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CHAPTER 1 

INTRODUCTION 

 

 

1.1. BACTERIAL PATHOGENESIS 

Historically, a major human health problem has been microorganisms that are 

pathogenic bacteria.  Thousands of antibiotics have been designed to treat this problem, 

but it continues, due to the ability of these microorganisms to survive through mutations 

and become resistant to antibiotic treatment.  This increases the importance of finding 

novel antibiotics. 

Present antibiotics can be divided into five categories based on their inhibition 

targets: cell wall formation, protein synthesis , nucleic acid synthesis, cell membrane or 

cell spindle functions [1].  To date, the majority of cell wall antibiotics function by 

inhibiting the enzymes involved in the biosynthesis of peptidoglycan portion of the cell 

wall.  These antibiotics are effective mainly against Gram-positive (G+) microorganisms, 

which contain 50-80% of peptidoglycan [2].  In Gram-negative (G-) microorganisms, 

the lower peptidoglycan content (8-10%), as well as several other differences in cell wall 

composition, often renders peptidoglycan-type inhibitors less effective [2].  However, 

many of the more deadly organisms are G- species.  For example, Francisella tularemia, 

which causes tularemia, is one of the most infectious pathogenic bacteria known [3]; fleas  
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carried by rodents infected with Yersinia pestis transmitted the infection to humans to 

cause the Black Death/Plague [4]; pathogenic E. coli strains O157:H7 and CFT073 also 

cause millions of illnesses, which are not lethal but quite debilitating [5].  Those 

organisms are all G- bacteria.  Therefore, a real need exists to develop effective 

antibiotics against G- microorganisms that function via a different mechanism of action. 

In the cell envelope of G- bacteria, the peptidoglycan layer is surrounded by an 

outer membrane that contains phospholipids, proteins, and lipopolysaccharide (Figure 1-1) 

[2].  Lipopolysaccharide (LPS) is a fundamental constituent of the G- cell envelope 

consisting of several distinct regions.  The inner core region of the LPS contains 2-3 

residues of the unique octulose—3-deoxy-D-manno-octulosonate (KDO).  KDO serves 

to join the lipid A, the membrane imbedded component of the LPS, to the remaining 

outer core and O-antigen elements of the LPS [6].  The requirement of KDO 

incorporation into LPS for proper cellular growth was first demonstrated by Rick and 

Osborn [7].  Inhibition of the biosynthesis of LPS with subsequent arrest in cell growth 

has been attributed to specific mutations in the Salmonella typhimurium KDO 

biosynthesis.  Munson et al. [8], showed that two molecules of KDO are necessary for 

the maturation of the LPS structure in E. coli.  Microorganisms producing incomplete 

LPS should be non-viable and/or more susceptible to antibiotics.  Therefore, several key 

enzymes in the KDO biosynthetic pathway are considered to be ideal chemotherapeutic 

targets for the development of novel G- antibiotics. 

The KDO biosynthetic pathway is responsible for incorporation of KDO into 

the LPS in G- bacteria, and consists of several important enzymes including: (1) 

arabinose 5-phosphate (A5P) isomerase, (2) 3-deoxy-D-manno-octulosonate 8-phosphate 
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synthase (KDOPS), (3) 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) 

phosphatase, (4) CMP-KDO synthase, and (5) CMP-KDO transferase (Figure 1-2).  The 

first three enzymes in this biosynthetic pathway are studied in the Woodard laboratory as 

targets for the development of antibacterial agents. 

 

Figure 1-1.  Representation of the cell wall of G- bacteria of E. coli [2]. 

 

 

 

 

 

 

 

 

Figure 1-2.  KDO biosynthetic pathway. 
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1.2. KDOPS 

The second product in the LPS biosynthetic pathway is KDO8P, the 

phosphorylated precursor of KDO. The enzyme KDOPS catalyzes the irreversible 

condensation of arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to yield 

inorganic phosphate and monosaccharide KDO8P (Figure 1-3) [9]. 

