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Chapter I 

Introduction 

 

Nitric Oxide 

  Nitric Oxide (NO) is a known atmospheric pollutant formed upon the combustion 

of nitrogen containing compounds, such as in automobile exhaust and industrial 

processes.  Beginning in 1980 with the observations of Furchgott and Zawadzki (1), 

scientists have discovered that NO is also an important regulator in a wide variety of 

physiological responses, such as homeostatic regulation of blood pressure, blood clotting, 

neurotransmission and host defense.  Pure NO is a gas under standard temperature and 

pressure, but it behaves as a dissolved nonelectrolyte under most biological conditions.  

NO is a free radical that is much more soluble in apolar solvents than in water, so it is 

able to diffuse across cell membranes.  As a result of these characteristics, NO is able to 

function both as an intracellular and an intercellular signaling molecule.  The NO free 

radical has a high chemical reactivity and is unstable in biological systems, with a half 

life of less than 10 seconds (2). 

  NO is an uncharged radical molecule that has 11 valence electrons, one unpaired 

electron and is paramagnetic.  The most common chemical interactions of NO in 

biological systems involve the stabilization of the unpaired electron (3).  This 

stabilization can occur through the reaction of NO with other paramagnetic species, such 
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as oxygen, superoxide, and peroxy radicals, or by forming an NO-metal complex.  Two 

molecules of NO can react with oxygen to form 2 molecules of the paramagnetic radical 

nitrogen dioxide.  Nitrogen dioxide can then react further to form the highly reactive 

molecules dinitrogen tetroxide and dinitrogen trioxide.  One molecule of NO will react 

extremely rapidly with superoxide to produce the reactive species peroxynitrite.  

Peroxynitrite is a potent oxidant capable of oxidizing thiols (4) and DNA bases (5), and it 

can initiate metal-independent lipid peroxidation (6).  NO is able to interact with the 

partially filled d orbitals of many biologically important metals.  NO is also a dioxygen 

analogue, allowing it to react with proteins that bind dioxygen, such as cytochromes 

P450, myoglobin, peroxidases, hemoglobin, cytochrome oxidase, and dioxygenases (3).  

NO is also able to inhibit many heme- and nonheme-iron-containing enzymes.  These 

enzymes include cytochrome P450, nitric oxide synthase (NOS), several nitrite 

reductases, and cytochrome oxidase (7). 

 

Formation of Nitric Oxide 

  NO is biosynthesized from the amino acid L-arginine, which is present in high 

concentrations in the blood, extracellular fluid, and within cells (8).  The enzyme NO-

synthase (NOS) catalyzes the five-electron oxidation of the guanidine nitrogen of L-

arginine in the presence of molecular oxygen to form NO and citrulline (Figure 1.1).  The 

reaction also depends on the availability of the NOS cofactors (6R)-5,6,7,8-

tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), flavin mononucleotide 

(FMN), calmodulin (CaM), and iron protoporphorin IX (heme), as well as nicotinamide 

adenine dinucleotide phosphate (NADPH) as an electron source.  The electrons from 
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NADPH are transferred through the flavins FAD and FMN before they arrive at the heme 

active site where O2 is activated and L-arginine oxidized.  Bound calmodulin is required 

to trigger this flow of electrons from the flavins to the active site (9).  It is widely 

accepted that N-hydroxy-arginine is an intermediate in the formation of NO (10).  This 

intermediate is formed from a two electron oxidation of L-arginine supported by one 

molecule of NADPH.  N-hydroxy-arginine is then converted to NO and citrulline by the 

insertion of a second oxygen involving an additional three-electron oxidation supported 

by 0.5 NADPH molecules (11).   

  

Figure 1.1 Reaction Catalyzed by NOS 

 

Structure of Nitric Oxide Synthase 

  NOS is a large multi-domain polypeptide that is catalytically active only as a 

homodimer.  It consists of two domains, an N-terminal oxygenase domain and a C-

terminal reductase domain. The domains are joined by a calmodulin binding region 

consisting of 30 amino acids (12-14).  Each subunit of the dimer binds heme, FAD, FMN 
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and BH4 as prosthetic groups (figure 1.2).  The two flavins are part of the reductase 

domain, which shares strong sequence similarity to cytochrome P450 reductase, and is 

able to function independently in the monomeric state (15).  Unlike the reductase domain, 

the oxygenase domain requires bound substrate, BH4, and heme for the formation of a 

fully functional homodimer (16).  The heme is incorporated into the oxygenase domain in 

which a cysteine residue coordinates with the iron atom (17-19).   This coordination is the 

same as in cytochrome P450 enzymes, providing NOS with the characteristic reduced CO 

difference spectrum containing a Soret maximum near 450 nm (17).   

  It has been shown, through the crystal structures of two of the isoforms of NOS, 

inducible (iNOS) and endothelial (eNOS), that NOS is able to dimerize through 

interactions of its oxygenase domain (20-22), although some reports suggest that the 

reductase domain or CaM binding site may help regulate the interaction in eNOS (23-25).  

The dimerization of iNOS is promoted by heme incorporation, BH4 and L-arginine (14), 

whereas eNOS and neuronal NOS (nNOS) dimer assembly requires heme incorporation 

(25-28), but may not require BH4, although BH4 is able to stabilize the nNOS dimer once 

it is formed (29).  Investigation of the ability of protoporphyrin IX to incorporate into 

heme-deficient monomeric nNOS (apo-nNOS) led to the discovery that the formation of 

a metal-thiolate bond is a critical step that alters nNOS conformation and enables 

monomers to dimerize (27).  Comparison between the iNOS monomer and dimer 

structures shows that dimerization may recruit part of both the N- and C-termini of the 

oxygenase domain into a core region that forms the hydrophobic dimer interface, BH4 

binding site and substrate binding pocket (30).  The flow of electrons during the catalytic 

cycle of NOS occurs from the reductase domain of one monomer subunit to the 
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oxygenase domain of the other monomer (31), highlighting the critical importance of 

dimerization in NOS function. 

 

Figure 1.2 NOS Domains and Structure 

 

Isoforms of Nitric Oxide Synthase 

  Three main isoforms of NOS have been identified: isoform I (nNOS), which is 

constitutively expressed in a variety of neuronal cells; isoform II (iNOS), which is 

usually not constitutively expressed, but can be induced by bacterial lipopolysaccharide 

and/or cytokines in macrophages and other cells; and isoform III (eNOS), which is 

expressed in endothelial cells (32-33).  The cDNAs for these enzymes have been isolated 

and are encoded for by three different genes in humans, located on chromosomes 12, 17 

and 7, respectively (34-35).  The deduced amino acid sequences of the human isozymes 

show less than 59% identity (32, 36-41), although they do have highly similar structures.  

Across species, amino acid sequences for each isoform are well conserved with >90% 

sequence identity for nNOS (15, 32, 36) and eNOS (32, 40-44), and >80% identity for 

iNOS (32, 37-39, 45-50).   

  The three isoforms are characterized by regions of high homology, namely the 

oxygenase and reductase domains, but at the same time the isoforms have some 
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significant differences.  The constitutively expressed isoforms, nNOS and eNOS, are 

regulated by levels of intercellular Ca2+ due to the Ca2+ dependent binding of CaM to 

these isoforms.  It has been shown that both isoforms are inactive at 100 nmol/L Ca2+ and 

fully active at 500 nmol/L (50-53).  These levels represent typical changes in intracellular 

Ca2+ concentrations upon receptor stimulation of excitatory cells such as neurons.  

Conversly, the inducible isoform, iNOS, is transcriptionally regulated by various 

cytokines (54-55).  Bound CaM is required for iNOS activity, but due to its high binding 

affinity and ability to bind at very low levels of Ca2+, CaM can actually be considered a 

subunit of iNOS (56).  The isoforms also differ significantly in size, with nNOS having 

the largest molecular mass of 160 kDa due to the addition of a 300 amino acid sequence 

at the N-terminus containing a PDZ domain (57-58).  The other two isoforms are similar 

in size with molecular masses of 130 kDa and 135 kDa for iNOS and eNOS, respectively.  

The N-terminus of eNOS is also unique since it is the only isoform to contain 

myristoylation and palmitoylation sites that regulate the localization of the enzyme to the 

plasmalemmal caveolae (59). 

 

Physiological Roles of Nitric Oxide Synthase 

  NO has very diverse physiological roles that can be attributed to the existence of 

the three NOS isoforms and the varied locations of the isoforms within the body.  NO 

formed by nNOS in neurons is a neurotransmitter in the central and peripheral nervous 

systems.  NO produced in the central nervous system is involved in a myriad of 

processes, including pain perception (57, 60) and neuronal plasticity, which is important 

in behavioral activity (57, 60), memory formation (32, 57, 60), weight and appetite 
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control (61-62), as well as brain development (3, 57, 60, 63).  There is also evidence that 

NO produced in the central nervous system contributes to the regulation of blood 

pressure by reducing vascular sympatheic tone (32). In the peripheral nervous system, 

NO acts as an inhibitor of non-adrenergic, non-cholinergic nerves that relaxes smooth 

muscle in the gastrointestinal, respiratory, vascular and urogenital systems (60).  Skeletal 

muscle contains high levels of the nNOS splice variant nNOSµ, which is specifically 

localized beneath the sarcolemma of fast twitch fibres, highlighting NO’s role in muscle 

contraction (36, 64). 

  The vascular endothelium behaves as an endocrine gland, and NO derived from 

eNOS is one of the most potent substances that it releases (3).  Endothelial NO acts as an 

autocrine homeostatic modulator for the vascular system, mediating basal dilatory 

vascular tone, platelet aggregation and cardiac load (3, 65).  The eNOS isoform is also 

found in cardiac myocytes and in the brain, where it produces NO that acts as a negative 

inotrope (65-66) and a retrograde messenger in the development of long-term 

potentiation (67), respectively.  iNOS is expressed primarily in the cells of the immune 

system (68), but is also found in astrocytes, chondrocytes, hepatocytes and myocytes 

(65).  NO is produced by iNOS during infection and chronic inflammation, and is 

involved in host-defense mechanisms, such as the destruction of tumor cells and invading 

pathogens (69-71).  iNOS-derived NO also promotes collagen synthesis and 

angiogenesis, two processes critical for wound healing (65, 68, 72). 
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Pathophysiology of Nitric Oxide Synthase 

  Since NO plays an important role in a wide variety of physiological processes, 

any changes in the amount of NO produced by NOS can result in pathology.  

Overproduction of NO as a result of nNOS dysfunction is associated with many 

neurodegenerative disorders such as Alzheimer’s disease, migraine, schizophrenia, 

Parkinson’s disease, ischemia, stroke, Huntington’s disease, and multiple sclerosis (57, 

73-77).  Induction of iNOS has been shown to enhance cellular damage in the later stages 

of cerebral ischemia and stroke (78-79), whereas eNOS-derived NO seems to have a 

protective effect in ischemic brain tissue (65).  Severe hypotension and vasodilation 

during both septic and endotoxic shock occurs because of bacterial lipopolysaccharide-

induced overproduction of NO by iNOS (80-81).  Chronic inflammation results in the 

over expression of iNOS, which then produces levels of NO that are cytotoxic to the host 

cell, a phenomenon seen in many autoimmune disorders (82).  Specifically, iNOS protein 

has been detected in chondrocytes from osteoarthritic cartilage but is not present in non-

arthritic cartilage (65, 70).  There is also evidence that iNOS plays a role in mediating 

tissue damage in rheumatoid arthritis, psoriasis, inflammatory bowel disease, diabetes, 

and myocardial dysfunction (65, 83-89).        

  The loss of NOS activity resulting in the depletion of NO levels has been 

implicated in the etiology of a number of diseases and in the generation of side effects of 

certain drugs and xenobiotics.  NO deficiency plays an important role in many of the 

current models for hypertension, and consistent with these models, dietary 

supplementation with calcium, which increases NOS activity, has been shown to reduce 

blood pressure in animals and humans (69, 90-91).  A reduction in the release of NO 
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from the vascular endothelium has been demonstrated in vascular tissue from rabbit 

atherosclerotic models (92-96) and in atherosclerotic coronary arteries from humans (97).  

Aging and diabetes are both associated with an increased incidence of impotence in 

patients that is paralleled with a loss of penile NOS activity (60, 98-99).  Drug-induced 

impotence is a problem facing many people today, and the antihypertensive agents, in 

particular, have a high probability of inducing impotence (100, 23).  It was discovered 

that treatment of rats with the antihypertensive agent guanabenz, known to cause 

impotence (100, 102-104), results in the loss of penile nNOS activity and nNOS protein 

levels (105).  Impotence occurs frequently in smokers (106-108), and it was recently 

determined that components of cigarettes and cigarette smoke are able to inactivate 

nNOS (109).  Even passive exposure of rats to cigarette smoke results in loss of penile 

nNOS activity and nNOS protein (110). 

 

Pharmacology of Nitric Oxide Synthase 

  Because perturbations in the production of NO from NOS are involved in the 

pathophysiology of many diseases, many researchers have focused on NOS as a 

therapeutic target.  Administration of the NOS substrate, L-arginine, has been used to 

treat conditions where there is a loss of NOS function, such as pulmonary hypertension 

(111), tobacco use (112), hypercholesterolemia (113-115), and ischemia-reperfusion 

(116).  Supplementation of the cofactor BH4 has also been used to reverse impaired NOS 

function in smokers (118) and patients with Type II diabetes (119), as well as in rats with 

ischemic acute renal failure (117).   
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  There has been considerable interest in developing safe and selective inactivators 

of nNOS and iNOS, while eNOS has not been targeted for inhibition due to its important 

cardiovascular functions.   One approach is to inhibit the dimerization of NOS (120-122).  

Since iNOS monomers are induced rapidly and then form active dimers, whereas eNOS 

and nNOS are constitutively present as active dimers, these compounds will most likely 

be more successful in targeting iNOS.  However, since any newly synthesized enzyme 

must still dimerize to become functional, such compounds may be effective in inhibiting 

eNOS and nNOS when given chronically (120).  N-substituted amino pteridines are able 

to interact with the pterin-binding site of NOS and have recently been patented as 

allosteric inhibitors of NOS (120). 

  Most inhibitors are analogues of the substrate L-arginine that are able to bind to 

the catalytic site of NOS.  Two different types of compounds are being developed for this 

purpose, reversible inhibitors and suicide inactivators.  Reversible inhibitors simply 

compete with L-arginine for the substrate binding site on NOS, and include compounds 

such as 7-nitroindazole (7-NI), NG-nitro-L-arginine (NNA) and thio-L-citrulline.  Suicide 

inactivators, otherwise known as metabolism-based inactivators, not only require binding 

specificity, but also must be metabolized to reactive intermediates by the enzyme, so they 

have the potential to be highly selective drugs (123).  Suicide inactivators have been, and 

continue to be used as tools to study complex, highly regulated, biological systems.  In 

the case of the P450 cytochromes, inactivation and covalent modification by suicide 

inactivators results in decreased drug metabolism, as well as enhanced proteolysis and 

turnover of the enzymes (124-130).  NOS is a P450-like enzyme that shares many 

similarities with the P450 cytochromes, and suicide inactivators are just beginning to be 
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utilized in the study of NOS.  The compounds NG-methyl-L-arginine, guanabenz and 

aminoguanidine, among others, have been identified as suicide inactivators of NOS (65, 

131). 

 

Post-translational Regulation of Nitric Oxide Synthase 

  The complex, tightly controlled regulation of NO production by NOS is very 

important, not only because of its potent chemical reactivity and high diffusibility but 

also because NO cannot be stored, released or inactivated after release by conventional 

regulatory mechanisms.  NOS activity is subject to a wide variety of transcriptional, 

translational, and post-translational controls that dictate the specificity of NO signaling 

and limit NO toxicity.  The post-translational controls include lipid modifications, 

phosphorylation events, and interactions with protein partners, and they are responsible 

for the timing, magnitude and distribution of NO release (132).  BH4 is a critical cofactor 

because it couples heme iron reduction to NO synthesis and is required for iNOS 

dimerization (14), and there is now evidence that insufficient BH4 levels can limit NO 

synthesis (133, 134).  eNOS and nNOS are both phosphorylated in their oxygenase 

domains (13, 135-137), and serine or tyrosine phosphorylation of nNOS lowers its 

activity by over 50% (137).  eNOS has been reported to be myristoylated, palmitoylated, 

farnesylated, and acetylated within its oxygenase domain, all of which are involved in the 

cellular trafficking of the enzyme (13, 135, 136). 

  A large number of protein partners for NOS have been identified.  CAPON 

(carboxy-terminal PDZ ligand of nNOS) and PIN (protein inhibitor of nNOS) interact 

with nNOS through its PDZ and PIN binding domains, respectively (138-140).  These 
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binding regions are only found in nNOS, and are located in its unique leader sequence.  

CAPON binding can restrict NO generation (141), whereas the function of PIN binding is 

a topic of ongoing debate, but was originally reported to destabilize the nNOS dimer 

(140).  The Rho family GTPase, Rac2, interacts with iNOS and serves as an allosteric 

activator of the enzyme in macrophages (141, 142).  Calmodulin was discovered to be an 

allosteric activator of all three isoforms of NOS (143).  It is interesting to note that a 40-

50 amino acid insert is present in nNOS and eNOS (144) that functions as an 

autoinhibitory loop that can destabilize calmodulin binding at low Ca2+ levels (145, 146).  

eNOS and nNOS are localized in the caveolae of endothelial cells and cardiac myocytes 

through their interactions with caveolin-1 and caveolin-3 (147).  Binding to caveolin-3 

has also been shown to inhibit NO production from nNOS and eNOS (25, 148-150), and 

caveolin-1 binding has been shown to inhibit NO production from all three NOS isoforms 

(25, 148-152) and to enhance the degradation of iNOS in cells (152).  The inhibition of 

eNOS by caveolin-1 and -3 is reversed by calmodulin binding (153, 154).  The highly 

abundant cytosolic protein chaperone hsp90 (heat-shock protein 90) can form 

heterocomplexes with nNOS (155) and eNOS (156), resulting in enhanced NO 

production in both cases (132, 155-157).   Hsp90 is also involved in the insertion of the 

heme prosthetic group into nNOS (155, 158), and in the protection of the enzyme from 

proteasomal degradation (155).    NOS enzymes are also regulated, in part, by post-

translational proteolysis.  The ubiquitin-proteasome is the major proteolytic pathway in 

regulating the turnover of nNOS (159-161) and iNOS (162-164), and has recently been 

implicated in eNOS degradation (165). 
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Ubiquitin-Proteasome System 

  The ubiquitin-proteasome system is the major pathway for the degradation of 

short-lived, regulatory proteins.  In this pathway, a protein is selectively recognized and 

conjugated to the conserved 76-residue polypeptide ubiquitin through the sequential 

action of activating (E1), conjugating (E2), and ligating (E3) enzymes (166) (fig 1.3).  

Substrates conjugated to ubiquitin can then be selectively targeted to the multisubunit, 

ATP-dependent protease known as the 26 proteasome, where they are hydrolyzed to 

small peptides (166-168) (fig 1.3).  Ubiquitination results in the formation of a peptide 

bond between the ε-amino group of a substrate lysine residue and the C-terminal glycine 

(G76) of ubiquitin (169, 170).  The E1 enzyme forms a high-energy thioester linkage 

with the carboxyl group of G76.  The activated ubiquitin is then transiently carried by the 

E2 protein and transferred to the substrate lysine residue by the E3 ligase (170).  There is 

one known E1 enzyme, a significant but limited number of E2 conjugating enzymes, and 

a large number of E3 ligases (169).  The E3 ligases can be separated into three groups 

based on their mechanisms of action: a covalent mechanism (Homologous to E6AP C-

Terminus (HECT)-domain E3s), a non-covalent mechanism (Really Interesting New 

Gene (RING) finger) and a chaperone dependent mechanism (U-box E3s).  Each E3 

ligase recognizes a restricted set of substrates and is served by one or a few E2 enzymes 

(169). 
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Figure 1.3 Ubiquitin-Proteasome System 

  

  It is clear that the recognition of substrates for ubiquitination is a highly selective 

process that is initiated by the availability of an ubiquitinatable lysine residue (171) and 

the presence and accessibility of ubiquitination signals in the substrate that are recognized 

by E3 ligases (169).  Some specific ubiquitination signals have been identified.  In 1986, 

Varshavsky and coworkers discovered the relationship between the N-terminal amino 

acid and substrate stability, called the N-end rule (172).  For example, the yeast E3 ligase 

(Ubr1) recognizes this determinant, which, in combination with a lysine residue subject 

to ubiquitination, is both necessary and sufficient for substrate ubiquitination (173).  

Another ubiquitination signal is the destruction box sequence, R-x-A-L-G-x-I-x-N, found 

in substrates of the Anaphase Promoting Complex (APC) (174-177).  Regions rich in the 

amino acids proline (P), glutamic acid (E), serine (S), or threonine (T), termed PEST 

14 



sequences, are known to mediate the ubiquitination of the carboxy-terminal domain of 

Rpb1, the large subunit of yeast RNA polymerase II, and the human epithelial sodium 

channel (ENaC) through interactions with the di-tryptophan domains (WW) of the 

ubiquitin ligases Rsp5 (171) and Nedd4 (178), respectively.  A short, closely related, 

phosphopeptide motif was identified as the E3 ligase recognition element in the NF-κB 

inhibitor IκB (171, 179-182) and in the short-lived transcription factor β-catenin (183).  

