotheses were tested through model 

development and experiment and the third hypothesis was tested by performing a 

sensitivity study.   

 



 16

2.2 MODEL DEVELOPMENT 

 

2.2.1 KINEMATICS OF THE HAND 

Twenty-five degrees of freedom (DOF’s) were used to characterize the joints of 

the five fingers and wrist, and all the joints were mathematically approximated by ideal 

joints in which joint centers were located in the center of adjacent segments.  The origin 

of the root coordinate system is the center of the wrist and Y-axis is the unit vector 

connecting the wrist and the middle finger MCP joint in distal direction.  The Z-axis is the 

unit vector in the dorsal direction and perpendicular to the palm plane.  The X-axis is in 

the ulnar direction and defined by right hand rule.  The wrist joint was modeled with three 

degrees of freedom (F/E: flexion-extension, radial-ulnar deviation, P/S: pronation-

supination) and was regarded as the origin.  The proximal (PIP) and distal (DIP) 

interphalangeal joints of the four fingers were modeled as hinge joints with one DOF 

(F/E) for each joint. Metacarpophalangeal (MCP) joints of the four fingers were modeled 

with two DOF’s (F/E, ABD/ADD: abduction-adduction).   The IP joint of thumb was 

modeled as a hinge joint with one DOF (F/E), whereas the MCP joint of thumb was 

modeled with two DOF’s (F/E, ABD/ADD).  The carpometacarpal (CMC) joint of the 

thumb was described as having three DOF’s (Buchholz and Armstrong 1992; Savescu 

and Cheze 2005; Li and Tang 2007) to facilitate the comparison with experimental data, 

even though some studies described the trapezium as saddle-shaped with two DOF’s 

(Giurintano, Hollister et al. 1995; Abdel-Malek, Yang et al. 2006).  All the angles were 

represented by Eulerian angles, and homogeneous transformation matrices were used 

to represent angular transformation of joints.  Figure 2.1 shows the coordinate system 

defined in the hand. 
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Figure 2.1 Definition of coordinate system in the hand.  Twelve-five degrees of 
freedom were used to characterize the joints of the fingers and wrist.  The root 
coordinate system of the hand has an origin at the center of the wrist, with the Y-
axis pointing to the third MCP joint, the Z-axis pointing to dorsal direction to the 
palm plane.  The wrist has three DOF’s (F/E, A/A, P/S).  The thumb has six DOF’s – 
IP (1 DOF), MCP (2 DOF’s : F/E, A/A), CMC (3 DOF’s : F/E, A/A, P/S).  The MCP 
joints of four fingers have 2 DOF’s each (F/E, A/A), and PIP and DIP joints of four 
fingers have one DOF each (F/E).  
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2.2.2 Model Implementation 

The computational model was developed in a Visual C++ environment (Microsoft 

Visual C++ ® 6.0).  OpenGL graphic functions were used to display the hand and object.  

The hand was modeled as open chains of rigid body segments, which were described as 

truncated cones, the simplest reasonable representation of hand segments.  The length 

of hand segments was calculated based on work by Buchholz, which models the hand 

anthropometry as a function of external hand measurements such as a hand length and 

a hand breadth (Buchholz, Armstrong et al. 1992).  

 

Contact algorithm 

A collision detection algorithm was used to determine when contact occurred 

between hand and object.  The collision detection is a computationally intensive process; 

many methods for detecting collision have been developed, such as the use of minimum 

distance, the use of bounding regions, and the use of special data structures (Lin and 

Gottschalk 1998; Hui and Wong 2002).  To enhance accuracy, the minimum distance 

method was used in this model.  Quadratic surface meshes were created for the 

surfaces of both hand and object.  The distances between the meshes on the hand and 

those on the object were calculated while the joint angles of each joint rotated according 

to the specific joint rotation algorithm – variable rotation algorithm (Choi and Armstrong 

2007).  When the minimum distance between the hand and object was smaller than a 

preset threshold value, it was regarded as a collision. When distal segments of all four 

fingers contacted the object, the simulation terminated.    

 

Joint rotation algorithm 
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It can be shown that the final posture prediction using a contact algorithm is 

affected by the rotation rate of finger joints.  The modeled hand is actuated by rotating 

15 joints with 18 degrees of freedom – 3 DOF’s for each finger and 6 DOF’s for the 

thumb.  Abduction-adduction angles of MCP joints were not varied, because they were 

observed to be small during cylinder grasping.  We used two joint angle rotation 

algorithms and compared the predicted postures.  The first algorithm, “constant rotation 

algorithm,” describes the rotations of all joints of the fingers at the constant rate.  In this 

method, the thumb cannot be modeled because the motion pattern of thumb joints 

during grasping is not yet known.  The second algorithm, “variable rotation algorithm,” 

describes rotations of all joints at observation-based rates (Choi and Armstrong 2007). 
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2.3 VALIDATION OF THE MODEL 

 

2.3.1 EXPERIMENTS 

Experimental Design 

Sixteen healthy subjects with no history of musculoskeletal disorders in upper 

extremities participated in the experiment.  Demographic information for the study 

population is shown in Table 2.1.  Their hand lengths ranged from 2% female to 83% 

male according to Garret’s data (Garrett 1971).  All subjects gave their written consent to 

participate in the study.  The experimental design was reviewed and approved by the 

University of Michigan Institutional Review Board.   

 

Table 2.1  Hand length summary of study participants.  Percentiles are listed in 
parenthesis (Garrett, 1970). 

Three sizes (cylinder diameter: 26.2 mm, 60.0 mm, 114.3 mm) of cylindrical 

objects were used.  The object was placed 40 cm in front and at elbow height of the 

subject so that the subject’s elbow angles when grasping the object were approximately 

90º.  To measure the position of markers on the hand and the object, the OptoTrak® 

Certus™ motion tracking system (Northern Digital Inc.), whose RMS positional accuracy 

is 0.1 mm, was utilized.  Four markers per each finger were secured at the tip, and at the 

DIP, PIP, and MCP joints on the dorsal side of the hand.  For six of the subjects, seven 



 21

markers were attached to the thumb.  Four markers were at the tip, and at the IP, MCP 

and CMC joints of the thumb.  An additional three markers in a plate were attached to 

the proximal phalanx of the thumb.  Three markers were on the dorsal side of the center 

of the wrist and the distal ends of the dorsal tubercle of the radius and the ulnar styloid 

process.  Four markers were attached to the cylindrical object to identify the position and 

orientation of the cylinder with respect to the hand (Figure 2.2 (a)). Two position sensors 

(three position sensors for six subjects with thumb markers) simultaneously tracked the 

positions of markers during the task (Figure 2.2 (b)).  The subjects were asked to start 

with their elbows flexed 90º and no abduction in the shoulder, and to grasp the object 

with their power and pulp pinch grip (for six subjects with thumb markers).  The task was 

repeated three times for each condition. 

 

 

 (a) OptoTrak marker locations   (b) Experimental Setup 

Figure 2.2  Experimental Setup.  (a) Twenty-six markers were attached to the 
dorsal side of the hand.  (b) Two OptoTrak position sensors were used to track the 
positions of markers 

Host Computer
Object

Position Sensor 1

Position Sensor 2

SCU (System 
Control Unit)
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Data analysis 

The data obtained were processed with Matlab® software.  The DIP, PIP, and 

MCP joint angles of four fingers were calculated from the 3D marker position data, using 

dot products of the adjacent vectors, each of which represents each segment.  The IP 

joint angle of the thumb was calculated in the same way.  The thumb MCP joint has two 

degrees of freedom – F/E and ABD/ADD.  The plane containing tip, IP, and MCP 

markers was defined and the vector between MCP and CMC joint marker was projected 

onto the plane.  The F/E angle was calculated using dot products of the IP-MCP vector 

and the projected vector.  The AA angle was calculated using dot products of MCP-CMC 

vector and the projected vector.  Thumb CMC joint angles were calculated using Euler 

angles of flexion-extension, abduction-adduction, and pronation-supination rotation 

sequence.  Therefore, all the joint angles used in this study are marker-defined joint 

angles.  The object’s positions and orientations with respect to the wrist were obtained 

from the experiments and used as inputs to the program.   

 

2.3.2 COMPARISON WITH EXPERIMENTAL DATA 

The effect of joint rotation methods 

To investigate the effect of joint rotation methods, root-mean-square (RMS) 

values of differences in joint angles between prediction and measurement during the 

power grip were compared for two joint rotation algorithms -constant rate rotation vs. 

observed rate rotation in Table 2.2.  When comparing all joints of four fingers, the 

magnitude of RMS prediction difference ranged from 5.1º to 20.4º with the “variable 

rotation algorithm,” and that of RMS prediction difference ranged from 6.8º to 30.5º with 
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the “constant rotation algorithm.”  These RMS values for prediction difference are 

comparable to those in the previous study by Lee et al (Lee and Zhang 2005). 

 

Table 2.2  RMS prediction difference (left – variable rotation algorithm vs. right – 
constant rotation algorithm) 

 

 

 

 

 

 

Digit Joint Large
(114mm)

Medium
(60mm)

Small
(26mm)

Large
(114mm)

Medium
(60mm)

Small
(26mm)

IP 8.81 14.63 19.18 8.81 14.63 19.18
MCPFE 15.80 19.04 17.44 15.80 19.04 17.44
MCPAA 9.85 7.95 10.19 9.85 7.95 10.19
CMCFE 18.46 7.50 5.82 18.46 7.50 5.82
CMCAA 12.24 12.06 9.69 12.24 12.06 9.69
CMCPS 19.47 15.57 5.67 19.47 15.57 5.67

MCP 10.97 11.02 9.25 12.60 15.98 14.86
PIP 14.45 17.02 7.44 7.44 10.59 10.71
DIP 19.23 12.31 15.38 10.93 13.45 9.82

MCP 7.81 6.31 5.41 17.33 23.40 15.89
PIP 11.06 13.50 6.45 8.61 10.10 12.76
DIP 13.27 10.70 9.05 14.27 13.92 16.09

MCP 7.75 11.88 5.08 9.16 13.40 30.50
PIP 10.66 11.34 6.34 15.73 19.69 29.95
DIP 11.52 9.51 8.73 11.41 9.53 8.98

MCP 10.32 20.41 6.68 18.32 6.80 11.41
PIP 16.74 9.91 13.10 13.54 13.17 9.03
DIP 13.87 12.17 12.69 19.71 11.73 8.99

1

2

3

4

5

Variable Rotation Constant Rotation
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Model accuracy 

To estimate the accuracy of the model, the hand postures predicted by the 

kinematic model were compared with the hand postures observed through the 

experiment based on the location of markers on the back of each joint.  The prediction 

difference was defined as  

 

   Prediction difference = predicted joint angle – measured joint angle         (2.1) 

 

Therefore, positive value of prediction difference means that the model 

overestimates the joint angles, whereas negative value means that the model 

underestimates the joint angles.    

 

 Power grip 
 

Table 2.3 shows the prediction difference between measured and predicted joint 

angles for three differently sized objects with sixteen subjects in power grip.  Over all 

cylinder sizes, the range of average prediction differences was from -10.0º (PIP joint of 

index finger) to 9.1º (MCPFE of the thumb).  Among four fingers, the average of absolute 

differences was smallest in the middle finger (2.0º) and largest in the index finger (7.6º).   

The differences for the MCP joint angle ranged from -6.7º to 14.3º, those of the PIP joint 

angle ranged from -13.0º to 11.8º, and those of the DIP joint angle ranged from -10.5º to 

10.7º.  On average, the model underestimated joint angles in the index finger, whereas 

overestimated joint angles in the ring and little fingers.  The prediction differences were 

not significantly affected by the object size.  For the small object, differences ranged 
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from -10.5º to 11.2º.  In the medium-sized object, the differences ranged from -11.9º to 

14.3º.  In the large object, differences ranged from -13.0º to 12.7º.  These differences 

are comparable to those in the previous studies by Buchholz and Lee who reported the 

differences between predicted and observed joint angles separately (Buchholz and 

Armstrong 1992; Lee and Zhang 2005). 

 
Table 2.3 Prediction differences between predicted and measured joint angles in 
power grip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digit Joint
Large

(114mm)
Medium
(60mm)

Small
(26mm) All

IP 1.86±8.96 10.00 ± 11.09   8.32 ± 18.05   6.77 ± 13.21
MCPFE 8.58±13.81 11.93 ± 15.41   6.36 ± 16.97   9.09 ± 15.17
MCPAA -4.58±9.08 -3.13 ±  7.59   -5.70 ±  8.83   -4.40 ±  8.33
CMCFE 12.66±14.00 -3.24 ±  7.02  -2.29 ±   5.60   2.36 ± 11.93
CMCAA 1.49±12.66  5.68 ± 11.05   8.62 ±  4.63   5.18 ± 10.34
CMCPS -1.16±20.24 -8.91 ± 13.26  -0.91 ±  5.86  -3.86 ± 14.63

MCP -6.23±9.15 -6.67 ±  8.89  -1.35 ±  9.28  -4.85 ±  9.33
PIP -12.99±6.43 -11.9 ± 12.32   -4.80 ±  5.78 -10.02 ±  9.46
DIP 8.24±17.61  4.98 ±  11.40  10.66 ± 11.24   7.84 ± 13.81

MCP 5.18±5.93 -3.13 ±  5.56   0.34 ±  5.48   0.71 ±  6.58
PIP -0.56±11.19 10.12 ±  9.05   4.34 ±  4.84   4.77 ±  9.81
DIP -2.1±13.27  2.44 ± 10.55  -2.24 ±  8.89  -0.53 ±  11.2

MCP 3.07±7.21  6.81 ±  9.85   1.87 ±   4.80   4.02 ±   7.90
PIP 7.72±7.46  7.81 ±  8.34   2.34 ±  5.98   6.06 ±  7.73
DIP 4.99±10.52   1.90 ±  9.43  -3.89 ±  7.93    1.10 ±  9.98

MCP 5.60±8.79  14.3 ± 14.75  -2.53 ±  6.27   6.14 ± 12.68
PIP 11.77±12.07 -0.11 ± 10.03  11.19 ±  6.92   7.36 ± 11.32
DIP -2.84±13.76   7.10 ± 10.01 -10.49 ±  7.26  -1.71 ± 12.86

3

4

5

1

2
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Figure 2.3 shows overall plots of predicted joint angles vs. measured joint angles.  

The model gave reasonable predictions of joint angles for different object sizes.  The 

coefficient of determinants (R2) between predicted and measured joint angles was 0.76. 

To investigate the model accuracy at each joint, coefficients of determinants (R2) 

between predicted and measured joint angles were calculated and displayed for each 

finger and joint as shown in Table 2.4.  Regardless of digits, R2 values were largest 

(from 0.69 to 0.93) in MCP joint angles, and they were smallest in DIP joint angles ( from 

0.29 to 0.56). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Plot of predicted joint angles vs. measured joint angles in power grip 
(N = 1,692). 
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Table 2.4  Coefficients of determinant between predicted and measured joint 
angles 

 

 

 

 

 

Digit IP MCPFE MCPAA
0.57 0.30 0.30

CMCFE CMCAA CMCPS
0.75 0.32 0.31

Digit MCP PIP DIP
2 0.83 0.87 0.29
3 0.93 0.84 0.44
4 0.88 0.90 0.56
5 0.69 0.75 0.35

1
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 Pinch grip 

Prediction differences  between predicted and measured joint angles in pinch grip 

are shown in Table 2.5.  The differences ranged from -9.4º to 15.6º for the large object, 

from -6.5º to 12.9º for the medium object, and from -12.0º to 20.6º for the small object.  

The thumb showed larger errors (from -12.0º  to 20.6º ) than the other four fingers ( from  

-16.4º  to 7.6º ).   

Figure 2.4 displays overall plots of measured and predicted joint angles.  The 

coefficient of determinants (R2) between predicted and measured joint angles in pinch 

grip was 0.88.     

 

Table 2.5  Prediction differences between predicted and measured joint angles in 
pinch grip 

 

Digit Joint Large
(D=114 mm)

Medium
(D=60 mm)

Small
(D=26 mm)

All

IP -1.72±7.34 -3.03±5.67 -9.50±5.85 -4.07±7.02
MCPFE -0.09±11.19 2.60±9.35 8.32±14.52 2.90±11.65
MCPAA 2.90±9.91 12.90±13.9 0.90±14.37 5.92±13.27
CMCFE 15.59±13.96 3.43±18.00 4.81±9.00 8.70±15.35
CMCAA 4.35±10.29 -2.95±10.39 -11.96±9.63 -2.18±11.82
CMCPS -3.95±8.82 1.40±9.04 20.55±12.7 3.89±13.81

MCP -1.43±6.66 -5.41±12.24 1.11±13.03 -2.21±10.57
PIP -9.43±7.07 -6.45±11.21 -16.35±10.75 -10.07±10.09
DIP 0.18±8.92 0.46±16.25 2.96±8.31 0.96±11.65

MCP 2.74±7.41 -1.20±12.17 6.52±13.89 2.28±11.07
PIP -3.30±9.26 2.79±8.95 -10.23±16.91 -2.85±12.19
DIP -2.59±12.63 -0.81±10.14 1.40±7.45 -0.99±10.54

MCP 1.29±7.92 0.29±7.09 7.75±9.07 2.51±8.29
PIP -1.74±9.19 5.04±6.97 -6.79±13.32 -0.59±10.49
DIP 0.55±9.32 3.31±7.08 0.38±1.14 1.48±7.26

MCP -4.77±4.73 2.91±5.82 5.64±3.78 0.46±6.59
PIP 7.64±11.62 3.88±4.38 -3.34±6.39 3.65±9.32
DIP -2.92±10.79 3.86±6.69 1.03±14.89 0.42±10.89

5

1

2

3

4
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Figure 2.4  Plot of predicted joint angles vs. measured joint angles in power grip 
(N = 684). 
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2.4 SENSITIVITY STUDY 

 

2.4.1 Design of sensitivity study 

To validate the model and examine the effects of various input variables, a 

sensitivity study was performed for all joints of four fingers with respect to six input 

parameters: hand length, hand breadth, object size (cylinder diameter), object location, 

object orientation, and skin deformation.  Six hand lengths and hand breadths were 

selected for the simulation based on those of the participants.  Hand lengths ranged 

from 163 mm (2% female) to 206 mm (82% male) and the hand breadth ranged from 73 

mm (14% female) to 90.5 mm (63% male).  In the simulation, the results from four 

differently sized cylindrical objects, whose diameters were 26.2 mm, 60 mm, and 114.3 

mm, were selected for comparison with experimental results.  Object location was 

defined as a distance from the wrist joint to the object along the axis of the forearm 

(Figure 2.5 (a)).  The center position of the object varied from -10 mm to +10 mm by 5-

mm intervals with respect to the positions decided from the experiment.  The object’s 

orientation was defined as the slip angle in the palmar plane and was manipulated from 

10º to 40º by 5º intervals, because it was observed that slip angles changed within the 

range of 10º to 40º in the experiment (Figure 2.5 (b)).  Skin deformation was simulated 

by modifying the thickness of the finger segments when calculating the distance 

between the hand and the object; reducing the thickness 1 mm corresponded to 1 mm of 

skin deformation. Three levels of deformation were investigated: no deformation, 10% 

deformation, and 20% deformation.  

