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CHAPTER 1

Introduction

Data assimilation refers to the process of using measurement data along with
model information to estimate the value of a certain variable. We come across var-
ious data assimilation applications in our daily life. For example, before crossing
a road, we estimate the speed of oncoming vehicles by using visual images of their
position at different instances in time. These visual images serve as measurements,
while our knowledge relating quick changes in the position to greater speeds serves
as the model. GPS systems use estimation algorithms to determine the location of
GPS receivers using signals from GPS satellites. In many feedback control applica-
tions, whenever the exact value of a feedback variable is unknown, controllers use an
estimate of that variable for feedback. Hence, the performance and stability of the
controller depends on the accuracy of the estimates. For example, guidance and nav-
igation algorithms in satellites and spacecraft use critical orbital parameters that are
obtained using estimation algorithms. Terrestrial weather agencies use estimation
algorithms that run on supercomputers to predict the daily weather and issue critical
meteorological warnings. Finally, estimation algorithms are used as fault diagnos-
tic tools in fuel cell monitoring and many industrial applications like semiconductor

manufacturing.



There are many ways to estimate an unknown quantity using available data. Most
of these estimation techniques use either a deterministic or statistical framework for
estimation, that is, the unknown variable z is assumed to be either a random quantity
or a deterministic variable. Most estimation techniques use a model framework to
capture the relationship between the available measurements y, the unknown variable
x, and the model parameters and known inputs. Finally, many estimation techniques
involve minimizing a certain performance criteria. Specifically, if Z is an estimate
of x, so that the error in the estimate is given by x — Z, then the objective of most
estimation algorithms is to obtain an estimate 2 that results in a small magnitude
of the error x — Z.

One of the earliest estimation techniques, the least-squares method, was devel-

oped by Carl Friedrich Gauss in 1809. Consider a static model
y=uz,

where z is the unknown variable, u contains the known inputs and model parame-

ters, and y is the available measurement. Assume that n measurements, y1, ..., yn,
corresponding to n inputs uq, ..., u, are available so that
Y, =U,x,
where
T T
A A
Yn:lyl [N yn:| 5 Un:|:u1 un:| .

Assuming UTU, is invertible, the estimate # that minimizes
A A
JLS = HYn - Unx”Za
is given by Z,, = 213, where

Frsn = (UTU)TTUTY,,.



The least-squares technique is still widely used for estimation because of its simplicity
[1-3]. The subscript n in Zrs, denotes the fact that Zrg, is the best estimate
obtained using n measurements and input data, Y,, and U, respectively. Whenever a
new measurement vy, 1 and input value w,,; are available, the new measurement and
input value are appended to Y;, and U, and a new least-squares estimate 215,41 can
be obtained. However, when the number of measurements n becomes large, the size
of U, increases, and constructing UU,, is computationally expensive. Alternatively,
the recursive-least-squares (RLS) procedure can be used to improve the least-squares
estimate of x by updating the previously obtained least-squares estimate using only
the new set of measurements [4]. RLS is a computationally efficient procedure for
incorporating new measurements to improve prior state estimates.

In many cases, the relationship between the input u, the unknown variable x, and
the measurement y, is more complicated. Furthermore, all the inputs that affect the
model are not known, and sensors that produce measurements are inherently noisy.
One simple framework that models such a scenario is the linear Gauss-Markov model

given by the following dynamical system

Thy1 — Akmk+Bkuk+wk, k:}O

ye = Crop + vy,

where k indicates the time step, xj is the unknown random variable, wuy is the known
input, y; is the measured output, wy is the unknown external disturbance affecting
the plant, vy is the sensor noise, and Ay, By, and C} are matrices containing known
model parameters. A number of systems are modeled by the linear Gauss-Markov
model. For example, consider rigid-body motion governed by Newton’s second law.

The state x comprises of the position and velocity of the body, while inputs v and



w denote known and unknown forces acting on the body, and A, and Bj contains
physical parameters like the mass of the body. Often, the dynamics of nonlinear
systems like an aeroplane in flight is linearized about a mean trajectory, and a linear
model is used. In this case, the state x contains altitude and pitch deviations from
the nominal trajectory, whereas w denotes unknown forces acting on the aeroplane,
like turbulence effects.

The objective of state estimation is to obtain estimates of the state x; using

measurements . If w, = 0 and x( is known, then the estimator
Tpy1 = Ax + Brug, k=0

with g = x¢ yields 2 = x for all £ > 0. Hence, if all the inputs to a dynamical
system and the value of the initial state are known, exact estimates of the state
can be obtained without using any measurement data. However, since there are
always external disturbances affecting the plant, generally wy # 0 and since direct
measurements of the state x are unavailable, one generally has only a poor estimate
of the initial state. In this case, the measurement y; is used along with model
information to obtain better estimates of the state z;. The use of measurement data
and model information to obtain better estimates of the state is referred to as data
assimailation.

A linear estimator has the structure

g1 = Aplip + Brug + Ki(ye — Uk), k>0

A

U = Cily,

where K}, is the estimator gain that injects the difference between the measured data
and estimated measurement to improve the state estimates. If wy and vy are zero-

mean normally distributed white noise, the Kalman filter provides optimal estimate



of the state zy, [5,6]. The Kalman filter is a linear estimator with a special estimator
gain. Specifically, in the Kalman filter, K depends on the error covariance P; defined

by
Pk é g [(l’k — i’k)(l’k — JAIk)T] .

Therefore, in order to provide optimal estimates of the state x; at every time step

k, the Kalman filter updates the error covariance P, using the Riccati equation
Pii1 = (A — KyCp) Po(Ay, — Ki.Ci)" + Ky Ry KL + Qx,

where ), and Ry, are the variances of wy and vg. For low-dimensional systems, the
Kalman filter is a simple and efficient tool to obtain optimal state estimates. Owing
to its simplicity, the Kalman filter has been used in a number of applications ranging
from econometric analysis to the Apollo missions.

When the order of the dynamical system is high, for example, the dimension of
x), can be greater than 10° in terrestrial weather and ocean-climate models, imple-
menting the Kalman filter is computationally intractable. Various extensions of the
Kalman filter have been developed to address these computational issues. In many
cases, estimates of only a certain subset of the state are required, and one approach
that is employed in such a case is the reduced-order estimator. In these reduced-
complexity estimators, a reduced-order model of the dynamics is used to propagate
the state estimates instead of the full-order model. In [7, 8], a projection process is
used to obtain the optimal reduced-order estimator dynamics, while the full-order
dynamics are used to propagate the error covariance. Hence, although the computa-
tional burden of updating the state estimates is less, covariance propagation remains

a computationally demanding task.



Alternatively, reduced-order estimators that use a reduced-order covariance are
developed in [9]. In these estimators, model-reduction is first performed using vari-
ous techniques like truncation and balancing, and an estimator is designed using the
reduced-order model. Although such a construction does not yield optimal reduced-
order estimators, the computational advantage of propagating a reduced-order co-
variance outweighs the degradation in performance.

Next, consider the following system with nonlinear dynamics and measurement

map

Thr1 = f(og, ug, wi, k), E=0

ye = h(xg, vk, k).

The Kalman filter provides optimal estimates only when the dynamics and measure-
ment map are linear. Estimators for nonlinear systems are an area of active research
[10-13]. Optimal estimators for nonlinear systems are usually infinite-dimensional
and cannot be easily implemented. Furthermore, propagating the error covariance
of nonlinear estimators is difficult even for scalar nonlinear systems [10,12]. How-
ever, a number of suboptimal techniques are used to deal with nonlinear systems.
Amongst these, the extended Kalman filter and SDRE filter are some of the most
simple approaches to nonlinear state estimation [14, 15]. In these extensions of the

Kalman filter, the estimator state is propagated using the nonlinear model

'fjk+l - f(i‘ka U, 07 k) + Kk(yk - gk)) k 2 O

U = h(Z,0,k).

The estimator gain depends on the pseudo-error covariance that is propagated using

the Riccati equation with either the Jacobians of the dynamics and measurement



maps or state-dependent factorizations taking the place of A, and C}. Although
these estimators are not optimal, they have been used successfully in a number of
areas.

Since these filters are extension of the Kalman filter, they suffer from the same
computational disadvantages when used for large-scale systems. Moreover, since the
dynamics are nonlinear, the projection and balancing techniques used for linear sys-
tems cannot be used to obtain a reduced-order model. Furthermore, in systems based
on spatially distributed models or spatially discretized partial differential equations,
for example, such systems arise in weather forecasting and atmospheric applications,
it is difficult to obtain the Jacobian or a parametrization of the nonlinear dynamics.

Another approach to state estimation of nonlinear systems involves running mul-
tiple copies of the model in parallel. Such techniques are commonly referred to as
particle filters [16]. In particle filters, the Kalman filter estimator gain expression
is used for data injection. However, the error covariance is calculated from the col-
lection of state estimates instead of the Riccati equation. The ensemble Kalman
filter, developed in [17], injects randomly generated noise into multiple copies of the
model to simulate the effect of the external disturbance wy on the plant dynamics.
In [18,19], a deterministic approach is used to generate the collection of state es-
timates. Specifically, the columns of the pseudo-error covariance matrix is used to
re-initialize the multiple copies of the model at every time step. In all the variations
of the particle filter, the ensemble size, that is, the number of copies of the model,
determines the computational requirements. The ensemble size of the deterministic
particle filters is determined by the size of the pseudo-error covariance matrix. For
example, the ensemble size of the unscented Kalman filter is 2n + 1, where n is the

dimension of the state to be estimated. However, computational resources place a



limit on the number of copies of the model that can be simulated in parallel.

One of the methods used to reduce the ensemble size is to apply the particle
filtering algorithms to a truncated model. Specifically, these localized approaches
construct ensembles of only the subset of the state whose estimates are desired [20].
The localized ensemble members are then used to construct a reduced-order pseudo-
error covariance that is then used to construct the localized estimator gain. For
example, in weather prediction applications, if estimates of certain atmospheric vari-
ables in only a specific region are required, then multiple copies of a model of only
that region are created and used for data assimilation. Moreover, data injection is
also restricted to state estimates corresponding to the local region. However, con-
straining data injection to a certain subset of the state in an ad-hoc manner may
result in poor estimates of the state in other regions.

Yet another technique to reduce the ensemble size is given in [21,22]. A common
feature shared by these algorithms is that a low-rank approximation of the pseudo-
error covariance is first constructed and then certain columns of this approximation
are truncated. Since the ensemble members are re-initialized at every time step using
the truncated low-rank approximation of the pseudo-error covariance, the truncation
method influences the performance of these reduced ensemble estimation algorithms.
Furthermore, these truncation algorithms involve an additional computational bur-
den that is not present in the original full ensemble algorithms.

This dissertation addresses the problem of developing reduced-complexity algo-
rithms for data-assimilation of large-scale linear and nonlinear systems. Throughout
this discussion, we assume that we have a discrete-time model of the underlying dy-
namics. The remainder of this introduction summarizes the contents of each chapter,

and outlines the original contributions of each chapter.



Chapter II Summary

The original contribution of Chapter II is an optimal linear estimator that con-
strains output injection to a specific subset of the state estimate. Two versions of
the new linear estimator are presented and their performance is quantified. Re-
sults on the stability of the new estimator when used for state estimation of linear
time-invariant systems are also presented.
Chapter III Summary

Reduced-order estimators for linear time-varying systems is considered in Chap-
ter III. Specifically, we derive the optimal filter using a finite-horizon cost so that,
unlike the infinite-horizon approach [7,8], the resulting estimator does not require
the solution of algebraic Riccati or Lyapunov equations.
Chapter IV Summary

In Chapter IV, we present a new reduced-rank square-root filter for linear systems
that is based on the Cholesky factorization of the pseudo-error covariance. Specifi-
cally, Chapter IV provides a filter whose performance, in many cases, is better than
the reduced-rank square-root filters in [21,22] that use the singular value decom-
position. Furthermore, the filter presented is also computationally more efficient
compared to the reduced-rank square-root filters that use the singular value decom-
position. Finally, we present cases when the new reduced-rank square-root filter that
uses the Cholesky factorization is equivalent to the Kalman filter.
Chapter V Summary

The performance of two nonlinear estimation algorithms, the extended Kalman
filter and the unscented Kalman filter, is compared in Chapter V for various nonlinear
systems that contain nondifferentiable dynamics. Specifically, we are interested in

data assimilation of one-dimensional compressible flow using a finite-volume model,
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and the comparisons performed in Chapter V show the superiority of the unscented
Kalman filter over the extended Kalman filter when the nonlinearities in a system
become severe.
Chapter VI Summary

Within Chapter VI, we extend the results of Chapter IV for state estimation of
nonlinear systems. Specifically, we incorporate the reduced-rank square-root filter
presented in Chapter IV within the framework of the unscented Kalman filter pre-
sented in Chapter V, thus reducing the ensemble size and hence the computational
requirements to propagate the error covariance. We compare the performance of this
new filter with an analogous version that uses the singular value decomposition. The
comparisons performed shows the superiority of this new filter in both estimation
accuracy and computational requirements.
Chapter VII Summary

In Chapter VII, we present a technique that extends the localized data assimila-
tion algorithms presented in [9]. The algorithms in [9] inject data into only a certain
subset of the state and propagate a reduced-order error covariance. Hence, correla-
tions between certain subsets of the state and the measured subspace are neglected.
In Chapter VII, we compensate for the neglected correlation by using a static esti-
mator gain based on steady-state correlations. Thus, using this new technique we
are able to significantly improve estimates without a significant increase in the online
computational requirements. We use this new estimation technique for data assim-
ilation of two-dimensional magnetohydrodynamic flow using a finite-volume model

that is implemented on parallel processors.



CHAPTER I1

Kalman Filtering With Constrained Output
Injection

This chapter considers an extension of the Kalman filter that uses measurement
data to directly update the estimates of only a specific subset of the state. Specifi-
cally, we consider state estimation of discrete-time linear systems with time-varying
state dimension. In the first part of this chapter, we derive the one-step and two-
step versions of the new filter. The one-step version of the filter uses both the model
information and measurement data in a single step, while the two-step version of
the filter uses the model information and measurement data in two distinct steps.
We derive bounds on the performance of both versions of the new filter, and also
present a condition that guarantees their equivalence. The last part of this chapter
deals with conditions that guarantee the asymptotic stability of the new filter for
linear time-invariant systems. The results presented in this chapter are published in

23, 24].
2.1 Introduction
The classical Kalman filter provides optimal least-squares estimates of all of

the states of a linear time-varying system under process and measurement noise. In

11
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many applications, however, optimal estimates are desired for a specified subset of
the system states, rather than all of the system states. For example, for systems
arising from discretized partial differential equations, the chosen subset of states can
represent a subregion of the spatial domain. However, it is well known that the
optimal state estimator for a subset of system states coincides with the classical
Kalman filter [14, pp. 104-109].

For applications involving high-order systems, it is often difficult to implement
the classical Kalman filter, and thus it is of interest to consider computationally
simpler filters that yield suboptimal estimates of a specified subset of states. One
approach to this problem is to consider reduced-order Kalman filters. These reduced-
complexity filters provide state estimates that are suboptimal relative to the classical
Kalman filter [7,8,25,26]. Alternative variants of the classical Kalman filter have
been developed for computationally demanding applications such as weather fore-
casting [27-30], where the classical Kalman filter gain and covariance are modified
so as to reduce the computational requirements.

The present chapter is motivated by computationally demanding applications
such as those discussed in [27-30]. For such applications, a high-order simulation
model is assumed to be available, but the derivation of a reduced-order filter in the
sense of [7,8,25,26] is not feasible due to the high dimensionality of the analytic
model. Instead, we use a full-order state estimator based directly on the simulation
model. However, rather than implementing the classical Kalman filter, we derive an
optimal spatially localized Kalman filter in which the structure of the filter gain is
constrained to reflect the desire to estimate a specified subset of states. Our devel-
opment is also more general than the classical treatment since the state dimension

can be time varying, which is useful for variable-resolution discretizations of partial
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differential equations. Some of the results in this chapter appeared in [31].

The use of a spatially localized Kalman filter in place of the classical Kalman filter
is also motivated by computational architecture constraints arising from a multipro-
cessor implementation of the Kalman filter [32] in which the Kalman filter operations
can be confined to the subset of processors associated with the states whose estimates

are desired.

2.2 Spatially Localized Kalman Filter

We consider the discrete-time dynamical system
Tpa1 = Az + Brug +wi, k>0, (2.2.1)
with output
Yr = Cry + vg, (2.2.2)

where x;, € R™, u, € R™, y, € R* and Ay, By, C), are known real matrices of
appropriate size. The input u; and output y, are assumed to be measured, and
wp € R™+1 and v, € R% are zero-mean white noise processes with variances and

correlation
E[wkw]T] = Qk‘5kja E[U)kUJT] = Sk(;kjy g[UkU;r} = Rkékj, (223)

where 0y, is the Kronecker delta, and £[-] denotes expected value. We assume that
R, is positive definite. The initial state xy is assumed to be uncorrelated with wy,
and v,. Note that the dimension ny of the state x; can be time varying, and thus
Ay € R™+1%" i3 not necessarily square.

For the system (2.2.1) and (2.2.2), we consider a state estimator of the form
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with output
Uk = Crly, (2.2.5)

where &, € R™, g, € R%, I}, € R%+*Px and K; € RP**%_  The nontraditional
feature of (2.2.4) is the presence of the term I, which, in the classical case is the
identity matrix. Here, I, constrains the state estimator so that only estimator states
in the range of I, are directly affected by the gain K. For example, I} can have

the form

hi=1|1, | (2.2.6)

where I, denotes the r x r identity matrix. We assume that I}, has full column rank
for all £ > 0.

Next, define the state-estimation error state ey by

er 2w — B, (2.2.7)
which satisfies
ers1 = Ager + @y, k>0, (2.2.8)
where
AL B Ay — [K.Ch, g 2wy — DKy, (2.2.9)

Furthermore, we define the state-estimation error

Je(K3) 2 E(Liersr) " Liexia), (2.2.10)
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where L, € R%>*™+1 determines the weighted error components. Then,
Jk(Kk) =1tr [Pk+1Mk] y (2211)
where the error covariance P, € R™*" is defined by
A T

and M = LELk € R™+1x"e+1 We assume that M, is positive definite for all £ > 0.

The following lemma will be useful.
Lemma 2.2.1 The error (2.2.7) satisfies
Elexwy] = 0. (2.2.13)
It thus follows from (2.2.8) and (2.2.13) that
Elewrreri] = ArElerer| AL + E[iyiy). (2.2.14)
Note that (2.2.3) and (2.2.9) imply that
E[pil] = Qx, (2.2.15)
where
Or 2 Q. — ILKLST — SuKFTY + MKW Ry KE Y. (2.2.16)
It thus follows from (2.2.12), (2.2.14), and (2.2.15) that P satisfies
Pepr = AyPAT + Q. (2.2.17)
Therefore,
Tu(Ky) = tr[(Ap PeAY + Qi) M. (2.2.18)
It follows from (2.2.9) and (2.2.16) that J,(K}) can be expressed as

Jo(Ky) = tr [((Ak D KRC) Po( Ay — T KLCy)T + Qk> Mk] . (2.2.19)
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2.3 Removing the Noise Correlation

In the classical case where n, = n and [}, = I, for all £ > 0, the correlation
Sk can be removed by introducing a linear combination of the measurements as
deterministic inputs to the plant [34, pp. 181-183]. For the case Iy # I,, we now
state a condition under which we can derive an equivalent system with uncorrelated

process and sensor noise.

Proposition 2.3.1 Let k > 0 and suppose there exists H;, € RP** such that
I Hi Ry = Sk. (2.3.1)
Then
Je(Ky) = Ji(Kg), (2.3.2)

where

To(Ky) 2 tr [((Zk — L EWCWPUA, — ELC)T + Q, + LKW R K, T ) Mk] ,

(2.3.3)
K, 2 K, —H, A=A, —I.H,C,, (2.3.4)

and
Qr 2 Qp — T HLST — S HY I + I H R, HT T (2.3.5)

Proof. It follows from (2.3.5) that (2.2.18) can be expressed as
— — — — — — — o =T
NEWSY — S KL IT + LEWRHITT + TH R K T ) Mk} .

Using (2.3.1) yields (2.3.3). O
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Note that replacing Ay, Qx, and K}, in (2.2.18) by A, Q,, and K, respectively,
and setting S, = 0 in (2.2.18) yields (2.3.3). Hence, Jy(K}) is the cost of a system
with uncorrelated process and sensor noise. It follows from (2.3.2) that J(K}) can
be minimized with respect to Ky, and K} can be determined by using (2.3.4). If
I}, is square and thus invertible by assumption, then Hj = I}~ 1SkR,;1. In general,

however, there may not exist a matrix Hj, satisfying (2.3.1).

2.4 One-Step Spatially Constrained Kalman Filter

In this section we derive a one-step spatially constrained Kalman filter that

minimizes the state-estimation error (2.2.18). For convenience, we define
Sy 2 AyP.COY + Sk, R, 2 Ry + CpP.CY, (2.4.1)
and 7 € R™+1X7k+1 hy
e 2 TW(IT M)~ TE M. (2.4.2)

Note that 7 is an oblique projector, that is, 72 = m,, but is not necessarily symmet-

ric. Next, define the complementary oblique projector 7, by

A
Tl = I,

— Tk (243)

k+1

Proposition 2.4.1 The gain K}, that minimizes the cost Ji(Ky) in (2.2.18) is

given by
Ky, = (DX ML) TE MG SR, (2.4.4)
where the error covariance Py, is updated using

Pk+1 = AkPkA;f + WkLSkﬁglggﬂgJ_ + Qk - Skﬁilzlglz (245)
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Proof. Setting J;(K};) = 0 and using the fact that I} M I} is positive definite for
all k > 0 yields (2.4.4). It follows from [36, p. 286] that, for all 0 < a < 1, all distinct
A, Ay € R™™ and positive-definite B € R™ ™ tr [a(1 — a)(A; — A2) B(A; — A3)T] >
0. Hence, the mapping A — tr(ABA?) is strictly convex. It thus follows that J;,(K})
is strictly convex, and hence K}, in (2.4.4) is the unique global minimizer of Ji(Kj}).

To update the error covariance, we first note that
where 7y, is defined by (2.4.2). Now, using (2.4.6) with (2.2.17) yields (2.4.5). O

If either M), = I,

npss OF L = IF, then 7y is the orthogonal projector

e = In(DF 1) 10, (2.4.7)

and it follows from (2.4.4) that
Ky = (IF0) ISR (2.4.8)
Alternatively, specializing to the case in which I}, is square yields 7, = I, and

w1 = 0, as well as the standard Riccati update equation
P = AeP AL + Qr — (ARP.OY + Sp)(Ry + CLP.CE) N (CrPL AL + ST, (2.4.9)
In this case the Kalman filter gain is given by
Ky, = (A PCF + Sp) (Ry + Cp PCYH) ™1 (2.4.10)
and the estimator equation is
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Furthermore, the one-step filter provides optimal estimates of all of the states, that
is, the filter does not depend on the state-estimate error weighting Ly.
Next, we show that increasing the number of estimator states that are directly

injected with the output improves the filter performance. Define 7, and 7, by
Fp & (DM D) TE My, 7 21 — 7. (2.4.12)

where I}, has full column rank. Next, let K; be the optimal gain given by (2.4.4)

with I}, replaced by I &, that is,
K & (0F ML) TEMGS R, (2.4.13)
and let PA’kH be the corresponding error covariance when Kp is used, that is,
Py = AP AT + 7 SeRVSERE + Q1 — Sk R1SE. (2.4.14)

Proposition 2.4.2 Assume that My, = I, let I}, = (I, Gi], and assume I has

full column rank. Then
tr(Py1) < tr( Pyt (2.4.15)
Proof. Noting that 7, and 7y are symmetric, it follows from (2.4.12) that
T = T 4+ Tl Ge(GRmr L Gr) T Gl (2.4.16)
Therefore,
ML = Trt + Tes Gr(GEm L Gr) ' Gl (2.4.17)
Hence, subtracting (2.4.14) from (2.4.5) yields

tr(Pegy — Pry1) = tr((me — 750 ) Sk R 1ST) > 0. O
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2.5 Two-Step Spatially Constrained Kalman Filter

In this section, we consider a two-step state estimator. The data assimilation

step is given by
W =1 Ko i (ys — yk), k>0, (2.5.1)
and

o = ot + DK (yr — yh), k>0, (2.5.2)

where wi® € R™ is the data assimilation estimate of wy, 8 € R™ is the data

assimilation estimate of zy, and 21 € R™ is the forecast estimate of xy,. The forecast

step or physics update is given by

Thiy = Apai® + Brug + wil, k>0, (2.5.3)

Yt = Crt. (2.5.4)

Here, 7}, is analogous to [} in ensuring that only components of the process noise
estimate in the range of 7}, are directly affected by the gain K, ;. We assume that
T} has full column rank for all £ > 0. In traditional notation, x%a is denoted by
Iy, to indicate that Zy is the estimate of x; obtained by using the measurements
Yo, - - - Yk, While xi is denoted by Zj,—1 to indicate that Zj,—; is the estimate of
7y obtained by using the measurements y,...,yr_1. The notation zf and z{* is
motivated by the data assimilation literature [35].

Define the forecast state error e by

el 2 oy — rh (2.5.5)

and the forecast error covariance Pf by

P& Eleb (e£)T]. (2.5.6)
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It follows from (2.2.1) and (2.5.3) that
€1 = Ape® +wy —wit, k>0, (2.5.7)
where the data assimilation error state e{* is defined by
esla 2 oy — T, (2.5.8)
Lemma 2.5.1 The forecast error el satisfies
Elebwl] =0, (2.5.9)
Elefvf] = 0. (2.5.10)
Now, define the process noise estimation error
A

Jw,k(Kw,k) =& [(Hk(wk — wga))T Hk(wk — wga)] s (2511)

where H;, € R%*>*™+1 determines the weighted error components. For convenience,

define
Ni £ H Hy., X 2 G0 Nel) 7' Ney Xk = Ly — X (2.5.12)
Proposition 2.5.1 The gain K, that minimizes the cost Jy, (K, k) is given
by
Kyr = (VN NS (CRPLCE + Ry) 7L (2.5.13)

Proof.  Substituting (2.5.1) into (2.5.11), and using (2.2.3) and (2.5.9) in the

resulting expression yields
Juw k(K g) = tr [(Qk — SRKD T — 1Ky ST+ T Ko 1 (CLPEC + Rk)KgykTE) Nk] - (2.5.14)

As in the proof of Proposition 2.4.1, J, x(Ky ) is strictly convex. To obtain the
optimal gain K, x, we set J; , (Kyx) = 0, which yields (2.5.13), the unique global

minimizer of Jy, k(K k). O
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Next, define the state-estimation error
ok (Ko k) = El(Lief™) T Lye]
so that

Jx,k(Kx,k) = tr [PISaMk] y

where the data assimilation error covariance P& € R™*" is defined by

a A a a
Pt = Elei*(ei™)].

It follows from (2.5.2), (2.5.5), and (2.5.8) that
e = K, rel — MUK, g,
where
Kop 21— IW K, 1.Cy.
Substituting (2.5.1) and (2.5.18) into (2.5.7) yields
ey = (ABop — DKo kCr)eg + wi — (Al Ko g + 1Ko i) g
Next, define
R 2 Ry + CLPLCY

and
k2 Qr — (AP{CT + Sk)(Ry) ™ (AcPLCY + Si)T
+ (AkmLP,ﬁCkT + XkJ_Sk) (Ri)_l (Ak'ﬂ—kJ_P’ngT -+ XkJ_Sk)T

+ A PICY (RO PEAT — Ay PECE(RY)LCp Pinl AT

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

(2.5.21)

(2.5.22)
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Proposition 2.5.2 The gain K, that minimizes the cost J, (K, 1) is given by
Ko = (LML) ' LM PLCY(R)) (2.5.23)
where P and Pf are given by
P = pf — PICT(RO)'CLPE + 7y PECE(RY) ' Cu Pinl, (2.5.24)
and
Pl = A PRAT + QL. (2.5.25)
Proof. Using (2.5.17) and (2.5.18), P3* satisfies

P = K, PIK) ), — Ko pElefol |KE I — DK 1 E ok (el) TN Ky, + DKo n R KL I
(2.5.26)
Substituting (2.5.10) into (2.5.26) and substituting the resulting equation into (2.5.16)

yields
Jon(Kop) = tr[(Kpx P, + T, o R K D) M) (2.5.27)

To obtain the optimal gain K, we set J, ,(K,x) = 0, which yields (2.5.23). As
in the proof of Proposition 2.4.1, it can be shown that J, x (K, ;) is strictly convex,
and hence K, in (2.5.23) is the unique global minimizer of J, x (K, ;). Substituting
(2.5.9) and (2.5.23) into (2.5.26) yields (2.5.24).