 

 

 

 

 

 

 
Figure 1-3.  Reaction catalyzed by KDOPS. 
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active site.  The loop L7 becomes ordered and isolates the active site from bulk solvent 

only after both substrates (A5P and PEP) are bound.  The PEP binds to the bottom of the 

active site cavity, while A5P binds at the top.  The two substrates are mainly stabilized 

by a network of hydrogen bonds and salt bridges between their phosphate and 

carboxylate/aldehyde moieties and several active site residues. 

 

 

 

 

 

 

 

 
Figure 1-4.  Overall structure of one asymmetric unit in KDOPSEc at 2.4 Å [10].   
 

 

 

 

 

 

 
 
 
 
 
 
Figure 1-5.  Crystal structure of KDOPSAa active site with PEP, A5P and metal bound 
[11]. 
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Earlier studies have determined that the reaction of KDOPS is a sequentially 

ordered process in which the binding of PEP precedes the binding of A5P and the release 

of inorganic phosphate precedes the release of KDO8P [12].  The condensation step of 

the reaction is stereospecific, which involves the addition of the si face of C3 of PEP to 

the re face of the A5P carbonyl [13].  The conclusion was deduced from the 

stereochemistry of the product KDO8P and by using 3-substituted PEP analogues.  

Based on the information from these studies as well as crystal structures, a mechanism 

has been proposed for the reaction of KDOPS: an activated active site water molecule 

attacks at C2 of PEP, coincident with the addition of C3 of PEP to the electrophilic 

aldehyde of A5P, to yield a linear intermediate, followed by the release of inorganic 

phosphate (Figure 1-6) [14]. 

 

 

 

 

 

 

 

 

Figure 1-6.  Stereochemical mechanism of KDOPS. 
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conventional cleavage of the P-O bond in PEP utilizing enzymes [16].  Only five known 

PEP utilizing enzymes catalyze the breakage of the C-O bond during their reaction.  

Two of them catalyze the transfer of the intact enolether moiety of PEP: 

enolpyruvylshikimate phosphate (EPSP) synthase [EC 2.5.1.7] and 

UDP-N-acetylglucosamine enolpyruvyl transferase (EPTase) [EC 2.5.1.7].  The other 

three catalyze the aldol-type condensation reaction between PEP and a phosphorylated 

monosaccharide: KDOPS, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 

(DAHPS) [17] and N-acetylneuraminate 9-phosphate synthase [EC 4.1.2.20] [18].   

DAHPS, which is considered to be a functionally related enzyme to KDOPS, is 

also under investigation in the Woodard laboratory.  DAHPS catalyzes the first 

committed step in the Shikimate pathway.  The Shikimate pathway is responsible for the 

generation of aromatic amino acids and aromatic vitamins [19].  DAHPS catalyzes a 

similar condensation reaction of PEP with a phosphorylated monosaccharide, erythrose 

4-phosphate (E4P), to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) 

(Figure 1-7) [17].  E4P is one -CHOH- unit shorter than A5P, the substrate of KDOPS. 

 

 

 

 

 

 

 

 
Figure 1-7.  Reactions catalyzed by KDOPS and DAHPS. 
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The crystal structure of DAHPS from several different organisms has also been 

obtained.  Both KDOPS and DAHPS fold into a (β/α)8 barrel topology [10, 20], and 

their composition and architecture in the active sites bear a striking resemblance (Figure 

1-8) [10].  These similarities suggest a divergent evolutionary relationship between 

KDOPS and DAHPS, and potentially a common mechanism for these two enzymes. 

 

 

 

 

 

 

 

 
Figure 1-8.  Least-square superposition of the monomers of the KDOPSEc and DAHPSEc 
[10].  The KDOPSEc is in yellow, the DAHPSEc is in blue.  The root mean square 
deviation for 205 aligned Cα atoms is 1.8 Å. 
 