The F box domain of the protein β-TrCP is the E3 ligase component that binds to this 

element (180-182).  F box proteins function as the substrate receptors for SCF complexes 

(SkP1, Cullin, F box protein), a large family of multisubunit ubiquitin-protein ligases in 

yeast (171).  N-linked high-mannose oligosaccharides were also discovered to be 

substrates of a specific cytosolic SCF E3 ligase (184), part of a process known as ERAD 

(ER-associated degradation) (185).   

  A very different type of degradation determinant, a solvent-exposed hydrophobic 

protein surface, is found in the yeast transcription factors MATa1 and MATα2, where 

heterodimerization buries the hydrophobic protein surfaces, stabilizing and protecting the 

factors from ubiquitination (186).  In the case of nNOS, exposure of hydrophobic 

residues in the heme active site cleft is proposed as a possible trigger for the 

ubiquitination and degradation of the enzyme (187). This recognition motif may be 

utilized primarily for protein quality control, and could serve to identify misfolded or 

otherwise abnormal proteins in conjunction with molecular chaperones.  Direct 

interaction of molecular chaperones with some E3 ligases has been reported (188).  

Phosphorylation (176, 189-191), deacetylation (192), aminoacylation (173, 193), 

oxidation (193), hydroxylation (194), glycosylation (194) and specific protein 
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interactions (194) are also known to regulate the recognition of cognate substrates by 

different E3 ligases. 

 

Thesis Rationale 

As described above, nNOS is degraded by the highly regulated ubiquitin-

proteasome system.  The observation that some metabolism-based inhibitors of nNOS 

enhance the proteasomal degradation of the enzyme suggests there must be a selective 

labilization of nNOS for recognition by the ubiquitin-proteasome system (105, 159).  

This labilization is not merely due to the loss of nNOS function per se, as some reversible 

inhibitors do not enhance the degradation of the protein (105, 159).  To better understand 

this labilization process I will examine how the clinically used antihypertensive agent 

guanabenz labilizes nNOS for enhanced ubiquitination and proteasomal degradation.  

Guanabenz is a useful model compound for these studies since it is the best characterized 

metabolism-based inactivator of nNOS with respect to protein turnover.  Using pulse-

chase experiments, it was shown that guanabenz enhances the proteolytic turnover of 

nNOS in cells (159).  Consistent with this finding, treatment of rats with guanabenz was 

found to inhibit NOS activity and cause the loss of immunodetectable penile nNOS 

protein (105).  The question of how guanabenz labilizes nNOS for ubiquitination and 

proteasomal degradation will be examined in Chapter II. 

In the course of studies on guanabenz, it was discovered that the loss of BH4 was 

the mechanism of inhibition of nNOS and that the guanabenz treated nNOS was more 

susceptible to ubiquitination.  Moreover, even in the absence of metabolism-based 

inactivators, nNOS is inactivated, suggesting that an “auto-inactivation” process may be 
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responsible for the “natural” turnover of nNOS protein.  This auto-inactivation is, in part, 

ameliorated by the addition of exogenous BH4.  Thus, it is possible that BH4 serves as an 

endogenous regulator of the ubiquitination and degradation of nNOS.  It is clear that an 

inadequate level of BH4 is an important factor in a variety of pathological conditions 

involving NOS, from impaired vascular function (195) to inhibited immune response 

(196).  The specific effects of BH4 depletion on nNOS have not been well characterized, 

although both an increased vulnerability to hypoxia and nNOS dysfunction in neurons 

have been observed (197).  The possibility that the loss of BH4 serves as an endogenous 

signal for the ubiquitination and proteasomal degradation of nNOS will be examined in 

Chapter III.   

It is apparent that certain changes on nNOS allow for it to be selectively targeted 

for ubiquitination and proteasomal degradation.  To further understand this labilization 

process, I will map the ubiquitination site on nNOS.  These studies will aid in defining 

the site on nNOS that confers recognition of the altered protein.  I will identify the site(s) 

of ubiquitin conjugation to nNOS in Chapter IV. 

 

The Specific Aims of my thesis are: 

I. To determine how guanabenz labilizes nNOS for enhanced ubiquitination 

and proteasomal degradation. 

II. To determine if the loss of BH4 from nNOS can serve as an endogenous 

signal for nNOS ubiquitination and degradation. 

III. To identify the site(s) of ubiquitin conjugation to nNOS.  
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These studies will address how nNOS becomes a susceptible substrate for 

ubiquitination and proteasomal degradation.  Many factors such as drug treatment, 

xenobiotics or cellular conditions can produce dysfunctional proteins.  Determining the 

process by which these dysfunctional proteins become targeted for ubiquitination will aid 

in predicting potential drug toxicities and in the development of specific inhibitors. 
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Chapter II 

Tetrahydrobiopterin Protects Against Guanabenz-mediated Inhibition of Neuronal 

NO Synthase In Vitro and In Vivo 

 

Summary 

 It is established that guanabenz inhibits neuronal NO-synthase (nNOS) and causes 

the enhanced proteasomal degradation of nNOS in vivo.  Although the time- and 

NADPH- dependent inhibition of nNOS has been reported in studies where guanabenz 

was incubated with crude cytosolic preparations of nNOS, the exact mechanism for 

inhibition is not known.  Moreover, even less is known about how the inhibition of nNOS 

triggers its proteasomal degradation.  In the current study, we show with the use of 

purified nNOS that guanabenz treatment leads to the oxidation of tetrahydrobiopterin and 

formation of a pterin-depleted nNOS, which is not able to form NO.  With the use of 14C-

labeled guanabenz, we were unable to detect any guanabenz metabolites or guanabenz-

nNOS adducts, indicating that reactive intermediates of guanabenz likely do not play a 

role in the inhibition.  Superoxide dismutase, however, prevents the guanabenz-mediated 

oxidation of tetrahydrobiopterin and inhibition of nNOS, suggesting the role of 

superoxide as an intermediate.  Studies in rats show that administration of 

tetrahydrobiopterin prevents the inhibition and loss of penile nNOS due to guanabenz, 

indicating that the loss of tetrahydrobiopterin plays a major role in the effects of 

guanabenz in vivo.  Our findings are consistent with the destabilization and enhanced
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degradation of nNOS found after tetrahydrobiopterin depletion.  These studies suggest 

that drug-mediated destabilization and subsequent enhanced degradation of protein 

targets will likely be an important toxicological consideration. 

 

Introduction 

  Nitric oxide synthase (NOS) plays a key role in a variety of physiological 

processes, including neurotransmission and penile erection (1, 2). Clinical experience and 

several publications have linked prescribed drugs with sexual dysfunction (3, 4).  The 

antihypertensive agents, in particular, are commonly associated with drug-induced 

impotence (4).  Guanabenz, an antihypertensive agent associated with impotence (4, 5), 

inhibits NOS activity in penile tissue (6) and brain cortex (7) after administration of the 

drug to rats.  Interestingly, the loss of activity is concomitant with the loss of 

immunodetectable nNOS in penile tissue (6).   Consistent with this finding, guanabenz 

inhibits nNOS and enhances the proteasomal degradation of the enzyme in HEK 293 

cells (8).  Guanabenz causes the time- and NADPH- dependent inhibition of nNOS in an 

in vitro system containing penile cytosol (6, 8).  It is noteworthy that other time- and 

NADPH- dependent inhibitors of nNOS, such as NG-methyl-L-arginine and N5-(1-

iminoethyl)-L-ornithine, also enhance the proteasomal degradation of the enzyme in cells 

(8).  The trigger is not due to the activity loss per se as reversible inhibitors, such as NG-

nitro-L-arginine and 7-nitroindazole, do not enhance degradation of nNOS and may 

actually stabilize the protein (6, 8). 

 We wondered how the time-dependent inhibition of nNOS renders the enzyme 

susceptible for degradation.  Although guanabenz is well characterized with respect to 
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degradation of nNOS in cells and in rats, relatively little is known about how guanabenz 

inhibits nNOS.  In the current study, we chose to address this question with the use of 

purified nNOS in the hopes of understanding what dysfunctional forms of nNOS are 

recognized for degradation.  We found that guanabenz causes a tetrahydrobiopterin 

(BH4)-deficient state of nNOS due to the oxidative destruction of the pterin that is 

facilitated by the presence of NADPH.  The addition of BH4 completely reactivates this 

dysfunctional form of the enzyme.  The administration of BH4 to rats completely protects 

from guanabenz-mediated inhibition of nNOS as well as the loss of nNOS protein, 

suggesting that the pterin deficiency plays a major role in the in vivo effects of guanabenz 

on nNOS. 

 

Materials and Methods 

Materials 

Guanabenz was purchased from Research Biochemicals International (Natick, 

MA). Glucose-6-phosphate, glucose 6-phosphate dehydrogenase, NADP+, NG-nitro-L-

arginine, L-arginine, D-arginine, dihydropteridine reductase from sheep liver, calmodulin, 

catalase, superoxide dismutase, and NADPH were purchased from Sigma Aldrich (St. 

Louis, MO).  Male Wistar rats were purchased from Charles River Laboratories 

(Wilmington, MA).  (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was purchased from Dr. 

Schirk’s Laboratory (Jona, Switzerland).  The affinity-purified rabbit IgG against brain 

NOS used for immunoblotting nNOS was from BD Biosciences Transduction 

Laboratories (Lexington, KY).  [Benzylidene carbon 14C]-labeled guanabenz (56 

mCi/mmol) was custom synthesized by Du Pont NEN (Boston, MA).  L-[14C(U)]-
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arginine (330.0 mCi/mmol) and 125I-Labeled antibody against rabbit IgG were purchased 

from PerkinElmer Life and Analytical Sciences (Boston, MA). 

Methods 

In vitro inhibition assays – For studies on the inactivation of purified nNOS, we 

overexpressed the enzyme in insect cells and purified the nNOS as previously described 

(9).  Purified nNOS (80 µg/ml) was added to a ‘first reaction mixture’ of 40 mM 

potassium phosphate, pH 7.4, containing 0.2 mM CaCl2, 2500 unit/ml superoxide 

dismutase, 1250 units/ml catalase, 20 µg/ml pure calmodulin, 0.23 mg/ml bovine serum 

albumin, and an NADPH-regenerating system composed of 0.4 mM NADP+, 10 mM 

glucose 6-phosphate, and 1 unit of glucose 6-phosphate dehydrogenase/ml, expressed as 

final concentrations, in a total volume of 180 µl.  After incubation at 30°C, aliquots (10 

µl) of the first reaction mixture were transferred to an ‘oxyhemoglobin assay mixture’ 

containing 200 µM CaCl2, 250 µM L-arginine, 100 units/ml catalase, 10 µg/ml crude 

calmodulin, 25 µM oxyhemoglobin, and the NADPH-regenerating system, in a total 

volume of 180 µl of 40 mM potassium phosphate, pH 7.4.  The oxyhemoglobin assay 

mixture was incubated at 37°C, and the rate of NO-mediated oxidation of oxyhemoglobin 

was monitored by measuring the absorbance at λ401 nm-411 nm with a microtiter plate 

reader (SpectraMax Plus, Molecular Devices Corp., Sunnyvale, CA).  The rate was 

determined from the linear portion of the time dependent changes in absorbance.  In 

studies where endothelial NOS was used, the enzyme was overexpressed and purified as 

described (10).  The assay conditions were the same as nNOS, except that 200 µg/ml of 

the endothelial NOS was used in the first reaction mixture and 20 µl aliquots were taken 

for the oxyhemoglobin assay mixture.   
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SDS-resistant dimer analysis – In studies where the SDS-resistant dimer was 

measured, we examined the samples by low temperature SDS-PAGE (11).  nNOS forms 

a very tight dimer that is resistant to SDS at low temperatures.  By keeping the samples 

on ice and running the SDS-PAGE with a cooling unit, the stable dimeric species can be 

visualized.  In these studies, an aliquot (10 µl) of the first reaction mixture containing 

purified nNOS was quenched with an equal volume of sample buffer containing 5 % 

SDS, 20 % glycerol, 100 mM dithiothreitol, 200 μM L-arginine and 0.02 % bromophenol 

blue in 125 mM Tris-HCl, pH 6.8.  The samples were kept on ice and 10 µl of the 

quenched sample was loaded for analysis by 6 % SDS-PAGE.  Proteins were then 

transferred to nitrocellulose membranes (0.2 μm, BioRad) and probed with 0.1 % anti-

nNOS.  The immunoblots were then incubated a second time with 125I-conjugated goat 

anti-rabbit IgGs to visualize the immunoreactive bands.  The membranes were dried and 

exposed to X-OMAT film for 1 h at –80°C.  The nitrocellulose bands corresponding to 

nNOS were excised and the radioactivity quantified by the use of a gamma counter.   

HPLC analysis – The alteration of the heme prosthetic group was measured by 

HPLC similar to that described (12).  HPLC was performed with the use of a Waters 

600S controller, 717 plus autosampler, and 996 photodiode array detector (Waters Corp., 

Milford, MA).   Samples were injected onto a reverse phase HPLC column (C4 Vydac, 5 

μm, 0.21 x 15 cm) equilibrated with solvent A (0.1% trifluoroacetic acid) at a flow rate of 

0.3 ml/min.  A linear gradient to 75% and 100 % solvent B (0.1% trifluoroacetic acid in 

acetonitrile) was run over 30 min and 5 min, respectively.  Absorbance at 220 nm and 

400 nm was monitored.  
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Quantification of BH4 and BH2 – The amounts of BH4 and BH2 in the reaction 

mixtures were determined by use of an HPLC fluorescence method as described by Klatt 

et al (13).  The method involves oxidization of BH4 and BH2 to biopterin by treatment 

with KI/I2 solution under acidic conditions.  To give the specific amount of BH2, the 

KI/I2 oxidation is done in a basic solution where BH4 and BH2 are oxidized to pterin and 

biopterin, respectively.   Specifically for oxidation under acidic conditions, a 40-µl 

aliquot of the first reaction mixture was treated with 10 mM I2 and 50 mM KI in a total 

volume of 50 µL of 100 mM HCl for 1 hr at room temperature in the dark.   The solution 

was neutralized with 5 µl of 1.0 M NaOH and then 5 µl of 0.2 M ascorbate was added.   

An aliquot (30 µl) of the resulting solution was injected onto a reverse phase HPLC 

column (C18 Vydac 5 mm, 4.6 x 250 mm) equilibrated with 20 mM NaH2PO4, pH 3, 

with 5% methanol at a flow rate of 1 ml/min.  The pterins were eluted with the same 

mobile phase and detected by fluorescence at excitation and emission wavelengths of 350 

and 418 nm, respectively.  The HPLC and analysis of pterins was performed with the use 

of a Waters systems described above and an Applied Biosystems Spectroflow 980 

fluorescence detector.  To oxidize the pterins under basic conditions, the first reaction 

mixture was treated as above except that 100 mM NaOH replaced 100 mM HCl and the 

final solution was neutralized with 5 µl of 1 M HCl. 

Treatment of nNOS with 14C-guanabenz  – The purified nNOS was treated as 

described above in a first reaction mixture, except that nNOS (1.5 µM) was treated with 

50 µM guanabenz (56 mCi/mmol) for 60 min at 22ºC.  An aliquot (75 µl) was injected 

onto a reverse phase HPLC column (C4 Vydac 5 µm, 2.1 x 150 mm) equilibrated with 

solvent A (0.1% TFA) at a flow rate of 0.3 ml/min.  A linear gradient to 75% solvent B 
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(0.1% TFA in acetonitrile) was run over 45 min and then a linear gradient to 100% B was 

run over the next 5 min.   The absorbance at 220 nm was monitored.  The radioactivity in 

the eluent was measured by an on-line radiochemical detector (Radiomatic 500TR, 

Packard, Downers Grove, IL)  

Treatment of animals, sample preparation, and activity assays – Guanabenz was 

dissolved in physiological saline and administrated to male Wistar rats (150-250 g) at the 

indicated doses by intraperitoneal injection at 9:00 A.M. and 6:00 P.M.  BH4 was 

dissolved in 0.1 % (w/v) ascorbic acid in physiological saline and injected in a total 

volume of 1 ml, 30 min before the injection of guanabenz.  The controls were given the 

appropriate volumes of physiological saline or 0.1 % (w/v) ascorbic acid in physiological 

saline.  Rats were sacrificed by decapitation 16 h after the last injection.  Whole 

deskinned penis was removed, washed with ice-cold physiological saline, cut into 1-2 

mm pieces and homogenized in 1 ml of ice-cold homogenization buffer (10 mM Hepes, 

pH 7.5, containing 320 mM sucrose, 100 μM EDTA, 1.5 mM DTT, 10 μg/ml trypsin 

inhibitor, 10 mg/ml of leupeptin, 2 μg/ml of aprotinin, 1 mg/ml phenylmethanesulphonyl 

fluoride, and 100 μM BH4) with the use of a metal tissue mincer (SDT Tissumizer®, 

Tekmar, Cincinnati, OH).  The homogenate was centrifuged at 245,000 x g for 10 min at 

4°C.  The supernatant fraction was collected and frozen in liquid nitrogen and stored at –

80°C for later analysis.  Protein concentration of these samples was determined by the 

method of Bradford (Bio-Rad, Hercules, CA) with the use of bovine serum albumin as a 

standard.  

The NOS activity of samples from the in vivo studies were determined by adding 

the supernatant fraction (0.6 mg) to a ‘citrulline assay mixture’ containing 1 mM CaCl2, 1 
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mM NADPH, 30 μM [14C]-arginine (60 mCi/mmol), 100 μM BH4, 10 μg/ml calmodulin 

in a total volume of 200 μl of 40 mM potassium phosphate, pH 7.4.  The assay mixture 

was incubated at 37°C for 10 min and the amount of [14C]-citrulline was determined as 

previously described (6).  The formation of [14C]-citrulline was linear over the 10-min 

period.  For experiments on the in vitro inactivation of cytosolic NOS, the supernatant 

fraction from untreated rats was loaded onto a Sephadex G-25 M column (PD-10, 

Pharmacia Biotech, Piscataway, NJ) preequilibrated in 10 mM Hepes, pH 7.5, containing 

320 mM sucrose, 100 μM EDTA, 1.5 mM DTT, 10 μg/ml trypsin inhibitor, 10 mg/ml of 

leupeptin, 2 μg/ml of aprotinin, and 1 mg/ml phenylmethanesulphonyl fluoride to remove 

endogenous arginine and excess BH4.  An aliquot (1.2 mg) of the gel-filtered fraction was 

placed in a ‘reaction mixture’ containing 1 mM CaCl2, 1 mM NADPH, 10 μg/ml 

calmodulin, and the desired concentration of guanabenz, in a total volume of 1 ml of 40 

mM potassium phosphate, pH 7.4.  Aliquots (150 μl) were taken from the reaction 

mixture and placed in the citrulline assay mixture and the activity was determined as 

described above. 

SDS PAGE and Western blotting – The penile supernatant fraction (15 μg of 

protein) was analyzed with the use of SDS-PAGE (4-12% gradient gel) as previously 

described (6).  The gels were blotted onto a nitrocellulose membrane (Schleicher & 

Schuell, Keene, NH), blocked with 0.2 mg/ml thimerosal in Blotto solution (Advanced 

Biotechnologies Inc., Columbia, MD), and probed (1:250) with a mouse monoclonal 

antibody against brain NOS (Transduction Laboratories, Lexington, KY).  An anti-mouse 

IgG antibody (1:10,000) conjugated to peroxidase (Boehringer Mannheim, Indianapolis, 

IN) was used as a secondary antibody.  An ECL reagent (Amersham Life Science Inc., 
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Arlington Heights, IL) and X-OMAT film (Kodak, Rochester, NY) was used to detect the 

peroxidase conjugate, as described by the manufacturer.  The intensity of the bands was 

evaluated by a laser densitometer (Molecular Dynamics, Sunnyvale, CA).  Differing 

amounts of cytosol prepared from rat brains or insect cells overexpressing neuronal NOS 

were analyzed to insure that the density was linearly dependent on the amount of NOS 

over the relevant concentration range. 

In vitro ubiquitylation of guanabenz-treated nNOS  – We used an in vitro 

ubiquitylation system containing fraction II that has been established to ubiquitylate 

nNOS by an ATP- dependent process (14).  The specific detection of nNOS-ubiquitin 

conjugates has also been established (14).  Fraction II was prepared from rabbit 

reticulocyte lysates as previously described (15).  The nNOS was treated with 100 µM 

guanabenz as described above and an aliquot (160 µl) of this first reaction mixture was 

incubated at 37°C in a total volume of 400 μl of 50 mM Tris-HCl, pH 7.4, containing 2 

mM dithiothreitol, 15 μM ubiquitin, an ATP-regenerating system (2 mM ATP, 10 mM 

creatine phosphate, 5 mM MgCl2, and 10 units/ml creatine phosphokinase), and 0.4 

mg/ml of fraction II.  An aliquot (20 µl) of the samples were quenched with 20 µl of 

sample buffer containing 5% SDS, 20% glycerol, 100 mM dithiothreitol, and 0.02% 

bromophenol blue in 125 mM Tris-HCl, pH 6.8.  The samples were boiled for 5 min and 

an aliquot (30 μl) was submitted to 6% SDS-PAGE (10 x 8 cm).  Proteins were then 

transferred to nitrocellulose membranes (0.2 μm, BioRad) and probed with 0.5% anti-

ubiquitin (DAKO, Carpinteria, CA).  The immunoblots were then incubated a second 

time with 125I-conjugated goat anti-rabbit IgGs to visualize the immunoreactive bands.  