To update the forecast error covariance, we substitute (2.5.1) into (2.5.7) so that

f da f
€1 = Akek — Tkakaek + wg — TkKngvk.
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f
Pk+1
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= A PPAL + Q) + Lok (CRPLICE + Ry KD 1T

+ Aplegtwp] + Elwr(ef®) 1Ay — ArElep(er) |CF K k:Tk:
= 1Bk Crllep (™) Ay — An€leiop 1K1 Ty
(2.5.28)
— T K kElor(ey™) AL — Elwiley) T1O) Ko b1y
- Tk kC’ké’[ekwk ] g[wkUkT]Kg,kTE - TkKwkS[vkwg]

+ 1 Kok (Ci€lejvg ] + Elvn(e),) 10 Ky ) 1o

Substituting (2.5.18) into (2.5.28), and using (2.5.9) and (2.5.10) in the resulting

expression yields (2.5.25). O

The two-step estimator can be summarized as follows:

Data assimilation step:

wit = VoK (s — Ui, (2.5.29)
Kug = (TTNT) T T NGSH(RE) ™ (2.5.30)
ol = ot + DKo r (ke — yt), (2.5.31)
Ko = (I My Iy) ™ LM PECT (RY) ™ (2.5.32)
P{* = P — P{C}(R,) "' Cv Py + mp  PLCY (Ry) ™ Gy Pimy (2.5.33)

Forecast step:

Thopr = AT + By + wii, (2.5.34)

Pl = APPAL + Q. (2.5.35)

Assume that I, and 7}, are square for all £ > 0. Substituting (2.5.29) and (2.5.31)
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into (2.5.34) yields the familiar one-step Kalman filter
2} 1 = Aptl + Brug, + (AR PLCY + Sk)(Ry + Co PECy) ™ (ys — yi)- (2.5.36)
Furthermore, substituting (2.5.33) into (2.5.35) yields
Pl = AvPLAY — (AxPLCr + Si)(Ry + CoPECE) M (CLPEAY + SF) + Qr. (2.5.37)

Next, as in Proposition 2.4.2, we show that when additional estimator states
are directly injected with the output data, the performance of the two-step filter

improves. Define ka by (2.5.23) with I}, replaced by I, that is,
Koy = (IF ML)~ I M PECT (RY) (2.5.38)

Furthermore, let P3 be the corresponding data assimilation error covariance when

IA(:C,k is used instead of K, that is,
P & Pl — PiCY (Ry) ' Cu P + L PECY (R}) ' Cu PR (2.5.39)

Proposition 2.5.3 Let M, = I, I, = Iy Gyl, and assume that I, has full

column rank. Then
tr(P3*) < tr(P3®). (2.5.40)

Proof. Subtracting (2.5.39) from (2.5.24) and using the fact from (2.4.17) that

T — T 1S positive semi-definite, it follows that

tI‘(P]?a - p];ia) = tr [(Tﬁd_ — ﬁkL)PéCg<R£>_ICkP]ﬂ > 0. O
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2.6 Comparison of the One-Step and Two-Step Filters

When I, and 7} are square, comparing (2.4.9) with (2.5.37) and (2.4.11)
with (2.5.34) shows that the two-step filter is equivalent to the one-step filter with
Ky =AK, 1+ Ky, T = xff and P, = P,g. When I, and 7}, are not square, we obtain
a sufficient condition under which the one-step and two-step spatially constrained

Kalman filters are equivalent.
Proposition 2.6.1 Suppose that &y = zl and Py = P{, and, for all k > 0,
Ay PECE 4 X1 Sk = met (AR PLCY + Sh) - (2.6.1)

Then the one-step filter (2.4.4), (2.4.5) and the two-step filter in (2.5.29)-(2.5.35)
are equivalent, that is, for all k > 0, &y = 2% and P, = Pf.
Proof. Substituting (2.5.22) and (2.5.33) into (2.5.35) yields

_ T
P1£+1 = AkpéAE + (AkaJ_PngT —|— XkJ_Sk) (Ri) 1 (AkﬂkLP,gckT + XkJ_Sk)

(2.6.2)
— (AP + Sk)(Ry) T (AR PCY + k)" + Qe
Substituting (2.6.7) into (2.6.2) yields
Pl = AL PLAL + m (AR PLOYE + Si)(RY) HARPLOY + Si) T, 263
2.6.3

+ Q1 — (APCy + Si)(Ry) ™ (AR PGy + Si)™.
Since B} = P, it follows from (2.4.1), (2.4.5), and (2.5.21) that, for all k& > 0,
Pl =P,

Next, substituting (2.5.1) and (2.5.31) into (2.5.34) yields
Typr = Aky, + Brug + (Aeme PeCy+ xiSk) (B) ™ (v — i)- (2.6.4)
Now, (2.5.21) and (2.6.7) imply that

ZE£+1 = Akmi + Bkuk + Wk(Akplgcl;F + Sk)(CkP,ﬁC,;F + Rk)_l(yk — CkZEz) (265)
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It follows from (2.2.4) and (2.4.4) that, for all £ > 0,
Thy1 = ApZy + Brug + Wk(AkPkCI;F + Sk)(CkPkC,;F + Rk)_l(yk — Ckfk) (266)

Since 2o = z, and Pf = P, for all k > 0, (2.6.5) and (2.6.6) imply that @) = 2 for

all £ > 0. O

Note that, if I, and 7} are square, then m,; = 0 and x;, = 0, and thus (2.6.7)
is satisfied. Furthermore, if S, = 0 or 7, = X%, then Proposition 2.6.1 specializes to

the following result.

Corollary 2.6.1 Suppose that 29 = x5, Py = P{, and, for all k > 0, either

Sy =0 orm, =Xk If
Al = L Ag, (2.6.7)

for all k > 0, then the one-step filter (2.4.4), (2.4.5) and the two-step filter in

(2.5.29)-(2.5.35) are equivalent, that is, for all k > 0, &y =zt and P, = Pf.
Next, we present a converse of Proposition 6.1.

Proposition 2.6.2 Assume that the one-step filter (2.4.4), (2.4.5) and the two-
step filter in (2.5.29)-(2.5.35) are equivalent, that is, for all k > 0, & = ! and
P, = PL. Then, for all k > 0, there exists an orthogonal matriz U, € R¥**% such

that
(Apme PEOT 4+ X Sk) (R YU, = 7 (A PO + Si) (RE) 12 (2.6.8)
Proof. Since P, = Pf for all k > 0, subtracting (2.4.5) from (2.6.3) yields

WkLS’kpulzlgg?TgJ_ = (Akﬂkj_Plgcg + ij_Sk)(Ri)_l(AkﬂkJ_P]gCg + XkJ_Sk)T. (2.6.9)
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Hence, (2.6.8) follows from (2.4.1) and [36, p. 193]. O
Neither the one-step nor the two-step filter performs consistently better than the
other. However, there are special cases when the performance of one filter is better

than the other.

Proposition 2.6.3 Assume that C, = 0 and P, = P,f. If Iy is square and 1y is

not square, then

P < PLL. (2.6.10)
Alternatively, if I}, is not square and 1}, is square, then

Pl < Py (2.6.11)

Proof. Assume that I is square and 77 is not square. It then follows from (2.4.2),

(2.4.3) and (2.5.12) that
e =0, xxL #0.
Substituting (2.5.33) and (2.5.22) into (2.5.35), and using C, = 0 and 7, = 0 yields
Pl = ApPLAT + xe Se(RE) TUSEXE L — Se(RY)TISE + Q. (2.6.12)
Substituting C = 0 and 7, = 0 into (2.4.5) yields
Pry1 = AcPeAT — Sp(CrPCF 4 Ry) 1S + Q. (2.6.13)

Subtracting (2.6.13) from (2.6.12) yields (2.6.10).

Alternatively, if 7}, is square and I, is not square, then
e # 0, Xk = 0.
Substituting (2.5.33) and (2.5.22) into (2.5.35), and using Cy = 0 and xx, = 0 yields

Pl = A PEAT — Sp(CLPECTY + Ry)TISE + Q. (2.6.14)
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Substituting Cj = 0 into (2.4.5) yields
Pty = AP AT + 1 Sy RVSEmL, — SpRLST + Q. (2.6.15)
Subtracting (2.6.14) from (2.6.15) yields (2.6.11). O

2.7 Comparison of the Open-Loop and Closed-Loop Covari-
ances

Next, we consider the zero-gain filter
Zol k1 = Arol + Brug (2.7.1)
with the zero-gain state-estimation error state
A A
Colk = Tk — Tol k- (2.7.2)
It follows from (2.2.1), (2.7.1) and (2.7.2) that
Poiks1 = ApPop Ay + Qr, (2.7.3)

where the zero-gain error covariance Py, € R™*" is defined by P, = [eol,keoTLk] .
First, we show that the performance of the Kalman filter is better than the perfor-

mance of the zero-gain filter.

Proposition 2.7.1 Ifm, =1, , and P, < Py, then Py < Pojya-

k+1

Proof. Since 1, = I, ,,

it follows from (2.4.3) that 7, = 0, and hence (2.4.5)

implies that
Piy1 = Ak PAY + Qr — Sp Ry SE. (2.7.4)
Subtracting (2.7.4) from (2.7.3) yields

Pogir — Peyr = Ap(Por — Po) AL + gké;;lgk > 0. O
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If 7, # I, ,, then . # 0, and subtracting (2.4.5) from (2.7.3) yields

k+19
POLkJrl - Pk+1 = Ak(Pol,k — Pk)A;f + gkélzlgg — WkLgkéglggﬂgj_, (275)
which suggests the following negative result.

Proposition 2.7.2 If 7, # I, and P, = Py, then Pyyy < Pojgg1 15 not

k+1

always true.

Proof. Let k >0, ny = ngyq = 2, and

where 2402 + 2a < 1, and

1
Qr=0,8.=0, Rp =1, Ly =1, I}, =
2
Furthermore, let P, and P, ; have the scalar entries
D1k P12k Dol 1,k Pol12,k
P, = ; Lok =
P12k P2k Dol12,k  Pol2,k

It follows from (2.4.5) and (2.7.3) that, if P, = P, then

2402 + 200 — 1> Do

Pol,1,k+1 — PlLk+1 = ( 25 1+ p2,k'

Hence, poi1 k+1 < P1k+1, and thus Py z+1 — Pi+1 s not positive semidefinite. O
The following result guarantees that the performance of the constrained filter is

better than the performance of the zero-gain filter.
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Proposition 2.7.3 If P, < P, then
tl"(Pk+1Mk) < tr(Pol,k—HMk)- (276)

Proof. It follows from (2.4.3) and (2.7.5) that

tr((Pol,k:—i—l — Pk+1)Mk) :tr(Ak:(Pol,k: — Pk)AEMk) —{— tr(ﬁké’kélzlgng (2 7 7)
+ Mks'kR,;lS'kTﬁkT - Wkgklezlggﬂ'ng)
Since 7w} My, = My, = mf My, it follows that

tr((PoLkH — Pk+1)Mk) = tr(Ak(Pol,k: — Pk)AEMk) —I— tl”(ﬂ'kgkélzlggﬂ'ng)

= tl"(LkAk<P01’k — Pk)Ang) + tr(LkﬂkSkR,;lngwkTLg) Z 0.

O
In fact, in the example in Proposition 2.7.2, M, = I and
22 3\ 5| D
tr(P, —tr(Pyyy) = | = = = k>0, 2.7.8
H(Fouer) = tr(Pen) [25 ((H 22> T 15 pon (2.7.8)

Hence, tr(Pyi1) < tr(Pok+1), and the one-step filter with constrained output injec-
tion performs better than the zero-gain filter. Although Proposition 2.7.3 guarantees
that the performance of the one-step filter with constrained output injection is bet-
ter than the zero-gain filter at time k + 1, it follows from Proposition 2.7.2 that
Pyy1 < Py k41 may not be true. Hence, Proposition 2.7.3 does not guarantee that
the performance of the one-step filter with constrained output injection is better
than the zero-gain filter at time k42, that is, tr(Py12) < tr(FPort2) may not be true.

The following result gives a condition under which the state estimates in the

range of I}, are better than the corresponding estimates from the zero-gain filter.

Proposition 2.7.4 If P, < P, , then

L My Py My Ty, < T My Py gy My T (2.7.9)
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Proof. Note that
I My (Pigy — Poent) My Iy =137 My Ay (P — Poyi) AL My Ty — I Mym, SRy S M T
— I M S RSEn My T + I My S Ry ST My T
(2.7.10)
It follows from (2.4.2) that

IF My, = I M. (2.7.11)

Substituting (2.7.11) into (2.7.10) yields
I Mi(Pi1 — Pojont) Mi D = I My Ap(Py — Pog) Ap My Iy, — I My SRy S)EM T

< 0.

Assume that [}, has the form (2.2.6). Then, it follows from Proposition 2.7.4
that, if M, = I, that is, all of the states are weighted, then the state estimate in the
range of I}, obtained using the Kalman filter with constrained output injection are
better than the state estimates obtained when data assimilation is not performed.
However, state estimates that are not in the range of I, may be worse than estimates

obtained when no data assimilation is performed.

2.8 Steady-State Filters for Linear Time-Invariant Systems

Next, we discuss the steady-state behavior of the one-step spatially con-
strained Kalman filter for linear time-invariant systems. For all £ > 0, let Ay = A,
B,.=B, C.=C, I,=1 L,=1L, Qr =Q, S, =0 and R, = R. Assuming R
is positive definite, it follows from Proposition 4.1 that the optimal gain K} that

minimizes Jy is given by

Ky = (I'"™MD) ‘I MAP,CT Ry, (2.8.1)
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where
RL2CPCY"+R, M2L"L (2.8.2)
Furthermore, the covariance update is given by
Py = APAT + Q + 1  APLCTRICP AT — APCTRICP AT, (2.8.3)
where
T2 (r*M0)'r*tum, ©, 21—, (2.8.4)

If limy_., Py exists, then the filtering process reaches statistical steady state. If I is
square and thus by assumption nonsingular, then y, — ;. is directly injected into all
of the estimator states. In this case, the following lemma guarantees the existence

of limk_wo Pk

Lemma 2.8.1 If I is square and (A, C) is detectable, then P = limy_., Py eists
and is positive semidefinite. If, in addition, (A, Q) is stabilizable, then P is positive

definite and A—I'KC' is asymptotically stable, where K = "' APCT(CPCT+R)™!.

Proof. Since I' is square, it follows from (2.4.2) and (2.4.3) that 7 = I and

7, = 0. Hence, it follows from (2.8.3) that
Ppyy = APAY — AR,CT(CP.CT 4+ R)T'CPAT 4 Q. (2.8.5)

Since (A, () is detectable, it follows from [34, pp. 100-101] that, if Py is positive

semidefinite, then P £ limy_.o, P, exists and satisfies the algebraic Riccati equation
P = APAT — APCT(CPCT + R)"'CPA" + Q. (2.8.6)

If (A,C) is detectable and (A, Q) is stabilizable, it follows from [34, pp. 101-103]

that P is positive definite and A — 'K C' is asymptotically stable. O
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When [ is not square, the existence of limy_,,, Pi is not guaranteed. In fact, we

have the following negative result when 7 # I,,.

Proposition 2.8.1 Assume that @ # I, and A is asymptotically stable. Then

limy_,o Pr does not always exist.

Proof. Consider the example in Proposition 7.2. It follows from (2.8.3) that

1 1 D2k

= -+ — [8(a —1)* = 25] —"— ). 2.8.7
D2.k+1 = P2,k (4 + 100 [ (@ ) ] 1 +p2,k) ( )

Hence, if o satisfies
(a—1)*>25 (2.8.8)

and
175

> , 2.8.9
P20 Qe — 1)z — 200 (28.9)

then, for all £ > 0, pa i1 > 2p2k, which implies that limg_.o p2r = co. Hence, if
Py € R**? gatisfies (2.8.9), then limy_., P, does not exist. O
Next, we present a converse result concerning the existence of limy_.., Py. For all

M € R™™ let R(M) denote the range of M.

Proposition 2.8.2 Assume that (A, I") is stabilizable. If P = limy_,, Py exists

and R(mrAPCT) = R(I"), then (A, I',C) is output feedback stabilizable.

Proof. Letting k£ — oo in (2.8.3) yields
P=APA+Q+m, APCTR'CPA™xT — APCTR'CPA", (2.8.10)
where R 2 CPCT + R. We can rewrite (2.8.10) as

P =APAT + Q - I'KCPA" — APCTK'I'" + TKRK"T'", (2.8.11)
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where
K2 ("M 'r*"MAPCTR™. (2.8.12)
Hence, (2.8.11) can be expressed as
P=(A-TKCO)P(A-TKC)"+Q+ 'KRK"'I'". (2.8.13)
Next, define A and I" by
A2 A-TKC, I £ I'KR'Y?. (2.8.14)

Since (A, I) is stabilizable and R(I") = R(rAPC"), it follows from [36, pp. 510,
551] that (A, I') is also stabilizable. Let A € C be an eigenvalue of A. Then, there

exists an eigenvector & € C" of A such that
¥ A =z (2.8.15)
Furthermore, (2.8.13) implies that
2*Pr = 2*APA z + 2*(Q + I'T")x. (2.8.16)
Substituting (2.8.15) into (2.8.16) yields
(1 —\?)a*Pr = 2*(Q + T'T"T)a. (2.8.17)
If [A| > 1, then (2.8.17) implies that
Q4+ T TNz =0 (2.8.18)
and hence

o =0. (2.8.19)
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It follows from (2.8.15) and (2.8.19) that A is an unstable and uncontrollable eigen-

value of (A, I'), which contradicts the fact that (A, I) is stabilizable. Hence, || < 1

and A is asymptotically stable. Since K given by (2.8.12) renders A — I'KC' asymp-

totically stable, (A, I, C) is output feedback stabilizable.

O

The following result provides a sufficient condition for Py to be bounded when C

is square and nonsingular.
Proposition 2.8.3 Assume that C is square and nonsingular. If
sprad(m A) < 1,
then Py s bounded.

Proof. Since C is nonsingular, (2.8.3) can be expressed as

Peyr = AP AT + Q + 7 APy(Py + O_IRC_T)_IPkATﬂ'I

(2.8.20)

— APy(P. + CT'RC™ )1 P AT.

Next, consider the Lyapunov equation
P =(A-TK)P(A-TK)" +Q+ 'KK"T'" + ARA",
where
K2 (I"MDN)'‘rmA
and
R&C'RCTT.
Using (2.8.23), we rewrite (2.8.22) as

Poy1 = 1L AP ATTT + Q + mAATZT + ARA™.

(2.8.21)

(2.8.22)

(2.8.23)

(2.8.24)

(2.8.25)
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Since 7, A is asymptotically stable and Q+71AAT7T+ ARAT is positive semidefinite,
P = limy_ f’k exists for all positive-semidefinite 150. Subtracting (2.8.21) from

(2.8.25) yields
Pey1 — Pioy1 = AR(R+ P) 'RAT + 1 AAT 7T
+ 7 APy(P, + R)'RATzT + 1, A(P, — Py)AT7 T,
(2.8.26)

It follows from (2.8.26) that, if P, > P, then pk+1 > P, 1. Hence, if Py < By, then
P, < P, for all k > 0. Furthermore, since P, converges to P for every choice of Py,
it follows that P is bounded. O

Numerical results suggest that the following strengthening of Proposition 8.3 is

true.

Conjecture 2.8.1 Assume that C' is square and nonsingular. If

sprad(m A) < 1, (2.8.27)
then limy,_ . P exists.
Example 2.8.1 Let
0 5
A= ,C=1,0=0,R=1, (2.8.28)
0 3
and choose
M
I = , (2.8.29)
Y2
where v1,7v € R so that
2 2
1 " Y172 1 Y2 —7172
™= ) , T = 5, 9 (2830)
Qs 2 Vi3

Ny 2 —M72 Vi
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Note that
1 0 5% — 377
mA= ’ (2.8.31)
T 371 — 5
and hence
A(miA) = — 1352 — 5yl (2.8.32)
spradlm = ——=[9Y] — 9717)2|- 8.
Y M
It follows from Conjecture 2.8.1 that, if
(7 +73) <397 =5y <7t +8, (2.8.33)

then limy_., Py exists. The shaded region in Figure 2.1 indicates values of +; and
72 that satisfy (2.8.33). Next, we choose various values of 1,7, and numerically
evaluate Py as k — oo using (2.8.3). The values of v, o for which limy,_, Py exists,
are indicated by ‘e’ and the values of 7,7, for which limy_,, P, does not exist are

indicated by ‘x’. The numerical results are consistent with Conjecture 8.1.

2.9 N-Mass System Example

Consider the N-mass system shown in Figure 2.2 with stiffnesses k1, ..., kyi1 >
0 and dashpots ¢y, ...,cyy1 > 0. Let ¢; denote the position of mass m,. Define
T
q= [ql qN} . M 2 diag(my, ..., my). (2.9.1)
- ky+ky  —ko 0 o 0 0 -
—ky kot ks —ks - 0 0
K2 0 kg ks kg co- - 0 , (2.9.2)

0 0 0 o —ky ky+kyo
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Figure 2.1: The shaded region indicates the values of vy, 72 that satisfy (2.8.33). The
dots indicate the values of 7y, yo for which limy_., Pj exists, whereas the
values of 7y, 7, for which limy_,., P does not exist are indicated by ‘x’.
These numerical results are consistent with Conjecture 2.8.1.

[ Us Up,
k1 oo = ko Font
VA AAA e AN VA
¢ mq c mo c my
2 N CN+1
— T

}—51 }—'Q2 }—>QN

Figure 2.2: N-Mass System
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C1 + Co —C9 0 cee 0 0
—Cy Ca+cC3 —C3 0 0
C = 0 —C3 C3 + ¢4 0 ) (293>
0 0 0 —CN CN + CN+1

We assume that d masses are disturbed by unknown force inputs w € R¢, which are

force inputs u € RP. Let u and w have entries

U:|:u1

and let B, and D,, have entries

zero-mean white noise with unit intensity, while p masses are actuated by known

T
AL
Up y W= | w;

0 ]T (2.9.4)

By } , D, = [ Do Doy } , (2.9.5)

where, for all i =1,...,pand j =1,...,d, B,; and D,,; are defined by
T
Bui= { 01521 m% 01 nv; ] ) Du, = [ O1j-1 mL

T
Opyv—j ] (2.9.6)
J
and ¢ and j correspond to the masses on which forces u; and w; act, respectively.

The equations of motion can be written in first-order form as

z = Ax + Bu + Dyw,

(2.9.7)
where A € R2VX2N B e R2Vxm D, € R2V*4 and x € R?Y are defined by

e On In Be On po On |
—-M 'K —M~IC B, D
N T
T=1q - qv ¢

(2.9.8)
an | -



41

Next, we assume that measurements of the positions of [ masses are available so that

the output y € R! can be expressed as

Yy = C(posx + v, (299)
where Cpos € R*2N has entries
Coos
C1pos = (2910)
Chbs

and, for all i = 1,..., N, Clls € R™2N ig defined by

i A
Cob® | 0y 1 Oveiy Ouew | (2.9.11)

where 7 corresponds to the index of the mass whose position measurements are avail-
able. With the sampling time t; = 0.1 s, we obtain the zero-order-hold discrete-time

model of (2.9.7) and (2.9.9) given by

Tpy1 = Axyp + Buy + Dywy, (2912)
Y = Cpos:ck + V. (2913)
Signal Masses
Known force input u my, Ms, Mig

Unknown force input w | my, mys, mis
Position measurement y | mg, mis

Table 2.1: Forcing and measurement signals in the N-mass system.

Let N = 20, so that the (2.9.7) has order n = 40 with known inputs u € R?

and unknown inputs w € R3. We assume that w is zero-mean white Gaussian noise
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with unit covariance, and the known inputs u € R? are chosen to be sinusoids. The
masses on which w and v act and the available measurements are given in Table 1. We
assume that the process noise and the measurement sensor noise are uncorrelated and
hence S = 0. The values of the masses my, ..., mgyg, damping coefficients ¢y, .. ., o1,
and spring constants ki, ..., ko1 are m; = 10 kg for i = 1,...,20, ¢; = 0.8 N-s/m and
k; =5 N/m for i = 1,...,21. Finally, we assume that the process noise and sensor
noise are uncorrelated, that is, S = 0 for all £ > 0. Next, we obtain estimates
of the position and velocity of myq,...,my using two sets of measurements y, one
with a signal to noise ratio (SNR) of 20 dB and another with a SNR of 1 dB. The
measurements of position of mg and mqs with different signal to noise rations are
shown in Figure 2.3.

We first choose I}, = I,y and L = Iy, that is, the available measurements are
injected into all of the states of the estimator, and the errors between all of the states
and the corresponding state estimates are weighted. In this case, the one-step and
two-step Kalman filters are equivalent. The state estimates are obtained using the
two-step filter (2.5.31)-(2.5.34). The root mean square (RMS) value of the error in
the estimates of position of m, when measurements with a signal to noise ratio of
20 dB and 1 dB, respectively, are used is shown in Figure 2.4. The RMS value of
the errors in position and velocity estimates of mq, ..., moy are plotted in Figure 2.5
and Figure 2.6, respectively.

Next, we obtain estimates by constraining the output injection into only some of

the states of the estimator. First, we choose I, = A; for all £ > 0, where

T

A
A= Opaws Tos Ogans (2.9.14)

so that the measurements are injected into only the estimates of the positions and
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4 T

——SNR=1dB
SNR =20dB

9

measurement of position of m

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

12

measurement of position of m

1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
time in seconds

Figure 2.3: Noisy measurements of the positions of mg and mj, with SNR = 20 db
and SNR = 1 dB. These measurements are used to estimate the positions
and velocities of masses my, ..., mag.
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velocities of ms, ..., myg. Furthermore, we choose L, = Isy so that the errors in
all of the state estimates are weighted equally. The RMS value of the error in the
position estimate of my4 obtained when I, = A; for all £ > 0 is shown in Figure 2.4.
The RMS value of the errors in position and velocity estimates of m, ..., mqg, are
shown in Figure 2.5 and Figure 2.6, respectively. Finally, we choose I}, = A5 for all
k > 0, where
T

M2 Ogs Iy Ogss (2.9.15)
so that only the estimates of the positions and velocities of my, ..., mo are directly
affected by the measurements y. Again, we choose L = I,y for all k£ > 0, and the
performance of the estimator with Iy, = Ay for all £ > 0 is shown in Figure 2.4,
Figure 2.5 and Figure 2.6.

When I, = Iy, the measurements are injected directly into all of the states of
the estimator, and Figure 2.4 confirms the expected fact that the performance of the
classical Kalman filter with I, = I,y is better than the estimators with Iy # Iry.
Note that the number of states into which measurements are injected when I, = A,
is less than the number of states that are directly affected by measurements when
I, = Ay, and it follows from Figure 2.4 that reducing the number of estimator
states that are directly affected by measurements degrades the performance of the
estimator. These observations are consistent with Proposition 2.5.3.

Although the errors in the position and velocity estimates of all of the masses
are weighted in all three cases I}, = Iy , [, = Ay, and I}, = As, Figure 2.5 and
Figure 2.6 demonstrate that the error in the position and velocity estimates of all of
the masses is the least when Iy, = Ion and the measurements are directly injected

into all of the estimator states. Finally, it can be seen that when the measurements
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Root mean square value of the error in estimating the position of my
obtained using the two-step filter with I, = Iy (classical Kalman fil-
ter) and I, # Ion using two different sets of measurements, one with
SNR= 20 dB and another with SNR = 1 dB. When [}, = A;, measure-
ments are directly injected into the estimates of only the positions and

velocities of masses ms, ..., mig, whereas when I, = Ay, measurements
are directly injected into estimates of only the positions and velocities
of masses my,...,mia. As expected, the performance of the estima-

tors with constrained output injection (I, # I) is not as good as the
estimator with Iy = Isy. Since the zero-gain filter does not use the mea-
surements, its performance does not depend on the value of the SNR of
the measurements.
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RMS error in position estimates

RMS error in position estimates

Figure 2.5: RMS value of the errors in the position estimates of all of the masses when
measurements with (a) SNR =20 dB and (b) SNR = 1 dB are injected
into all of the state estimates (I, = Ioy) and when measurements are
injected into only the position and velocity estimates of some of the
masses (I, # Ion). The performance of the zero-gain filter with K =0
is also shown for comparison. When measurements are injected into a
larger number of the estimator states, the performance of the estimator
improves. The arrows indicate the masses whose position measurements
are available. As the SNR of the measurement increases, the difference
in the performance of the filters with I}, = Irn and I, # Iy decreases.
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@
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RMS error in estimates of velocities
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0.2 |

RMS error in estimates of velocities
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T index i

Figure 2.6: RMS value of the errors in the velocity estimates from the optimal filter
with I'y = Ioy and I, # I,y when measurements with (a) SNR = 20 dB
and (b) SNR = 1 dB are used. When [, # oy, the one-step and two-
step filters are not equivalent, and the results presented here are obtained
using the two-step estimator. The performance of the estimators with
I}, # I,y improves when additional states of the estimator are directly
injected with measurements.
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are injected into a subset of the estimator states, then the estimates of the states
that are not directly affected by the measurements improve. The performance of the
zero-gain filter with K = 0 for all £ > 0 is also plotted in figures 2.4, 2.5 and 2.6

for comparison.

