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Preface

I am a tool builder and optimizer, and at times a decent theorist, 

if I can muster the attention. I enjoy understanding a problem, and 

determining efficient solutions. I honestly believe that most scientific 

work is a series of failures that results in something worth writing 

about. My favorite quote from a peer, David J States, describes 

complex projects, “Fail early and often, or late and spectacular.” This 

quote reminds me that most problems can be solved by repeated small 

failures, and I like to think that I'm pretty good at that. I hope to keep 

avoiding the spectacular failures throughout life. So far so good. 

Proteomics poses many complex problems. The field itself relies greatly 

on Bioinformatics, which itself is still quite a novel term to most and 

certainly a young field. An appropriate one-line summary is the 

following. I understand how to and can collect my own data but 

primarily my job is to develop algorithms and use statistics to 

determine what can be learned from huge amounts of proteomics data. 

Certainly a few great software tools exist for proteomics and almost 

every other year a significant advancement occurs in the 

instrumentation, which dramatically changes the amount, quality, and 

type of data generated. Early on in my career I realized this critical 

point. Proteomics, science in general too, is an appreciation of how 

much we don't yet know. The best that can be done is to narrow the 

scope to a tangible problem and to move it forward. Repeat the 

process a few times and you have a thesis.
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The specific proteomics problem I elected to work on is that of 

inferring peptide and protein sequences from mass spectrometry data. 

My efforts are described in considerable detail throughout this 

manuscript. I feel it is important to note that I have also spent a lot of 

effort and time enabling others to repeat what I've done and apply my 

algorithms and software tools to their proteomics problems. Never did I 

entertain the thought of my work completely solving all the problems 

of proteomics. Rather, I hoped to make several significant 

advancements, and greatly accelerate similar research. I feel I have 

been successful in my efforts, and in particular I have high confidence 

in many components of my work, particularly Tranche and Bonanza. 

These latter projects are now being used by a large number of 

proteomics researchers. In particular, I am quite pleased that all of my 

work is available as both free and open-source, largely thanks to 

shared philosophies with Phil Andrews and public accessibility efforts 

by the NCI and NCRR.
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Chapter 1

Introduction

Mass spectrometry is formally defined as an analytical technique 

that measures of the mass to charge ratio of ions. Typically a collection 

of ions are analyzed simultaneously and the mass spectrometer 

generates a mass spectrum (MS) that can be used to interpret the 

mass to charge ratio of ion species present in detectable quantities. 

Modern mass spectrometers are largely based off of designs by A.J. 

Dempster and F.W. Aston, developed in 1918 and 1919 respectively. 

Aston later received the Nobel Prize in Chemistry for his work in mass 

spectrometry in 1922. However, much more recent developments in 

mass spectrometry have made the technique viable for analyzing ions 

that were previous difficult to desorb or ionize. In 1987 both 

electrospray ionization (ESI)[1] and soft laser desorption (SLD)[2], 

developed by John B. Fenn et al. and Koichi Tanaka et al. respectively, 

and matrix assisted laser desorption/ionization (MALDI)[3], developed 

by Franz Hillenkamp et and Michael Karas, were developed. In 2002 

John B. Fenn and Koichi Tanaka were awarded the Nobel Prize in 

Chemistry for developments in mass spectrometry[4], albeit with a 

lack of award to Michael Karas and Franz Hillenkamp. Both ESI and 

MALDI are now in widespread use and allow for the analysis of peptides 

and proteins and their complexes via mass spectrometry. While mass 

spectrometry-based protein analysis is not the only tool used in 
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 proteomics, without the ESI and MALDI ionization method the work 

presented in this thesis would not be possible.

The Nobel Prize awarded in 2002 to Fenn and Tanka reflects that 

their work enabled a key part of proteomics, the ionization of intact 

peptides and proteins without the use of chemical modifications to 

enhance volatility. Once successfully ionized, the masses of these 

molecules could accurately be measured, which enabled a wealth of 

new knowledge to be collected on biological samples. Further 

developments in mass spectrometers and software would enable 

complex protein samples, such as tissue or serum, to be analyzed in 

high-throughput experiments and for one of the first times it is possible 

to attempt to survey the state of many, and potentially all, proteins in 

a living organism. The full potential of this development has yet to be 

realized, but certainly many notable experiments have been 

performed. One of the most influential strategies of protein analysis via 

mass spectrometry was describe by Eng et al. [5]. Eng describes the 

process of a shotgun proteomics experiment a statistical correlation of 

peptide identifications to mass spectrometry data and subsequent 

inference of protein identifications. In short, many proteins are too 

large to be ionized well for mass spectrometry and many mixtures are 

too complex to be analyzed alone. Shotgun proteomics relies on 

converting a complex mixture of protein into a set of smaller peptides 

that are applicable for mass spectrometry, those peptides are then 

automatically separated based on intrinsic properties, and finally mass 

spectrometry is used to analyze the entire sample. Post data collection, 

the resulting mass spectra are compared against a library of known 

protein sequences. A statistical analysis is then used to infer the 

original set of proteins analyzed. Shotgun proteomics is often done 

with a similar set of conditions for creating peptides, separating, 
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analyzing, and finally inferring protein identifications; however, each of 

the particular components can be altered and various forms of such 

alteration comprise a large portion of current proteomics literature [6, 

7, 8]. 

Most all of the proteomics work described in this manuscript is 

predicated on developments and refinements of the initial shotgun 

proteomics strategy. Good reviews exist [9] including comprehensive 

terminology standards [10], but it is relevant to review this information 

in order to frame the rest of the manuscript coherently. Figure: 1-1 

provides a conceptual overview of shotgun proteomics and also 

includes a brief cartoon that illustrates the protein chemistry of 

interest. Peptide and protein chemistry itself is a complete discipline; 

however, for the purposes of this manuscript, it largely suffices to 

present proteins as nothing more than a long string of English alphabet 

characters. In this context, Peptides are simply shorter strings of the 

same characters. The sequence (not active structure) of proteins can 

be reasonably well represented by such strings because each protein is 

primarily comprised of combinations of the standard 20 amino acids. 

Modifications of these 20 amino acids do occur in proteins but 

discussion of relevant ones will largely be left undiscussed until 

chapter 6. Figure 1-1 continues the proteins as strings analogy to 

describe mass spectrometry based proteomics.

Figure 1-1b illustrates the effect of proteolytic digestion of a 

protein, or splitting the string in context of the textual analogy 

mentioned above. Different mass spectrometers are capable of 

measuring a broad range of mass to charge ratios at various 

sensitives; however, generally, mass spectrometers target ions with a 

m/z between the range of 200-3,000 Da when applied to shotgun 
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proteomics. The majority of data analyzed in this manuscript is 

generated by a mass spectrometer optimized to analyze m/z of 

900-2,500 Da. Phrased differently, strings of approximately 6 to 25 

characters. Known protein sequences range anywhere from a few 

characters to thousands, often with more than a few hundred 

characters per protein. Thus, the process of proteolysis is critical in 

order to convert proteins into peptides that are compatible for mass 

spectrometry analysis. Trypsin in particular is popular because it tends 

to work predictably, results in many peptides of the desired size, and 

finally tends to leave each peptide with a single positively charged 

amino acid at the C-terminus.

Figure 1-1c illustrates what will be presented in this manuscript 

as a primarily black-box process of mass spectrometry.  Peptides are 

ionized and analyzed by the mass spectrometer and resulting spectra 

are generated. For the purpose of the work described in this 

manuscript, attention must be focused on the meaning of the mass 

spectra; however, the inner-workings of the physical mass 

spectrometer are relevant in the sensitivity and resolution of the mass 

spectra. Several excellent reviews for commonly used mass 

spectrometers exist, and discussion of particular relevant features will 

not occur until chapter 6. Figure 1-2 clarifies the precise data of 

interest in this manuscript, a mass spectrum, which is also represented 

in Figure 1-1c. Resulting spectra have several properties of interest. 

Depending on the mass spectrometer, spectra will represent different 

features – e.g. mass defect, mass limit, and mass range – have 

different mass resolution and mass resolving power for determination 

of isotopic states. Each of these aspects generally contributes 

significantly to the confidence of identifications inferred by software 

developed for protein and peptide identification. In order to infer 
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peptides represented by a mass spectrum, each m/z must be 

compared to a set of known existing peptide masses. Such a list can 

easily be obtained by processing an existing list of possible protein 

sequences to obtain a set of all theoretical peptides. Many appropriate 

publicly accessible protein databases exist, including the RefSeq 

databases from the National Center for Biotechnology Information 

(NCBI) [11] and the European Bioinformatics Institute's (EBI) 

International Protein Index (IPI) [12]. A complete list and archive of 

current and previous versions of these protein databases is available 

from the ProteomeCommons.org/Tranche FASTA resource [13]. 

Assuming one has an appropriate list of theoretical peptides and a 

mass spectrum, inference of peptides present in the spectra can be 

accomplished by creating a sublist of theoretical peptides that would 

have the same m/z as ions present in the mass spectra. This list can 

further be reduced by filtering out peptides that should not be present 

according to experimental steps taken prior to peptide ionization. 

Generally, even the most minimal lists of theoretical peptides for a 

shotgun proteomics experiment can result in ambiguous matches to 

observed m/z in a mass spectrum. Several statistical approaches have 

been developed to address this [14, 15]. In short, algorithms rely on 

the mass accuracy of the MS instrument to reduce the potential 

peptides matches for any observed MS peak. This practice is then 

combined with a statistical estimation of how likely a random protein 

will have a peptide that matches an observed peak. The results can 

often yield a confident identification for samples with low complexity; 

however, tandem mass spectrometry (MS/MS) is typically employed as 

an orthogonal approach to identify present peptides with high 

confidence in samples of higher complexity. If an instrument is MS/MS 

capable, typically MS analysis is completely ignored in favor of the 
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information rich MS/MS. Figure 1-2 illustrates an example MS/MS 

spectrum. The data are similar to that of a MS spectrum, but instead of 

looking at multiple peptides simultaneously, a single peptide is isolated 

from the MS scan, fragmented, and re-analyzed by itself. The resulting 

MS/MS spectrum represents a ladder of masses that can be matched 

back to the theoretical amino acid sequence of the source peptide. 

Thus, for a shotgun proteomics, a logical way to infer peptides from a 

complex mixture is to separate them as best as possible prior to 

ionization for MS, repeatedly select different MS ions for MS/MS, and 

finally create a software package that can efficiently process all 

spectra and match appropriate theoretical peptide sequences (Figure 

1-1d). If the results are taken one step further, as shown in Figure 1-1e 

the set of identified peptide sequences can be used to identity what 

source proteins were likely present.

Current software trends in the field of mass spectrometry-based 

proteomics can be well described by the final step illustrated by Figure 

1-1 (c) and (d). Tandem mass spectra represent a wealth of information 

that can be valuable for understanding a number of biological and 

physical processes. Exactly how peptides fragment and form MS/MS is 

not completely understood and is itself an active area of research 

[16-18]. Significantly different fragmentation can be observed 

depending on properties of the peptide, amount and frequency of 

applied excitation energy, and characteristics of different mass 

spectrometers. Due in part to the incompletely understood 

fragmentation mechanisms, it should be no surprise that another 

active area of research is that of refining software algorithms to 

correctly infer peptide identifications based on MS/MS data [19-30]. It 

is fair to state that the peptide inference problem itself is the most 

active area of current research. Many groups are working on logical 
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refinements to existing search algorithms in order to improve the 

statistics, selectively identify particular post translational 

modifications, or simply speed up performance. Post MS/MS analysis 

represents the next, currently popular area of algorithm development. 

Many researchers are working on creating better software for inferring 

protein identifications based on sets of inferred peptides [31-33]. A 

naive approach of identifying all proteins that share an observed 

peptide will excessively identify proteins. Many proteins share the 

same peptides, and effort must be placed in identifying what protein 

most likely is represented given all observed peptide identifications. 

This is particularly important when dealing with homologous proteins 

that share large portions of sequence. Protein inference algorithms 

must carefully identify what homologous proteins are clearly present 

versus ambiguously identifiable proteins. Additionally, several areas of 

research distinct from the original MudPIT analysis pipeline have also 

emerged. Protein database independent identification of peptide 

sequences based solely on MS/MS data is quickly becoming a viable 

alternative to database techniques. This practice is often referred to as 

de novo peptide sequencing [34]. The de novo algorithms have had 

limited widespread adoption, but share a significant portion of active 

research interest. Also, libraries of known peptide identifications and 

mass spectra have started to emerge [35-37]. The practice is based 

around the concept that existing MS/MS based peptide identifications 

can be recycled. A statistically valid identification should generally hold 

true across data sets, and valuable time and identifications can be 

inferred from old data to new. Such libraries are becoming popular now 

because of the increasing availability of data sets, in a large part due 

to Tranche. Comparison to both a known library of identifications and a 

theoretical set of proteins is a promising standard for future MS/MS 
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analysis. It is both a very logical direction and becoming much more 

practical due to open-access, large-scale data set publication. Finally, 

several resources have emerged to help aggregate mass spectrometry 

based information [38-41]. This thesis work describes one of the most 

prominent, Tranche, which has established a P2P network for scientific 

data sharing. A core set of computers supported by various groups and 

organizations maintains the majority of data on the network; however, 

individual users computers are also used to help host data, increase 

the availability of on-line data, and speed up downloads.

Critique of Existing Methodology

Reinvention of the Wheel – Several critiques can be made of 

mass spectrometry based proteomics efforts at the start of this thesis 

work. May of many of these critiques still apply to the current field. 

First and foremost is repetition of labor, or so called “reinvention of the 

wheel”. Sequest (1994) is widely accepted as the first statistical 

algorithm for shotgun proteomics-based peptide and protein 

identification. More than a decade later seemingly far too many 

research groups are still actively developing algorithms that are 

fundamentally similar to Sequest. The ProteomeCommons.org tools 

page provides a list of at least 20 different MS/MS search engine tools. 

All of which are remarkably small evolutions from the original Sequest 

algorithm. Few if any revolutionary techniques have been introduced. 

Even Sequest itself is still often used as a benchmark of novel 

developments. Conceptually is is easy to recognize that Sequest 

should not currently be considered a state of the art algorithm. It is the 

first generation of statistical scoring MS/MS software algorithms, it 

identifies peak lists largely in ignorance of the size or quality of the 

input data set, and even Sequest's author acknowledges deficiencies 
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with the algorithm. Ten years ago Sequest was a great tool for MS/MS 

based proteomics. Currently Sequest alone is not a benchmark anyone 

should use when comparing MS/MS search engine developments, note 

Sequest with PeptideProphet is a special case.  Current MS/MS search 

engines must measure up to significantly more than what Sequest had 

to. The open-source search engines X!Tandem [42] and OMSSA [43] 

provide excellent examples of statistical scoring based on the entire 

set of data being processed. The algorithms are not perfect, most 

manuscripts demonstrate significant benefits to using other 

commercial algorithms, but the open-source algorithms do provide 

both a free and explicit example of the statistical process behind 

MS/MS search algorithms. A refined scoring algorithm named k_score 

for X!Tandem is another noteworthy refinement the provides a much 

more sophisticated scoring metric for the X!Tandem code. It would be 

helpful to see any new MS/MS search engine developed demonstrate a 

significant improvement versus both X!Tandem and OMSSA. Ideally, 

not a questionable 5-10% improvement, but an improvement that can 

not easily be reached by modifying or altering the input parameters of 

the open-source, widely accessible search algorithms. If such an 

improvement cannot be obtained, then any effort invested in the new 

algorithm is of questionable benefit compared to simply using the 

existing algorithms. Unfortunately, the vast majority of MS/MS research 

papers being published seem to demonstrate a marginal improvement 

over existing algorithms – sometimes over nothing but the original 

Sequest – and this type of publication does not seem to be moving the 

field forward. Rather, in my personal opinion, this fuels individual 

groups egos and establishes an environment where significant effort is 

invested in figuring out how to make particular MS/MS algorithms 

appear superior versus a comparable algorithm. With that stated, I do 
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not propose the publication ban of minor evolutions to statistical 

MS/MS search algorithms. Rather it would be nice to see a generally 

accepted sediment that one should not expect to impress anyone with 

a new MS/MS search algorithm. If a group wishes to publish an 

algorithm, they should bear the burden of picking several openly 

accessible data sets and running their algorithm versus other available 

algorithms. Currently this burden is problematic because no clear 

benchmark proteomics data sets have been adopted by the 

community. The Aurum data set presented in this thesis is a good 

candidate, but even it is not yet in widespread use, nor will it be an 

ideal data set until both LTQ/Orbitrap and the MALDI TOF/TOF data is 

published, which is planned in subsequent publications of the data set. 

With the critique stated, the concluding comment regards a positive 

side-effect from the plethora of basically similar MS/MS search 

algorithms. Most active proteome informatics groups have their own 

MS/MS search engine, and are invested in keeping it mainstream use. 