The membranes were dried and exposed to X-OMAT film for 1 h at -80°C.  The bands 
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corresponding to nNOS-ubiquitin were excised and the radioactivity quantified by the use 

of a gamma counter. 

Statistical analysis – All values are reported as the mean ± standard error (S.E.).  

An upaired t test was used to compare values.  Statistical significance was considered to 

be achieved at a level of p < 0.05.  PRISM statistical software (Graphpad, San Diego, 

CA) was used for analysis of the data sets. 

 

Results 

Guanabenz-mediated inhibition of purified nNOS — It is established that 

guanabenz inhibits nNOS and enhances the proteolytic turnover of nNOS protein in cells 

(8).  Consistent with this, administration of guanabenz to rats decreases nNOS activity 

and protein (6, 7).  Moreover, the time-dependent inhibition of nNOS due to guanabenz 

has been characterized in in vitro studies with the use of penile cytosol (6).  To better 

understand the mechanism of how guanabenz inhibits nNOS and causes the enhanced 

turnover of the enzyme, we chose to conduct studies with purified nNOS.  We established 

here, for the first time, that guanabenz causes a time-dependent inhibition of purified 

nNOS (Fig. 2.1A, closed squares).  There is a loss of activity even in the absence of 

guanabenz (open squares), albeit slower, representing an autoinactivation reaction.  The 

half-life of the activity loss was 5.0 ± 1.8 min and 22.1 ± 6.9 min for the guanabenz-

treated and untreated samples, respectively.  These values are statistically different (p < 

0.05).  The loss of nNOS activity beyond this autoinactivation is dependent on the 

concentration of guanabenz (Fig. 2.1B).  Taken together, these results are highly similar 

to those found when the nNOS in penile cytosol was treated with guanabenz (6).  
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Moreover, guanabenz did not inhibit endothelial NOS, suggesting that the action of 

guanabenz is selective (Fig. 2.1B, inset).  The autoinactivation of nNOS in the absence of 

substrate or guanabenz is time-, calmodulin-, and NADPH- dependent (16).  The 

autoinactivation could be due to alteration of critical amino acid residues, the prosthetic 

heme group, or tetrahydrobiopterin (16). 

The time-dependent inhibition of activity is thought to produce a dysfunctional, 

altered form of nNOS that is preferentially ubiquitylated and proteasomally degraded (8).  

Recently, it was found that destabilization of the dimeric functional form of nNOS 

correlates with recognition for proteasomal degradation (17).  Thus, we asked if 

guanabenz destabilizes nNOS dimers.  As shown in Fig. 2.2A, the untreated nNOS exists 

in part as SDS-resistant dimers, which are visualized after low-temperature SDS-PAGE 

and subsequent immunoblotting (11).  We quantified the bands corresponding to the 

dimer and monomer from these studies (Fig. 2.2B).  This assay is not a measure of the 

dimeric content under native conditions, but is a measure of the amount of stable dimer 

that is not dissociated by SDS and, thus, underestimates the total dimeric content.  

Moreover, it is likely that the transfer efficiency of the dimer is lower than that of the 

monomer, further leading to the underestimation of dimeric content.  Thus, we cannot 

determine the absolute amounts of each form, but we can determine the relative changes 

in dimer and monomer.   

As shown in Fig. 2.2B, we found that the SDS-resistant dimeric form of the 

untreated nNOS is unstable (closed circles), likely reflecting an autoinactivation reaction.  

Treatment with guanabenz further destabilizes the dimeric nNOS (closed squares) and 

gives an increase in the monomeric nNOS (open squares).  As shown in Fig. 2.2C, the 
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destabilization of the dimeric nNOS (closed triangles) and the formation of monomeric 

nNOS (open triangles) is dependent on the concentration of guanabenz.  Both the time- 

and concentration- dependence of the loss of dimeric nNOS reflects the loss of nNOS 

activity seen above.  These results are entirely consistent with the notion that 

destabilization of the dimer by guanabenz generates some altered nNOS form that is 

more susceptible for proteasomal degradation.  We next sought to determine how 

guanabenz destabilizes the nNOS dimer. 

As shown in Fig. 2.3A, we first determined the cofactor dependence of the 

inhibition by treating nNOS under the indicated conditions for 20 min in the presence 

(open bars) or absence (closed bars) of 100 µM guanabenz.  The greatest decrease in 

activity due to guanabenz occurs when both calmodulin and NADPH are present.  Under 

these conditions, the L-isomer, but not the D-isomer, of arginine protects from the 

inhibition, suggesting an active site directed process.  These findings are similar to those 

found for nNOS in penile cytosol (6).  However, unlike the previous observations with 

crude cytosol, approximately one-half of the activity is lost even when purified nNOS is 

treated with guanabenz in the absence of exogenous NADPH.  Even under this condition, 

calmodulin is necessary for guanabenz-mediated inhibition of nNOS (data not shown).  

We wondered why NADPH was necessary for inhibition of the crude cytosolic 

preparation of nNOS (6) but not for the purified enzyme.  To better understand the 

inactivation process and why there are seemingly disparate findings, we further 

investigated both the mechanism of inactivation without NADPH as well as that found 

with NADPH.  In the course of our studies, we discovered that the concentration of BH4 

in the first reaction mixture is a critical factor and that the presence of NADPH, 
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superoxide dismutase and catalase also has an effect on the guanabenz-mediated 

inhibition of nNOS.  To dissect these effects, we initially investigated the effect of BH4 

on the guanabenz-mediated inhibition of nNOS in the absence of superoxide dismutase 

and catalase (Fig. 2.3B).  Under these conditions, guanabenz in the presence of NADPH 

causes a nearly complete inactivation of nNOS and the addition of BH4 during the 

treatment has a protective effect (solid circles).  Interestingly, NADPH alone has a large 

inhibitory effect, but in this case, the addition of even small amounts of BH4 protects 

from the loss of activity (c.f. solid squares with open squares).  Low levels of BH4 also 

protect the enzyme when nNOS is treated with guanabenz in the absence of NADPH 

(open circles).  Overall, greater inhibition of nNOS is observed when NADPH and 

guanabenz are present over that when NADPH is omitted (c.f. solid circles with open 

circles).  This clearly demonstrates how NADPH-dependent inactivation of nNOS could 

be observed depending on the BH4 concentration, and this likely explains the seemingly 

disparate observation made in a previous study on NADPH dependence (6). 

As shown in Fig. 2.3C, BH4 completely protects the enzyme from inactivation 

when nNOS is treated with guanabenz and NADPH in the presence of superoxide 

dismutase and catalase (c.f. solid triangles with open triangles).  Also, the presence of 

superoxide dismutase and catalase protects against the autoinactivation of nNOS that 

occurs in the presence of NADPH.  As a control, we show that BH4 does not affect the 

inhibition of nNOS due to NG-nitro-L-arginine, a slowly reversible active site directed 

inhibitor (X).  It is noteworthy that NG-nitro-L-arginine stabilizes the SDS-resistant 

dimeric form of nNOS (17).  Thus, guanabenz appears to inhibit nNOS by a process that 

is antagonized by BH4.  We will show below that a BH4 deficient enzyme is formed. 
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Tetrahydrobiopterin depletion as a mechanism for guanabenz-mediated inhibition 

of purified nNOS — Initially, we investigated the guanabenz-mediated inhibition of 

nNOS in the absence of NADPH.  As shown in Fig. 2.4A, the calmodulin- and 

guanabenz– dependent loss of activity occurs concomitantly with the loss of BH4.  

Approximately 60 % of the loss of BH4 is accounted for by the formation of 

dihydrobiopterin (BH2).  As shown in Fig. 2.4B, the activity loss seen when nNOS is 

incubated with calmodulin and guanabenz in the absence of NADPH is completely 

reversed by the addition of BH4 in the oxyhemoglobin assay mixture.  A concentration of 

0.1 µM BH4 is sufficient for complete reversal, consistent with the approximate loss of 

BH4.  The restoration of activity is rapid, as there is no incubation step with BH4 before 

the activity is measured.  The restoration is nearly complete, suggesting that the depletion 

of BH4 is the major mechanism for the activity loss under these conditions.  It is 

noteworthy that in previous studies with the cytosolic fraction containing nNOS (6), BH4 

was present in the assay mixture; therefore the NADPH-independent inhibition of nNOS 

by guanabenz would have been obscured.  There is also a loss of BH4 after inhibition of 

nNOS in the presence of NADPH (Fig. 2.4C).  The addition of dihydropteridine 

reductase, which reduces BH2 to BH4, abolishes the inhibition of nNOS due to guanabenz 

(Fig. 4C), indicating that the oxidation of BH4 to BH2 and the subsequent formation of a 

BH4-deficient nNOS is the cause of the nNOS inhibition.  Consistent with this finding, 

BH4 completely reverses the inhibition of nNOS even when NADPH is present (Fig. 

2.4D).  This is similar to that found above for the inhibition when NADPH was omitted.  

Thus, under all conditions examined here, BH4 deficiency is the major mechanism of 

nNOS inhibition due to guanabenz.  
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Superoxide dismutase prevents the guanabenz-mediated loss of nNOS activity and 

tetrahydrobiopterin — A more detailed analysis of the dependence on catalase and SOD 

was performed (Fig. 2.5).  As shown in Fig. 2.5A, superoxide dismutase protects against 

the loss of activity with nearly complete protection at 1,000 units/ml (solid circles).  

Catalase at concentrations up to 400 units/ml has no effect (solid triangles).   In a 

previous study, 100 units/ml of catalase completely protected nNOS from the oxidative 

inactivation caused by agmatine (16).  Superoxide dismutase alone is nearly as effective 

as superoxide dismutase in combination with catalase (solid squares).  Thus, it appears 

that the nNOS-mediated superoxide formation is mainly responsible for the activity loss.   

Consistent with these findings, superoxide dismutase alone could completely protect 

against the guanabenz-mediated loss of BH4 (Fig. 2.5B). 

Studies with radiolabeled guanabenz — The purified nNOS was treated with 

radiolabeled guanabenz to determine if any adducts of guanabenz with nNOS or 

guanabenz metabolites could be detected.  As shown in Fig. 2.6A, reverse phase HPLC 

analysis of the entire first reaction mixture containing nNOS and radiolabeled guanabenz 

but not calmodulin gives a major radiolabeled peak (solid line, G) corresponding to 

guanabenz.  The peak at 37 min with absorbance at 220 nm corresponds to nNOS (dashed 

line, NOS).  Treatment of nNOS with radiolabeled guanabenz in the presence of 

calmodulin (CAM) did not cause an observable change in the radioactivity profile.  We 

were thus unable to detect the metabolism of guanabenz.  These results are consistent 

with the notion that BH4 deficiency is the major mechanism of nNOS inhibition. 

Tetrahydrobiopterin protects against guanabenz-mediated inhibition of penile 

NOS activity in rats — We sought to determine if the inhibition and loss of nNOS protein 
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in vivo could be ameliorated by BH4.  We utilized a previously established procedure for 

treatment of rats with 5 mg/kg/day guanabenz for four days (6).  As shown in Fig. 2.7A, 

guanabenz causes an approximately 50% reduction in NOS activity and nNOS protein in 

penile tissue, highly similar to that previously described (6).   The concurrent 

administration of 200 mg/kg/day of BH4 completely abrogates the inhibitory effect of 

guanabenz and prevents the loss of nNOS protein.  The administration of the same dose 

of BH4 alone has no effect on NOS activity or level of nNOS protein.  The dose 

dependence of the protection by BH4 is shown in Fig. 2.7B.  The amounts required to see 

an effect on nNOS are higher than those used in rats in previous studies on vascular 

function, which for the most part reflects endothelial NOS activity (18, 19).  The effects 

of BH4 on nNOS are not as well characterized and we know of no studies in penile tissue.  

To further examine the role of BH4 on the guanabenz-mediated inactivation and protein 

turnover, we prepared desalted cytosol from penile tissue of untreated rats for use in in 

vitro inactivation studies.  As shown in Fig. 2.7C, 100 µM guanabenz decreases nNOS 

activity by approximately one-half after treatment for 15 min (solid circles).  We found 

that the addition of BH4 in the reaction mixture completely prevents the inactivation due 

to guanabenz, with a concentration of 1µM giving nearly complete protection.  The 

concentration dependence of BH4 found here is highly similar to the concentration 

dependence reported for the activation of nNOS in desalted rat cerebellar cytosol where 1 

µM BH4 was required for maximal activation of nNOS (20).  The addition of BH4 does 

not increase the activity of the untreated sample (X) nor protect against the inhibition by 

NG-nitro-L-arginine (open circles), a slowly reversible active site-directed inhibitor.  

These results are highly similar to that found for the purified nNOS above. 
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In vitro ubiquitylation of guanabenz-treated nNOS  – As shown in Fig. 2.8 upper 

panel, there is an ubiquitin conjugate that is readily visualized with anti-ubiquitin in the 

160 kDa region.  The identity of this band as a nNOS-ubiquitin conjugate has been 

previously established (14, 21).  The band corresponding to nNOS-ubiquitin was 

quantified and plotted (Fig. 2.8, lower panel).  There is an increase in the nNOS-ubiquitin 

conjugates found for guanabenz-treated nNOS (lane 2) over that for untreated nNOS 

(lane 1).  When MG132, an inhibitor of the proteasome, is not present then the nNOS-

ubiquitin conjugate due to guanabenz is greatly reduced (lane 4).     

 

Discussion 

Guanabenz is known to enhance the proteasomal degradation of nNOS (8).  It is 

thought that this labilization of the protein for degradation involves some alteration of the 

structure of nNOS, such that it is recognized by cellular factors that in turn lead to nNOS 

ubiquitylation and degradation.  In order to better understand how guanabenz causes the 

selective removal of nNOS by the proteasome, we chose in the current study to determine 

how guanabenz alters nNOS.  We found that guanabenz causes a destabilization of the 

native dimeric structure of the purified enzyme.  This destabilization was due to the 

guanabenz-mediated, nNOS-catalyzed destruction of BH4, which stabilizes the active 

dimeric state of nNOS.  Moreover, the treatment of rats with BH4 completely protects 

from the guanabenz-mediated inhibition and loss of penile nNOS.  Although this suggests 

that the loss of BH4 is a mechanism for the inhibition and loss of nNOS in vivo, further 

studies on BH4 are needed to fully understand the molecular mechanisms responsible. 
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Superoxide dismutase, but not catalase, prevents the loss of BH4 from purified 

nNOS treated with guanabenz, indicating that nNOS-derived superoxide is responsible 

for the loss of BH4.  The reaction of superoxide with tetrahydrobiopterin has been 

previously reported and shown to form BH2 (22).  Dihydropteridine reductase, which 

reduces BH2 to BH4, completely protects against the guanabenz-mediated inhibition of 

nNOS activity and loss of BH4, strongly suggesting that BH4 is oxidized to BH2.  

However, under in vivo conditions where L-arginine is present, it appears that other 

reactive metabolites such as peroxynitrite, which can form by the reaction of superoxide 

with NO, are more likely the actual agents responsible for BH4 oxidation (23-25).   

In the case of nNOS, BH4 is known to stabilize the native dimeric state of the 

enzyme and thus the oxidation of the BH4 would destabilize the dimeric form, consistent 

with our findings.  This may be important as destabilization of the dimer has recently 

been shown to lead to the ubiquitylation of nNOS in vitro (17) and in cells (14).  This 

notion is furthered by the finding that stabilization of the dimeric form of nNOS by NG-

nitro-L-arginine or 7-nitroindazole protects nNOS from proteasomal degradation (17).   

Although dimer stabilization plays an important role, the actual signal or 

recognition site for degradation is not clear.  The trigger may be due to exposure of a site 

that is normally hidden in the active dimeric form of nNOS, a general unfolding of nNOS 

after perturbation of the BH4 site, or exposure of hydrophobic residues in the heme active 

site cleft (26).  A recent report on the structure of a loose dimer of NOS with a partially 

exposed active center and destabilized subdomains is entirely consistent with this view 

(27).  The cellular factors that recognize the dysfunctional altered nNOS are also not 

known.  In this respect, we have recently found that CHIP (C-terminus of Hsc70 
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interacting protein), a chaperone assisted E3 ubiquitin ligase, ubiquitylates nNOS in cells, 

as well as in an in vitro system containing purified E1 ubiquitin activating enzyme, an E2 

conjugating enzyme (UbcH5a), CHIP, GST-tagged ubiquitin, and an ATP-generating 

system (26).  The addition of purified hsp70 and hsp40 to this in vitro system greatly 

enhances the amount of nNOS-ubiquitin conjugates, suggesting that CHIP is an E3 ligase 

for nNOS whose action is facilitated by, and possibly requires, its interaction with nNOS-

bound hsp70.  This raises the possibility that hsp70 directly mediates protein triage 

decisions by recognition of destabilized nNOS and recruiting ubiquitin ligase machinery 

that involves CHIP.  It remains to be determined if the guanabenz-treated nNOS is 

preferentially recognized by the hsp70-based chaperones in this manner.  However, we 

did demonstrate that guanabenz-inactivated nNOS was labilized for ubiquitylation in an 

in vitro system that contains a crude preparation of reticulocyte proteins, including hsp70.   

The molecular mechanism by which dysfunctional forms of nNOS are recognized must 

be a fundamental biological process that maintains the quality of the nNOS protein in 

cells.  We describe here how guanabenz may perturb this regulatory process to cause a 

prolonged decrease in nNOS activity and protein levels.  The xenobiotic-mediated redox 

regulation of BH4 may be important in understanding how chemicals inhibit and cause the 

loss of nNOS in vivo.  The interactions of drug molecules in protein quality control will 

likely be an important pharmacological and toxicological consideration in the 

development of safer and more effective drugs. 