2.10 Conclusions

In this chapter, we presented an extension of the Kalman filter that constrains
data injection into only a specified subset of state estimates rather than the entire
state estimate. This extension accounts for correlation between the process noise
and the sensor noise. Conditions are given under which the one-step and two-step
forms of the filter are equivalent. Future work will consider reduced-rank square
root formulations of this filter to reduce the computational burden of propagating
the covariance. More general conditions that guarantee the existence of a steady-
state covariance for linear time-invariant dynamics are also of interest. Although we
constrain output injection, the order of the estimator dynamics is equal to the order
of the plant dynamics. In the next chapter, we do not constrain output injection.
Instead, we obtain state estimates of a specific subset of the state by using a reduced-

order model of the plant dynamics.



CHAPTER I11

Reduced-Order Kalman Filtering for
Time-Varying Systems

The previous chapter considered a full-order estimator, that is, the order of
the dynamics of the estimator was the same as the order of the plant dynamics.
In this chapter, we consider a reduced-order estimator for state estimation of linear
time-varying systems with time-varying state dimension. A reduced-order estimator
provides an estimate of a specific subset of the state, and uses a reduce-order model of
the plant dynamics to propagate the state estimates. We assume that a white noise
process affects the plant dynamics and also assume that measurements are corrupted
by sensor noise. In this chapter, we derive the optimal reduced-order estimator using
a finite-horizon approach. The resulting reduced-order estimator involves two covari-
ance update equations, one that resembles the discrete-time Lyapunov equation, and
another that resembles the discrete-time Riccati equation. The results presented in

this chapter can be found in [37].

3.1 Introduction

Since the classical Kalman filter provides optimal least-squares estimates of all of

the states of a linear time-varying system, there is longstanding interest in obtaining

49
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simpler filters that estimate only a subset of states. This objective is of particular
interest when the system order is extremely large, which occurs for systems arising
from discretized partial differential equations [38].

One approach to this problem is to consider reduced-order Kalman filters. These
reduced-complexity filters provide state estimates that are suboptimal relative to the
classical Kalman filter [7,8, 25, 26]. Alternative variants of the classical Kalman filter
have been developed for computationally demanding applications such as weather
forecasting [27,29, 30, 35], where the classical Kalman filter gain and covariance are
modified so as to reduce the computational requirements. A comparison of various
techniques is given in [9].

An alternative approach to reducing complexity is to restrict the data-injection
subspace to obtain a spatially localized Kalman filter. This approach is developed
in [23,31] and discussed in Chapter II.

In this chapter, we revisit the approach of [7,39], which consider the problem of
fixed-order steady-state reduced-order estimation. For a linear time-invariant system,
the optimal steady-state fixed-order filter is characterized by coupled Riccati and
Lyapunov equations, whose solution requires iterative techniques.

We extend the results of [7,39] by adopting the finite-horizon optimization tech-
nique used in [23,24] to obtain reduced-order filters that are applicable to time-
varying systems. The time-varying filter gains are given by recursive update equa-
tions that account for the restricted order of the filter but do not require iterative
solution methods. This technique also avoids the periodicity constraint associated

with the multirate filter derived in [40]. Related techniques are used in [41].
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3.2 Finite-Horizon Discrete-Time Optimal Reduced-Order
Estimator

Consider the system

Tet1 = Ak$k+D17kwk, (321)

yr = Crrg + Do jwy, (3.2.2)

where z;, € R™ y;, € RP*, and wy, € R% is a white noise process with zero mean and
unit covariance. We assume for convenience that Dl,kDg = 0.

We consider a reduced-order estimator with dynamics
Tept1 = AerTer + BerlYk, (3.2.3)
where ., € R"*. Define the combined state variance Qk by
Qr £ iy, (3.2.4)

where 7, € R fij, & ny + ney, is defined by

A Ik
T = . (3.2.5)
Te k
Consider the cost function
T
T2 E [(kakﬂ — Tepr1) (LrTrer — SBe,k+1)], (3.2.6)

where L, € R"#*" determines the subspace of the state x that is weighted. It

follows from (3.2.4) and (3.2.5) that Jj, can be expressed as
Jk = tr (@]H_llffk) y (327)

where R, € R is defined by

LTL, —LT
Re2a| " " (3.2.8)
Ly I
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Note that (3.2.1) and (3.2.3) imply that

[i‘]ﬁ_l = Akfk + [)Lkwk, (329)
where
. Ap 0 . Dy,
A, & , Dy = : (3.2.10)
Be,ka Ae,k Be kDZ k
Therefore,
Q1 = AQrAf + Vig, (3.2.11)
where
- Vik 0
Vik = : (3.2.12)
0 BexVarBly
and

Vi £ Dl,kDEka Vo 2 Doy Dy .. (3.2.13)
Partition Qk as
- Ql,k Q12,k
Q=1 _ i : (3.2.14)
Qlay  Quk

Hence, it follows from (3.2.11) that

Qi1 = ArQui AT + Vi, (3.2.15)
Quaer1 = ArQuiCf BY, + ApQr2 1AL, (3.2.16)
Q2,k+1 = Be i (CkQLkaT + VQk) BeT,k (3.2.17)

+ Ae,kélTQ,kCngk + Be,kaQH,kAzk + Ae,kQQ,kAe,k-
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Therefore, (3.2.7) and (3.2.8) imply that Ji can be expressed as
I (A, Beg) = tr | L (A4QuaAT + Vig ) LE| = 20 | BeaCiQueAT LY |
— 2tr [Ae,kQ;[‘27kAELE:| + tr [B@k (CkQLkaT + ‘/'27/§> BeT,‘k}

+tr [ As Qo AL, | + 20r |40k QT, O BY|

(3.2.18)

Proposition 3.2.1 Assume that Ay and B. minimize Ji,. Then, Aej and Bey,

satisfy
Ae,k@Z,k = (Ly Ay — BeyCy) Q12,k; (3.2.19)
. - N -1
B = (LkAle,k - Ae,leTz,k) Cy (Cle,kCI;F + Vzk) : (3.2.20)
Proof. Setting aiffk =0 and 8%‘1’; = () yields the result. a

Next, we assume that sz is invertible, define )y, Qk € R™ X" by

Qr 2 Q1 — Q124Q51 Qs s Q= Q126Q5 4 Q1 (3.2.21)

%,k c RPkXPk by

Voi 2 CrQrCF + Vo, (3.2.22)
and Gy € R"+*" by
Gr 2 Q7 Q- (3.2.23)

Proposition 3.2.2 Assume that QZ]{; is positive definite and Aey, and Bej min-
imize Ji,. Then, Acy and Bey satisfy
Aok = LAy (1 . Qk(JkTVQj;CQ GT, (3.2.24)

Bes = LiAQrCy Vy (3.2.25)
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Proof. It follows from (3.2.19) that
Acr = (LiAr, — BepCr) Qu2.:Qs .- (3.2.26)

Substituting (3.2.26) into (3.2.20) yields (3.2.25). Finally, substituting (3.2.25) into

(3.2.26) yields (3.2.24). O

Proposition 3.2.3 Assume that A.y and B,y satisfy Proposition 3.2.2. Then,

LiQizge+1 = Qa1 (3.2.27)
Q12,k+1 = Qk+1Lg, (3.2.28)
Qo1 = LiQui1 Ly - (3.2.29)

Proof. Substituting (3.2.24) and (3.2.25) into (3.2.16) and (3.2.17) yields

C~212,k+1 = Ay [Qk + QkC,;fVQj;Cka} AELE, (3.2.30)

Qo1 = LAy [Qk + QkaTVQTleka} Ay Ly (3.2.31)

Pre-multiplying (3.2.30) by Ly, yields Lk@127k+1 = Q27k+1. Using (3.2.21) and LkC~2127k+1 =

Qo v yields Quopi1 = Qe LY and Qo g1 = LiQuii LY. O

Next, define M) € R™*" by
M, 2 Ak (Qk + QkaT‘?Q’_leka) AE, (3.2.32)
and define 74, 7,1 € R™ > by

=Gl y, T =1 — T (3.2.33)

Proposition 3.2.4 Assume that Ay and B.y satisfy Proposition 3.2.2. Then,

2 o . . . .
Tiop1 = The1, that 1s, Tpy1 18 an oblique projector.
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Proof. It follows from (3.2.32) that (3.2.30) and (3.2.31) can be expressed as

Quzks1 = MiLf, (3.2.34)

Qoprt = LpMiLy. (3.2.35)
Hence, (3.2.23) and (3.2.33) imply that
T = My LT (LM LE) ' Ly (3.2.36)

Therefore,

2 _
Ti+1 = Thk+1- ]

Proposition 3.2.5 Assume that A. and B,y satisfy Proposition 3.2.2. Then,

Ter1 Qa1 = Qrr- (3.2.37)
Proof. It follows from (3.2.21) that
Qi1 = Q12,k+1@§,;1€+1Q1T2,k+1- (3.2.38)
Substituting (3.2.34) and (3.2.35) into (3.2.38) yields
Qrs1 = ML} (LML) ™ LM, (3.2.39)

Hence, pre-multiplying (3.2.39) by 7%y and substituting (3.2.36) into the resulting

expression yields

A -1 -1 A
Th1Qrp1 = MyLy (LkMkL;f) LMLy (LkMkL;f) LMy = Q1. O
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Proposition 3.2.6 Assume that A.j and B,y satisfy Proposition 3.2.2. Then,

Qri1 = ArQrAy + Vi — AkaCE%flekaAg

T [AkaA;f v Akao,;Ff/Zj;ckaAg] L (3.2.40)
Qk+1 = Tk+1 [AkaA;f + AkaCE%’_klckaAg] T];F_H, (3241)
That = My LT (LML) ™" Ly. (3.2.42)

Proof. It follows from (3.2.27) and (3.2.31) that
LiOpii LY = Ly [AkaAg + A,Q,CT f/Qj;CkaAg] LT, (3.2.43)
Pre-multiplying and post-multiplying (3.2.43) by G}, and Gy, respectively, yields
T Qra i = it | ARQRAT + AQUCTV; CLQuAT | 7. (3.2.44)
Hence, (3.2.41) follows from Proposition 3.2.5.
Since Qo411 = Qrs1Li, (3.2.30) and (3.2.33) imply that
Tht1 Quat = That [AkaAE + A QrC Vs, CLQu AT | - (3.2.45)
Therefore, (3.2.41) imply that
Tht1 [AkaAE + AkaCkTVQ,_lekaAH = Tht1 [AkaA;f + AkaCkT%TkICkaAE] it
(3.2.46)

Hence, (Qr11 can be expressed as

Qi1 = LQr Ay + AwQrCr Vo) CLQi AL
(3.2.47)
— Ter1L |ARQrAL + AkaCEVszleQkAE] Tiy1l-

It follows from (3.2.15) and (3.2.21) that

Qrr1 = AQLAT + Vig + AQLAT — Qpsr. (3.2.48)
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Therefore, substituting (3.2.47) into (3.2.48) yields (3.2.40).

O

Note that although A, ; and B, ; depend on @127;C and QM, it follows from Propo-

sition 3.2.3 that QM and le can be obtained from @), and @k Hence, it suffices

to propagate Q and Qy using (3.2.40) and (3.2.41), respectively.

Finally, we summarize the one-step reduced-order Kalman filter.

State update:

Gr = (LiQrLy) " Ly Qs

Te 1 = LAy (I — QkC;;F‘N/QT;Ck) GESCe,k + LkAkaCE%Tklyk-

Covariance update:

M,
Tk+1
Qkﬂ
Qr+1

Ay, (Qk + QkC,?%,‘;Cka) Ay,
M LY (LML)~ Ly,
Tht1 [AkaAE + AkaCEVQTlekaAg] Tiets

ArQrAL + Vi — AuQiCy Vy CrQr AL

+Thr1L [AkaAE + AkaC,;FVQTlekaAH Tie11

3.3 Two-Step Estimator

(3.2.49)

(3.2.50)

(3.2.51)
(3.2.52)
(3.2.53)

(3.2.54)

Next, we consider a two-step estimator. The data assimilation step is given by

da __ f f f
Lo = Ce,k‘re,k + De,kykﬂ

(3.3.1)

where 192 € R"* is the reduced-order data assimilation estimate of Lxy and z!, €

R™k is the reduced-order forecast estimate of x. The forecast step or physics update

of the estimator is given by

f _ Ada _.da
‘re,kJrl - Ae,kxe,k‘

(3.3.2)
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First, we define the combined state and forecast estimate covariance @Qf € R™*7k

and the combined state and data assimilation estimate covariance Q% € R by

QL = & [a(F)T], Q2 ¢ [aRa)T], (3.3.3)
where 7§, 7® € R"™" are defined by
T Tk
il & R — : (3.3.4)
l‘gk xge;c
Define the data assimilation cost by
T2 e (L — o) (Lyax — 283)] (3.3.5)
Hence, (3.3.3) implies that
Jd = tr(QfRy), (3.3.6)
where Ry, is defined by
. LfL, —LI
S " (3.3.7)
Ly 1
It follows from (3.2.1), (3.3.1), and (3.3.4) that
where Al € R™*™ and D{k € R™*? are defined by
A I 0 A 0
exCr Cog Dy Do
Therefore,
ALQLAY) (D))" (3.3.10)
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Hence, J3 can be expressed as

g = o [ (ALQLADT + DL(DL)T) R (3.3.11)
Partition Qi as
- Nr Qlax
f= ’ ’ (3.3.12)

Qhal”
so that substituting (3.3.9) into (3.3.11) yields
T = o [ L@t LE | = 200 [ D, Ch@l L LE] = 2tr | L4Ql(CEL)T |
o+ tr [ @8(CL)T] + 200 | DE Lt (CEYT] (8:3:13)
+tr [Dik (Ck@gkcl;r + V2k:> (ng)T} -
The following result characterizes Cf , and D, that minimize J{*.

Proposition 3.3.1 Assume that CL, and Df, minimize J{*. Then, CL, and

Dt & satisfy

Cefrk@gk = (L — D, kck) 12,k (3.3.14)
f ~f £ ~f T T ~¢ T —1
D = <LQ1,k = Cor(Qar) ) Cy (CkQLka + Vm) ) (3.3.15)
Proof. Setting 8Cf =0 and an = ( yields the result. O

Next, we assume that Qlk is invertible and define Qf, QL € R™*™ by

= Nﬁ,k —Qly k(QQ (o) 12, h
(3.3.16)
Q12 #(Qh ") Q) 12, A
Next, define Vka; € RPXPk by
Var £ CLQLCY + Vi (3.3.17)

Also, define G € R+ by

£ (Q50) Q)™ (3.3.18)
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Proposition 3.3.2 Assume that C’;k and Di’k minimize J3* and assume that
ng 1s positive definite. Then,
Chi = Le(I-QiC{(Va) "' Cr) (G, (3.3.19)

Dl = LQLOT(VE)™ (3:3.20)
Proof. It follows from (3.3.14) that
CLy = (Li — DL, Cr) (G (3.3.21)
Substituting (3.3.21) into (3.3.15) yields

Dfe,k - [Lkég Lka k( ) ( 12, k)TCk

(3.3.22)
+ Di,kawa,k(Qg,k)il(ng,k)TCl;r] (Cin,kaT + V2k>

-1

Therefore, (3.3.20) follows from (3.3.16) and (3.3.17). Finally, substituting (3.3.20)
into (3.3.21) yields (3.3.19). O

Next, partition Q%a as

M Q%

da — ’ S (3.3.23)
( Nda )T Nda
12,k 2,k

Proposition 3.3.3 Assume that 3% is given by (3.3.1), and C ;. and DY, satisfy

(3.3.19), (3.3.20). Then,

W = Qg (3.3.24)
M = (QL+ QIO GQL) LT, (3.3.25)
Wi = Lio(Qh+ Il () CQL) L. (3.3.26)

Proof. It follows from (3.3.10) that Q¢ %= flk and

€ k= = Qf, k( )T + Qi,kCE(Di,k)T- (3.3.27)
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Substituting (3.3.19) and (3.3.20) into (3.3.27) yields (3.3.25). Similarly, it follows

from (3.3.10) and (3.3.23) that

_Cék(xk( ) +Cf QL k)TCkT(Di,k)T

(3.3.28)
+ Dfe,ka@fm,k(Cé,k)T + Di,k (CkégkaT + V2,k) (D(fe,k)T‘
Finally, substituting (3.3.19) and (3.3.20) into (3.3.28) yields (3.3.26). O
Next, define Q% and Q% b
2 QN - QB AQ3) (@5
(3.3.29)

B Q15 (Q0%) T (@15,)"

Corollary 3.3.1 Assume that C’fk and D! ek Satisfy Proposition 3.53.2. Then,

LkQ12 k= 2 oo 12 k= QdaLT 2 %= LdeaLT (3.3.30)

Next, define G¢{* by

G £ (Q3%) Q)™ (3.3.31)
Also, define Mg by
Mi* £ Q)+ QRO (Va)) ' G} (3.3.32)
and define 7 and 732 by
A (G Ly, T AT -1 (3.3.33)

Proposition 3.3.4 Assume that C{, and D}, satisfy Proposition 3.3.2. Then,

T2 is an oblique projector.

Proof. It follows from (3.3.25) and (3.3.26) that

e =M”LL, Q%% = LM *Ly. (3.3.34)
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Substituting (3.3.34) into (3.3.31) yields
Gl = (LMPLT) ™ LM, (3.3.35)
Therefore, it follows from (3.3.33) that
e = MPLT (LM LT) ™ Ly, (3.3.36)
Hence, (70#)? = . O
Proposition 3.3.5 Assume that C’;k and D;k satisfy Proposition 3.3.2. Then,
rdaQde — Qda, (3.3.37)
Proof. It follows from (3.3.29) and (3.3.34) that
— M LT (L MPLY) ™ LM, (3.3.38)
Hence, (3.3.37) follows from (3.3.36). O

Proposition 3.3.6 Assume thatx 1 is given by (3.3.1), and C’fk and D! ok Satisfy

Proposition 3.3.2. Then,

Qf = 7 (Qf + QLCF (V) ' Gh@l ) ()", (3.3.39)

= Q) QT (V) GuQh 7t (Qh+ QO (V) ' GhQL) (i)™ (3:3.40)
Proof. It follows from (3.3.26) and (3.3.30) that
Ly@Q L = Ly (@2 + Q0 (sz,k)‘lckac) LT, (3.3.41)

Pre-multiplying and post-multiplying (3.3.41) by (G$*)T and G§2, respectively, yields

(3.3.39).
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Next, it follows from (3.3.25), (3.3.30), and (3.3.33) that
Qi =7 (@ + QO Vi) )

Therefore, Proposition 3.3.4 and (3.3.39) imply that

i (QF + QLCT (Vi) 1oL ) = i (Qf + QLT (Vi) ' Chh) ()™

Hence, Q* can be expressed as

2 =Qh + QLOT(VE) T CuQh — it (Qh + QECT(VE) T Chh) (i)™

Finally, note that (3.3.24) implies that

da _ Af Ada

= Wig — Wi -

Substituting (3.3.44) into (3.3.45) yields (3.3.40).

Next, we define the forecast cost Ji by
JLEE |:(ka]€+1 — 9327“1) (Lrxrhsr — x£’k+1)T] .
Hence, it follows from (3.3.3) that
JE = tr ( ~;+1Rk) .
It follows from (3.2.1) and (3.3.2) that
7 = APEE 4+ Dy,

where Af* € R and D3 € R™>? are defined by

(3.3.42)

(3.3.43)

(3.3.44)

(3.3.45)

(3.3.46)

(3.3.47)

(3.3.48)

(3.3.49)
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Therefore,
Qi = AP (AT + DI (D)™ (3:3.50)
Substituting (3.3.50) into (3.3.47) and using (3.3.49) yields

I =tr [Lk (Ak da AT 4y, k) LT] . [LkAk da (Ada)T } -
— tr [A%(Qig, ) TATLY| + tr [A%.0% (%))

Proposition 3.3.7 Assume that Adk minimizes Jt, and assume that Q3 % 1S pos-

itiwve definite. Then
A% = L A(G)". (3.3.52)

Proof. Setting % = 0 yields the result. O
Assume that Adk is given by (3.3.52). Then the following result concerns rela-

tionships among the covariances Qt, et 1 Qb g1, and QEH.

Proposition 3.3.8 Assume that A%} satisfies (3.3.52). Then,

Lk@izkﬂ QQ k41 Q12 k1 — Qk+1Lg7 Q2 k41— Lk@fﬁng- (3-3-53)
Proof. It follows from (3.3.49) and (3.3.50) that
Diagerr = ARQ%5 (A5 (3.3.54)
Substituting (3.3.52) into (3.3.54) yields
~§2,k+1 = A QALY (3.3.55)
Similarly, (3.3.49) and (3.3.50) imply that

Q1 = ALOIH(A)T (3.3.56)
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Substituting (3.3.52) into (3.3.56) yields
Qb o1 = LiAQ AL LY. (3.3.57)

Therefore, (3.3.55) and (3.3.57) imply that LQ', ., = Qb ..
Assuming @;Hl is invertible, Lkéﬁlkﬂ(égkﬂ)_l = I. Therefore, it follows from

(3.3.16) that Qfy,,; = QL LT and Q% = LyQ% LT O

Next, define M} by
M2 AQ¥AT. (3.3.58)
Also, define 7{ and 7§, by
& (G Ly, T 2T -1 (3.3.59)

Proposition 3.3.9 Assume that A%, satisfies (3.3.52). Then, 7;_, is an oblique

projector, that is, (7{,,)* = Thy ;.
Proof. It follows from (3.3.55), (3.3.57), and (3.3.58) that
~§2,k+1 = MLy, ng = LMLy (3.3.60)
Substituting (3.3.60) into (3.2.23) yields
i = MELT (LeMELT) ' Ly (3.3.61)
Therefore, (71,,)* =71, O
Proposition 3.3.10 Assume that A%, satisfies (3.3.52). Then,

Tlﬁ—l—l@i—l—l = QiH- (3.3.62)
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Proof. Note that (3.3.16) and (3.3.60) imply that
QL = MELT (L MELT) ™" LM, (3.3.63)
Hence, (3.3.62) follows from (3.3.61) and (3.3.63). O

Proposition 3.3.11 Assume that A%}, satisfies (3.3.52). Then,

QZH = ka:+1AkQ2aAg(T/£+1)T> (3.3.64)

Qb = AQPAT + Vig + 78,1, (AkQ‘gaA}f) ()T (3.3.65)
Proof. It follows from (3.3.53) and (3.3.57) that
LiQlr L = LiAvQ* AY Ly (3.3.66)

Pre-multiplying and post-multiplying (3.3.66) by (G%)T and G%, respectively, and

using Proposition 3.3.10 yields (3.3.64). Note that (3.3.53) and (3.3.55) imply that
LiQh,, = L ALQR AT (3.3.67)
Pre-multiplying (3.3.67) by (Gi_;)" and using (3.3.62) yields
T ARQRAY = T QR AR ()T (3.3.68)
Therefore, Qz 41 can be expressed as
Qi = AQAY — T AV AY (74401 (3.3.69)
It follows from (3.2.1) and (3.3.16) that
Qhi1 = AkQL LAY + Vi — Qlir. (3.3.70)
Therefore, substituting (3.3.24) into (3.3.70) yields

Qhr = AQVGAY + Vig — Qfyy. (3.3.71)
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Finally, substituting (3.3.69) into (3.3.71) yields (3.3.65). O
The two-step reduced order filter can be summarized as follows.

Data assimilation step:

8% = Li (I = QO (Vi) 7' Ck) (GL) "l + LeQLCY (Vag) ™ ke (3.3.72)
Qf = 7 (Qf + QLCT (VE) ' Chl) ()T, (3.3.73)
= Qi — QiCr (Vo) ' Cr@Q, + it (Qk +QLCY (Vo)™ 1Cka) ()", (3.3.74)

= MPLT (LML) ™ Ly, (3.3.75)
M;* = Q) + QLY (V) ' Ci@Q). (3.3.76)

Forecast step:

Tepin = LeAe(GRY) 285, (3.3.77)
Qhi1 = Th AQR AL (Th41) " (3.3.78)
Qr1 = AQWAL + Vig + Ty (AkQﬁaAT) (Te1) 7, (3.3.79)
TI£+1 = M; Ly (LleﬁL;f)_l Ly, (3.3.80)

ML = A QAT (3.3.81)

3.4 Asymptotically Stable Mass-Spring-Dashpot Example

We consider a zero-order hold discretized model of the mass-spring-dashpot struc-
ture consisting of 10 masses shown in Figure 3.1 so that n = 20. For i =1,..., 10,
m; = 1.0 kg, while, for j =1,...,11, k; = 1.0 N/m and ¢; = 0.05 Ns/m. We set the
initial error covariance Fy = 100/ and assume that V;, =1, Vo, = I for all k£ > 0.

Let ¢; denote the position of the ith mass so that

A . .
T=1q¢q ¢ - qo o |- (3-4-1)
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w1 Wa W,
ky T ~ k10 k1,
A% A VA A~

Figure 3.1: Mass-spring-dashpot system

We assume that measurements of position and velocities of mq, ..., my4 are available
so that Cj = [Ig Ogx12] for all & > 0. Next, we obtain state estimates from the
reduced-order estimator with n, = 8. For the subspace estimator, we consider a
change of basis so that the system has a block upper-triangular structure. Recall
that the costs for the estimator is defined by (3.2.6) with R, = I. The ratio of
the cost J, to the best achievable cost when a full-order Kalman filter is used is
shown in Figure 3.2. As expected, the performance of the reduced-order filter is
never better than the full-order Kalman filter (indicated by ratios greater than 1).
Next, we assume that measurements of positions and velocities of mq,...,mg are
available so that Cy = [I16 O16x4] for all & > 0. The performance of the reduced-
order estimator with n, = 16 is shown in Figure 3.2. The objective in both the cases
is to obtain estimates of Lxy, where for i = 1,... ,ne, j =1,...,n, the (i, j)th entry
of L € Rmex(=n¢) ig given by

1, if 1 =7,

Liy = (3.4.2)

0.05, else.

The plots also demonstrate that the one-step and two-step estimators are not equiv-

alent.
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14
T proj. (one-step), ne=8
— — — T proj. (two-step), ne:8
13l T proj. (one-step), ne:16 |
= = =T proj. (two-step), ne=16

opt

A ]

I

11

0 100 200 300 400 500
k (time index)

Figure 3.2: Ratios of J to the corresponding full-order cost when the reduced-order
estimator is applied to the asymptotically stable mass-spring-dashpot
system for n, = 8,16. The plots demonstrate that the one-step and
two-step estimators are not equivalent.
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3.5 Conclusion

Using the finite-horizon optimization, an optimal reduced-order estimator was
obtained in the form of recursive update equations for time-varying systems. These
estimator is characterized by the 7 projector, in the recursive update equations.
Moreover, we derived one-step and two-step update equations for the reduced-order
estimator. When the order of the estimator is equal to the order of the system,
the oblique projection becomes the identity and the estimator is equivalent to the
classical optimal recursive full-order filter. We demonstrated the performance of the
reduced-order estimator for an asymptotically stable lumped-structure. Since the
reduced-order estimator does not reduce the computational requirements of prop-
agating the error covariance, we introduce an estimator in the next chapter that
reduces the computational requirement of the full-order estimator by propagating
a few columns of the square root of the error covariance instead of the entire error

covariance matrix.