Sensitivity testing methods were applied by predicting joint angles for all possible 

combinations of the above parameters.  The total number of simulations was 1,980.  All 

the simulations were done by the batch setup of the model. 
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(a) Object location     (b) Object orientation 

Figure 2.5  Definition of object location and object orientation in sensitivity study 
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2.4.2 Sensitivity Measure 

Regression analysis was performed to investigate the sensitivity of joint angles to 

variation of hand length, skin deformation, object size, object orientation and object 

location.  For each joint of each finger, regression analysis was done separately.  Linear 

regression equations were tested as follows. 

 

   yij = aijx1 + bijx2 + cijx3 + dijx4 + eijx5 ± εij  ,            (2.2) 

  where  y : joint angle 

    x1 : hand length 

    x2 : object size 

    x3 : object orientation 

    x4 : object location 

    x5 : skin deformation 

    ε  : error 

    i : 2,3,4,5 (digit) 

    j : 1,2,3 (MCP:1, PIP:2, DIP:3) 

Based on the set of linear regression Eqs. (2), the following measure was used to 

quantify the sensitivity of the joint angles with respect to each parameter. 

 

)(

)(

parameter

AngletJoin
ySensitivit parameter ∂

∂
×=σ  ,  (2.3) 

  where σ: range of parameters. 
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2.4.3 Sensitivity analysis 

Linear regression Eqs. (2.2) closely account for most of the joints’ variability.  For 

all joints of four fingers, R2 ranged from 0.60 to 0.95.  For MCP joint angles, R2 ranged 

from 0.80 to 0.90, from 0.85 to 0.95 for PIP joint angles, and from 0.60 to 0.77 for DIP 

joint angles. 

Figure 2.6 - Figure 2.10 display the results of the sensitivity study. Increase of 

hand length resulted in increase in the joint angle predicted even though local decreases 

were observed in all joints.  Sensitivity to this parameter seemed to be relatively low 

(Figure 2.6).  

  The model predicted that increasing the object’s size (diameter of cylindrical 

object) would lead to a decrease in the joint angle (Figure 2.7).  On average, the MCP 

joint angle (-6.3º/cm) and the PIP joint angle (-6.1º/cm) decreased more than the DIP 

joint angle (- 2.0º/cm). 

The increase of object orientation angle decreased all MCP joint angles of the 

index and middle finger, while it increased MCP joint angles of digits 4 and 5 (Figure 

2.8).  The MCP joint angle of the index finger showed the largest decrease (-0.77º/º) and 

the MCP joint of the little finger showed the largest increase (0.59º/º).  The DIP joint 

angles of the middle and ring fingers showed the smallest change (-0.06º/º and 0.03º/º , 

respectively). 
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Figure 2.6  Effect of hand length on joint angle prediction 
 

 

 

 

 

 

 

 

 

Figure 2.7  Effect of object size on joint angle prediction 
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Figure 2.8  Effect of orientation on joint angle prediction for each finger joint.  (a) 
index, (b) middle, (c) ring, and (d) little 

 

The object location seems to have a relatively large effect on hand posture 

(Figure 2.9).  The MCP joint angle changed -10.2º/cm.  The PIP and DIP joint angle 

changes were much smaller (0.2º/cm and -0.1º/cm, respectively) than the MCP joint 

angle change.  The sensitivities of the predicted joint angles and those of the observed 

joint angles were similar for the above parameters such as hand length, object size, 

object orientation, and object location.  

The skin deformation showed little effect on predicted joint angle over the range 

examined (Figure 2.10).  MCP joint angles increased 1.31º per 10% deformation.  PIP 

joint angles decreased 1.47º per 10% deformation and DIP joint angles increased 1.67º 

for 10% deformation 
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Figure 2.9  Effect of object location on joint angle prediction 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10  Effect of skin deformation on joint angle prediction 
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The sensitivity measures obtained by Eqs. (3) are listed in Table 2.6 and Table 

2.7.  These measures were higher in OS (object size), OO (object orientation), and OL 

(object location) than HL (hand length) and SD (skin deformation).    

 
Table 2.6  Sensitivity measures [Eqs. (3)] for each joint with respect to HL(hand 
length), OS(object size), OL(object location) and SD(skin deformation) 

 

 

 

 

 
Table 2.7  Sensitivity measures [Eqs. (3)] for each joint with respect to object 
orientation 
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2.5 OBJECT PROPERTIES (LOCATION AND ORIENTATION) 

 

In grasping an object, object properties such as object’s location and orientation 

influence the hand posture significantly as shown in the sensitivity study.  We developed 

empirical model to describe object’s location and orientation based on our experimental 

database.   

 

 Object Location 

 

The distance from the wrist to the center of the cylinder was determined from the 

experimental data.  Y-location was defined as the distance between the center of the 

wrist and the point where the axis vector of the cylindrical object and wrist-third 

metacarpophalangeal joint vector cross each other, when the two vectors were projected 

onto the palm plane (Figure 2.5).  The empirically derived equation was derived using 

linear regression analysis to estimate Y-location in power grasping of the cylindrical 

object.  In power grip, only the cylinder’s diameter showed significant effects on the Y-

location (p=0.000).  External hand sizes such as hand length (p=0.288) and did not show 

significant effects on determination of Y-location.  Therefore, Y-location for power grip is 

determined by the following equation: 

 

Y-location = 0.386X Cylinder Diameter + 38.5 (mm)    (2.4) 

 

Coefficient of determination (R2) for this equation was 0.60. 
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In pinch grip, the cylinder’s diameter significantly affect Y-location (p = 0.000), but 

the hand length did not affect the Y-location significantly ( p = 0.386).  Y-location for 

pinch grip is: 

Y-location = 0.424 X Cylinder Diameter + 79.7 (mm)   (2.5) 

Coefficient of determination (R2) for this equation was 0.37. 

 

Z-location (distance from palmar plane to object center) is also one of the most 

important determinant of pinch grip posture.  Both hand length (p=0.000) and cylinder 

diameter (p=0.000) significantly affected the Z-location.  Coefficient of determination (R2) 

for this equation was 0.47.  

Z-location = -0.314 X Cylinder Diameter – 0.548 X Hand Length + 29.2 (mm) 

           (2.6) 

 

 Object Orientation 

 

Object orientation was obtained from the experimental data.  ‘Cylinder angle’ was 

determined by the angle between the long axis of the cylindrical object and the unit 

vector of x-axis (Figure 2.5).  In both power grip and pinch grip, only the cylinder’s 

diameter significantly affects cylinder angle (p = 0.000 and p = 0.025 for power and 

pinch grip, respectively).  In power grip, cylinder angle is: 

 

Cylinder Angle =0.113XCylinder Diameter +13.9 (º)    (2.7) 
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Coefficient of determination (R2) for this equation was 0.22. 

In pinch grip, the cylinder angle can be determined by the following equation: 

 

Cylinder Angle = -0.108 X cylinder Diameter + 30.9 (º)           (2.8) 

 

Coefficient of determination (R2) for this equation was 0.12. 
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2.6 DISCUSSION 

 

The predictive model of hand posture was developed by other researchers 

(Buchholz and Armstrong 1992; Lee and Zhang 2005).  In Buchholz’s study, ellipsoidal 

representation of the hand segment and object made it possible to use ellipsoidal 

contact equations, but the model was limited to the application for ellipsoidal or similarly 

shaped objects only.  Lee suggested a hand posture prediction model based on the 

premise that the hand configuration in the power grip posture best conforms to the 

object’s shape.  This model requires mathematical representation of the object’s shape 

and size, which makes it difficult to apply to variously shaped objects.  Among the most 

important factors determining hand posture are the object properties such as shape, 

size, and location, as was shown in the sensitivity study.  The irregular shapes of 

objects, which are hard to approximate by mathematical equations, can be easily used in 

this model by importing surface mesh data.  Also, the proposed model can represent the 

hand segment in other shapes in addition to truncated cones by using 3-D arrays of 

points, while the previous models could use only ellipsoids or empirically obtained 

segment thickness at contact.    

In none of the above models is the thumb fully implemented.  In Buchholz’s 

model, only flexion/extension angles of IP and MCP joints were modeled, and thus 

abduction/adduction joint angle of MCP joint and all joint angles of CMC joint must be 

specified.  Lee’s model does not have the data for the thumb.  The thumb is the most 

important finger on the hand, accounting for at least 40% of hand function.  The complex 

structure of the thumb – at least 5 DOF’s with non-orthogonal axes of rotation (Hollister 

et al. 1995) – makes its movements complicated and hard to predict (Li and Tang 2007).  
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In this model, observation-based finger motion was applied to the thumb, so that the final 

posture of the thumb could be obtained using the contact algorithm.     

The model gave reasonable predictions with R2=0.76 for power grip and R2 = 

0.88 for pulp pinch grip. In power grip, R2 values for individual joints revealed that the 

model predicted MCP and PIP joint angles better than DIP joint angles.  The DIP joint 

may have been more sensitive to hand force than other joints because the distal 

segment end was unconstrained.  Even though all finger segments were modeled as 

rigid body segments, all segments experienced deformation of soft tissue under loading.  

The proximal and middle segments were constrained by the MCP, PIP, and DIP joints, 

while the distal segment was not.  

The prediction accuracy was affected by the rotation methods of finger joints.  

Average RMS errors between predicted and measured joint angles of four fingers were 

11.1º with “variable rotation methods” and 13.9º with “constant rotation methods.”  More 

importantly than this improvement of model accuracy, prediction of thumb joint angles or 

pinch grip posture cannot be accomplished without knowledge about the relative rotation 

of finger joints.  Even though hand posture in power grip can be partly approximated by 

contacting all finger segments with the object surface, hand posture using other grip 

types cannot be predicted similarly.  Application of the “variable rotation method” can be 

a solution to predict hand postures of various grip types such as pulp pinch grip or tip 

pinch grip.      

The sensitivity study results showed how much each parameter affected hand 

posture.  The joint angles were the most sensitive to object size. The influence of object 

location was relatively high in MCP joint angles but low in PIP and DIP joint angle.  

Object orientation had a relatively large effect on MCP joint angles of the index and little 

fingers, but less effect on those of the middle and index fingers.  Overall, the hand 
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posture was more sensitive to object attributes such as object size, location, and 

orientation than human attributes such as hand length and skin deformation.  

The kinematic structure of the hand in this model is not perfectly congruent with 

the anatomic structure of the hand.  First, four metacarpals in the palm are placed in 

parallel, but they were modeled as four bones spreading from the wrist.  Many kinematic 

models (Buchholz and Armstrong 1992; Lee and Zhang 2005; Abdel-Malek, Yang et al. 

2006) used the same kinematic structure as this model.  Such kinematic structure 

enables the model to have scalability based on the external hand size such as hand 

length and hand breath, because the model used anthropometric data by Buchholz 

(1992) who modeled hand anthropometry as a function of external hand measurement.  

Second, the CMC joints of the second and fourth digits were not modeled in this study.  

Those joints enable the hand to change its shape to make the transverse arch during tip 

pinch posture or in grasping spherical objects.  Savescu et al.(2005) added two more 

degrees of freedom in their hand model to represent the transverse arch of the hand.  

This can lead to better prediction of hand posture during tip pinch or grasping a spherical 

shaped object, but doesn’t seem to have much effect on the hand posture during 

grasping cylindrical objects.     

Another product of the experiment is the information of object properties (object’s 

location and orientation).  The regression Eqs. (4) -(8) can be used to simulate hand 

postures in power grip and pinch grip.  Hand size did not significantly change Y-location 

and cylinder angle, whereas object size showed significant effect on those parameters.  

This result could be caused by the constraints on the object and variability in grip 

strategies between subjects.  As the object was fixed in space, some subjects seem to 

be unable to contact their palms completely to the object.  It seems obvious that two 



 44

different strategies – one with complete palm contact and the other with partial palm 

contact – make the Y-location and cylinder angle considerably different. 

 

2.7 LIMITATIONS AND FUTURE RESEARCH 

 

Even though the model’s predictions of hand posture were reasonably accurate, 

there were some limitations.  This model used the anthropometric data from Buchholz 

(Buchholz, Armstrong et al. 1992); however, there could have been discrepancies 

between actual and predicted segment dimensions.  Skin deformation could also be 

another reason for differences of the experiments and the predictions, even though its 

effect was small as shown in the sensitivity study.  Another possible source of prediction 

differences is from a center of rotation.  We used marker-defined joint angles when 

comparing measured joint angles.  On the other hand, the model assumed the ideal 

joints in the process of constructing the skeleton linkage.  Therefore, the comparison 

was made between marker-defined joint angles and ideally modeled joint angles.  It has 

been reported that coefficients of multiple determination between marker-defined joint 

angles and rotation-center based joint angles were 0.96, 0.98, and 0.94 for MCP, PIP, 

and DIP joint flexion-extension motion, respectively.  But the thumb joints have not only 

flexion-extension movements but also pronation-supination and abduction-adduction 

movements, which could have increased errors when comparing measured and 

predicted joint angles.  Lee and Zhang reported the optimization-based method to 

determine a center of rotation from the data collected by a 3-D motion capture system, 

which assumed that the markers were attached to the skin completely and moved with 

skin movements (Zhang, Lee et al. 2003).  The method could not be applied to our data, 

because of the characteristics of our data collection system (OptoTrak® Certus™).  In 



 45

using an active marker system which has wires, it is important to route wires so that the 

wires do not block markers during the data collection.  The small tapes we used to route 

wires seem to have restrained the movements of markers when the skin moved.  

Therefore, the markers did not move together with skin movements through the joint 

rotation, which made the method inapplicable to our data. 

It should be noted that all the solutions in this model were based only on 

kinematics with rigid body modeling of hand segments. This approach is appropriate 

when the location of the hand and the object are fixed in space. If they are not fixed in 

space, the biomechanical aspects and force equilibrium should be considered while 

simulating the grasp.  Grasping a non-constrained object can also change the object 

location and orientation with respect to the hand, which ultimately influence the grip 

posture.   

This model can be expanded to biomechanical models that predict hand 

strengths and muscle forces during the grasping of objects.  It can also give useful 

information to hand tool designers and can be extended to clinical applications. 



 46

2.8 CONCLUSIONS 

 

 A 3-dimensional kinematic model of the hand to predict hand posture was developed 

in Visual C++ environment using a contact algorithm. 

 The kinematic model using a contact algorithm was validated through the 

experiment.  The model gave a reasonable prediction of hand posture for both 

power grip (R2 = 0.76) and pulp pinch grip (R2 = 0.88).  

 Application of the “variable rotation algorithm” in rotating joint angles improved the 

accuracy of the model.   

 Application of the “variable rotation algorithm” in rotating joint angles enabled the 

prediction of thumb joint angles and pinch grip posture. 

 The results of sensitivity study showed that hand posture is more sensitive to object 

size, orientation, and location than hand size and skin deformation. 
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CHAPTER 3  

ESTIMATION OF HAND SPACE ENVELOPES USING A 3-D KINEMATIC 

HAND MODEL 

 
Abstract   

 

Obstructions often interfere with workers’ ability to perform manual tasks that 

involve joining parts or using tools.  The objective of this study was to investigate the use 

of a 3-D kinematic hand model to predict the hand space envelope in a hose placement 

task.  Twelve subjects (7 males and 5 females) participated in the experiments and were 

asked to push the hose onto the flange using two different methods – the ‘straight’ 

method and the ‘rotation’ method.  The hand space envelope was defined as a series of 

rectangles perpendicular to the long axis of the hose.  The 3-D kinematic model was 

used to estimate hand space envelopes based on prediction of hand posture.  The 

simulation results showed good agreement with measured data with an average 17% 

underestimation of sectional areas of rectangles which defined hand space envelopes.  

The effects of the grip type, method, and hand size on hand space envelope were 

investigated by simulation.  Pinch grip required an average of 72% larger sectional area 

than power grip, but smaller values in horizontal direction of the hose.  The rotation 

method needs an average of 26% larger sectional area than the straight method.   A 

95% male hand size required an average of 44% larger sectional area than 5% female 
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hand size.  The hand space envelope can give useful information to designers and 

engineers who design work space and parts to avoid problems of obstruction. 
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3.1 INTRODUCTION 

 

Obstructions that penetrate the hand space envelope often interfere with workers’ 

ability to perform hand tasks such as joining parts or using tools.  It has been observed 

that workers are often forced to perform hose installation tasks in spite of varying levels 

of obstructions (Ebersole 2005).  An obstruction may cause workers to choose awkward 

hand or wrist postures, which may lead to reduction of hand strength capabilities.  

Awkward hand postures are positively associated with cumulative trauma disorders of 

the hand and wrist (Armstrong and Chaffin 1979; Kuorinka and Koskinen 1979; 

Luopajarvi, Kuorinka et al. 1979; Moore and Garg 1994; English, Maclaren et al. 1995; 

Tanaka, Wild et al. 1995).   