This is best cited by the 2007 and 2008 ABRF iPRG groups (of which 

the author is a 2008 member). The organizing members are tasked 

with comparing MS/MS data sets, which forces cross communication 

regarding results and the similarity thereof. This cross communication 

is good because I think it will accelerate the community realization that 

relatively few significant evolutions in statistical MS/MS search 

algorithms have been realized. It remains to be seen if the iPRG's 

participating community will benefit, but certainly the key software 

developers are aware of each other's work. Hopefully future efforts in 

the iPRG and similar projects in the proteomics community will focus 

on the establishment of benchmark datasets and reusable analyses 

results for peer-review publications that wish to claim improvements in 

MS/MS search algorithms. This would be an excellent cornerstone for 
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journals to build upon and enforce that “novel” algorithms actually 

compare against existing data sets that the publishing lab did not 

produce. It would also alleviate the  burden of asking individual labs to 

acquire and run all current MS/MS search engines including commercial 

products. The results of existing analyses could be made available for 

direct comparison against.

Unacceptable Publication Standards – Another critical 

critique is the lack of reproducibility of bioinformatics analyses, 

primarily due to lack of access to the original data sets. Mass 

spectrometry data sets have quickly grown in size. A single experiment 

can easily generate gigabytes of raw data. No proteomics journal 

currently requires that the full data set accompany a peer-reviewed 

article for publication, nor does any journal currently require that such 

data are published elsewhere. Several years ago this practice would 

not be considered unreasonable given the size and quantity of 

proteomics experiments; however, recent developments in proteomics, 

Chapters 4 and 5, have illustrated efficient methods of both storing 

and disseminating proteomics data sets of virtually any size. Not only 

are the approaches demonstrated, but they are free to use. It is no 

longer acceptable to claim the size of data sets as prohibitive to their 

complete publication. Several journals have made formal 

recommendations  to encourage data sharing to help with 

reproducibility of data analyses. While not ubiquitous, the practice of 

full publication of data sets, parameters, and software used in 

bioinformatics analysis has gained traction to the extent that it may 

indeed soon be standard practice. Use of Tranche goes to greatly 

support this point, and it is possibly the most significant contribution 

this thesis work has provided to the proteomics community.
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Outside of the size of data sets being published, three other 

issues are presented when scientists are tasked with publication of 

their data sets. First is that of protection of unidentified but valuable 

information in the data set. Second is that of the inability of others to 

process the data without access to a vendor's proprietary software. 

Third, is that most data is junk. It is not desirable to establish a trash 

heap of public accessible data – only high quality data should be 

published. It is my opinion that these three arguments are not 

appropriate for those interested in basic science research. Generally, 

all government funded peer-review research should mandate that raw 

data sets be released upon acceptance of a peer-review manuscript 

with the agreement that use of the raw data constitutes formal 

citation. Regarding the first argument, protection of unidentified data. 

The peer-review publication is the authors chance to present a 

complete analysis of the data set. It should be expected that further 

information might be mined from the data, yet it is not appropriate to 

attempt any sort of claim to subsequent use of the data. The Science 

Commons has described why this is not appropriate in detail, and in 

short the answer is that it is ridiculous to try and maintain an indefinite 

chain of citation, permission, and credit for data sets. It is reasonable 

to expect a citation if one's data set is used; however, no formal 

requirement should be maintained. Successful reuse of data sets, 

especially creative reuse, should not be burdened by the originating 

author or groups ego. A best effort system should exist to cite and 

support publishers of data, but data must be complete free for reuse if 

it is actually going to be helpful.

In regards to the second argument, the inability of users to 

process the actual data set. Yes, it is likely that most users will not 

have a license to the original vendor's software. However, if there is no 
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penalty to publishing data (Tranche demonstrates that there is not), 

then it should be published. Some users will be able to access the raw 

data, and in due time the vendors format may become accessible via 

free to use tools. Several examples of this latter case are present in the 

ProteomeCommons.org IO framework presented in this work. Many 

vendors have published binary tools that can process proprietary data 

files and produce open-access file formats. Additionally, several free 

tools were created in collaboration with commercial vendors to expose 

their file format openly. Ideally, it would be nice to have peer-review 

journals request that unaccessible file formats be published in two 

ways. First the raw, unadulterated files. Second, some form of a 

publicly accessible file format. This would enable the vast majority of 

users to freely access the data either with the vendor's own software 

or via the public format. Also, should eventually the plumbing code be 

established to actually access the raw file formats, then they would be 

usable.

In regards to the third argument, avoidance of junk. This is 

complete nonsense. It is not the place of a basic scientist to omit 

portions of data because they do not appear to be meaningful. A 

complete study might not be published due to it not supporting a 

desired effect; however, a portion of a published data set should never 

be omitted because the publishing scientist thinks that it is not 

informative. The peer-review process exists so that others can 

objectively re-evaluate data sets. Without the complete data set it is 

difficult if not impossible to do this task, and,  the integrity of published 

data might be skewed. Computers continue to increase in processing 

power, algorithms continue to improve in performance, and 

bioinformaticians continue to grow our ability to mine data sets that 

would have seemed impossibly large previously. The task of 
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determining junk from valuable data should be left to the community 

to decide in peer-review publication. It should also be freely questioned 

and critiqued same as any other basic science methodology.

Standardization of Statistical Methods – A related, final 

critique is that of standardization of statistical practices for 

determination of false discovery rates and objective high confidence 

peptide and protein identifications – a critique recently emphasized by 

several journals [44-46]. Several early proteomics publications and few 

more recent publications reported simple lists of peptide and protein 

identifications. Such lists of identifications are particularly difficult to 

validate given that one must guess at the parameters used by related 

software packages and that no statistical confidence was assigned to 

the identifications. Most journals have since migrated to a system of 

mandating that any peptide or protein identification be justified with 

objective statistics and that those statistics be clearly described. Due 

in part to these recommendations two false discovery rate estimation 

techniques have become commonly used, mixture models [47] and 

decoy analysis [48, 49]. Further efforts are also currently underway to 

standardize recommendations for statistical practices, namely the 

Human Protein Organization's Statistical Proteomics Initiative (HUPO 

SPI) [50].

In general, all of the aforementioned standardization of statistical 

methods have proven of questionable benefit to the proteomics 

community. The efforts may fruit in due time. However, any published 

standard will continually be subject to refinement and evolution. Much 

time will likely be required before anyone can objectively evaluate the 

success of existing standardization efforts. This opinion is in fact the 

primary motivation for the development of Tranche, Chapters 4 and 5. 
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The belief is that the most significant contribution that statistical 

technique standardization can provide is that of benchmark data sets 

and analyses. Given a proper tool to archive the raw data sets and 

results from proposed statistical analysis, others can much more 

quickly learn how to perform similar analyses. Additionally, journals 

can much more easily mandate comparisons and evaluate the 

techniques employed by researchers. Tranche seeks to properly 

serialized the raw data and analyses files for whatever statistical 

practices are proposed by the aforementioned studies. There is no 

reason that these files can not be saved now, and by saving the 

information, future studies can hopefully be greatly accelerated. The 

truth behind Tranche is that it reflects the belief that there will never 

be a final statistical standardization process. Instead, if the process of 

coming up with new MS/MS search algorithms and  proposed statistical 

standards is made in to a commodity, then the community will more 

quickly reach truly significant developments. This final critique can 

more succinctly be stated as the following. The proteomics community 

seems preoccupied investing time in revising each others work versus 

accelerating community growth.

Introduction of Thesis Work

Motivation for the work presented in this thesis is clearly framed 

around mass spectrometry-based proteomics. By 2005, experimental 

procedures based on the original shotgun proteomics strategy had 

become widespread and related data sets were becoming much more 

accessible to researchers in the field of Bioinformatics. All work 

presented here was done with Dr. Andrews' basic science lab, National 

Resource for Proteomics and Pathways (NRPP), and Michigan Proteome 

Consortium (MPC). The Andrews lab conveniently had and continued to 
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have several state-of-the-art mass spectrometers available during this 

thesis work. When discussing thesis projects it was clear that the 

project would involve gaining experience using mass spectrometers, 

high-throughput proteomics data processing, and dissemination of 

results to the community. 

Early on it was decided that if possible the thesis work should 

avoid the obvious critiques of MS/MS proteomics at the time, most 

notably the lack data sharing and reinvention of MS/MS search 

algorithms. This mindset was of particular importance because both 

the NRPP and MCP were responsible for helping accelerate proteomics 

research and accessibility to proteomics services and software both in 

Michigan and nationwide. Implementation of restricted access tools, 

data sets, and reinvention of existing tools would likely not satisfy 

these goals well. Thus it was decided from the beginning that the 

thesis work would leverage personal prior experience, specifically 

open-source code development and web application (web site) 

development. Ideally, these skills could be used to start an objective 

survey for appropriate projects based on community feedback. 

Synchronously, training on analytical techniques and the experimental 

techniques related to shotgun proteomics could occur while the 

community survey was in progress.

Chapter 2 will introduce the initial survey step, namely 

ProteomeCommons.org [51]. Several related tools and sub-projects will 

also be summarized in that chapter. The work is important because it 

starts this thesis work off in a fashion that follows its own goals. 

Instead of diving directly in to development of the most obviously 

popular problem, processing MS/MS data sets, a fair evaluation of the 

community's resources and efforts is performed. Furthermore the 
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entire evaluation is published in a public forum so that others may 

share in the knowledge I acquired only after building a complete 

website. Chapter 2 starts what will later be shown as a clear trend of 

attempting to accelerate the general proteomics community's growth 

versus pitting the author's intellect and ability to code software against 

that of other research groups.

Chapter 3 details an open-access reference data set, named 

Aurum [52], that was designed to aid in software algorithm 

development for shotgun proteomics. Aurum is also the first dataset 

published in Tranche [53] and a model peer-reviewed, public access 

data set. The entire process of generating and processing the Aurum 

data set is serialized on ProteomeCommons.org in a set of publicly 

accessible files. Same as with development of ProteomeCommons.org, 

the intention behind Aurum was to provide a data set that anyone else 

could easily use. Likewise, the result files from the MS/MS search 

algorithms used to process the Aurum data set are free for others to 

access. The intention is accelerate publications related to Aurum that 

claim benefits compared to the original analysis via reprocessing of 

published results. This type of benefit is in fact shown in Chapter 6 with 

discussion of the Bonanza manuscript.

Chapter 4 and 5 present Tranche and the technical details related 

to Tranche, which have become cornerstones of this thesis work. 

Tranche has thrived because it fills a critical niche in proteomics: 

making data sets accessible independent of file format or original 

software analysis. Tranche has been of particular importance because 

it also enabled the high-throughput data set analysis (Bonanza) in 

Chapter 6. Perhaps most importantly, Tranche enables any proteomics 

researcher to acquire and use the same data sets used for any study, 
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not just the author of this thesis. This has proved extremely popular 

and resulted in rapid adoption by the community and journals. It has 

also made high-throughput proteomics data sets directly accessible to 

bioinformatics groups that do not even own a mass spectrometer.

The remainder of this thesis is broken into six chapters as 

mentioned previously. In short, the first chapter details 

ProteomeCommons.org, its contribution to nucleating an open-source 

community in proteomics, and work to survey the interest and needs of 

the proteomics community. The second chapter details work done in 

parallel with ProteomeCommons.org to develop an open-access, 

reference data set. The fourth and fifth chapters detail the 

implementation and design, respectively, of the Tranche project and 

the major impact it has had over a relatively short time period. The 

sixth chapter details a novel refinement to high-throughput proteomics 

data analysis, based on ideas designed to take advantage of the 

multitude of data sets stored in Tranche. The conclusion chapter brings 

closure to the discussion of this body of work. Three satisfying themes 

are full explored, first the successful inference of what type of tools 

would actually be widely used, second, the effect that Tranche has had 

on sharing public data and its consequences, and third, successful 

avoidance of 'reinventing' a MS/MS search algorithm in favor of refining 

and aggregating results from existing tools.
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Chapter 2

ProteomeCommons.org

The diversity of biomedical problems to which proteomics 

technologies are being applied, coupled with the limited tools 

available, has lead many groups to develop their own scripts and 

software for analysis of proteomics data.  This demand for new tools 

and the limited sources available has led to efforts by a number of 

laboratories to take advantage of the benefits derived from open 

source code development. This recent increase in open source projects 

for proteomics tools reflects the need for a broader range of tools and 

the reliance of proteome technology development on computational 

infrastructure.  The open source effort has been paralleled by release 

of standard datasets and development of data format standards, both 

of which benefit algorithm and tool development.  These aggregate 

efforts raise several issues currently being addressed by the 

proteomics community,  including mechanisms for file standards 

development and support, data dissemination and annotation, and 

project organization and management. However, when I began my 

thesis work, all these efforts were in their infancies and we determined 

that a centralized resource could be developed that would help unify 

many of these efforts and provide access to the new resources that we 

and others were developing. ProteomeCommons.org was created as a 

tool to bring existing data archiving and dissemination functionality to 
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 the proteomics community in a fashion that requires minimal effort to 

use with existing code and data sets.

Introduction

ProteomeCommons.org [54] was placed on-line in 2004 and has 

grown to archive over 100 software projects and includes several 

hundred links to other  resources. The basic site includes a simple web 

interface accessed via a web browser. The website currently receives 

over 5,000 visitors per week with over one thousand unique visitors.

ProteomeCommons.org was originally designed to help facilitate 

communication withing the proteomics community, act as a nucleation 

site for the open-source proteomics community, and to survey the field 

for existing tools, groups and data sets. Currently, 

ProteomeCommons.org is most often accessed for its aggregation of 

proteomics news, listing of available proteomics software, and indexing 

of proteomics software – primarily data hosted in Tranche. The site acts 

as a portal to many resources developed by our research group as well 

as many other groups and hosts several development projects.

Methodology

ProteomeCommons.org is designed to be as simple as possible to 

use. No registration is  required and no extraneous information is 

mixed in with content.  Users can use the entire website without 

needing anything more than their web browsers and access to all 

content is completely free. Combined with the free open access to 

content is an embedded peer review system. All content published on 

ProteomeCommons.org is manually verified by members of the 

proteomics community to ensure that the quality of content is as high 
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as possible. This process is largely done by the National Resource for 

Proteomics and Pathways (NRPP) and volunteers. While it is not as 

stringent as most peer-reviewed journals, the process is designed to 

limit abuse of the resource and maintain a helpful level of service.

Key features currently available on ProteomeCommons.org 

include news aggregation, indexing of tools and links, free websites for 

projects, public archives for data, e-mail lists for communication, 

several open-source proteomics tools projects, distributed downloads 

and Google-like searching of content. The bulk of these features are 

based upon free tools and protocols that are commonly used in 

existing open-source software (OSS) communities. The website itself is 

coded in the Java programming language and JSP and hosted by the 

freely available Apache Tomcat web server, http://tomcat.apache.com. 

Most all of the projects supported by ProteomeCommons.org are also 

coded in Java with the exception of the Google provided e-mail lists, 

website usage tracking, and website indexing. Over the lifespan of 

ProteomeCommons.org it has become clear that many software 

packages exist for attempting to infer information from MS/MS data 

sets, and in contrast, a serious lack of software existed for interpreting 

results from such software, acquiring data to process by such software, 

and converting data into appropriate file formats MS/MS programs.

Largely due to the goals of the NRPP, ProteomeCommons.org has 

been able to become a hub for development of many desirable 

software services for the proteomics community. Several of these 

projects would have been very difficult, if not impossible, to justify 

independent funding. Primarily because many of the projects represent 

a logical step involved in solving or enabling research for the larger 

problem of high-throughput proteomics. Alone, the steps lack the luster 
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associated with most basic science experiments, and when combined 

into a single projects, rarely were the steps polished significantly. 

Detailed here are three of the six primary sub-projects started on 

ProteomeCommons.org as part of this thesis work: the Java Analysis 

Framework (JAF) framework, the Input and Output (IO) Framework, and 

Peptide Finite State Machine (PFSM). Each of these projects was 

documented in publications in peer reviewed journals. The remaining 

projects, Tranche, Aurum and Bonanza, are covered in subsequent 

chapters of the thesis.

Java Analysis Framework (JAF)

The ProteomeCommons.org Java Analysis Framework (JAF) [55] 

provides a library of freely usable, open-source Java code that 

abstracts information regarding commonly used atoms, stable isotopes 

of atoms, residues, and modifications to residues. The code initially 

started as an application programming interface (API) for accessing 

this information and speeding up development of tools that relied on 

calculations such as the masses of peptides and proteins, SNPs of a 

protein sequence, theoretical isotope distributions of ions observed by 

mass spectrometry, and references for atomic weights and residue 

compositions. The JAF currently provides both the aforementioned 

programmer's API and several user tools.

The user tools provided by the JAF include mass spectrometrist-

friendly HTML references for the common atoms and atomic isotopes, 

the common amino acids and known modifications of those amino 

acids and combinations of common amino acids, including mass shifts 

associated with residues on the N-terminus of C-terminus of peptides. 