CHAPTER IV

Cholesky-Based Reduced-Rank Square-Root
Kalman Filtering

Although, the reduced-order estimator in the previous chapter used a reduced-
order model to update the state estimates, the full-order covariance had to be up-
dated to obtain the optimal estimator gain. In this chapter, we consider a reduced-
rank square-root Kalman filter based on the Cholesky decomposition of the state-
error covariance. This filter propagates only a few columns of the square root of
the state-error covariance. Specifically, the columns are chosen from the Cholesky
factor of the state-error covariance. We compare the performance of this filter with
the reduced-rank square-root filter based on the singular value decomposition. The

results in this chapter are presented in [42].

4.1 Introduction

The problem of state estimation for large-scale systems has gained increasing
attention due to computationally intensive applications such as weather forecasting
[17,38], where state estimation is commonly referred to as data assimilation. For
these problems, there is a need for algorithms that are computationally tractable

despite the enormous dimension of the state. These problems also typically entail

71
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nonlinear dynamics and model uncertainty, although these issues will not be dealt
with in this chapter.

One approach to obtaining more tractable algorithms is to consider reduced-
order Kalman filters. These reduced-complexity filters provide state estimates that
are suboptimal relative to the classical Kalman filter [7,8,25,26,39]. Alternative
reduced-order variants of the classical Kalman filter have been developed for compu-
tationally demanding applications [27,29, 30, 35], where the classical Kalman filter
gain and covariance are modified so as to reduce the computational requirements. A
comparison of several techniques is given in [9].

A widely studied technique for reducing the computational requirements of the
Kalman filter for large scale systems is the reduced-rank filter [21,28,43,44]. In this
method, the error-covariance matrix is factored to obtain a square root, whose rank
is then reduced through truncation. This factorization-and-truncation method has
direct application to the problem of generating a reduced ensemble for use in particle
filter methods [22, 45].

Reduced-rank filters are closely related to the classical factorization techniques
[46,47], which provide numerical stability and computational efficiency, as well as a
starting point for reduced-rank approximation.

The primary technique for truncating the error-covariance matrix is the singular
value decomposition (SVD) [21,22,28,43-45], wherein the singular values provide
guidance as to which components of the error covariance are most relevant to the ac-
curacy of the state estimates. Approximation based on the SVD is largely motivated
by the fact that error-covariance truncation is optimal with respect to approximation
in unitarily invariant norms, such as the Frobenius norm. Despite this theoretical

grounding, there appear to be no criteria to support the optimality of approximation
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based on the SVD within the context of recursive state estimation. The difficulty is
due to the fact that optimal approximation depends on the dynamics and measure-
ment maps in addition to the components of the error covariance.

In this chapter, we begin by observing that the Kalman filter update depends on
the product Cy Py, where ()}, is the measurement map and P is the error covariance.
This observation suggests that approximation of Cj P, may be more suitable than
approximation based on Py alone.

To develop this idea, we show that approximation of Cj P} leads directly to trun-
cation based on the Cholesky decomposition. Unlike the SVD, however, the Cholesky
decomposition does not possess a natural measure of magnitude that is analogous
to the singular values arising in the SVD. Nevertheless, filter reduction based on the
Cholesky decomposition provides state-estimation accuracy that is competitive with,
and in many cases superior to, that of the SVD. In particular, we show that, in spe-
cial cases, the accuracy of the Cholesky-decomposition-based reduced-rank filter is
equal to the accuracy of the full-rank filter, and we demonstrate examples for which
the Cholesky-decomposition-based reduced-rank filter provides acceptable accuracy,
whereas the SVD-based reduced-rank filter provides arbitrarily poor accuracy.

A fortuitous advantage of using the Cholesky decomposition in place of the SVD is
the fact that the Cholesky decomposition is computationally less expensive than the
SVD, specifically, O(n®/6) [48], and thus an asymptotic computational advantage
over SVD by a factor of 12. An additional advantage is that the entire matrix
need not be factored; instead, by arranging the states so that those states that
contribute directly to the measurement correspond to the initial columns of the
lower triangular square root, then only the leading submatrix of the error covariance

must be factored, yielding yet further savings over the SVD. Once the factorization
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is performed, the algorithm effectively retains only the initial “tall” columns of the

full Cholesky factorization and truncates the “short” columns.

4.2 The Kalman filter

Consider the discrete-time system

Tpa1 = Ak.fk + kak7 (4.2.1)

Yr = Crry + Hyvg, (4.2.2)

where z, € R", w, € R%, 4, € RP, v, € R*, and Ay, G, Oy, and H;, are known
real matrices of appropriate sizes. We assume that wy and v, are zero-mean white
processes with unit covariances. Define Q) = GkGE and R £ HkaT and assume
that Ry is positive definite for all £ > 0. Furthermore, we assume that wy and v
are uncorrelated for all £ > 0. The objective is to obtain an estimate of the state x
using the measurements yy.

The Kalman filter [5,6] provides the optimal minimum-variance estimate of the
state x;. The Kalman filter can be expressed in two steps, namely, the data assimi-
lation step, where the measurements are used to update the states, and the forecast
step, which uses the model. These steps can be summarized as follows:

Data Assimilation Step
Ky, = PiC{ (CLPLCY + Ry) ™, (4.2.3)

P{ = P — PLCT(CLPLCT + Ry) ' C P, (4.2.4)

ol = 2f + Kip(ye — Cral). (4.2.5)
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Forecast Step

Thy1 = ApTi, (4.2.6)

Pl = AL PPAL + Qy. (4.2.7)

The states xf, and 22 are the forecast and data assimilation estimates of the state

Tk, while the matrices PL € R™" and Pg® € R™ " are the state error covariances,

that is,
Py = Elep(er)], P = Elei(ei)]; (4.2.8)
where
eb 2y —al el Loy — g2 (4.2.9)

Next, we consider two reduced-rank square-root filters for state estimation that
propagate approximations of a square-root of the error covariance instead of the

actual error covariance.

4.3 SVD-Based Reduced-Rank Square-Root Filter

Note that the Kalman filter uses the error covariances Pg® and Pf, which
are updated using (4.2.4) and (4.2.7). To reduce the computational requirements,
we consider a filter that uses reduced-rank approximations of the error covariances.
Instead of updating the error covariances, we propagate predicted error covariances
IBSd,‘;‘ and Ps ,, using reduced-rank approximations Psd,‘j and Psf p- The reduced-rank
approximations are chosen so that rank(ps‘f,j) < n and rank(ﬁsi x) < mn, and such that
| P42 — Pd||p and || Pf, — Pf||r are minimized. To achieve this, we perform a singular

value decomposition on the predicted error covariances at every time step.
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Let P € R™™"™ be positive semidefinite, let o; > --- > o0, be the singular values
of P, and uq,...,u, € R™ be the corresponding orthogonal singular vectors so that,
fori=1,...,n,
and

- 1, if 1=,
uu; = (4.3.2)
0, else.

Next, define U, € R"*? and X, € R by

01

@é[m.nuJ,mé - . (4.3.3)

Oq

With this notation, the singular value decomposition of P is given by
P=UXUT, (4.3.4)

where U, is orthogonal. For ¢ < n, let ®syp(P,q) € R"*? denote the SVD-based

rank-q approximation of a square-root of P given by
Dsvp(P,q) £ UqE};/Q- (4.3.5)

Note that SST, where S & ®gyp (P, q), is the best rank-g approximation of P in the

Frobenius norm. Specifically, we have the following result.

Lemma 4.3.1 Let P € R™™" be positive semidefinite, and let o1 > --- > o, be

the singular values of P. If S = ®gyp(P,q), then

min [P —Pllp=|P—SST|E =0, + -+ 02 (4.3.6)
rank(P)=q
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Proof. See [36]. O
The data assimilation and forecast steps of the SVD-based rank-g square-root
filter are given by the following steps:

Data Assimilation step

R R -1

Ko = PGy (Ckpsf,kckT + Rk) ; (4.3.7)
~ o ~ A -1 ~

PS(?Z = Psf,k - Psf,ch];F (Ckpst:kc];r + Rk) Ckpsfyk, (438)

aly = xly+ Kolyr — Crxly), (4.3.9)

Forecast step

g = Aralh, (4.3.10)
Plip = APRAT+Qu, (4.3.11)
where
Pl 2 SLUS5)T, Pl & SS(SE)T, (4.3.12)
St 2 @svn(Ply.q), S& £ dgyp (P, q), (4.3.13)

and P!, is positive semidefinite.
Next, define the forecast and data assimilation error covariances P!, and P of

the SVD-based rank-q square-root filter by
Pl & & [(w —agy)(xn —agy) '], P = € [(an — a83) (wp — 253)7] . (4.3.14)
Using (4.2.1), (4.3.9) and (4.3.10), it follows that

Ps(,ili = (I - KS,ka)Psf,k(I - Ks,kck)T + Ks,kRkK;I;ka (4315)

Pop = AwPRAL + Q. (4.3.16)
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Note that ﬁsfk and Psz are predicted error covariances and not covariances of
the state error. Specifically, even if 15;0 = Pf, it does not necessarily follow that
]—Zf , = Pffor all k& > 0. Furthermore, since Ky # K}, the SVD-based rank-q
square-root filter is a suboptimal filter. However, under certain conditions, the SVD-
based rank-q square-root filter is equivalent to the Kalman filter. Specifically, we

have the following result.

Proposition 4.3.1 Assume that ]ssfk = P! and rank(P{) < q. Then, K, = Ky,

15:,1/?:L = P*, and PSch—i-l =Py
Proof. Since rank(ﬁ;k) < ¢, it follows from Lemma 4.3.1 that

. ~ ~ T ~

Pl =58 (85) = Pl (4.3.17)
Hence, it follows from (4.3.7) that K = Kj. Furthermore, it follows from (4.2.4),
(4.3.8), and (4.3.17) that

P = pie. (4.3.18)

Since rank(P{) < g, it follows from (4.2.4) that rank(P3*) < ¢ and hence (4.3.18)
implies that rank(ﬁs‘?]i) < ¢q. Therefore, Lemma 4.3.1, (4.3.12) and (4.3.13) imply

that

Ada _ Gda (Gda)T _ pd

Pl =55 (5%) = P (4.3.19)
Hence, it follows from (4.3.18) and (4.3.19) that PSC}Z = Pda, and therefore (4.2.7)

and (4.3.11) imply that ]sz,kﬂ =Pl O

Corollary 4.3.1 Assume that xf, = xf, Psf,o = P!, and rank(P}) < q. Further-
more, assume that, for all k > 0, rank(Ay) + rank(Qx) < q. Then, for all k > 0,

— £ f
Kk = Ky and xg; = xy.
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Proof. It follows from (4.2.4) and (4.2.7) that rank(Pf) < ¢ for all k. Hence,
using Proposition 4.3.1 and induction, it can be shown that K = K}, for all k£ > 0.
Therefore, (4.2.5), (4.2.6), (4.3.9) and (4.3.10) imply that 2{, = z} for all k > 0. O

4.4 Cholesky-Factorization-Based Reduced-Rank Square-Root
Filter

The Kalman filter gain K, depends on a particular subspace of the error
covariance. Specifically, K} depends only on the correlation Cy P{ between the error
in the measured states and the unmeasured states. We thus have the following

observation.

Lemma 4.4.1 Assume that P, € R™" is positive semidefinite. Partition Py, and

Pl as
~ Pq,k ( Aaq,k)T Pfk (P*f k)T
P=| " ! L Pl=1| 1 “ , (4.4.1)
qu,k Q»k ququ Pg,k‘

where Py, PL, € R4 and Py, PL, € R, assume that Cy has the form
@—bé”, (4.4.2)
and define Ky, by
Ky 2 B.CY(CLP.CE + Ry) ™ (4.4.3)

Furthermore, let lqu <pqqk>T ] _ {quk (Pf )T } Then, f(k = K.

qq,k

Proof. It follows from (4.4.1) and (4.4.2) that

Cp Py = { P (Pir)™ } , CvP{ = {qu,k (Pags)” 1 , (4.4.4)
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and
Cvb.CF = By, CWPLCY = PL,. (4.4.5)
Hence, it follows from (4.2.3) and (4.4.3) that K, = K. O

Next, we consider a filter that updates the predicted error covariances PS% and
]E’ka using reduced-rank approximations Pcdz and Pcfk such that rank(ﬁf}i) < n and
rank(P!;) < n, and such that ||Cy (P& — P&)||p and ||Cx(P, — Pf,)|r are mini-
mized. To achieve this, we perform a Cholesky factorization of the predicted error
covariances at every time step.

Let P € R™™ be positive definite. The Cholesky factorization yields a lower

triangular Cholesky factor L € R™*" that satisfies
LL" = P. (4.4.6)
Partition L as
L:{L1 Ln:|’ (4.4.7)
so that truncating the last n — ¢ columns of L yields the rank-¢g Cholesky factor
Penon(P,q) £ { L - L, } e R™ 9, (4.4.8)

Lemma 4.4.2 Let P € R™" be positive definite, define S = ®cuow(P,q) and

P23ST and partition P and P as

P, Py . P, Pg
pP= S I - oo (4.4.9)
(Pa)™ Py (Pa)" Py
where P,, P, € R and P;, P; € R”9. Then, { b Py } = { P, P, }
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Proof. Let L be the Cholesky factor of P. Since L is lower triangular, L;L] has

the structure

0;— Ogi—1)x(n—i
LLT = ' (ot (4.4.10)
O(n—it1)x(i-1) X
and therefore
i 0, Ogxg
SoLrf=| 7 T (4.4.11)
i=q+1 Ozxq Y3
where Y; € R7%9. Since
P=> LL], (4.4.12)
=1
it follows from (4.4.8) that
P=P+ Y LL. (4.4.13)
i=q+1
Substituting (4.4.11) into (4.4.13) yields P, = P, and Pz = Pyg. O

Lemma 4.4.2 implies that, if S = ®cpor (P, q), then the first ¢ columns and rows
of SST and P are equal.

The data assimilation and forecast steps of the Cholesky-based rank-q square-root
filter are given by the following steps:

Data Assimilation step

~ ~ -1
Ko = PLCY (CkPCf,kC,? +Rk> : (4.4.14)
. . . R -1 .
P& = Pcf,k - PékC’,;f (Ckpcf,kcl;r + Rk) Ckpék, (4.4.15)
vl = wi+ Kew(ye — Coaly). (4.4.16)

Forecast step

xf:,k;+1 = Akxff‘,;, (4.4.17)

Pliy = APRAT+Qu, (4.4.18)
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where
Hf A& of of T Hpda A Gda [ Qda T
P2 G <Sk> . Pl 2 gaa (Sk> , (4.4.19)
Sty & Ponon(Ply, ), S5 £ cnon(Ph, q), (4.4.20)

and P!, is positive definite.
Next, define the forecast and data assimilation error covariances P!, and P32

respectively, of the Cholesky-based rank-¢q square-root filter by
Pl 2 & [(wn —aey)(wp —agy) ] Pop 2 € [(wn — 2l (wn — 23)"], (4.4.21)

that is, P!, and P are the error covariances when the Cholesky-based rank-g square-

root filter is used. Using (4.2.1), (4.4.16) and (4.4.17), it can be shown that

sz = (I- KC,ka)PCf,k(I — K, Cp)T + KMRngk, (4.4.22)

Pl = APRAL+ Q. (4.4.23)

Again, like the SVD-based rank-q square-root filter, Pcfk and 153,3 are predicted
error covariances and not covariances of the state error. Hence, even if Pcfyo = P the
Cholesky-based rank-q square-root filter is suboptimal and generally not equivalent
to the Kalman filter. However, the following result shows that, in certain cases, the

Cholesky-based rank-q square-root filter is equivalent to the Kalman filter.

Proposition 4.4.1 Assume that p = q, Cy has the form

Cr = { I, 0 } , (4.4.24)
partition P{ and 15;,{: as
PP T Pf e (P, )"
A e e (4.4.25)
£ £ £ £
Pﬁq,k Pq,k Pc,éq,k Pcﬁ,k
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C,

£ pf axq £ pf axq Df Dt =
where P, P, € R and P, P2 € RT* and assume that [ Pl Pk

{ quk pﬁqu ] Then, K. = Ky. If, in addition, Ay, has the form
A 0
A= " : (4.4.26)
Agqr Agk
where Ay, € R and Agy, € R, then pcf,q,k—i-l Pcfﬁq,kﬂ } N [ qu,k+1 Pﬁfq,kJrl ] '
Proof. Partition Pcfk as
. Plow (Piga)”
Py = o ak : (4.4.27)
Pf Pf
Pc,ﬁq,k Pc,q,k

where qu r € R7*%is positive semidefinite and f’af x € R7%4. Tt follows from Lemma 4.4.2

and (4.4.20) that

Pcf,q,k = Pcf,q,kv Pcf,ﬁq,k = pg,aq,k' (4.4.28)
Therefore, it follows from Lemma 4.4.1 and (4.4.14) that K. = K.
Next, partition P3* as
Pda (Pga )T
Pla=| "t TR (4.4.2)
da da
ik Tak

where P € R?4 is positive semidefinite and Pg% € R¥4. Tt follows from (4.2.4)

that
pPd = P - PL(Ph o+ Ry)TIPE, (4.4.30)
qua:k = Pﬁfq,k_Pafq,k(P;,k+Rk)_1P;,k- (4.4.31)
Now, partition 1532 and ]552 as
o [ o] L T R e
| e ST gy | T Ty
7 ~da Nda, ’ pda "da
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where P% P € R?*? are positive semidefinite and Pg%, Po% € R7*7. Therefore, it

follows from (4.4.15), (4.4.24), (4.4.27), and (4.4.32) that

Psg,k = P(}:q,k - Pcf,q,k(Pcf,q,k: + sz)_lpi%k, (4.4.33)
qu,k - Pcf,aq,k: - Pcf,ﬁq,k(Pcf,q,k + Rk)_lpcf,q,k. (4.4.34)

Hence, comparing (4.4.30) with (4.4.33) and (4.4.31) with (4.4.34), and using

~ ~ T . T
[ PCf,q,k (Pcf,ﬁq,k> :| - |: qu,k: (Pﬁfq,k) :| (4435)
and (4.4.28) yields

pda _ pda Hda
Pc,q,k - Pq,k’ Iy

= pd (4.4.36)

c,qq,k qq,k*

Moreover, since Sg‘;; = CDCHOL(]SSa, q), it follows from Lemma 4.4.2 that

Pl = By, Pl = P& (4.4.37)
Therefore, (4.4.36) implies that
Pegr = Ponr Peggr = Pigs- (4.4.38)
Now assume that Ay has the form (4.4.26). Then (4.2.7) implies that
qu,k+1 = Aq,kpnggk + Qg ks (4.4.39)
ngb’f-i-l = A@kpﬁdq%kAik + Aﬁq,kpngzk + Qqq,k, (4440)
where (. has entries
Qi (Qggr)”
Q=1 " . (4.4.41)
Qaer  Qan
Furthermore, it follows from (4.4.18), (4.4.26) and (4.4.32) that
]Scf,q,kJrl = Aq,kpfg,k/l;r,k + Qg ks (4.4.42)
P, qoiet Agi Pl AT+ AP AT+ Qaon. (4.4.43)
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Therefore, (4.4.38), (4.4.39), (4.4.40), (4.4.42), and (4.4.43) imply that jf’f%kﬂ =

C,

£ pt _ pf
Poppr and Fog oy = B O

q C, qq,k+1°

Corollary 4.4.1 Assume that Cy, and Ay, are of the form (4.4.24) and (4.4.26).

pf _ Pf

¢,q9,0 = ~qq,0»

Let P!, = Pf

. 2.0 and :cﬁyo = :cg. Then, for all k > 0, K. = K, and

£ f
hence x ) = xj.

Proof. Using induction and Proposition 4.4.1 yields K., = K}, for all £ > 0.
Hence, it follows from (4.2.5), (4.2.6), (4.4.16), and (4.4.17) that zf, = 2} for all

k> 0. O

4.4.1 Linear Time-Invariant Systems

Next, we consider linear time-invariant systems and hence assume that, for all
k>0 A, =A C,=C,G, =G, H, = H, Q, = Q, and R, = R. Next, we assume
that p < n and (A, C) is observable so that the observability matrix O € RP**"

defined by

CA
02 (4.4.44)

A

has full column rank. Next, without loss of generality we consider a basis such that

I,
O = . (4.4.45)

O(p—l)nxn

Therefore, (4.4.44) and (4.4.45) imply that, for every positive integer ¢ such that

p < n,

CA™! = (4.4.46)

Opxp(i—l) ]p OpX(n—pi) ’
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Next, we present a result that shows that the Cholesky-based rank-q square-root
filter is equivalent to the Kalman filter for a specific number of time steps. To do

this, we first present the following results.
Lemma 4.4.3 Let be a positive integer, and for all k > 0, let P, € Rmxn satisfy
CA™ P = CAPAT — CAP.CT(CP,C 4+ R)'CP,AT + CAT'Q. (4.4.47)
Assume that CA'P, = CA'Pf and CP, = CPf. Then, CA™ P,y = CAT'Pf, .
Proof. Substituting (4.2.4) into (4.2.7) yields
Pl = AP{AT — AP.CT(CP{C" + R)'CP{ AT + Q. (4.4.48)

Pre-multiplying (4.4.48) by C' A*! and comparing the resulting equation with (4.4.47)

yields the result. O

Lemma 4.4.4 Assume that P, € R™" satisfies (4.4.47) for all k > 0 and i =
1,...,r. Let CAT'Py = CATIPE fori = 1,...,r. Then, for all k = 0,...,r,

CP, = CPL.

Proof. It follows from Lemma 4.4.3 that, for : = 0,...,7r — 2, CAP, = CA'PL.

The result follows from repeated application of Lemma 4.4.3. O

Proposition 4.4.2 Let r > 0 be an integer such that 0 < g = pr < n. Further-

more, assume that ]5;0 = Bl. Then, for allk=0,...,r, K. = K. If, in addition,

£ _ £ f
T = Ty, then for allk =0,....r, x ;, = z}.

Proof. It follows from Lemma 4.4.2 and (4.4.46) that, forallk > Oandi=1,...,r,

C«Ai—lpék _ CAi_lpcf,k:’ CAi—lpgz — CAi—lpgz' (4.4.49)
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Note that
Pl =AP2AT 1+ Q. (4.4.50)
Multiplying (4.4.50) by C A1 yields
CAT'PL, = CAPRAT + CAQ. (4.4.51)
Substituting (4.4.49) into (4.4.51) yields
CAT'PL, = CAP®RAT + CAQ, (4.4.52)
fori=1,...,r. Using (4.4.15) in (4.4.52) yields
CATEL, | = CA| P, — B CT(CE,CT + R)‘l(JPCf,k] AT 4 CAI1Q(4.4.53)

forall k >0andi=1,...,r. Since f’cf,o = PL, it follows from Lemma 4.4.2 that, for

1=1,...,7,
CA™'Pl = CA'P. (4.4.54)
Hence, it follows from (4.4.53) and Lemma 4.4.4 that, for k =0,...,r,
CPf=CP. (4.4.55)
Finally, (4.2.3) and (4.4.14) imply that, for k =0,...,r,
Kep, = K. (4.4.56)

Hence, it follows from (4.2.5), (4.2.6), (4.4.16), and (4.4.17) that for all k =0, ..., r,
Thp = T O

Hence, the Cholesky-based rank-q square-root filter is equivalent to the Kalman

filter for a fixed number of time steps that depend on the rank ¢ of the approximations
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]332 and Pcfk of the predicted error covariances Pcdz and lf’cfk, as well as the dimension
p of the output. However, in general ]5ka and P! are not equal for all k = 0,...,r
even though Proposition 4.4.2 implies that K., and K} are equal. Moreover, Ky

and K, are generally not equal for k£ > r.

4.5 Examples

We compare the performance of the SVD-based rank-q square-root filter and
the Cholesky-based rank-q square-root filter with the Kalman filter for two linear

time-invariant systems.

4.5.1 Compartmental Model

A schematic diagram of the compartmental model [49] is shown in Figure 4.1.
The n compartments or subsystems exchange energy through mutual interaction.

Applying conservation of energy yields, for i =1,... n,
Tigt1 = Tig — PTig — & (Tig1p — Tig) — @ (Tig — Tic1 k) + GiWi g, (4.5.1)

where z; is the energy in the i-th compartment, w;j is the external disturbance
affecting the i-th compartment, 0 < 3 < 1 is the loss coefficient, and 0 < a < 1 is

the flow coefficient. It follows from (4.5.1) that
Tyl = Axk -+ ka, (452)

where

)

T
A A
Ty = |: Tk 0 Tnk :| , W = |: Wig 0 Wk y (453)



89

and A € R and G € R"*™ are defined by

1-0—« Q 0 0o --- 0
Q 1—-0 -2« « 0o --- 0
AL 0 a 1-8—-2a a - 0 , (4.5.4)
0 0 a 1-0F—-—a«a
and
G = diag(gy,. .-, gn)- (4.5.5)

Let n = 20, a = 0.35 and § = 0.5. We assume that the disturbance wy affects
all of the compartments so that g; # 0 for i = 1,...,n, and hence Q = GG' has
full rank. The external disturbance w, is modeled as a white-noise process with
unit covariance. Finally, we use measurements of the energy in the 10th and 11th

compartments to estimate the energy in all of the compartments, that is,

T
Ye = [ Tiok T1lk } + V. (4.5.6)

To evaluate the performance of the SVD-based and Cholesky-based reduced-rank

square-root filters, we compare the costs Ji, Js and J.j, where
Jp Etr(Py), Jop =tr(PL), Jor = tr(PLy). (4.5.7)

Recall that P, and P!, which are the true error covariances when the reduced-
rank square-root filters are used, are given by (4.3.15)-(4.3.16) and (4.4.22)-(4.4.23),
respectively. In all cases, we initialize the three filters with zf = a:(fzyo = :13;0 =0 and
P{ =Pl =Py = Iy.

We compare the performance of the SVD-based and Cholesky-based filters for

g = 2,5,10. The steady-state performance limy .o Jsi and limg .o Jeop of the
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SVD-based rank-q square-root filter and the Cholesky-based rank-g square-root fil-
ter, respectively, is shown in Figure 4.2. Figure 4.3 shows the performance of the
SVD-based reduced-rank square-root filter J;; and the Cholesky-based reduced-rank
square-root filter J.j, when ¢ = 2 in both cases. The cost J;, of the Kalman filter
is also plotted for comparison. Finally, we plot J.x/J; and Js/Jx when ¢ = 10.
Note that p = 2, and hence, r = 5 satisfies ¢ = pr. Therefore, it follows from Propo-
sition 4.4.2 that the Cholesky-based rank-q square-root filter is equivalent to the
Kalman filter for £ = 0,...,5, as confirmed by Figure 4.4. In fact, the performance
of the Cholesky-based reduced-rank square-root filter with ¢ = 10 is indistinguishable

from the performance of the Kalman filter for all £ = 0,...,10.

4.5.2 N-mass system

Next, we consider the mass-spring-damper model shown in Figure 4.5. The
number of masses is 10 with two states (displacement and velocity) per mass so that
n =20. Fori=1,...,10, m; = 1 kg, while k; = 1 N/m and ¢; = 0.2 N-s/m for
j=1,...,11. We assume that an external force w; acts on the mass m;, where w; ;,

is a white-noise process with unit covariance so that
LTk+1 = A.T?k + Wi, (458)
where

T T
N . ) A
T=1a ¢1 - qo o } W= [ wy et Wi } ; (4.5.9)

and A € R?*20 j5 obtained using a zero-order-hold discretization of the continuous-
time dynamics. We assume that the displacement of the 5th mass is measured so

that,

Yk = @5k + Uk, (4.5.10)
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where vy, is white-noise process with unit covariance. Again, we initialize the Kalman
filter and the reduced-rank square-root filters with x(f) = -T(f:,o = x;O = 0 and P(f =
Pcf,o = Psf,o = Iy.

We compare the performance of the reduced-rank square-root filters for ¢ = 4 and
q¢ = 8. The mean-square-error (MSE) in the estimates of the position of the masses
is shown in Figure 4.6. It can be seen that, for a specific choice of ¢, the performance
of the Cholesky-based rank-q square-root filter is better than the performance of the
SVD-based rank-g square-root filter. The MSE in the estimates of the velocities of
the masses is shown in Figure 4.7. The performance of the Kalman filter is plotted
for comparison. Finally, we plot the ratio .J./Ji, where J and J.j are defined in
(4.5.7), for the case ¢ = 4. It can be seen from Figure 4.9 that, in accordance with
Proposition 4.4.2, the Cholesky-based rank-q square-root filter is equivalent to the

Kalman filter for £k =0,...,r = ¢ = 4 because p = 1.