Not much attention has been paid to the role of hand space in limiting manual 

work.  Baker et al. measured hand space envelopes while using common hand tools 

such as screwdrivers and wrenches by utilizing photographic methods (Baker, McKendry 

et al. 1960).  They collected data from six subjects whose hand sizes (hand length and 

breath) were at or above the 95th percentile of the male population.  They approximated 

the space envelope using dimensions in horizontal and vertical directions along the 

distance from fingers’ ends.  This study suggested a good concept for the space 

envelope, but the accuracy and reliability of the photographic method remain 

questionable.  Recently, Grieshaber measured hand space envelopes in hose insertion 

tasks by using a motion capture system (Grieshaber 2007).  He attached 23 markers to 

the hand and wrist and let the subjects insert rubber coolant hoses into a stationary 

flange using four different insertion methods.  The trajectories of markers were used to 

determine the lateral and vertical extreme locations of the hand along the length of the 

hose.   
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These studies provided useful information about the space envelope; however, 

such direct measurements of the envelope are time-consuming and cannot be easily 

generalized to other object shapes, object sizes, grip types, or hand sizes.  The hand 

space envelope is determined by both hand posture and the task’s dynamic 

characteristics.  Hand posture is a function of object properties and hand anthropometry 

(Choi and Armstrong 2006).  Dynamic characteristics of a specific task represent the 

methods that the workers choose.  Considering the existence of a number of hand 

postures and dynamic characteristics in various manual works, simulation can be a 

solution to approximate hand space envelopes for a specific task.   

This study explored the use of a kinematic model of the hand to predict hand 

space envelopes.  By using a kinematic model, we could accommodate varying job 

conditions - object size, object shapes, hand size, and grip types.  For this purpose, we 

selected a hose insertion task encountering many obstructions in an automotive 

assembly plant.   
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3.2 METHODS 

3.2.1 Kinematic model description 

The kinematic model of the hand and wrist was developed using Visual C++ with 

OpenGL graphic functions (Choi and Armstrong 2005).  The hand was modeled as open 

chains of rigid body segments, which were represented as truncated cones, the simplest 

and most reasonable depiction of hand segments.  The model used twenty-five degrees 

of freedom (DOF) to represent the main joints of the hand and wrist.  The proximal (PIP) 

and distal (DIP) interphalangeal joints of four fingers and interphalangeal (IP) joint of the 

thumb were modeled with one DOF (F/E: flexion-extension).  The metacarpophalangeal 

(MCP) joints of the thumb and four fingers were described with two DOFs (F/E and 

ABD/ADD: abduction-adduction).  The carpometacarpal (CMC) joint of the thumb and 

the wrist joints were modeled as three DOFs (F/E, ABD/ADD, and P/S: pronation-

supination).  All joints were assumed to be ideal joints. The finger segment lengths and 

breadths were calculated from the dimension of hand length and breadth, based on 

Buchholz’s data (Buchholz and Armstrong 1992).   

The model can be used to predict a hand posture for given object properties such 

as object size, shape, location, and orientation, using a collision detection algorithm.  

Each joint of the fingers is rotated according to an observation-based rotation algorithm  

(Choi and Armstrong 2007) until each segment detects a contact with the object surface.  

Prediction and measured postures were highly correlated that R2 between predicted and 

observed joint angles was 0.76 for power grip and 0.88 for pinch grip.      

 

3.2.2 Experiments 
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Twelve participants (7 males and 5 females) with no history of upper extremity 

disorders volunteered for the experiment.  The hand sizes of study participants are 

summarized in Table 3.1.  A 19-mm rubber coolant hose (25-mm outer diameter) was 

placed onto a flange located at elbow height.  Twenty-three markers were attached to 

the dorsal side of the hand and wrist.  Four markers per each finger were secured at the 

tip, and at the DIP, PIP, and MCP joints on the dorsal side of the hand.  For the thumb, 

four markers were located at the tip, and at the IP, MCP, and CMC joints.  Three 

markers were located on the dorsal side of the center of the wrist and on the distal ends 

of the dorsal tubercle of the radius and the ulnar styloid process.   An OptoTrak® 

Certus™ motion-tracking system (whose RMS positional accuracy is 0.1 mm) was used 

to collect posture data during the placement of the hose.  Two position sensors, placed 

left and right side of the subject, tracked positions of markers at 30 Hz of sampling rate.  

Subjects were asked to push the hose using the straight method and the rotation 

method.  The straight method is to push the hose directly onto the flange along the 

insertion axis without any movement to other directions.  The rotation method is to push 

the hose with rotation about the insertion axis.  These experiments were performed in 

the previous study (Grieshaber 2007) and their results were compared with the 

simulation results of this study. 

 

Table 3.1  Hand length summary of study participants.  Percentiles are listed in 
parenthesis (Garrett 1971). 

Gender Age (years) Hand Length (cm) Range (cm) 

Female (n=5) 21.5 ± 2.6 18.3 ±0.8 (67 %ile) 17.3 – 19.4 

Male (n=7) 25.7 ± 4.2 19.2 ± 1.3 (27 %ile) 17.6 – 21.1 

Pooled 23.6 ± 4.0 18.8 ± 1.1 17.3 – 21.1 
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 (a) OptoTrak marker locations   (b) Experimental Setup 

Figure 3.1 Experimental Setup.  (a) Twenty-six markers were attached to the dorsal 
side of the hand.  (b) Two OptoTrak position sensors were used to track the 
positions of markers 
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3.2.3 Simulation 

Hand posture was predicted by the model for a given hose shape (cylindrical), 

size (25 mm outer diameter), orientation (36º between long axis of hose and the vector 

between ulnar and radial styloid process), and location (6.98 mm between center of the 

hose and the center of the wrist).  In the model, the joint angle of each joint increased at 

its observation-based rate until the corresponding segment contacted the hose (Choi 

and Armstrong 2007).  Once the posture was predicted, we calculated positions of 23 

markers which were attached to the dorsal side of the hand and the wrist in the 

experiment.  Using homogeneous transformation, these marker positions were 

expressed with respect to the newly defined local coordinate system.  The origin of this 

system is the center of the flange in the plane of the front end.  Its x-axis is the unit 

vector to dorsal direction, its y-axis is the unit vector to superior direction, and its z-axis 

is the unit vector to the body (Figure 3.2). 

 

 
 
 
 
 
 
 

Figure 3.2  Definition of the new local coordinate system attached on the flange. 
The origin of this system is the center of the flange in the plane of the front end.  
Its x-axis is the unit vector to dorsal direction, its y-axis is the unit vector to 
superior direction, and its z-axis is the unit vector to the body. 

Y 

X 

Y 

Z 
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Two insertion methods – a straight method and a rotation method - were 

simulated.  Figure 3.3 illustrates these two methods.  As the hose is rotated while it is 

pushed forward, the relationship between rotation angle (θ) and the distance (d) from the 

end of the flange was assumed as the following equation: 

 

       (3.1) 

 

 where  θ0: maximum amplitude of rotation angle 

  θ:  rotation angle 

  d: distance from the end of the flange 

  v: velocity in axial direction 

  ω: angular frequency of rotation 

  t  : time  

 

 

 

 

(a) straight method    (b) rotation method 

 

Figure 3.3  Hose insertion methods.  The ‘straight’ method is to insert the hose 
directly onto the flange along the insertion axis without any movement in other 
directions.  The ‘rotation’ method is to insert the hose with rotation about the 
insertion axis.    

 

For Eq.(3.1), values of parameters were assumed based on the observation 

(Grieshaber 2007) the angular frequency was assumed to be 1.75 Hz because it was 

observed that subjects changed direction of rotation 3.5 times during insertion.  The 

maximum amplitude of the rotation angle was 73º for the rotation method and 10º for the 

tvd
t

⋅=
⋅⋅= )sin(0 ωθθ
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straight method based on our observations.  The axial velocity was constant (35 mm/s), 

and the distance from the end of the flange changed from 35 to 0 mm, because the 

length of the flange used in the experiment was 35 mm.  We assumed 10º amplitude of 

rotation angle in the straight method because we observed that subjects rotated the 

hose a little during the insertion even when they were instructed to push the hose 

forward using the straight method.   

To compare the simulation results with measurement, the use of power grip with 

the rotation method was assumed.  The simulation was performed for 25% of male hand 

size in order to represent the average hand size of subjects who participated in the 

experiments.  To investigate the effect of grip types on the hand space envelope, two 

grip types – a power grip and a pinch grip – with the rotation method and 25% male 

hand size were simulated.  To examine the effect of hose insertion method, straight and 

rotation methods with 25% male hand size and power grip were simulated.  Finally, hand 

size effect was investigated by simulating the hose insertion task with the power grip and 

the rotation method using 5% female and 95% male hand size.    

 

 

 

 

 

                 (a) power grip     (b) pinch grip 
 
Figure 3.4  Different views of predicted hand posture grasping a 25 mm diameter 
hose.   
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3.3 RESULTS  

3.3.1 Comparison of results of simulation and measurement    

To compare the simulation results with the data derived from measurements, four 

critical dimensions were defined as illustrated in Figure 3.5.  X1 and X2 are the distances 

from the center to the palmar side and dorsal side of the x-axis, respectively.  Y1 and Y2 

are defined as the distances from the center to the inferior part and superior part of the 

y-axis.  The envelopes were calculated for six ranges which were divided by the distance 

from the end of the hand: 0~25 mm, 25~50 mm, 50~75 mm, 75~100 mm, 100~125 mm, 

and 125~150 mm.   

Table 3.2 shows critical dimensions defined in Figure 3.5 and areas calculated by 

these critical dimensions when subjects were using a rotation insertion method with a 

power grip.  Simulation underestimated most of the horizontal directional dimensions 

(simulation – measurement : X1 = -4 mm,  X2 = -7 mm, on average) , but the patterns of 

those values along six different distance ranges were similar to the patterns of the 

measured values.  The differences of horizontal dimensions (X1 and X2) between 

measurement and simulation ranged from -11 mm (at 125~150 mm) to 4 mm (at 25 ~ 50 

mm).  For vertical directional dimensions, the differences between measurement and 

simulation ranged from -12 mm (at 75~100 mm) to 33 m (at 125~150 mm).  Over all 

ranges, the simulation results show good agreement with measured data with an 

average 17% underestimation of sectional areas(Figure 3.6). The difference in space 

envelope areas between measurement and simulation was largest in the 125~150 mm 

range (2210 mm2) and smallest in the 50~75 mm range (454 mm2).   
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Figure 3.5  Definition of critical dimensions.  X1 and X2 are the distances from the 
center to the palmar side and dorsal side of x-axis, respectively.  Y1 and Y2 are 
defined as the distances from the center to superior part and inferior part of y-
axis. 
 
 
Table 3.2  Comparison of critical dimensions and areas for different ranges from 
the front end of the hand.  
 

Horizontal Axis Vertical Axis Area Distance  
from the 

end 
of the hand 

(mm) 

Method X1 
(mm) 

X2 
(mm) 

Y1 
(mm) 

Y2 
(mm) (mm2) 

Simulation -22 28 -32 13 2229 
25 

Measurement -24 38 -36 26 3844 
Simulation -32 48 -37 37 5893 

50 
Measurement -36 48 -45 40 7140 

Simulation -48 49 -42 51 8986 
75 

Measurement -41 57 -53 47 9800 
Simulation -48 53 -46 52 9847 

100 
Measurement -41 60 -53 40 9393 

Simulation -40 53 -49 26 7000 
125 

Measurement -37 62 -43 50 9207 
Simulation -25 53 -41 21 4859 

150 
Measurement -14 59 -22 54 5586 
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(a) Comparison of sectional areas along the distance from the end of the hand 

between simulation and measurement  

 
 

        (b) Horizontal dimensions   (c) Vertical dimensions 

Figure 3.6  Comparison between simulation and measurement.  (a) Comparison of 
sectional areas along the distance from the end of the hand;   (b) Comparison of 
horizontal dimensions along the distance from the end of the hand; and (c) 
Comparison of vertical dimensions along the distance from the end of the hand.  
On average, the areas from simulation were 17% less than those from 
measurement.  
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3.3.2 Effect of grip type, insertion method, and hand size 

Figure 3.7 shows the effect of grip type on hand space envelope (25% male hand 

size, rotation method).  As all the MCP joints of fingers, thumb CMC and MCP joints, and 

wrist joints were located much further from the center of the hose, the pinch grip required 

much more sectional areas than the power grip.  From the simulation result, pinch grip 

required 72% more sectional areas than power grip on average.  However, the required 

space in horizontal direction from the hose was much smaller in the pinch grip than in 

the power grip.  X1 values were 47% smaller in pinch grip than in power grip.  

Figure 3.8 shows the space envelopes when using straight method and rotation 

method during hose insertion tasks (power grip, 25% male hand size). On average, the 

rotation method required 26% larger sectional areas than the straight method.   

Figure 3.9 shows the effect of hand size on the space envelope when using 

rotation method with a power grip.  On average, the 95% male hand size required 44% 

larger sectional areas than the 5% female hand size.  In particular, the 95% male hand 

size required much more space at 100~150 mm ranges, because the 95% male hand 

size had a bigger hand breadth (9.6 mm) than that of 5% female hand size (7.1 mm).    
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                                       (a) Power grip         

 

 

 

 

 

 

 

 

(b) Pinch grip 
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                                  (c) Area comparison between power and pinch grip 

 
 
Figure 3.7  Comparison of space envelopes in power grip and pinch grip (25% 
male hand size, rotation method)   
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(a) straight method     

 

 

 

 

 

 

 

 

 

 

 

(b) rotation method 
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         (c) Area comparison between rotation and straight methods 

 

Figure 3.8  Comparison of space envelopes for straight and rotation hose 
insertion methods (power grip, 25% male hand size).  
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(a) 5% Female     

 

 

 

 

 

 

 

 

 

 

 

 

(b) 95% male 
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(c) Area comparison between 5% female and 95% male hand size 

 
Figure 3.9  Comparison of space envelopes for 5% female and 95% male hand 
sizes (power grip, rotation method) 
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3.4 DISCUSSION 

 

Hand space envelopes were characterized using a series of rectangles 

perpendicular to the long axis of a cylindrical hose after Baker et al. (1960).  Baker’s 

study was the first attempt to measure the space requirement during common tools use 

such as wrenches and screwdrivers (Baker, McKendry et al. 1960).  The photographic 

method they used includes potential errors, because the method is based on 2-D 

images.  The development of technology, such as a 3-D motion capture system, enabled 

us to measure space requirement directly and more accurately.  Grieshaber used this 

technology to measure hand space envelope in hose insertion jobs with different 

methods and provided more accurate results (Grieshaber 2007).  As mentioned earlier, 

these direct measurements have innate limitations for application, because many factors 

affect the space envelope.  Empirical models based on an object of a given shape and 

size and a given task cannot be always generalized to another object and task.  Use of 

complete simulations using a 3-D kinematic model can help to overcome the limitations 

of empirical models.  

The space envelope is affected by various factors such as hand size, grip type, 

and dynamic characteristics of a task.  The effect of hand size comes not only from the 

length and breadth but also from the different posture.  It has been reported that larger 

hand size causes smaller joint angles when grasping objects of same size (Buchholz 

and Armstrong 1992; Choi and Armstrong 2006).  Accurate prediction of hand posture is 

essential to predict the hand space envelope.  Dynamic (behavioral) characteristics is 

another important factor for prediction of the hand space envelope.  We used a simple 

sinusoidal function to model the behavioral characteristics during hose insertion, but 

some dynamic motion might not have been described with the function.  
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Underestimation of horizontal critical dimensions and larger differences of vertical critical 

dimensions at 100~150 mm seem to be caused by the difference of dynamic 

characteristics in the simulation and the measurement.  The simulation results were 

shifted to medial direction for most of ranges, which means that subjects exerted the 

force in the  lateral direction during insertion.  It is natural to push the hose in the lateral 

direction while rotating the hose.  All of these subjects were right-handed and finally 

rotated their hands in clockwise direction.  This is consistent with finding of Seo et al. 

(2007) who showed that twisting a cylindrical handle in the direction that the fingers 

tighten the grip improved maximum torque by 45% for a person with given strength. The 

flexibility of the hose seems to be a causative factor explaining larger differences at 

100~150 mm, which could not be captured by our simple dynamic model.   

The force required for certain tasks can change dynamic (behavioral) 

characteristics significantly.  It has been reported that hand space envelopes are 

affected by the insertion method and the force required for hose insertion tasks 

(Grieshaber 2007).  The required force can change the number of direction changes and 

the amplitude of rotation angles, both of which can change the modeling of dynamic 

characteristics in this study.  We used the data with high interference between flange 

and hose, but low interference data will decrease the space envelope, because the 

amplitude of rotation angle and the number of direction changes decrease.           

Comparison of hand space envelopes in power grip and pinch grip demonstrates 

the largest difference.  Interestingly, the pinch grip requires smaller space than the 

power grip over the range of 0 ~ 25 mm, and all amplitudes of X1 values were smaller in 

the pinch grip.  Generally, the hand posture has been known to be decided by many 

factors – force requirements, hand size, object size, object location, and object 

orientation, task requirement (Armstrong, Keyserling et al. 2003; Choi and Armstrong 
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2006).  Grieshaber observed that workers are more likely to select the pinch grip for the 

job where the object size is small or the force requirement is low, than to select a power 

grip posture (2007).  Workers tend to use a power grip for forceful exertion and large grip 

objects, but this may not be possible if there is not sufficient space.  The hand pace 

envelope data (power and pinch grip) predicted by the 3-D model can be used to predict 

the selection of grip type.      

Hand space envelopes were calculated as a series of rectangles perpendicular to 

the long axis of the hose.  The rectangles circumscribed the minimum and maximum 

values of horizontal and vertical dimensions.  This approach enables us to simplify 

interpretation of data and to compare the results with the previous measurement data by 

Grieshaber (2007).  The cross-sectional areas can be described in four critical 

dimensions using the 3-D kinematic model.  This makes it possible to superimpose the 

envelope on 3-D renderings of work spaces so that we can identify whether intrusions 

into the hand space force the workers to use a pinch grip or prevent them from gripping 

the object.   

 

3.5 LIMITATIONS AND FUTURE RESEARCH 

 

The prediction of space envelope was performed by calculating positions of 

markers corresponding to experimental settings, because our first goal was to determine 

whether simulation results can match measured results.  This approach can capture 

most of the hand space requirements, but some part of the hand might not have been 

captured, especially the thumb.  Also, the prediction was based on a kinematic model in 

which the hand segments were modeled with truncated cones, which cannot accurately 
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represent the skin of the hand.  More accurate prediction can be performed by importing 

real hand surface data and calculating of all arrays of points representing hand shape.   