50 



 

 
 
 

 
 
 
Fig. 2.1.  Guanabenz-mediated inactivation of purified nNOS.  A, indicates the time-dependent loss of 
nNOS activity due to guanabenz on a semi-log plot.  Closed squares, treated with 100 μM guanabenz; open 
squares, untreated.  The inactivation of nNOS activity was determined with the use of the modified first 
reaction mixture and oxyhemoglobin assay mixture as described in Materials and Methods.  The half-life 
for each condition was calculated by least squares fitting of the semi-log plot.  *denotes NOS activity was 
significantly ( p < 0.05) lower for the guanabenz treated sample than that for control.  B, indicates the effect 
of varying the concentration of guanabenz in the first reaction mixture.  The amount of guanbenz is 
indicated and the activities were measured after 20 min of  incubation.  Inset, the endothelial NOS replaced 
nNOS and the effects of guanabenz were determined.  *denotes significantly ( p < 0.05) different from 
untreated.  The values are the mean ± S.E. (n = 3). 
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Fig. 2.2.  Effect of guanabenz on the amount of SDS-resistant dimer of nNOS.  The nNOS was treated 
with guanabenz as described and the amount of the SDS-resistant dimer (nNOS dimer) and the remainder 
of the nNOS that runs as a monomer (nNOS monomer) were measured.  A, western blot of the reaction 
mixture of untreated nNOS (Untreated) or nNOS treated with guanabenz (Guanabenz) for 0, 15, 30, and 45 
min.  B, the bands corresponding to the nNOS dimer and monomer in A were quantified by the use of 125I-
labeled goat anti-rabbit IgG.  Circles, untreated; squares, guanabenz-treated.  The dimeric nNOS is 
represented by the closed symbols and the solid lines, and the monomeric nNOS is represented by the open 
symbols and the dashed lines.  *denotes significantly ( p < 0.05) lower dimer for guanabenz-treated versus 
untreated.  #denotes significantly ( p < 0.05) higher monomer for guanabenz treated over the untreated.  C, 
the effect of varying the concentration of guanabenz on the amount of SDS-resistant dimer after treatment 
for 20 min.  The bands were quantified as in B.  Solid triangles, nNOS dimer; open triangles, monomeric 
nNOS.  *denotes significantly ( p < 0.05)  lower dimer than untreated.  #denotes significantly ( p < 0.05) 
higher monomer than untreated.  The values are the mean ± S.E. (n = 3). 
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Fig. 2.3.  Effect of substrate, NADPH, tetrahydrobiopterin, and calmodulin, on the guanabenz-

mediated inactivation of nNOS.  A, indicates the effect of calmodulin (CAM), NADPH, L-arginine (L-
Arg), and D-arginine (D-Arg) on the extent of inhibition of nNOS after treatment for 20 min with 100 μM 
guanabenz (open bars) or untreated (solid bars).  B, indicates the protective effect of BH4 on the inhibition 
of nNOS caused by guanabenz when superoxide dismutase and catalase were omitted from the first 
reaction mixture described in Methods.  nNOS was either treated with 100 μM guanabenz (circles) or 
untreated (squares).   Open symbols, NADPH was omitted from the first reaction mixture; closed symbols, 
NADPH was present in the first reaction mixture.  C, indicates the protective effect of BH4 on the extent of 
inhibition of purified nNOS caused by 100 μM guanabenz (closed triangles), 10 μM NG-nitro-L-arginine 
(X), or untreated (open triangles) in the first reaction mixture.  This mixture contained superoxide 
dismutase, catalase, and NADPH.  The values are the mean ± S.E. (n = 3).  *denotes significantly ( p < 
0.05) lower activity for treated versus untreated. 
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Fig. 2.4.  Guanabenz causes the loss of nNOS activity and tetrahydrobiopterin.  A, guanabenz causes 
the loss of BH4.  The nNOS was treated with 100 µM guanabenz for 20 min in the first reaction mixture as 
indicated in Methods, except that NADPH was omitted.  The amount of BH4 present in the first reaction 
mixture was measured by HPLC and compared to the nNOS activity.  The presence of calmodulin and 
guanabenz are as indicated.  B, the activity loss due to guanabenz is reversed by addition of BH4 to the 
oxyhemoglobin assay mixture.  The activity was measured by the oxyhemoglobin assay containing the 
indicated amounts of BH4.  Closed squares, nNOS treated with guanabenz; open squares, untreated nNOS.  
C, the conditions were as in A, except that NADPH was present in the first reaction mixture.  All samples 
contained calmodulin and some samples contained 10 units/ml of dihydropteridine reductase (DHPR) as 
indicated.  D, the conditions were as in B, except that NADPH was present in the first reaction mixture.  
The values are the mean ± S.E. (n = 3). *denotes significantly ( p < 0.05) lower values for guanabenz 
treated versus untreated. 
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Fig. 2.5.  Effect of superoxide dismutase on the guanabenz-mediated loss of nNOS activity and 

tetrahydrobiopterin.  The nNOS was treated with guanabenz (100 µM) for 20 min and the nNOS activity 
and pterin were measured as described in Methods.  A, nNOS activity.  The amount of superoxide 
dismutase (SOD) or catalase (CAT) or both were varied in the reaction mixtures treated with guanabenz.  
Closed squares, a combination of SOD and CAT were added; closed circles, SOD was added; closed 
triangles, CAT was added.  As a control, SOD and CAT were added to a reaction mixture not treated with 
guanabenz (open squares).  B, tetrahydrobiopterin.  The 100 µM guanabenz (G), 2,500 units/ml superoxide 
disumutase (SOD), or 1mM NADPH was omitted from the reaction mixtures as indicated.  The values are 
the mean ± S.E. (n = 3). *denotes significantly ( p < 0.05) lower values relative to untreated. 
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Fig. 2.6.  HPLC profile of nNOS treated with 14C-labeled guanabenz in the absence or presence of 
calmodulin.  The nNOS was treated with radiolabeled guanabenz as described in Methods.  A, indicates 
nNOS treated with guanabenz in the absence of calmodulin.  B, indicates nNOS treated with guanabenz in 
the presence of calmodulin.  The residual activity was 85% and 38% for the untreated and guanabenz 
treated sample, respectively.  G, guanabenz; NOS, nNOS; CAM, calmodulin.   
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Fig. 2.7.  Tetrahydrobiopterin protects against guanabenz-mediated inactivation and loss of penile 
nNOS in rats.  A, indicates the effect of guanabenz (5mg/kg/day) and BH4 (200 mg/kg/day) on penile NOS
activity (solid bars) and penile nNOS protein (open bars) after treatment of rats for four days.  The 
treatment of the rats and the measurement of activity by the citrulline assay are as described in Methods.  
*denotes significantly ( p < 0.05) lower values relative to untreated.  B, indicates the dose response of BH4
on the penile nNOS activity under conditions of A. *denotes significantly ( p < 0.05) higher activity relative 
to untreated.  C, indicates the treatment of penile cytosol in vitro with guanabenz and BH4.  The 
inactivation of nNOS activity was determined with the use of the reaction mixture and citrulline assay 
mixture as described in Methods.  The reaction mixture was incubated for 15 min in the presence of the 
following: closed circles, 100 µM guanabenz; open circles, 5 μM NG-nitro-L-arginine; x, untreated.
indicated am

 

 

  The 
ounts of BH4 were added to the reaction mixture.  The values are the mean ± S.E. (n = 3). 

denotes significantly ( p < 0.05) lower activity relative to untreated. 
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eration and detection of the nNOS ubiquitin conjugates 

re as described in Methods.  The values are the mean ± S.E. (n = 3). *denotes significantly ( p < 0.05) 
igher nNOS-Ub conjugates relative to untreated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.8.  Guanabenz-treated nNOS is labilized for ubiquitylation in an in vitro system containing 
fraction II.  Purified nNOS was treated with 100 µM guanabenz (G) and then placed in a reaction mixtu
containing ubiquitin, ATP, and fraction II.  The gen
a
h
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Chapter III 

Tetrahydrobiopterin Depletion and Ubiquitylation  

of Neuronal Nitric Oxide Synthase 

 

Summary 

 Tetrahydrobiopterin is a necessary cofactor for the synthesis of nitric oxide by the 

hemeprotein enzyme, NO-synthase (NOS).  It is widely thought that inadequate levels of 

tetrahydrobiopterin lead to tissue injury and organ dysfunction due, in part, to formation 

of superoxide from pterin-deficient NOS.  In the course of studies on the ubiquitylation 

of neuronal NOS, we have found that certain substrate analogs, such as NG-nitro-L-

arginine, stabilize the dimeric form of nNOS and protect the enzyme from ubiquitylation.  

Since tetrahydrobiopterin is known to bind near heme and confers stability to the active 

dimeric structure of nNOS, we wondered if the loss of tetrahydrobiopterin could be an 

endogenous signal for nNOS ubiquitylation and degradation.  We show here that 

depletion of tetrahydrobiopterin in HEK293 cells stably transfected with nNOS by 

treatment with 2,4-diamino-6-hydroxypyrimidine leads to destabilization of the dimeric 

form and enhances ubiquitylation of nNOS.  Sepiapterin, a precursor to 

tetrahydrobiopterin in the salvage pathway, completely reverses the effect of 2,4-

diamino-6-hydroxypyrimidine on nNOS ubiquitylation.  Consistent with that found in 

cells, the in vitro ubiquitylation of nNOS by reticulocyte proteins decreases when 
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tetrahydrobiopterin is present.  Thus, inadequate amounts of tetrahydrobiopterin may lead 

to a sustained decrease in the steady state level of nNOS that is not readily reversed. 

 

Introduction 

 Tetrahydrobiopterin is a cofactor of several amino acid metabolizing enzymes that 

are of importance in neurotransmitter synthesis.  One of these enzymes is nitric oxide 

synthase (NOS), which requires tetrahydrobiopterin for metabolism of L-arginine to 

citrulline and NO.  The importance of neuronal NOS (nNOS), inducible NOS, and 

endothelial NOS in neurotransmission, host defense, and vascular function, respectively, 

has brought much attention not only on the role of tetrahydrobiopterin deficit in a variety 

of diseases but also on the pharmacological supplementation of pterin (1).  For example, 

numerous studies have described the improvement of vascular function and increased 

endothelial NOS activity when tetrahydrobiopterin levels are increased by 

pharmacological means (1).  Conversely, the depletion of tetrahydrobiopterin has also 

been shown to decrease endothelial NOS activity and cause endothelial dysfunction (1).  

In the case of the inducible NOS, tetrahydrobiopterin depletion abrogates the ability of 

the enzyme to be upregulated by cytokines during an immune response (2).  The effects 

of tetrahydrobiopterin depletion on nNOS have not been as well characterized as the 

other isoforms, although an increased vulnerability to hypoxia as well as nNOS 

dysfunction is observed in neurons (3).  Overall, it is clear that an inadequate level of 

tetrahydrobiopterin is an important factor in a variety of pathological conditions 

involving NOS. 
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 All the isoforms of NOS are ubiquitylated and proteasomally degraded (4-7).  We 

have recently discovered that the heme-deficient monomeric form of nNOS is 

preferentially targeted (4, 8).   Interestingly, NG-nitro-L-arginine, a slowly reversible, 

active site directed, competitive inhibitor of nNOS stabilizes the heme-containing 

enzyme from ubiquitylation and degradation.  Thus, it appears that some conformational 

effect related to the heme active site confers recognition for ubiquitylation.  Since 

tetrahydrobiopterin is known to bind near heme and confers stability to the active dimeric 

structure of nNOS, we wondered if changes in tetrahydrobiopterin levels could be an 

endogenous signal for nNOS ubiquitylation and degradation.  

 We have directly examined this question in a HEK293 cell line that stably express 

nNOS as well as in an in vitro degradation model containing purified nNOS and partially 

purified reticulocyte proteins.  In the current study, we found that decreased 

tetrahydrobiopterin levels enhance the ubiquitylation of nNOS in both models.  

Furthermore, tetrahydrobiopterin depletion in cells also leads to destabilization of the 

dimeric form of nNOS, but not to the loss of the prosthetic heme from nNOS.  This 

indicates that a pool of inactive, heme-containing nNOS, which is not in a tightly 

associated homodimeric form, exists in cells.  It appears that this pool of destabilized 

nNOS is labilized or susceptible to ubiquitylation and proteasomal degradation.  Thus, 

the loss of nNOS protein should be considered as a long-term consequence of inadequate 

tetrahydrobiopterin levels in a variety of pathological and toxicological conditions. 
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Materials and Methods 

Materials 

 Glucose-6-phosphate, glucose-6-phosphate dehydrogenase, 2,4-diamino-6-

hydroxypyrimidine, calmodulin (crude, from bovine brain), horse heart myoglobin, anti-

βtubulin antibody, L-arginine, leupeptin, NP40 (IGEPAL CA-630), A23187, ATP, 

ubiquitin, MgCl2, creatine phosphokinase, hexokinase, and NADP+ were purchased from 

Sigma.  (6R)-5,6,7,8-Tetrahydro-L-biopterin and sepiapterin were purchased from Dr. 

Schirck’s Laboratory (Jona, Switzerland).  The affinity-purified rabbit IgG against brain 

NOS used for immunoblotting nNOS was from Transduction Laboratories (Lexington, 

KY).  125I-labelled goat antibody against rabbit IgG or mouse IgG were purchased from 

Perkin Elmer (Boston, MA).  The affinity purified rabbit IgG used for Western blotting of 

ubiquitin was from DAKO Corporation (Carpinteria, CA).  The rabbit antiserum used to 

immunoprecipitate nNOS was raised against rat neuronal NOS and was the generous gift 

of Dr. Lance Pohl (NHLBI, Bethesda).  The antibody was affinity purified prior to use.  

Peroxidase conjugated anti-rabbit IgG antibody was from Boehringer Mannheim 

(Indianapolis, IN). Ubiquitin aldehyde was from Alexis Biochemicals (San Diego, CA).  

Untreated rabbit reticulocyte lysate was from Green Hectares (Oregon, WI).  DE52 was 

purchased from Whatman Inc. (Fairfield, NJ).  Cbz-leucine-leucine-leucinal (MG132) 

was purchased from BIOMOL (Plymouth Meeting, PA).   

 

Methods 

Cell culture and preparation of the cytosolic fraction - Human embryonic kidney 

293 cells (HEK293) stably transfected with rat nNOS by Bredt et al. (9) were obtained 
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from Dr. Bettie Sue Masters (University of Texas Health Science Center, San Antonio, 

TX).  HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (Life 

Technologies, Inc.) supplemented with 10% fetal bovine serum (Hyclone®), 20 mM 

Hepes, pH 7.4, and G418 (0.5 mg/mL, Geneticin®, Life Technologies, Inc.) as described 

previously (10).  Prior to each experiment, the cells were cultured in DMEM containing 

0.1 mM L-arginine (low arginine DMEM) for at least 12 hours.  HEK cells were treated 

with 5.0 mM 2,4-diamino-6-hydroxypyrimidine (DP) and 100 μM sepiapterin (SP) 

similar to that previously used for other cells (2, 11).  There was greater than 85% cell 

viability, as determined by trypan blue, for all conditions used in our studies.  Cell 

viability was unaffected by DP or SP treatment.  Sepiapterin was added in DMSO and the 

total concentration of DMSO did not exceed 0.2% in the medium.  DMSO alone did not 

have any effects on the amount of monomeric or dimeric nNOS.  HEK cells were 

harvested in their treatment medium, diluted 1:1 with ice-cold phosphate-buffered saline.  

The cells were then pelleted, washed 3-times with 5 mL of ice-cold phosphate-buffered 

saline, and pelleted again.  The cell pellet was homogenized on ice with a Tenbroeck 

ground glass homogenizer in three-volumes of lysis buffer containing 50 mM Tris-HCl, 

pH 7.4, 1.0 mM EDTA, 1.0 mM DTT, 10 μg/mL trypsin inhibitor, 10 μg/mL leupeptin, 2 

μg/mL aprotinin, and 5mM phenylmethylsulfonyl fluoride.  Homogenates were 

centrifuged for 20 min at 16,000 x g and the supernatant was used for assays.  For HPLC 

studies, the supernatant was removed and centrifuged for an additional 15 min at 100,000 

x g to obtain a cytosolic fraction.  For ubiquitin studies, the cell pellet was homogenized 

in HE lysis buffer containing 10 mM Hepes, pH 7.4, 0.32 M sucrose, 2.0 mM EDTA, 10 

μg/mL trypsin inhibitor, 10 μg/mL leupeptin, 2 μg/mL aprotinin, 5 mM N-
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ethylmaleimide (NEM), 10 mM Na3VO4, 1% NP40, and 6 mM phenylmethylsulfonyl 

fluoride.  Homogenates were centrifuged for 20 min at 16,000 x g, the supernatant was 

used for assays. 

 Assay for SDS-resistant dimer of nNOS - To detect the SDS-resistant dimer of 

nNOS, we used a SDS-PAGE method previously described by Klatt et al. (12).  Aliquots 

(50 μg) of the cytosol were added to 35 μl of ice-cold SDS sample buffer (250 mM Tris-

HCl, pH 6.8, 10% SDS, 40% glycerol, 0.04% bromophenol blue, and 40 mM DTT) and 

resolved on 7% SDS-polyacrylamide gels.  The samples were transferred to nitrocellulose 

membranes for 3 h at 850 mA.  The electrophoresis and transfer were performed in a 

jacketed cooling system to insure that the samples were not warmed during the 

procedures.  The membranes were probed with a 0.1% anti-nNOS polyclonal antibody 

from Transduction Laboratories.  The immunoblots were then incubated a second time 

with 125I-conjugated goat anti-rabbit IgGs to visualize the immunoreactive bands by X-

ray film.  For quantitation, each immunoreactive band was excised and counted by a 

gamma counter.  As an internal control, the same procedure was used to quantify tubulin. 

 Detection of cellular ubiquitin-nNOS conjugates, immunoprecipitation, and 

western blotting - nNOS was immunoadsorbed from ~100 μg of HEK293 cytosol with 30 

μl of anti-nNOS IgG and 20 μl of protein A Sepharose in a total volume of 400 μl of HE 

lysis buffer for 2 h at 4 oC.  Immune pellets were boiled in SDS sample buffer and the 

proteins were resolved on 7% SDS-polyacrylamide gels and transferred to nitrocellulose 

membranes for 3 h at 850 mA.  The membranes were probed with 0.1% anti-Ub 

polyclonal antibody.  Prior to probing with the anti-Ub antibody, the nitrocellulose 
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membranes were autoclaved in distilled H2O for 10 min.  The immunoblots were then 

incubated a second time with 125I-conjugated goat anti-rabbit IgGs for quantitation. 

NOS activity assay - Aliquots (20 μL) of the cytosol were transferred to an 

'oxyhemoglobin assay mixture' containing 200 μM CaCl2, 100 μM L-arginine, 100 μM 

tetrahydrobiopterin, 100 units/ml catalase, 10 μg/ml calmodulin, 25 μM oxyhemoglobin, 

and an NADPH regenerating system consisting of 400 μM NADP+, 10 mM glucose-6-

phosphate, and 1 unit/ml glucose-6-phosphate dehydrogenase, expressed as final 

concentrations, in a total volume of 180 μl of 50 mM potassium phosphate, pH 7.4.  The 

mixture was incubated at 37°C and the rate of NO-mediated oxidation of oxyhemoglobin 

was monitored by measuring the absorbance at λ401 nm - 411 nm with a microtiter plate 

reader (SpectraMax Plus, Molecular Devices, Sunnydale, CA) as previously described 

(13).  The amount of nitrate and nitrite in the cell medium was assayed by the use of 

nitrate reductase and quantitation by the Griess method as described (14). 

 Heme assay - HPLC was performed with the use of a Waters 600S controller, 717 

Plus autosampler and 996 photodiode array detector (Waters Corp., Milford, MA).  

Samples (100 μg of protein) were injected onto a reverse phase HPLC column (C4 

Vydac, 5 μm, 0.21 x 15 cm) equilibrated with solvent A (0.1% trifluoroacetic acid) at a 

flow rate of 0.3 mL/min.  A linear gradient was run to 75% solvent B (0.1% 

trifluoroacetic acid in acetonitrile) over 30 min and then to 100% solvent B over the next 

5 min.  Absorbance at 220 nm and 400 nm was monitored.  

Tetrahydrobiopterin assay - The amount of BH4 in the reaction mixtures was 

determined by use of an HPLC fluorescence method as described by Klatt et al. (15).  

The method involves oxidization of BH4 and BH2 to biopterin by treatment with KI/I2 
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solution under acidic conditions.  To give the specific amount of BH2, the KI/I2 oxidation 

is done in a basic solution where BH4 and BH2 are oxidized to pterin and biopterin, 

respectively.   Specifically for oxidation under acidic conditions, a 30-µl aliquot of the 

sample was treated with 10 mM I2 and 50 mM KI in a total volume of 60 µL of 100 mM 

HCl for 1 h at room temperature in the dark.   The solution was neutralized with 5 µl of 

1.0 M NaOH and then 5 µl of 0.2 M ascorbate was added.   An aliquot (30 µl) of the 

resulting solution was injected onto a reverse phase HPLC column (C18 Vydac 5 mm, 

4.6 x 250 mm) equilibrated with 20 mM NaH2PO4, pH 3, with 5% methanol at a flow rate 

of 1 ml/min.  The pterins were eluted with the same mobile phase and detected by 

fluorescence at excitation and emission wavelengths of 350 and 418 nm, respectively.  

The HPLC and analysis of pterins was performed with the use of a Waters 600S system 

with a 717 autosampler and Applied Biosystems Spectroflow 980 fluorescence detector.  

To oxidize the pterins under basic conditions, the first reaction mixture was treated as 

above except that 100 mM NaOH replaced 100 mM HCl and the final solution was 

neutralized with 5 µl of 1 M HCl.  

Expression and purification of holo-nNOS and apo-nNOS - nNOS was 

overexpressed in Sf9 insect cells as previously described (16).  To express holo-nNOS, 

oxyhemoglobin (25 µM) was added as a source of heme during the last 24 h of 

expression.  Cells were harvested and suspended in 1 volume of 10 mM Hepes, pH 7.5, 

containing 320 mM sucrose, 100 µM EDTA, 0.1 mM dithiothreitol, 10 µg/ml trypsin 

inhibitor, 1.0 µM leupeptin, 2 µg/ml of aprotinin, 6 mM phenylmethanesulphonyl 

fluoride, and 10 µM BH4, and the suspended cells were ruptured by Dounce 

homogenization.  Lysates from infected Sf9 cells (8 x 109) were centrifuged at 100,000 x 
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g for 1 h.  The supernatant fraction was loaded onto a 2'5'-ADP Sepharose column (20 

ml) and the nNOS was affinity purified as described (17), except that 10 mM 2' AMP in 

high salt buffer was used to elute the protein. The nNOS-containing fraction was 

concentrated with the use of a Centriplus YM-100 concentrator (Amicon, 100,000 

MWCO) to 10 ml and loaded onto a Sephacryl S-300 HR gel filtration column (2.6 x 100 

cm, Pharmacia Biotech) equilibrated with 50 mM Tris-HCl, pH 7.4, containing 100 mM 

NaCl, 10% glycerol, 0.1 mM EDTA, 0.1 mM dithiothreitol, and 5 µM BH4.  The proteins 

were eluted at a flow rate of 1.0 ml/min and 1.0 ml-fractions were collected and analyzed 

for protein content and NOS activity.  The fractions containing NOS activity were 

pooled, supplemented with 10 µM BH4 and concentrated with the use of a Centriplus 

YM-100 concentrator.  This Sephacryl-purified nNOS preparation had a specific activity 

of approximately 1000 nmol/min/mg of protein and was stored at –80 oC.  To prepare 

apo-nNOS, the procedure was the same as that for holo-nNOS except that 

oxyhemoglobin was omitted during expression and BH4 was not added during 

purification.  The specific activity of the apo-nNOS preparation was approximately 25 

nmol/min/mg of protein. 