1.3. DISSERTATION RATIONALE 

The ultimate goal of this dissertation is to study the substrate specificity and 

metal requirements of KDOPS in order to gain more mechanistic insight into KDOPS. 

Multiple approaches were undertaken to study and characterize KDOPS, 

utilizing a combination of techniques in molecular biology, enzymology, biochemistry, 

and analytical chemistry. 

Chapter 2 describes altering the substrate specificity of KDOPS from A5P to 

E4P in order to gather mechanistic information in substrate binding.  Three types of 
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methodology from both rational design and random mutagenesis were conducted, 

including structure-based engineering, domain swapping and directed evolution. 

Chapter 3 focuses on choosing alternate substrates for KDOPS from a series of 

A5P analogues.  The results from this approach may give useful information on the 

substrate binding mechanism of KDOPS. 

Chapter 4 describes the importance of metal in KDOPS mechanism.  

Interconversion between metallo and non-metallo KDOPSs was performed.  The results 

from X-ray crystallography study were utilized to determine the role and function of 

metal and amino acid residues involved in metal binding. 
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CHAPTER 2 

ALTERNATION OF THE SUBSTRATE SPECIFICITY OF KDOPS 

 

 

2.1. SUMMARY 

As described in Chapter 1, KDOPS and DAHPS are two similar enzymes.  

One of the main differences between KDOPS and DAHPS is that they use different 

monosaccharide substrates.  The substrate of KDOPS, A5P, is one -CHOH- unit longer 

than E4P, the substrate of DAHPS.  The E. coli DAHPS (DAHPSEc) was shown to 

catalyze the condensation of A5P with PEP albeit at modest rates [1].  The E. coli 

KDOPS (KDOPSEc) is strictly substrate specific for A5P, and is not able to utilize E4P as 

an alternate substrate (Figure 2-1). 

The substrate specificity difference between the KDOPS and DAHPS may be 

due to the differences in their structure or catalytic mechanism.  Altering the substrate 

specificity of KDOPS to utilize E4P as an alternate substrate may provide valuable 

information on the role of amino acid residues involved in substrate binding of KDOPS 

and DAHPS. 

To alter the KDOPS substrate specificity, three sets of experiments were 

utilized: structure-based engineering, domain swapping and directed evolution.  Several 

key substrate binding sites/residues were identified and modified verifying their 
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importance.  However, none of the resulting modified KDOPS is able to utilize E4P as 

an alternate substrate. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 2-1.  Substrate specificity difference between KDOPS and DAHPS. 
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phosphorylated monosaccharide biding site structures of the two enzymes were overlaid 

using PyMol (see Figure 2-2, 2-3, 2-4, 2-5, and 2-6: KDOPSAa A5P binding site and A5P 
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are shown in green, DAHPSTm E4P binding site and E4P are shown in pink).  As shown 

in Figure 2-2, the PEP of both KDOPSAa and DAHPSTm binds at a similar position at the 

bottom of the active site, while A5P in KDOPSAa binds at a higher place than E4P in 

DAHPSTm.  Based on the structure overlay of KDOPSAa and DAHPSTm as well as 

sequence alignment between KDOPSs and DAHPSs from several different organisms, 

four major sites are considered important for the difference in substrate specificity of the 

two enzymes. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2-2.  PEP and A5P/E4P binding site of KDOPSAa (shown in green) and 
DAHPSTm (shown in pink). 
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1) An Arg is critical in both KDOPS (R49 in KDOPSAa) and DAHPS (R133 in 

DAHPSTm) (see Figure 2-3). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2-3.  Comparison of R49 in KDOPSAa (green) to R133 in DAHPSTm (pink). 

 

The guanidinium group of the side chain of R49 in KDOPSAa interacts with the 

phosphate moiety of A5P; while in DAHPSTm, the corresponding R133 interacts similarly 

with the phosphate moiety of E4P.  This Arg residue is conserved in all known KDOPSs 

and DAHPS is considered essential in positioning the phosphate moiety of A5P and E4P.  