One of the potential extensions of this study is the prediction of the dynamic 

space envelope, which means the required space during reaching and grasping.  The 

modeling of dynamic characteristics such as joint angle profile as a function of object 

size, and grip types will be essential to estimate the dynamic space envelope accurately.   

The inter-subject grip variability can also affect space envelope, because they 

can affect hand posture.  We simulated only two grip types (power grip and pulp pinch 

grips), but there are a lot of variability in grip types.  We observed that subjects used two 

different grip types depending on the thumb position while they were using power grip - 

transverse volar grasp with the thumb abducted for added power, and diagonal volar 

grasp with the thumb adducted for an element of precision.  The change of thumb 

position will definitely affect the hand space, especially the inferior directional dimension 

in hose placement task.  Observation of more subjects will enable us to examine the 

effect of inter-subject grip variability.  

Object shape, object orientation, and constraints of object (fixed or free to move) 

also should be considered in estimating hand space envelope, because they affect hand 

posture and wrist posture.  Our study investigated the use of a cylindrical object (hose), 

but the use of different object shape such as a connector can change the hand space 

envelope.   
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3.6 CONCLUSIONS 

 

 Hand space envelopes during the hose placement task were estimated using the 

kinematic model of the hand.  The simulation results show good agreement with 

measured data with an average 17% underestimation of sectional areas 

 On average, the use of pinch grip required 72% larger sectional areas than the use 

of power grip during the hose insertion task.  But the pinch grip required 50% smaller 

values in the medial direction than the power grip. 

 The rotation method requires an average of 26% greater sectional area than the 

straight method. 

 A 95% male hand size requires 44% larger sectional areas than a 5% female hand 

size. 
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CHAPTER 4  

QUANTITATIVE ANALYSIS OF FINGER MOVEMENTS DURING REACH AND 

GRASP TASKS 

Abstract 
 

Finger movement affects final hand posture.  Previous studies have investigated 

the use of contact algorithm to predict hand posture, but they have not considered 

relative rotation of finger joints explicitly.  Many studies on finger movements were 

limited for flexion movement only or for a limited set of joints, which cannot fully describe 

hand motion.  The objective of this study was to investigate the coordination of hand 

movement during reaching and grasping (power grasping and pinch grasping) including 

all the joints of four fingers and thumb so that it can be used for modeling purpose.  We 

defined spatial and temporal variables characterizing hand movement and examined 

how these variables were affected by object size.  Maximum aperture increased as 

object size increased both in power and pinch grasping, but time to reach maximum 

aperture was dependent on object size only in pinch grasping.  We found that all the 

joints of the four fingers flexion-extension of MCP and CMC joints of the thumb were 

used in power grasping, whereas all the MCP joints of the four fingers and the thumb 

CMC joint were used in pinch grasping in order to adjust hand to differently sized object.  

Subjects changed the angular velocities of their finger joints as the object size changed, 

which reduced the time difference to complete grasping objectsof varying size.   
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4.1 INTRODUCTION  

 

Ergonomic analyses of hand function remain a challenge for engineers and 

designers.  The hand strength is closely related to hand posture (Mathiowetz, Kashman 

et al. 1985; Imrhan and Loo 1989; Crosby, Wehbe et al. 1994; Josty, Tyler et al. 1997; 

Blackwell, Kornatz et al. 1999; Yan and Downing 2001).  The space taken up by the 

hand is also determined by the hand posture which is affected by the geometric and 

material properties of grip object and hand size (Choi, Grieshaber et al. 2007; 

Grieshaber 2007).  The hand posture is imperative for tendon excursion to be predicted, 

because tendon displacement is determined by the joint angles of finger (Landsmeer 

1961; Landsmeer 1961; Armstrong and Chaffin 1978).  

Finger movement affects the final hand posture (Armstrong, Choi et al. 2008).  

Previous studies have investigated the use of contact algorithms to predict hand 

postures (Buchholz and Armstrong 1992; Pollard and Zordan 2005; Endo and Kanai 

2006; Miyata, Kouchi et al. 2006; UGS 2006).  Contact algorithms  used in these studies 

entailed rotating the finger joints until contact occurred between hand and grip object, 

and thus the predicted posture was affected by the relative rate of finger joint rotation.  

However, previous studies have not considered relative rotations of finger joints 

explicitly.  The movement pattern also enables us to predict hand posture not only in 

power grip but also in other grips such as pulp pinch and tip pinch, because selection of 

different grip type changes movement pattern significantly.  Therefore, it is necessary to 

understand finger movements to evaluate the final hand posture in a specific task.     

The coordination of the finger movements has been investigated to find the 

dominant pattern during grasping.  Some researchers have suggested that the hands 

are controlled by kinematic synergies which reduced the possible movement patterns 
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significantly (Santello, Flanders et al. 1998; Santello and Soechting 1998; Mason, 

Gomez et al. 2001; Santello, Flanders et al. 2002; Braido and Zhang 2004).  They 

analyzed the movement data using PCA (principal component analysis) and found that a 

few eigenpostures can describe the reaching and grasping motion sufficiently.  But these 

analyses were performed for either flexion movement only or for a limited set of joints 

excluding some degrees of freedom (especially the thumb) which are necessary to fully 

describe hand motion.   

The effects of characteristics of interacting objects should be considered in 

describing grasp movements.  It was observed that the aperture (distance between the 

thumb tip and the index finger tip) changed as the object size changed in grasping 

movement (Jeannerod 1981; Jeannerod 1984; Paulignan, Frak et al. 1997).  However, 

the effects of object characteristics on the individual DOFs have not been well 

investigated.  Both temporal and spatial data associated with object characteristics are 

also important in describing human hand movements.   

The purpose of this study was to investigate the hand movement pattern 

including all fingers and thumb quantitatively during reaching and grasping tasks, so that 

the results of this study can be applied to the prediction of hand posture during manual 

work tasks.  The effect of object size on the hand movement pattern was tested through 

direct measurement and analysis.    We hypothesized that spatial and temporal variables 

are significantly affected by object size and that there are dominant movement patterns 

of grasping movement owing to the synergy effect of motor control.  Eighteen DOFs of 

all finger and thumb joints were analyzed to sufficiently describe the hand movements.  

Information about the finger movements provides knowledge about the required space 

for the hand during grasping an object.  As the finger movement is accomplished by the 

movement of muscles and connected tendons, tendon excursions – one of the main risk 
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factors for WRMSDs (work-related musculoskeletal disorders) – can be estimated by 

modeling finger movement.  The results also can be used for the rehabilitation purpose 

such as clinical diagnosis of hand-related disorders.   
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4.2 METHODS 

4.2.1 Experiments 

Experimental Design 

Sixteen healthy subjects with no history of musculoskeletal disorders in upper 

extremities participated in the experiment.  Demographic information for the study 

population is shown in Table 4.1.  Their hand lengths ranged from 2% female to 83% 

male according to Garret’s data (Garrett 1971).  All subjects gave their written consent to 

participate in the study.  The experimental design was reviewed and approved by the 

University of Michigan Institutional Review Board.  The detailed methods are described 

in Chapter 2. 

 

Table 4.1 Hand length summary of study participants.  Percentiles are listed in 
parenthesis (Garrett, 1970). 

  

4.2.2 Data analysis 

The data obtained were processed with Matlab® software.  The DIP, PIP, and 

MCP joint angles of four fingers were calculated from the 3D marker position data, using 

the dot products of the adjacent vectors, each of which represents each segment.  The 

IP joint angle of the thumb was calculated in the same way.  The thumb MCP joint has 

two degrees of freedom – F/E (flexion/extension) and ABD/ADD (abduction/adductio.  
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The plane containing tip, IP, and MCP markers was defined and the vector between 

MCP and CMC joint marker was projected onto the plane.  The F/E angle was calculated 

using dot products of the IP-MCP vector and the projected vector.  The AA angle was 

calculated using dot products of MCP-CMC vector and the projected vector.  Thumb 

CMC joint angles were calculated using Euler angles of flexion-extension, abduction-

adduction, and pronation-supination rotation sequence.  Flexion was positive for flexion-

extension angles, abduction was positive for abduction-adduction angle, and supination 

was positive for pronation-supination angle. Therefore, all the joint angles used in this 

study are marker-defined joint angles.   

A representative plot of joint angle profile during reach and grasp movement is 

shown in Figure 4.1.  We defined five temporal and five spatial variables which 

characterize the movement pattern.  “Initial angle” was defined as the average joint 

angles for the first 50 ms, because the subjects started moving their arms at least 0.5 

seconds after beginning of data recording.  “Final angle” was calculated as the angle 

when the joint angle became steady – when the velocity is less than a preset threshold.  

“Open angle” was then obtained by finding the minimum angle for flexion-extension (the 

maximum angle for abduction-adduction, pronation-supination).  From the velocity 

profile, the minimum velocity and the maximum velocity were found, and the joint angles 

when joint angular  velocity reached the minimum or maximum velocity were found.  

Those angles were defined as “minimum velocity angle” and “maximum velocity angle,” 

respectively.  A “start open” time was defined as a time when the joint angle reached 5% 

of the difference between initial and open angle.  An “opening time (Topen)” was defined 

as a time taken for the joint angle to reach the open angle from “start open” time. 

“Closing time (Tclose)” was a time taken for the joint angle to travel from the open angle to 

the final angle.  “Minimum velocity time” and “maximum velocity time” were defined as 
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times during which the joint angular velocity reached the minimum and maximum 

velocity from “start open” time and “end open” time, respectively.  All time variables were 

normalized by the duration of hand movement, i.e., the time for the hand to reach the 

handle located 30 cm in front of the subject, because each subject moved the hand at 

different speed.   Therefore, the time when the hand reaches the object is 1.  We used 

normalized time for the analysis of temporal variables hereafter. 
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Figure 4.1  Representative plot of  joint angle profile during a reach and grasp 
movement.  Five temporal and spatial variables were defined to characterize the 
movement.  (Lg: Large, Med: Medium, Sm: Small, D: Diameter) 
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4.3 RESULTS 

4.3.1 Maximum aperture and maximum aperture time 

Movement time – time for the hand to travel to the object – was 1.05 ± 0.28 

seconds for power grasping and 1.06 ± 0.19 seconds for pinch grasping and showed no 

significant difference (p>0.05).  Table 4.2 shows the maximum apertures and the 

maximum aperture times (time to reach the maximum aperture) of four fingers during 

power and pinch grasping.  All maximum apertures were significantly affected by the 

object size (p<0.05) for both power and pinch grasping.  The ratio of maximum aperture 

to object size (diameter) decreased as the object size increased.  The ratio (maximum 

aperture/object size) was 3.9 - 4.6 (3.0 - 3.3) in small object, 2.1 - 2.3 (1.8-2.0) in 

medium object, and 1.4 - 1.6 (1.3 – 1.4) in large object during power (pinch) grasping.  

The time to reach maximum aperture for power grasping did not correspond to the object 

size, even though the maximum apertures were affected by the object size.  In particular, 

no significant difference in the maximum aperture times between the large object (D=114 

mm) and the medium object (D=60 mm) was observed.  However, the maximum 

aperture times for pinch grasping showed significant differences (p < 0.05) across the 

object size and also corresponded to the object size.  On average, the maximum 

aperture time was 37% larger in pinch grasping (0.59 seconds) than in power grasping 

(0.43 seconds).  
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Table 4.2  Maximum apertures (mm) and maximum aperture times (s) of four 
fingers during power and pinch grasping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Spatial variables 

Figure 4.2 -Figure 4.5 display spatial variables for all joints and different object 

sizes during power and pinch grasping.  The final angle variables during power grasping 

(Figure 4.3), except that of CMCAA, were significantly different for object size (p<0.05).   

Open angles were affected by the object size except in index MCP, little DIP, thumb IP, 

thumb MCPAA, thumb CMCAA, and thumb CMCPS joint angles.  The minimum and 

maximum velocities during power grasping were also affected by the object size.  The 

minimum velocities were significantly different across object size in all joint angular 

velocities except middle DIP, little DIP, thumb IP, and thumb CMCAA joint angular 

Index Middle Ring Little

Lg(D:114mm) 156.1±19.1 177±19.7 180.4±20.4 178.2±12.7

Med(D:60mm) 124.6±22.7 132.7±21.9 137.7±26.5 140.7±25.6

Sm(D:26mm) 101.4±13.7 110±14.3 114.9±15 120.8±15.1

Lg(D:114mm) 0.38±0.12 0.45±0.12 0.48±0.10 0.49±0.13

Med(D:60mm) 0.46±0.10 0.45±0.06 0.48±0.08 0.49±0.08

Sm(D:26mm) 0.37±0.07 0.37±0.08 0.38±0.08 0.4±0.10

Index Middle Ring Little

Lg(D:114mm) 146.5±8.9 155.0±10.1 156.4±11.2 153.7±10.4

Med(D:60mm) 109.7±9.1 115.7±9.7 118.2±12.7 118.1±11.5

Sm(D:26mm) 77.1±5.7 81.7±6.7 85.6±9.8 86.5±9.6

Lg(D:114mm) 0.66±0.15 0.64±0.14 0.65±0.16 0.67±0.16

Med(D:60mm) 0.60±0.13 0.56±0.12 0.56±0.12 0.57±0.13

Sm(D:26mm) 0.51±0.06 0.50±0.06 0.51±0.04 0.51±0.05

Object
Size

Max
Aperture

Max
Aperture

Time

POWER GRIP (mm)

Max
Aperture

Max
Aperture

Time

PINCH GRIP (mm)Object
Size
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velocities.  The maximum velocities were significantly affected by the object in all joint 

angular velocities except thumb CMCAA joint.  Minimum velocities became smaller 

(larger in thumb MCPAA and CMCPS) as the object size decreased, while maximum 

velocities became larger (smaller in thumb MCPAA and CMCPS) as the object size 

decreased.  To summarize, as the object size decreased, the difference between initial 

and open angle decreased and the magnitude of minimum velocity also decreased.  As 

the object size increased, the difference between open and final angle increased, as did 

the maximum velocity.   

During pinch grasping, open angles significantly affected (p<0.05) all MCP joint 

angles of four fingers, ring PIP joint angle, little PIP joint angle, and thumb CMCPS joint 

angles.  Final angles were significantly different (p<0.05) for all MCP joint angles of four 

fingers, ring PIP joint angle, thumb CMCFE and CMCPS joint angles.  The minimum 

velocities were not affected by the object size except the thumb CMCPS joint angular 

velocity.  The maximum velocities were significantly affected by object size (p<0.05) only 

in all MCP joints of four fingers and thumb CMCPS joints.  
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                                                        (a) 

 
                                                                  (b) 

Figure 4.2 Open angles for (a) power grasping and (b) pinch grasping 
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                                                     (a) 

 

                                                     (b) 

Figure 4.3  Final angle for (a) power grasping and (b) pinch grasping 
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                                                      (a) 

 

                                                      (b) 

Figure 4.4  Minimum velocity for (a) power grasping and (b) pinch grasping 
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                                                     (a) 

 

                                                     (b) 

 
Figure 4.5  Maximum velocity for (a) power grasping and (b) pinch grasping
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A multiple regression model was developed to predict open angle from 

object sizes and hand lengths as the Eq. (4.1).   

cHLbCDaAngleOpen +×+×=       (4.1) 

   ,where CD : Cylinder Diameter (cm) 

    HL : Hand Length (cm) 

    c : constants 

The coefficients (a, b), constants, and coefficients of determination between 

prediction and measurement are shown in Table 4.3 (power grasping) and Table 4.4 

(pinch grasping). Coefficients of determination ranged from 0.20  to 0.57 in power 

grasping.  In pinch grasping, coefficients of determination were large in all MCP joints, 

but those values of other joints ranged from 0.13 to 0.58.   For all flexion-extension 

angles, object size and joint angle showed negative relationship. 
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Table 4.3  Coefficients and constants of multiple regression model predicting 
open angles in power grasping 
 

 

 

Table 4.4  Coefficients and constants of multiple regression model predicting 
open angles in pinch grasping  
 

 

 

4.3.3 Temporal variables 

Figure 4.6-Figure 4.7 show time variables – start time, minimum velocity time, 

open time, and maximum velocity time – of four finger joints in power grasping and pinch 

Joint MCP2 PIP2 DIP2 MCP3 PIP3 DIP3
a (°/cm) -2.08 -0.23 -0.16 -2.99 -0.30 -0.04
b (°/cm) 0.03 -0.08 0.00 0.02 -0.08 0.00

c (°) 41.02 19.41 8.29 45.22 18.62 5.87
R2 0.71 0.28 0.20 0.85 0.24 0.04

Joint MCP4 PIP4 DIP4 MCP5 PIP5 DIP5
a (°/cm) -2.37 -0.97 -0.06 -1.76 -0.31 -0.13
b (°/cm) 0.06 -0.04 -0.01 0.05 -0.02 -0.02

c (°) 39.15 22.94 7.98 42.11 9.96 9.32
R2 0.88 0.39 0.13 0.71 0.30 0.15

Joint IP MCPFE MCPAA CMCFE CMCAA CMCPS
a (°/cm) 0.00 0.03 0.66 0.55 -1.09 2.14
b (°/cm) -0.04 -0.09 -0.11 -0.05 0.01 0.00

c (°) 11.00 7.71 4.34 -40.14 31.76 -109.17
R2 0.24 0.20 0.32 0.15 0.29 0.58

Joint MCP2 PIP2 DIP2 MCP3 PIP3 DIP3
a (°/cm) -0.32 -1.15 -0.30 -0.92 -0.98 -0.30
b (°/cm) 0.61 0.26 -0.25 2.30 0.38 0.42

c (°) 11.07 24.08 14.88 -25.17 22.99 0.57
R2 0.20 0.44 0.25 0.56 0.32 0.28

Joint MCP4 PIP4 DIP4 MCP5 PIP5 DIP5
a (°/cm) -0.88 -1.69 -0.38 -1.10 -1.34 -0.18
b (°/cm) 0.12 0.11 0.33 0.34 -0.20 -0.59

c (°) 16.87 31.02 3.58 20.53 29.20 22.55
R2 0.48 0.53 0.34 0.50 0.52 0.20

Joint IP MCPFE MCPAA CMCFE CMCAA CMCPS
a (°/cm) 0.19 -0.64 0.17 -2.21 0.61 0.11
b (°/cm) -0.65 2.50 -1.85 -0.54 2.88 -3.03

c (°) 21.30 -36.06 47.95 31.35 -38.12 -30.82
R2 0.25 0.43 0.29 0.57 0.34 0.33
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grasping, respectively.  Among time variables, only opening times were significantly 

affected by the object size at all joints of four fingers except index DIP joint(p<0.05).  