In vitro ubiquitylation and degradation of apo-nNOS and holo-nNOS by fraction 

II - We used an in vitro degradation system, containing fraction II, that has been 

established to proteasomally degrade nNOS by an ubiquitin- and ATP- dependent process 

(8).  Fraction II was prepared from rabbit reticulocyte lysates as previously described 

(18).  The nNOS preparations (2 μg) were incubated at 37°C in a total volume of 120 μl 

of 50 mM Tris-HCl, pH 7.4, containing 2 mM dithiothreitol, 50 μM ubiquitin, an ATP-

regenerating system (2 mM ATP, 10 mM creatine phosphate, 5 mM MgCl2, and 10 
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units/ml creatine phosphokinase), and 2 mg/ml of fraction II.  At indicated times, the 

samples were quenched with 25 µl of sample buffer containing 5% SDS, 20% glycerol, 

100 mM dithiothreitol, and 0.02% bromophenol blue in 125 mM Tris-HCl, pH 6.8.  The 

samples were boiled for 3 min and an aliquot (25 μl) was submitted to 6% SDS-PAGE 

(10 x 8 cm).  Proteins were then transferred to nitrocellulose membranes (0.2 μm, 

BioRad) and probed with 0.1% anti-nNOS.  The immunoblots were then incubated a 

second time with 125I-conjugated goat anti-rabbit IgGs to visualize the immunoreactive 

bands.  The membranes were dried and exposed to X-OMAT film for 1 h at -80°C.  The 

bands corresponding to nNOS were excised and the radioactivity quantified by the use of 

a gamma counter.  This method was quantitative up to 0.5 µg of nNOS with a linear 

relationship between the amount of nNOS and radioactivity (r2 = 0.99).  For studies 

where nNOS-ubiquitin conjugates were measured, nNOS was treated as above except 

that 38 µg of nNOS, 15 µM ubiquitin, and 0.4 mg/ml of fraction II were used.  To inhibit 

deubiquitylation, 0.7 µM ubiquitin aldehyde was added.   The nNOS-ubiquitin conjugates 

were detected as described for cellular nNOS-ubiquitin conjugates. 

 

Results 

Effect of 2,4-diamino-6-hydroxypyrimidine on nNOS dimer stability, nNOS 

activity, and tetrahydrobiopterin levels - An inhibitor of the rate-limiting enzyme in the 

de novo synthesis of tetrahydrobiopterin from guanosine triphosphate, 2,4-diamino-6-

hydroxypyrimidine, has been used to decrease tetrahydrobiopterin levels in cells and in 

animals (2, 19, 20).  Since tetrahydrobiopterin is known to stabilize the dimeric form of 

nNOS (1), we chose to first examine the effects of 2,4-diamino-6-hydroxypyrimidine on 

70 



the levels of nNOS dimer and monomer in HEK293 cells.  We examined the samples by 

low temperature SDS-PAGE so that the SDS-resistant dimeric form of nNOS could be 

measured (12).  This assay is not a measure of the dimeric content under native 

conditions, but is a measure of the amount of stable dimer that is not dissociated by SDS 

and thus underestimates the total dimeric content.  Nonetheless, it is a convenient and 

reliable measure for effects on the stable dimeric state of nNOS.  As shown in Fig. 3.1A, 

the nNOS in the HEK293 cells exists in part as a SDS-resistant dimer and treatment of 

the cells with 2,4-diamino-6-hydroxypyrimidine (DP) led to a decrease in the dimeric 

form over time relative to that found in the untreated cells (Control).  As shown in Fig. 

3.1B, the bands corresponding to the nNOS dimer (upper, solid symbols) and monomer 

(lower, open symbols) were quantified by gamma counting.  By this analysis, we can 

clearly see that the treatment with 2,4-diamino-6-hydroxypyrimidine causes not only a 

time-dependent decrease in the nNOS dimer (cf. solid circles with solid squares) but also 

a concomitant increase in nNOS monomer (cf. open circle with open square).   

Moreover, the treatment of HEK293 cells with sepiapterin, a precursor to 

tetrahydrobiopterin synthesized by the pterin salvage pathway that involves dihydrofolate 

reductase, can circumvent the inhibition caused by 2,4-diamino-6-hydroxypyrimidine (2).  

Thus, when cells are treated with sepiapterin in addition to 2,4-diamino-6-

hydroxypyrimidine, there is no change seen in the level of the nNOS dimer (solid 

triangles) from that of control cells (solid squares). 

We next measured the cellular tetrahydrobiopterin levels and nNOS activity to 

verify the effects of 2,4-diamino-6-hydroxypyrimidine and sepiapterin.  As shown in Fig. 

3.2A, the treatment of cells with 2,4-diamino-6-hydroxypyrimidine decreases the 

71 



tetrahydrobiopterin levels to approximately one-quarter of that in control cells.  The 

addition of sepiapterin increases the tetrahydrobiopterin levels by approximately 20-fold.  

The nNOS activity was determined by measuring nitrite and nitrate, which are the stable 

oxidation products of NO, released into the culture medium (21).  As shown in Fig. 3.2B, 

the nNOS activity was decreased by one-half by 2,4-diamino-6-hydroxypyrimidine 

whereas sepiapterin had only a modest effect in counteracting the activity loss.  Although 

this appears to be in conflict with the very high levels of tetrahydrobiopterin found, it is 

likely that the high levels of dihydrobiopterin that are also present (data not shown) 

compete with tetrahydrobiopterin and inhibit the nNOS enzyme (22).  Thus in total, we 

have established in the HEK293 cells that 2,4-diamino-6-hydroxypyrimidine and 

sepiapterin have consistent effects on pterin and nNOS structure and function. 

Effect of 2,4-diamino-6-hydroxypyrimidine on nNOS ubiquitylation - The major 

ubiquitin adduct to nNOS in HEK293 cells is the mono-ubiquitylated form, which can be 

detected by immunoprecipitation of nNOS and blotting with anti-ubiquitin (4).  The 

nNOS-ubiquitin conjugates accumulate after treatment of cells with an inhibitor to the 

proteasome (4).  As shown in Fig. 3.3A, treatment of HEK293 cells with 2,4-diamino-6-

hydroxypyrimidine and MG132, a proteasome inhibitor, causes a time-dependent 

increase in the nNOS-ubiquitin conjugates over a 3 h period.  The amount of conjugate 

was quantified in Fig. 3.3B and we see that after 3 h, the levels of nNOS-ubiquitin 

conjugates in the 2,4-diamino-6-hydroxypyrimidine-treated cells (closed circles) are 

approximately double that found in the control (closed squares) or sepiapterin–treated 

(closed triangles) cells.  The major effect is on the extent of nNOS ubiquitylation, 

suggesting that we have increased the pool of nNOS that is susceptible for ubiquitylation. 
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Previous studies established that the heme-deficient apoprotein form of nNOS is 

rapidly ubiquitylated and proteasomally degraded (4, 8).  To address if apoprotein is 

formed in the current studies when tetrahydrobiopterin is depleted, we chose to examine 

the heme content of the HEK293 cells.  In the HEK293 cells, over 80% of the cytosolic 

heme is bound to nNOS (23).  This is based on two observations.  First, the transfected 

cells contain approximately 5-fold higher heme than non-tranfected cells.  Second, 

treatment of transfected cells with NG-amino-L-arginine, which is a suicide inactivator of 

nNOS that works by covalently altering and destroying the heme bound to nNOS, causes 

a loss of heme that is concomitant with the activity loss.  This indicates that the heme that 

is in the cytosol must be from nNOS.  As shown in Fig. 3.4A, the reverse phase HPLC 

profile at 400 nm of the cytosol from nNOS expressing cells gives one main peak 

corresponding to heme (solid line) that is approximately 5-fold higher than that in non-

transfected cells.  As shown in Fig. 3.4B, treatment of cells with 2,4-diamino-6-

hydroxypyrimidine or sepiapterin does not affect the heme levels in the transfected nor 

non-transfected cells.  The absence of a decrease in heme is interpreted as no loss of 

heme from nNOS.  However, it is possible that heme is bound to some other protein in 

the cell after treatment with 2,4-diamino-6-hydroxypyrimidine.  To directly address this 

point we have immunoprecipitated nNOS from untreated and 2,4-diamino-6-

hydroxypyrimidine treated cells and measured heme levels due to nNOS.  The nNOS-

heme content in 2,4-diamino-6-hydroxypyrimidine treated cells is 95 ± 14 % of that 

found in untreated cells.  Thus, we conclude that the nNOS-heme content is unchanged 

and we establish for the first time that tetrahydrobiopterin loss in cells destabilizes the 
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nNOS dimer but does not lead to heme loss and formation of apoprotein.  Therefore, it 

appears that heme loss is not the initial trigger for enhanced ubiquitylation.   

Effect of tetrahydrobiopterin on nNOS ubiquitylation and proteasomal 

degradation in vitro - Recently, an in vitro system of reticulocyte proteins was developed 

that mimics the cellular ubiquitylation and proteasomal degradation of nNOS (8).  The 

effect of tetrahydrobiopterin has not been explored in this in vitro degradation system.  

As shown in Fig. 3.5A, the addition of 10 µM tetrahydrobiopterin greatly slows the rate 

of degradation of nNOS (cf. closed circle with open circle).  As expected, the heme-

deficient apo-nNOS (closed squares) is more rapidly degraded than heme-containing 

nNOS.  Moreover, the addition of 10 µM tetrahydrobiopterin has very little effect on the 

degradation of apo-nNOS (open squares) consistent with tetrahydrobiopterin binding 

avidly to the heme-containing nNOS and not the apo-nNOS.  The concentration-

dependence on tetrahydrobiopterin was more closely examined in Fig. 3.5B.  Greater 

than 20 µM tetrahydrobiopterin is needed for maximal protection of nNOS (solid circles) 

whereas even 40 µM tetrahydrobiopterin does not protect apo-nNOS (solid squares).  

Although there is clearly an effect on holo-nNOS and not on apo-nNOS, the 

concentration of tetrahydrobiopterin appears much higher than that needed for 

stabilization of the purified nNOS.  We have observed, however, that nNOS in the 

presence of reticulocyte proteins and NADPH catalyzes the oxidation of 

tetrahydrobiopterin to dihydrobiopterin (data not shown).  Therefore, the effective 

concentration of tetrahydrobiopterin during the assay is much lower.  As shown in Fig. 

3.5C, the effect of tetrahydrobiopterin on the in vitro ubiquitylation of nNOS was also 

examined.  In these studies the nNOS-ubiquitin conjugates were detected by Western 
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blotting with anti-ubiquitin antibody.  The major nNOS-ubiquitin conjugate in vitro is a 

mono-ubiquitylated form that is readily detected near the molecular mass of nNOS.  We 

know it is a nNOS-ubiquitin conjugate as there is no such adduct in the absence of nNOS 

(lane 6) or of ubiquitin (lane 7).  The addition of tetrahydrobiopterin to the reaction 

mixture decreases the nNOS-ubiquitin conjugate in a concentration-dependent manner.  

This is more clearly seen when the bands corresponding to the nNOS-ubiquitin adduct 

were quantified by gamma counting and plotted.  The decreased proteolytic degradation 

and ubiquitylation caused by tetrahydrobiopterin seen in this in vitro system is entirely 

consistent with the effect of tetrahydrobiopterin depletion found in cells.   Thus, 

tetrahydrobiopterin depletion does promote or labilize the nNOS for subsequent 

ubiquitylation and proteasomal degradation both in vitro as well as in cells.   

 

Discussion 

We have established that decreased tetrahydrobiopterin levels favor ubiquitylation 

of nNOS.  The mechanism of how a pterin-depleted nNOS becomes recognized for 

ubiquitylation is not known.  It is known that the absence of heme or suicide inactivation 

by substrate analogs that covalently alter the heme enhance the proteasomal degradation 

of nNOS (8, 21).  Moreover, NG-nitro-L-arginine, a slowly reversible inhibitor that binds 

to the heme of nNOS, was found to stabilize the dimeric form of nNOS and decrease 

nNOS ubiquitylation and degradation (8).  Thus, it appears that conditions that perturb 

the heme binding pocket and lead to destabilization of the functional dimeric form of 

nNOS lead to ubiquitylation of nNOS whereas ligands that stabilize the pocket and the 

dimeric state of nNOS do not get ubiquitylated.   
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The ubiquitylation and proteasomal degradation of nNOS has been shown to 

involve hsp90 (16, 24).  More recently, the role of hsp70 and the co-chaperone CHIP in 

nNOS ubiquitylation was established (25).  Based on these findings, a notion that 

exposure of hydrophobic surfaces in the substrate binding cleft and recognition by hsp70 

and hsp90 has been put forth as a mechanism for recognition of dysfunctional nNOS that 

leads to a protein-triage decision (25).  In particular, it was proposed that hsp70 directs 

the ubiquitylation of nNOS through association with the E3 ubiquitin ligase, CHIP (25).  

Thus, it is possible that perturbations in the heme active site by covalent alteration of the 

heme by suicide inactivators or, in the current case, the loss of tetrahydrobiopterin, which 

is intimately associated with the prosthetic heme, may lead to exposure of hydrophobic 

regions in the active site of nNOS that are recognized by hsp70 and leads to 

ubiquitylation of nNOS.  Alternatively, the destabilization of the dimeric nNOS may 

uncover a recognition site(s) that act as a signal for ubiquitylation.  In support of this 

notion, heterodimerization of transcription factors, MATα2 and MATa1, is known to 

decrease the ubiquitin-proteasomal degradation of both factors (26).  The destabilization 

of nNOS may be due to steric factors or perhaps to relaxation of the structural constraints, 

rendering the protein more flexible and/or disordered.  It is noteworthy that 

destabilization of dimeric nNOS also leads to enhanced susceptibility to phosphorylation 

by protein kinase C (27) and hydrolysis by trypsin (28).  However, in the case of iNOS, 

the monomer appears to be stable (29) and this suggests that perturbations of the active 

site may be a more important determinant for degradation.  Deciphering the mechanism 

by which dysfunctional nNOS is recognized will certainly be important in the 

understanding of protein-triage decisions that control nNOS protein quality. 
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Since tetrahydrobiopterin oxidation has been implicated in a variety of diseases 

including hypertension, the findings here reveal the potential for long-term consequences 

of inadequate tetrahydrobiopterin levels on NO signal transduction processes.  For 

example, cigarette smoking causes vascular dysfunction in man that is thought to be due 

to pterin-deficiency in the endothelial NOS (30).  Moreover, in some cases the NOS 

activity is only partially reversed by tetrahydrobiopterin administration (30), possibly due 

to a loss of NOS protein.  This notion is consistent with the observation that cigarette 

smoke causes a loss in endothelial NOS (31, 32) and nNOS proteins (33).  Thus, our 

studies may aid in understanding the complex effects of tetrahydrobipterin deficiency. 
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Fig. 3.1.   Effect of 2,4-diamino-6-hydroxypyrimidine and sepiapterin on the amount of SDS-resistant 
dimeric nNOS in HEK293 cells.  The HEK293 cells were treated with 2,4-diamino-6-hydroxypyrimidine, 
an inhibitor of BH4 synthesis, and sepiapterin, a precursor to BH4 via the pterin salvage pathway, so that the 
pterin levels could be manipulated.  The monomeric and dimeric states of nNOS were measured by low 
temperature SDS-PAGE.  A, 2,4-diamino-6-hydroxypyrimidine causes the loss of SDS-resistant dimer of 
nNOS.  Immunoblots for dimeric and monomeric nNOS in cytosol from HEK293 cells treated with 5.0 
mM 2,4-diamino-6-hydroxypyrimidine (DP) or untreated (Control) for the indicated times.  Tubulin was 
blotted as an internal control.  Bands were visualized by use of 125I-antibody and autoradiography.  B, 
quantitation of the effect of 2,4-diamino-6-hydroxypyrimidine and sepiapterin on the amount of SDS-
resistant dimer.  The amounts of SDS-resistant dimer (upper panel, solid symbols) and the band 
corresponding to the monomer (lower panel, open symbols) of nNOS was quantified by use of a gamma 
counter.  Cells were untreated (squares) or treated with 5.0 mM 2,4-diamino-6-hydroxypyrimidine (circles) 
or with 5.0 mM 2,4-diamino-6-hydroxypyrimidine and 100 μM sepiapterin (triangles).  The values are 
expressed as percentages of the raw counts.  The values are the mean ± SE from 4 separate experiments. 
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Fig. 3.2.  nNOS activity and tetrahydrobiopterin levels in HEK293 cells treated with 2,4-diamino-6-
hydroxypyrimidine and sepiapterin.  A, tetrahydrobiopterin levels in cytosols of HEK293 cells treated 
with 2,4-diamino-6-hydroxypyrimidine and sepiapterin were measured as indicated in ‘Materials and 
Methods’.  The cells were untreated (Ctl) or treated with 5.0 mM 2,4-diamino-6-hydroxypyrimidine (DP) 
or with 5.0 mM 2,4-diamino-6-hydroxypyrimidine and 100 μM sepiapterin (DP+SP).  Cells were harvested 
20 h after initiating the treatment.  The values are the mean ± SE from 4 separate experiments.  B, nNOS 
activity in intact cells was measured after 20 h treatment with 2,4-diamino-6-hydroxypyrimidine and 
sepiapterin as in A.  The nitrite and nitrate released into the medium over a period of 1 h after adding 10 
μM calcium ionophore, A23187, was measured.  The values are the mean ± SE from 5 separate 
experiments.  
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Fig. 3.3.  nNOS ubiquitylation is enhanced under conditions that favor loss of SDS-resistant dimer.  
A, nNOS-ubiquitin conjugates (nNOS-Ub) were detected by SDS-PAGE after treatment with the 
proteasome inhibitor MG132.  The cells were untreated (lanes 1,2, and 5) or treated with 5.0 mM 2,4-
diamino-6-hydroxypyrimidine (lanes 3 and 6) or with 5.0 mM 2,4-diamino-6-hydroxypyrimidine and 100 
μM sepiapterin (lanes 4 and 7).  The cells were then treated with 10 μM MG132 for 1h (lanes 2-4) or 3h 
(lanes 5-7), the nNOS was immunoprecipitated from the cytosol and blotted for ubiquitin.  There were no 
ubiquitin conjugates observed under any of the conditions without MG132.  The amounts of 
immunoprecipitated nNOS are shown (nNOS) as a control.  B, the relative amount of ubiquitin detected in 
A was quantified by gamma counting. Closed squares, untreated; Closed circles, 5.0 mM 2,4-diamino-6-
hydroxypyrimidine; Closed triangles, 5.0 mM 2,4-diamino-6-hydroxypyrimidine and 100 μM sepiapterin.  
The values are the mean ± SE from 5 separate experiments. 
 
 
 
 
 
 
 

80 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 3.4.  HPLC profiles of cytosol prepared from HEK293 cells treated with 2,4-diamino-6-
hydroxypyrimidine and sepiapterin.  Cytosol from cells treated with sepiapterin and/or 2,4-diamino-6-
hydroxypyrimidine for 22 h, as indicated in Fig.3.1, was analyzed by reverse phase HPLC.  A, the HPLC 
profile at 400 nm of untreated nNOS-transfected cells (solid line) and untreated non-transfected cells 
(dashed line) are plotted.  The major peak with elution time of 21.8 min corresponds to heme.  B, the 
amount of heme was quantified with the use of myoglobin as a standard.  The values from nNOS-
transfected (solid bars) and non-transfected (hatched bars) are shown.  UNT, untreated; DP, treated with 
5.0 mM 2,4-diamino-6-hydroxypyrimidine; DP+SP, treated with 5.0 mM 2,4-diamino-6-
hydroxypyrimidine and 100 μM sepiapterin.  
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Fig. 3.5.  Effect of tetrahydrobiopterin on the ubiquitylation and degradation of purified nNOS in an 
in vitro system containing fraction II.  Purified nNOS (20 µg/ml) was incubated with fraction II, which 
contains ubiquitin ligases and proteasome that ubiquitylate and degrade nNOS.  The effect of 
tetrahydrobiopterin on nNOS ubiquitylation and proteasomal degradation was determined.  A, the time 
dependent loss of nNOS in the presence of fraction II.  Closed squares, heme-deficient apo-nNOS; Open 
squares, heme-deficient apo-nNOS in the presence of 10 µM BH4; Closed circles,  heme-containing nNOS; 
Open circles, heme-containing nNOS in the presence of 10 µM BH4.  A representative blot for heme-
containing nNOS in the absence (Unt) or presence (BH4) of 10 µM BH4 is also shown.  B, the dependence 
on the concentration of BH4 on the extent of degradation of nNOS.  The residual amount of nNOS after 90 
min of treatment with fraction II is shown for apo-nNOS (closed squares) and holo-nNOS (closed circles).  
A representative blot for holo-nNOS is also shown.  C, the effect of BH4 on the extent of nNOS 
ubiquitylation.  Holo nNOS (closed circles) and apo-nNOS (closed squares) were treated with fraction II in 
the presence of 10 μM MG132 for 120 min as described in ‘Materials and Methods’.  Different amounts of 
tetrahydrobiopterin were added and nNOS-ubiquitin conjugates were quantified as in Fig. 3.3.  A 
representative blot of the ubiquitinated holo-nNOS is also shown.  The values in all graphs are the mean ± 
SE from 3 separate experiments.   
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Chapter IV 

Degradation of Neuronal NO-Synthase is Regulated by Ubiquitination in the 

Calmodulin Binding Region of the Enzyme 

 

Summary 

It is established that neuronal NO-synthase (nNOS) is ubiquitinated and 

proteasomally degraded.  Certain forms of dysfunctional nNOS, such as the heme 

deficient apo-protein and the suicide-inactivated enzyme, are selectively targeted by the 

ubiquitin-proteasome system for degradation.  Both poly- and mono-ubiquitinated forms 

of nNOS have been detected in cells and in vitro.  While mono-ubiquitination can signal 

for many different processes including proteasomal degradation, the fate of mono-

ubiquitinated nNOS has not been determined.  The location of the ubiquitin adduct on 

nNOS that targets the enzyme for proteasomal degradation has also not been identified.  