In addition to the on-line HTML references the JAF provides a tool for 
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dynamically finding combinations of residues that match a particular 

mass within a given mass tolerance. The JAF also provides a peptide 

calculator utility that looks just like a normal calculator, but can be 

used to calculate molecular weight of peptides, the mass of charged 

ions (allowing any charge) in mass spectrometry, the theoretical pI  of 

peptides, and the fragments of the peptide's sequence assuming it was 

cleaved by any number of a given set of enzymes.

All of the user tools the JAF provides run directly on-line, through 

a web browser. The JAF takes advantage of the Java Web Start 

technology, which allows for robust, Java-based tools to automatically 

run directly on-line.

ProteomeCommons.org IO Framework

The ProteomeCommons.org IO Framework [56] is an freely 

usable, open-source framework for processing protein information and 

data produced by mass spectrometers. The framework initially started 

as a Java API that developers could use to convert between various 

mass spectrometer file formats, including MGF, PKL, DTA, mzData, 

mzXML, T2D, and more. The framework also provides a set of utilities 

for reading through sets of protein sequences saved in formats such as 

FASTA, and tools for manipulating proteins sequences in ways such as 

performing proteolytic digests, generating SNPs of protein sequences, 

and generating possible modifications of known protein sequences. In 

addition to the programmer's API the framework now provides user 

tools for performing conversion between different mass spectrometer 

output formats and dumping raw data into easily accessible formats 

such as mzData, mzXML, and plain-text. The primary data conversion 

tool is available on-line directly from ProteomeCommons.org and it 
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requires no installation for users to be able to convert existing mass 

spectrometry data into a different format.

Peptide Finite State Machines (PFSM)

The peptide to protein inference is limited by many parameters 

with a significant hurdle being the time required to process a data set. 

Typically a MS/MS proteomics search engine will scan an entire library 

of protein sequences one at a time, modeled after Sequest [57], which 

can result in a prohibitively long period of data processing. This 

problem is of particular concern when considering larger data sets may 

contain hundreds of millions of protein sequences saved in a file that is 

of gigabytes in size. Ron Beavis and his optimization work with the X!

Tandem search engine [58] is perhaps the most well known example of 

addressing this particular issue while not sacrificing the statistical 

sensitivity of the tool. Inspired by this work, research into creating a 

regular expression based pre-filter for MS/MS data analysis was done 

[59]. The work leveraged a practical computer science algorithm tactic 

involving suffix trees and construction of a regular expression to 

simultaneously search an entire set of spectra against a library of 

protein sequences in the same time as searching an individual 

spectrum. Figure 2-1 illustrates more intuitively the core concept with a 

cartoon.

If each MS/MS spectrum is treated as a fragmented set of amino 

acids, it is possible to convert an individual spectrum into a single 

regular expression [60] that accounts for all theoretical fragments. A 

convenient characteristic of regular expressions is that multiple regular 

expressions can be combined into one regular expression and applied 

to any set of input strings, e.g. protein sequences, with the same 

24



efficiency of a single regular expression. Thus, an entire set of MS/MS 

spectra can readily be combined down to a single regular expression 

that can filter a protein database for relevant sequences. The final step 

is for the MS/MS search engine to be applied to this filtered, 

presumably much smaller, set of sequences in order to infer the most 

correct peptide and protein identifications.

The PFSM strategy was demonstrated to work well on shotgun 

proteomics style data sets generated from an MALDI TOF/TOF mass 

spectrometer. Search time requirements were shown to drop from 

hours to a few minutes, and the majority of resulting peptide and 

protein identifications remained the same. The work is certainly 

successful; however, it was quickly discovered that many MS/MS 

search engines rely on statistics derived from the entire set of protein 

sequences analyzed. Utilization of PFSM as a pre-processing step for 

these search engines could significantly change the search results. In 

order to truly realize the benefit of PFSM pre-filtering use of the 

algorithm would have to be restricted to particular search engines or a 

custom statistical analysis would need to be developed. A strong desire 

still persists to avoid development of yet another MS/MS search 

engine, and this effort was not pursued with PFSM. Rather efforts were 

initiated to work with existing MS/MS search engines in a method that 

would leverage existing statistical scoring algorithms.

Conclusion

ProteomeCommons.org has established itself as a beneficial 

resource for the proteomics community. The website brings several 

modern tools for collaboration and data dissemination to researchers in 

proteomics. ProteomeCommons.org also acts as one of the largest and 
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most comprehensive listing of existing proteomics on-line tools and 

software packages. Another significant benefit of the website is that it 

acts as a sponsor for several open-source software efforts aimed at 

building freely accessibly tools for common proteomics-related work. 

Many of these tools have been used by several different research 

groups. Most notable of such projects is the Tranche project, which 

currently acts as the repository for thousands of proteomics data sets 

that have been published and indexed by ProteomeCommons.org.
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Chapter 3

Aurum Data Set

A current focus of proteomics research is the establishment of 

acceptable confidence measures in the assignment of protein 

identifications in an unknown sample. Development of new algorithmic 

approaches would greatly benefit from a standard reference set of 

spectra for known proteins for the purpose of testing and training. Here 

we describe an openly available library of mass spectra generated on 

an ABI 4700 MALDI TOF/TOF from 246 known, individually purified and 

trypsin-digested protein samples.  The initial full release of the Aurum 

Dataset includes gel images, peak lists, spectra, search result files, 

decoy database analysis files, FASTA file of protein sequences, manual 

curation, and summary pages describing protein coverage and 

peptides matched via MS/MS followed by decoy database analysis 

using Mascot, Sequest, and X!Tandem. The data is publicly available for 

use at ProteomeCommons.org.

Availability

The Aurum Dataset is freely available for use in its entirety from 

ProteomeCommons.org. On-line versions of the data may be found at 

http://www.proteomecommons.org/current/553/index.html. 

The ProteomeCommons.org Tranche network is used to provide
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 fast downloads of the data and to get a verifiable, exact copy of the 

data described by this manuscript. The Tranche hash for the Aurum 

Dataset is given below.

HnxUzQuuP7BIqF10aetLtjwnffOwuOMAfDvg2BFmenNe9UeMgprBFh7+

wtpbcWnXqMk2KY8z9VjmwqXYDbQ0pTNqIx4AAAAAASJlaw==

Further information about Tranche and how to use this hash may 

be found on-line at http://www.proteomecommons.org/dev/dfs/.

Introduction

Tandem mass spectrometry (MS/MS) of peptides is currently the 

primary method to identify proteins in complex samples.  Search 

programs such as SEQUEST [61], Mascot [62], X!TANDEM [63] are 

some of the most widely used software packages to identify the most 

likely peptide sequence to match an MS/MS spectrum. Development of 

better MS/MS identification tools is an active area of proteomics 

research [64-67], MS/MS de novo tools [68-70], MS/MS spectral search 

tools [71,72] and MS/MS search result refinement tools [73,74]. All of 

these tools rely on libraries of well-studied MS/MS spectra from a 

variety of instruments with accurate peptide assignments.

Accurate peptide assignments are essential but manual 

confirmation is a time-consuming process that is also subject to some 

degree of operator dependence, and it is not feasible for high-

throughput proteomic analysis. Most commonly, MS/MS algorithms are 

trained on in-house generated data sets that have undergone a variety 

of selection criteria to verify their authenticity. These standard sets are 

often obtained from analysis of commercial protein preparations with 

limited criteria for purity or represent bootstrap efforts that set 
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stringent criteria for results from existing search engines.  Recently, 

several approaches have been proposed to accurately estimate false-

positives and associate peptide identifications with MS/MS spectra with 

high levels of confidence [75, 76]. Development of MS/MS related 

algorithms and tools would greatly benefit from publication of third 

party data sets, particularly well-annotated data sets using these 

proposed approaches to estimating false-positives with as much 

manual confirmation as possible.  Finally, the availability of well-

verified sets of MS/MS spectra can provide the basis for direct spectral 

comparison, which has the potential to be a much more effective 

approach to peptide identification that existing engines that match 

against generated MS/MS spectra and obviates the need for an 

accurate fragmentation model.

Small reference sets of tryptic peptides have been made from 

known proteins [77,78] and larger datasets have been made from the 

yeast proteome [79,80] and human serum proteins collectively in the 

HUPO initiative [81].  While these are useful databases, they are time 

consuming to generate,  and are not all publicly available as a 

reference set.

In this manuscript we describe a publicly available library of 

tandem mass spectra generated on an ABI 4700 MALDI TOF/TOF from 

246 known purified and trypsin-digested protein samples using a work 

flow used for gel-purified proteins. The data are analyzed using the 

Mascot, X!Tandem, and Sequest search engines, and peptide 

identifications are adjusted to 99% true-positive confidence using the 

intuitive decoy database approach described by Elias et al. In addition 

to the peak lists and associated peptide identifications, the described 

data set is also published with the raw spectra, search result files, 
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decoy database analysis files, Scaffold analysis files, and the gel 

images used when checking for protein purity.

Materials and Methods

Proteins -   A selection of 300 sequence-verified recombinant 

human proteins (8-70 kDa.) were obtained from GenWay Biotech Inc 

(San Diego, CA). The proteins were selected by GenWay Biotech based 

on clones that could readily be over-expressed and purified. GenWay 

Biotech provided the sequence verification services and a report for 

each cloned sequence is included in GenWay's product documentation, 

which is referenced by the per protein report included in the on-line 

Aurum documentation. After purity analyses, 246 of the 300 proteins 

were used in the Aurum analysis.  The proteins contained an N-

terminal T7 tag (MASMTGGQQMG also observed as ASMTGGQQR) or 

His6 tag (HHHHHH) and were expressed in E. coli.   Documentation 

provided with the proteins included the name, expressed length and 

the NCBI accession number.  Proteins (2 µg/lane) were analyzed for 

purity by SDS-PAGE stained with colloidal Coomassie G-250 (Figure 

3-1).  The criteria for purity were that at least 50% of the protein was 

at the correct size, the gel lane contained no nearby unrelated protein, 

and at least 95% of the tryptic peptides corresponded to the 

anticipated protein. Images for each of the gels are included in the 

supplementary data, and shown directly on individual protein summary 

pages (Figure 3-2).

For each protein in the Aurum data set a unique GS-number was 

assigned where we used the letters “GS” followed by four digits 

representing a decimal number assigned to the protein. The 

supplementary data includes a table that maps this GS number to an 
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appropriate GI number, NCBI accession number, and Swissprot 

accession number. The GS nomenclature is not intended to represent a 

new standard for referring to the associated protein sequence. Rather 

it is a convenient way to unique identify Aurum proteins for internal 

use within the dataset – independent of accession number or identifier 

changes that might occur in other databases. GS numbers will remain 

static throughout the lifespan of the Aurum dataset; however, use of 

the GS numbers outside the context of analyzing the Aurum data is 

discouraged when either NCBI or Swissprot identifiers are available.

Protein coverage calculations – The entire protein sequence is 

included in each summary file as shown in one file in Figure 2-2. The 

sequence is further colored in order to indicate the peptides that were 

identified and the portions of protein sequence that are not expected 

to be identified. The portions that are not expected to be identified are 

those that have a m/z at +1 charge of less than 900 Da or more than 

2500 Da, i.e. the range that the mass spectrometer is configured to 

ignore. Data analysis for this manuscript is based off a MALDI 

instrument, and the +1 charge state is almost ubiquitously observed 

for ionized peptides. Thus the theoretical m/z of an ionized peptide is 

well approximated to be its molecular mass. The range of 900 to 2,500 

Da is selected for three primary reasons. First, MALDI instruments are 

prone to ionizing matrix clusters that can dominate the lower mass 

region, which often makes it very difficult to identify anything below 

the mass of 900 Da. Second, the instrument used for this analysis is 

tuned to most accurately identify ions with a m/z of 1,800 Da. Ions with 

much less or much greater m/z may report an incorrect m/z to the 

point where it is difficult to use in data analysis. Third, the MALDI 

TOFTOF does not detect higher mass peptides as well as lower and the 

trade off between higher m/z and the amount of sample required to 
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detect the ion appears to be non-linear. Thus, peptides with masses 

higher than 2,500 are problematic due to both relatively inaccurate 

m/z measurements and relatively poor signal strength.

Explanation of protein coverage is important because the results 

section and included protein reports present two types of protein 

coverage information. The first type of protein coverage is a strict 

percentage of the total protein sequence that is covered by observed 

peptides. The second type of coverage, named 'expected protein 

coverage', is the percentage of tryptic peptides that fall within the 900 

Da to 2,500 Da range, i.e. the peptides one might expect to see based 

on the Aurum data acquisition parameters.

In-Gel Tryptic Digestion - Excised gel plugs (0.67 µg protein) were 

placed in 96-well plates and were processed using a MassPrep robotic 

workstation (Waters).  The plugs in the presence of 50 mM ammonium 

bicarbonate underwent the following steps: wash/dehydration with 

50% acetonitrile; reduction with 10 mM DTT; alkylation with 55 mM 

iodoacetamide; wash/dehydration with 50% acetonitrile; digestion for 4 

hours with trypsin (200 ng, porcine, modified, Promega).  Peptides 

were extracted from the gel plug with 1% formic acid/2% acetonitrile 

and concentrated using C-18 ZipTips (Millipore).  Digests were spotted 

(4 replicates) on a MALDI target using α-cyano 4-hydroxy cinnamic acid 

(2 mg/ml in 50% acetonitrile, 0.1% TFA containing 10 mM ammonium 

phosphate) as matrix.  Dilutions of the digests were made at 1/8 and 

were spotted in the same manner.

MS/MS acquisition - Spectra were acquired on a 4700 MALDI 

TOFTOF mass spectrometer (Applied Biosystems).  Spectra were 

acquired for the 8 most intense ions. In a replicate well, after excluding 

the 7 most intense ions, the next 8 most intense ions were analyzed. 
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Similarly, the next set of 8 ions was analyzed for wells 3 and 4.  Known 

trypsin auto-digestion peptides were excluded. This process resulted in 

acquisition of a maximum of 32 spectra per digest, theoretically 29 

unique spectra if sample and MS intensities do not change between 

spottings. 

Data curation – Default peak lists from Applied Biosystems GPS 

software were taken  from replicate wells and were concatenated into a 

single Mascot Generic Format (.mgf) file. In order to map spectra back 

to the original files the the base 16 encoding of individual file's MD5 

[82] hash was set as the MGF file's TITLE field. Additionally, all peak 

lists were converted into a set of .dta files by the 

ProteomeCommons.org IO Framework [83] for subsequent analysis by 

the Sequest. Four different initial searches were performed, each using 

0.5 Da for the parent and fragment ion mass accuracy and with 

oxidation (M,H,W), deamidation (N, Q) variable modifications. 

Iodoacetamide (C) was specified as a static modification. Four follow-

up searches were performed using the similar parameters but without 

iodoacetamide as a static modification in favor of setting 

iodoacetamide and propionamide as variable modifications for the 

side-chains of cysteine residues. Three of the four searches used 

different search engines in an attempt to identify as many of the 

spectra as possible. The two same-search engine searches both used 

Sequest but included the variable n-term protein modifications for each 

of the two purification tags.

The MS/MS searches were performed using Mascot, X!Tandem, 

and Sequest. Two of the initial searches used the concatenated .mgf 

file. One search on Mascot 1.9 and the other search on X!Tandem 

06_9_15. X!Tandem did by default include N-term pyro-glu from N and 
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Q as modifications. The other two initial searches used Sequest. One 

search assuming each protein had an N-term T7 tag and the other 

search assuming each protein had a N-term HIS tag. All searches were 

performed on a decoy database version of the IPI Human FASTA file 

version 3.14. The decoy database was the exact IPI Human 3.14 FASTA 

file with a concatenated reverse version of the same database. Each 

protein in the reverse sequence is noted by appending an “R” to the 

protein's accession number and each protein is changed by reversing 

the order of the amino-acid residues. The ProteomeCommons.org IO 

Framework was used to generate the reverse database. 

Identification of peaklists was based on the decoy search 

strategy outlined by Elias et al. [84] and described briefly here. Each 

search engines peptide identifications were individually ranked 

according to the respective following scores: Mascot's ion score, X!

Tandem's hyperscore, and Sequest's XCorr. Each sorted list is then 

filtered to only include matches that scored above a 99% confidence 

threshold determined as follows. All peptides above the score are 

binned into two categories. Those that are from the normal FASTA 

sequences (i.e. matches without a “R” in the accession) and those that 

are from the decoy sequences (i.e. matches with a “R” in the 

accession). The false positive rate is estimated to be twice as much as 

the ratio of decoy sequences versus normal sequences – twice because 

the decoy sequences only represent half the total database thus 

approximately as many normal sequences are likely inaccurate. An 

example would be the case where 198 normal sequences were 

identified per every 1 decoy sequence, where (1 * 2) / 200 yields a 1% 

false positive rate aka 99% confidence in individual peptide 

identifications. This strategy is presented as an appropriate objective 

analysis of the data set that takes advantage of individual expertise 
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present in different search engines while still normalizing all search 

results to approximately 99% confidence in true positives.