Other time variables were not affected by object size in most joints.      

Figure 4.6  Normalized time variables for four finger joints in power grasping 
 

In power grasping, MCP joints showed the smallest time variables and DIP joints 

showed the largest time variables during opening process at all four fingers.  Average 

minimum velocity time was 0.17 ± 0.13 for MCP joints, 0.21 ± 0.14 for PIP joints, and 

0.25 ± 0.20 for DIP joints.  Opening time was 0.37 ± 0.15 for MCP joints, 0.44 ± 0.16 for 

Pip joints, and 0.49 ± 0.19 for DIP joints.  Both time variables of the same joint types 

(MCP, PIP, and DIP) showed no significant difference for different fingers (p<0.05).   

During flexion period of power grasping, no significant difference between joints 

within a digit was observed in maximum velocity time and closing time (p<0.05).  The 

same joint types showed similar values of time variables at all fingers except PIP and 
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DIP joints of the index finger.  On average, maximum velocity time was 0.28 ± 0.15 for 

MCP joints, 0.24 ± 0.14 for PIP joints, and 0.25 ± 0.15 for DIP joints.  Average closing 

time was 0.89 ± 0.25 for MCP, 0.82 ± 0.25 for PIP, and 0.86 ± 0.28 for DIP joints.  

 

Figure 4.7  Normalized time variables for four finger joints in pinch grasping 
 

In pinch grasping, it was hard to observe any consistent pattern among joint 

types within a digit.  But through all time variables, MCP joints always showed similar 

time variables for different fingers.  Average minimum velocity time was 0.27 ± 0.17 for 

MCP, 0.21 ± 0.14 for PIP, and 0.29 ± 0.23 for DIP joints.  Average opening time was 

0.50 ± 0.17 for MCP, 0.55 ± 0.20 for PIP, and 0.56 ± 0.23 for DIP joints.  Both time 

variables (minimum velocity time and opening time) was greater in pinch grasping than 

in power grasping at all joints.   

During flexion period of pinch grasping, most maximum velocity times and closing 

times showed larger values in power grasping than in pinch grasping.  Average 
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maximum velocity time was 0.28 ± 0.17 for MCP, 0.27 ± 0.20 for PIP, and 0.31 ± 0.18 for 

DIP joints.  Closing time was largest in MCP joints (0.81 ± 0.36) and PIP (0.80 ± 0.28) 

and DIP (0.58 ± 0.28) joints followed.  As the extension period, time variables in MCP 

joints showed similar values across fingers.   

 

4.3.4 Application to the model 

The primary goal of this study is to apply actual finger movement patterns to the 

model that predicts hand posture, presented in Chapter 2.  The model predicts the 

posture by detecting contacts between hand segments and the object while driving 

finger joint at some specific rates.  Each finger joints rotates at different rates depending 

on the size of the grip object and grip types.  Figure 4.8 displays average joint angular 

velocity of the middle finger over time during reaching for and grasping three differently 

sized objects.  Each joint has different minimum and maximum velocities as shown in 

Figure 4.4 and Figure 4.5.  Using spatial and temporal variables obtained from the 

experiments, linear curve fitting was conducted for each joint.  The shape of actual 

velocity curve is sigmoidal in the flexion movement and inverse-sigmoidal shape in the 

extension movement, but linear curve fitting was found to explain 86% - 93% of 

variability of velocities on average.         

 

 

 



99 

          MCP    PIP    DIP                                          

                                             (a) Power grip 

 MCP    PIP    DIP 

                                              (b) pinch grip 

Figure 4.8  Average normalized joint angular velocity vs. time plots of the middle 
finger during reaching for and grasping different sized objects.  (a) Power grasp 
for 16 subjects.  (b) pinch grasp for 6 subjects 
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4.4  DISCUSSION 

 

The objective of this study was to quantify the finger movements during power 

and pinch grasping.  Spatial and temporal variables used in this study characterized the 

movement pattern during power and pinch grasping.   

In both power and pinch grasping, open angles decreased as the object size 

increased to make larger grip apertures (Figure 4.2).  The effect of object size on grip 

aperture during two-finger pinch grasping has been observed by many researchers  

(Jeannerod 1984; Bootsma, Marteniuk et al. 1994; Brenner and Smeets 1996; 

Paulignan, Frak et al. 1997), but quantitative information for finger joint angle changes in 

other grip types such as power grip and pulp pinch grip was lacking.  Our results showed 

how open angles are quantitatively affected by object size so that they can be applied to 

modeling of human grasping movements.  Open angles are the determinant of grip 

aperture.  The object size affected open angles of most joints in power grasping, 

whereas it affected open angles of all MCP joints in pinch grasping, which explains why 

grip aperture is larger in power grip than pinch grip.   

The ratio of maximum aperture to object size was affected by the object size.  

Smaller objects resulted in a larger ratio, which gave a larger safety margin.  This result 

agrees with previous studies reporting the maximum aperture to vary linearly with object 

size with a slope less than 1 (approximately 0.8). It would seem that the anatomic 

structure of the hand caused the difference.  The passive moments of finger joints play a 

significant role during free finger movements (Sancho-Bru, Perez-Gonzalez et al. 2001; 

Kamper, George Hornby et al. 2002).  When object size is large, finger joints need to 

use a larger range of motion to open the hand, which increase the passive moments at 

the joints.  Increased passive moments might have decelerated finger joint rotation 
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more.  When the object size is small, finger joints do not need to use a large range of 

motion, and thus the role of passive moments is not as great as when grasping large 

objects.  Reduction of passive moments might have decreased the braking force to 

deccelerate the joint rotation.  The result that power grasp showed a lower slope (0.62) 

than pinch grasp (0.78) supports this assumption because power grasp uses all finger 

joints while pinch grasp uses mainly MCP joints of four fingers to open the hand.  

The effects of object size on maximum aperture time was apparent in pinch grip, 

but not in power grip.  It has been reported that the maximum aperture occurred at 

approximately 60-80% of total movement time (Jeannerod 1984; Castiello 1996) 

(Wallace and Weeks 1988), but our data showed a faster occurrence of the maximum 

aperture in pinch grasping especially when grasping a small object (Table 4.2). These 

data may reflect the different definition of movement time.  We defined onset time of 

movement as a time when the distance decreased by 5% of total distance, which is 

usually later than actual onset time.  This might have underestimated the maximum 

aperture time.  The dependence of timing on object size corroborates the previous 

studies (Marteniuk, Leavitt et al. 1990; Gentilucci, Castiello et al. 1991; Churchill, 

Hopkins et al. 2000).  However, the maximum aperture time in power grasping was 

independent of the object’s size.  The larger magnitude of minimum velocity in larger 

object size supports this independency (Figure 4.4).  The time to reach maximum 

aperture was much smaller in power grasping than in pinch grasping even though the 

maximum apertures were larger in power grasping than in pinch grasping.  Comparing 

the minimum velocities between power grasping and pinch grasping, the magnitudes of 

minimum velocities were much larger in power grasping than in pinch grasping.  It 

seems that subjects used pure extension of all joints of four fingers in power grasping, 

whereas they tried to control mainly the MCP joint angles in pinch grasping - PIP and 
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DIP joint angles of four fingers were not affected by the object size (Figure 4.2 - Figure 

4.3).   

Object size affected all spatial variables significantly.  Final angles were most 

sensitive to the object size, which agrees with the result of study by Choi and Armstrong 

(2006).  The regression model for the open angle (Eq. 4.1) shows how open angle is 

affected by object size and hand size.  For four finger joints, all coefficient of object size 

had negative values, which means that increasing object size decreases open angles.  

In particular, the open angles of MCP joints showed strong negative relationships with 

object size in pinch grasping, meaning that MCP joints played more important roles 

during grasping than PIP or DIP joints. 

The thumb joint spatial variables yield insight into how the thumb joints move to 

adjust the hand to object size.  In power grasping, open angles in MCPFE and CMCFE 

were significantly affected by the object size (p<0.05), which means that the flexion-

extension movements of the MCP and CMC joints were used to open the hand 

differently for varying object sizes.  The object size affected final angles of all thumb 

joints except CMCAA joint, meaning most joints of the thumb were used to fit the hand to 

different object size.  The significant effect of object size on minimum and maximum 

velocity variables of thumb joints also support the finding which thumb joints were used 

to adjust the hand to object size.  In pinch grasping, all time variables were significantly 

affected by the object size only at CMCPS joint.  It seems that pronation-supination 

movement of the thumb plays an important role to adjust the hand to the object during 

pinch grasping. 

It should be noted that all time variables were normalized with respect to 

movement time.  The movement time was 1.05 ± 0.28 seconds for power grasping and 

1.06 ± 0.19 seconds for pinch grasping.  Normalized time variables were used to 
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investigate the relative finger joints’ rotations excluding the effect of movement time, 

because movement time was different for every trial.  Additional analysis is required to 

examine the effect of movement time on the finger joint rotation.   

In power grasping, temporal variables during extension period were smallest in 

MCP and largest in DIP joints at four fingers, whereas temporal variables during flexion 

period were almost similar throughout all joints.  Temporal variables were not 

significantly different across type of joints within each digit (p<0.05).  More temporal 

synergies were observed among the same type of joints (MCP, PIP, and DIP) rather 

than among the joints within digit.  These findings corroborate previous studies (Santello, 

Flanders et al. 1998; Santello and Soechting 1998; Mason, Gomez et al. 2001; Santello, 

Flanders et al. 2002; Braido and Zhang 2004) that humans use synergies during power 

grasping movement.  In pinch grip, time variables at MCP, PIP, and DIP joints within a 

digit did not show a significant difference from one another at most digits, but the MCP 

joints of four fingers showed similar values for all temporal variables.  Comparing 

temporal variables of power and pinch grasping, power grasp required less times than 

pinch grasp for extension, and both grasps required similar times during flexion period.           

An interesting observation in this study was the dependence of minimum and 

maximum velocity on object size.  Even though the object size changed the open and 

final angles, time to complete grasping was not affected by the object size due to the 

velocity dependence on object size.  This finding can be one of the evidence that 

humans used velocity control strategy for motor control (Kelso, Fuchs et al. 1998; 

Zhang, Kuo et al. 1998).        

Thumb movement is essential to model the grasping movement, but the data for 

describing full DOF’s of thumb motion are lacking.  Li and Tang reported the thumb 

movement pattern during opposition and circumduction movements (Li and Tang 2007).   
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In this study, we showed how the thumb joint angles vary when grasping differently sized 

objects, which can be useful to model grasping movement.  CMCFE and MCPFE were 

found to be an important joint angles to adjust hand to different object size.  The 

correlation of flexion-extension movements of CMC and thumb MCP joints was 0.906 ± 

0.141 in power grasping.  Anatomically, the flexor pollicis longus crosses CMC, MCP, 

and IP joints, and thus causes simultaneous rotations of these joints.  It seems that the 

flexor longus plays an important role to adjust hand to varying object size.   

The data displayed in Figure 4.8 are not congruent with constraints (Landsmeer 

1963) on flexion of the interphalangeal joints (θDIP = 2/3*θPIP) which were used in the 

previous studies (Landsmeer 1963; Lee and Kunii 1995; Endo and Kanai 2006).  For 

example, the average ratio of the maximum DIP angular velocity to the maximum PIP 

angular velocity was 1.02 during flexion period at the middle finger.  This ratio was also 

affected by the object size: 1.20 for large (D:114 mm) object, 1.14 for medium (D:60 

mm) object, and 0.71 for small (D:26 mm) object.  During grasping small objects, it is 

very similar to free flexion of fingers, which was the experimental condition used in 

Landsmeer’s study.  But as the object size increased, the ratio (θDIP’/ θPIP’)  increased, 

which means that more complicated coordination of muscles may be used during 

grasping.    

 

4.5 LIMITATIONS AND FUTURE RESEARCH 

 

One of the limitations in this study was consideration of a joint center of rotation.  

We used marker-defined joint angles for the analysis of movement data.  It has been 

reported that coefficients of multiple determination between marker-defined joint angles 

and rotation-center based joint angles were 0.96, 0.98, and 0.94 for MCP, PIP, and DIP 
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joint flexion-extension motion, respectively.  But the thumb joints do not only make 

flexion-extension movements but also pronation-supination and abduction-adduction 

movements, which could have increased errors when comparing measured and 

predicted joint angles.   

It was unavoidable to use the computational algorithm to detect spatial and 

temporal variables for analyzing a large dataset, but some of the movements might have 

not been detected correctly by the algorithm.  As finger movements normally include a 

lot of between-subject variability, the movements that did not follow the typical 

movement pattern (Figure 4.1) could not be included in this study.   

 

4.6 CONCLUSIONS 

 

 Finger movements during grasping differently sized objects, characterized 

quantitatively using spatial and temporal variables, can successfully be used to 

model a grasping movement. 

 Object size changes both spatial and temporal variables during reaching and 

grasping movements. 

 Power grasp uses all joints of four fingers and flexion-extension of MCP and CMC 

joints of the thumb to adjust the hand to different object sizes. 

 Pinch grasp uses MCP joints of four fingers and thumb CMC joints to adjust the 

hand to different object sizes. 

 During grasping movements, humans change the velocities of joints as the object 

size changes in such a way so as to reduce the difference of time to complete 

grasping.   
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CHAPTER 5  

A RETROSPECTIVE STUDY OF THE RISK OF HAND AND WRIST MSDS 

USING TIME-BASED VIDEO ANALYSIS 

Abstract 
 

The objective of this study was to test the hypothesis that wrist motion and 

tendon excursion are associated with the risk of upper extremity musculoskeletal 

disorders.  A re-analysis of manual jobs from a cross-sectional study showing the 

relationship between repetitive work and the prevalence of upper limb musculoskeletal 

disorders by (Latko et al.) was performed.  A time-based analysis was performed to 

determine wrist flexion/extension and radial/ulnar deviation angles from video recordings 

on 10 jobs ranging from low- to high- repetition jobs (4 high-risk jobs, 3 medium-risk 

jobs, and 3 low-risk jobs).  Using one-way ANOVA, the average wrist velocity, average 

wrist acceleration, and normalized cumulative tendon excursions of FDP and FDS 

tendons were found to differentiate MSD risk levels significantly and correctly (p<0.05).  

The role of dynamic variables and tendon excursions was examined using a conceptual 

modeling of wrist motions and biomechanical factors.      
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5.1 INTRODUCTION 

5.1.1 Background 

Much epidemiological evidence shows that repeated exertion with the hand is 

one of the important risk factors for UEMSDs (upper extremity musculoskeletal 

disorders) of upper extremities such as carpal tunnel syndrome and tendinitis (Feldman, 

Travers et al. 1987; Silverstein, Fine et al. 1987; Chiang, Chen et al. 1990; McCormack, 

Inman et al. 1990; Barnhart, Demers et al. 1991; Hagberg, Morgenstern et al. 1992; 

Keyserling, Stetson et al. 1993; Osorio, Ames et al. 1994; Latko, Armstrong et al. 1999; 

Leclerc, Landre et al. 2001; Gell, Werner et al. 2005).  Chiang et al. found that 

prevalence of carpal tunnel syndrome is five times larger in a high-repetition group than 

in a low-repetition group.  Silverstein et al. combined repletion and force, and found that 

highly repetitive jobs increased the risk more than five times compared to low repetitive 

jobs, irrespective of force.  Many researchers have proposed several models of 

pathogenesis of these UEMSDs, which postulated repeated exertions play a role to 

develop the disorders (Goldstein, Armstrong et al. 1987; Fuchs, Nathan et al. 1991; 

Rempel, Dahlin et al. 1999).  The most commonly used model is the one based on the 

assumption that thickening of tendon sheaths causes intracarpal pressure and contact 

pressure on the median nerves.   Exertions of the hand produce normal and friction 

forces on adjacent tendons and tissues (Armstrong and Chaffin, 1979).  Armstrong et al. 

(1984) observed that the density of connective tissue in the flexor synovium is greater in 

the areas where the tendons press and rub on adjacent anatomical structures.  

Repetitive loading from forceful exertion changes the geometric and material properties 

of tendons and ligaments (Wren, Beaupre et al. 1998).  Thickening of the connective 

tissue in the carpal tunnel can produce secondary pressure on tendons, synovium, and 
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nerve tissues, resulting in MSDs such as carpal tunnel syndrome (Phalen 1966; Moore 

2002). 

Tendon excursion and wrist motion have been used as one of the indicators of 

the risk of UEMSDs (Moore, Wells et al. 1991; Marras and Schoenmarklin 1993; Wells, 

Moore et al. 1994; Wells, Moore et al. 1994; Sommerich, Marras et al. 1996; Marklin and 

Monroe 1998; Serina, Tal et al. 1999).  Moore et al. (1991) used a tendon excursion as a 

measure of repetitive and forceful task.  They categorized the tasks using a quantitative 

guideline by Silverstein et al. (1986; 1987) and directly measured wrist and index finger 

joint angles for six subjects.  Wells et al. (Wells, Moore et al. 1994) compared the tendon 

excursions of 88 industrial workers and one data entry clerk.  Sommerich et al. (1996) 

measured wrist and finger joint angles and computed the tendon excursion for three 

different groups of typing tasks.  The dynamics of the wrist motion was investigated by 

many researchers.  Marras et al.(1993) used goniometric instrumentation for measuring 

wrist angles of workers to investigate the relationship between angular velocities and 

accelerations of the wrist and UEMSDs.  They showed that angular wrist  velocities were 

associated with cumulative trauma disorders based on OSHA (US occupational safety 

and health administration) 200 logs.  Marklin and Monroe (1998) measured the wrist 

motions in the meat-packing industry and compared the results with those of Marras and 

Schoenmarklin (1993).  Serina et al. (1999) measure wrist and forearm motions during 

typing tasks, and concluded that the mean angular velocity and acceleration in typing 

tasks were similar to those in industrial tasks.  These studies provided a benchmark to 

determine what levels of tendon excursion or wrist dynamics are associated with the risk 

of UEMSDs, but the connection of  the tendon excursions with occurrence of UEMSDs 

were not clear.    
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5.1.2 Hypothesis 

Posture θ(t) can be represented as the sum of a series of periodic functions of 

peak angle, θoi, frequency, ωi, time, t, and phase, φi: 

                                                                          (5.1) 

 

Then the velocity and acceleration components can be obtained as the first and 

second derivatives of θ(t).    