In the current study, we show with the use of methylated ubiquitin and purified nNOS 

that mono-ubiquitination of nNOS can signal for proteasomal degradation in vitro.  We 

also discovered, with the use purified nNOS, that ubiquitination in the calmodulin 

binding region provides the signal for proteasomal degradation in vitro.  Specifically, 

direct blocking of the region by calmodulin was shown to greatly inhibit the 

ubiquitination of nNOS.  Furthermore, mutant nNOS protein that has the lysines in the 

calmodulin binding region mutated to arginines was found to be resistant to both 
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ubiqutination and proteasomal degradation in vitro.  Restoration of single native lysine 

residues in the calmodulin binding region was sufficient to reverse the resistance.  The 

location of the residue within the calmodulin binding region was not critical, as all three 

sites tested were able to restore function.  To directly map the ubiquitination site, nNOS-

ubiquitin conjugates from a large scale in vitro reaction mixture (180 mg total protein) 

containing his-tagged ubiquitin were isolated, proteolyzed with trypsin, and analyzed by 

CapLC-MS/MS for amino acid sequence using data dependent scanning.  Trypsin 

cleavage of an ubiquitinated peptide leaves a signature diglycine tag on the conjugated 

lysine residue that also results in a missed cleavage at the modification site.  Using these 

criteria, the MS/MS spectra were analyzed using Turbo Sequest to identify any possible 

ubiquitinated peptides from the calmodulin binding region of nNOS.  A potential 

candidate peptide was identified, mapping to amino acid residues 752-756, with the site 

of ubiquitin adduction at lysine residue 754.  This data supports the results found in the 

mutagenesis studies, which determined that nNOS proteasomal degradation can be 

regulated by ubiquitination of the enzyme in the calmodulin binding region.  Knowledge 

of the exact site of ubiquitination is an important first step in determining the process by 

which a protein becomes recognized and degraded by the ubiquitin-proteasome system. 
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Introduction 

 Neuronal NO-synthase (nNOS) is a highly regulated enzyme that is degraded by 

the ubiquitin-proteasome system (1).  It is known that certain dysfunctional forms of 

nNOS are selectively targeted for degradation (2, 3).  The ubiquitin-proteasome system is 

the major pathway for the degradation of many proteins.   In this pathway, a protein is 

selectively recognized and conjugated to the conserved 76-residue polypeptide ubiquitin 

through the sequential action of activating (E1), conjugating (E2), and ligating (E3) 

enzymes (4).  It is clear that the recognition of substrates for ubiquitination is a highly 

selective process that is initiated by the availability of an ubiquitinatable lysine residue 

(5) and the presence and accessibility of ubiquitination signals in the substrate that are 

recognized by E3 ligases (6).  It is also known that both mono- and polyubiquitination 

can occur, with monoubiquitination being linked to many functional outcomes (6).  While 

polyubiquitination of 4 or more ubiquitin monomers linked through lysine residue 48 on 

ubiquitin is the most commonly reported signal for proteasomal degradation, mono-

ubiquitination can also signal for proteasomal degradation (7).   

 While it was determined that certain dysfunctional forms of nNOS are selectively 

targeted for ubiquitination (2, 3) and that C-terminal Hsc70 Interacting Protein (CHIP) 

can serve as an E3 ligase for nNOS (20), both the ubiquitin binding site on nNOS and the 

length of the ubiquitin chain responsible for signaling the proteasomal degradation of the 

enzyme are not known.  Both poly- and mono-ubiquitination of nNOS have been 

detected, but the major ubiquitin adduct to nNOS detected in HEK293 cells and in vitro is 

the mono-ubiquitinated form (1).  In this study, we first sought to determine whether 

mono-ubiquitination could serve as a signal for the proteasomal degradation of nNOS.  
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To address this question, we used purified nNOS and methylated ubiquitin (Methyl-Ub) 

in an in vitro ubiquitination system containing rabbit reticulocyte lysate proteins (2).  

Methyl-Ub was chosen, since it is methylated at lysine residue 48 and is therefore unable 

to form the classic polyubiquitin chain.   We found that Methyl-Ub was able to conjugate 

to nNOS and facilitate its proteasomal degradation, suggesting that the 

monoubiquitinated form of nNOS could be the signal for nNOS proteasomal degradation. 

  We also wanted to determine which region on nNOS, specifically which lysine 

residue(s), was conjugated to ubiquitin to aid in understanding what areas must be 

accessible in dysfunctional nNOS protein that selectively target it for proteasomal 

degradation.  To address this question, we used purified heme-deficient monomeric 

nNOS (apo-nNOS), which is known to be selectively ubiquitinated and degraded in vitro 

(1).  We found that the binding of calmodulin, a necessary cofactor for nNOS activity, to 

apo-nNOS greatly reduced its ubiquitination in vitro.  Experiments using separate nNOS 

oxygenase and reductase domains, as well as nNOS mutants where the lysine residues in 

the calmodulin binding region were converted to arginines, supported the finding that the 

calmodulin binding region is the locus of ubiquitin conjugation to nNOS.  To directly 

map the ubiquitination site, purified ubiquitinated nNOS was trypsinized and analyzed by 

CapLC-MS/MS for amino acid sequence determination.  A candidate ubiquitinated 

peptide mapping to the calmodulin binding region was detected, with the site of 

ubiquitination being at lysine residue 754.  The direct mapping data are consistant with 

the mutagenesis data showing that the ubiquitin conjugate responsible for signaling for 

the proteasomal degradation of nNOS in vitro occurs in the calmodulin binding region.   
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Materials and Methods 

Materials 

Untreated rabbit reticulocyte lysate was from Green Hectares (Oregon, WI).  The 

affinity-purified rabbit IgG for Western blotting of the oxygenase domain of nNOS 

(raised against residues 251-270), Protein A-Sepharose, ubiquitin, ATP, creatine 

phosphokinase, EGTA, and MgCl2 were purchased from Sigma-Aldrich (St. Louis, MO).  

The affinity-purified rabbit polyclonal antibody raised against nNOS residues 37-56 used 

to immunoprecipitate the oxygenase domain was from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA).  The affinity-purified rabbit IgG raised against the C-terminus of 

nNOS (residues 1095-1289) used for Western blotting was from Transduction 

Laboratories (Lexington, KY).  The affinity-purified IgG used for Western blotting of 

ubiquitin was from DakoCytomation (Denmark).  125I-Labeled antibody against rabbit 

IgG was purchased from PerkinElmer Life and Analytical Sciences (Boston, MA).  

TPCK treated trypsin was from Promega (Madison, WI).  MG-132 was purchased from 

Biomol (Plymouth Meeting, PA).  The cDNA for rat neuronal NOS was kindly provided 

by Dr. Solomon Snyder (Johns Hopkins Medical School, Baltimore, MD).  The cDNA 

for His-HA-tagged ubiquitin was generously given by Dr. Yi Sun (University of 

Michigan).  Ubiquitin aldehyde and methylated ubiquitin were from Boston Biochem 

(Cambridge, MA).  125I-Ubiquitin was purchased from Amersham Pharmacia 

(Buckinghamshire, England).   Creatine phosphate was from Fluka (Switzerland).  

Nickel-nitriloacetic acid-agarose was from Qiagen, Inc. (Valencia, CA).  DE52 was 

purchased from Whatman (Clifton, NJ).   
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Methods 

Expression and purification of nNOS - nNOS was overexpressed in Sf9 insect 

cells in the absence of heme to produce the heme-deficient, monomeric apo-protein as 

previously described (9).  Cells were harvested and suspended in 1 volume of 10 mM 

Hepes, pH 7.5, containing 320 mM sucrose, 100 µM EDTA, 1 mM dithiothreitol, 10 

µg/ml trypsin inhibitor, 1.0 µM leupeptin, 2 µg/ml of aprotinin, and 6 mM 

phenylmethanesulphonyl fluoride, and the suspended cells were ruptured by Dounce 

homogenization.  Lysates from infected Sf9 cells (8 x 109) were centrifuged at 100,000 x 

g for 1 h.  The supernatant fraction was loaded onto a 2'5'-ADP Sepharose column (20 

ml) and the nNOS was affinity purified as described (10), except that 10 mM 2' AMP was 

used to elute the protein. The nNOS-containing fraction was concentrated with the use of 

a Centriplus YM-100 concentrator (Amicon, 100,000 MWCO) to 10 ml and loaded onto 

a Sephacryl S-300 HR gel filtration column (2.6 x 100 cm, Pharmacia Biotech) 

equilibrated with 50 mM Tris-HCl, pH 7.4, containing 100 mM NaCl, 10% glycerol, 0.1 

mM EDTA, and 1 mM dithiothreitol.  The proteins were eluted at a flow rate of 1.0 

ml/min and 1.0 ml-fractions were collected and analyzed for protein content.  The 

fractions containing nNOS were pooled and concentrated with the use of a Centriplus 

YM-100 concentrator.  The concentrated nNOS was stored at –80 oC.  

Expression and purification of nNOS domains and mutant nNOS proteins - 

pCWoxy-CaM containing the oxygenase domain (residues 1-756) was constructed as 

described (11) with a 6xHis-tag attached to the C-terminus.   pCWred containing the 

reductase domain (residues 746-1429) was constructed as described (11) with a 6xHis-tag 

attached to the N-terminus.  We mutated all 7 lysine residues present in the calmodulin 
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binding region of nNOS (residues 725, 732, 733, 739, 743, 751, and 754) to arginine 

residues using QuikChange Multi Site-Directed Mutagenesis Kits (Stratagene, La Jolla, 

CA).  The three 5’- phosphorylated primers used were 5’-CCCCCACGAGGCGGCGAG 

CTATCGGCTTTAGGAGATTGGCAGA-3’, 5’-GGCCGTCAGGTTCTCAGCCAGGC 

TAATGGGACAG-3’, and 5’-GCCATGGCCAGGAGGGTCAGGGCGACCATTCTCT 

AC-3’ (codons for arginine are underlined).  The template was pCWnNOS.  The plasmid 

with the desired mutation was confirmed by sequencing and digested with PflM1 to 

liberate the 1863 bp fragment, then subcloned into PflM1 sites of the wt-pCWnNOS 

vector.  The resultant construct was designated as pCW7R.  We also created mutants to 

restore individual native lysine residues 733, 739, and 754.  Three distinct mutants were 

constructed with the use of a QuikChange II XL Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA).  The template was pcDNA7R.  The plasmid with the desired 

mutation was confirmed by sequencing.  The plasmid was then digested with Sbf1 and 

Blp1 to liberate the 3271 bp fragment and subcloned into the wt-pCWnNOS vector.  The 

resultant mutants were designated 6R733K, 6R739K, and 6R754K. 

 The nNOS mutants (including a wild type as control) were bacterially expressed 

using the pCW vector and BL21 (DE3) competent cells (Stratagene), according to the 

manufacturer’s recommendations.  Cells from 1L-cultures were harvested 48 h after 

induction with IPTG, and ruptured by french press at 1500 PSI.  The lysates were 

processed and purified as above for the Sf9 cells, except that a PD-10 gel filtration 

column (GE Healthcare) was used instead of the Sephacryl S-300 HR gel filtration 

column.  The samples were concentrated with the use of a Centriplus YM-100 

concentrator and stored at –80 oC 
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 In vitro ubiquitination and degradation of nNOS by fraction II - Fraction II was 

prepared from rabbit reticulocyte lysate as previously described (12).  In studies where 

nNOS degradation was measured, purified nNOS (2 μg) was incubated at 37°C in a total 

volume of 120 μl of 50 mM Tris-HCl, pH 7.4, containing 2 mM dithiothreitol, 50 μM 

ubiquitin, an ATP-regenerating system (2 mM ATP, 10 mM creatine phosphate, 5 mM 

MgCl2, and 10 units/ml creatine phosphokinase), and 2 mg/ml of fraction II.  At 

indicated times, a 25 µl aliquot of each sample was taken and quenched with 25 µl of 

sample buffer containing 5% SDS, 20% glycerol, 100 mM dithiothreitol, and 0.02% 

bromophenol blue in 125 mM Tris-HCl, pH 6.8.  The samples were boiled for 3 min and 

an aliquot (25 μl) was submitted to 6% SDS-PAGE (10 x 8 cm).  Proteins were then 

transferred to nitrocellulose membranes (0.2 μm, BioRad) and probed with 0.1% anti-

nNOS IgG.  The immunoblots were then incubated a second time with 125I-conjugated 

goat anti-rabbit IgGs to visualize the immunoreactive bands.  The membranes were dried 

and exposed to a phosphor imaging screen for 4 hours, digitized using a Typhoon™ 

imaging system.  Individual nNOS bands were selected, baseline corrected, and 

quantified using ImageQuant™ software.  For studies where nNOS-ubiquitin conjugates 

were measured, nNOS was treated as above except that 38 µg of nNOS, 15 µM ubiquitin, 

and 0.4 mg/ml of fraction II were used.  To inhibit deubiquitination, 0.7 µM ubiquitin 

aldehyde was added.   The nitrocellulose membranes were autoclaved in distilled H2O for 

10 min and probed with 0.2% anti-ubiquitin polyclonal antibody.  In some studies, 

Methyl-Ub was substituted for ubiquitin. 
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 Limited trypsinolysis of nNOS and isolation of the resultant oxygenase and 

reductase domains – Purified nNOS protein (0.32 mg/ml) was incubated with 2 units/ml 

TPCK trypsin for 12 min at room temperature in a total volume of 200 µl of 50 mM Tris, 

pH 7.6, containing 1 mM DTT.  An aliquot (86 µl) of the reaction was added to the in 

vitro ubiquitination mixture described above.  After 60 min of incubation, an aliquot (60 

µl) was immunoadsorbed with 3 mg Protein-A Sepharose and 30 µl of anti-nNOS IgG 

specific for the oxygenase domain.  An additional aliquot (60 µl) was affinity purified 

with 3 mg ADP-Sepharose.  The samples were both incubated for 3 h at 4oC in a total 

volume of 340 µl HE lysis buffer containing 10 mM Hepes, pH 7.4, 0.32 M sucrose, 2.0 

mM EDTA, 10 μg/mL trypsin inhibitor, 10 μg/mL leupeptin, 2 μg/mL aprotinin, 5 mM 

N-ethylmaleimide, 10 mM Na3VO4, 1% NP40, 6 mM phenylmethylsulfonyl fluoride, and 

0.9 mg/ml BSA.  The samples were centrifuged for 10 min and the supernatant discarded.  

The pellets were washed three times with HE lysis buffer and then boiled in 60 µl SDS 

sample buffer.  The proteins were resolved on 6% SDS-polyacrylamide gels and 

transferred to nitrocellulose membranes for 2.5 h at 850 mA.  The membranes were dried 

and exposed to X-ray film to visualize the 125I-ubiquitin conjugates.  To visualize the 

reductase domain, the membranes were probed with 0.05% nNOS mAb antibody 

(Transduction Laboratories) followed by 0.01% goat anti-mouse IgG antibody conjugated 

to peroxidase (Boehringer Mannheim, Indianapolis, IN).  An ECL reagent (Amersham 

Life Science Inc., Arlington Heights, IL) and X-OMAT film (Kodak, Rochester, NY) 

were used to detect the peroxidase conjugate, as described by the manufacturer.  The 

blots were re-probed with 0.04% nNOS pAb (Sigma) as above to visualize the oxygenase 

domain. 
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 Expression and purification of his-tagged ubiquitin (His-Ub) - The full length 

human ubiquitin (pcDNA3.1-ub), kindly provided by Dr. Yi Sun, was modified by PCR 

with the forwarding primer containing an NdeI site (underlined) and a polyhistidine tag: 

5'-ATATACATATGAAGCTTATGAGACATCACCATCACCATCACCAGATCTTCG 

TG-3' and the reverse primer containing a BamHI site (underlined): 5'-TTAAGCTTGGT 

ACCGGTACCGAGCTCGGATCCTT-3'.  The resulting 300 bp PCR fragment was 

digested with NdeI and BamHI, ligated to similarly digested pET-11a, then transformed 

in E. coli BL21 (DE3) cells. The entire coding region of ubiquitin was confirmed by 

sequencing and the resulting construct was designated pHis-Ub.   

 His-Ub was bacterially expressed using the pET-11a vector and BL21 (DE3) 

competent cells (Stratagene), according to the manufacturer’s recommendations.  Cells 

from 1L-cultures were harvested 19 h after induction with IPTG, and ruptured by french 

press at 1500 PSI in lysis buffer containing 300 mM KCl, 20 mM Imidazole, 10% 

glycerol, 1 mM phenylmethanesulphonyl fluoride, and Complete Mini protease inhibitor 

cocktail (Roche) in 50 mM potassium phosphate pH 7.5.  The lysates were centrifuged at 

100,000 x g for 30 min, the cytosol removed and loaded on a Ni-NTA agarose (Qiagen) 

column.  The column was washed and the His-Ub eluted using the manufacturer’s 

recommended buffers (non-denaturing conditions).  The His-Ub was loaded onto a PD-10 

gel filtration column (GE Healthcare) equilibrated with 50 mM Tris, pH 7.5, 10 % 

glycerol, and 100 mM NaCl.  The His-Ub was stored at –80 oC. 

Purification of His-Ub-nNOS – The apo-nNOS was ubiquitinated as described 

above except His-Ub was used instead of native ubiquitin, the fraction II concentration 

was 4 mg/ml, ubiquitin aldehyde was omitted, and the total reaction volume was 40 ml.  .  
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The nNOS was purified from the ubiquitination reaction using an ADP-sepharose column 

as described above.  This ADP-Sepharose purified nNOS was immediately treated with 

N-ethylmalemide (10 mM) to inhibit de-ubiquitinating enzymes and inactivate the 

remaining dithiothreitol.  The nNOS conjugated to His-Ub (His-Ub-nNOS) was then 

purified from the sample by Ni-NTA agarose (Qiagen) according the manufacturer’s 

suggestions (denaturing conditions).  The sample was concentrated with the use of a 

Centriplus YM-100 concentrator and stored at –80 oC. 

    CapLC-MS/MS Analysis – Purified His-Ub-nNOS was digested with trypsin 

(1:100 w:w) at room temperature for 2 hours.  The digest was separated and analyzed 

using a Waters CapLC system (Waters Corp., Milford, MA) interfaced to an LTQ Linear 

Ion Trap (Thermo Finnigan).  The trypsinized His-Ub-nNOS (100 μg of protein) was 

injected onto a reverse phase CapLC column (C18 Vydac, 5 μm, 0.05 x 15 cm, 350 A) 

equilibrated with solvent A (0.05% trifluoroacetic acid, 0.05% formic acid) at a flow rate 

of 5 µL/min.  A linear gradient was run to 50% solvent B (0.05% trifluoroacetic acid, 

0.05% formic acid, in acetonitrile) over 95 min and then to 100% solvent B over the next 

5 min.  Absorbance at 220 nm was monitored using the CapLC UV detector, and the 

eluted peptides were detected, isolated and fragmented on the LTQ ion trap using data 

dependent scanning.  

 Turbo Sequest Peptide Mapping Search Conditions – All MS/MS spectra were 

searched against the human ubiquitin and rat nNOS sequences from the non-redundant 

protein database (nr.fasta) using TurboSequest software.  Variable modifications were 

allowed for the following mass shifts (in Daltons): ubiquitinated lysine (-GG, +114.1), 

ubiquitinated lysine with 1 missed trypsin cleavage on ubiquitin (-LRGG, +384.5), NEM 
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modified cysteine (+124.13), oxidized methionine (+16), phosporylated tyrosine 

(+79.98), and N-terminal acetylation (+42).  Mass shifts for ubiquitinated lysine were 

obtained from Peng, et al (13).  Sequest search criteria were as follows: Dta Generation – 

MW Range 0-10,000, Threshold 10,000.  Dta Search – Enzyme Trypsin, # of internal 

cleavage sites 6, Database ratnNOS.fasta and ub.fasta (derived from nr.fasta).  Tolerance 

& Limits for Dta Generation – Precursor Mass 1.4, Minimum Ion Count 1.  Tolerance & 

Limits for Dta Search – Peptide 2.00, Fragment Ions 0.70, Results Scored 1000.  Only 

peptides with and Xcorr value greater than 1.5, 2.0 and 2.5 for +1, +2 and +3 charge 

states, respectively, were reported. 

Statistical analysis – All values are reported as the mean ± standard error (S.E.).  

Dunnett's Multiple Comparison Test was used with one-way ANOVA data to compare 

values.  Statistical significance was considered to be achieved at a level of p < 0.05.  

PRISM statistical software (Graphpad, San Diego, CA) was used for analysis of the data 

sets. 