Figure 2-2 shows that the PEP in KDOPSAa and DAHPSTm binds at similar place.  The 

R49 in KDOPSAa binds at about 1Å higher than the R133 in DAHPSTm, which makes the 

phosphate moiety of E4P in DAHPSTm 1 Å closer to the C3 of PEP than the phosphate of 
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A5P in KDOPSAa.  The proposed mechanism of KDOPS/DAHPS involves a 

nucleophilic attack by the C3 of PEP to the aldehyde of A5P/E4P to form a linear 

intermediate.  This suggests that the reason that KDOPS cannot catalyze the 

condensation of E4P with PEP might be that the distance between the C1 of E4P and C3 

of PEP is too great to form a covalent bond in KDOPS [5].  Conversely, DAHPS may 

catalyze the condensation between A5P and PEP, since A5P is able to fit within the E4P 

binding site, and the C1 of A5P is close enough to C3 of PEP for the nucleophilic attack.  

Mutating this R49 to a Gly in KDOPSAa will construct a mutant KDOPSAa in which the 

E4P might bind loosely and close enough to the PEP to facilitate the nucleophilic attack 

by C3 of PEP. 

 

2) Active site Ala and Asn in KDOPS (A47 N48 in KDOPSAa) are replaced by a Pro in 

DAHPS (P132 in DAHPSTm) (see Figure 2-4).  

The crystal structure overlay in Figure 2-4 shows that the R133 in DAHPSTm is 

responsible for binding the E4P phosphate may be held in place by a Pro in position 132.  

The P132 makes a turn in the loop, and brings the R133 lower and closer to the PEP 

binding site.  The interaction between the side chain of the P132 and E4P also moves the 

E4P closer to the enzyme.  In KDOPSAa, the R49 responsible for A5P phosphate binding 

is brought higher and further away from the PEP binding site, probably due to the 

presence of A47 and N48.  The A47 and N48 in KDOPSAa are conserved in KDOPSs 

from different organisms, while the P132 in DAHPSTm is conserved in all known 

DAHPSs.  If the A47 and N48 in KDOPSAa are replaced with a Pro, this Pro might play 

the same role as the P132 in DAHPSTm to hold the substrate binding residue R49 closer to 
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the PEP, which mimics the E4P binding site in DAHPSTm.  Thus, E4P bound in the 

resulting mutant KDOPSAa might be close enough to the PEP for the nucleophilic attack. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4.  Comparison of A47 N48 in KDOPSAa (green) to P132 in DAHPSTm (pink). 
 

3) An Arg in KDOPS (R106 in KDOPSAa) is replaced by a Gln in DAHPS (Q189 in 

DAHPSTm) (see Figure 2-5).  

The side chain of R106 in KDOPSAa from the adjacent subunit points into the 

active site and interacts with the phosphate moiety of A5P.  In DAHPSTm, this Arg is 

replaced by Q189, which is shorter and lacks the positively charged guanidinium group to 

interact with the phosphate moiety of E4P.  This R106, which is conserved in all 

KDOPSs, is considered important in positioning A5P in KDOPS.  The Q189 in 
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DAHPSTm is conserved in all DAHPSs.  Breaking the interaction between R106 and the 

phosphate moiety in KDOPS might result in looser binding of the phophorylated 

monosaccharide.  If the R196 is mutated to a Gly or Gln in KDOPSAa, the resulting 

KDOPSAa mutant might be able to use E4P as an alternate substrate. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5.  Comparison of R106 in KDOPSAa (green) to Q189 in DAHPSTm (pink).  

 

4) Loop 7 in KDOPS (V187—S197 in KDOPSAa) is absent in DAHPS (see Figure 2-6). 

In KDOPSAa, two residues Q188 and S197 on L7  have interactions with A5P.  