Files used by the respective search engines, including search 

parameter files, peak list files, and FASTA files are included with the on-

line download as described in the availability section.

Results and Discussion 

A well documented set of purified human recombinant proteins 

has been procured and analyzed using a routine gel-based protocol to 

generate a library of mass spectra referred to as the Aurum Dataset. 

At present the Aurum dataset consists of 246 recombinant human 

proteins that have been trypsin-digested and characterized by MALDI 

TOF/TOF.  The MS/MS dataset further underwent what is intended to be 

an objective, community-standard based analysis to generate spectra-

associated peptide identifications and protein coverage information.

The recombinant proteins were expressed in Escherichia coli and 

initial isolation performed by the vendor.  Upon receipt, the proteins 

were analyzed by SDS-PAGE for purity and the dominant bands were 

excised for in-gel tryptic digestion.  Figure 1-1 shows a representative 

gel, where samples GS0372 and GS0376 represent the highest purity 

provided and samples GS0312 and GS0256 represent a moderate-low 

purity. Of the 246 proteins, 181 were represented as a single band and 

were classified as high purity.  An additional 21 were represented as 

evenly distributed doublets.  Analysis of both bands of the doublets 

confirmed that both were forms of the target protein and could be 

placed in the subset of high purity proteins that would be suitable for 

future in-solution digests. The remaining proteins had varying degrees 

of contaminating bands ranging from possible truncation products to E. 
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coli proteins. Only the predominant band was excised and 

characterized. Only proteins for which all tryptic peptides returned the 

correct ID were included in the final protein list.  Gel images are 

included for each protein in the protein's summary page found with the 

on-line documentation for the Aurum Dataset.

MS/MS analysis for the selected gel bands was carried out 

according to the standard analysis procedures described in the 

methods section. Seven different MALDI plates were used, found in the 

documentation with the names “T10467”, “T10475”, “T10622”, 

“T10645”, “T10707”, “T10739”, and “T10761”. Each protein was 

spotted individually at least four times to help ensure the best chance 

of acquiring high-quality spectra for as many of the peptides 

associated with each protein as possible. At least 32 spectra were 

acquired for each protein by collecting data from four separate spots of 

the protein as described in the methods section. Default peak lists of 

the spectra were then extracted for analysis using the MSExtractor tool 

(http://www.proteomecommons.org/current/489) and concatenated 

using the ProteomeCommons.org IO Framework. 9,987 total peaklists 

are included in the resulting .mgf file. Each peak list is identified by the 

original file's MD5 hash listed in the TITLE field of the associated peak 

list in the .mgf file.

Decoy database analysis targeting 99% true-positive confidence 

and using Mascot, X!Tandem and Sequest were performed according to 

suggested guidelines published by Elias et al. The analysis is not 

intended to be a comparison of the search engines used, rather it 

normalizes the results of each search engine to an approximated 99% 

true-positive confidence. All of the peptides from the 99% true positive 

results were aggregated to make the set of all identified spectra. 5,054 
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unique peptide sequences (>50% of all peak lists) were identified at 

99% true-positive confidence with the peptides being identified coming 

from the initial and follow up searches described in the following 

format (initial search)/(follow up search). Note that the follow up search 

is not intended to identify a superset of peptides and the notation does 

not indicate a fraction. Mascot identified 1,682/1,847 peptides, X!

Tandem identified 441/424 peptides, and Sequest identifying 

2,939/2,921 peptides for the T7 tag and 2,937/2,920 peptides for the 

HIS tag searches. No search engine identified a superset of all others 

and a significant gain in highly-confident identifications was obtained 

by combining the three search engines. These results appear to 

support the use of decoy database analysis with multiple search 

engines as an approach to identify more spectra from a dataset; 

however, it is worth emphasizing that these results are not intended as 

a basis for comparison of the search engines used. Various search 

results are expected as each search engine performs analysis 

differently even with the similar settings we used in each search. 

Additionally each search engine has a disparate range of settings that 

might be optimized to change the results of the analysis. The set of 

search engines used is intended only to help increase the number of 

unique spectra identified. For further analysis, the same search result 

files used for decoy database analysis were imported into the Scaffold 

software package (ProteomeSoftware Inc., Portland, OR) for 

PeptideProphet and ProteinProphet-like analysis. Similar results as for 

the decoy database analysis were found and the free Scaffold Viewer 

program may be used to examine the Scaffold files included with this 

manuscript. 

Of the 246 purified proteins 242 proteins had at least one 

peptide identified to the expected cloned sequence and 233 peptides 
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had more than 2 peptides matched to the expected cloned sequence. 

At the most, up to 19 unique peptides matched to a cloned protein. 

The average protein sequence coverage from this analysis was 32% 

and the average protein coverage of theoretically detectable peptides 

is 63%. Theoretically detectable peptides include those that have a 

unmodified m/z of more than 900 Da and less than 2500 Da – m/z 

restrictions specified at the time of data collection. A summary of 

protein coverage and matched peak lists are provided for each protein 

in the supplementary files described by the availability section. Figure 

2 shows an example protein summary. Analysis of the summary files 

illustrates that the majority of proteins have several peptides that may 

be used to identify them from a biological sample assuming that 

similar quantities of the purified protein and or or peptides can be 

obtained. Although some of the proteins have very few, if any, 

peptides that are readily observed. These proteins are of interest for 

further study as they may represent proteins that are difficult to 

identify from a potentially more complex sample using a similar MALDI 

TOFTOF based approach. A simple explanation for several of these 

difficult to analyze proteins is that they are relative small proteins with 

very few, if any, tryptic peptides that fall within the 900 to 2500 Da 

cutoff used when analyzing this data set. Potentially a different mass 

spectrometer such as a ESI-based instrument or a different digestion 

enzyme would provide a more favorable analysis. Other plausible 

explanations could account for the difficulty in analysis of other 

proteins such as poor ionization of the peptides, unfavorable 

experimental protocols for analyzing the particular protein, or even 

experimental error. In any case, the set of poorly identified proteins 

may be of interest for further analysis to identify if they are indeed 

poor candidate proteins for mass spectrometry analysis.
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Further data analysis and summary reports were generated to 

check for common contaminants in mass spectrometry experiments. 

The crap (pronounced “cee-RAP”) 1.0 list of proteins maintained at 

TheGPM.org was searched against the unidentified peak lists. The crap 

list contains approximately 100 proteins including common laboratory 

proteins, proteins added by accident through dust or physical contact, 

and proteins commonly used as molecular weight standards. The crap 

analysis was performed using just the X!Tandem search engine, and 28 

proteins were found with more than 2 peptides matching. In all, 37 

proteins were identified by 1 or more peptides. The proteins primarily 

identified included many keratin proteins and several recombinant E. 

Coli proteins. BSA and Serotransferrin where also found. The complete 

list of crap proteins, the X!Tandem search results, and a set of 

summary pages similar to Figure 2 for the crap proteins are included 

with the supplementary data.

Conclusions

The Aurum Dataset is a high quality dataset of known proteins 

analyzed by a MALDI TOFTOF. The proteins are all human proteins 

expressed in E. coli and purified by N-terminus T7 and HIS tags. The 

proteins further purified using SDS PAGE, individually digested with 

trypsin, and individually spotted 4 times on a MALDI plate. Data was 

acquired to represent at least the top 29 most intense MS peaks, and 

published decoy database analysis was used to identify more than 50% 

of the acquired spectra, approximately 5,000 unique peptides. Based 

on this analysis the majority of proteins can readily be identified, but a 

range exists where some proteins are not as easily analyzed. The low 

end of this range is of particular interest for further analysis as it might 

be helpful for identifying why certain proteins are more difficult to 

39



identify from complex samples.

The Aurum Dataset is a valuable contribution for testing existing 

MS/MS algorithms and tools, and the Aurum Dataset will be helpful as 

an objective third-party data set for developing new tools and 

algorithms. The published data set contains all raw and curated data 

used to generate the analysis described by this manuscript and all of 

this data is openly and freely available for use.
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Chapter 4

Tranche

Facile access to scientific data is a general problem in research 

that is of particular concern to post-genome fields, including 

Proteomics. Current technologies can generate very large quantities of 

data and this rate of data production is rapidly increasing. Most 

proteomics studies are targeted to specific goals and information 

extraneous to these goals, yet present in the datasets, are not 

pursued. A key question has been, how can these very large and useful 

data sets be shared and properly cited? The field of Proteomics 

provides a clear example of coping with this data sharing issue, and 

the tactics used are potential solutions for other fields facing similar 

problems. Presented here is a research project, that  addresses the 

scientific data sharing problem from the perspectives of open-access, 

community based distributed storage. The software implementation of 

these concepts, named “Tranche”, represents a radical change from 

previous approaches for data sharing in the field of Proteomics. 

Tranche provides a scalable, secure mechanism for partitioning the 

responsibility of the data sharing problem across available 

bioinformatics resources in the entire proteomics community. These 

properties enable two critical features: very large data sets can now be 

shared and any data set can be accurately cited and validated as 

unchanged since publication. Tranche also allows individual
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 laboratories to comply with guidelines on data accessibility proposed 

by leading proteomics journals.

Introduction

Sharing large amounts of data and software is a legitimate need 

in the field of proteomics  because replication of search results and 

reanalysis of data rely on access to the original data. Proteomics 

studies are increasingly large, relatively expensive, and, when patient 

samples are involved, often deal with irreplaceable samples. Additional 

information can be gleaned from these large datasets that can be 

valuable for other research efforts.  It is important to archive and share 

such data, particularly publicly funded data, in order to allow 

replication of results and reanalysis with new proteomics software, 

which itself is rapidly evolving and improving. Logically this point is 

straightforward to argue; however, researchers in the field of Protemics 

have additional motivation due to recent guidelines by three of the 

leading journals: Nature Biotechnology, Molecular and Cellular 

Proteomics (MCP), and Proteomics. 

A Nature Biotechnology March 2007 editorial [85] succinctly 

stated, “Beginning this month, Nature Biotechnology is recommending 

that raw data from proteomics and molecular-interaction experiments 

be deposited in a public database before manuscript submission.” 

Carr et al. in Molecular and Cellular Proteomics have repeatedly 

emphasized similar points, but most clearly the 2004 [86] and 2006 

guidelines [87] emphasize, “MCP strongly encourages (but does not at 

present require) the submission of all MS/MS spectra mentioned in the 

paper as supplemental material.” This is in addition to the conceptual 

guidelines outlined requiring sufficient information to document the 

42



search engines used and how peptides were identified.

Proteomics also elaborated on similar recommendations in 

guidelines described by Wilkins et al. [88] where academic databases 

and software used must be freely available for use, and furthermore 

“Supplementary material is encouraged. This includes protein 

identification results, expression data, and mass spectrometry peak 

lists.” Concluding with the point that such material will not appear in 

print but on-line via the journal's website.

A point not clearly detailed in these guidelines is how exactly 

proteomics research data (this data being a potential mega-data set) 

can be placed on-line and later accessed as needed. The general trend 

is that a few megabytes of data, ideally annotated spectra and peak 

lists, can be submitted as supplemental data with a manuscript, but 

the journals generally do not provide a mechanism to archive 

gigabytes of supplemental peak lists, raw mass spectra, and related 

files for indefinite public access. Individual researchers are left to solve 

this problem themselves in a variety of ways. Nature Biotechnology 

does recommend a few possible public databases, including Tranche, 

but no concise requirement for what constitutes published 

supplemental data and how to cite and access such data is provided.

Clearly and simply the goals of the Tranche project are now 

stated in relation to these journal guidelines.

1. Tranche can freely and publicly host data sets of any size. 

Downloading and uploading data to the Tranche network is 

limited by the speed of an individual's internet connection.

2. Every data set has a single, unchanging “Tranche Hash” that 

should be used for citation. This identifier is independent of the 

43



physical storage location of the data (i.e. not a URL) and the 

identifier verifies that data has not changed since publication. 

The identifier can also be calculated using standard hashing 

algorithms, independent of Tranche if desired.

3. Data can be archived for a reasonable amount of time in the 

Tranche repository. At least several years, but potentially 

indefinitely.

4. Storage is independent of file format or directory structures.  

Conceptually, these points are all a researcher need know about 

Tranche to use it to publish data with a proteomics manuscript. 

Obviously, hosting “data sets of any size” comes with the caveat that 

physical disk space must exist to store the data; however, Tranche has 

been in operation for over a year and has easily hosted thousands of 

data sets including 2005's “largest and most ambitious” [89] data sets. 

Finally, point 2 is of particular note. Tranche not only hosts data but 

does so in an ideal way for scientific citation that also proves data 

hasn't changed since publication – an obvious benefit to peer-reviewed 

data, yet one that is not explicitly mentioned in any of the 

aforementioned guidelines. 

Mass Spectrometry Proteomics Data Repositories

Several efforts exist for hosting proteomics data and annotation 

information.  These efforts significantly differ from Tranche although 

not necessarily in incompatible ways. Notable centralized repositories 

such as PeptideAtlas.org [90], and the Open Proteomics Database 

(OPD) [91]  host various amounts of raw and annotated proteomics 

data. In addition, some information management systems, CPAS [92] 
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and PRIME (https://prime-sdms.org) allow dissemination of discrete 

datasets.  In these examples, the data hosted often comes primarily 

from local collaborators and local installations of information 

management systems. More importantly, all data are hosted by a 

centralized framework. Scaling a centralized database to handle many 

terabytes of raw data can be a challenge, requiring large investments 

in both storage capacity and network bandwidth to maintain effective 

performance characteristics.  Additionally, all data sets hosted by such 

a centralized repository have the disadvantage of relying on the owner 

of the repository(s) to keep it properly on-line. Other notable 

centralized repositories such as TheGPM [93], PRIDE [94], and the 

HPRD [95] exist for hosting filtered versions of raw data and 

annotations of raw data. These resources are quite valuable, but for 

practical reasons, distance themselves from coping with the problem of 

storing the raw data associated with a proteomics experiment.  The 

overhead associated with maintaining a centralized database for raw 

spectra is significant, can interfere with performance and compete for 

resources better dedicated to development of higher level functionality.

Tranche was developed in June 2006 and similar to all of the 

previous tools, the goal was to share proteomics data; however, 

Tranche is not tied to a specific software package for processing data 

or to any particular file formats. Rather Tranche was designed for the 

sole purpose of sharing large sets of files and providing a citation 

mechanism suitable for peer-reviewed scientific literature. 

Furthermore, the intention of Tranche was that it be freely used to both 

mirror and provide data to the repositories previously mentioned, 

ideally letting groups more interested in higher-level data processing to 

not have to worry about storage and transportation of raw data. 

Currently Tranche is used in various ways, including as a data 
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repository, by the majority of the above resources as indicated in the 

example collaborations section of the on-line Tranche documentation.

Results

The ProteomeCommons.org Tranche network went on-line in June 

2006 and after a year of use has approximately 4,500 data sets on-line 

representing close to 2 terabytes of compressed data occupying 

physical disk space. The network consists of 17 dedicated servers 

spanning the globe with an aggregate storage capacity of more than 

60 terabytes. Development of Tranche is funded by NCRR and primarily 

performed at the University of Michigan; however, it is an open source 

project and multiple labs have established Tranche servers that 

participate in the ProteomeCommons.org network. Summarized here is 

the existing core network of Tranche computers, the data hosted on 

the Tranche network, and adoption progress of Tranche in the 

proteomics community. More comprehensive documentation regarding 

all of these topics is maintained in the on-line documentation at 

http://tranche.proteomecommons.org.

Core server development of the Tranche network

Tranche is a Free Open Source Software (FOSS) project where the 

model of use is that one group takes primary responsibility for code 

development and maintenance but use of the Tranche software is 

completely free and others are strongly encouraged to participate and 

reap the benefits of a system designed by bioinformatics experts [96]. 

Initial computer clusters were established around the State of Michigan 

as part of the National Resource for Proteomics and Pathways (NRPP). 

Subsequent storage resources were established by other proteomics 

groups including those working on PeptideAtlas.org [97], GFS [98], and 
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the Human Proteinpedia (humanproteinpedia.org). Additionally large 

scale data collection efforts including the ABRF, HUPO, and NCI MMHCC 

and CPTAC have provided resources for expanding the storage capacity 

of existing Tranche servers in order to adequately store data for the 

associated study.

The Tranche homepage keeps an updated Google map of the 

servers currently participating in the Tranche network, along with 

approximate storage capacity and use per site. Figure 4-1 provides a 

snapshot of this map as an example. It generally does not display 

users of Tranche that primarily seek to download data. Such users can 

also act as servers to share copies of data that are downloaded, but 

generally the map only shows dedicated servers.