 

 Results 

 Mono-ubiquitination is a Sufficient Signal for the Proteasomal Degradation of 

nNOS –  To address if mono-ubiquitinated nNOS plays a role in signaling for 

proteasomal degradation, we conducted studies with methylated ubiquitin (Methyl-Ub), 

which cannot form polyubiquitin chains (23, 24).  For these studies, we used an in vitro 

reaction system, containing fraction II, which has been established to ubiquitinate and 

proteasomally degrade nNOS by an ATP-dependent process (2).  The nNOS was 

incubated in the reaction mixture with ubiquitin or Methyl-Ub and aliquots were taken 
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and Western blotted with ubiquitin antibody.  As shown in Fig. 4.1A, nNOS incubated 

for 60 min with ubiquitin (lane 10) shows a strong ubiquitin band detected at the bottom 

of the blot (160 kDa) corresponding to mono-ubiquitinated nNOS (nNOS-Ub), and a 

smear of higher molecular weight conjugates corresponding to polyubiquitinated nNOS.  

There is an increase in both ubiquitin species over time for the ubiquitin samples (lanes 1, 

4, 7 and 10), that is not seen in the control sample where no ubiqutin was added (lanes 3, 

6, 9 and 12).   As expected, when Methyl-Ub (lanes 2, 5, 8, and 11) was substituted for 

ubiquitin, there is an increase in the mono-ubiquitinated nNOS over time, but not in the 

polyubiquitin conjugates, confirming that Methyl-Ub can conjugate to nNOS, but cannot 

form polyubiquitin chains.  The intense ubiquitin band seen on the bottom of the blot was 

previously identified as mono-ubiquitinated nNOS (1, 8).  There is also some background 

mono-ubiquitinated nNOS detected (lanes 1-3), which is due to the presence of a small 

amount of ubiquitinated nNOS in our purified nNOS preparation.  The time-dependent 

accumulation of mono-ubiquitinated nNOS (nNOS-Ub) was quantified and plotted (Fig. 

4.1B).  There is a time-dependent increase in the mono-ubiquitinated nNOS in the 

presence of Methyl-Ub (closed squares) over that of the no ubiquitin control (closed 

triangles).  While there appear to be lower levels of mono-ubiquitinated nNOS in the 

Methyl-Ub (closed squares) as compared to the ubiquitin (closed circles) samples, there 

was no statistical difference between the levels. 

 In Fig. 4.1C, we incubated nNOS in fraction II in the presence of ubiquitin (Ub) 

or Methyl-Ub and Western blotted for nNOS to determine the proteasomal degradation of 

the protein, as previously established (2).  The band corresponding to nNOS was 

quantified, and the loss of the protein over time was plotted (Fig. 4.1D).  As shown in 
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Fig. 4.1D, there was a time-dependent loss of nNOS when ubiquitin was present (closed 

circles).  In the absence of added ubiquitin, there is a loss of nNOS for the first 40 min 

(solid triangles), which is likely attributed to the presence of trace ubiquitin in fraction II, 

as previously described (2).  In the presence of Methyl-Ub, there is a loss of nNOS 

comparable to that found with ubiquitin (cf. closed squares and closed circles).   We 

establish here, for the first time, that mono-ubiquitination of nNOS is a sufficient signal 

for the proteasomal degradation of the enzyme. 

 Ubiquitination of nNOS Domains – Next we chose to investigate what site(s) on 

nNOS is ubiquitinated.  Using limited trypsinolysis, which selectively cleaves at Lys 727 

(15), we generated the oxygenase and reductase domains of nNOS.    This trypsin-treated 

nNOS was then directly used for ubiquitination studies.  In Fig. 4.2A, we compared the 

ubiquitination of full length nNOS (lane 1) and trypsinized nNOS (lane 2) in fraction II 

utilizing 125I-ubiquitin.  As a control, an ubiquitination reaction mixture where nNOS was 

omitted (lane 3) was included.  After ubiquitination, the mixtures were 

immunoprecipitated with an antibody recognizing the oxygenase domain (IP) or affinity 

purified by ADP-Sepharose (ADP) which binds to the NADPH binding region in the 

reductase domain of nNOS.  Immunoprecipitation of the ubiquitination reaction mixture 

containing the trypsinized nNOS showed an immunodetectable nNOS band at 85 kDa 

(oxygenase) only when blotted with the antibody specific for the oxygenase domain of 

nNOS (left panel, IP, lane 2).  Conversely, the ADP-Sepharose affinity purification 

showed an immunodetectable nNOS band at 77 kDa (reductase) only when blotted with 

the reductase specific antibody (center panel, ADP, lane 2).  Both purifications were able 

to isolate the 160 kDa full length nNOS (nNOS) from the ubiquitination reaction (left and 
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center panels, lane 1).  Direct exposure of the blot to x-ray film detected an 125I-ubiquitin 

signal for the trypsin derived reductase fragment (Red 1-Ub; right panel, ADP, lane 2) 

and the full length nNOS controls (nNOS-Ub; right panel, lane 1).  The Red 1-Ub signal 

was ~8 kDa higher (84 kDa) than the immuodetectable nNOS band (reductase) found in 

the sample (compare right panel, ADP, lane 2 with center panel, ADP, lane 2), which is 

consistant with the addition of one ubiquitin monomer (8.5 kDa) to the protein.  The lack 

of immunodetectable nNOS signal for the ubiquitin band is attributed to the relative 

sensitivities of the assays.  It is also possible that the accessibility of the antibody 

recognition sequence may be hindered by the bound ubiquitin.  The 125I-ubiquitin signal 

seen at 160 kDa for full length nNOS (right panel, lane 1) is the same as the 

immunodetectable nNOS bands (left and center panels, lane 1), which is also consistant 

with the mono-ubiquitination of nNOS.   

 The oxygenase (Oxy-CaM; residues 1-756) and reductase (residues 746-1429) 

domains were generated directly by recombinant expression and purification, and used as 

substrates for ubiquitination by fraction II.  As shown in Fig.4.2B top panel, incubations 

with the purified Oxy-CaM show a time-dependent increase in the ubiquitin band at ~90 

kDa, corresponding to ubiquitinated Oxy-CaM (Oxy-CaM-Ub).  Studies with the purified 

reductase domain show a very faint ubiquitin band found at ~75 kDa corresponding to 

ubiquitinated reductase (Red 2-Ub).  The accumulation of Oxy-CaM-Ub is much greater 

than that seen for Red-2-Ub, and this difference is not due to variable protein levels, as 

shown by Amido Black staining of the membrane (bottom panel).   

 Fig.4.3 shows a schematic of the recombinant nNOS domains (Oxy-CaM and Red 

2), and the predicted nNOS domains resulting from limited trypsinolysis (Oxy 1 and Red 
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1).  The sites of recognition for the antibodies used to detect the oxygenase (Anti-Oxy) 

and reductase (Anti-Red) domains in Fig.4.2A are also shown.  It is interesting to note 

that the site of trypsin cleavage is located in the calmodulin binding site (residues 720-

756), a linker region between the two domains.  Bound calmodulin is required for proper 

electron transfer to the active site, and is a necessary co-factor for nNOS activity.  The 

purified Oxy-CaM domain (residues 1-756) contains amino acid residues 728-756 that 

are not found in the Oxy 1 domain (residues 1-727) generated from limited trypsinolysis.  

The presence of these amino acid residues appears to be sufficient for ubiquitination of 

the oxygenase domain.  Taken together with the fact that the recombinant Red 2 (residues 

746-1429) was not ubiquitinated and the Red 1 domain (residues 728-1429) generated 

from limited trypsinolysis was detected as the main ubiquitinated domain, the critical 

residues for this apparent switching of ubiquitination between domains seem to be in the 

calmodulin binding region. 

 Bound Calmodulin Hinders nNOS Ubiquitination – We sought to determine if the 

binding of calmodulin to nNOS could block the formation of nNOS-Ub conjugates in the 

ubiquitination reaction mixture.  The mono-ubiquitination of nNOS was measured with 

CaCl2 (200 µM) and calmodulin added to the in the reaction mixture.  As shown in 

Fig.4.4A upper panel, the mono-ubuiquitinated nNOS band (nNOS-Ub) decreases as the 

concentration of calmodulin increases (cf. lanes 1-4).  This effect is partially reversed in 

the presence of 10 mM EGTA (cf. lanes 4 and 5), which will sequester the calcium, a 

necessary factor for calmodulin binding to nNOS.  To analyze the differences, the bands 

corresponding to nNOS-Ub were quantified and graphed (Fig.4.4B).  The nNOS-Ub 

levels when 150 or 500 µg/ml calmodulin was added to the reaction were statistically 
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lower than found when no calmodulin was added.  The calmodulin protection of nNOS 

from ubiquitination at 500 µg/ml was partially reversed by the addition of EGTA, 

resulting in nNOS-Ub levels that were not statistically different than the no calmodulin 

added control.   

 Mutagenesis Studies on the Calmodulin Binding Region of nNOS, and 

Ubiquitination of the Mutant Proteins – The ability of calmodulin to block the 

ubiquitination of nNOS supported the idea that the site of ubiquitin attachment to nNOS 

is in the calmodulin binding region.  Since ubiquitin is covalently bound to a lysine 

residue on the target protein, we decided to construct a mutant nNOS (7R) that replaced 

the seven lysine residues found within the calmodulin binding region with arginine 

residues (Fig. 4.5).   Arginine was chosen because it will maintain the charge, and should 

not significantly alter the structure or folding of the enzyme.  All seven lysine residues 

were mutated because ubiquitination of a target protein can be very promiscuous, and the 

ubiquitin adduct could form with another available lysine residue in the same region if 

the primary site is mutated.  The mutant was tested and found to be as active as the wild 

type with activities of 323 and 371 nmol NO/min/mg protein, respectively.   

 In Fig.4.6A top panel, we compared the ubiquitination of 7R with wild type 

nNOS (WT) using the in vitro ubiquitination mixture containing fraction II.  As seen 

previously, we detect a time-dependent increase in the immunodetectable mono-

ubiquitinated nNOS band (nNOS-Ub) and the higher molecular weight polyubiquitin 

smear in the case of the wild type protein.  The time-dependent increase in ubiquitin 

conjugates is seen for the 7R mutant as well, but the signal for mono-ubiquitinated nNOS 

appears to be less intense than that found for the wild type.  The band corresponding to 
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mono-ubiquitinated nNOS was quantified and plotted to compare the levels of 

ubiquitination (Fig.4.6B).  The level of nNOS-Ub for the 7R mutant (closed squares) was 

statistically different than WT (closed circles), with an approximately six-fold difference 

in the mean values at 60 min.   To determine if we could recover some, or all, of the loss 

in signal by the introduction of a native lysine residue back into the 7R, we created three 

“6R” mutants 6R733K, 6R739K and 6R754K that have the indicated lysine residue 

restored.  These native lysine residues map to the N-terminal, middle, and C-terminal 

sections of the calmodulin binding region of nNOS, respectively (see Fig.4.5).  The 6R 

mutants were tested for activity, and were shown to be equivalent to wild type (data not 

shown).  The ubiquitination of the 6R733K, 6R739K and 6R754K mutants was tested 

using the in vitro ubiquitination mixture containing fraction II.  Fig.4.6A (lower panel) 

shows that we can detect a time-dependent increase in the immunodetectable mono-

ubiquitinated nNOS band (nNOS-Ub) and the higher molecular weight polyubiquitin 

smear for all the 6R mutants.  These levels appear to be at least at the level of WT, and 

the time-dependent accumulation of mono-ubiquitinated nNOS was quantified and 

plotted (Fig.4.6B).  The nNOS-Ub levels for 6R733K (closed triangles), 6R739K (closed 

diamonds), and 6R754K (open circles) were all higher than that seen for 7R (closed 

squares), and were not statistically different than WT (closed circles).  It appears that the 

restoration of a single lysine residue to 7R was able to restore the time-dependent 

ubiquitination back to the levels of wild type, despite their various locations within the 

calmodulin binding region. 

 Degradation of the 7R and 6R nNOS Mutants – While we detected much lower 

levels of ubiquitination in the 7R mutant as compared to wild type (Fig.4.6), 
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ubiquitination of a target protein can serve as a signal for many processes besides 

proteasomal degradation.  To determine if ubiquitination in the calmodulin binding 

region could serve as a signal for degradation, we measured the in vitro proteasomal 

degradation of the 7R mutant as compared with wild type (WT) in Fig.4.7A.  The 

immunodetectable nNOS signal for WT decreases over time, while the signal for the 7R 

sample remains stable.  The nNOS bands were quantified (Fig.4.7B).  The time-

dependent loss of nNOS protein was greater for WT (closed circles) as compared to 7R 

(closed squares), with the 7R only losing 3% of its initial protein level over 40 min, and 

only 10% over 80 min.  The in vitro proteasomal degradation was also measured for 

6R733K, 6R739K and 6R754K (Fig.4.7A).  The immunodetectable nNOS signal appears 

to decrease over time for all samples.  As shown in Fig.4.7B, the time-dependent loss of 

nNOS protein for 6R733K (closed triangles), 6R739K (closed diamonds), and 6R754K 

(open circles) was greater than that found for 7R (closed squares), and was not 

statistically different from WT (closed circles).  In that the degradation data parallel the 

ubiquitination data for the mutants tested, ubiquitination in the calmodulin binding region 

must be a signal for selective degradation by the proteasome.    

 Generation and Purification of the His-tagged-ubiquitin nNOS conjugate (His-

Ub-nNOS) – The mutation data show that lysine residues contained in the nNOS 

calmodulin binding region can serve as targets for ubiquitination that leads to 

proteasomal degradation.  While the 6R733K, 6R739K and 6R754K mutants were able to 

be ubiquitinated and degraded by the proteasome, it is not known which lysine residue is 

the primary site of ubiquitin attachment in the wild type protein.  To determine the exact 

site(s) of ubiquitination on wild type nNOS and to confirm that nNOS can indeed be 
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ubiquitinated in the calmodulin binding region, we decided to use a direct mapping 

technique that detects ubiquitinated peptides after trypsinolysis using MS/MS sequencing 

(13).  To identify an ubiquitinated nNOS peptide by this method, we needed to purify 

ubiquitinated nNOS.  Using his-tagged ubiquitin and purified nNOS (12 mg), we 

generated his-tagged-ubiquitin nNOS conjugate (His-Ub-nNOS) using the in vitro 

ubiquitination reaction mixture containing fraction II.  The reaction was scaled to 40 mL 

total volume, and the His-Ub-nNOS was enriched by ADP-Sepharose followed by Ni-

NTA agarose.  Samples were taken at each step of the enrichment process to determine 

the purity and stability of the His-Ub-nNOS, and Western blotted for ubiquitin and 

nNOS.  As shown in Fig.4.8, the initial ubiquitination reaction contains large amount of 

ubiquitin conjugates (wb:Ub, lane 1).  The sample also has a large amount of nNOS 

protein (wb:nNOS, lane 1). When this mixture is purified by ADP-Sepharose, most of the 

ubiquitin signal is found in the unbound fraction (lane 2) while most of the nNOS signal 

is bound (lane 3).  There is still a strong ubiquitin signal above 100 kDa present in the 

bound fraction (wb:Ub, lane 3).  The material bound to the ADP-sepharose was eluted 

and purified by Ni-NTA agarose.  The vast majority of nNOS is unbound (lane 4), 

whereas the ubiquitin signal is found only in the bound fraction (lane 5).  The small 

amount of nNOS seen in the Ni-NTA bound fraction (wb:nNOS, lane 5) has a 

corresponding ubiquitin band with very little background (wb:Ub, lane 5).   This final Ni-

NTA bound nNOS is highly enriched for nNOS-Ub (~100 µg), and is representative of 

approximately 1% of the total nNOS used.  This material (His-Ub-nNOS) was eluted and 

used as the substrate for the direct mapping studies. 
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 Peptide Mapping Using Trypsin and CapLC-MS/MS – The His-Ub-nNOS was 

trypsinized for 2 hr at 37oC and analyzed by CapLC-MS/MS to obtain a peptide map of 

the modified protein.  The separation produced well over 50 distinct peptides by UV 

absorbance at 220 nm (Fig. 4.9, A), and many more as seen by total ion current (TIC) on 

the LTQ Linear Ion Trap (Fig. 4.9, B).  The MS/MS data was analyzed using Turbo 

Sequest as described in “Methods.”  The peptide mapping data was searched for nNOS 

peptides containing the signature –GG (+114 Da) modification identifying an 

ubiquitinated lysine residue as described by Peng, et al (13).  The search identified one 

peptide in the calmodulin binding region with an acceptable XCorr value (2.1) that met 

these criteria with a parent m/z of 894.52 with a +2 charge state (Fig. 4.10A).  This ion 

had a mass (MH +) of 1789.04, and is consistent with the theoretical mass of the trypsin-

derived nNOS peptide with the following sequence: RVKATILYATETGK.  To confirm 

this sequence, MS/MS analysis was performed (Fig.410B).  The peptide was found to 

contain the following modifications: acetylation (]), -GG tag (*, +114 Da), and 

phosphorylation (~) as depicted (Fig. 4.10B, top panel).  The signature diglycine (-GG) 

indicating an ubiquitinated lysine resulted in a missed trypsin cleavage as predicted.  

Cleavage at the peptide backbone in the LTQ linear ion trap would result in the predicted 

fragment ion masses shown (b- and y-type ions).  Fig.4.10B bottom panel shows the 

fragmentation pattern (MS/MS spectrum) acquired that identified the peptide in 

Fig.4.10B, top panel.  The b- and y- ions for only the singly charged species are labeled 

for simplicity, and the b-ion fragmentation pattern is depicted at the top for reference.  

The ions below m/z 600 m/z were magnified 3x to help visualize the site of ubiquitin 

conjugation (b2 – b3).  This nNOS peptide is found in the calmodulin binding region 
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(residues 752-765), with the –GG tag assigned to lysine residue 754.  These data are 

consistant with the notion that wild type nNOS proteasomal degradation is regulated by 

mono-ubiquitination in the calmodulin binding region, as shown by the mutagenesis 

studies previously described. 

 

Discussion 

 nNOS is known to be regulated by the ubiquitin proteasome system (1).  Certain 

dysfunctional forms of the protein are selectively targeted for degradation (2-3).  It is 

thought that these dysfunctional, or labilized, forms of the protein are selectively targeted 

due to the recognition of some change in structure of nNOS that is recognized by cellular 

control factors that facilitate the recruitment of the ubiquitination machinery.  In the case 

of nNOS, it is has been shown that the monoubiquitinated form is the main species 

detected both in HEK293 cells and in vitro (1, 8).  To better understand the ubiquitination 

process, and what structural features of dysfunctional nNOS are available for recognition 

by cellular factors, we chose to determine if mono-ubiquitination can signal for the 

proteasomal degradation of nNOS, and to identify the site(s) of ubiquitination.  We found 

that monoubiquitinated nNOS is a substrate for proteasomal degradation, and that lysine 

residues in the calmodulin binding region can be ubiquitinated and signal for proteasomal 

degradation in vitro. 

 Ubiquitin that is methylated on lysine residue 48 is unable to form the classical 

polyubiquitin chain.  When used in the in vitro ubiquitination system derived from rabbit 

reticulocyte lysate, this methylated ubiquitin was able to conjugate to nNOS.  As 

expected, the ubiquitination patterns were different than seen with native ubiquitin, with a 
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distinct ubiquitin band at the same gel mobility of nNOS (160 kDa) detected in both the 

methylated ubiquitin and ubiquitin containing reactions but higher molecular weight 

polyubiquitin conjugates detected only in the ubiquitin containing sample.  This data 

confirms the previously published work labeling this ubiquitin band a mono-ubiquitinated 

nNOS conjugate (1, 8).  Furthermore, methylated ubiquitination was sufficient to target 

nNOS for degradation by the proteasome in the in vitro degradation reaction mixture.  

Taken together, these data show that the monoubiquitination of nNOS can indeed signal 

for proteasomal degradation.  Monoubiquitination is known to target membrane proteins 

for lysosomal degradation, and monoubiquitination is also involved in transcriptional 

regulation (16).  While monoubiquitination is not the standard form degraded by the 

proteasome (17), recent work on monoubiquitination of Pax3 (7) shows that it is possible 

for monoubiquitination to localize a protein to the proteasome, and to be sufficient for 

proteasomal degradation (18, 19). 