              

                                                  (5.2) 

 

            (5.3) 

 

Comparing Eqs. (5.1), (5.2), and (5.3), the frequency (ω) plays an important role 

to amplify or to lessen the magnitudes of velocity and acceleration components.  If the 

frequency is high, it augments the magnitude of angular velocity more than the 

magnitude of angle, and it augments the magnitude of angular acceleration the most.  

Conversely, if the frequency is low, it diminishes the magnitude of velocity more and the 

magnitude of acceleration the most.  The above equation also implies that the 

contribution of frequency to velocity and acceleration is larger than that of magnitude of 

the wrist angle.  Frequency of the job augments or lessens each term of velocity or 

acceleration by multiplying ω or ω2, while the magnitude affects angle, velocity, and 

acceleration by the same amount.  Therefore, the dynamic variables, i.e., velocity and 

acceleration, are more effective than the angle variable in assessing the repetitive jobs.    
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Tendon excursions of flexor tendons can be used as an index to assess the risk 

of MSDs.  Using Eq. (5.2), cumulative tendon excursion can be computed as the integral 

of absolute product of the radius of curvature in the wrist, r , and angular velocity,  θ’(t) , 

over work duration, T.    

 

 

                                                                                               (5.4) 

 

This equation shows the relationship between tendon excursion and angular 

velocity components.  As the tendon excursion is closely related to angular velocity, 

cumulative tendon excursion can be used as an index of estimating MSD risk levels just 

as velocity components can.  It also captures not only the peak wrist angle and 

frequency but also the duration of the job, which should be considered when assessing a 

job.  The cumulative tendon excursion gives more physically meaningful values than 

velocity or acceleration component alone, because it is related to friction and wear that 

may contribute to MSDs. 

 

5.1.3 Objective 

The objective of this study was to test the hypothesis that wrist motion and 

tendon movements are associated with the risk of UEMSDs.  For this purpose, a time-

based analysis was performed for video recordings of selected jobs from the previous 

study of hand activity level and MSDs by Latko et al. (1999).  
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5.2 METHODS 

5.2.1 Job Selection 

Latko et al. (1999) classified the jobs from three manufacturing facilities ( office 

furniture, industrial container, spark plug manufacturers) as high-risk, medium-risk, and 

low-risk, based on experts’ repetition ratings.  The repetition rating ranged from 6.7 to 10 

for high-risk jobs, from 3.4 to 6.6 for medium-risk jobs, and from 0 to 3.3 for low-risk jobs.   

Prospective jobs were videotaped so that they could be viewed and rated by a team of 

experts.  We selected ten jobs among them for re-analysis.  Four high-risk jobs, three 

medium-risk jobs, and three low-risk jobs were selected from three manufacturing sites 

(Table 5.1).  The average rating for high-risk, medium-risk, and low-risk jobs were 8.6, 

5.8, and 2.1, respectively.  Table 5.1 summarizes the brief descriptions and repetition 

ratings of the jobs analyzed in this study. 

 

Table 5.1.  Jobs included in study, categorized by repetition levels. 

Repetition Plant and job Repetition 
Rating 

Low 

Office furniture manufacturing 
       Machine loading 
       NC machine operation 
Industrial container manufacturing 
       Injection molding machine operator 

 
1.9 
2.9 

 
1.6 

Medium 

Office furniture manufacturing 
      Office cubicle panel upholstery 
Industrial container manufacturing 
      Small drum cover glue 
Spark plug manufacturing 
      Spark plug transfer 

 
6.4 

 
5.3 

 
5.8 

High 

Industrial container manufacturing 
      Band welding 
      Handle assembly 
Spark plug manufacturing 
      Platinum spark plug weld  
      Spark plug transfer B 

 
8.5 
8.8 

 
7.9 
8.1 
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5.2.2 Time-based analysis 

Time-based analysis was used to estimate and record wrist postures at 0.25 

second intervals as described by Armstrong et al. (2003).  Analysis of digital job video 

was facilitated by a computer program in Microsoft Excel VBA that enabled the user to 

advance the video at predetermined steps and provided a menu for estimating job 

actions, hand and wrist postures and hand forces (Armstrong, Keyserling et al. 2003).  

Estimates were automatically stored in a spread sheet for further analysis 

The flexion-extension and radial-ulnar deviation angles of the right wrist were 

observed, because the workers usually used the right hand more frequently than, or as 

often as, the left hand in our selected jobs.  Selected job videos were analyzed at the 

time step of 0.25-second intervals.  The entire job videos were observed first, and then 

representative job cycles were selected for further analysis.  All the high-risk jobs have 

short job cycles (mean: 8.25 seconds), while all the low-risk jobs have long job cycles 

(mean: 89.5 seconds).  Job cycles of mid-risk jobs (mean: 70.75 seconds) were between 

those of high-risk jobs and low-risk jobs.  Two or three cycles of the jobs were observed 

for high-risk jobs.  One representative cycle of the jobs was analyzed for medium-risk 

jobs and low-risk jobs. 

 

5.2.3 Data analysis 

In the original study, three groups of jobs were initially selected on the basis of 

repetition ratings – low, medium and high; subsequent health examinations showed that 

repetition was associated with elevated risk of WMSDs of the hand and wrist (Latko et 

al. 1999). These three job categories were independent variable studying this study.  
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The dependent variables in this study were angle, angular velocity, and angular 

acceleration of the wrist, and the tendon excursions of FDS (flexor digitorum 

superficialis) and FDP (flexor digitorum profundus) tendons.  To investigate the 

distribution of the wrist angle, velocity, and acceleration over the entire job period, a 

probability histogram was built based on the observation data.  Tendon excursions were 

calculated by using the regression equations suggested by (Armstrong and Chaffin 

1978).    Normalized tendon excursion was defined as cumulative tendon excursion for 

one hour. The cumulative tendon excursions were computed by adding the absolute 

difference of tendon excursions during each time intervals.  The calculated cumulative 

tendon excursions were normalized as meters per hour so that tendon excursions of 

different jobs can be compared.  The cumulative tendon excursion can be obtained 

using eq. (5.4).  Since wrist angles, θi, were estimated at equal intervals, tendon 

excursion was computed: 

 

 (5.5) 
 

Once we calculated all dependent variables, one-way ANOVA was performed to 

test the effects of risk levels of MSDs on the dependent variables.   
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5.3 RESULTS 

Histograms of the wrist angles, angular velocities, and angular accelerations for 

high, medium, and low risk jobs are shown in Figure 5.1 - Figure 5.3.  The low-risk job 

shows a significantly larger mode at neutral posture (0º) than do the medium- and high-

risk jobs; however, probability of F/E (flexion-extension) angle at neutral posture was 

higher in the high risk job than in the medium risk job.  The probability of neutral F/E 

posture (0º) was 34%, 5% and 16% for low, medium, and high risk jobs, respectively.  

The Probability of neutral R/U (radial/ulnar deviation) posture angle was 53%, 26%, and 

16% for low-, medium-, and high-risk jobs.  For both F/E and R/U angles, the probability 

at neutral posture was not significantly different over the risk levels ( p=0.114 for F/E, 

p=0.115 for R/U).     

The probabilities in zero velocity and zero acceleration for both F/E and R/U 

increased significantly as the risk level decreased.  For the angular velocity, the 

probability at the neutral velocity was highest in the low-risk job and lowest in the high-

risk job (p=0.002).  The same results could be found for R/U angular velocity (p=0.012), 

F/E angular acceleration (p=0.010), and R/U angular acceleration (p=0.017).   

Averages and standard deviations of dependent variables (mean of wrist angle, 

wrist angular velocity, and wrist angular acceleration and normalized tendon excursions 

of FDP and FDS) are shown in Table 5.2.  Comparisons of mean wrist angles, velocities, 

and accelerations for three different risk jobs are shown in Figure 5.4.  The mean wrist 

angular velocities and accelerations in F/E movements were the highest in high-risk jobs 

(velocity: 51.4 ± 20.0º/s, acceleration: 338.0 ± 157.8º/s2) and the lowest in low-risk jobs 

(velocity: 7.9 ± 3.5º/s, acceleration: 60.4 ± 29.1º/s2) (p=0.014, 0.029 for velocity and 

acceleration, respectively), which corresponded to the risk of MSDs.  Mean F/E angles 

(high-risk:19.2 ± 8.9º/s, mid-risk: 25.9 ± 4.6º/s, low-risk: 8.9 ± 4.0º/s) were significantly 
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different (p=0.025) across risk groups, but the difference did not correspond to the risk of 

MSDs.  The mean wrist angles (high-risk: 12.3 ± 1.8º, mid-risk: 8.3 ± 1.4º, low-risk: 3.9 ± 

3.1º), mean wrist angular velocities(high-risk: 19.1 ± 7.9º/s, mid-risk: 12.7 ± 3.3º/s, low-

risk: 2.5 ± 1.4º/s), and mean wrist angular accelerations (high-risk: 118.4 ± 49.6º/s2, 

med-risk: 87.0 ± 19.7º/s2, low-risk: 18.7 ± 11.5º/s2) in radial-ulnar movements were 

significantly different (p=0.005, 0.016, 0.020 for angle, velocity, and acceleration, 

respectively) for three risk groups, and these values corresponded to the risk of MSDs.  

None of maximums, minimums, 95%ile values, 5%ile values, and medians significantly 

differentiated the risk level (p>0.05), regardless of the type of variables (angle, velocity, 

and acceleration).   

Tendon excursions of both FDP (high-risk: 42.9 ± 19.3 m/hr, mid-risk: 18.9 ± 8.9 

m/hr, low-risk: 5.7 ± 2.7 m/hr) and FDS (high-risk: 49.7 ± 21.9 m/hr, mid-risk: 22.3 ± 10.1 

m/hr, low-risk: 6.7 ± 3.2 m/hr) were significantly different across three risk groups 

(p=0.023 and 0.021 for FDP and FDS tendon excursions respectively) and corresponded 

well to the risk of MSDs as shown in Figure 5.5.   
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(a) Wrist flexion-extension angle 

 

 
 

(b) Wrist radial-ulnar deviation angle 

 
 
Figure 5.1 Histograms of F/E (flexion/extension) and R/U (radial/ulnar) deviation 
wrist angles for high-, medium-, and low-risk job.   
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(a) Wrist flexion-extension angular velocity 

 

 
 

(b) Wrist radial-ulnar deviation angular velocity 

 
Figure 5.2 Histograms of F/E (flexion/extension) and R/U (radial/ulnar) deviation 
wrist angular velocities for high-, medium-, and low-risk job. 
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(a) Wrist flexion-extension angular acceleration 

 

 
 

(b) Wrist radial-ulnar deviation angular acceleration 

 
Figure 5.3 Histograms of F/E (flexion/extension) and R/U (radial/ulnar) deviation 
wrist angular accelerations for high-, medium-, and low-risk job. 
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Table 5.2 Averages and standard deviations of dependent variables (mean, 
probability at neutral value of wrist angle, angular velocity and angular 
acceleration, and normalized tendon excursion) 

 

* significantly different (p<0.05) 

Angle Velocity Acceleration Angle Velocity Acceleration

Mean (º) (º/s) (º/s2) (º) (º/s) (º/s2)
High risk job 19.2±8.9 51.4±20.0* 338.0±157.8* 12.3±1.8* 19.1±7.9* 118.4±49.6*

Mid risk job 25.9±4.6 25.5±9.3* 155.5±44.8* 8.3±1.4* 12.7±3.3* 87.0±19.7*

Low risk job 8.9±4.0 7.9±3.5* 60.4±29.1* 3.9±3.1* 2.5±1.4* 18.7±11.5*

Probability at θ = 0º θ' = 0º/s θ" = 0º/s2 θ = 0º θ' = 0º/s θ" = 0º/s2
High risk job 16.3±15.8 35.5±10.5* 25.1±17.2* 15.8±12.8* 51.3±18.0* 35.0±24.3*
Mid risk job 5.0±3.6 57.0±14.2* 40.3±16.4* 26.0±6.0* 66.3±10.2* 49.7±12.4*
Low risk job 34.3±19.6 85.3±5.5* 75.7±10.0* 53.3±34.3* 93.3±2.1* 86.7±5.1*

FDP FDS
High risk job 42.9±19.3* 49.7±21.9* - - - -

Mid risk job 18.9±8.9* 22.3±10.1* - - - -

Low risk job 5.7±2.7* 6.7±3.2* - - - -

  Normalized Tendon Excursion ( m/hr)

MSD risk
level

Flexion/Extension Radial/Ulnar Deviation
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(a) Mean wrist angles of F/E and radial-ulnar movements. 

 

 

 

 

 

 

 

 
(b) Mean wrist angular velocities of F/E and radial-ulnar movements. 

 

 

 

 

 

 

 

(c) Mean wrist angular accelerations of F/E and radial-ulnar movements. 

 
Figure 5.4 Mean wrist angles, angular velocities, and angular accelerations for 
high-risk, medium-risk, and low-risk jobs. 
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Figure 5.5 Normalized cumulative tendon excursions of FDP and FDS tendons for 
high-risk, medium-risk, and low-risk jobs. 
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5.4 DISCUSSION 

 

Marras and Schoenmarklin (1993) found that the mean, maximum, minimum, and 

differences of the wrist velocity and acceleration variables significantly differentiated 

MSD risk levels, but that wrist angle variable did not.  Our study indicated that only mean 

angular velocity and mean angular acceleration of the wrist movements in both F/E and 

R/U were significantly different across the risk groups and corresponded to the risk of 

MSDs.  These discrepancies can be explained by several reasons.  First, Marras’s study 

dichotomized the risk of MSDs as high risk and low risk, while we classified the risk of 

MSDs as high-, medium-, and low-risk jobs.  This difference in classification of the jobs 

may have large effects on the results of ANOVA tests, as it changes degrees of freedom 

of the analysis.  Modeling more levels of an exposure tends to decrease the probability 

of significance (Hagberg 1992).  However, examination of the intermediate level of the 

risk helps to quantify exposures more precisely.  Secondly, the discrepancies might be 

caused by the characteristics of the jobs examined.  For example, two medium-risk jobs 

showed higher maximum velocity (180 º/s each) than two high-risk jobs (160 º/s and 120 

º/s), but the medium-risk jobs reached their maximum velocities much less frequently 

(2.7 times/minute and 0.38 times/minute, respectively) than the high-risk jobs did (17.1 

times/minute and 13.7 times/minute).   A job that has the largest maximum (or the 

smallest minimum) velocity or acceleration for a moment may not entail high velocity or 

acceleration for the rest of the time, because the maximum and minimum values can be 

obtained for a very short period during an entire job.  Thirdly, the experimental methods 

were different.  Marras and Schoenmarklin used an electromechanical goniometer to 

measure wrist angles directly, while we chose a video-based observational method.  The 

observational method we used in this study may have missed some of dynamic 
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characteristics at high frequency, because observation frequency was lower than that of 

direct measurement.  However, it is not possible to use goniometer to retrospectively 

analyzed video recordings.    

Comparison of mean velocities and accelerations between Marras’ study and this 

study gives more quantitative information.  In Marras’ study, mean velocities in F/E 

direction were 42.2 ± 11.7º/s and 28.7 ± 7.6º/s for high-risk and low-risk jobs, 

respectively.  In this study, mean velocities in F/E direction were 51.4 ± 20.0º/s for high-

risk job, 25.5 ± 9.3º/s for medium-risk jobs, and 7.9 ± 3.5º/s for low-risk jobs.  For 

acceleration in F/E direction, mean acceleration of high-risk and low-risk jobs was 824 ± 

266º/s2 and 494 ± 156º/s2 in Marras’ study.  In our study, mean accelerations in F/E 

direction were 338 ± 158º/s2, 156 ± 45º/s2, and 60 ± 29º/s2 for high-, medium-, and low-

risk jobs, respectively.  Marras’ study shows higher values, especially in acceleration.  

These differences seem to be caused by the difference in job classification and the 

measurement method.  In the time-based analysis, a 0.25-second interval was used for 

this study.  According to the Nyquist-Shannon sampling theorem, this sampling rate 

(4Hz) can completely capture the motion up to 2 Hz without aliasing (Shannon 1949).  

Even though the peak frequency component ranges from 0.48 to 2.47 Hz in our daily 

living activities (Mann, Werner et al. 1989), there might have been the wrist motion at 

high frequency which our method could not capture.   

Normalized cumulative tendon excursion data are comparable to the data from 

Moore et al. (Moore, Wells et al. 1991).  They calculated tendon excursions of FDP and 

FDS using the same model (Armstrong and Chaffin 1978) we used, and averaged over 

FDP and FDS tendons of index and middle fingers.  In their study, average normalized 

cumulative tendon excursions for low repetition jobs were 19.1 m/hr, and those for high 

repetition jobs were 73.2 m/hr.  In our study, average normalized cumulative tendon 
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excursions were 46.3 m/hr for high-risk jobs, 20.6 m/hr for medium-risk job, and 6.2 m/hr 

for low-risk jobs.  The differences between these two studies can be explained by (1) the 

sampling frequency as mentioned above, and (2) inclusion of finger motion.  Moore et al. 

computed tendon excursion not only by the wrist motions but also by the index and 

middle finger motions, and thus resulted in higher estimated tendon excursions.     