Data currently available from Tranche

Tranche has no specific file format restrictions, but the majority 

of the data sets currently in Tranche are derived from mass 

spectrometry. This includes files generated directly by mass 

spectrometers and vendor-specific software programs, processed peak 

list files, output files from MS/MS search algorithms, lists of identified 

peptides and proteins, and other files related to mass spectrometry 

based proteomics studies. Typically all files or a subset of files 

associated with a single peer-reviewed manuscript are put into a single 

directory and that directory is uploaded as a data set.  Figure 4-1 

provides a breakdown of the file types by size that are hosted by 

Tranche. The majority of files are comprised of .raw files (Thermo 

Finnigan Scientific, Waltham, MA), .mzXML files [99], .DAT files in .raw 

directory structures (Waters,  Milford, MA), and .tgz files that are 

primarily the output of Sequest [100] searches. All well-known file 
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formats related to mass spectrometry based proteomics experiments.

Tranche adoption for proteomics data collection and 

sharing

Throughout the past year, the development version of Tranche 

has been used for multiple large-scale data collection efforts. Tranche 

currently contains a complete publicly accessible copy of the 

ambitiously large HUPO PPP data set [101]  and the even larger NCI 

Mouse Proteomics Technologies Initiatives  (MPTI) data set 

(http://proteomics.cancer.gov/programs/mouse/), including the ability 

to download portions of the entire data sets. Tranche was used as the 

primary tool for data collection in the Association of Biomolecular 

Resource Facilities (ABRF) 2005 and 2006 sPRG studies (http://abrf.org) 

and is currently being used for data collection in the NCI Clinical 

Proteomic Technologies for Cancer (CPTAC) project 

(http://proteomics.cancer.gov/) and the HUPO 2007 study 

(http://hupo.org).

Tranche has also aided in the collection and publication of data 

sets referenced in peer-reviewed literature. The recommended use is 

that researchers publish their data prior to submission of a manuscript 

for peer-review, similar to proposed journal recommendations. Many 

groups have elected to do this and several examples are maintained in 

the on-line Tranche documentation. Many more data sets have been 

added post-publication of manuscripts. A data collection effort 

continues at ProteomeCommons.org where many proteomics journal 

research articles are continuously scanned for new data sets that could 

be added to Tranche. The set of journals scanned includes Nature 

Biotechnology, Molecular and Cellular Proteomics, Bioinformatics, The 
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Journal of Proteome Research, and Analytical Chemistry. Currently more 

than 1,200 articles have been scanned for data sets and several 

hundred of the datasets have been requested. A database representing 

this effort is maintained at http://www.proteomecommons.org/data.jsp. 

Discussion

It is rapidly becoming feasible to share and maintain large 

amounts of proteomics data in the public domain – potentially 

indefinitely. Tranche clearly illustrates that the majority of public 

proteomics data can be hosted on-line in both secure and public access 

forms. Additionally, Tranche is free to use either on dedicated 

computer hardware or as a free data sharing service supported by 

participants in the ProteomeCommons.org network. Tranche should be 

considered one viable mechanism for publishing proteomics data sets, 

even very large data sets, that complement peer-reviewed 

manuscripts. Tranche certainly does not satisfy all the aforementioned 

guidelines set forth by proteomics journals; however, Tranche provides 

a critical capability in disseminating as little or as much proteomics 

data necessary to satisfy those guidelines.

Open-access is emphasized heavily in the design of Tranche. This 

holds true to both how Tranche shares data and how the source-code 

was developed and is maintained. Data can easily be accessed from 

Tranche by anyone, and if desired, all data on Tranche can be openly 

migrated as desired to other resources – potentially even a superior 

data sharing system. Within Tranche, users are able to chose if they 

wish to support the network, including the ability to host a copy of all 

of their data and more, or if they wish to take advantage of resources 

provided by others in the community. No centralized repository is 
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required and the network itself does not lose data if a server goes off-

line. It represents a unique tool for open-access sharing of scientific 

data. Any focused scientific community can freely use Tranche to 

efficiently share data to the limits of current computer storage and 

network speeds, and while Tranche supports flexible annotation and 

revision of data, nothing locks data into staying only in Tranche. The 

entire system is a clear example of true open-access scientific data 

sharing for data sets of all types and sizes.

Methods

Tranche was developed as a free open-source software package 

programmed in the Java programming language. Tranche is based on 

agile development philosophies for creating robust code and 

standardized e-commerce encryption algorithms to guarantee privacy 

of shared data and to prevent abuse of servers supporting the Tranche 

network. Complete source-code and documentation for all of the 

features included in Tranche are available from the 

ProteomeCommons.org Tranche website, 

http://tranche.proteomecommons.org. A primer describing how the 

core functionality in Tranche works is included in the supplemental text 

for this manuscript.

Bi-monthly user meetings are held on-line for individuals 

interested in using Tranche, developing Tranche code, reporting 

problems with Tranche, or in learning more about how Tranche works. 

These meetings are also podcast and are available from Tranche or 

iTunes. Specific topics of interest are also recorded and published in 

Tranche and on YouTube.com. See the Tranche website for details.
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Chapter 5

Tranche Implementation and Technical Details

Tranche is a peer-to-peer (P2P) network for sharing scientific 

data. This does mean that expanding Tranche's capacity to share data 

is as straight-forward as adding more computers that run Tranche. 

Theoretically, virtually unlimited amounts of storage space can be 

made available at extraordinarily fast transfer speeds; however, 

practically, the P2P paradigm enables a good storage and data transfer 

mechanism that works with existing computers and can easily grow as 

improvements are made in data storage technologies and data transfer 

media. Tranche's use of P2P does not mean that it should be equated 

to using Bittorrent, Napster, or other popular P2P programs associated 

with non-scientific file sharing, often inclusive of illicit data sharing. 

Tranche was designed from first principles to leverage the benefits of 

P2P for scientific data publication but avoid the stigmas and potential 

risks associated with certain popularized P2P networks. Furthermore, 

Tranche is designed specifically  for sharing scientific data, namely: the 

ability to explicitly cite published data, the ability to verify that data 

hasn't changed since publication, and the ability to prevent potential 

abuse of networked computers including  illicit or dangerous files.

This primer is intended to be a comprehensive introduction to 

how Tranche works; however, many technical details intended solely 

for computer programmers are left to the on-line Tranche
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 documentation at http://tranche.proteomecommons.org.  Additionally, 

the Tranche source-code and associated unit tests provide ideal 

examples for those interested in how particular features are 

implemented.

How Data is Evenly Spread Across the Tranche Network

Computers participating in a Tranche network may have various 

amounts of disk space, potentially less space than is required to host a 

complete proteomics data set. In order to take advantage of all 

possible disk space and to evenly spread data across the Tranche 

network, all files are split into one megabyte (1024*1024 byte) chunks 

– a size smaller than modern hard drives. These chunks are identified 

by a scheme that essentially creates a random identifier (see How 

Tranche Verifies Data) for each chunk that is a fixed length and 

essentially represents a number between 0 and 10181 (approximately 8 

exabytes). Computers on the Tranche network are split to take spans of 

all possible identifiers based on the relative amount of available disk 

space. For example, assume three computers are on-line with the first 

two having twice as much disk space as the third. Tranche would split 

the data that these computers store in the following way. The first 

computer would handle all data with any of the first 2/5 possible 

identifiers. The second computer would store all chunks that have next 

2/5 of possible identifiers. The third computer would store all chunks 

that have the final 1/5 of remaining identifiers.

The assumption is that if the Tranche chunk identifiers are 

random, this means that each computer on the network has a chance 

of being required to store the chunk relative to the size of the span of 

possible chunks it is responsible for. Thus, all computers will fill up 
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equally with 1MB chunks of data regardless of the actual size of space 

available on any one computer. Chunk identifiers are named “Tranche 

Hashes” or “Tranche Hash Strings” in the Tranche documentation and 

the span of all possible chunk identifiers a computer will hold is 

likewise named a “Tranche Hash Span”. Normally, all data on Tranche is 

replicated at least 3 times. In order for this to occur, hash spans are 

split so that at least three different computers on the network will be 

responsible for any given hash span.

Data uploaded to Tranche is split into 1MB chunks using the 

scheme illustrated in Figure 5-1. In order to make the most efficient 

use of  space, data is always compressed, normally using the GZIP 

algorithm. In cases where data must be kept private for a period of 

time, data is next encrypted using the NIST AES 256 standard for data 

encryption. Finally, the resulting files are split into 1MB chunks and 

evenly spread across all Tranche servers as described above.

It is worth noting that the compression and encryption encodings 

shown in Figure 5-1 are not the only encodings Tranche can provide. 

Identifiers in Tranche are based solely on the un-encoded data, 

meaning that at a later time Tranche can arbitrarily change 

compression, encryption schemes, or any other encoding without 

invalidating existing Tranche hashes. This abstraction of encodings is 

purposely done so that user data can later be re-compressed, re-

encrypted, or re-encoded if a more appropriate algorithm is desired. 

This even allows for encodings that are not yet invented.

How Tranche Quickly Finds Data Shared On The Network

Use of Tranche hash spans does more than provide an elegant 

mechanism for evenly distributing the contents of files. The hash spans 
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also provide a convenient mechanism for quickly determining what 

servers should have particular chunks of data. Periodically the Tranche 

tools query servers on the Tranche network to obtain a list of what 

hash spans are configured for all servers. This list is typically very 

small, a hash span or two per server, and generally needs to be 

downloaded only once and cached for reuse. Based on the list of hash 

spans, the Tranche tools can very quickly look up the location of the 

data on the network. Instead of having to ask all servers if they have a 

particular chunk of data, the Tranche tools can simply scan the cached 

hash spans and ask exactly which servers should have a particular 

chunk of data. Those severs can then be queried appropriately to 

access those data. Likewise, when uploading data, the same cached 

hash spans can be used to very quickly determine exactly what servers 

should get a copy of particular data chunks.

We refer to this technique as an “index-less” approach because 

there is no requirement for a single server to maintain an index of 

where all of the files in Tranche currently are. For example, consider 

how Google works when looking up data. Google periodically indexes 

as many websites as possible. When a user wants to find a particular 

web page, e.g. a proteomics website, the user would enter a query on 

Google's homepage. The magic behind Google's search then takes 

place where hundreds of databases are likely queried to find the most 

relevant websites and a list of those websites is presented to the user. 

Google is required in this process because web servers are allowed to 

store any file. There is no way to know where a file is without 

consulting a third party index. In Tranche, there is no need for a tool 

such as Google when trying to download or upload data. Instead each 

server has a defined range of files that it hosts. When the Tranche code 

wants to download or upload it can look at the list of pre-defined hash 
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spans and know immediately where to upload or download data. Figure 

5-2 enforces this concept with a figure that uses the English alphabet 

as model for Tranche hashes.

Note, a tool like Google can be generally helpful on a Tranche 

network for finding semantic information and this is why 

ProteomeCommons.org provides the meta-data indexing service, which 

is conveniently also indexed by Google. While Tranche can quickly 

download and upload data appropriately, the hash span mechanism 

doesn't allow for queries such as “show me all data from the organism 

Mouse” or “show me all data from ThermoFinnigan Scientific LTQs”. A 

third party tool can enable such queries by scanning all of the data in 

Tranche and examining the contents for meaning. Tranche also has a 

general mechanism for associated meta-data with files on the network. 

This allows arbitrary standardized annotations, e.g. 

ProteomeCommons.org's format or mzXML or MIAPE, to be directly 

linked to files hosted in Tranche. The benefit being that third-party 

index tools can systematically see these links and choose to read the 

associated, standardized annotation if the format is understood. 

Furthermore, data standards in proteomics (and general) are in a state 

of flux. By linking arbitrary annotations to files, Tranche provides a 

mechanism for accommodating any new data annotation scheme.

How Tranche Verifies Data

It is the author's opinion that Tranche provides an invaluable 

mechanism for sharing raw and processed data files.  Aside from 

handling large data sets for publishing scientific data, most 

researcher's simply don't know that they can ask for verification that 

data hasn't changed since publication. Tranche hashes assure with an 
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extremely high level of certainty that cited data has not changed since 

publication. Furthermore, this is done using standard digital hashing 

algorithms that aren't specifically tied to Tranche. This means that 

regardless of whether Tranche is used as a repository for a specific 

data set, a Tranche hash can be recalculated easily by anyone and be 

used to prove that data hasn't changed since publication. Stated in a 

different way, if data is initially published in Tranche and cited using a 

Tranche hash, it doesn't matter if the data is migrated later to a 

different repository. The data can still be checked to ensure that it 

hasn't changed since publication with or without Tranche.

A Tranche hash is nothing more than the physical bytes of output 

from three independent  hashing algorithms concatenated with an 8 

byte representation of an unsigned long (8 bytes or 2^64) appended to 

the end. Figure 5-3 provides an example. The three specific algorithms 

used are MD5 [102], SHA-1 and SHA-256 [103]. The unsigned long is in 

little endian format. It is worth noting that both MD5 and SHA-1 are 

currently considered theoretically  “broken”, loosely meaning that 

relying solely on them is no longer appropriate for digital hashing. 

However, practically, MD5 and SHA-1 exploits are largely tied to 

content bloating where the hash can be replicated by appending more, 

sometimes ridiculous amounts, of data to the end of a file. Inclusion of 

the file length in the Tranche hash prevents such abuse. Additionally, 

regardless of MD5 or SHA-1 potential faults, the Tranche hash includes 

the SHA-256 algorithm which is currently considered safe and one of 

the best digital hashing algorithms available.

Finally, one minor point needs clarification. The aforementioned 

hash algorithms work on one file at a time. This poses a problem if one 

desires to upload multiple files as a data set, which is commonly 
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expected with proteomics data. The solution Tranche provides is that if 

multiple files are upload the following is done. First, each individual file 

is uploaded and the hash is recorded. Second, all of the recorded 

hashes are saved to a file that in Tranche terms is named a “project 

file” (top right in Figure 5-1). Third and finally, the newly made project 

file itself is uploaded to Tranche. In order to cite or download the entire 

data set one need only cite the project file. The exact algorithms 

previously described can be used to validate that the file's contents 

haven't changed, and thus the list of hashes in the file are inferred to 

be legitimate. The files represented by that list of hashes can then be 

downloaded and validated automatically to rebuild the entire data set.

Why Tranche hashes are well suited for publication and 

why they look like long strings of gibberish

Tranche hashes are almost always encoded in either Base64 or 

Base16. This is because the raw bytes that represent a Tranche hash 

are not suitable for publication in a peer-reviewed manuscript. Often 

the publication's character encoding does not allow all byte values to 

be shown, but more practically, it is of questionable benefit to present 

readers with characters they have never seen before or cannot easily 

type on a standard keyboard. The solution is to convert the raw 

Tranche hash bytes into a set of English-friendly characters, which is 

exactly what Base64 and Base16 provides. Figure 5-3 provides an 

example of such a Base64 representation.

Another reason Tranche hashes are presented in Base64 or 

Base16 is that these two encodings specify exactly what characters 

can be used to represent the underlying data, Base 16 allows a-f and 

0-9 (16 different characters) and Base64 allows a-z, 0-9, and a several 
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more (64 different characters in all). Both encodings do not allow the 

hyphen “–“ or blank space “ “ or the greater-than symbol “>”, which 

are by far the most commonly inserted characters in formal 

publications or e-mails. For example, if a line of text is too long, 

normally a formal publication hyphenates it and makes two lines. 

Similarly, an e-mail will often break up long text and insert “>” to 

symbolize a reply to a previous message. Both of these cases are 

logical ways that a Tranche hash will get munged via publication; 

however, both cases are easily prevented if the Tranche hash was 

originally in either Base16 or Base64 format. The fix is as simple as 

throwing away known bad characters (i.e. “–“, “ “, “>”) and 

reconstructing the valid Tranche hash.

Finally, it is worth noting that URLs, the most commonly used 

mechanism for currently citing data, have no such ability to be 

reconstructed if damaged by e-mail or publication formatting. 

Additionally, URLs have the critical flaw that they normally provide no 

mechanism for formally checking that data has not changed since 

publication. The data a URL points to can easily be changed by 

whoever owns the corresponding web server. Considering these two 

faults it can be inferred that URLs are not appropriate for publication of 

peer-reviewed scientific data compared to a Tranche hash or similar 

solution.

How Tranche prevents abuse of computers on the network

Tranche provides a unique best effort system for preventing 

abuse of the network. The term “best effort” is used because abuse 

prevention is an ongoing process and should not be inferred to mean 

that Tranche can guarantee that illegal MP3s will never be published on 
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publicly funded servers. Further explanation is required. What Tranche 

provides is support for e-commerce grade digital signatures of data. 

More plainly put, Tranche uses the same mechanism used by the on-

line banking industry to encrypt web page traffic that contains 

sensitive information. This is possible because the related algorithms 

are public standards. Thus data that is hosted on Tranche is allowed 

on-line and archived if and only if it comes from a trusted source. 

Furthermore, every bit of data in Tranche is digitally signed by at least 

one person. This allows data to be revoked if it is ever discovered that 

an individual is abusing Tranche resources.

The entire digital signature support is based on the X.509 

standard [104] and public key cryptography [105], which means 

Tranche users must have a X.509 key in order to add data, delete data, 

or do anything other than download data. That is how trust is 

established when data is being uploaded and it works because only the 

owner(s) of a particular Tranche network can create new upload keys. 