4.6 Conclusions

We developed a reduced-rank square-root Kalman filter based on the Cholesky
factorization. We presented conditions under which the SVD-based reduced-rank
square-root Kalman filter and the Cholesky-based reduced-rank square-root Kalman
filter are equivalent to the Kalman filter. In general, neither the Cholesky-based nor
the SVD-based reduced-rank square-root filter consistently outperforms the other.
However, in this chapter, we presented two examples where the Cholesky-based
reduced-rank square-root filter performs better than the SVD-based reduced-rank
square-root filter. Since the Cholesky factorization is a computationally efficient al-
gorithm compared to the singular value decomposition, the Cholesky-based reduced-

rank square-root filter provides a computationally efficient alternative method for
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reduced-rank square-root filtering. In chapters II-IV, we considered reduced-complexity
algorithms for state estimation of linear systems. In the next chapter, we compare

two algorithms for state estimation of nonlinear systems.
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Figure 4.1: Compartmental model where energy is exchanged between neighboring
compartments
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performance of the reduced-rank square-root filters improves. Moreover,
note that n = 20 and even when ¢ = 2, the performance of the Cholesky-
based reduced-rank square-root filter is similar to that of the Kalman
filter. The steady-state performance of the Kalman filter is shown as the
dashed line for comparison.
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The costs Jsj and J.; of the SVD-based and Cholesky-based reduced-
rank square-root filters, respectively, with ¢ = 2. The performance of the
Cholesky-based rank-g square-root filter is close to that of the Kalman
filter. However, the performance of the SVD-based filter is poor.
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my,...,myy using the Cholesky-based and SVD-based reduced-rank
square-root filters for ¢ = 4 and ¢ = 8 when k& — oo. The perfor-
mance of the reduced-rank square-root filters improves as ¢ increases,
while, for ¢ = n, both reduced-rank square-root filters are equivalent to
the Kalman filter.
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to the cost Ji of the Kalman filter. Since the Cholesky-based rank-g
square-root filter is equivalent to the Kalman filter for £ = 0,... 4, the
ratio is equal to 1 at these time steps.
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based reduced-rank square-root filter is inferior to the performance of
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CHAPTER V

A Comparison of the Extended and Unscented
Kalman Filters for Discrete-Time Systems with
Nondifferentiable Dynamics

In this chapter, we consider state estimation of discrete-time nonlinear systems
with nondifferentiable dynamics. Due to the presence of nonlinear dynamics, design-
ing optimal estimators is difficult and hence we use suboptimal algorithms for state
estimation. Specifically, we compare the performances of the extended Kalman filter
and unscented Kalman filter. The extended Kalman filter uses the Jacobian of the
dynamics to propagate a pseudo-error covariance, whereas the unscented Kalman
filter is a particle based filter that calculates a pseudo-error covariance from a col-
lection of state estimates. Finally, we consider H., filter based extensions of the
extended Kalman filter and unscented Kalman filter. The results presented in this

chapter are given in [50].
5.1 Introduction

Because of the widespread need for nonlinear observers and estimators, this area
of research remains one of the most active [51-53]. One of the main drivers of
research in this area is applications to distributed, large scale systems, the most

visible of which is weather forecasting [38, 54, 55]. This area is often referred to as

100
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data assimilation.

The classical Kalman filter for linear systems is often applied to nonlinear systems
in the form of the extended Kalman filter (XKF) [14,56]. In the XKF, the state is
propagated using the nonlinear dynamics, while the pseudo-covariance is propagated
using the Jacobians of the dynamics and measurement maps. We use the phrase
“pseudo-covariance” to stress the fact that the error covariance matrix in the linear
case is generally not the covariance of the error in the nonlinear case. The XKF
can be implemented in either the one-step or two-step forms, where the latter form
involves a physics update followed by a data-assimilation step.

A variation of the XKF is the state-dependent Riccati equation (SDRE) ap-
proach, in which, in place of the Jacobians, the dynamics and output map are ex-
actly factored, and the factors are used for the pseudo-covariance update [15,57].
This approach has been studied by solving the algebraic Riccati equation and by
updating the pseudo-covariance. An interesting aspect of the SDRE approach is the
fact that, in the non-scalar case, the factorizations are not unique, while guidelines
for selecting advantageous factorizations have not been developed. Our own numeri-
cal experiments suggest that the best SDRE factorizations are close to the Jacobian,
suggesting that the SDRE filter might have limited advantages, if any, over the XKF.
In our opinion, advantages of the SDRE over the XKF have not been definitively
demonstrated.

Another approach to state estimation of linear systems are the H, filters [58].
Unlike the classical Kalman filter, these filters do not require the stringent Gaussian
distribution assumption of the process and sensor noise affecting the system and
guarantee a performance bound. Estimation with uncertainty in the model has also

been performed using the H, filter [59]. We apply the H, filter to nonlinear systems
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by using the Jacobians of the dynamics and measurement maps and call the resulting
filter the extended H, filter (XHF).

Yet another approach to nonlinear estimation involves particle filters. Here the
idea is to propagate a collection of state estimates from which statistics can be
computed. Among the various techniques that have been developed are the unscented
Kalman filter (UKF) [18, 19, 60], which deterministically constructs the collection of
state estimates, as well as the ensemble Kalman filter (EnKF) [61, 62], which uses a
stochastic construction. Although particle filters do not require the propagation of a
covariance (or pseudo-covariance) in the usual (Riccati) way, the size of the collection
determines the computational requirements [63]. Finally, we combine the H.-filter
gain expression with the particle filter framework to obtain the unscented H, filter
(UHF).

This chapter focuses on discrete-time systems with dynamics that are not dif-
ferentiable. The main motivation is state estimation based on computational fluid
dynamics (CFD) models for space weather forecasting [64,65]. In particular we fo-
cus on CFD models for hydrodynamics (HD) and magnetohydrodynamics (MHD) in
which the equations of fluid motion are approximated by finite volume schemes. In
[57,63] we have considered SDRE and XKF methods for state estimation.

In HD and MHD, the CFD models involve nondifferentiable functions as part
of the discretization of the underlying partial differential equations [66,67]. Con-
sequently, to avoid the need for the Jacobian, we developed SDRE filters for 1-
dimensional HD in [57]. In the present chapter, we consider an alternative approach
in which we apply XKF and XHF despite the lack of differentiability. In particular,
we compute the Jacobian at all points at which it exists, and we employ an averaged

value at points at which the dynamics are not differentiable.
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To demonstrate the accuracy of XKF, XHF, UKF, and UHF when the dynamics
are not differentiable, we consider several examples. For each example, we compare

the performance of XKF, XHF, UKF, and UHF.

5.2 The H Filter

Consider the discrete-time linear time-invariant system with dynamics
Try1 = Axp + Bug + wy, (5.2.1)
and measurements
yr = Cxg + vy, (5.2.2)

where xp € R", up € R™, and y; € RP. The input u; and output y; is assumed to be
measured, and w; € R™ and v, € RP are unknown process and measurement noise,
respectively.

Counsider the cost function

S (@i — at)TM (2 — af)

i

(rg — b)) TP (xy — 2f) + Zfio wlQu; + Zfie viTRvi'

J(K,) = (5.2.3)

The H, filter ensures that inspite of the worst possible process and sensor noise, the

cost J(K}) satisfies

1
J(Kr) < - (5.2.4)
Y
The data assimilation step of the robust H, filter is given by
= xp+ Kie(yk — vk, (5.2.5)
£ £
vy, = Cuxyp, (5.2.6)

P = (I - KC)P(I - KC)' + KeREY, (5.2.7)
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where
K, = PICY(CP{CT + R)™! (5.2.8)
and
PL & PHT —yM P~ (5.2.9)
The forecast step of the H, filter is given by
ah, = A (5.2.10)
P, = APP®AT 4+ Q. (5.2.11)

Note that unlike the Kalman filter, w; and vy may not be white noise processes
and hence () and R are not their covariances, but a weighting on the uncertainty
associated with the process and sensor noise. Moreover, P{ and Pg® in (5.2.5)-
(5.2.11) are not the error covariances. Hence, although the Kalman filter provides
optimal estimates when the process and sensor noise are white-processes, the H,
filter guarantees a certain performance bound irrespective of the magnitude of the

process and sensor noise encountered.

5.3 The Extended Kalman Filter
Next, we consider the discrete-time nonlinear system with dynamics
1 = f(zg, up, k) + wy (5.3.1)
and measurements
Y = h(xr, k) + vg, (5.3.2)

where w, € R" and v, € RP are unknown process and measurement noise with

covariance Q) and Ry, respectively. Furthermore, we assume that Ry is positive
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definite. Since the dynamics and measurements are nonlinear functions of the state,
the discrete-time Riccati equation cannot be used to propagate the error covariance
Py. We thus consider the extended Kalman filter (XKF) for estimating zj in (5.3.1)

using measurements (5.3.2). The two-step XKF is given by

Thor = F( un, k), (5.3.3)
2yt = x4+ Ki(yk — v, (5.3.4)
e = M, k), (5.3.5)

where K}, P3 and P{ are given by (4.2.3), (4.2.4) and (4.2.7), respectively, with

Ak; é af($7u7 k) ’ Ck é 8h(.1', k)

ax :v:a:%a;u:uk 8x af:x%a ’

(5.3.6)

A one-step version of the XKF exists and note that the one-step and the two-step
extended Kalman filters are not necessarily equivalent.

If f(x,u,k) and h(z, k) are not differentiable with respect to x, the two-step XKF
(5.3.3)-(5.3.6) cannot be used to obtain an estimate of the state z;, because A; and
Cy, defined in (5.3.6) may not exist for all x8*. However, we assume that the first
order symmetric partial derivatives [68,69] of f(z,u, k) and h(z, k) exist everywhere,

that is, for all x € R",

an(é?“? k) A q- f(x+6€i7u7 k) _f(x_(;eiau?k)

> £ 3.

0:&i ‘g:m 500 26 (5:3.7)
and

Osh(&, k) a . hxHdey k) — h(z — de;, k)

0s&; ‘5:;;; N clili% 20 (538)
T

exist, where £ € R™ has scalar entries £ = [ & - & } and e; € R” is the ith

column of the n x n identity matrix. Hence, for example, although f(z) = |z| does
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not have a derivative at x = 0, it follows from (5.3.7) that gzi (0) = 0. Furthermore,

if g : R® — R is a differentiable function, then the symmetric partial derivative and

the partial derivative are equal, that is, for all z € R,

99(¢) 9g(¢)

85& E=x N (9@

L (5.3.9)

It follows from the symmetry of (5.3.7) that the one-sided limits are equivalent.

Specifically,

9+ gl —8) | g(e+0)—glx—6)
510 20 510 20

(5.3.10)
Moreover, the symmetric derivative is the average of the left and right directional
derivatives.

Next, we define the (i, j) entry of the averaged Jacobian Fy(x,u,k) € R™*" and
Hy(z, k) € RP*™ of f(-) and h(-), respectively, by

A asfz(§7 u, k)

Shi 7k
Foaj(w,u, k) =  Hj(x k) £ Ouhilé, k) (5.3.11)

0s&; . 0 e
where f;(x,u, k) and h;(z, k) are the scalar entries of f(x,u, k) € R" and h(z, k) € RP,
respectively. It follows from (5.3.9) that if f(-) and h(-) are differentiable, then, for
all x € R", the averaged Jacobians Fy and Hj are equal to the true Jacobians. Hence,
the two-step XKF for (5.3.1)-(5.3.2) when f(-) and A(-) satisfy (5.3.7) and (5.3.8)
is given by (5.3.3), where K, P# and P! are given by (4.2.3), (4.2.4) and (4.2.7),

respectively, with
Ay = F(z® ug, k), Cp = Hy(23* k). (5.3.12)

5.4 The Extended H,, Filter

An alternative approach to state estimation of (5.3.1)-(5.3.2) is based on the

H filter. Although, the H-infitiy filter is derived for linear time-invariant systems,
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like the extended Kalman filter, the Jacobian of the dynamics and measurements
maps can be used in the filter equations. However, the performance bounds guaran-
teed in the linear case are not valid anymore.

The extended H.,, filter is given by (5.3.3)-(5.3.5), where K}, P3* and P{ are given
by (5.2.8), (5.2.7), and (5.2.11), with A and C replaced by A; and CY, respectively,
where Ay and Cy, are defined in (5.3.12). Note that since the Jacobians are based on
the symmetric derivatives, the extended H, filter that uses the averaged Jacobians
can be used on nonlinear systems with nondifferentiable dynamics. Finally, we use
v, @ and R in the H filter as tuning parameters to improve the estimates. Note
that XHF may not be stable for all values of v and hence the value of v must be

tuned carefully.

5.5 The Unscented Kalman Filter

Another approach to state estimation of nonlinear systems is the unscented
Kalman filter (UKF). Unlike the XKF and SDRE estimator, the UKF does not
use the Jacobian of the dynamics or a factorization of the dynamics to propagate a
pseudo error covariance. The starting point for the UKF is a set of sample points,
that is, a collection of state estimates that capture the initial probability distribution
of the state [18, 19].

Let x € R", and let P € R™ ™ be positive semidefinite. The unscented trans-
formation provides 2n 4+ 1 ensembles X; € R" and corresponding weights v, ; and
vpi, for 0 = 1,...,2n, such that the weighted mean and weighted variance of the

ensembles are z and P, respectively. Specifically, let S € R"*" satisfy
Sst =P, (5.5.1)

and, for all 2 =1,...,n, let S; denote the sth column of S. For a > 0, the unscented



108

transformation X = ¥(z, S, a) € R™2"1) of 1 with covariance P = SS7T is defined

by
X & {Xo e Xy, 1 (5.5.2)
where
)
x, 1 =0,
Xi=qz+vas, i=1,....n, (5.5.3)

r—+aSi_,, i=n+1,...,2n.
\
The parameter a determines the spread of the ensembles around x. Next, define the

weights 7; € R by

[I>
o)
|
3
>
—_

Y= Mg =L 20 (5.5.4)
Then,
2n 2n
D vnXi=w ) u(Xi-2)(Xi-x)T =P (55.5)
=0 =0

Note that the unscented transformation described above is the scaled unscented
transformation given in [70] and ensures that the distance between the sample point
X, and x does not increase as n increases.

UKF uses the unscented transformation to approximate the error covariance and
estimate the state z;. Letting zf) be an initial estimate of xy with error covariance

P}, the data assimilation step of UKF is given by

o = af + Ki(yx — yb), (5.5.6)
y,ff = C’wi, (5.5.7)
Xpt = (i, 55, o), (5.5.8)

P = Pl — Ky Py n K, (5.5.9)
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where

Ky = PoyiP, )\, (5.5.10)

2n
Poys =Y 7l Xy — 2 (Y =y, (5.5.11)

1=0

2n
Py =Y (Vi =y (Y — ub)™ + Ry (5.5.12)

1=0

and S{* € R™" satisfies
Sda(gda)T — pda, (5.5.14)

The forecast step of UKF is given by

X7,'f,k+1 = f(XSI?,:a Uk, k)v = Oa s 72n7 (5515)
2n

T =% Xi (5.5.16)
i=0
2n

Peyy = Z (X = ) (X1 = Tp) T + Qi (5.5.17)
i=0

When the dynamics in (5.3.1) are linear, UKF is equivalent to the Kalman filter
[19]. Furthermore, in the linear case, P3* and Pf are the covariances of the error
7 — 2 and x, — 2L, respectively. However, in the nonlinear case, P3* and Pf are
pseudo-error covariances. The case when the process noise wy, in (5.3.1) does not
enter linearly is discussed in [71]. However, since we assume that the process noise
affects the system affinely, we use the covariance @y of wy in (5.5.17) to account for
uncertainty in the state estimates.

At every time step k, the ensemble X{? is constructed in (5.5.8) using the un-
scented transformation based on a square root Sg® of Pl satisfying (5.5.14). How-

ever, S3 satisfying (5.5.14) is not unique. For example, the singular value decom-

position or the Cholesky factorization can be used to obtain a square root of the
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pseudo-error covariance P2*. Moreover, if Sg* = g,‘ja satisfies (5.5.14), then, for any
orthogonal matrix U € R™*" §da — §dafs also satisfies (5.5.14). For linear dynam-
ics, UKF is equivalent to the Kalman filter, and the performance of UKF does not
depend on the choice of Si&. However, for nonlinear dynamics, the performance of
UKF depends on the choice of S@#, although simulation results indicate that the
performance of UKF is similar for different choices of Sg2.

Since the UKF involves 2n 4+ 1 model update, the computational burden of the
UKF is of the order (2n + 1)n? = 2n® + n?. On the other hand, the XKF involves
a single model update and covariance propagation using the Riccati equation and
hence the computational burden of the XKF is of the order n® + n%. Hence, when
n is large the computational burden of the UKF is approximately twice that of the

XKF. The performance of the UKF and XKF are compared in [18, 19, 72].

5.6 The Unscented H., Filter

Finally, we consider an extension of the UKF that is based on the H, filter.

The analysis step of the unscented H, filter (UHF) is given by

zyt = a4+ Ki(ye — vi), (5.6.1)
Yt = h(zt, k), (5.6.2)
Xl = (e P2 )), (5.6.3)

P = P{ = Ky Py s K\, (5.6.4)
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where

Ky = P:cy,kpy_;k; (565)
2n

Py = Z%(Xif,k - xfk)(ysz — ), (5.6.6)
=0
_ 2n

Py => %Yk =)V —v)" + R, (5.6.7)
=0

and the forecast step of the unscented Kalman filter is given by

Xz'f,k+1 = f(de,lia k)a (569)
2n

Ths1 = Z %’Xif,k;+1> (5.6.10)
=0
2n

Peyy = Z %‘(Xz'f,k+1 - $£+1)(Xif,k+1 — 2j1)" + Qk, (5.6.11)
i=0

P{, =Pl (I -yMPL,)™". (5.6.12)

Note that when the dynamics are linear, then the unscented H filter is equivalent
to the H,, filter presented in Section 3. Note that P and P& are not the error
covariances and no performance bounds are guaranteed by UHF. Also, like XHF,
although the parameter v can be chosen so that the filter yields good estimates of

the state zy, stability of UHF is not guaranteed for all values of ~.

5.7 Examples

Next, we use the XKF, XHF, UKF, and UHF for state estimation of low-
dimensional discrete-time systems with nondifferentiable nonlinearities. Specifically,
we consider nonlinearities that are not differentiable but have symmetric derivatives

everywhere. Hence, we use XKF and XHF with the averaged Jacobian and compare

the performance of XKF and XHF with UKF and UHF.
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5.7.1 Absolute Value Function

First, we consider nonlinearities that commonly occur in finite volume dis-
cretization of hyperbolic partial differential equations [66,67]. For example, the ab-
solute value function appears in the first-order upwind discretization of an advection

equation [66]. Let x € R* and

Tpy1 = abs(sin(Mxy)) + wg,

(5.7.1)
yr = Crp + vg,
where M € R*** and
1 000
C = , (5.7.2)
0 0 01
and wy and v, are zero-mean white processes with covariances () = 0.11; and
Ry = 0.0115, respectively. Note that for all z € R,
1, if >0,
Osabs(§)
v 1-1, if 2 <0, (5.7.3)
0, if z=0.

\

Hence, it follows from (5.3.11), (5.7.1) and (5.7.3) that for i,j = 1,...,n, the (4, )

entry row of Fy(x) is given by
(
cos(row;(M)x)M,; ;, if sin(row;(M)x) > 0,

Fij(x) = o - cos(row;(M)x)M; ;, if sin(row;(M)x) < 0, (5.7.4)

0154, if sin(row;(M)z) = 0,

\

and Hy(z) = C.
Figure 5.1 shows a plot of abs(sin(mz)) and it can be seen that as m increases, the

nonlinearities become more prominent, that is, the variation in the slope increases.
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Next, we compare the state estimates from XKF, XHF, UKF, and UHF for various
choices of M. The logarithm of the sum of the Euclidean norms of the errors in
the state estimates for 50 different choices of M with sprad(M) = 0.5 is shown in
Figure 5.4. Note that although the performance of the estimators varies depending
on the choice of M, numerical simulations suggest that the performance of XKF,
XHF, UKF, and UHF is almost indistinguishable for all choices of M. The error in
the state estimates when no data assimilation is performed, that is, K, =0 for k > 0
in XKF, is also plotted for comparison. Next, we compare the performance of all
the estimators for 50 different choices of M with sprad(M) = 10. The performance
of XKF, XHF, UKF, and UHF is shown in Figure 5.5. It can be seen that, in the
case of more severe nonlinearities, the performance of UKF and UHF is better than
the performance of XKF and XHF. The values of v in all the cases were chosen
such that XHF and UHF are both stable for all the choices of M with a specified
spectral radius. However, the performance of XHF and UHF is very similar to the

performance of XKF and UKF, respectively.

5.7.2 Minmod Function

Next, we consider discrete-time systems involving the minmod function, which
is used in second-order upwind finite volume schemes as a slope limiter to reduce the

diffusion effects [67]. For o, § € R, define

minmod(a, 3) =  (sign(8) + sign(4)) min{al, 3]} (5.7.5)

see Figure 5.2. Let x € R and

Tpy1 = sin(Mxy,) + minmod(Myxy,, Mrxy) + wy,
(5.7.6)

yr = Cxp + vg.
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We choose M € R'9%10 o that sprad(M) < 1, and for4,j = 1,...,10, the (i, j) entry

of M, € R19%10 is given by

(My)is =1, (My)ii1=—1, (5.7.7)

(My)i; =0 if j & {s,i—1}, (5.7.8)
Mg = —M, and for all k, C}, = C' € R**!0 is chosen to be

]_ 0 X
C= P (5.7.9)

O1><9 1

We assume that w; and v, are zero-mean white processes with covariances @y =

@ = 0.11;p and Ry = R = 0.0115, respectively. Note that for all u,v € R,
0, if uv<0 or u=v=0,

0, if wv >0 and |u| > |v],

0, if u#0, v=0,

S

Osv

minmod(a, ) oy (5.7.10)

0.5, if wv >0 and |u| = |v|,

0.5, if u=0, v+#0,

1, if wv >0 and |u] < |v].

\

Furthermore, using a procedure similar to the previous example, the (i,j) entry of
F(z) € R®*1% can be obtained by using (5.7.10) and the chain rule for differentiation,
and (5.7.9) implies that Hy(x) = C.

The sum of the Euclidean norm of the error in the state estimates obtained from
XKF, XHF, UKF, and UHF for 50 different choices of M with sprad(M) = 0.5, is
shown in Figure 5.6. The performance of the four estimators for 50 different choices

of M with sprad(M) = 10.0 is shown in Figure 5.7. Again, the performance of UKF
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and UHF is better than the performance of XKF and XHF when the nonlinearities
become severe. However, the use of XHF or UHF seems to have no significant

advantage over XKF' or UKF, respectively.

5.8 Simulation Example : One-dimensional Hydrodynamics

Finally, we consider state estimation of one-dimensional hydrodynamic flow
based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

% = 2o, (5.8.1)

d —

4 (pﬂ) —0, (5.8.2)
p% = —pvd — g—z, (5.8.3)

where p € R is the density, v € R is the velocity, p € R is the pressure of the
fluid, and v = g is the heat capacity ratio of the fluid. A discrete-time model
of hydrodynamic flow can be obtained by using a finite-volume based spatial and
temporal discretization.

Assume that the channel consists of n identical cells as shown in Figure 3. For all
i=1,...,n,let pl, vl1 and pll be the density, velocity, and pressure at the center

of the ith cell. For all i = 1...,n, define U € R? by

T
Ut = [pm mli gm] : (5.8.4)

where the momentum m!? and energy £ in the ith cell are given by

T Pl
i — iyl glil — 1 fil(yli)2
mi = ptot, 2p(v)+7_1'

(5.8.5)

We use a second-order Rusanov scheme [67] to discretize (5.8.1)-(5.8.2) and obtain
a discrete-time model that enables us to update the flow variables at the center of

each cell.
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Define the flux dyad F[ € R? at the ith cell by

T
[ 3—y (mi)2 i —1 (mly3 mlil gl
mel SRR+ (- DED g e | (5:86)
Next, define UI[j] and Ugl by
U 2 Ul 4 Iminmod (U — gl gl — =y, (5.8.7)
Uy 2 Ul — Lminmod (U -yl gl — grli=1), (5.8.8)

The left and right flux dyad £ and F\ is given by (5.8.6) with U = U/ and

Ul = UE, respectively. Finally, define the second-order Rusanov flux FE]US by
Fil a1 (pm gl il (i _ gl 589
Rus — 5 \ 'L R —-C o \"r TYL ) (5.8.9)

where

ypli

& abs(vll) + i (5.8.10)
pl
The discrete-time state update equation [66,67] is given by
i i ts [lil —i—1]
UILJ]rl = Ulg] - Ax |:FRus,k - FRus,k::| ) (5811)

where t; < 0 is the sampling time and Az is the width of each cell. It follows from
(5.8.7)-(5.8.11) that U,ﬂl depends on U,Li_ﬂ, ce U,£i+2], as expected for a second-order
scheme.

Next, define the state vector z € R34 by

T
A
z= | (@whT ..o . (5.8.12)

For all k > 0, let u;, € R? denote the boundary condition for the first two cells, so

that

we = (UMT = (UPHT. (5.8.13)
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Furthermore, we assume Neumann boundary conditions at cells with indices n — 1

and n so that, for all £ > 0,
g — gt s (5.8.14)

It follows from (5.8.11) that the second-order Rusanov scheme yields a nonlinear

discrete-time update model of the form

Let n = 54 so that x € R, For all £ > 0, let QL” = QE = 1 kg/m3, v,[cl] = UE] =

Vin + “2 sin(k) m/s, and pg} = pf} = 1 N/m?, where vy, is the inlet velocity. We

assume that the truth model is given by
Tpy1 = flag, ug) + wg, (5.8.16)

where wy, € R3™ % represents unmodeled drivers and is assumed to be zero-mean

white Gaussian process noise with covariance matrix @ € R3®=9x3(=4) where
Q = diag(QP, QW ... Q2 (5.8.17)
and, for i = 3,...,n— 2, Q! € R¥*? is defined by
| diag(0.05,0.05,0.05), if i = 10, 25, 40,
Qi — (5.8.18)

033, else.
It follows from (5.8.16)-(5.8.17) that the flow variables in the 10th, 25th and 40th

cell are directly affected by wy. Next, for i = 3,...,n — 2, define Cl!} € R3*3(n—4)

i o
ol & O3x3(n—a—i) I3x3 Ozx3-1) (5.8.19)

so that the measurement y;, € RS of density, momentum and energy at cells with

indices 6, 16, 26, 35, and 42 is given by

Y = CIk + Vg, (5820)
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where

C=| (clhT (chehT (CcBRSHhT (CBHT (CclhT | (5.8.21)

and vy, is zero-mean white Gaussian noise with covariance matrix R = 0.01/30x30-
Let ts = 0.05 s and Az = 1 m. We simulate the truth model (5.8.16) from an
arbitrary initial condition zy € R34 and obtain measurements yj, from (5.8.20)

for various choices of v, € {0.0,1.0,2.0,...,10.0} m/s. Note that

o
,/% = 1.20 m/s, (5.8.22)

and hence, if vy, > 1.29 m/s, then the flow is supersonic. The objective is to estimate
the density, momentum, and energy at the cells where measurements of flow vari-
ables are unavailable using XKF and UKF. It follows from (5.2.9) and (5.6.12) that
XHF and UHF involve inverting a n X n matrix which is computationally intensive
when n is large which is the case in finite volume discretization of partial differen-
tial equations. Moreover, in the previous examples, no significant improvement in
performance was noticed when the XHF and UHF were used instead of XKF and
UKF, respectively. Hence, we do not use XHF or UHF for state estimation in the
one-dimensional hydrodynamic flow example. To obtain estimates, we initialize the
three estimators with the same initial condition Zy # x¢. Note that f(z,u) in (5.8.15)
contains the nondifferentiable functions abs(-) and minmod(-,-). Hence, we use the
averaged Jacobian defined in (5.3.11) in the two-step XKF. Finally, we perform state
estimation using UKF.

The error in the estimates of the energy 5,£30] in cell 30, when measurements yj
are used in XKF and UKF with v;;, = 1 m/s is shown in Figure 5.8. The error in
estimates of the energy 5,£30] in cell 30, when v;;, = 10 m/s is shown in Figure 5.9.