The wrist angles did not differentiate the risk of MSDs correctly as shown in 

Figure 5.4.  In our study, some high-risk jobs such as band welding or handle assembly 

jobs included smaller F/E (40º for each) and R/U (25º and 16º, respectively) angles than 

some of the medium-risk (F/E:75º~95º, R/U: 35º~45º ) and low-risk jobs (F/E: 30º~90º, 

R/U: 15º~30º) as shown in Table 5.3.  But repetition levels of these jobs (8.5 and 8.8 

repetition ratings respectively) were notably higher than other medium-risk (repetition 

rating: 5.3~6.4) or low-risk jobs (repetition rating: 1.6~2.9).  Also, in some of the medium-

risk (office panel upholstery, small drum cover glue, spark plug transfer) and low-risk 

jobs (NC machine operation), the repetition level was not as high as in high-risk jobs, but 

the range of motions was larger than in high-risk jobs for some time intervals (Table 5.3).  

Figure 5.6 shows the plot of mean velocities vs. maximum ROMs (range of motions) in 

F/E and R/U wrist motions.   Comparing medium- and high-risk jobs, the maximum ROM 

decreased as mean velocity increased.  Workers might not have enough time to achieve 

extreme ROMs at high repetition, whereas they could use greater ROMs at medium 

repetition.  At low repetition jobs, workers seems not have used their hand much, and 

consequently did not have exposure to high ROMs.  Therefore, the magnitude of angles 

is not effective to indicate the risk level of MSDs.  This observation emphasizes the 

importance of the role of frequency components in velocity and acceleration which 

differentiated the risk of MSDs significantly.     
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Table 5.3.  Ranges of motion in F/E and R/U movement of the wrist for the jobs 
examined in this study 

 

 

 

 

 

 

 

 

Figure 5.6  Plot of mean velocity vs. maximum ROM (range of motion) in F/E and 
R/U wrist motion 
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Consideration of biomechanical aspects of the dependent variables that we used 

in this study give more insight into the pathomechanism of MSDs.  Wrist angle affects 

the resultant force on flexor tendons (Armstrong and Chaffin 1979).  Increase of 

resultant force causes increase of friction force on the tendon, because the normal force 

on the tendon increases.  The histogram of the wrist angle (Figure 5.1) can be used to 

investigate the effect of the static posture on MSDs.  Wrist angular velocity is closely 

related to tendon excursion at the wrist as shown by Eq. (5.4).  Therefore, the velocity 

indicates how much the tendon is exposed to shear force and friction force during the job 

period.  Wrist angular acceleration is related to the tension force exerted on the tendon.  

According to the model by Schoenmarklin and Marras (1990), tension force is 

determined by the curvature of the wrist, mass and inertia of the hand, distance from the 

wrist to the center of the hand, and the angular acceleration of the wrist joint.  As the 

tension force is proportional to the moment inertia of the hand and angular acceleration, 

the higher repetition jobs (which has higher acceleration) would require more tendon 

loads than the lower repetition jobs.  Also, as tension force is proportional to resultant 

force according to the biomechanical wrist model by Armstrong (1979), wrist angular 

acceleration affects the resultant force eventually.   

 

5.5 LIMITATIONS AND FUTURE RESEARCH 

 

There are some limitations of this study.  Time-based analysis enables the user 

to analyze the job repeatedly without interference with workers’ activities.  However, the 

resolution of the video and the parallax by the camera angle can affect the results (Lau, 

2007).  Using multiple synchronized cameras can be an effective solution for the parallax 

problem.  Another limitation of using the time-based analysis is the sampling rate.  As 
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the time-based analysis requires a large amount of time, the proper sampling rate should 

be chosen to avoid aliasing effect.   

We observed the wrist angles, but for more detailed analysis, the finger 

movements need to be considered as well.  The finger movements cannot be easily 

measured without using special equipment such as an electromechanical goniometer or 

position markers.  An alternative approach is to develop models using laboratory data 

that can be used to predict MCP (metacarpophalangeal) , PIP (proximal 

interphalangeal), and DIP (distal interphalangeal) joint angles of the hand (Choi and 

Armstrong 2007).  Such models can then be used to construct motion sequences based 

on descriptions of work elements and work objects.  For example, a task might involve 

reaching for a cylindrical part 25 mm in diameter and positioning it in a box for shipping.  

The work elements for this task can be predicted using a predetermined time system 

such as MTM: Reach, grasp, move, and position (e.g., R12B, G1C1, M12B, P1S, RL1).  

The MCP, PIP and DIP joint angles, in “reach” and “grasp” of the part, can be predicted 

from previous laboratory simulations.  During the “move” and “position” the finger 

position is fixed.  During the release the inter-digit angles decrease slightly, but this is 

not significant.  The hand then returns to the resting position.  Future work will entail 

conducting a series of laboratory simulations to populate a database with joint angles for 

generic tasks. 
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5.6 CONCLUSIONS 

 

 Mean wrist angular velocity and mean wrist angular acceleration differentiated the 

risk of MSDs significantly and correctly, while mean wrist angle did not. 

 Normalized cumulative tendon excursion of both FDP and FDS tendons significantly 

differentiated the risk levels of MSDs. 

 Frequency components play a more important role in magnifying and lessening the 

velocity and acceleration than does magnitude of angle. 

 Observational method can be used to assess the risk level with minimum equipment 

and without interference with worker’s activities, but the sampling rate should be 

carefully chosen to avoid aliasing. 
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CHAPTER 6  

CONCLUSIONS  

The overall purpose of this work was to develop a 3-D kinematic model of the 

hand that can predict hand posture and hand space envelope, based on a contact 

algorithm and proper implementation of finger movements.  In addition, the association 

between tendon excursion and the risk of MSDs was examined.    

 

6.1 SUMMARY OF MAJOR FINDINGS AND DISCUSSION 

 

1) A 3-dimensional kinematic model of the hand to predict hand posture was developed 

using a contact algorithm.  The model gave a reasonable prediction of hand posture for 

both power grip (R2 = 0.76) and pulp pinch grip (R2 = 0.88) (Chapter 2). 

 

The 3-D kinematic model developed in this study was found to reasonably predict 

the hand posture for both power and pinch grip.  Application of the “variable rotation 

algorithm,” where finger joints were rotated at the observation-based rate, improved the 

accuracy of the model by 20% on average, compared to application of the “constant 

rotation algorithm,” where finger joints were rotated at constant rate.  Only the power grip 

posture has been predicted in the earlier model, by modeling finger movements with 

flexion only (Buchholz and Armstrong 1992; Endo and Kanai 2006; Miyata, Kouchi et al. 

2006).  The optimization-based model was unable to predict the posture of thumb and 
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pinch grip posture, because its objective function was not applicable to thumb and pinch 

grip (Lee and Zhang 2005).  Pinch grip posture and thumb posture in both power and 

pinch grip were predicted in this study by applying a “variable rotation algorithm.”  The 

sensitivity study by simulation revealed that finger posture is more sensitive to object 

size (sensitivity measure = 47.8), orientation (7.4), and location (6.9) than to hand size 

(4.7) and skin deformation (1.7).    

The predicted posture can be used as the basic data to predict hand strength.  

Many kinetic models (Chao, Opgrande et al. 1976; Lee and Rim 1990; Valero-Cuevas, 

Zajac et al. 1998; Sancho-Bru, Perez-Gonzalez et al. 2003) have been developed to 

predict the maximum force in certain grasps, but these studies did not include the 

validation of hand posture.  Strength prediction without sufficient validation of hand 

posture may lead to inaccurate results, because muscle tension is significantly affected 

by the muscle length in isometric exertion.  

 

2) Hand space envelopes during a hose placement task were estimated using the 

kinematic model of the hand.  The simulation results show good agreement with 

measured data with an average 17% underestimation of sectional areas.  The simulated 

space envelopes were affected by grip type (pinch grip requires 72% more sectional 

areas than power grip), method (rotation method requires 26% more sectional areas 

than straight method), and hand size (95% male hand requires 44% more sectional 

areas than 5% female hand) (Chapter 3).   

 

The hand space envelope is useful information for designing the work place and 

work objects so that minimum interference with obstructions occur.  The hand space 
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envelope is affected by hand size and grip type, because these change the hand posture 

when grasping work objects.  The space envelope is also affected by behavioral 

characteristics: for example, amplitude of rotation angle and frequency of rotation in the 

hose placement task.  In this task, the behavioral aspect can be influenced by the 

required force, lubrication condition, and hand strength.  The more force that is required, 

the larger the amplitude of rotation angle, and the more frequently rotation occurs.  

Therefore, consideration of biomechanical factors during certain manual tasks will be 

helpful to model behavioral features as accurately as possible.   

 

3) Finger movements during grasping differently sized objects were characterized 

quantitatively using spatial and temporal variables, which can be applied to the model 

that predicts hand posture using a contact algorithm (Chapter 4).   

 

Object size changes both spatial and temporal variables during reaching and 

grasping movements.  Power grasp uses all joints of four fingers and flexion-extension of 

MCP and CMC joints of the thumb to adjust the hand to different object sizes.  Pinch 

grasp uses MCP joints of four fingers and thumb CMC joints to adjust the hand to 

different object sizes.  During grasping movements, humans change the velocities of 

joints as the object size changes, which reduces the difference in time to complete 

grasping.  These spatial and temporal variables can characterize the finger movement 

during reaching and grasping.  Linear curve fitting with measured spatial and temporal 

variables defined in this study was able to explain 86% - 93% of the variability of 

velocities on average.    

 



143 

4) The normalized cumulative tendon excursion of both FDP (flexor digitorum profundus) 

and FDS (flexor digitorum superficialis) tendons significantly differentiated the risk levels 

of MSDs (musculoskeletal disorders) (Chapter 5). 

 

Mean wrist angular velocity and mean wrist angular acceleration differentiated 

the risk of MSDs significantly and correctly, while mean wrist angle did not.  This was 

because frequency components play a more important role in magnifying and lessening 

the velocity and acceleration than does magnitude of angle.  Cumulative tendon 

excursion is closely related to the angular velocity components, and it also captures not 

only the peak wrist angle and frequency but also the duration of the job, which should be 

considered when assessing a job.  The cumulative tendon excursion gives more 

physically meaningful values than velocity or acceleration component alone, because it 

is related to friction and wear that may contribute to MSDs. 
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6.2 DISCUSSION OF MAJOR FINDINGS 

 

The goal of this study was to develop a tool that can be used for ergonomics 

analyses.  To illustrate the use of the outcomes of this research, two job exemplars were 

analyzed.   

6.2.1 Hose placement job 

In this job, the workers are assumed to be trying to install hose onto the flange of 

the engine in an automobile plant.  The worker starts with the hand in a resting posture 

then reaches for and grasps the hose.  Then (s)he places the hose onto the flange using 

the rotation method (Chapter 3).  There exists an obstruction at 40 mm in the medial 

direction from the center of the flange on which the hose is placed.  Simulation of this job 

was performed for two workers, 5% female and 95% male hand sizes (Garrett 1971), 

two different hose sizes (D:25 mm and D:60 mm), and two grip types ( power grip and 

pinch grip ).   

 

 Hand posture 

 

Predicted hand postures for the above conditions are shown in  Table 6.1.  The 

results were in good agreement with the sensitivity study in Chapter 2.  Increasing object 

size decreased joint angles and increasing hand size increased joint angles.  Figure 6.1 

shows the predicted hand postures for two different hand sizes (5% female and 95% 

male), object sizes (D: 25 mm and D: 60 mm), and grip types (power grip and pinch 

grip).   
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 Table 6.1  Predicted hand postures (°) for two different hand sizes (5% female and 
95% male), object sizes (D: 25 mm and D: 60 mm), and grip types (power grip and 
pinch grip)

MCP PIP DIP MCP PIP DIP MCP PIP DIP

5% Female 25 mm Power 24 48 60 49 93 43 61 84 51
95% Male 25 mm Power 42 96 46 80 89 49 83 84 50

5% Female 60 mm Power 20 21 8 31 39 34 40 47 28
95% Male 60 mm Power 27 30 52 53 65 39 63 56 37

5% Female 25 mm Pinch 48 5 25 51 19 17 49 27 7
95% Male 25 mm Pinch 67 0 18 78 1 16 69 19 18

MCP PIP DIP IP MCP
FE

MCP
AA

CMC
FE

CMC
AA

CMC
PS

5% Female 25 mm Power 65 68 42 53 41 5 37 7 -91
95% Male 25 mm Power 74 77 46 51 48 -3 36 33 -109

5% Female 60 mm Power 50 28 34 43 32 11 21 8 -86
95% Male 60 mm Power 54 39 45 49 40 2 20 32 -107

5% Female 25 mm Pinch 55 6 25 10 19 11 38 6 -99
95% Male 25 mm Pinch 74 11 22 9 13 6 35 26 -111

Hand Size Object Size Grip Type

Hand Size Object Size Grip Type

Index Middle Ring

Little Thumb
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Figure 6.1  Predicted postures for two different hand sizes (5% female and 95% 
male), object sizes (D: 25 mm and D: 60 mm), and grip types (power grip and pinch 
grip) 
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 Hand space envelope 

 

Hand space envelopes were estimated for the above conditions based on 

predicted postures.  As observed in Chapter 3, increasing hand size was associated with 

an increasing hand space envelope over all ranges (Figure 6.2).  Comparison of Figure 

6.2 and Figure 6.3 shows the effect of object size on grasp envelope.  Figure 6.4 shows 

the hand space envelope when using the pulp pinch grip.  As observed in Chapter 3, the 

pinch grip requires less space in the medial direction than the power grip.  The 

obstruction, located 40 mm in the medial direction from the center of the flange, may 

force the workers to perform the task without interference or to change the grip type.  

With the power grip (Figure 6.2), only workers whose hand sizes are less than a 5% 

female hand size can perform the task, and even then, only barely.  But there is a high 

possibility that the hand will interfere with the obstruction during the task if the worker 

moves the hand in the medial – lateral direction to increase the push force.   With a hose 

of 60 mm diameter, almost no one can perform this task, because the hand interferes 

with the obstruction at least 5 mm.  Then some workers with small hand size may 

change the hose placement method from the rotation method to the straight method to 

minimize the space taken up by the hand.  But the straight method requires more axial 

force than rotation method, and thus the workers will have more difficulty with this job.  

Use of pinch grip will be the best choice in this situation to avoid the obstruction (Figure 

6.4).  The pinch grip enables workers with a 95% male hand size to perform the task 

without interference with the obstruction.  However, use of pinch grip decreases the grip 

strength, which will decrease the friction force that is needed to push the hose onto the 

flange.  Decreased hand strength may lead to high risk on the job because worker will 

have more chance to slip the grip object. 
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              (a) Power grip, 5% female, 25 mm hose 

 

 

 

 

 

 

 

 

 

 

                (b) Power grip, 95% male, 25 mm hose 

 

Figure 6.2  Hand space envelope for 5% female and 95% male hand sizes with 25 
mm hose in power grip 
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              (a) Power grip, 5% female, 60 mm hose 

 

 

 

 

 

 

 

 

 

 

 

               (b) Power grip, 95% male, 60 mm hose 

 

Figure 6.3  Hand space envelope for 5% female and 95% male hand sizes with 60 
mm hose in power grip 
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                  (a) Pinch grip, 5% female, 25 mm hose 

 

 

 

 

 

 

 

 

 

 

 

                   (b) Pinch grip, 95% male, 25 mm hose 

 
Figure 6.4  Hand space envelope for 5% female and 95% male hand sizes with 25 
mm hose in pinch grip 

 

Obstruction
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Table 6.2  Sectional areas along the axis of the hose 
 

 

 

 

 

5% female 95% male 5% female 95% male 5% female 95% male

0-25 2169 2317 1985 3313 2092 2711

25-50 5283 6170 3127 5367 11006 20881

50-75 6842 8674 10004 8581 13154 24252

75-100 7258 12200 11118 12731 13613 24626

100-125 5809 11619 11130 16335 11711 23784

125-150 772 7437 8412 16977 0 2115

Average 4689 8070 7629 10551 8596 16395

Pinch (mm2)

25 mm hose

Distance
from the
end of

the hand
(mm)

Power (mm2)

25 mm hose

Power (mm2)

60 mm hose
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 Tendon excursion during grasping 

 

Based on the findings, cumulative tendon excursion can be estimated using the 

model.  To calculate the cumulative tendon excursions, we need to know the finger joint 

angles at rest posture, at maximum opening, and at final grasping.  The average finger 

joint angles at the rest posture are shown in Table 6.3.  Open angles can be obtained 

using the Table 4.3 and Table 4.4 in Chapter 4.  To calculate tendon displacement at 

finger joints, the empirical equations by Armstrong et al. (1978) were used.  Cumulative 

tendon excursion was calculated by the following equation.  

 

Cumulative tendon excursion = |TDopen – TDinitial | +| TDfinal-TDopen|          (6.1) 

   , where   TD : Tendon Displacement 

     TDinitial : Tendon Displacement at rest posture 

     TDopen : Tendon Displacement at open posture 

     TDfinal : Tendon Displacement at final posture 

 

Cumulative tendon excursion for the various conditions are shown in Table 6.4.  

On average, power grasping needs almost two times more tendon excursions than pinch 

grasping.  For the same object size with same grip type, tendon excursions of 95% male 

were 30% larger than those of 5% female.  As the object size increased,  the tendon 

excursion decreased.   

The workers with 5% female hand size requires smaller tendon excursion, 

because (1)  the radius of curvature at each joint was smaller than 95% male, and (2) 

joint angles at the final posture were significantly larger than 95% male.  It is also 
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expected that 5% female has smaller tendon excursion at the wrist because the 

thickness of 5% female wrist is smaller.  However, the normal supporting force acting on 

the tendon is inversely proportional to the thickness of the wrist (Armstrong and Chaffin 

1979).  The trade-off between tendon excursion and the normal force on the tendon 

needs to be investigated.   

Pinch grasping requires much smaller tendon excursion than power grasping.  

But the reduction of grip strength in pinch grip may cause a larger force on the tendon 

and muscles.   