In DAHPSTm, this L7 is lacking.  Previous studies revealed that the L7 in KDOPSAa 

plays an important role in controlling access to the active site cavity [2].  When both 

PEP (at the bottom) and A5P (on top of PEP) are bound simultaneously, L7 is well 
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ordered and isolates the active site from bulk solvent [6].  Sequence alignments show 

that this L7 is conserved in all KDOPSs, while all known DAHPSs lack this loop.  

Truncating the L7 in KDOPSAa may make the substrate binding site of KDOPSAa more 

similar to that of DAHPS, which may increase the ability of KDOPSAa to utilize E4P as 

an alternate substrate. 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2-6.  The loop7 (L7) in KDOPSAa (green) is absent in DAHPSTm (pink). 
 

2.2.2. Experimental Procedures   

Materials – Polymerase chain reaction (PCR) primers were synthesized by 

Invitrogen.  PCR was performed using a MJ Research PTC-200 Peltier Thermal Cycler.  

The Wizard® Plus SV Minipreps DNA purification kit was utilized for plasmid isolation 
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and purification.  Chemically competent E. coli XL1-Blue (Stratagene), chemically 

competent E. coli BL21 (DE3) (Novagen) were used for plasmid transformations.  

Restriction enzymes, T4 DNA ligase and DpnI were purchased from New England 

Biolabs.  DNA sequencing was performed by the University of Michigan Biomedical 

Resources Core Facility.  Protein dye reagent concentrate was purchased from Bio-Rad.  

Tris(hydroxymethyl)aminomethane was purchased from Research Organics.  

Phosphoenolpyruvate mono(cyclohexyl ammonium) salt, erythrose 4-phophate disodium 

salt, thiobarbituric acid, and bovine albumin serum (BSA) were purchased from Sigma.  

Arabinose 5-phosphate was prepared and purified by Dr. Junhua Yan in the Woodard 

laboratory.  Enzyme grade KCl, NaCl, ammonium sulfate, and acetic acid were 

purchased from Fisher Scientific.  DNase I and RNase A were purchased from Roche.  

High grade spectra/Por® 7 dialysis tubing (10,000 and 15,000 molecular weight cut-off 

and metal free) was purchased from VWR.  The Millex® syringe driven filter units (0.22 

μm) were purchased from Millipore.  Phenyl Superose (HR 10/10) and Mono Q (HR 

10/10) chromatography columns were purchased from Amersham Pharmacia Biotech, 

and were run in the FPLC® system purchased from Pharmacia. 

Sequence Analysis – Database searching of multiple microbial organisms was 

performed utilizing the BLAST program at the NCBI website 

(http://ncbi.nlm.nih.gov/BLAST).  Multiple sequence alignments were generated using 

Clustal W (http://www.ebi.ac.uk/clustalw). 

Protein Concentration Assay – Protein concentration was determined using 

the Bio-Rad Protein Assay Reagent assay.  BSA served as a standard for this assay.  

One Dimensional Polyacrylamide Gel Electrophoresis – Sodium dodecyl 
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sulfate polyacrylamide gel electrophoresis (SDS-PAGE), used to confirm the weight and 

purity of proteins, was performed under reducing conditions on a 12% polyacrlamide gel 

with the Mini-PROTEAN II electrophoresis unit (Bio-Rad).  Protein samples of 5-15 μg 

were used for analysis on the SDS-PAGE gels.  Gels were stained and visualized with a 

0.25% Commassie Brilliant Blue R-250 solution. 

Construction of Mutant KDOPS plasmids – The mutant KDOPSAa plasmids 

were prepared by the QuickChange site-directed mutagenesis kit, which utilizes the 

methodology described by M.P. Weiner (see Figure 2-7) [7]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-7.  Site-directed mutagenesis experiment. 