The sum of the Euclidean norm of error in the state estimates for different values of
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v 18 shown in Figure 5.10. Note that at low inlet velocities vy,, the performance of
XKF and UKF is very similar. However, at higher inlet velocities, the nonlinearities

are more severe and the performance of UKF is better than that of XKF.

5.9 Conclusion

In this chapter we compared the performance of the extended Kalman filter,
the extended H,, filter, the unscented Kalman filter, and the unscented H,, filter
for nonlinear systems with nondifferentiable nonlinearities. Whenever the Jacobian
fails to exist, we use an averaged Jacobian based on the symmetric derivatives in the
extended Kalman filter. We perform state estimation of one-dimensional hydrody-
namic flow based on a finite volume discretization and as the inlet velocity increases
the nonlinearities become severe and the performance of UKF is better than that
of XKF. For all the examples that we considered, whenever the nonlinearities are
not severe, the performance of XKF with the averaged Jacobian and UKF is similar.
However, whenever the nonlinearities become more severe, UKF performs better than
XKF. No significant improvement in the performance was noticed when either the
extended H,, filter or the unscented H., filter was used over the extended Kalman

filter and unscented Kalman filter, respectively.
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Figure 5.4: Logarithm of the sum of Euclidean norms of the errors in state estimates
obtained using XKF, XHF, UKF, and UHF for the system (5.7.1). The
performance is compared for 50 different choices of M with sprad(M) =
0.5. The chosen value of v = 0.4 is approximately the maximal value
for which XHF and UHF are stable. The error in the estimates when
no data assimilation is performed, that is, Ky = 0 for all £ > 0 in XKF
is also shown for comparison. The performance of all four estimators is
similar and better than the no data assimilation case.
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Figure 5.5: Logarithm of the sum of the Euclidean norms of the errors in state
estimates obtained using XKF, XHF, UKF, and UHF for the system
(5.7.1). The performance is compared for 50 different choices of M with
sprad(M) = 10. In this case, the performance of UKF and UHF is much
better than the performance of XKF or XHF. In fact, there are cases
when the performance of XKF and XHF is worse than the no data as-
similation case. However, the performance of UKF is very similar to the
performance of UHF, and the performance of XKF is very similar to the
performance of XHF.
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Figure 5.6: Logarithm of the sum of the Euclidean norms of the errors in state esti-
mates obtained using XKF, XHF, UKF, and UHF for the system (5.7.6).
The performance of the four estimators are compared for different choices
of M with sprad(M) = 0.5. The performance of all four estimators is
similar and better than the case when no data assimilation is performed.

We choose the largest possible 7 (=1.5) such that both XHF and UHF
are stable for all choices of M.
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Figure 5.7: Logarithm of the sum of the Euclidean norms of the errors in state
estimates obtained using XKF, XHF, UKF, and UHF for the system
(5.7.6). The performance of the two estimators is compared for 50 differ-
ent choices of M with sprad(M) = 10.0. There seems to be no significant
improvement in the performance when the Hy, filters (XHF and UHF)
are used over XKF and UKF, respectively.
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Figure 5.8: The error in the estimates of energy at cell 30 obtained using XKF and
UKF when v, = 1 m/s and the flow is subsonic.
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Figure 5.9: The error in the estimates of velocity at cell 30 obtained using XKF and

UKF when v, = 10 m/s and the flow is supersonic with Mach number
7.75.
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Figure 5.10: The square root of the sum of the Euclidean norms of the errors in state
estimates, obtained using XKF and UKF for different choices of the inlet
velocity vy,. The performance of UKF is better that the performance
of XKF for high inlet velocities, with a computational burden that is
twice that of XKF.



CHAPTER VI

Reduced-Rank Unscented Kalman Filtering Using
Cholesky-Based Decomposition

In the previous chapter, we demonstrated the superiority of the unscented Kalman
filter over the extended Kalman filter when the nonlinearity in the dynamical system
becomes severe. However, the unscented Kalman filter performs 2n+ 1 model update
at every time step, where n is the order of the system. In this chapter, we use the re-
sults presented in Chapter IV to reduce the ensemble of the unscented Kalman filter.
Specifically, we consider a reduced-rank square-root unscented Kalman filter based
on the Cholesky decomposition of the state-error covariance. The performance of this
filter is compared with an analogous filter based on the singular value decomposi-
tion. We evaluate the performance of these filters for illustrative linear and nonlinear

systems. The results of this chapter are published in [73].

6.1 Introduction

Data assimilation for large-scale systems has gained increasing attention due
to nonlinear and computationally intensive applications such as weather forecast-
ing [38,78]. These problems require algorithms that are computationally tractable

despite the enormous dimension of the state. Reduced-order variants of the classi-

128



129

cal Kalman filter have been developed for computationally demanding applications
27,29, 30, 35], where the classical Kalman filter gain and covariance are modified so
as to reduce the computational requirements. A comparison of several techniques is
given in [9].

An alternative technique for reducing the computational requirements of data
assimilation for high-dimensional systems is the reduced-rank filter 21,28, 43, 74-76].
In this method, the error-covariance matrix is factored to obtain a square root, whose
rank is then reduced through truncation. The truncated square-root is then propa-
gated by the data assimilation algorithm. This technique is closely related to classical
decomposition techniques [46,47], which provide numerical stability and computa-
tional efficiency. Factorization-and-truncation methods have direct application to the
problem of generating a reduced ensemble for use in particle filter methods [28,45].

The primary technique for truncating the error-covariance matrix is the singular
value decomposition (SVD), wherein the singular values are used to determine which
components of the error covariance are most relevant to the accuracy of the state
estimates [21,28,43]. Despite the intuitively appealing nature of this approach, the
optimality of approximation based on the SVD within the context of recursive state
estimation is not guaranteed The difficulty is due to the fact that optimal approxima-
tion depends on the dynamics and measurement maps in addition to the components
of the error covariance.

In related work [42], it is observed that the Kalman filter estimate update de-
pends on the product Cy Py, where C}, is the measurement map and P is the error
covariance. Consequently, the approximation technique developed in [42] focuses on
Cy Py rather than Py alone. In particular, it is shown in [42] that approximation of

Cy Py leads directly to truncation based on the Cholesky decomposition. Unlike the
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SVD, however, the Cholesky decomposition does not possess a natural measure of
magnitude that is analogous to the singular values arising in the SVD. Nevertheless,
filter reduction based on the Cholesky decomposition provides state-estimation ac-
curacy that is competitive with, and in many cases superior to, that of the SVD. In
particular, the accuracy of the Cholesky-decomposition-based reduced-rank filter is
typically equal to the accuracy of the full-rank filter, while examples show that, in
special cases, the Cholesky-decomposition-based reduced-rank filter provides accept-
able accuracy, whereas the SVD-based reduced-rank filter provides arbitrarily poor
accuracy.

A fortuitous advantage of using the Cholesky decomposition in place of the SVD is
the fact that the Cholesky decomposition is computationally less expensive than the
SVD, specifically, O(n®/6) [48], and thus an asymptotic computational advantage
over SVD by a factor of 12. An additional advantage is that the entire matrix
need not be factored; instead, by arranging the states so that those states that
contribute directly to the measurement correspond to the left-most columns of the
lower triangular square root, only the leading submatrix of the error covariance must
be factored, yielding yet further savings over the SVD. Once the decomposition is
performed, the algorithm effectively retains only the initial “tall” columns of the full
Cholesky decomposition and truncates the “short” columns.

To assimilate data in nonlinear systems, particle filters are used to propagate
a collection of state estimates from which statistics can be computed. These tech-
niques include the ensemble Kalman filter (EnKF) [61-63], which uses a stochastic
construction, as well as the unscented Kalman filter (UKF) [18, 19, 60], which deter-
ministically constructs the collection of state estimates by perturbing the nominal

state estimate. Specifically, UKF constructs the ensemble members by using the
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columns of the square root of the error covariance to perturb the nominal state es-
timate. For a model of order n, the n columns and their negatives result in 2n + 1
ensemble members and thus 2n + 1 model updates.

A straightforward approach to reducing the UKF ensemble size is to use a factorization-
and-truncation method to truncate n — ¢ columns of the square root of the error
covariance and construct the ensemble members using the remaining ¢ columns. In
(22,28, 45], SVD-based decomposition-and-truncation is used to construct reduced-
rank approximations of the square root of the error covariance, which are then used
to construct the ensemble members resulting in a ensemble size 2q + 1.

In this paper, we use the Cholesky-based decomposition technique developed in
[42] to construct the reduced ensemble members. Specifically, we use the Cholesky
decomposition to obtain a square root of the error-covariance and select columns of
the Cholesky factor to approximate CjPy. The retained columns of the Cholesky
factor are used to construct the ensemble members. We compare the performance of
the Cholesky-decomposition-based reduced-rank UKF and the SVD-based reduced-
rank UKF on a linear advection model and a nonlinear system that exhibits chaotic

dynamics.

6.2 The Reduced-Rank Unscented Transformation

We consider the discrete-time system with nonlinear dynamics

Tp+1 = f(xk,uk, k’) + wy, (621)

and linearly dependent measurements

Yr = Crag, + v, (6.2.2)
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where x,w, € R", up € R™, and yi, v, € RP. The input u; and output y, are
assumed to be measured, and w;, and v, are uncorrelated zero-mean white noise
processes with covariances QQ; and Ry, respectively. We assume that Rj is positive
definite. The objective is to obtain estimates of the state xp using measurements
Y. When the dynamics (6.2.1) are linear, the Kalman filter provides estimates that
minimize the mean-square-error (MSE) in the state estimates [5,6]. However, for
nonlinear dynamics, we approximate the state error covariance using ensembles that
are constructed deterministically according to UKF. The starting point for UKF
is a set of sample points, that is, a collection of state estimates that capture the
probability distribution of the state [18,19]. Letting x be an initial estimate of g
with error covariance Pf, UKF is given by the following steps:

UKF data assimilation step:

oyt = xp, + Ki(Ye — vh)s (6.2.3)
Yt = Crl, (6.2.4)
X = W(xl 5 a), (6.2.5)
Pl = Pl — PICT(CyPICY + Ry) 'Oy P, (6-2.6)
where
Ky = PICH(CLPLCE + Ry) ™ (6.2.7)

and S € R™ " satisfies

Sla(gdnT — pda. (6.2.8)
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UKF forecast step:

Xif,k—‘,-l = f(XSZ’ U, k)v 1= Oa s ,QTL, (629)
2n

xfﬁ»l = Z’YiXif,kH, (6.2.10)
=0
2n

PI£+1 = Z’Yi<Xif,k+1 - x£+1>(Xif,k+l - 1’2+1>T + Q- (6.2.11)
=0

It follows from (6.2.9) that UKF involves 2n + 1 model updates, and hence the
computational burden of UKF is of the order (2n + 1)n? = 2n® + n?. Therefore,
when n is large, UKF is computationally expensive. We thus define an unscented
transformation for a reduced ensemble. Let z € R™ and S € R" %, where 0 <
q < n. The rank-q unscented transformation X = ¥ (z, S, «) € R™*(2a+1) of g with

covariance P = SS7T is defined by

X 2 { Xo - X } , (6.2.12)
where
(
x, 1 =0,
Xi=9z+/as;, i=1,...,q, (6.2.13)
r—/aSi_, i=q+1,...,2q.
\

Also, defining the weights

a—q A 1

7q70é Ta Yai = %7 L= 17"'72q7 (6214)
it follows that
2q 2q
S X=X —2) (X —2)T = 55T = P. (6.2.15)
i=0 i=0

Next, we present a case in which the unscented transformation and rank-q unscented
transformation are equivalent. The following result is a consequence of (5.5.3) and

(6.2.13).
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Lemma 6.2.1 Letx € R, let P € R™*" be positive semidefinite with rank(P) <
q < n, and let S € R4 satisfy SST = p. Furthermore, let S = [S’ Onx(n,q)],
X2 \I/q(:v,g,oz), and X = U(x,S,a). Then, X; =z, foralli=q+1,...,n,n+q+
1,...,2n. Moreover, X, = Xo, and foralli =1,...,q, X, =X, and X,Hi = Xoiqtis

where X; is the ith column of X.
Lemma 6.2.2 Assume that rank(Pf) < ¢ < n. Then, rank(P3?) < ¢
Proof. Since rank(P}) < g, it follows that there exists SI € R"*? satisfying
SE(shHT = Pl (6.2.16)

In fact, Sf = ®gyp(PL, q) satisfies (6.2.16). Therefore, (6.2.6) implies that P can

be expressed as
P = St I — (CuSH)T(CrSE(CSE)T + Ri,) ' CiSE] (SE)T. (6.2.17)

Hence, (6.2.17) implies that rank(P*) < ¢. Since rank(Pg®) < ¢, there exists
Sda e R4 satisfying S (Sd)T = pda, O
Hence, if P} is rank deficient, then P3* is also rank deficient. The following result

shows that the ensemble size can be reduced from 2n+1 to 2¢+1 when rank(Pf) = ¢.

Proposition 6.2.1 Assume rank(Pf) < q < n, and define S{* = [Sda o (n— q)]
where S8 € R™4 satisfies S3(S3)T = Pd2. Define Xi» £ W, (22, S o), and let

T, € R" and ﬁlgﬂ € R™" be given by
Bl = qu,in,kH, (6.2.18)

P1£+1 = Z Vo (Xi k+1 $k+1)(Xz‘f,k+1 - i§c+1)T + Qs (6.2.19)
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where )A(Z-{kﬂ € R" is given by
Xl = F(X ug k), i=0,...,2q, (6.2.20)
and Xf,? € R" s the ith column of X,‘ja. Then, &, = xf,, and P,EH =Pl

Proof. It follows from Lemma 6.2.1 that X&i = ng;;, forall . = 1,...,q,

Xda = Xda and Xda = Xda

drik miqrigs and for all e = ¢+ 1,...,n,n+q+1,...,2n,

X = af*. Therefore, the (6.2.9) and (6.2.20) imply that X{kﬂ = X/, and

1

n

XéJrMH = X) grinsand forall i =g+ 1,... nn4q+1,...,2n, X[, = X{ 4,
Finally, the result follows from (5.5.4), (6.2.10), (6.2.11), (6.2.14), and (6.2.18). O

Hence, when rank(P}) = ¢ < n, the ensemble size can be reduced from 2n +
1 to 2¢ + 1, and thus, using the rank-g unscented transformation instead of the
unscented transformation in (6.2.5) of UKF does not degrade the performance of
UKF. However, when Pf has full rank, P8 generally has full rank. In this case,
we construct rank-g approximations of the pseudo-error covariances and perform
estimation using the rank-¢ unscented transformation based on a square root of the

low-rank approximation of the pseudo-error covariance.

6.3 SVD-Based Reduced-Rank Unscented Kalman Filter

To reduce the ensemble size, we use a reduced-rank approximation ]szk of Psf K
The reduced-rank approximations are chosen such that ||Psfk — P!, |lr is minimized
subject to rank(ﬁik) = ¢, where || - ||r denotes the Frobenius norm. Let P € R™*" be
positive semidefinite, let o1 > - -+ > o, be the singular values of P, and uy,...,u, €
R™ be the corresponding orthogonal singular vectors. Next, define U, € R"*? and

¥, € R7* by

@é{mm %},&ém@@h”pg (6.3.1)
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With this notation, the singular value decomposition of P is given by
P=U,%,Ur, (6.3.2)

where U, is orthogonal. For ¢ < n, let ®syp(P,q) € R"*? denote the SVD-based

rank-g approximation of the square root UnE}/ 2of P given by
Dsvp(P,q) £ U,T)/% (6.3.3)

As noted in [36], SST, where S = ®gyp(P, q), is the best rank-q approximation of P
in the Frobenius norm .

Next, we use the singular value decomposition at each time step to obtain a
reduced-rank approximation of the pseudo-error covariance, and this reduction in
rank enables us to reduce the ensemble size. The SVD-based reduced-rank square-
root unscented Kalman filter (SVDRRUKF) is summarized as follows:

SVDRRUKF data assimilation step:

v = aly + Kor(ye — yln), (6.3.4)
Yir = Craly, (6.3.5)
X8 =2, 55, a), (6.3.6)
S¢h = SLRHLy, (6.3.7)

where

1

Ks,k = sz,k(CkS;k)T (CkS§7k(CkSSf’k)T + Rk)_ (638)
and H;k € R?*7 satisfies

HE(HL)T = 1, — (CoSE)T (GST(CST)T + B) Gty (63.9)
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SVDRRUKF forecast step:

Xsf,i,kJrl = f(Xgika U, k)? 1= 07 ceey 2Q7 (6310)
2q

Thot = O VaiXbi gty (6.3.11)
=0
2q

Psf,k+1 = Z Vo (Xei g1 — xi,k-&-l)(Xsf,z‘,k—f—l — 2l e) + Qr, (6.3.12)
=0

St = sy (Pl q)- (6.3.13)

Next, define P!, , Pd& € R by
P &St (ST, P s Pl — PLCH(CW P OF + Ry) 7' ChPY,. (6.3.14)

It then follows from (6.3.7) that S%(S%)T = P42 Furthermore, (6.3.8) and (6.3.14)

imply that
Kop = PLOH(CPLCF + Re) ™ (6.3.15)

Furthermore, since rank(SI;) < ¢, it follows from (6.3.14) that rank(]ssf’k) < ¢ and
rank(ﬁs‘},i) < ¢. Hence, (6.3.15) implies that the filter gain K depends on pslik,
the reduced-rank approximation of Psf7 ., and the ensemble X depends on Psf‘,‘;‘, the
reduced-rank approximation of PJ¢. Also, as shown in Section 6.8, the matrix H;k
satisfying (6.3.9) is not unique. Since the singular value decomposition in (6.3.13)
is computationally intensive [48], we introduce an alternative method to obtain a
reduced-rank approximation of a square root of the pseudo-error covariance.

6.4 Cholesky-Factorization-Based Reduced-Rank Unscented
Kalman Filter

The filter gain K} of UKF depends on a particular subspace of the forecast

error covariance Pf. Specifically, K} depends only on the correlation Cj, P} between
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the error in the measured states and unmeasured states. Since rank(Cj) = p, there
exists a transformation matrix T, € R™*™ such that the change of basis T, = Tjxs

ensures that (see Section 6.9) Cj has the form

Cp = []p 0 } . (6.4.1)
The following result is given in [42].

Lemma 6.4.1 Partition P as

Pt (Pt )T
pi=| P e (6.4.2)
£ £

Bt Dok
where sz’k € RP*? gnd ny,k € RP*P | and assume that C, has the form (6.4.1). Then,
Ke=| " | (P + Ry (6.4.3)
£

Pﬁnk

Next, to reduce the ensemble size, we construct a filter that uses a reduced-
rank approximation Pcfk of P, such that rank(pék) < n and ||Ck(]5(fk — P )llp is
minimized. To obtain ngk, we perform a Cholesky factorization of the pseudo-error
covariance Pcf’k at each time step. Assuming that P € R™ " is positive definite,

the Cholesky factorization of P yields a unique lower triangular Cholesky factor

L € R™" satisfying

LL" =P. (6.4.4)

Truncating the last n—q columns of L = [ Ly - L, } yields the rank-g Cholesky
factor

Pcnor (P, q) £ [ Ly - L, ] € R"™. (6.4.5)

The following result is given in [42].
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Lemma 6.4.2 Let P € R™" be positive definite. Define S = ®cnor(P,q), where

0<q<n, and P23ST and partition P and P as

P, Pg ) P, Py
= R Iy - N (6.4.6)
(Pg)t Py (Pig)" g
where P, ]5q € R and Pj, ]35 € R79, Then,
{Pq qu]:{Pq qu}' (6.4.7)

Lemma 6.4.2 implies that, if S = ®cpor (P, ¢), then the first ¢ columns and rows
of SST and P are equal. Next, we use the Cholesky factorization at each time
step to obtain a reduced-rank approximation of the pseudo-error covariance, thus
reducing the ensemble size. The Cholesky-based reduced-rank unscented Kalman
filter (CDRRUKF) is summarized as follows:

CDRRUKEF data assimilation step:

v = al 4+ Kewlye — yls), (6.4.8)
£ _ f

Yoo = Cke s (6.4.9)

Xk = Yq(ach, Sexs @), (6.4.10)

Sei = SeaHep: (6.4.11)

where

1

Kc’k - S(f’k(CkS({’k)T (Cks(f;,k(CkSik)T + Rk)_ (6412)
and Hék € R7*? satisfies

HE(HE )T = 1 — (CuSE,)" (CuSE L (CrSE) T + R) T CuSE,. (6.4.13)
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CDRRUKEF forecast step:

ch,i,k+1 = f(ngk’ U, k)? 1= 07 ey 2q (6414)
2q

Thor = Y Ve Xl (6.4.15)
=0
2q

Pékﬂ - ZPYqvi(ch,zng - 5U£,k+1)(ch,i,k+1 - xf:,k—i—l)T + Qr, (6.4.16)
=0

St i1 = @enon (P, q)- (6.4.17)

Next, define ]532, Pcfk € R™" by
Pl & Py = PLOH(CWPICT + Ri)TIOR B, P 2 SL(SL)T. (6.4.18)
It then follows from (6.4.11) that SZ%(S%)" = Pcdz Furthermore, (6.4.12) and
(6.4.18) imply that
Kop = PLCL(CLPICE + Ry) ™ (6.4.19)

Hence, like the estimator gain K of SVDRRUKEF, the estimator gain K. of CDR-
RUKF depends on a reduced-rank approximation ]ADka of the pseudo-error covariance
P;k. As discussed in Section 6.8, the matrix Hik satisfying (6.3.9) is not unique.
Due to the rank-reduction step (6.4.17), CDRRUKF is generally not equivalent to

UKF.

6.5 Linear Advection Model

Consider a linear advection model [78] with n cells, and let x; ; be the energy

in the ¢th cell at time k. The energy flow satisfies

Ti—1,k, if 4 :2,...,71,
Lik+1 = (651)

Tk ifi=1.



141

Hence, energy in the ith cell flows to the (i + 1)th cell, while the periodic boundary
condition ensures that energy is in constant circulation. We choose n = 100 and
assume that the disturbance wy enters selected cells, where w, € R™ is white noise
process with covariance @ = @ for all £ > 0, and () € R™*" is diagonal with entries

1, iféie {10,20,...,100},
Qi = (6.5.2)

0, else.

Next, we assume that measurements of the energy in cells 50 and 51 are available so

that

T50,k
Y = + Uk, (6.5.3)
T51,k
where vy, is white noise process with covariance Ry = 0.11;. Note that (6.5.3) can be
expressed as (6.2.2).

First, we use the measurements y;, to estimate the energy in the remaining cells

using UKF, SVDRRUKF, and CDRRUKF. In all three cases, the initial estimates
zf, oy, and 2l are not equal to the initial state zo. Moreover, we choose Py =
P!, = P!, = 0.1I,. Finally, we choose a = 0.6 for all three filters. Note that
since the dynamics in (6.5.1) are linear, UKF is equivalent to the Kalman filter and
hence UKF provides the optimal estimates of the state x; that minimize the MSE.
The MSE of state estimates from UKF is shown in Figure 6.1. The MSE of state
estimates when data assimilation is not performed is also shown for comparison.
Next, as shown in Figure 6.2 and Figure 6.3, data assimilation is performed using
SVDRRUKEF and CDRRUKF for several values of ¢ between 5 and 100. Note that
SVDRRUKF and CDRRUKF use 2¢ + 1 ensemble members, whereas UKF uses

2n 4+ 1 ensemble members. It can be seen that the performance of SVDRRUKF
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with 111 ensemble members (¢ = 55) is close to optimal, whereas the performance of
CDRRUKEF is close to optimal with 11 ensemble members (¢ = 5). The steady-state
MSE of state estimates for various values of ¢ is plotted in Figure 6.4 and Figure 6.5.
The performance of SVDRRUKEF is poor when ¢ < 55, and close to optimal when
g = 55. Thus the ensemble size can be reduced from 201 to 111 with negligible
change in the performance. Finally, note that even with ¢ = 5, the performance of
CDRRUKEF is close to optimal. Hence, the ensemble size can be reduced from 211
to 11 with negligible performance deterioration.

Next, we repeat the same procedure except with a poor estimate of the process
noise covariance for data assimilation. Specifically, we replace Q) in (6.3.12) and
(6.4.16) by Qp, where Qy = I for all k > 0. The steady-state MSE of state estimates
for different choices of ¢ is plotted in Figure 6.4 and Figure 6.5. SVDRRUKF with a
poor estimate of the error covariance is unstable for all ¢ < 95 (indicated by the X’s).
However, it can be seen from Figure 6.5 that even with ¢ = 5 and a poor estimate
of the process noise covariance, the performance of CDRRUKF is close to optimal.

Finally, we replace Qy in (6.4.17) by Qk, where Qk = ol for all £ > 0, and perform
state estimation using CDRRUKF. The steady-state MSE of the state estimates
is shown in Figure 6.6 for various values of a. The degradation in performance
for smaller values of « is less when the ensemble size is large. However, for all
three cases ¢ = 5, ¢ = 15, and ¢ = 15, the performance of CDRRUKF is close
to optimal when a > 1. This suggests that it is advantageous to overestimate the
process noise covariance. SVDRRUKF with ¢ = 5, 15, 25 is unstable for all choices of
a = 0.005,...,50. Hence, these simulations suggest that CDRRUKF is more robust

than SVDRRUKF with respect to uncertainties in the process noise covariance.
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6.6 196 Model

Next, we compare the performance of SVDRRUKF and CDRRUKF on a non-
linear model that exhibits chaotic dynamics. The L96 model mimics the propagation
of an unspecified meteorological quantity along the latitude circle [79]. The dynamics

are governed by

d
where z;(t) € R denotes the meteorological quantity at the ¢th grid point at time

t, u; € R denotes an external forcing term, and w; denotes unknown disturbances

affecting the 7th grid point. For all ¢ > 0, the boundary conditions are defined by

xo(t) = xp(t), x_1(t) = xp_1(t), Tpi1(t) = x1(2). (6.6.2)

We choose u;(t) = 8 for all i = 1,...,n and all t > 0. Using fourth-order Runge-
Kutta discretization with a sampling time of 0.05 s, we obtain a discrete-time model
of (6.6.1) that can be expressed as (6.2.1). Furthermore, we assume that the dis-
cretized model is corrupted by an unknown external disturbance that affects certain
cells. We choose n = 40, and assume that w;, is white noise process with covariance

Qr = Q for all k£ > 0, where @) € R"*" is diagonal with entries

0.1, ifie {5,15,25 35},
Qi = (6.6.3)

0, else.

Next, we assume that measurements from cells with 20 and 21 are available so that

X20,k
X21,k

where vy is white noise process with covariance Ry = 0.011;. Hence, (6.6.4) can be

expressed as (6.2.2) with O}, = C € R**1°, We use the measurements y; to estimate
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the state in the cells where measurements are not available. The estimates of z90(t)
and wo3(t) obtained using UKF are shown in Figure 6.7. The MSE of state estimates
obtained using UKF is shown in Figure 6.8. The error in the state estimates obtained
when data assimilation is not performed is also shown for comparison. Since n = 40,
UKF uses 81 (2n + 1) ensembles.

Next, as shown in Figure 6.9 and Figure 6.10, we reduce the ensemble size and
use SVDRRUKF and CDRRUKF with ¢ = 10,20,30. Although the number of
ensembles in SVDRRUKF and CDRRUKEF is the same for a fixed value of ¢, it can
be seen that the performance of SVDRRUKEF is poor compared to the performance of
CDRRUKEF for both ¢ = 20 and ¢ = 30. Moreover, the performance of CDRRUKF
with 61 (¢ = 30) ensemble members is close to the performance of UKF with 81
ensemble members. Figure 6.11 shows the difference in the MSE of state estimates
between data-free simulation and the reduced-rank filters with ¢ = 10. Positive
values indicate the cells and time instants at which estimates from the reduced-rank
filters are better than the estimates obtained when data assimilation is not performed,
while negative values indicate the cells and time instants at which estimates from the
reduced-rank filters are worse than the estimates obtained from data-free simulation.