 
Table 6.3  Averages and standard deviations of finger joint angles (°) at rest 
posture (16 subjects, 168 trials) 
 

    

 

 

 
 
 Table 6.4  Cumulative tendon excursions for FDP and FDS tendons (mm) 

 

MCP PIP DIP
Index 33.6±10.2 33.4±10.3 13.6±5.9

Middle 34.0±12.9 35.7±12.2 13.2±8.6
Ring 29.4±9.5 39.0±12.9 15.1±7.6
Little 29.1±7.5 33.8±11.9 19.5±10.3

Index Middle Ring Little Average
5% Female 25 mm Power 5.5 13.4 12.3 10.3 10.4
95% Male 25 mm Power 10.7 13.6 14.0 12.1 12.6

5% Female 60 mm Power 2.8 7.9 8.2 6.7 6.4
95% Male 60 mm Power 4.3 10.1 11.1 8.3 8.4

5% Female 25 mm Pinch 4.5 4.0 4.5 5.5 4.7
95% Male 25 mm Pinch 6.6 7.7 5.9 7.2 6.8

Index Middle Ring Little Average
5% Female 25 mm Power 6.0 13.6 12.6 10.5 10.7
95% Male 25 mm Power 10.3 14.1 14.6 12.3 12.8

5% Female 60 mm Power 2.8 8.7 8.6 7.3 6.8
95% Male 60 mm Power 5.0 10.5 11.7 8.9 9.0

5% Female 25 mm Pinch 4.6 4.2 4.4 5.8 4.7
95% Male 25 mm Pinch 6.7 8.0 6.4 7.7 7.2

FDS

FDP

Hand Size Object Size Grip Type

Hand Size Object Size Grip Type
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6.2.2 Insulator placement 

The second example is ‘insulator placement’ job in the spark plug manufacturing 

plant.  The video clip of this job was obtained from the study by Latko et al. (Latko, 

Armstrong et al. 1997; Latko, Armstrong et al. 1999).  The objective of this job was to put 

the insulators on the pins which are moving in the lateral direction.  The worker 

approached and grasped multiple insulators from the box, moved the insulators about 20 

cm forward, and put those insulators on the pins.  Five thousand insulators were placed 

on the pins every hour.  Figure 6.5 shows the screenshots of the job.  For analysis of the 

job, we assumed that the worker’s hand size was 50% female and the distance between 

the pins was approximately 7 cm based on our observation of the video.   

 

 

Figure 6.5  Insulator placement job.  The worker grasped the insulators and put 
them on the pins moving in lateral direction 

 

 Posture prediction 

 

As the model could not accommodate multiple objects, we assumed a larger 

object size can represent multiple objects.  The object shape was assumed to be a 

cylindrical shape and its diameter was assumed to be 25 mm.  The object was placed so 
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that the long axis of the object was perpendicular to the palm.   The predicted posture is 

shown in Figure 6.6.  As the contacts were detected for only the index and middle finger, 

the ring and little fingers were flexed until they made contact with the palm or reached 

the maximum range of motions of each joint.   

 

 

 

 

 

 

 

 

Figure 6.6  Predicted posture by the 3-D kinematic model during grasping an 
insulator. 

 

 
Table 6.5  Joint angles(°) in predicted posture by the 3-D kinematic model 

 

 

 

 

 

 

 

 

 

MCP PIP DIP
Index 64 2 24
Middle 58 14 24
Ring 90 81 56
Little 90 80 64

IP MCPFE MCPAA
10 18 9

CMCFE CMCAA CMCPS
38 12 -103

Thumb
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 Space envelope 

 

The space envelope was calculated from the predicted posture.  As the hand 

moved not only in the axial direction of the pins but also in other directions slightly, we 

assumed 10º rotations as we did in Chapter 3.   

Figure 6.7 shows the space envelope along the axis of the insulator.  As the 

worker grasped the insulator using three fingers (thumb, index, and middle fingers), the 

least space was required at 0~25 mm range.  As the distance from the end of the finger 

tips becomes larger, more space was required, because of the palm areas.  The 

distance between the pins was assumed to be 7 cm.  Pins on either side were regarded 

as obstructions.  The maximum lateral dimension is very close to the obstruction, which 

may interfere with the hand during the task.   But the placement of the insulator on the 

pins does not require larger translation in the axial direction.  If we assume that the hand 

moved about 3 cm in axial direction to place the insulator on the pins, we need only look 

at the space envelope in the 0~30 mm range.  The predicted space envelope shows that 

this job does not have interference from obstructions at 0~50mm range.  Therefore, this 

task can be performed without any interference from obstructions.  
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Figure 6.7  Hand space envelope during ‘insulate glaze’ job.   

 

 

 

 

Obstruction
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 Tendon excursion 

 

The cumulative tendon excursion at the wrist for this job was calculated in 

Chapter 5.  Now we can estimate tendon excursions at finger joints, based on the 

predicted hand posture.  Figure 6.8 shows that the worker grasped the insulators twice 

during this time frame.   

 

Figure 6.8  Time-based analysis of the wrist angle during ‘insulate glaze’ job.  The 
worker grasped the insulators at the time marked by two circles.  

 

 

 

Grasping 
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Table 6.6 shows the estimated cumulative tendon excursions of FDP and FDS 

tendons during the ‘insulate glaze’ job.  The tendon excursion by the wrist movement is 

larger than the tendon excursion at the finger joints.  However, the tendon excursions at 

some fingers is about 52 to 56 % of the tendon excursions at the wrist.  We simplified 

the grasping procedure to be able to simulate the final posture, but the worker grasped 

multiple objects and used the fingers while placing the insulators on the pins.  Inclusion 

of all these finger movements will increase tendon excursions at the fingers.  Analysis of 

tendon excursion without observing finger movement may not correctly estimate total 

tendon excursions.  Therefore, it is necessary to investigate the tendon excursions by 

the finger movements as well as by the wrist movements to obtain more accurate 

results. 

 
Table 6.6  Cumulative tendon excursions during the observed time frame (mm) 

 

 

 

MCP PIP DIP Sum Wrist
Index 9.8 6.0 0.8 16.6 51.9
Middle 11.4 4.2 1.0 16.6 -
Ring 15.1 11.8 2.2 29.1 -
Little 12.6 13.1 2.4 28.1 -

MCP PIP DIP Sum Wrist
Index 11.6 4.7 1.4 17.7 59.1
Middle 13.5 3.3 1.7 18.5 -
Ring 17.9 9.2 3.9 31.1 -
Little 14.9 10.3 4.4 29.5 -

FDS

FDP
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6.3 SUGGESTIONS FOR FUTURE RESEARCH 

6.3.1 Kinematics model 

To predict various hand postures such as tip pinch grip or two or three finger 

pinch grips, the model will require flexion-extension and pronation-supination of 

the fourth and fifth metacarpal phalanges about long axis of the third metacarpal 

phalanx.  

  

The kinematic structure of our hand model is not perfectly congruent with the 

anatomic structure of the hand.  First, four metacarpals in the palm are placed in parallel, 

but they were modeled as four bones spreading from the wrist.  Many kinematic models 

(Buchholz and Armstrong 1992; Lee and Zhang 2005; Abdel-Malek, Yang et al. 2006) 

used the same kinematic structure as this model.  Such kinematic structure enables the 

model to have scalability based on the external hand size such as hand length and hand 

breath, because the model used anthropometric data by Buchholz (1992) who modeled 

hand anthropometry as a function of external hand measurement.  Second, the CMC 

joints of the second and fourth digits were not modeled in this study.  Those joints 

enable the hand to change its shape to make the transverse arch during tip pinch 

posture or in grasping spherical objects.  Savescu et al.(2005) added two more degrees 

of freedom in their hand model to represent the transverse arch of the hand.  This can 

lead to better prediction of hand posture during tip pinch or grasping a spherical shaped 

object, but doesn’t seem to have much effect on the hand posture during grasping 

cylindrical objects.  To predict various hand postures such as tip pinch grip or two or 

three finger pinch grips, a model including more degrees of freedom will be necessary.   
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Hand posture predictions might be improved by using a real hand shapes instead 

of simplified description of hand segments with truncated cones. 

 

For simple and reasonable representation of the hand shape, hand segments 

were modeled as truncated cones.  These simplified depiction of the hand shape is not 

perfectly congruent with the real hand shapes, particularly in the thenar palm area.  The 

model can be improved by importing the scanned surface data of the hand as an array 

of points.  The contact algorithm can still be used with the imported surface data to 

predict hand postures.  Also, it would improve aesthetics and fidelity of the model. 

 

Hand posture during grasping unconstrained object can be predicted by 

modification of the code of hand model using a forward kinematics. 

 

Subjects in our experiments grasped space-fixed and vertically located objects, 

and the model was developed based on these data.   If the objects are not fixed in space 

or their orientation are in other directions, the resultant hand postures can be different 

from our results.  To predict the hand posture more accurately in such situations, 

modification of the hand model is required. Using a forward kinematics based on the 

information of contact points between hand segments and object and the finger joint 

angle profile, the movement direction of object can be calculated.  The object will be 

moved in calculated direction until it meets another constraint such as the palm or 

opposing thumb. It is also needed to perform the experiments to see how removal of 

object constraints affects predicted hand postures. Grasping a non-constrained object 

can also change the object location and orientation with respect to the hand, which 

ultimately influence the grip posture. 
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A study should be performed to determine how well the model predicts hand 

postures in other shapes of objects. 

 

Only cylindrical objects were used to validate the model.  Other object shapes  

can be used in this contact-based model if the surface information can be imported into 

the model as an array of points.  Current model has a function that can predict the hand 

postures during grasping rectangular and ellipsoidal objects, but they have not been 

validated through experiments.  More experimental studies to validate the use of other 

object shapes will improve the model’s application to broader situations. 

 

Dynamic space envelope, which is the space required during reach and grasp, can 

be predicted by use of the kinematic model. 

 

One of the potential extensions of hand space envelope study is to estimate the 

dynamic space envelope, which means the required space during reaching and 

grasping.  Chapter 3 focused on the hand space envelopes after grasping was 

completed, but the space required during reach and grasp procedure is also important to 

improve work environment minimizing interference with obstructions.  To estimate the 

dynamic space envelope, appropriate modeling of behavioral characteristics of the hand 

-  such as finger joint angle, wrist trajectory, and wrist angle as a function of hand size, 

grip type, and object properties - need to be explored first.  Based on these data, the 

dynamic space envelopes can be estimated using the kinematic model in a similar way 

as the study in chapter 3.  



163 

Tendon excursions not only by the wrist movement but also by finger movement 

should be included to assess the risk of MSDs by tendon excursions.   

 

Observation was made only for the wrist angles in time-based analysis (Chapter 

5), but for more detailed analysis of tendon excursion, the finger movements also need 

to be considered as shown in Chapter 6.  The finger movements cannot be easily 

measured without using special equipment such as an electromechanical goniometer or 

position markers.  An alternative approach is to develop models using laboratory data 

that can be used to predict MCP (metacarpophalangeal), PIP (proximal interphalangeal), 

and DIP (distal interphalangeal) joint angles of the hand (Choi and Armstrong 2007).  

Such models can then be used to construct motion sequences based on descriptions of 

work elements and work objects.   

 

6.3.2 Biomechanical model 

Addition of friction force and hand grip kinetics can improve the model’s 

applicability. 

 

Contact-based model may not be sufficient to predict the hand posture for some 

tasks.  For example, hand posture during holding a cylindrical object vertically cannot be 

predicted by contact-based model only, because the friction force is acting to keep the 

object from sliding out of the hand.  To predict friction force, hand grip kinetics is 

necessary because the friction forces are dependent on the normal forces acting on 

hand segments.  As discussed in chapter 2, forces acting on the hand segments can 

change the joint angles of fingers, particularly in DIP joints.  Inclusion of friction force and 
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hand grip kinetics in the model will be necessary to predict hand postures in more 

realistic situations.   

 

Hand posture during grasping unconstrained object can be predicted by 

modification of the code of hand model, considering force equilibrium during 

grasping. 

 

Subjects in our experiments grasped space-fixed and vertically located objects, 

and the model was developed based on these data.   If the objects are not fixed in space 

or their orientation are in other directions, the resultant hand postures can be different 

from our results.  To predict the hand posture more accurately in such situations, 

modification of the hand model is required to include force equilibrium during grasping. It 

is also needed to perform the experiments to see how removal of object constraints 

affects predicted hand postures. Grasping a non-constrained object can also change the 

object location and orientation with respect to the hand, which ultimately influence the 

grip posture. 

 

To predict hand postures grasping non-constrained objects, the biomechanical 

aspects of the hand and the force equilibrium between the gripping object and 

hand need to be considered. 

 

Prediction of hand posture for non-constrained objects may result in different 

results, because the gripping object can be moved during grasping.  To better predict 

hand posture for non-constrained objects, the biomechanical aspects of the hand and 

force equilibrium during grasping process should be considered.  First, a forward 



165 

dynamic model describing finger movements during grasping needs to be developed. 

Then consideration of force equilibrium between objects and hand, the movement of the 

object can be determined  throughout the grasping process.  The object will be moved to 

the direction to which the resultant force is acting until it meets another constraints such 

as the palm or the thumb. 

 

Empirical studies of the relationship between external load and tendon forces can 

be used to enhance the kinematic model for study of musculoskeletal disorders.  

 

Through chapter 5 and chapter 6, tendon excursions at the wrist and at each 

finger were investigated.  As mentioned in chapter 5, tendon excursion is an important 

parameter used in the most popular model (tenosynovitis) for pathogenesis of MSDs.  

However, many other factors – friction, tension force, contact pressure, and heating on 

the tendon – are also used in different models of pathogenesis of MSDs (Jessurun, 

Hillen et al. 1987; Cobb, An et al. 1994; Szabo, Bay et al. 1994; Cobb, An et al. 1995; 

Rempel, Dahlin et al. 1999).  It was not possible to include such frictions and other 

forces with the kinematic model of the hand.  However, it may be possible to determine 

an empirical relationship between external forces and tendon forces that can be used 

with kinematic model (Chao, Opgrande et al. 1976; Armstrong 1982; Valero-Cuevas, 

Zajac et al. 1998; Dennerlein 2005).   

 

Gender difference can be investigated through supplemental experiments and 

development of kinetic model. 
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This study did not address gender difference directly.  Gender difference is an 

important aspect that needs to be considered in the study of human subjects.  Previous 

studies have not shown a gender difference above and beyond hand size (both hand 

length and hand breadth) and hand strength.  The kinematic model suggested in this 

study can partly address gender difference from the aspect of hand size, but cannot be 

applied to explore the difference caused from the hand strength.  Supplemental 

experiments and development of kinetic model of the hand will enable for us to 

investigate gender difference caused by hand size and hand strength. 

 

Use of deformable hand might improve the accuracy of the model particularly at 

DIP joints of the fingers.   

 

All the solutions in this study were based only on kinematics with rigid body 

modeling of hand segments. But contact between hand and grip object causes skin 

deformations particularly at the distal phalanges, which can affect the DIP joint angles at 

final hand posture.  Soft tissues such as skin is nonlinear and viscous (Zheng and Mak 

1996; Rubin, Bodner et al. 1998). Palmar tissue of the hand is initially very compliant 

and reaches a large deformation at low load.  Combined use of the kinematic model with 

skin deformation model from mechanical properties of the soft tissue (Serina, 

Mockensturm et al. 1998; Mazza, Papes et al. 2005) might lead to better prediction of 

hand postures, particularly in DIP joints which were found to be the most sensitive to the 

force. 
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Appendix A 
 

Figure A.1 shows the GUI of the model.  It consists of five parts: hand data input, 

posture input, object data input, grip type input, and 3-D graphical displays from four 

different viewpoints.  In the hand data input part, the length of hand segments can be 

entered for each hand segment or predicted based on work by Buchholz, which models 

the hand anthropometry as a function of external hand measurements such as a hand 

length and a hand breadth (Buchholz, Armstrong et al. 1992).  The percentile value of 

male or female can be chosen to accommodate the specified percent of the population.  

The object data input parts were designed so that the user can specify object shape, 

object size, object location, and object orientation.  In posture input parts, the user can 

directly input joint angles of all joints, import joint angle profile, or choose to use the 

posture prediction algorithm.  The grip type input parts enable the user to select grip 

types (e.g., power grip, pulp pinch grip) as needed.  In 3-D graphical displays, the user 

can rotate and translate the displayed hand to desired orientations and locations.   

Figure A.2 shows the structure of the hand model.  The model is comprised of 

five modules.  Hand data, object data, and posture data are input in the data input 

module.  In the main module, the program determines mesh size, applies finger motion 

algorithm, and calculates the distances between hand segments and object using a 

contact algorithm.  All matrix calculation including homogeneous transformation are 

processed in the mathematical module.  The graphical display module is implemented 

for graphical display using OpenGL graphic function.  The results of simulation are 

exported or displayed through the data output module.   
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(a) Main GUI of hand model 

 

 

   (b) Object data input    (c) Hand data input      (d) Posture data input 

 
Figure A.1 Graphical user interface (GUI) of the hand model.  The model was 
implemented in visual C++ ® environment with OpenGL graphic function.  (a) Main 
GUI of the hand model  (b) object data input part (c) hand data input part  (d) hand 
posture data input part 
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Figure A.2 The structure of the hand model. The program is comprised of five 
modules – data input module, main module, mathematical module, graphical 
display module, and data output module. Hand data, object data, and posture data 
are input in the data input module. 
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Mesh size 

In using a minimum distance method, computation speed relies heavily on the 

number of meshes on the object surface and the hand.  There is a trade-off between 

accuracy and speed.  As the number of meshes gets larger, the accuracy of prediction 

gets better.  On the other hand, as the number of meshes gets smaller, the computation 

speed decreases.  To improve both the computation speed and accuracy, variable mesh 

sizes were applied to the model.  Two methods were used to determine the number of 

meshes.  First, the number of meshes in the object surface was modeled as a function of 

object size – in a cylindrical object, the number of meshes is dependent on the cylinder’s 

diameter and length.  Secondly, as the distance between a hand segment and object 

surface gets closer, the number of meshes on the hand segment increases.   
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Appendix B 
 

Table B.1 Spatial variables during power grasp (Chapter 4) 

 

 
Table B.2 Spatial variables during pinch grasp (Chapter 4) 
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Table B.3 Velocity variables during power grasp (Chapter 4) 

 

 

Table B.4 Velocity variables during pinch grasp (Chapter 4) 
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Table B.5 P-values for spatial variables.  The effect tested was the object size 
(Chapter 4) 
 

 