 In the case of nNOS, it is known that the stability of the dimer plays a role in the 

ubiquitination and degradation of the enzyme.  In particular, destabilization of the 

enzyme has been shown to enhance the ubiquitination of nNOS in vitro (2) and in cells 

(8), whereas stabilization using reversible inhibitors protects the protein from 

proteasomal degradation (2).  The stability of the dimer plays an important role, but the 

specific signal or structural recognition site for degradation is not known.  It has been 

suggested that destabilization of the dimeric form of nNOS could lead to the exposure of 

hydrophobic residues normally hidden in the active form of the protein (20).  These 

hydrophobic residues could serve as a “degradation signal” that is recognized by the 

ubiquitin-proteasome system when they are exposed, consistent with that found for the 
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heterodimerization of the MATa1 and Matα1 transcription factors in yeast (21).  An E3 

ubiquitin ligase CHIP (C-terminus of Hsc70 interacting protein) has also been shown to 

coimmunoprecipitate with nNOS and to facilitate its ubiquitination (20).  However, the 

exact ubiquitin binding site on nNOS was not known.  We chose to directly map the 

ubiquitination site on nNOS to provide information on what region of nNOS has to be 

accessible to the cellular factors recognizing dysfunctional nNOS for degradation.  The 

mutagenesis data showing decreased ubiquitination and degradation of the 7R mutant 

strongly suggests that the calmodulin binding region is a site that, when ubiquitinated, 

can lead to the degradation of nNOS.  This is even more apparent given the fact that the 

restoration of just one of the lysines in this region (6R733K, 6R739K or 6R754K) can 

fully restore ubiquitination and degradation back to the levels seen with native nNOS.  To 

confirm that nNOS can form an ubiquitinated conjugate in the calmodulin binding region, 

we conducted peptide mapping studies using purified nNOS-ubiquitin conjugates that 

were proteolyzed by trypsinized and analyzed by CapLC-MS/MS.  The mapping studies 

identified a candidate peptide located in the calmodulin binding region (residues 752- 

765) with the ubiquitin modification located on lysine residue 754, supporting the finding 

that mono-ubiquitination in the calmodulin binding site can indeed lead to the 

proteasomal degradation of nNOS. 

 Given the fact that NO is a very short lived molecule that cannot be stored or 

released from vesicles, its steady state levels are due soley to the levels of active NOS.  

Therefore, the molecular mechanism of how dysfunctional nNOS protein is selectively 

recognized for degradation is a basic cellular process that is directly involved in 

controlling the steady state levels of NO produced.  These studies provide a first glimpse 
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into the complicated signaling process involved in cellular protein regulation.  Due to the 

fact that the 7R mutant is not rapidly degraded, it can be used in future studies as a 

powerful tool to investigate the cellular factors that recognize, and form complexes with, 

dysfunctional nNOS.  These studies may not otherwise be possible since dysfunctional 

native nNOS is rapidly degraded by the proteasome.  
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Fig. 4.1. Effect of Methyl-Ub on the ubiquitination and degradation of nNOS by fraction II.  The 
ubiquitination and degradation of nNOS catalyzed by fraction II in the presence of ubiquitin or Methyl-Ub 
was examined, as described in “Methods.”  A, nNOS-ubiquitin conjugates (nNOS-Ub) were detected by 
Western blot.  nNOS was incubated in fraction II without added ubiquitin (lanes 3, 6, 9 and 12), with 
ubiquitin (lanes 1, 4, 7 and 10), or with Methyl-Ub (lanes 2, 5, 8 and 11).  B, the nNOS-Ub band shown in 
A was quantified by the use of phosphor imaging, as described in “Methods.”  Closed circles, ubiquitin; 
closed squares, methylated ubiquitin; closed triangles, no ubiquitin added.  C, nNOS protein was detected 
by Western blot.  nNOS was incubated in fraction II with ubiquitin (Ub) or Methyl-Ub for the times 
indicated.  D, the nNOS band shown in C was quantified by the use of phosphor imaging, as described in 
“Methods.”  Closed circles, ubiquitin; closed squares, Methyl-Ub; closed triangles, no ubiquitin added.  
The values presented on the graphs are the means ± S.E. (n = 3).  * denotes significantly (p < 0.05) lower 
nNOS-Ub conjugates relative to fraction II with ubiquitin.  # denotes significantly (p < 0.05) lower nNOS 
levels relative to no ubiquitin added. 
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Fig. 4.2. Ubiquitination of the oxygenase and reductase domains of nNOS by fraction II.  A, 
ubiquitination of the oxygenase and reductase domains, which were generated by limited typsinolysis of 
nNOS.  Lane 1, full length nNOS; lane 2, trypsin-treated nNOS; lane 3, control where nNOS was omitted.  
The nNOS was treated with trypsin and then placed in the ubiquitination reaction mixture as described in 
“Methods.”  After ubiquitination, nNOS was immunoprecipitated with an antibody recognizing the 
oxygenase domain (IP) or was adsorbed to ADP sepharose (ADP).  Samples were analyzed by Western 
Blot, using antibody specific for the oxygenase domain (left panel), the reductase domain (center panel), or 
by exposing the blot directly to x-ray film to visualize the 125I-labeled ubiquitin (right panel).  B, 
ubiquitination of the recombinant oxygenase (Oxy-CaM, amino acid residues 1-756) and reductase (amino 
acid residues 746-1429) domains of nNOS by fraction II.  Upper panel, ubiquitin adducts to Oxy-CaM 
(Oxy-CaM-Ub) and reductase (Red 2-Ub) were detected by Western blot.  Lower panel, the protein levels 
of the oxygenase and reductase domains were determined by Amido Black staining.    
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Fig. 4.3. Schematic map of the nNOS domains used in the ubiquitination studies.  The resultant 
domains from limited trypsin cleavage of nNOS (Oxy and Red 1) and the recombinant nNOS domains 
(Oxy-CaM and Red 2) are shown.  
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Fig. 4.4. Calmodulin hinders ubiquitination of nNOS by fraction II.  The ubiquitination of nNOS 
catalyzed by fraction II was examined as described in “Methods,” except that 200µM calcium chloride and 
calmodulin were added.  EGTA (10mM) was added where indicated.  A, Upper panel, nNOS-ubiquitin 
conjugates (nNOS-Ub) were detected by Western blot.  Lower panel, the nNOS protein (nNOS) levels were 
determined by Amido Black staining.  B, the relative amount of nNOS-Ub detected in A was quantified by 
phosphor imaging, as described in “Methods.”  The quantified nNOS-Ub bands were reported as a 
percentage of the sum of the counts for all the nNOS-Ub bands in the blot (% total counts).  The values are 
the mean ± S.E. (n = 3).  * denotes significantly (p < 0.05) lower nNOS-Ub conjugates relative to the 0 
µg/ml CaM condition. 
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Fig. 4.5. Creation of the 7R nNOS mutant.  The 7 lysine residues found within the calmodulin binding 
region were mutated to arginines. 
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Fig. 4.6.  Ubiquitination of the 7R and 6R nNOS mutants.  The ubiquitination of the 7R and 6R mutants 
catalyzed by fraction II was examined, as described in “Methods.”  A, nNOS-ubiquitin conjugates (nNOS-
Ub) were detected by Western blot.  B, the nNOS-Ub band shown in A was quantified by the use of 
phosphor imaging, as described in “Methods.”  Closed circles, wild type; closed squares, 7R; closed 
triangles, 6R733K; closed diamonds, 6R739K; open circles, 6R754K.   The values are the mean ± S.E. (n = 
3).  * denotes significantly (p < 0.05) lower nNOS-Ub conjugates relative to the wild type control. 
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Fig. 4.7.  Degradation of the 7R and 6R nNOS mutants.  The degradation of nNOS catalyzed by fraction 
II was examined, as described in “Methods.”  A, nNOS protein was detected by Western blot.  B, the nNOS 
band shown in A was quantified by the use of phosphor imaging, as described in “Methods.”  Closed 
circles, wild type; closed squares, 7R; closed triangles, 6R733K; closed diamonds, 6R739K; open circles, 
6R754K.  The values are the mean ± S.E. (n = 3).  * denotes significantly (p < 0.05) higher nNOS protein 
relative to the wild type control. 
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Fig. 4.8.  Purification of His-Ub-nNOS.   The large scale ubiquitination of nNOS catalyzed by fraction II 
in the presence of his-tagged ubiquitin was performed as described in “Methods.”  The nNOS in the 
ubiquitination reaction was purified by ADP-Sepharose.  The his-tagged ubiquitin-nNOS conjugates (His-
Ub-nNOS) were isolated from this ADP-Sepharose bound nNOS using Ni-NTA agarose.  Aliquots were 
taken at each step and were analyzed by Western blot for ubiquitin (Left pane1, wb:Ub) and  nNOS protein 
(right panel, wb:nNOS)  Samples are:  Ubiquitination reaction (lane 1), ADP-Sepharose unbound fraction 
(lane 2), ADP-Sepharose Eluant (lane 3), Ni-NTA agarose unbound fraction (lane 4),  and Ni-NTA Eluant 
(lane 5).  Samples were loaded in equal amounts as determined by percentage total volume. 
 
 
 
 
 
 
 

118 



 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.9.  HPLC and CapLC-MS/MS profiles of His-Ub-nNOS treated with trypsin.   His-Ub-nNOS 
was trypsinized and analyzed by reverse phase CapLC-MS/MS as described in “Methods.”  A, HPLC 
profile (reverse phase, Abs220) of trypsinized His-Ub-nNOS.  B, total ion current (TIC) profile of the HPLC 
separated trypsinized His-Ub-nNOS digest on the Finnigan LTQ linear ion trap.  
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Fig. 4.10.  Ubiquitinated nNOS peptide identified by TurboSequest analysis of CapLC-MS/MS 
spectra.  All MS/MS spectra obtained from the data dependent CapLC-MS/MS analysis of trypsinized His-
Ub-nNOS were searched against the rat nNOS sequence obtained from the nr.fasta database as described in 
“Methods.”  A peptide from the calmodulin region containing an ubiquitinated lysine (-GG) was identified 
(residue 754) by TurboSequest with an XCorr value of 2.1.  A, full scan event (TIC) that identified the 
potential ubiquitinated peptide (m/z 894.5).  B, top panel, sequence of the trypsin cleaved His-Ub-nNOS 
peptide identified (residues 752-765).  Cleavage at the peptide backbone would result in the predicted 
fragment ion masses shown (b- and y-type ions) with the intact diglycine (-GG) modification.  
Phosporylation (~) and N-terminal acetylation (]) were also seen.  B, bottom panel, MS/MS fragmentation 
pattern of m/z 894.5 detected in A,with the signal below m/z 600 amplified 3x.  Only singly charged ions 
are labeled for simplicity.  The individual b- and y- ions are labeled, and the site of ubiquitination is 
highlighted in a larger font (b2 - b3) The predicted b-ion fragmentation pattern is shown at the top for 
reference. 
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Chapter V 

Conclusions 
 
 
 The initial findings of Furchgott and Zawadzki (1) led to an explosion in research 

on the many critical physiological processes that are regulated by the highly diffusible 

radical, NO.  Since NO plays an important role in a wide variety of physiological 

processes, any changes in the amount of NO produced by NOS can result in pathology.  

These changes include the overproduction, as well as the lack of NO.  Since the molecule 

is so short lived, steady state levels of NO are due entirely to the synthesis of the 

molecule by NOS.  Thus, regulation of the protein level of NOS is a critical determinant 

of signaling by NO.  Given the wide range, and importance of NO function, the ability to 

control NO levels in specific regions through the manipulation of the individual NOS 

isoforms could be a powerful therapeutic tool.  Understanding how cells regulate NOS 

protein levels would be very helpful in designing strategies to inhibit or stimulate NO 

production.  This thesis focused on understanding the regulation of the nNOS isoform 

with respect to degradation of the enzyme. 

 The initial studies that provided the foundation for this thesis project showed that 

nNOS was ubiquitinated and proteasomally degraded (2, 3).  It was also shown that some 

metabolism-based inhibitors of nNOS enhance the proteasomal degradation of the 

enzyme, suggesting a selective labilization of nNOS for recognition by the ubiquitin-

proteasome system (2, 4).  Some reversible inhibitors can actually stabilize the protein, 

showing that the labilization is not merely due to the loss of nNOS function (2, 4).  How
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proteins become recognized and degraded by the ubiquitin proteasome system is a 

fundamental question in understanding cellular quality control mechanisms.  Certain 

modifications or structural features must occur on damaged and altered proteins to 

differentiate them from their needed functional counterparts.  These differences must be 

recognized by some cellular factors that can decide the fate of the modified protein.  In 

the case of some liver cytochrome P450 enzymes, cross-linking of the heme to the 

protein is a signal for ubiquitination and proteasomal degradation (11-13).  Consistent 

with this, the heme-deficient form of nNOS (apo-nNOS) is selectively ubiquitinated and 

degraded with respect to the heme-containing, dimeric, holo-nNOS (3).  The initial 

conclusion may be that the loss or damage of heme is the critical event that is recognized, 

but subsequent work showed that destabilization of the dimeric structure of nNOS, not 

heme loss per se, was sufficient for selective ubiquitination and proteasomal degradation 

in vitro (6).   

 To better understand the molecular trigger for nNOS ubiquitination and 

proteasomal degradation, we examined how guanabenz, a clinically used 

antihypertensive agent and known suicide inactivator of nNOS, labilizes nNOS for 

enhanced ubiquitination and proteasomal degradation.  In Chapter II of this thesis, we 

discovered that guanabenz causes a destabilization of the dimeric structure of nNOS.  

This destabilization was due to the guanabenz-mediated oxidation of tetrahydrobiopterin 

(BH4) by nNOS-derived superoxide.  BH4 binds near the heme active site of nNOS, and 

is known to stabilize the active, dimeric form of the enzyme.  BH4 was able to protect 

nNOS from the guanabenz-mediated inhibition in vitro.  Similarly, treatment of rats with 

BH4 completely protected from the guanabenz-mediated loss of NOS protein and activity. 
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 BH4 is an important factor in a variety of pathological conditions involving NOS 

enzymes, from impaired vascular function (7) to inhibited immune response (8).  The 

specific effects of BH4 depletion on nNOS have not been well characterized, although 

both an increased vulnerability to hypoxia and nNOS dysfunction in neurons has been 

observed (9).  The work done in Chapter III investigated whether the loss of BH4 was 

sufficient to elicit the enhanced turnover of nNOS.  We inhibited the enzyme catalyzing 

the rate limiting step of BH4 synthesis, GTP cyclohydrolase I, with 2, 4-diamino-6-

hydroxypyrimidine in HEK293 cells, and found that a 75% drop in BH4 levels resulted in 

a 2-fold increase in nNOS-ubiquitin conjugates.  Consistent with this finding, BH4 was 

able to protect nNOS from ubiquitination and degradation in an in vitro degradation 

mixture containing rabbit reticulocyte lysate proteins.  Our data show that BH4 deficiency 

can cause nNOS dysfunction and increase its ubiquitination and proteasomal degradation.  

The lower levels of nNOS would cause a depletion of NO in the body, explaining the 

pathological conditions previously described.  These results also show that a mechanism 

that may replenish or enhance cellular pools of BH4 could be a viable therapeutic target.  

Furthermore, it does appear that perturbations of the heme active site resulting in the 

destabilization of the active, dimeric form of the enzyme are somehow recognized by 

cellular factors that selectively target nNOS for ubiquitination and degradation.  This 

hypothesis is further supported by the finding that stabilization of the nNOS dimer by the 

binding of reversible inhibitors to the heme active site protects the protein from 

proteasomal degradation (6). 

In Chapter IV of this thesis we provided the first identification of a site of 

interaction with the cellular factors that recognize labilized nNOS for selective 
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ubiquitination and degradation.  Specifically, we determined the site of ubiquitination, 

which directly identifies the region on nNOS that an E3 ubiquitin ligase interacts with to 

conjugate ubiquitin to a target lysine residue.  We discovered that nNOS ubiquitination 

could occur in the calmodulin binding region (residues 720-756), as described below.  

Direct blocking of the region by the binding of calmodulin greatly reduced the 

ubiquitination of nNOS.  The mutation of the seven lysines in the calmodulin binding 

region of the 7R nNOS mutant (residues 725, 732, 733, 739, 743, 751 and 754) to 

arginines, which cannot conjugate to ubiquitin, greatly reduced the level of ubiquitin 

conjugates formed, and stabilized the protein from proteasomal degradation in vitro.  The 

restoration of just one of the lysines in the region, whether in the C-terminal end (residue 

733), middle (residue 739) or N-terminal end (residue 754), was able to fully restore the 

ability of the protein to be ubiquitinated and degraded back to the levels seen for the wild 

type protein.  The ability of the wild type protein to be ubiquitinated in the calmodulin 

region was also supported using peptide mapping by MS/MS analysis of trypsinized 

ubiquitinated nNOS.  This method was previously shown to identify multiple 

ubiquitination sites of proteins from S. cerevisiae using a signature diglycine remnant of 

ubiquitin attached to a lysine residue that is resistant to trypsin proteolysis (10).  Lysine 

754 in the calmodulin binding region was identified as a potential site of ubiquitin 

conjugation using this technique, supporting the notion that the findings from our 

mutagenesis studies are applicable to the wild type protein.  The site of ubiquitination 

would have to be a region that is easily accessible for interactions with an E3 ligase, since 

not only are there protein-protein interactions involved, but the E3 ligase must be able to 

conjugate ubiquitin to nNOS, forming a covalent linkage between a target lysine and 
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ubiquitin.   The calmodulin binding region is located between the oxygenase and 

reductase domains of nNOS.   It is established that limited trypsinolysis results in a 

selective cleavage at lysine residue 727, located in the calmodulin binding region (14).  

The ability of the calmodulin binding domain to be selectively cleaved by trypsin, 

combined with the fact that it is a linker region between two bulky domains that must 

interact for nNOS to be active, is consistent with the notion that the calmodulin binding 

region is an easily accessible and flexible region of nNOS that can interact with cellular 

factors, such as an E3 ubiquitin ligase.   

Additionally, we found that mono-ubiquitination can serve as a signal for the 

proteasomal degradation of nNOS in vitro, consistent with the finding that the main 

ubiquitin conjugate of nNOS detected from cells and of nNOS ubiquitinated in vitro 

appears to be the mono-ubiquitinated form (3).  Combining the information currently 

available with the data presented in this thesis, it is feasible that perturbations in the heme 

active site of nNOS destabilize the protein enough that hydrophobic regions that were 

hidden in the active dimeric structure are now exposed.  These hydrophobic regions can 

be recognized by cellular factors, such as Hsp70, that can recruit an ubiquitin E3 ligase.  

The ligase can then bind to the flexible and easily accessible calmodulin binding region, 

transferring ubiquitin to the region.  This mono-ubiquitinated nNOS can then be 

proteasomally degraded, destroying the dysfunctional nNOS enzyme. 

These studies provide some insight on how nNOS becomes selectively targeted 

for ubiquitination, and what regions of the enzyme must be accessible for recognition by 

cellular quality control machinery.  The approaches described here can be applied to 

continue the elucidation of the mechanisms of cellular triage decisions for nNOS and 
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other tightly regulated proteins.  In particular, the 7R mutant could serve as a powerful 

tool for the continued identification of the components of the cellular quality control and 

ubiquitination systems that recognize dysfunctional nNOS to facilitate its degradation by 

forming more stable protein complexes that are not rapidly degraded.  Many factors such 

as drug treatment, xenobiotics or cellular conditions can produce dysfunctional proteins.  

Understanding the process by which these dysfunctional proteins become targeted for 

ubiquitination will aid in predicting potential drug toxicities and in the development of 

specific inhibitors.  
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	Materials
	Cell culture and preparation of the cytosolic fraction - Human embryonic kidney 293 cells (HEK293) stably transfected with rat nNOS by Bredt et al. (9) were obtained from Dr. Bettie Sue Masters (University of Texas Health Science Center, San Antonio, TX).  HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies, Inc.) supplemented with 10% fetal bovine serum (Hyclone®), 20 mM Hepes, pH 7.4, and G418 (0.5 mg/mL, Geneticin®, Life Technologies, Inc.) as described previously (10).  Prior to each experiment, the cells were cultured in DMEM containing 0.1 mM l-arginine (low arginine DMEM) for at least 12 hours.  HEK cells were treated with 5.0 mM 2,4-diamino-6-hydroxypyrimidine (DP) and 100 (M sepiapterin (SP) similar to that previously used for other cells (2, 11).  There was greater than 85% cell viability, as determined by trypan blue, for all conditions used in our studies.  Cell viability was unaffected by DP or SP treatment.  Sepiapterin was added in DMSO and the total concentration of DMSO did not exceed 0.2% in the medium.  DMSO alone did not have any effects on the amount of monomeric or dimeric nNOS.  HEK cells were harvested in their treatment medium, diluted 1:1 with ice-cold phosphate-buffered saline.  The cells were then pelleted, washed 3-times with 5 mL of ice-cold phosphate-buffered saline, and pelleted again.  The cell pellet was homogenized on ice with a Tenbroeck ground glass homogenizer in three-volumes of lysis buffer containing 50 mM Tris-HCl, pH 7.4, 1.0 mM EDTA, 1.0 mM DTT, 10 (g/mL trypsin inhibitor, 10 (g/mL leupeptin, 2 (g/mL aprotinin, and 5mM phenylmethylsulfonyl fluoride.  Homogenates were centrifuged for 20 min at 16,000 x g and the supernatant was used for assays.  For HPLC studies, the supernatant was removed and centrifuged for an additional 15 min at 100,000 x g to obtain a cytosolic fraction.  For ubiquitin studies, the cell pellet was homogenized in HE lysis buffer containing 10 mM Hepes, pH 7.4, 0.32 M sucrose, 2.0 mM EDTA, 10 (g/mL trypsin inhibitor, 10 (g/mL leupeptin, 2 (g/mL aprotinin, 5 mM N-ethylmaleimide (NEM), 10 mM Na3VO4, 1% NP40, and 6 mM phenylmethylsulfonyl fluoride.  Homogenates were centrifuged for 20 min at 16,000 x g, the supernatant was used for assays.