Next, since the process noise covariance () is often not readily available, we
assume that we have a poor estimate of the process noise covariance. Specifically, we
replace @ in (6.3.12) and (6.4.16) by Qy, where Qi = ol for all k > 0. Figure 6.12
shows the time-averaged MSE of state estimates obtained using SVDRRUKF and
CDRRUKF with ¢ = 10 and ¢ = 20 for various values of a between 0.001 and 100.
The error in state estimates are averaged between 35 sec and 50 sec. It can be seen
that, for all values of «, the performance of CDRRUKF is superior to the performance

of SVDRRUKF. In fact, CDRRUKF with 21 ensemble members (¢ = 10) consistently
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outperforms SVDRRUKF with 41 ensemble members (¢ = 20).
6.7 Simulation Example : 1-D Compressible Flow Model

Finally, we consider state estimation of one-dimensional hydrodynamic flow
based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

ap—l— 0 Qv+wp 0, (6.7.1)
d p
ov 0 dp B
pa—i- 6_+8_+w =0, (6.7.3)

where p € R is the density, v € R is the velocity, p € R is the pressure of the fluid,
v = g is the ratio of specific heats of the fluid, and w,, w,, and w, are the unmodeled
source terms that affect the density, pressure and velocity of the flow. Due to the
presence of coupled partial differential equations, it is generally difficult to obtain
closed-form solutions of (6.7.1)-(6.7.3). However, a discrete-time model of the flow
can be obtained by using a finite-volume-based spatial and temporal discretization.

Assume that the channel consists of n identical cells. For alli =1,...,n, let pgj},

v,[j], and p[l] be the density, velocity, and pressure in the ith cell at time step k. For

alli =1...,n, define Ul € R3 by
' T
il _ { iyl i } | (6.7.4)

We use a second-order Rusanov scheme [67] to discretize (6.7.1)-(6.7.3), and obtain

a discrete-time model

oty = AU k) (6.7.5)
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where W,Eﬂ € R3 represents unmodeled source terms that affects the density, velocity
and pressure of the fluid in the ith cell, and is assumed to be zero-mean white
Gaussian process noise with covariance matrix QU € R**3. Furthermore, for all
k>0, U,,[;”, U,LO], U,£"+1], and U,£n+2] denote the boundary conditions. Next, define

the state-vector z;, € R*" by

xk:[(Ug])T (U;E"})Tr- (6.7.6)

so that (6.7.5) yields a discrete-time model of the form (6.2.1), where w;, € R?" is

defined by

w2 [ iy by ] | (6.7.7)

Since W,Eﬂ is a zero-mean white Gaussian process, (6.7.7) implies that wy is also a

zero-mean white Gaussian process with covariance Qj, = Q € R3*3"  where

Q £ diag(QM, ..., QM. (6.7.8)

We assume that measurements of density, velocity and pressure from certain cells

are available so that y; is given by (6.2.2), with Cy, = C for all £ > 0, where

o= { (CENT ... (Clisl)T r, (6.7.9)

vy is zero-mean white Gaussian noise with covariance matrix R = 0.01/3,3,, and for

all i € {1,...,n}, Cll € R¥>3" is defined by

ctl & { 03x3(n—i) I3x3 O3x3(i-1) } ’ (6.7.10)

Let n = 100 so that x;, € R3°. We assume that the discretized cells are of width

1 m and choose a sampling time of ¢, = 0.2 s. First, we consider flow along a circular
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one-dimensional channel (see Figure 6.10). Hence, the boundary conditions are given

by
uP o, O U o — o, o — U, ko (67D

We assume that unknown source terms affect cells with indices 15, 25, 75, and 85

and therefore

, 0.175, ifie {15,25,75,85},
QU = (6.7.12)

0, else.
Furthermore, we use measurements of density, velocity, and pressure from cells 50

and 51 to estimate the flow variables in other regions. We assume that the nominal

initial conditions are given by

;

. 1.5, if i€ {45,...,55},

Py = : (6.7.13)
1, else.
\

W =0, i=1,...,n, (6.7.14)

. 1.5, if i€ {45,...,55},

Pl = . (6.7.15)
1, else.

\

We initialize the estimators with the nominal initial condition and initialize the truth
model by adding random perturbations to the nominal initial condition.

The evolution of density between 50 sec and 100 sec is shown in Figure 6.14. The
estimates from data-free simulation and UKF are also shown. Figure 6.15 shows the
total MSE in the state-estimates when data assimilation is performed using UKF.
The error in the state estimates when data assimilation is not performed is also

shown in the same figure. Note that we consider 100 cells and the dimension n of



148

the state-vector is 300, and therefore UKF uses 601 (2n + 1) ensembles. Thus, we
update the flow variable in 60100 cells and hence UKF is computationally expensive.

Next, we reduce the ensemble size and perform data assimilation using SVDR-
RUKD and CDRRUKF. Figure 6.16 shows the total MSE in the state-estimates
obtained using SVDRRUKF with ¢ = 100, 50,25. Note that the dimension of the
state-vector n = 300 and degradation in performance can be seen only when ¢ = 25.
The error in the state-estimates obtained using CDRRUKF with ¢ = 100, 50, 25 is
shown in Figure 6.17. The performance of CDRRUKF for all values of ¢ is close to
that of UKF. The difference in the MSE of state estimates between data-free simula-
tion and the reduced-rank filters with ¢ = 15 is shown in Figure 6.18. Positive values
indicate the cells and time instants at which estimates from the reduced-rank fil-
ters are better than the estimates obtained when data assimilation is not performed,
while negative values indicate the cells and time instants at which estimates from the
reduced-rank filters are worse than the estimates obtained from data-free simulation.

Finally, Figure 6.19 shows the performance of SVDRRUKF and CDRRUKF for
g = 200,150,100, 50,25,15. The normalized computational time and normalized
estimation accuracy of the reduced-rank filters is shown. It can be seen that even
with ¢ = 15, the performance of CDRRUKF is close to that of UKF although
CDRRUKF with ¢ = 15 takes about 1/5th of the time taken by UKF. However, the

performance of SVDRRUKEF with ¢ = 15 is worse than that of data-free simulation.

6.8 Ensemble Transformation

Note that H{, and H!, that satisfy (6.3.9) and (6.4.13), respectively, are not

unique. Let S € R™"™?, where ¢ < n, C' € RP*" and R € RP*P be positive definite.



149
Assume that H € R?9%? satisfies
HH™ = I — (CS)T (CS(CS)T + R) ™' CS. (6.8.1)

In fact if H = H satisfies (6.8.1), then for all unitary matrix U € R?Y H = HU
also satisfies (6.8.1). Note that (6.8.1) resemble (6.3.9) and (6.4.13). A comparison
of the performance of ensemble-based filters for different choices of H is performed

in [22]. Note that certain choices of H ensure that » ;_,col;(SH) = 0 whenever

! ocol;(S) = 0, where col;(M) denotes the ith column of a matrix M. However,
in SVDRRUKF and CDRRUKF, 7 (ST, and 7 (S!., may not be equal to
zero because of the rank reduction step (6.3.13) and (6.4.17). Hence, instead of

using the results in [22,77], we use a symmetric positive-negative pairing of the

ensembles. Specifically, (5.5.3), (6.3.6), and (6.4.10) imply that, for alli =1,...,q,

da da __ da da da da __ da da
Xie — wsh = —(Xgpos — agy) and Xy —ach = —(Xg -, — 2¢h), and hence
2q 2q
da __ _da da _  _.da
2 :790,6171'Xs,i,k = Ty ks E ’Va:,q,ch,Lk = T k- (682)
1=0 i=0

Finally, using the Matrix Inversion Lemma in (6.8.1) yields

1

HH" = (I,+ (CS)'R'CS) . (6.8.3)

Hence, either the singular value decomposition or Cholesky factorization of (6.8.3)
can be used to obtain H. Since the Cholesky factorization is computationally effi-
cient, we use the Cholesky factorization to obtain H;k and H (fk in all our simulations.
Note that no rank-reduction is performed while obtaining H;k and Hik. Further-
more, our simulations did not show any significant change in the performance when

Hsfk and H (fk were obtained using the singular value decomposition.
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6.9 Basis Selection for CDRRUKF

The following result given in [42] shows that CDRRUKF is equivalent to UKF

for a single time step when Cj, has the form (6.4.1).

Proposition 6.9.1 Assume that Cy, has the structure in (6.4.1), and let Pfk =

Pf. Then, C,.PL, = CyPf and hence, K., = K.

Note that Proposition 6.9.1 guarantees that CDRRUKF and UKF are equivalent
only for a single time step. However, if the dynamics in (6.2.1) is linear and time-

invariant, that is, for all £ > 0,

Tpt1 = Az + Buy, + wy, (691)

yp = Cuxg+ v, (6.9.2)

then a basis for the state x can be chosen so that CDRRUKF is equivalent to UKF

for r > 0 time steps. We first define the observability matrix O(A, C') € RP"*" by

C

O(A,0) 2 C% : (6.9.3)

CAn—l

Note that for linear systems, O(A, C') determines the value of the output yy at future
instances in time. Specifically, if uy = wy = vy = 0, for all k£ > 0, then (6.9.1)-(6.9.3)

imply that, for all £k > 0,

Yk
= 0O(A, C)xy. (6.9.4)

Yk4+n-1
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Assume that O(A, C) has the form

I,
O(A,C) = : (6.9.5)
O(pfl)nxn
Let x; have entries
T
T — |: xl,k “e xn’k :| 5 (696)
Then, (6.9.4) implies that, for any integer r > 0 such that pr < n,
Yk T1k
= : . (6.9.7)
Yke+r—1 Lprk

Therefore, the measurements from time step k to £+ r — 1 depend on only the value
of the first pr components of the state vector x;, at time step k. The following result
is given in [42].
Proposition 6.9.2 Assume that O(A,C) has the form
O(A,C) = I . (6.9.8)

O(p—l)nxn

Let v > 0 be an integer such that pr < n and let ¢ = pr. Furthermore, assume that
P;O = PL. Then, for allk =0,...,r, K.}, = Ky. If, in addition, xio =zl then for
allk=0,...,r, xf, =z},

Generally, the observability matrix O(A, C') may not be of the form (6.9.8). How-
ever, a suitable change of basis for the state x can be found so that the observability
matrix satisfies (6.9.8). Let T' € R™" be invertible, and define A £ TAT~! and

C 2 CT ' Let & £ T, so that in the new basis, (6.2.1) can be expressed as

i1 = Ak + Buy + g, (6.9.9)

Y = é’ki‘k—f—f}k. (6910)
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If (A, C) is observable, then (A, C) is also observable, and there exists an invertible
matrix 7" € R™" such that O(A, C) satisfies (6.9.8) (see [36]). Hence, for linear
dynamics, we use (6.9.9) and (6.9.10) to construct CDRRUKF and perform data
assimilation in the new basis so that the observability matrix has the form (6.9.8),
and thus ensure that the performance guaranteed in Proposition 6.9.2 is achieved.
Moreover, all the results in Section 6.5 are obtained using a basis such that the
observability matrix has the form (6.9.8)

Next, we consider systems with nonlinear dynamics. Specifically, we consider
nonlinear systems like terrestrial-weather and ocean-climate models, where the state
vector represents physical variables like temperature, pressure, and density at specific
grid points that discretize a spatial region. For example, in a one-dimensional model,

T can be expressed as

T
xk:[xg] xM , (6.9.11)

where $E] denotes the physical variable in the ith grid point at time step k. Further-
more, in systems modeled by finite volume schemes, the future value of the physical

variable in a particular grid point ¢ depends only on the current value of the physical

variables in its neighboring cells. Hence, the dynamics (6.2.1) can be expressed as
el = fE T k), =1, n, (6.9.12)

and b > 0 depends on the order of the finite volume scheme [66,67]. For example,
b = 2 in a second-order finite volume scheme.
Next, let y, denote measurement of the physical variable at a particular grid-

point, so that

[i1]

Yk =T + v, (6.9.13)
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where i; € {1,...,n}. For nonlinear systems, the notion of an observability matrix
is not well developed and is an area of active research [80]. However, it follows from

(6.9.12) and (6.9.13) that, if w, = vx = 0, for all & > 0, then

Yk gy g )
- : . (6.9.14)
Yetr—1 gr(zglimla s ’xg1+7"b]’ Uk k)
Hence, (6.9.14) can be expressed as
Yk
= g k), (6.9.15)
Yk+r—1
Now define 7, € R™ by
- xgl] x,[jl_l] x%l-ﬂ] x%l_Q] x%lw] e | (6.9.16)

Then, (6.9.15) implies that yy, ..., Yrir—1 depends on only first 2rb components of
the state vector 7 at time step k. Hence, while using CDRRUKF for nonlinear
systems that are modeled by finite-volume schemes, we choose a basis so that the
outputs vy, ..., Yrir—1 depend on only the first few components of the state vector.
Although it is difficult to obtain rigorous results similar to Proposition 6.9.2 in the
nonlinear case, simulation results indicate that choosing such a basis significantly
improves the performance of CDRRUKF. Furthermore, we use such a basis in all

our simulations in Section 6.6.

6.10 Conclusion

In this chapter, we presented a reduced-rank Unscented Kalman filter based on

the Cholesky decomposition. The ensemble members are reinitialized at each time
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step using the columns of Cholesky factor of the square root of the pseudo-error co-
variance matrix. In all the examples that we considered, the Cholesky-based reduced-
rank unscented Kalman filter yielded better estimates than its counterpart based on
the singular value decomposition. Moreover, the Cholesky-based filter is computa-
tionally faster than the filter based on singular value decomposition, and hence is
an attractive alternative to existing reduced-rank filters that use the singular value

decomposition.
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Figure 6.1: MSE of the state estimates obtained from UKF. Since the dynamics are
linear, UKF is equivalent to the Kalman filter. The MSE of state esti-
mates when no data assimilation is performed is shown for comparison.
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MSE of the state estimates obtained from SVDRRUKEF for various values
of g. SVDRRUKF with ¢ = 5 is unstable, while the performance of
SVDRRUKF with ¢ = 55 is close to the optimal (UKF) performance.
Note that SVDRRUKF with ¢ = 55 uses 111 ensemble members, whereas
UKF uses 201 ensemble members.
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Figure 6.3: MSE of the state estimates obtained from CDRRUKF with ¢ = 5. The
performance of CDRRUKF with ¢ = 5 is close to the optimal (UKF) per-
formance. Note that CDRRUKF with ¢ = 5 uses 11 ensemble members,
while UKF uses 201 ensemble members.
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Figure 6.4: Steady-state performance of SVDRRUKEF for various values of ¢ between
5 and 100. For each value of ¢, we perform data assimilation with the
exact value of the process noise covariance and with a poor estimate
of the process noise covariance. Specifically, we replace Q; by Qy in
(6.3.12), where Qr, = I for all k > 0. The performance of UKF is shown
for comparison. The X’s indicate cases in which the filter is unstable.
SVDRRUKF is unstable when ¢ = 5, irrespective of the value of the
process noise covariance used for data assimilation. When the exact
value of the process noise covariance is used for data assimilation, the
performance of SVDRRUKEF is poor when ¢ < 55 and close to optimal for
q > 55. However, when a poor estimate of the process noise covariance is
used for data assimilation, SVDRRUKF is unstable for all ¢ = 5,...,95.
These results indicate that SVDRRUKEF is sensitive to uncertainties in
the estimate of the process noise covariance.
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Figure 6.5: Steady-state performance of CDRRUKF for values of ¢ between 5 and
100. We first perform data assimilation using the correct value of the
process noise covariance, and then perform data assimilation with a poor
estimate of the process noise covariance, that is, we replace @y in (6.4.16)
by Qk, where Qk = [ for all £ > 0. Note that for ¢ = 5, the performance
of CDRRUKEF is close to optimal, irrespective of the value of the process
noise covariance used for data assimilation.
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Figure 6.6: Steady-state performance of CDRRUKF with ¢ = 5,15,25. In all three
cases, we use a poor estimate of the process noise covariance for data
assimilation, that is, we replace Qy in (6.4.16) by Q, where Q = aI for
all k£ > 0. In spite of the presence of an error in the process noise covari-
ance, CDRRUKF is stable and thus robust to uncertainty in the process
noise covariance. For a fixed level of uncertainty in the process noise
covariance, the performance of CDRRUKF improves when the ensemble
size increases. Moreover, for a specific choice of ¢, the performance im-
proves as « increases. These results suggest that it is advantageous to
overestimate the process noise covariance. The performance of SVDR-
RUKEF is not shown since SVDRRUKEF is unstable for all values of o and
q =5,15,25.
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Figure 6.7: Estimates of xq0(t) and x93(t) when measurements of xoy(t) and (1)

are used by UKF. The results of data-free simulation are shown for com-
parison. In both UKF and data-free simulation, all of the initial states
are set to zero.
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Figure 6.8: MSE of the state estimates obtained using UKF when the exact value
of the process noise covariance is used. The MSE of the state estimates
obtained from data-free simulation is also shown for comparison.
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Figure 6.9: MSE of the state estimates obtained using SVDRRUKF with ¢ = 20, 30.
The error in state estimates when UKF is used and for data-free simu-
lation is shown for comparison. The performance of SVDRRUKEF with
q = 20 and ¢ = 30 is poor. In fact, SVDRRUKF with ¢ = 20 and ¢ = 30
sometimes yields estimates that are worse than estimates obtained from
data-free simulation.
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Figure 6.10: Performance of CDRRUKF with n = 40 and ¢ = 20, 30. Note that the
performance of CDRRUKF with ¢ = 20 is better than the performance
of SVDRRUKF with ¢ = 30.
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Figure 6.11: Difference in the MSE of state estimates between data-free simulation
and SVDRRUKF and CDRRUKF. We use measurements from cells 20
and 21 for data assimilation. For both SVDRRUKF and CDRRUKF,
we choose ¢ = 10 so that the ensemble size is 21. Regions with posi-
tive values indicate the cells and time instants at which the estimates
from the reduced-rank filters are better than the estimates obtained
when data assimilation is not performed. Alternatively, negative values
indicate time instants at which the estimates from SVDRRUKF and
CDRRUKEF are worse than the estimates obtained from data-free simu-
lation. Note that CDRRUKF with 21 ensembles improves the estimates
in most of the cells. However, the estimates from SVDRRUKF are ex-
tremely poor in certain cells, for example, in cells 10,...,15 between
25.5 sec and 26 sec.
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Time-averaged MSE of state estimates between 35 sec and 50 sec. The
state estimates are obtained using SVDRRUKF and CDRRUKF with
g = 10 and ¢ = 20, and a poor estimate of the process noise covari-
ance. Specifically, we replace @, in (6.3.12) and (6.4.16) by Qy., where
Qk = al for all k£ > 0. The error in the state estimates from data-free
simulation and UKF is shown for comparison. For all values of «, the
performance of CDRRUKF is better than the performance of SVDR-
RUKEF. Furthermore, CDRRUKEF is more robust to uncertainties in the
estimate of the process noise covariance.
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Figure 6.14: Evolution of density between 50 sec and 100 sec. The estimates from
(b) data-free simulation and (c) UKF are also shown.
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Figure 6.15: Total MSE of the state estimates between 0 sec and 100 sec in a
one-dimensional circular channel with periodic boundary conditions ob-
tained using UKF.
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Total MSE of the state estimates between 0 sec and 100 sec in a one-
dimensional circular channel with periodic boundary conditions. The
state estimates are obtained using SVDRRUKF with ¢ = 100, 50, 25.
The error in the state-estimates in each cell when no data assimilation
is performed is also shown as for comparison. The performance of SV-
DRRUKF with ¢ = 100 and ¢ = 50 is close to that of UKF. However,
the accuracy of the estimates from SVDRRUKF with ¢ = 25 is poor in
certain cells and in some cases worse than the estimates obtained from
data-free simulation.
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Figure 6.17:

Cell index

Total MSE of the state estimates between 0 sec and 100 sec in a one-
dimensional circular channel with periodic boundary conditions. The
state estimates are obtained using CDRRUKF with ¢ = 100, 50, 25.
The error in the state-estimates in each cell when no data assimilation
is performed is also shown as for comparison. The performance of CDR-
RUKF with ¢ = 100, ¢ = 50, and ¢ = 25 is close to that of UKF. Note
that the performance of CDRRUKF with ¢ = 25 is much better than
that of SVDRRUKF with ¢ = 25.
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Figure 6.18: Difference in the MSE of state estimates between data-free simulation
and SVDRRUKF and CDRRUKF. We use measurements from cells 50
and 51 for data assimilation. For both SVDRRUKF and CDRRUKF,
we choose ¢ = 15 so that the ensemble size is 31. Regions with posi-
tive values indicate the cells and time instants at which the estimates
from the reduced-rank filters are better than the estimates obtained
when data assimilation is not performed. Alternatively, negative val-
ues indicate time instants at which the estimates from SVDRRUKF
and CDRRUKF are worse than the estimates obtained from data-free
simulation. Note that CDRRUKEF with 31 ensembles improves the es-
timates in most of the cells. However, the estimates from SVDRRUKF
are extremely poor in certain cells.
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Figure 6.19: Normalized computational time and normalized sum of the square of
the error in the state estimates obtained from the various reduced-rank
filters. The computational time of UKF is normalized to 1 and the
error in the state estimates from data-free simulation is normalized to
1. The performance of CDRRUKF with ¢ = 25 is close to UKF, and
the computational effort of CDRRUKF with ¢ = 25 is only a fraction
of that of UKF. For all ensemble sizes, the superiority of CDRRUKF
over SVDRRUKF in terms of estimation accuracy and computational
effort is clearly seen.



CHAPTER VII

Reduced-Order Covariance-Based Unscented
Kalman Filtering with Complementary
Steady-State Correlation

In the previous chapter, we reduced the number of ensembles of the unscented
Kalman filter by propagating a low-rank approximation of the error covariance. In
this chapter, we consider yet another approach to reduce the ensemble size. We con-
sider an estimation algorithm that uses the full-order model for propagating the state
estimates, but uses a reduced-order model to propagate the error covariance, thus re-
ducing the size of the error covariance matrix used for data assimilation. Specifically,
multiple copies of only a specific subset of the state estimate are used to calculate the
reduced-order error covariance. Since only a reduced-order pseudo-error covariance is
calculated, we compensate for the neglected correlations by using a static estimator
gain based on steady-state correlations that can be determined offline. We use this
estimation algorithm to perform data assimilation of one-dimensional compressible
flow and two-dimensional magnetohydrodynamic flow models. The results in this

chapter have been published in [81].
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7.1 Introduction

State estimation for very large scale systems remains an area of interest re-
search. These systems arise in applications based on spatially distributed models or
spatially discretized partial differential equations. Weather forecasting and related
atmospheric applications are the main driver for this line of research [82,83]. Al-
though the literature on reduced-order filtering extends back several decades [8, 25],
the challenge in addressing very large scale systems is to propagate the covariance
efficiently, especially in view of the fact that covariance propagation is O(n?) in
computational complexity, where n is the number of states.

To address the problem of computational complexity, a reduced-order error-
covariance propagation algorithm is developed in [20,27] based on balanced re-
duction, and this algorithm is compared to several alternative reduced-order error-
covariance propagation algorithms in [9]. Some of these algorithms use an initial
balancing transformation, while others use an initial model truncation along with a
steady-state covariance. Algorithms that avoid the need for a balancing step are de-
sirable when the system order is sufficiently high that balancing and transformation
are prohibitive.

In this chapter we extend the approaches considered in [9] to nonlinear systems
by using the unscented Kalman filter [19]. This extension is necessitated by the fact
that large-scale applications are also typically nonlinear. Since balancing is usually
not feasible for systems of very large order, we consider nonlinear extensions of only
the algorithms studied in [9] that avoid the need for balancing. These algorithms
include the localized unscented Kalman filter (LUKF), which is essentially an un-

scented Kalman filter applied to a truncated model that includes all states that affect
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the measurements, as well as LUKF augmented by complementary steady-state error
correlations. This augmentation can be performed either without LUKF present or
with LUKF present. The former case is referred to as the localized unscented Kalman
filter with complementary open-loop steady-state correlations (LUKFCOLC), while
the latter case is referred to as the localized unscented Kalman filter with comple-
mentary closed-loop steady-state correlation (LUKFCCLC). The paper describes the
LUKF, LUKFCOLC, and LUKFCCLC algorithms in detail.

To compare the performance of the LUKF, LUKFCOLC, and LUKFCCLC al-
gorithms, we consider three examples that are computationally tractable on single-
processor machines. First, we consider a finite-volume compressible hydrodynamic
simulation for one-dimensional. Extended Kalman filter and state-dependent Ric-
cati equation techniques were applied to these problems in [50,57,85]. Finally, we

consider a two-dimensional finite-volume magnetohydrodynamic (MHD) simulation

using the BATSRUS MHD code developed in [84].
7.2 Localized Unscented Kalman Filter (LUKF)
Consider the discrete-time nonlinear system with dynamics
Tpr1 = [(xp, ug, k) + wy, (7.2.1)
and measurements
Y = h(zy, k) + vy, (7.2.2)

where xp € R, v, € R™, and y, € RP. The input u; and output y, are assumed
to be measured, and w; € R™ and v, € RP are uncorrelated zero-mean white noise
processes with covariances @ and Ry, respectively. We assume that R; is positive

definite.
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In many data assimilation applications involving finite volume models, the
dynamics involve nearest neighbor interactions (banded dynamics), and hence mea-
surements available in a certain spatial region seem to influence the estimates in only
a certain neighborhood around the measurement location (see Appendix A). Next,
we consider an extension of UKF that approximates the error covariance correspond-
ing to only a specific subspace of the state and not the entire state, thereby reducing

the number of ensembles needed. Assume that the state z; € R™ has components

T

where 21, € R™ and zg; € R"®, and n;, + ng = n. Also, assume that the measure-

ments depend on the state xp, so that y, can be expressed as
Y = h(zLk, k) + v (7.2.4)

Finally, let Q) and P} have entries

f f
Op — Qurr Quek P Py Pieo | (7.2.5)
QEE,k Qr (PIEE,O)T Plf:,o

The objective is to directly inject the measurement data ¥, into only the states corre-
sponding to the estimate of zy,; by using a reduced-order surrogate error covariance.
For example, in weather prediction models involving spatial dimensions, zp,; may
represent the states corresponding to a small region surrounding the location where
measurements are available, and xg; may represent the states that are outside this

localized region.

Assume that for all £ > 0, the error covariance P,f, of UKF has the structure

Plo
pr=| " , (7.2.6)
0 0
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where Pf, € R™*™ represents the covariance of error corresponding to the state

r1x Hence, it follows from (5.5.3) and (7.2.6) that if X{ = ¥(zt, Pf ) then for

t=nL,+1,...,n,n+n,+1,...,2n,

£ yf L f
Xz',k = Xl,k = Ty

(7.2.7)

Since 2ng + 1 ensembles are exactly the same, it suffices to retain only one such

ensemble. Therefore, the number of ensembles required is reduced from 2n + 1 to

(2n+1) —2ng = 2ny, + 1. Furthermore, it follows from (7.2.6) that instead of a n x n

error covariance only a nj, X ny, reduced-order error covariance has to be estimated

using the 2np, + 1 ensembles. Applying these simplifying assumptions to UKF yields

the localized unscented Kalman filter (LUKF).

The data assimilation step of LUKF is given by

da £ £
1% = oy + Kue(ye — i),

da _ _f
Tk = Tk

ylfc - h('ri,k? k)?
Xi5 = Ulapy, P, ),

da _ f T
PL,k; - PL,k - KL,kuy,kKL,k?
where

—1
KL,k: = P:BLy,kP

yy,k?
2nL
Poyr = Z ’Vi(XIE,i,k - xik)(y;fk - ylfc)T7
i=0

2'I’LL

Py => %V =y (Vi — )" + Ru
=0

Vi = h(X 5 k),

)

(7.2.8)
(7.2.9)
(7.2.10)
(7.2.11)

(7.2.12)

(7.2.13)

(7.2.14)

(7.2.15)

(7.2.16)
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and for i =0,...,2ny, szk € R™ is the (¢ + 1)th column of X{}k. Note that only
2nr, + 1 ensembles are used compared to the 2n + 1 ensembles in the UKF, and
(7.2.8)-(7.2.9) imply that the measurement data is injected directly into only the

estimates of the state corresponding to the subspace xy, .

Next, for all t = 0, ..., 2ny,, define XSZ € R” by

Xda
Xdao | TR (7.2.17)
xdEak

where X, € R" is the (i + 1)th column of X{%%. It follows from (7.2.6) that the
correlations corresponding to the error in the state xgj are assumed to be zero, and
therefore, the estimate z{f, of the state zg, in all the ensembles of LUKF in (7.2.17)
is the same. However, the estimate of the state xrj is different in each ensemble.