In the case of the ProteomeCommons.org Tranche network, only the 

group collaborating at ProteomeCommons.org can make new X.509 

keys that will work on all servers. Occasionally, customized tools are 

provided that make it appear like no upload key is required, but the 

tool itself is simply hiding use of an appropriate key. Finally, these X.

509 keys have a limited lifespan, which means that it is trivial to let a 

user upload or modify data for a fixed period of time, say pre-

publication, and ensure that the user will lose such privileges later, say 

post-publication.

What cannot be provided by Tranche or the X.509 standard (or 

on-line e-commerce web sites for that matter) is that illegal or illicit 

information is blocked from signing  by a valid X.509 key. That brings 
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discussion back to the MP3 example. A legitimate Tranche user can 

sign an illicit MP3 and upload it to Tranche. Certainly that file can later 

be revoked at will and the owner of the key abused is unambiguously 

known, but that is the best that can be done at this time. There is no 

method available to currently scan all files and determine if they 

contain illegal content or not. The file format itself cannot simply be 

excluded. MP3s for example are commonly used to publish podcasts, 

including the Tranche podcast that gets published in Tranche. There is 

no method of automatically inspecting all MP3s (or similar potentially 

illicit files), interpreting what the data represents, and finally deciding if 

the information is illegal or not. Some file formats attempt to allow for 

this type of functionality, but the vast majority of scientific data file 

formats, specifically proteomics file formats, do not have such 

functionality. Thus it is impossible to strictly prevent a trusted user 

from uploading an illegal file, although Tranche makes allowances for 

easily dealing with this situation once it is identified.

Tranche provides a best effort solution to preventing abuse. In 

general, the community behind Tranche has little interest in sharing 

inappropriate data; however, Tranche still provides what we argue is 

the most practical and robust mechanism for preventing the sharing of 

illicit data. Most popularized P2P programs do not have similar 

mechanisms (often purposely so), which is why Tranche is particularly 

well-suited for sharing scientific data. Resources supported by public 

funds, particularly government grants, should be as difficult as possible 

to abuse. Tranche does provide a practical approach of ensuring this.

Conclusion and Further Information

The Tranche system acts as a data repository, allowing very large 
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data sets to be efficiently shared by partitioning (slicing) responsibility 

for sharing the data across several computers. Should one large 

computer exist that can handle all data, it can easily be used with 

Tranche to do just that; however, currently, and of more importance, is 

Tranche's ability to aggregate multiple smaller computers to 

accomplish the task of storing and archiving vast quantities of data – 

more than any one group may wish to be responsible for. Tranche 

accomplishes this goal through use of several simple tactics described 

in this manuscript. Tranche is Free Open Source Software (FOSS) and 

the implementations of all of these concepts are freely available from 

http://tranche.proteomecommons.org. Additionally, Tranche was 

developed using agile software development philosophies, meaning all 

features are strictly checked via additional code named “unit tests”. 

These unit tests themselves are all freely available with the Tranche 

source-code and provide an ideal mechanism for proving important 

concepts are implemented as expected and for providing code snippets 

that others can learn from.

The source-code itself is by far the most appropriate 

documentation of how things work, but interested individuals are 

encouraged to ask questions and participate in the Tranche e-mail lists 

and bi-monthly remote Tranche user meetings. Tranche is intended to 

be an open, free tool for benefiting the field of proteomics and science 

in general. The intention is that others will reap the rewards of this 

work, ideally without having to learn the details of how Tranche works, 

and that at least one complete solution to the data-sharing and 

publication problem in proteomics will be available for future use, 

discussion, and improvement.

61



Chapter 6

Bonanza

Unidentified tandem mass spectra typically represent 50% to 

90% of the spectra acquired in proteomics studies. These idiopathic 

spectra may fail to yield results for several reasons, including low 

signal to noise ratios, incomplete fragmentation, differences in the 

chemical structures of the peptides, co-fragmentation, among others. 

The class of unidentified spectra representing chemically modified 

peptides are of particular biological interest.  This manuscript describes 

a novel algorithm, “Bonanza”, for clustering spectra without knowledge 

of peptide or protein identifications. It also represents a new approach 

that specifically matches MS/MS spectra independently of precursor 

mass to identify both identical spectra and spectra that are otherwise 

identical but have an m/z shift for the precursor ion (i.e. potential 

modification or amino acid substitution). Furthermore, the presented 

algorithm works independently of a spectral library, allowing for 

additional identifications to be mined from existing datasets and 

approximating trends in both chemical and biological peptide 

modifications. Also described here is  a probability-based scoring 

method and a high efficiency search process. Application of Bonanza to 

a collection of MALDI TOFTOF tandem mass spectra obtained from 

approximately 250 recombinant human proteins expressed in E. Coli 

identified biological modifications as well as chemical artifacts. A
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 similar global analysis performed on isotopically tagged human 

embryonic stem cell extracts also identified trends in biological 

modifications and chemical artifacts. The approach described here 

significantly increases the number of spectra identified, improves 

identification of post-translational modifications or amino acid 

substitutions, provides a global quality assessment, and could be used 

to filter spectra prior to database searches to reduce computational 

times.

Introduction

Database searches of peak lists from tandem mass spectrometry 

datasets rarely results in unambiguous identification of more than half 

of the collected spectra using current extant search engines. The 

current focus is on the fraction of spectra that can confidently be 

identified above a scoring or probability threshold which leaves many 

spectra unaccounted for. The extremely large number of  MS/MS 

spectra acquired in a typical experiment makes it impractical to 

individually account for the unidentified spectra by expert de novo 

analysis. These idiopathic spectra include peptides that fragment 

poorly or have low signal-to-noise levels, but also include unexpected 

post-translational modifications, amino acid substitutions, splice sites, 

artifactual modifications, and the co-fragmentation events that occur 

in analysis of high complexity samples, particularly with tandem TOF 

instruments.  All of these latter categories can be of vital biological or 

analytical importance and represent an opportunity for new 

approaches to intelligently recognize previously unidentified spectra 

that could boost the total number of peptides, proteins, and post-

translational modifications identified.
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Database search algorithms such as X!Tandem [106], Mascot 

[107], Sequest [108], and similar algorithms [109-116] identify a 

significant portion of spectra generated by a MudPIT style proteomics 

experiment.  These search tools generally work by matching the 

observed fragment masses for particular parent ions to the theoretical 

fragment masses calculated from an organism-specific proteome 

database. It is not uncommon to have the majority of the spectra left 

unidentified. Explaining why this subset of spectra remains 

unidentified, and, more importantly, creating tools that assist in their 

identification, benefits the proteomics community as a whole by 

exposing additional information that search algorithms may have 

difficulty finding.  Because existing search algorithms match 

experimental MS/MS spectra against theoretical MS/MS spectra for 

peptides having the same parent mass, they can miss peptides whose 

primary structures are discrepant due to chemical modifications, amino 

acid substitutions, or other reasons.  Most search engines attempt to 

address this problem by allowing post-translational modifications and 

substitutions to be specified.  When variable modifications are 

specified, the search space rises exponentially, with increases in 

search time and false positive rates which has led to development of a 

number of approaches that attempt to minimize this effect, including 

iterative approaches that generate a smaller search library that is 

subsequently evaluated for modifications.  For these reasons, it is 

generally advisable to include a limited number of variable 

modifications during database searches.

Spectral matching tools, as described in this manuscript, can also 

be useful for extending classical database searches by identifying 

unexpected post-translational modifications.  Recent projects by Stein 

et. al (http://chemdata.nist.gov/mass-spc/ftp/mass-spc/PepLib.pdf), 
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Craig et. al [117], Frewen et al. [118], Bandeira et al. [119] and Lam et 

al. [120] illustrate the benefits of examining MudPIT data through use 

of spectral matching algorithms. The approach used in those studies is 

an orthogonal method to thos described above.  In many of the above 

studies (Stein, Craig, Frewen, and Lam) a library of existing, identified 

spectra is condensed into consensus or representative peak lists and a 

subset of the library, often spectra with similar precursor m/z  values, 

is then compared to an unknown peak list in an effort to identify 

matches to the existing library. Unlike database search algorithms, no 

organism-specific proteome database (e.g. FASTA file) is required and 

users need not specify particular peptide modifications.  If a modified 

peptide spectrum is present  in the spectral library, it can be matched 

against the equivalent spectrum from another experiment. 

Additionally, since these libraries hold data collected from laboratory 

experiments, they will exhibit more accurate fragmentation patterns 

and ion intensity values than an in silico peptide fragmentation. The 

improved quality of peptide identifications using spectral matching was 

documented in a preliminary study indicating greatly improved ROC 

profiles for spectral matching over classical search engines [120]. 

Other research such as that by Bandeira et al. begins to explore the 

concept that related spectra, specifically modified and unmodified 

forms of a peptide, often generate similar MS/MS spectra. Through use 

of spectral graphs and looking for long, shared sequences of amino 

acids, MS/MS spectra can be compared for similarity. In cases of high 

similarity the spectra can further be examined for potential 

modifications.

The work described in this manuscript is most similar to recently 

described spectral search algorithms cited above, particularly the 

Bandeira, et al. work, but differs from  previous efforts by addressing 
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the large number of unidentified spectra and the relationship of these 

unidentified spectra to spectra that are easily identified by classical 

search engines.  Presented here is the design and implementation of a 

novel approach that clusters spectra regardless of precursor m/z, 

amino acid residue modifications, or whether the peptide sequence can 

be identified by a database search algorithm. Like the Banderia work 

the intention is to identify potential modifications through comparison 

of spectra, independent of a protein database; however, the approach 

described by this manuscript does not use spectral graphs. Instead, 

result files from existing MS/MS database search engines are post-

processed to infer high-confidence identifications. Subsequently, these 

identifications are clustered to other spectra in order to infer similarity. 

Once similar spectra are identified tentative peptide identifications are 

assigned along with potential modifications that can account for 

differences in the spectra.

Our approach to spectral searching extends existing spectral 

searching in at least the following two unique aspects. First, no 

restriction is placed on the precursor mass when comparing peak lists. 

MS/MS spectra with different precursor masses may be clustered and 

identified. Second, the peak list comparison is based on both the 

observed  fragment ions and on the precursor m/z subtracted by the 

observed peaks, named  the “parent-minus peak list”. The entire 

Bonanza algorithm is further documented in the Methods section along 

with a description of performance characteristics in the Results section.

Evaluation of the Bonanza algorithm is performed on two 

different datasets acquired on Applied Biosystems/Sciex model 4700 

and 4800 MALDI TOF/TOF mass spectrometers. The first data set is the 

Aurum reference data set by Falkner et al. [121]. This data set 
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represents a controlled set of approximately 250 human proteins that 

have been expressed in E.Coli. The peak lists are well documented 

based on decoy database analysis and provide a good trued test data 

set. The second data set is a human embryonic stem cell data set 

collected by A. Yocum in collaboration with the laboratory of Dr. 

Katherine O'Shea at the University of Michigan. This data set 

represents a more realistic set of peak lists obtained in the process of a 

biological experiment.

Experimental Procedures

Pre-processing of Peak Lists – The Bonanza algorithm can be 

applied to any peak list, but preprocessing was applied to the data sets 

analyzed in this manuscript in an attempt to reduce low intensity noise 

peaks and improve memory requirements and processing time 

requirements  of the algorithm. Preprocessing was applied to all peak 

lists to take at most the top two most intense peaks per every 100 Da 

m/z. Of this list only the top 30 peaks were kept per peak list. Peak lists 

with less than 10 peaks were discarded from the analysis.

Peak List Comparison Score – A modified dot product is used 

for comparing MS/MS peak lists. Four key modifications exist. First, 

peaks are matched within an arbitrary cutoff, Δ, by default 0.3 Da for 

MALDI TOF/TOF data. Second, the intensities of each peak in each peak 

list is converted to the portion of total intensity in the particular peak 

list. Third, peaks are partitioned into two groups: matched and 

unmatched. The dot product of the matched peaks is calculated 

without change where  and  are the peak lists being compared and  

and  are respective pairs of matching peaks within the Δ cutoff.
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 The dot product of the unmatched peaks is improvised to be the 

squared intensity of the unmatched peak, either a or b respectively. 

This practice allows for unmatched peaks to penalize the final 

calculated bonanza score.

 The final score, named bonanza score, is the matched dot 

product divided by the matched dot product plus the unmatched 

(modified) dot product.

The fourth and final modification is of particular importance, and 

it is how the bonanza algorithm is capable of finding unexpected 

peptide modifications, typically single residue side-chain modifications. 

When determining if two peaks from different peak lists match or not, 

e.g. for inclusion in the matched partition, two checks are performed. 

First, a check is performed to see if the m/z ratio reported for the two 

peaks is less than or equal to the Δ cutoff. Second, a check is 

performed to see if the respective precursor mass minus the m/z ratio 

of two peaks is within the Δ cutoff. If either of the two checks is 

satisfied for a pair of compared peaks, then that pairing is added to the 

set of matched peaks. Otherwise the remaining peaks are considered 

unmatched.

Confidence Calculation for Valid Clusters – Clusterings 

presented in this manuscript are preformed by comparing all peak lists 
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against all other peak lists for each data set, regardless of if the m/z of 

precursor ions is similar or not. For each peak list, the set of scores of it 

compared against other peak lists is sorted from highest to lowest. The 

sorted scores are then used to approximate the confidence of valid 

clusterings as follows. It is assumed that the highest score will 

represent the most similar other peak list and subsequent scores will 

represent less similar peak lists up to the lowest bonanza score. Based 

on this assumption, the distribution of the 1st best bonanza scores 

should include a mix of both valid clusterings and invalid clusterings. 

Likewise, the distributions of the next best bonanza scores, e.g. 10th, 

20th, 50th, and 100th, for each peak list will also be a mixture of invalid 

and valid clusterings; however, the worse the ranking of the bonanza 

score, e.g. 100th best score, the more prominent the distribution of 

invalid clusterings should be. This idea is predicated on prior 

experience with mass spectrometer data sets and the observation that 

rarely will the same peak list be collected more than a few times. This 

observation is particularly true with the common practice of using a 

dynamic MS/MS acquisition algorithm that purposely tries to avoid 

repetitive collection of the same MS/MS scan; however, it is worth 

noting that occasionally the same peak list will be acquired numerous 

times (10 or more) but very rarely 50 times or more even on a large-

scale experiment.

In order to approximate an arbitrary rate of incorrect versus 

correct clustering, the 1st best clustering score distribution is compared 

against a aggregate of the 10th, 20th, 50th, and 100th best clustering 

score distributions. The aggregate is calculated by using the mean of 

the distributions plus two standard deviations, as illustrated in Figure 

6-1. Given any cluster score threshold an approximate rate of 

estimated invalid clusterings versus estimated valid clusterings can be 
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made. For this manuscript, results are report for an estimated 95% 

valid versus invalid clusterings. Conveniently, this objective measure of 

confidence will automatically account for parameterized changes in the 

delta m/z used when assigning matched and unmatched peaks in peak 

list comparisons.

Estimating modification trends – Bonanza clustered peak lists 

do not necessarily need peptide identifications to provide information 

about the data set. The clusters alone can be used to provide an 

estimate of  the peak lists that are being observed multiple times, 

which implies reproducible artifacts in the analysis. Additionally, the 

clusters can serve as an approximation of trends in the data, e.g. 

common modifications on peptides.  Figure 6-2 summarizes this second 

point. Provided are plots of the m/z differences between peak list 

clusterings with bonanza scores above the approximated 95% 

confidence ratio. Without knowing anything about the data it is clear 

that some m/z differences appear much more often than others. Not 

surprisingly, for the Aurum data set, nominal m/z differences of +/-16, 

+/-17, +/-18, and +/-32 Da dominate the clusters. Using the HUPO-MS 

terminology (used throughout the manuscript), these changes could 

easily be argued to be oxidation of peptides and Glu->pyro-Glu and 

Gln->pyro-Glu of N-terminal residues. Analysis of the MS/MS data and 

associated peptide identifications is later provided along with similar 

analysis describing dethiomethyl as the source of the clusters of 

nominal mass differences at +/-42, and +/-64 Da. However, 

juxtaposition of the Yocum data set, an iTRAQ experiment, with the 

Aurum set provides significant support for the idea that obvious trends 

in Figure 2 may be taken at face value. Dominating the Yocum cluster 

trends are nominal m/z differences at +/-144 Da. These m/z differences 

correspond well to the known iTRAQ4plex modification (~144.1). 
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Subsequent information regarding MS/MS analysis and peptide 

identifications is provided later in the manuscript to further analyze 

these trends.

Peptide Identifications – The Bonanza algorithm is not 

intended as a search engine per se and thus does not have a 

component that performs MS/MS database searching that identifies 

peptides to peak lists. Instead Bonanza relies on other search engines 

to provide this functionality and the Bonanza algorithm is restricted to 

inferring peptide identifications based on clusters of peak lists where at 

least one of the peak lists is identified. This design feature allows 

Bonanza to work with existing MS/MS identification software as a tool 

to help account for more of the observed peak lists. Furthermore, 

Bonanza analysis can also be performed on existing bioinformatics 

analysis, as demonstrated with the Aurum data set, which is 

convenient if post processing a large set of previously analyzed data. 

Bonanza also lessens the requirement to explicitly specify potential 

modifications when performing an MS/MS database search. If both 

modified and unmodified forms of a peptide are acquired in the MS/MS 

analysis then only the unmodified form needs to be identified by the 

search engine. Bonanza can cluster the modified form with the 

unmodified and help infer the appropriate identification. This practice 

is appealing because most MS/MS search engines degrade significantly 

in performance, both in the accuracy of peptide identifications and the 

speed of the searches when multiple partial modifications are 

specified.

Results from three and four MS/MS search engines were 

incorporated into the analysis of the Aurum and Yocum data sets, 

respectively, i.e., Mascot [121], X!Tandem [122], X!Tandem with the 
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pluggable k_score algorithm [123], and Sequest [124]. In the case of 

the Aurum data set, the pluggable k_score algorithm was not used 

because this manuscript is reanalyzing the original search results, 

which do not include k_score. All searches were performed with similar 

parameters (see supplemental data for details) and on the same FASTA 

file. A decoy database search strategy was used as previously detailed 

by Falkner et. al [125]. In short, the strategy combined the August 

2006 Human IPI database with a reversed version of of the same 

protein sequences. Each reversed entry is noted by including “R” in the 

protein's accession number. Searches were performed normally by 

each of the software packages and then filtered to keep only matches 

above a 95% confidence threshold. The 95% confidence threshold was 

determined by ranking the respective search engine results by score 

and counting the number of known decoy matches present. The 

threshold was used where a ratio of 190 (95 * 2) peptide identifications 

exists for every 5 known decoy peptide. The resulting lists of peptide 

identifications are the ones used in the analysis presented by this 

manuscript. The complete search results are included in the 

supplemental information included with this manuscript. These search 

results do contain all search parameters used.

It is important to comment that the decoy strategy we used in 

this manuscript is not an adequate method for comparing the 

individual search engines nor do we suggest the approach as a 

superior peptide identification method. No attempt was made to 

optimize individual performance of the search engines, nor were any 

enhanced search features used to help find unusual potential 

modifications, point mutations, or the like. The aggregate set of 

identifications is only intended to represent a reasonable base analysis 

of the data, something that also represents normal practice for initial 
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searches of similar data sets.

Inferred peptide Identifications – Inference of peptide 

identifications was provided to demonstrate that the vast majority of 

Bonanza clustered peak lists to represent a logical modification of a 

amino acid side chain. In the simple case where only one unique 

peptide identification exists, all other peak lists in the cluster are 

assumed to have the same amino acid sequence. If two peak lists do 

not have the same precursor m/z then the difference between the two 

peak lists is applied as a potential modification that might have 

occurred to any of the residues in the peptide. The “best” match was 

found by summing the intensities of the peaks that match the 

theoretical b- and y-ion series for that peptide. The highest aggregate 

intensity match is considered the best match. In cases where multiple 

candidate peptide identifications were present in the same clusters, all 

were considered when determining the best match. The unchanged, 

original peak lists were used in this intensity comparison. Not the 

filtered peak lists as described previously.

The resulting identifications aggregated from the individual 

decoy analysis and inferred by Bonanza are provided as comma-

delimited files in the supplemental data. The results also include 

statistics for each match that allow for manual examination of the 

inferred peptide sequences. The data tables may easily be opened, 

viewed and column-sorted by either Microsoft Excel or the free 

OpenOffice.org software for simplified manual inspection.

Description of datasets – The Aurum data set is a published 

reference data set by Falkner et al. [125]. Approximately 246 human 

proteins were expressed in E.coli, purified, checked for purity by SDS 

PAGE, the gel bands were individually digested by trypsin, and 
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analyzed individually via a ABI 4700 MALDI TOF/TOF. The data set 

includes a similar decoy database analysis as described under 

Methods. The same decoy database analysis is used by this study.

A human embryonic stem cell data set collected by Anastasia 

Yocum in collaboration with Dr. Kathy O'Shea was used as an 

experimental data set to test the performance of the Bonanza 

algorithm. The data set consisted of three biological replicates that 

were each analyzed in triplicate for a total of nine 2D LC runs with each 

sample being spotted across two MALDI target plates. A total of 18 

plates were used in MALDI-MS/MS analysis via an ABI 4800 MALDI 

TOF/TOF. The data set is of particular interest, because it is expected to 

contain many replicates of the same spectra and derived peak lists. 

Like the Aurum data set, the Yocum data set was digested with trypsin 

prior to spotting on the MALDI target plate; however, unlike the Aurum 

data set the Yocum data set was blocked with MMTS at cysteine 

residues, labeled with the iTRAQ reagent, and the source protein 

samples were not checked for purity via 1D PAGE. Further description 

of the Yocum hESC data set is included in a manuscript pending 

publication. Details regarding the Yocum hESC manuscript may be 

obtained from the communicating author.

Performance Characteristics – The Aurum data set (10,000 

peak lists) was analyzed by Bonanza in approximately 5 minutes, and 

the Yocum data set (42,000 peak lists) required approximately 1 hour 

and 8 minutes. Data analysis was performed on a 2.0 Ghz Pentium M 

computer with 1GB of RAM. The source-code demonstrating the 

Bonanza algorithm is not particularly optimized for speed; however, it 

is designed to take  similar, if not much less, time than the related 

MS/MS analysis. The time requirements for the two data sets presented 
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in this manuscript demonstrate that it is feasible to run the Bonanza 

algorithm in-line with an existing proteomics data analysis pipeline.

Availability

Source-code and documentation for this project as well as the 

Aurum dataset are made freely available under the Apache 2.0 license. 

Copies of these files may be requested from the authors. The data sets 

and result files for this manuscript are made available through Tranche 

(http://tranche.proteomecommons.org).

The files related to the Aurum data set can be downloaded using 

the following Tranche hash.

96rx5lCBh6SNpGyuAsE1fSEn3sDxwmHITFfC9uQMNob12r36Xqg2+uFHJ46Jd
VrZB2/UwdbWvizBfigbzJMtpxV9/AQAAAAAAAAFCg==

The hESC data set (Yocum data set) can be found in  Tranche 

using the following hash.

ClX0eNVtoXZrFA6oixm6tImsBvGtrJi7bZCwwJjohqBGaGZDruH0KkntDx9Mw
CXSDRfNLuajYHTtp90/2WYivOjhCxQAAAAAAAALew==

The hESC data set is not included with the public Bonanza data 

and source-code because public release of the data is pending final 

acceptance of Dr. Yocum's hESC manuscript. The Tranche hash 

provided here references the encrypted project and the files will be 

released for public access when the stem cell manuscript is in press.

Results and Discussion

Several conclusions regarding use of spectral clustering to aid 

analysis of MS/MS data can be drawn from our analysis. The first 
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observation is that Bonanza allows significantly more spectra to be 

identified (484 in the Aurum data set and 3,650 in the Yocum data set) 

than high-confidence decoy analysis alone. Expanding upon the plots 

presented in Figure 6-2, it is clear that many of these newly identified 

spectra are modified forms of identified peptides. While identifying 

these spectra may not contribute to more unique peptide 

identifications, Bonanza does provide a valuable quality control 

mechanism through summation of trends present in clusters of peak 

lists. For example, techniques such as iTRAQ or even reducing and 

blocking disulfide bonds can be globally evaluated for completion – a 

complete reaction should primarily yield a single form of the peptide, 

leaving minimal observable other forms via Bonanza analysis. In 

addition, sample quality can be globally evaluated for extreme 

oxidation, Glu->pyro-Glu, Gln->pyro-Glu and similar, commonly 

observed modifications. It is important to point out that Bonanza's 

ability to provide this global view of data sets is in addition to any use 

of Bonanza to do same-dataset or cross-dataset spectral searches. 

Identification of significantly more spectra can also contribute 

significantly to the quality of quantitative studies by providing 

considerably valid identifications.  In the same manner, it could also be 

used to contribute to peptide scores.

Table 6-1 summarizes the Bonanza analysis including peak lists 

kept after filtering, unidentified clustered peak lists, identified peak 

lists and inferred peptide identifications. This analysis indicates that 

Bonanza is finding matches that were not identified by search engines 

alone, and the included listings of identifications in the supplemental 

material support that these identifications are of similar quality to that 

of the search engines. However, the caveat is that Bonanza is not 

actually finding any new peptide identifications compared to the decoy 
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analysis. The inferred identifications are either modified forms of the 

same peptide or similar spectra that were not identified using search 

engines alone.

Although Bonanza makes no new peptide identifications, it 

provides significant insight into both of the data sets described in this 

manuscript.  It does so by allowing a larger fraction of the spectra to be 

accounted for, leading to identification of experimental artifacts and 

potential post-translational modifications. For example, initial Bonanza 

analysis of the Aurum data yielded the global view in Figure 6-2 a 

where the differences in mass within clusters are binned in one dalton 

increments.  The data shown has major peaks at +/-14, +/-16, +/-17, 

+/-18, +/-32, +/-46,  +/-64, and +/- 128 Da. These major peaks 

represent abundant modifications to peptides in this preparation. Note 

that the mass discrepancies in Figure 6-2 occur in pairs equidistant 

from the origin because the modified and unmodified versions of these 

peptides are not distinguished. Actual modification trends and 

corresponding amino acids can be identified by looking at the trends of 

the decoy analysis and inferred peptide identifications. Table 6-2 

provides a summary of the top residue side-chain modifications for 

both data sets of interest. Clear trends at methionine oxidation (+16) 

not only on methionine residues but also tryptophan and histidine 

residues. Additionally, dioxidation (+32) modifications are also present 

in lower abundances. The potentially mysterious +/-14 Da trend is also 

readily explained by the abundance of propionamide modifications, 

which would have prevented the expected carbamidomethyl 

modification (71 – 57 = 14). The Aurum data set was purified using 

PAGE.

Figure 6-3 summarizes the reasoning behind correctly 
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interpreting clusters with -46 Da precursor differences. Based on 

Lagerwed et. al's [126] analysis. Neutral loss of  -64, or -80 is routinely 

observed for the unmodified, singly and doubly oxidized forms of 

methionine respectively. Further examination of the MS/MS peak lists, 

Figure 6-4b provides an example that contains both -46 and -64 losses 

indicating a 2 Da shift is required to best match the observed b- and y-

ion series. Closer examination of the MS spectrum suggests that the 

neutral loss must be due to incomplete metastable decay prior to 

MS/MS fragmentation, and the intermediate form observed in MS mode 

incorrectly appears 2 Da higher than the neutral loss with only a minor 

peak present at the appropriate neutral loss mass. Bonanza analysis 

uncovered this situation, and interestingly, it represents a modification 

that the MS/MS search engines used in this study can not be told to 

look for. No known mechanism exists in these algorithms to specify 

that a potential modification should be considered that appears to be 2 

Da lighter in the MS scan. 

However, a small fraction of the spectra mapping to the 14 Da 

adduct peak do not contain cysteine but do contain many high quality 

b/y ion series  that confirm methylation of E and D residues.  The 

source of the methylation could be endogenous methyltransferase 

activity in E. Coli which has been reported for expression of 

recombinant proteins in E. coli [127,128].  It more likely arises from the 

colloidal Coomassie Blue gel staining procedure which is performed in 

acidic methanol. No clear evidence for simple amino acid substitutions 

were observed for this data set.  The +/-14 Da trend alone yielded two 

significant insights into this dataset.  While most search engines allow 

inclusion of propionamide as a variable modification, it is not always 

chosen.  Additionally, variable methyl esterification of Asp and Glu 

residues is also provided for, but is not expected and rarely selected to 
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keep search times lower and minimize false positives.  It is also worth 

noting that the mass shift for a Glu for Asp substitution is the same as 

for methyl esterification of an Asp residue.

More, obvious expected trends in the Aurum dataset including 

+/-17 and +/-18 are explained by cyclization of N-terminal Glu and Gln 

residues respectively. Other minor, but significant trends were also 

identified at +/-128 and -/+156 Da and explained by missed tryptic 

cleavages at lysyl and arginyl residues respectively. These minor 

trends were validated by MS/MS analysis and by inspection of the 

original protein sequence FASTA file for dibasic sites. Almost all of 

these were semitryptic peptides or were due to incomplete cleavage at 

dibasic sites (KK, KR, RK, RR). Trypsin can cleave between the two 

residues or on the C-terminal side of the dibasic site.  If Trypsin cleaves 

the latter site, little additional cleavage occurs because trypsin is not 

an efficient exopeptidase.   These minor trends were also observed for 

the Yocum data set, but with lysyl residues being iTRAQ modified.

The global view of the Yocum data set provided in 6-2b has 

several different features than for the Aurum data set 6-2a. 

Interestingly, the significant methionine side-chain neutral losses are 

not present, nor is the significant nominal +/-14 Da peak present. The 

experimental protocol supports both of these observations as the 

proteins were not expressed in E.Coli and the sample was not 

subjected to polyacrylamide gel electrophoresis (PAGE). However, the 

Yocum data set is dominated by nominal peaks at +/-144.1 and +/-272 

Da. The +/-272 Da trend is easily identified as iTRAQ modified lysine 

residues – similar to the +/-128 Da trend in the Aurum data set. The 

+/-144.1 trend corresponds to the mass of the iTRAQ4plex 

modification.  Analysis of the MS/MS data determined that incomplete 
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N-terminal modification by iTRAQ explains the majority of the trend, 

but variable modification of lysine, tyrosine, threonine and serine 

residues (K, Y, T, and S) are also clearly present. Variable modification 

of tyrosyl, threonyl, and seryl side chains has been previously reported 

as known side reactions of the iTRAQ reagent and are included in ABI's 

MS/MS search engine software Paragon [129]. The extent of incomplete 

N-term modification by iTRAQ was anomalous and is attributed to the 

slightly lower pKa value of N-terminal amino groups relative to the 

epsilon amino group of lysyl residues.  Slight changes in pH values of 

reaction buffers can have significant effects on the relative degrees of 

nucleophilicity for these two classes of amino groups. This result could 

also arise from limiting concentrations of the iTRAQ acylating reagent. 

Variable N-term modification by iTRAQ does not seem to affect the 

quantification in this case, but is a cause for general concern since it 

can reduce the number of peptides identified if the search engine is 

not informed to treat N-terminal iTRAQ tags as variable and also 

because slight changes in labeling conditions could  potentially lead to 

significant changes in reactivity.

It is interesting to observe that Bonanza analysis did not account 

for every peak list collected (Table 6-1).  Excluding the singleton 

spectra that are not assigned to clusters, approximately 42% (2,274) of 

the clusters in Aurum and 58% (14,023) of the clusters in the Yocum 

data set are not identified. We propose that these while these peak 

lists represent reproducible fragmentation patterns, they may 

correspond to peptides that could not be identified due to features of 

the search engines or the search parameters selected. They could also 

represent contaminating compounds and peptides, repetitive electronic 

noise, or other analysis artifacts. It is unknown if all of these 

unidentified clusters represent peptide spectra that existing MS/MS 
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search engines can be enhanced to identify or that the FASTA database 

employed in this study does not contain these genes; however, the 

clusters do represent a reasonable set of peak lists to examine for 

further novel peptide identifications.

Concluding Remarks

This manuscript describes the use of spectral clustering to 

effectively identify protein modifications through a non-targeted 

approach.  When used to identify general trends in mass shifts, it can 

be an effective tool for quality control, identifying chemical artifacts 

and incomplete chemical reactions.  It can also reliably identify post-

translational modified peptides in a non-targeted way without 

significantly increasing the search time.  This approach differs from 

targeted approaches that find only modifications that are specified. 

The quality control application of this approach can be used to help 

improve existing protocols for sample preparation – ideally leading to 

reductions in undesired side reactions or  incomplete modifications.

Spectral clustering allows unanticipated modifications to be 

detected with good efficiency even when they are infrequent events. 

Application of an objective scoring threshold to spectral clustering 

provides an effective data-set specific method of determining correctly 

clustered peak lists. It is important to consider, however, that the more 

abundant a modification is, the more apparent it will be in the mass 

difference plots used to visualize trends in precursor mass shifts.

Beyond the applications highlighted in this manuscript, it is worth 

considering other potential applications of Bonanza-style spectral 

clustering.  Many spectral clusters were observed in this study using 

the Bonanza software for which no member provided a significant 

81



peptide identification despite relative confidence in the validity of 

observed clusters.  Often these clusters included common mass shifts. 

Such clusterings are intuitively a good place to attempt and improve a 

MS/MS search algorithms performance because other peak lists in the 

same data set have the same trends.  

Another approach that could also be taken advantage of is to 

improve data acquisition by dynamic exclusion of precursor masses 

corresponding to the major m/z difference trends observed using this 

algorithm. Omitting known analytical artifact peaks can allow 

acquisition of more unique spectra. Alternatively, one could target 

known analytical modification peaks in order to increase the 

confidence of peptide identifications. These tactics could be 

particularly helpful for any data set being analyzed repetitively or that 

has been split into several fractions.