The forecast step of LUKF is given by

Xippr = F(X5R, up, k). (7.2.18)

2y

The forecast estimate of the state z; is obtained by

21’LL
ah = nyiX;kJrl. (7.2.19)
i=0
Next, for 2 =0,...,2ny, let XifJCJrl € R™ have entries
Xliik—i—l
Xips1 = f (7.2.20)
Xp ikt

with X{7i7k+1 € R™ and Xémkﬂ € R". Finally, to account for the increase in
the error covariance due to the process noise, represented by 1, the surrogate

covariance of the error in the estimate of zy, is given by

2n

Pl = D (XL — Php) XL — )" + Quae (7.2.21)
=0
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Although (7.2.9) implies that data is not directly injected into the state estimates
corresponding to the subspace xgy, it follows from (7.2.17)-(7.2.19) that the mea-
surement data affect the estimates of the state xgj through the dynamic coupling
between xr,; and zgi. LUKEF involves 2ny, 4+ 1 model updates and therefore the
number of computations involved is of the order (2ny, + 1)n?. Hence, if n;, < n, then

LUKF is computationally efficient compared to UKF.

7.3 Complementary Steady-State Correlation

Although LUKF provides estimates of all of the states, (7.2.9) implies that
LUKEF injects data directly into only that states corresponding to the estimate of xy, .
On the other hand, UKF injects data directly into the all of states of the estimator.
Since ignoring the correlation between the error in the estimates of the states zy,
and zg ; in LUKF may result in poor estimates, we consider a modification of LUKF
that uses a constant correlation between the error in the estimates of the states xp,
and zgy . In the following sections, we assume that @)y = @ and R, = R for all
k> 0.

If the dynamics and the measurement map in (7.2.1) and (7.2.2) are linear and
time-invariant, then, the error covariance is propagated using the Riccati equation,
and under certain detectability and stabilizability assumptions, the error covariance
converges to a steady-state value that is the solution of an algebraic Riccati equation.
If the dynamics are nonlinear, then there is no guarantee that UKF or LUKF will
reach a statistical steady-state. However, simulations may indicate that after a
certain period of time, the performance of the estimators do not vary significantly,
and in that case, we assume that the estimator has almost reached statistical steady-

state.
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7.3.1 LUKF with Complementary Open-Loop Correlation (LUKFCOLC)

First, we determine a static estimator gain that is based on the steady-state
correlation between the measurements ;. and the state x;. If the dynamics are linear
and time-invariant, that is f(z,u,k) = Ax + Bu and h(z,k) = Cxz for all k£ > 0,
and (A, Q) is stabilizable, then the steady-state state covariance P,, is the solution

of the Lyapunov equation
P,, = AP,A" + Q. (7.3.1)

Furthermore, the steady state correlation F,, between the measurement y; and the
state zy, is given by Py, = P,,CT.

However, since the dynamics are nonlinear, we approximate the steady-state state
covariance by using Monte Carlo simulations. Consider N copies of the open-loop

model of the system (7.2.1)-(7.2.2) so that fori =1,..., N,

Tijp1 = [(Tig, up, k) + Wi g,
(7.3.2)
Uik = h(Tig, k) + Vig,
where Z; is a random variable with the specified mean x, and variance P}, and
W, and ;) are sampled from zero-mean white processes with variances () and

R, respectively. Next, we define an approximation of the steady state open-loop

correlation Por ., and Por ,, by

N
. 1 - NS _
PoLay = Jim —— (Zige — Tn) (i — ) (7.3.3)
=1
1 N
PoLyy = Jim e > (Fik = Gi) (G — i)' (7.3.4)
=1
where
1 & 1 &
T = I Z@',k, Uy = N Yi k- (7.3.5)
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Alternatively, the unscented transformation can also be used to approximate the
steady state open-loop state covariance. Note that the state covariance of (7.2.1)
is the same as the open-loop error covariance, that is the covariance of error of an
estimator when the estimator gain is zero. Hence, we use (5.5.6)-(5.5.17) with K, =0

for all £ > 0, and define Poy, ,, and Por,,, by
Potzy = B Py i, Poryy £ Jm By (7.3.6)

If n is small, then the computational burden of using the open-loop unscented Kalman
filter to estimate the open-loop error correlation is small. However, when n is large,
approximating the error covariance by using Monte Carlo simulations with a small
N is computationally more efficient.

Finally, we define the static estimator gain Ko, € R"*? based on the steady-state

open-loop correlations by

KOL £ POL,J:yP(;]iyy- (737)
and let Kor, have entries
KoL
KoL = ; (7.3.8)
Kove

where Kor, 1, € R"™*? and Ko, g € R"™*P. The forecast step of LUKFCOLC is given

by (7.2.17) - (7.2.21). The analysis step of the LUKFCOLC is given by

2% = o + Kue(ye — Up), (7.3.9)
x%ak = 5EfEk + KovLz(yr — ), (7.3.10)

Y = (g, k), (7.3.11)
Xi5 = V(aty, P, a), (7.3.12)

Pﬁi,ak = PIf,k - KL,kuy,kKE,k, (7.3.13)
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where K7, and P, are defined in (7.2.13) and (7.2.15).

Note that injecting measurement data g, in an estimator affects the error covari-
ances and hence, the actual closed-loop error correlation between y, and the error in
estimates i — x;, will be different from the open-loop error correlation Poy,,, with
no data injection. However, (7.3.10) implies that the estimator gain correspond-
ing to the estimate x%ak is based on only the open-loop error correlation and is not
aware of the change in correlation due to data injection. On the other hand, UKF
always updates the closed-loop error covariances, thus accounting for the change in

the correlation due to data injection.

7.3.2 LUKF with Complementary Closed-Loop Correlation (LUKFC-
CLC)

Next, instead of using a static estimator gain that is based on the open-loop
steady-state correlations, we use a static estimator gain that is based on the closed-
loop steady-state correlations. Specifically, we estimate the steady-state correlations
between the error in the estimates when LUKF is used for state estimation. We
assume that LUKF has reached a statistical steady-state when the performance of
LUKF does not change significantly.

The Monte-Carlo procedure to determine the steady-state closed-loop correlation
is as follows. First, we simulate N copies of the open-loop model of the system
as shown in (7.3.2) and obtain outputs ;. Next, for i = 1,..., N, we perform
state estimation using LUKF with the outputs g; . Let Zf, be the estimate of Z;y

provided by the 7th simulation of LUKF. We approximate the steady-state closed-
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loop correlations by

| X
Poray 2 lim =37 & — 3] [fie — h(@E)] (7.3.14)
i=1
A qs 1 al ~ ~f ~ ~f T
PoLyy = khjgo N_1 Z [Gige — P(Z30)] [Tk — D(Ei0)] (7.3.15)
i=1

Note that z;; and ifk are all simulation outputs and hence Pcr, ., and FPer g, in
(7.3.14) and (7.3.15), respectively, can be evaluated.

Alternatively, the unscented transformation can also be used to obtain an esti-
mate of the closed-loop error correlations. To do this, we first use LUKF with the
simulated measurement data ¢; , to obtain estimates iﬁk of the state 7 for k > 0.
Assuming K7,y does not vary significantly after a sufficiently long time interval, we

define the steady-state LUKF estimator gain K, by
Ky & N Ky, (7.3.16)

where K7,y is the estimator gain given by (7.2.13) when obtaining the estimate i:ﬁk
Note that LUKF ignores correlations between certain states and hence cannot be
used to estimate the closed-loop error correlation. Instead, we use the unscented
transformation to estimate the closed-loop steady-state error correlations. Specifi-

cally, we use (5.5.6)-(5.5.17) with

K
Ke=| ", (7.3.17)

0

for all £ > 0, and view the correlations P, and P, in (5.5.11) and (5.5.12) as
an estimate of the closed-loop error correlations of LUKF. We then estimate the

closed-loop steady-state error correlations Pcy, 4, and Py, by

PCL,acy = l}i% Pmy,lc; PCL,yy = I}LI{)IO Pyy,k- (7318)
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Finally, the static estimator gain that is based on the steady-state closed-loop error

correlations is given by

Kcr = PCL,xyP(;]iyy (7319)
with entries
Ky
Ker, = : (7.3.20)
Kcone

where Kcr, 1, € R"™*? and Kcp g € R™*P.

The forecast step of LUKFCCLC is given by (7.2.17) - (7.2.21), and the analysis
step of LUKFCCLC is given by (7.3.9)-(7.3.13) with Kop g replaced by Kcp g in
(7.3.10).

Next, we compare the performance of UKF, LUKF, LUKFCOLC, and LUKFC-

CLC on three different finite volume models.

7.4 One-Dimensional Hydrodynamics

First, we consider state estimation of one-dimensional hydrodynamic flow
based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

op 0

o~ ot

d (p)

T <P7> =0, (7.4.1)
ov ov Op

Pot = ox o
where p € R is the density, v € R is the velocity, p € R is the pressure of the

fluid, and v = g is the ratio of specific heats of the fluid. A discrete-time model
of hydrodynamic flow can be obtained by using a finite-volume based spatial and

temporal discretization.
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Assume that the channel consists of n identical cells (see Figure 7.4). For all
i=1,...,n,let p, vl! and pl! be the density, velocity, and pressure in the ith cell,

and define Ul € R? by

T
Ul = [pm mlil g[i}] : (7.4.2)

where the momentum m!? and energy £ in the ith cell are given by

. Lo 1 , pl?!
[ — ] [2] glil — Z plily)liy2 )
m = ply 5P (v'") +’y— ]

(7.4.3)

We use a second-order Rusanov scheme [66] to discretize (7.4.1)-(7.4.1) and obtain
a discrete-time model that enables us to update the flow variables at the center of
each cell.

The discrete-time state update equation [66] is given by

i i ts [l —[i—1]
UIL-]I-I = U/L] - FRus,k - FRus,k; ) (744)

Ax

where ¢, > 0 is the sampling time and Az is the width of each cell, and F %]us &

depends on U’ L U,LHQ}. Hence, U,ﬂl depends on U,Li_g], e U,LHQ}, as expected
for a second-order scheme.
Next, define the state vector z € R34 by
N T
e= | ofhT oowolhT | (7.4.5)

Furthermore, we assume Neumann boundary conditions at cells with indices 1, 2,

n — 1 and n so that, for all £ > 0
v =2 =02 vl =vY=u (7.4.6)

Let n = 54 so that z € R, Tt follows from (7.4.4) that the second-order Rusanov

scheme yields a nonlinear discrete-time update model of the form

Tpr1 = f(xk) + wi, (7.4.7)



187

where w;, € R3™% represents unmodeled drivers and is assumed to be zero-mean
white Gaussian process noise with covariance matrix @ € R3(=9x3(n=4) g5 that the
flow variables in only the 5th, 15th, 25th, 35th, and 45th cell are directly affected by

wy. Next, for i =3,...,n — 2, define Cll € R3*3(»—4)

cll 2 (7.4.8)

03x3(n—4—i) 13x3 O3x33-1)

so that the measurement y;, € RS of density, momentum and energy at cells with

indices 24 and 26 is given by

Yr = Cg + v, (7.4.9)

T
where C' = | (CRPN)T (CROHT and vy, is zero-mean white Gaussian noise with

covariance matrix R = 0.01gys.

We simulate the truth model (7.4.7) with the initial condition gg] =1, vg} =0,
and pg] = 1fori=1,...,n and obtain measurements y; from (7.4.9). The objective
is to estimate the density, momentum, and energy at the cells where measurements
of flow variables are unavailable using UKF, LUKF, LUKFCOLC, and LUKFCCLC.

The square root of the sum of the square of the error in the estimates of the
energy at cells 1,...,50, when measurements y; are used in the UKF is shown in
Figure 7.2. The error in energy estimates when no data assimilation is performed is
also shown in the same figure for comparison. Note that the performance of UKF

degrades as the distance from the measurement cells 24 and 26 increases. Next, we

compare the performance of LUKF for various local grid sizes, that is, we set

T

a2 | (ulkhr ool | (7.4.10)

where (L1, L,,) € {(20,30), (16,34), (12,38)}. We choose the subset xj, € R3En=L1+1)

of x so that x, spans the cells where measurements are available. The square root
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of the sum of the square of the error in energy estimates of LUKF is shown in
Figure 7.2 for the three different local grid sizes. It can be seen that the performance
of the LUKF improves as the size of the local grid where direct data injection is
performed increases. Furthermore, even though data is injected directly into only the
estimates of the states corresponding to the local grid, LUKF improves the estimates
of the states outside this region as well. However, for all three local grid sizes, the
performance of UKF is much better than the performance of LUKF because LUKF
ignores correlations between the measurement and the states that are outside the
local region.

Finally, we obtain the steady-state open-loop and closed-loop error correlations
defined in (7.3.6) and (7.3.18), respectively, by using the unscented transformation
method. Note that the computational effort of determining the steady-state correla-
tions using the unscented transformation is equivalent to the computational effort of
using UKF. However, once the steady-state correlations are determined offline, the
computational effort of LUKFCOLC and LUKFCCLC while performing the actual
data assimilation is similar to that of LUKF which is significantly lower than the
computational effort of UKF.

The square root of the sum of the square of the error in energy estimates when
LUKFCOLC and LUKFCCLC are used to perform data assimilation is shown in
Figure 7.3. The performance of UKF and LUKF is also shown for comparison.
We choose (L1, L,) = (20,30) for LUKF, LUKFCOLC, and LUKFCCLC. It can
be seen that using a static gain based on the steady-state correlations improves
the performance. Moreover, the performance of LUKFCCLC is better than the
performance of LUKFCOLC because LUKFCCLC accounts for the change in the

measurement-error correlation when data is injected during estimation.
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Figure 7.1: One-dimensional grid used in the finite volume scheme
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Figure 7.2: Square root of the sum of the square of the error in energy estimates at
the various cells using UKF and LUKF with 3 different local grid sizes.
Although the local grid size where data is directly injected increases, the
performance of LUKF shows only a minor improvement. The cells where
disturbance enters the system are indicated by ‘e’ and the cells where
measurements are available are indicated by ‘¥’
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Figure 7.3: Square root of the sum of the square of the error in energy estimates from
LUKF, LUKFCOLC, and LUKFCCLC. All three estimators use a time
varying estimator gain to inject data into the cells with index between
20 and 30. The error in energy estimates from UKF is performed is also
plotted for comparison. The performance of LUKFCCLC is close to that
of UKF.
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7.5 Two Dimensional Magnetohydrodynamics Using BAT-
SRUS

BATSRUS (Block Adaptive-Tree Solar-wind Roe-type Upwind Scheme) [84] is a
finite volume scheme used to model the interactions between the magnetic field of
various planets with the solar wind. The dynamics of the flow variables is governed
by Euler’s equations and Maxwell’s electromagnetic equation. BATSRUS divides
the three-dimensional spatial domain into cubes of various sizes and a finite volume
discretization technique similar to the one mentioned in the previous section is used to
model the dynamics of the flow variables density, momentum, pressure, and magnetic
field. BATSRUS has the ability to change the resolution of the grids adaptively so
that enhance resolution can be obtained in regions of interest. However, we do not
use this feature in our simulations. Instead, we use BATSRUS to test the data
assimilation techniques on a simple 2-D magnetohydrodynamic bowshock model.

Consider a 2D spatial grid comprising of 4800 square cells with index (i,7) for
1=1,...,n, =40and j = 1,...,n, = 120, that covers a rectangular region spanning
the coordinates —10 < z. < 10 and —30 < y. < 30. We use BATSRUS to model the
dynamics of the flow variables density (p), momentum (m,,m,), pressure (p) and
magnetic field (B, By) in each cell. The flow variables at the edges are determined
by the boundary conditions and the flow variables at the interior cells are updated
using the second-order Rusanov scheme. We choose initial flow conditions so that
the flow is supersonic. We assume floating boundary conditions for all cells along
the edges, except for two cells at locations indicated by ‘»’ in Figure 7.4 that are
assigned reflective boundary conditions so that a bow-shock is created.

Let Ul € RS denote the flow variable at the center of (i,j) cell. Next, define
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the state vector x € RO(==4)(ny=4) by

A
xr =

Ul£3,3] L. Uk[:nm_Qvny_m (751)

so that the system dynamics are given by (7.2.1). We assume that wy, in (7.2.1) is
zero-mean white Gaussian process noise with covariance () so that only the cells with
coordinates indicated by ‘e’ in Figure 7.4 are directly affected by wy. We simulate
the truth model for 1 minute with a sampling time of ¢, = 0.01 s. We assume that
noisy measurements y; of the flow variables p, m,, m,, B,, B, and & at cells within
the bow-shock region with coordinates indicated by ‘@’ in Figure 7.4 are available so
that y, is given by (7.2.2), where h(zy, k) = Czy and C depends on the coordinates
of the cells where measurements are available.

The density and magnetic filed lines at ¢ = 1 minute are shown in Figure 7.4. The
bow-shock is the semi-circular region where the density is higher than the density
of inflow at the boundary cells. Note that the magnetic filed lines tend to curve
around the bow-shock region. Next, we perform data assimilation using LUKF,
LUKFCOLC, and LUKFCCLC. Figure 7.5 shows a plot of the difference in square
root of the sum of the squares of error in energy estimates between the no data
assimilation case and LUKF, LUKFCOLC, and LUKFCCLC. Hence, positive values
indicate a significant improvement in the estimates. Note that the state dimension
n = 25056 and since UKF requires 2n + 1 = 50113 ensembles, we do not use UKF
to obtain the state estimates. Also, we use Monte Carlo methods to determine the
steady-state correlations used in LUKFCOLC and LUKFCCLC. The local region
used in LUKF, LUKFCOLC and LUKFCCLC is shown in Figure 7.4 by the solid

lines and xy, contains the state variables in this region.
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Figure 7.4: A bowshock is formed when supersonic flow from the left edge interacts
with a stationary object (‘»’). The cells where disturbance enters the
system is indiacted by ‘a” and the cells where measurements are available
are indicated by ‘e’. The local region corresponding to the state xy, is
indicated by the shaded rectangular region around the measurement cells.
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Figure 7.5: The difference in the error in the square root of the sum of the square
of error in pressure estimates between the no data assimilation case and
LUKF (left), LUKFCOLC (middle), and LUKFCCLC (right). The hor-
izontal and vertical axis denote the x and y spatial coordinates. Positive
values indicate regions where the estimators improve the estimates of the
state compared to the no data assimilation case.
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7.6 Conclusion

We presented extensions of the the unscented Kalman filter that propagates a
reduced-order pseudo-error covariance. To compensate for the neglected correlation
between certain states and the measurement, we present two methods that use a com-
plementary static estimator gain based on correlations between the measurements
and the neglected states. The use of a static estimator gain based on the open-
loop and closed-loop correlations helps improve estimation performance without a

significant increase in the online computational burden.



CHAPTER VIII

Conclusions and Future Work

This dissertation presented reduced-complexity algorithms for data assimilation
of large-scale linear and nonlinear discrete-time systems. Chapters II-IV dealt with
linear systems and presented new estimation algorithms that are variations of the
Kalman filter. Chapters V-VII presented variations of the unscented Kalman filter
for data assimilation of nonlinear systems and dealt with reducing the ensemble size
of the unscented Kalman filter.

The main contribution presented in Chapter II is an estimator that injects data
into only a specific subset of the state. Unlike the Kalman filter, the estimator
presented in Chapter II depends on the weighting on the error in the state estimates.
Thus, a possible extension is to develop methods that determine the exact subspace
of the state estimate that has to be injected with data in order to get a better
estimate of a specific subset of the state. Another possible extension would be to
obtain rigorous conditions that guarantee the stability of the spatially constrained
estimator when used for linear systems.

In Chapter III, we obtained a reduced-order estimator using a finite-horizon cost-
minimization technique. Although this estimator used a reduced-order dynamics to

propagate the estimator state, the full-order covariance had to be propagated. Future

196
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research may include developing square-root versions of the reduced-order estimator
so that the rank reduction techniques used in Chapter III can be used to reduce the
computational cost of propagating the full order error covariance.

Chapter IV introduced a reduced-rank square-root estimator that propagates a
low-rank approximation of the error covariance by performing a Cholesky decompo-
sition of the error covariance at every time step. Although this estimator provides
better estimates than the analogous filter based on the singular value decomposition
in many examples, future work could determine rigorous conditions that guaran-
tees better estimates from the Cholesky-based estimator. The performance of the
Cholesky-based estimator improves when a certain basis for the state is used during
estimation. Hence, yet another extension would be to determine the basis transfor-
mation that yields the best performance for time-invariant systems.

Chapter V marks the transition from estimation of linear systems to estimation
of nonlinear systems. Comparisons of the extended Kalman filter and unscented
Kalman filter indicate that the unscented Kalman filter provides significantly better
estimates compared to the extended Kalman filter when the nonlinearities in the
system dynamics become severe. Moreover, since the Jacobian of the dynamics is
not necessary, the unscented Kalman filter serves as a convenient algorithm for state
estimation of complex large-scale systems like hydrodynamic and magnetohydrody-
namic flow that are modeled using finite volume schemes. Future work could involve
determining methods to ensure that the ensemble members that are reinitialized at
every time step satisfy physical constraints, for example, the value of density in all
of the ensemble members should be positive at every time step.

Chapter VI combines the unscented Kalman filter introduced in Chapter V and

the reduced-rank square-root estimator introduced in Chapter IV. The resulting
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variation of the unscented Kalman filter uses a reduced ensemble that is constructed
using the columns of the Cholesky factor of the pseudo-error covariance. In the
examples in Chapter VI, we use a basis transformation that is inspired by the ob-
servability matrix of banded linear systems. Future work could consider extensions
to the case when the measurements are nonlinear functions of the state. Another
possible extension could be to determine the basis transformation of the state vector
that yields the best performance.

Finally, Chapter VII dealt with an estimator that uses a static estimator gain
based on steady-state correlations to compensate for the neglected correlations in
localized data assimilation schemes. Thus, data injection could be performed on a
larger subset of the state estimate without additional online computational effort.
Future extensions could consider comparisons between this estimation algorithm and

the estimator in Chapter VI.
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APPENDIX A

Correlation Bounds for Discrete-time Systems

with Banded Dynamics

We consider the steady-state error covariance for a discrete-time system with
banded dynamics. Such systems frequently arise from the spatial and temporal
discretization of partial differential equations. In such systems, the magnitudes of
the entries of the steady-state covariance matrix typically decrease as the distance
from the diagonal increases. We obtain a bound on the entries of the covariance

matrix beyond a given distance from the diagonal. The results here have been

published in [86].

A.1 Banded Matrices

Let A € R™" and assume that the nonzero entries of A are restricted to a

banded region around the main diagonal. We define the semi-width w(A) of A to be
w(A) £ min{l: A;; =0 for all 4, j such that |i — j| > [}. (A.1)

For example, if A is diagonal, then w(A) = 0; if A is tridiagonal, then w(A) = 1; and
if A is pentadiagonal, then w(A) = 2. Clearly, w(A) < n — 1. It is easy to see that

w(AB) < w(A) + w(B). More generally, we have the following observation.
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Proposition A.1.1 Let A;,..., A, € R™". Then,
p
w(A; -+ Ay) < min {n— I,Zw(Ai)}. (A.2)
i=1
A.2 Correlation Bounds
Consider the linear time-invariant discrete-time system
Tpr1 = Axp + wy, (Al)

where zp, w, € R™ and wy, is zero-mean white noise with covariance (). Furthermore,

we assume that A is asymptotically stable, that is,
sprad(A) < 1, (A.2)
where for all A € R™*™, the spectral radius of A is defined by
sprad(A) = max{|\| : A € spec(A)}. (A.3)

The positive-semidefinite state covariance P, = &[zpx{], where £[-] denotes the ex-

pected value, is updated using
P = APAT +Q. (A.4)

Since A is asymptotically stable and @ is positive semidefinite, P £ lim P, exists

k—o00

and satisfies the discrete-time Lyapunov equation
P =APA" + Q. (A.5)
Furthermore,

P=> AQAT (A.6)
=0



202

Let € > 0 satisfy
sprad(4) <e < 1,
so that
1 1
sprad(—A) = —sprad(A4) < 1.
£ £
It thus follows from (A.6) that

P = i 82@@%
i=0

where Qg = @ and, for all : = 1,2,..., Q; is defined by

s (3o(2)

Since w(eA) = w(A) = w(A"), it follows from (A.2) that, for all i = 0,1, ...

w(Q;) < min{n —1,2iw(A) + w(Q)}

Next, for© =0,...,n — 1, define H; € R™*" by

1 -« 1 0 --- 0
b 1 0
0 1
O --- 0 1 --- 1

where the semi-width of the band of ones is chosen such that
Now, for : =0,...,n — 1, define P; by

PiéHiopv

(A7)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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where o denotes the Schur product. Then the (k,[) entry of P; is given by

Py, if k=1 <1,
(P = (A.15)

0, else.
Forall j=0,1,...and ¢ =0,...,n — 1, if w(Q;) < w(H;), then (1, — H;) o Q; =0,
where 1,, is the n x n matrix whose entries are all equal to 1. Therefore, for i =
0,...,n—1, taking the Schur product of (A.9) with 1,, — H; and using (1, — H;)o P =
P — P, yields

f: g% o Qj, (A.16)

J=L(%)

where L : N — N is defined by

L(i) & maX{O, floor (%) + 1}. (A.17)

Proposition A.2.1 Assume that A € R™™ satisfies (A.2) and let ¢ > 0 satisfy

sprad(A) < e < 1. Let | - || be a norm on R™*™. Then,
o4 = maXlHA I (A.18)
ieN gt
eTLSts.
Proof. It follows from (A.8) that lim; .., giAZ = 0. Hence, o4 exists. O

Proposition A.2.2 Assume that A € R™" satisfies (A.2) and let ¢ > 0 satisfy
sprad(A) < e < 1. Let || - || be a monotonic submultiplicative norm on R™™. Then,
fori=0,...,n—1,

E2L(z)
|1P = B < 0A||Q|| (A.19)
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Proof.  Since || - || is monotonic, it follows that, for all ¢ = 0,...,n — 1 and
7=0,1,..,
(L = Hi) 0 Q] < [[Qs]l- (A.20)
Furthermore, since || - || is submultiplicative, it follows that, for all j =0,1,...,
I
1311 < QI = A" (A.21)

Hence, it follows from Proposition 3.1 that, for all 7 =0,1,...,
Q]I < [[Qllo. (A.22)
Taking the norm of P — P; in (A.16) and using (A.20) yields
|P—FB| < €2L(i)HQL(i)“ + €2L(i)+2||QL(i)+1H R (A.23)

It then follows from (A.22) that

1P = Pl < o3]|QIIE + 202 ), (A.24)
Since 0 < ¢ < 1,
< . 2l
J=L(7)
Therefore, (A.24) and (A.25) imply (A.19). O

A.3 Compartmental Model Example

We consider a system comprised of n compartments or subsystems that ex-
change energy through mutual interaction [49]. Applying conservation of energy

yields, for i =1,...,n,

zi(k + 1) = xi(k) — Bai(k) — o (@41 (k) — 2:(k)) — a (zi(k) — zia(k), (A1)
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where 0 < 3 < 1 is the loss coefficient and 0 < o < 1 is the flow coefficient. It follows

from (A.1) that

z(k+1) = Ax(k), (A.2)
where
T
xé[ml xn} (A.3)
and A € R™" is defined by
1-0—«a « 0 0o --- 0
Qo 1—0 -2« « 0o --- 0
AZ 0 a 1—-8-20 a - 0 . (A4
0 0 a 1-8-a

Since A is tridiagonal, w(A) = 1. We choose n = 20 and evaluate P using (A.5) with
Q = I, for (a,3) = (0.1,0.8). The spectral radius of A, and the chosen value of ¢

are shown in Table 1. We choose || - || to be the Frobenius norm || - ||¢.

a | B |sprad(A) €
0.1]0.8 0.2 0.4,0.3,0.21

Table A.1: Parameters used in the compartmental model example.

Note that for («, 5) = (0.1,0.8), sprad(A) < 1 and hence, o4 defined in (A.18)
exists and is determined numerically. Next, for ¢ = 0,...,9, we plot %UE‘HQHF
and |P — Pj||r with (a, ) = (0.1,0.8) in Figure 1. Note that ||Q|lp = v/20. The
magnitudes of the entries of the steady-state covariance P for («, 5) = (0.1,0.8) are

plotted in Figure 2. It can be seen that the magnitude of the entries of the covariance

decrease as the distance from the diagonal increases.
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Figure A.1: ||P — P,||r and bound (A.19) for & = 0.1 and § = 0.8 and various values
of e.

j

Figure A.2: Surface plot of log(|P; ;|) for &« = 0.1 and 5 = 0.8.
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