An important assumption that Bonanza makes is that the 

algorithm requires both a modified and unmodified form of a peptide in 

order to identify a modified peptide. This is a reasonable assumption 

for many post-translational modifications, particularly those used to 

modulate function. However, there is a significant fraction of post-

translational modifications that are stoichiometric that would be 

missed in an intra-dataset search.  For the analyses presented in this 

manuscript, clustering was performed within a single data set.  When 

stoichiometric modifications are present, this problem can potentially 

be alleviated through clustering across multiple data sets or by use of 

a spectral library of proteins not post-translationally modified. Finally, 

unclustered spectra have some  value because they will include most 

of the noise spectra which can be useful in  diagnosing  the properties 

of random spectral noise.
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The Bonanza algorithm allows us to discover a large portion of 

the previously unidentified peak lists in the Aurum and Yocum data 

sets. These results indicate that this approach can be of benefit for 

analysis of MALDI tandem mass spectra.  Application of this approach 

to electrospray ionization (ESI) MS/MS spectra is also practical and will 

be pursued in future studies. We found Bonanza's analysis particularly 

useful  because while we did attempt to provide a robust, multi-search 

engine analysis of the initial data set that is limited to high-confidence 

identifications, the use of Bonanza allowed many more unidentified 

spectra to be confidently assigned. Bonanza unambiguously identified 

many analytical modifications of identified peptides without requiring 

the MS/MS search engines to explicitly search for them. The use of 

spectral clustering represents a  considerable improvement in the 

identification of modifications because incorporating potential 

modifications into MS/MS search engines can result in lengthy analysis 

times and an increased number of false positives. The non-targeted 

nature of spectral clustering makes no assumptions about the 

presence of specific modifications and so will allow detection of 

unexpected modifications or even previously unknown modifications.

Bonanza successfully found many expected modifications, 

including oxidation and formation of N-terminal pyroglutamyl residues. 

Bonanza also found a number unanticipated  but retrospectively likely 

modifications, including methyl esterification, certain variable 

modifications by iTRAQ, partial metastable decay during neutral loss of 

oxidized methionine side-chains, and polyacrylamide adducts. This 

implementation of spectral clustering successfully found these 

modifications in a non-targeted way. Additionally, it is clear that the 

non-targeted approach used by Bonanza can provide valuable quality 

control feedback regarding experimental protocols that existing 
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targeted approaches used by MS/MS search engines are not designed 

to find.  The application of spectral matching to accommodate the 

multiple charge states observed for ESI data is a logical extension to 

the algorithm. It is also worth noting that Bonanza is essentially a 

spectral comparison tool. From this perspective, the very efficient core 

algorithms could also be applied to cross data set analysis, acting as a 

spectral matching tool similar to X!Hunter, SpectraST, and the NIST 

peptide fragmentation library tool.
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Chapter 7

Conclusion

The body of work presented in this thesis presents several novel 

advancements in the field of proteomics with a focus is on the 

development of MS/MS search engine algorithms and data sharing. By 

focusing on these topics, the overall field of proteomics was reduced to 

several tractable problems, which were addressed by this work. Clear 

themes of open-access, open-source, and building upon existing tools 

are present in each project. These themes are similar in importance to 

the scientific work itself because it makes the overall body of this 

thesis work more palatable for others, potentially even extend. 

Certainly the success of the Tranche project is largely due to the 

openness of both the source-code and the data that is shared by the 

tool.

The ProteomeCommons.org website continues to act as a 

community resource for general dissemination of proteomics 

information, including tools such as the JAF, IO Framework, PFSM, 

Aurum data set, and Tranche. The website itself is in a maintenance 

mode with regular updates relating to news, tools, and data sets. It 

does not appear as the web site's more developer orientated 

resources, namely the subversion repository, are tools that many 

individuals in the proteomics community desire; however, the news, 

tools, and data sets continue to drive more and more traffic to the 
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website. It is fully expected that ProteomeCommons.org will remain 

operating in its current capacity for as long as the National Resource 

for Proteomics and Pathways (NRPP) exists. Maintenance of the 

resource is relatively easy compared to the amount of use the site gets 

and the benefits it has for the proteomics community. Overall, a 

successful web site and lasting resource for the community.

Out of all of the tools developed on ProteomeCommons.org the 

Tranche Project is perhaps the best example, and it certainly gets the 

majority of use. Prior to Tranche it was difficult to easily publish and 

associate a complete data set with a manuscript. Now, it is relatively 

easy to accomplish this task and resources such as 

ProteomeCommons.org even provide an index of all such resources. 

This represents a fundamental shift in the way that scientific data sets 

are shared. Data transfer is greatly accelerated. It is now possible for 

anyone to access the raw published data and it is relatively easy to 

ensure that the data persists indefinitely. A further, very important, 

point is that Tranche does not fundamentally change the concept of 

data sharing in science. Rather Tranche's role is to greatly accelerate 

the process of sharing data and resources. Previously the plumbing did 

not exist for easily sharing files. Yet, if sharing was desired groups 

would agree upon a collaboration and cumbersomely figure out a way 

to send the required information. Currently with Tranche, if data 

sharing is desired, groups still agree upon terms, then simply click 

upload or download for the appropriate data sets. Nothing is 

fundamentally different about the data itself or the negotiation of 

86



collaboration. This point is important because it is often missed. 

Primarily, I believe, due to the technophobia of researcher's that have 

long been entrenched in their computer-less discipline. This is likely the 

largest obstacle to overcome for widespread adoption of Tranche and 

the acceptance of a revolutionary approach to scientific information 

sharing. There is likely no easy way to bypass this obstacle; however, 

ease of use and open-source and open-access are all key features of 

Tranche that will facilitate its adoption. It is likely that the technology 

will always remain a mystery to many users, but the integrity of the 

tool's code and freedom of use are readily accessible concepts that all 

seem to easily consume.

The success of Tranche is not intended to dwarf the results of 

Bonanza. Work on the Bonanza algorithm shows great promise for 

leveraging the vast amount of data in Tranche and refining existing 

analyses to discover many previously unidentified peak lists and 

unexpected protein and peptide modifications. Given enough time it is 

likely that Bonanza style analysis will be both common place for MS/MS 

data sets and the technique will occupy much more mind share 

amongst scientists compared to Tranche. Several critical omissions 

existing in contemporary MS/MS database search algorithms. Most 

notably are those of neglect to do cross spectra comparisons and the 

inability to identify post translational modifications that were not 

previously expected. The initial Bonanza example work clearly shows 

that both of theses omissions can readily be resolved. Perhaps not 

completely, but to a very significant extend. Furthermore, obvious 
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future work exists where Bonanza's generic scoring function is 

optimized to account for specific, fragmentation-altering post 

translational modifications such as phosphorylation and glycosolation. 

Continuing this work would be a fantastic opportunity for future 

researchers, and certainly the most logical continuation of this thesis 

work.

It is with great satisfaction that the software created during this 

thesis work is all available as free open-source software (FOSS). This 

type of tool development is possibly the best method of enabling both 

replication of previous work performed and complete public critique of 

the work – two key components of the scientific method. Conveniently, 

the FOSS model also enables anyone to freely access and use the 

software both in its compiled form and in source-code. This greatly aids 

in allowing other researchers to try and use the software. It also lets 

software developers openly critique the design of aspects of the code 

base and or or modify the code to fit specialized needs. Aside from the 

aforementioned benefits, one of the most satisfying aspects of the 

FOSS development for this thesis work is that it was directly supported 

and encouraged by the National Resource for Proteomics and Pathways 

(NRPP), including sponsors in part the National Center for Research and 

Resources (NCRR) and National Cancer Institute (NCI). Hopefully the 

work presented in this thesis, regardless of its scientific value, will 

serve as a good example of how FOSS development can both benefit 

scientific research and accelerate adoption of software tools.

A final, yet clearly present, theme in this thesis is that of working 
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with the active areas of the proteomics community, not in competition 

with. It seems that far too many researchers are still attempting to 

create the next best MS or MS/MS search algorithm that will deprecate 

the reset. If not an obvious fault with this mentality, the Sequest 

algorithm developed in the early 1990's is still considered one of the 

best viable tools. Certainly room exists for competition and 

improvement but it is important to emphasize that the work presented 

in this thesis purposely avoided an obvious reinvention of the wheel – 

primarily due to foresight based on ProteomeCommons.org. The major 

software tools of this thesis work, Tranche and Bonanza, both work with 

existing search algorithms. Tranche enables facile access to data sets 

for both reproduction of prior analyses and better testing against a 

variety of data. Bonanza leverages the work that has been put in to 

existing MS/MS search algorithms and aids greatly in refining the 

parameters used by the tools so that easily identifiable data is not 

missed.

In conclusion, it seems most appropriate to comment on future 

uses and potential development of the tools described by this thesis, 

specifically Tranche and Bonanza. Tranche has matured into a relatively 

stable and widely used tool. The NRPP has funding to continue support 

of Tranche for several years to come, and it is well within reason to 

expect Tranche to thrive as a data sharing tool for proteomics via the 

NRPP. An obvious extension to Tranche would be to extend use to other 

disciplines of science outside of proteomics. Tranche itself is not tied 

specifically to proteomics. Existing efforts are underway to use Tranche 
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in the fields of glycomics and glycoproteomics, metabalomics, and 2D 

gels; however, only time will tell how successful those efforts are. 

Continued use of Bonanza on the majority of data sets present in 

Tranche is an appealing concept. Currently, Bonanza has shown that 

single data set analyses and a handful of data sets from a single mass 

spectrometer can yield significant insights into artifacts present in both 

the mass spectrometer and the experimental protocols used. 

Automated use of Bonanza with most any existing MS/MS search 

algorithm is clearly of benefit; however, this type of automated use 

would be of particular benefit to the proteomics community if the 

majority of data sets in Tranche were analyzed. Such results would 

provide an excellent approximation of search parameters appropriate 

in specific mass spectrometer and MS/MS search engine combinations. 

Furthermore, Bonanza can accurately estimate unexpected peptide 

modifications and unidentified portions of MS/MS data sets that are 

repeatedly observed. It would be intriguing to have such large-scale 

multi-dataset Bonanza results to work with, and the Bonanza work 

presented in this thesis grows into such use or inspires other tools to 

be used in similar ways.
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Figure 1-1 – An informatics focused overview of a shotgun proteomics 

experiment. (a) Isolated and relatively purified proteins are prepared. 

(b) Trypsin is used to cleave the proteins into smaller peptides. (c) 

Peptides are ionized in to a mass spectrometer for analysis. (d) Peak 

lists are analyzed with software to infer likely peptides present. (e) 

Further software-based analysis infers likely proteins present.
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Figure 1-2 – Example Mass Spectra. (a) MS and (b) MS/MS. MS data 

typically represents the mass of ionized tryptic peptides. MS/MS data 

typically focuses in on a particular ionized peptide to help determine 

the amino acid sequence.
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Figure 2-1 – Example PFSM figure(A) A peak list missing the second 

ion in the ion series TCGK – or since it is ambiguous, TGCK. The m/z 

difference is annotated with [C,G] because it is assumed that the m/z 

of adding the two residues gives the appropriate m/z to bridge the ion 

series. (B) The graph conversion of the given peak list allowing arcs to 

have multiple residues. (C) The NDFA conversion of the graph in part B, 

illustrating how to convert multiple residue to a single residue 

transitions. The solution is to create all combinations of the residues. 
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Figure 3-1 – An example SDS PAGE check for protein purity. Each 

protein in the Aurum Dataset was checked for purity using a hand cast 

polyacrylamide gel run under protein denaturing conditions (SDS 

PAGE). Multiple proteins were run on the same gel and each protein 

was run in two lanes. Proteins are labeled by their Aurum identification 

number. Only the predominant band was excised, digested, and 

analyzed using MS/MS. A gel image is included with this manuscript's 

data for every protein analyzed and the gels are linked in the protein 

summary report (Figure 2). Gel images also include a protein standard 

ladder in the first lane (approximate kDa labeled) and the percent 

polyacrylamide used to cast the gel in the bottom-right. 
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Figure 3-2 – Protein report file structure and partial example. (A) Block 

diagram describing the information in each of the protein report files 

included with the supplementary information. The intention of these 

pages is to provide a human-friendly summary for each protein 

analyzed. (B). Example protein coverage information from a protein 

summary page. This is only a portion of the summary page highlighting 

total protein coverage and coverage of expected peptides. Not shown 

in the figure are the complete statistics, peptide matches, and links to 

spectra, peak lists and other documentation.
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Figure 4-1 �  A snapshot of the Tranche core servers. The Google map widget 

was used to show the following snapshot of the core Tranche servers. These are 

servers dedicated to sharing data on the Tranche network.
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Figure 4-2 �  Snapshot of file types in Tranche. Files in Tranche listed by size with 

information about the number of files. Files with .dat are primarily from 

Water's .raw directory structures, and .tgz are primarily the results of Sequest 

searches.
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Figure 5-1 – Overview of the data upload process in Tranche. Tranche 

automatically handles compression, encryption, splitting of files, and 

replicating data on multiple servers.
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Figure 5-2 – Illustration of a Tranche hash span. Content is evenly 

spread across servers in the Tranche network by pre-configured “hash 

spans”. This ensures that at least a certain number of servers, 

normally 3, get a copy of each bit of data.
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Figure 5-3 – Structure of a Tranche Hash. Tranche uses existing 

hashing algorithms to create a secure and unique identifier for data 

sets. The scheme is a combination of the MD5, SHA-1, and SHA-256 

hashes plus the length of the file.
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Figure 6-1 – Distribution of bonanza scores. Distributions of Bonanza 

scores for the all peak lists compared against all other peak lists for the 

Aurum and Yocum data sets, respectively. The ratio of the 1st best 

cluster score compared to the aggregate cluster score distribution is 

used for approximating valid peak list clusterings. Lower ranked cluster 

scores (10th, 20th, 50th, 100th) quickly converge to a presumed 

distribution of invalid clusterings.
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Figure 6-2 – Histogram of m/z precursor differences in Bonanza 

clustered peak listsHistogram of m/z difference between clustered 

peak lists. Only clusterings where the bonanza score is above threshold 

are plotted, and the +/-6 Da range is omitted. In both plots 0 Da is the 

highest bin (see appendix A for complete plots). Significant trends can 

be observed, which support the proposed use of Bonanza for 

identifying unexpected modifications.
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Figure 6-3 – Example of observed methionine side-chain loss in MS. 

Examination of the Aurum MS data helps explain an unusual neutral 

loss. In light gray is the actual MS spectra. The black lines are the 

called peaks from the peak list. The masses 1,189.7, 1,835.7, and 

1,851.7 are the respective unmodified, oxidized and doubly oxidized 

peptides. If any form of the peptide has a neutral loss of the side-chain 

a peak appears at a net nominal loss of -48 Da from the unmodified 

peptide.
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Figure 6-4 – Select modifications identified by Bonanza and confirmed 

by MS/MS peak lists. (A) and (B) are peak lists clustered together. The 

decoy database search identified the unmodified peak list (A) to be 

QVAEQFLNMR and Bonanza inferred (B) with the neutral loss of the 

methionine side chain. (C) and (D) are another set of peak lists 

clustered together. The decoy database analysis identified (C) as 

YPHCAVNGLLVAEK with a carbamidomethylated cysteine. Bonanza 

inferred the artifactual acrylamide adduct due to PAGE used for 

purification.
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Aurum Dataset Yocum Dataset

Starting Peak Lists 9,987 41,942

Filtered Peak Lists (>10 peaks) 9,350 37,772

Peak Lists w/o Clustering 3,998 13,727

Unidentified Clusters 2,274 14,023

Decoy Analysis Peptide Identifications 2,594 6,372

Bonanza Inferred Peak Lists 484 3,650

Table 6-1 – Overview of peak lists and clustering identifications during 

Bonanza analysis for the Aurum and Yocum data set. The Yocum data 

set represents several MudPIT experiments, and is much more 

representative of a shotgun proteomics experiment compared to the 

purified proteins used in Aurum.
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Bonanza (m/z); count Yocum (m/z); count

1 C(57); 760 K(144); 4,607

2 M(16); 342 Y(144); 1,345

3 W(16); 82 C(46); 731

4 C(71); 56 N-term (144); many*

5 H(16); 45 M(16); 148

Table 6-2 – Summary of the top 5 modifications based on identified 

and bonanza-inferred peptide identifications. Two interesting 

observations. First, the Aurum data set appears to have many more 

oxidation events, especially considering it has 1/4th the amount of total 

peak lists. Second, modifications in the Yocum data set confirm obvious 

trends observed in Figure 6-2, and modifications in the Aurum data set 

confirms not so easily explained trends (+/-14 Da is due to 

propionamide) in respective plots in Figure 6-2.

* Many different residues with N-term iTRAQ were omitted from the list.
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