 

Two oligonucleotide primers (Table 2-1), each containing the desired mutagenic 



 22

replacement codon, were designed as forward and reverse primers.  PCR was performed 

in a 50 μL reaction mixture containing 5 μL 10× react ThermolPol buffer, 2 μL 50 mM 

MgCl2, 1 μL miniprep pT7-7/kdsAAa plasmid (wild-type KDOPSAa expression vector) as 

a template, 1 μL forward primer, 1 μL reverse primer, 2 μL dNTP mixture, 37 μL H2O, 

and 1 μL high-fidelity Vent DNA polymerase.  Conditions for PCR were as follows: the 

first step of 3 min at 95oC for one cycle; the second step of 16 cycles of 30 sec at 95oC, 1 

min at 55oC, 6.5 min at 72oC; the last step of 5 min at 72oC for one cycle.  The PCR 

product containing the linear mutant plasmid was treated with DpnI to digest the parental 

methylated pT7-7/kdsAAa DNA template.  The DpnI digestion reaction mixture, 

containing the mutagenic DNA, was used to transform supercompetent E. coli XL1-Blue 

cells.  Plasmid DNAs were isolated and purified from each of the clones, initially 

characterized by restriction digestion, and then DNA sequencing (Figure 2-7). 

 

Table 2-1.  Oligonucleotides used for the mutagenesis of KDOPSAa. 
Target 

Amino 

Acid 

Primers 

5’→ 3’ 

 

Resulting 

Amino 

Acid 

R49 

 

GATAAAGCGAACGGCTCCTCAATACATTCC 

GGAATGTATTGAGGAGCCGTTCGCTTTATC 

G 

A47N48 

 

GTCTTCCTTTGATAAACCGCGCTCCTCAATAC 

GTATTGAGGAGCGCGGTTTATCAAAGGAAGAC 

P 

R106 

 

GCCTTTTTATGCGGCCAGACTGAC 

GTCAGTCTGGCCGCATAAAAAGGC 

G 

R106 

 

GCCTTTTTATGCCAGCAGACTGAC 

GTCAGTCTGCTGGCATAAAAAGGC 

Q 

 

Construction of truncated KDOPS without L7 – To truncate L7 in KDOPSAa, 
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a two-step PCR methodology was utilized.  The first PCR utilized the 20 base sequence 

upstream (5’) of the NdeI site of the pT7-7/kdsAAa as a forward primer, a sequence 

complimentary to the gene fragment encoding for the 5 amino acids before L7 followed 

by the 5 amino acids after L7 was used as a reverse primer, and pT7-7/kdsAAa plasmid as 

a template.  Conditions for PCR were as follows: the first step of 3 min at 95oC for one 

cycle; the second step of 16 cycles of 30 sec at 95oC, 1 min at 55oC, 6.5 min at 72oC; the 

last step of 5 min at 72oC for one cycle.  The product of the first PCR reaction was 

applied to a low melting gel, and the desired DNA gene was extracted by QIAquick Gel 

Extraction kit.  The second PCR reaction utilized the purified first PCR product as a 

forward primer, the reverse cloning primer (containing BamHI site) as a reverse primer, 

and the pT7-7/kdsAAa as a template.  The purified PCR product was restricted with NdeI 

and BamHI.  The restricted product was ligated into NdeI, BamHI and CIAP treated 

pT7-7 vector, and then transformed into XL1-Blue competent cells.  Plasmid DNAs 

were isolated and purified from each of the clones, and the sequence was verified by 

DNA sequencing. (All primers used in L7 truncation experiment are shown in Table 2-2) 

 

Table 2-2.  Oligonucleotides used for loop7 truncation of KDOPSAa. 
 Primers 

5’→ 3’ 

1st PCR:  

forward primer 

 

TAATACGACTCACTATAGGG 

1st PCR:  

reverse primer 

 

CTCCCTCATTCCTCCTGAGTGGGTGGCGTCGTATATAAC 

2nd PCR:  

reverse primer 

 

GCATTGGTAACTGTCAGACC 
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Overexpression and purification of KDOPS – DNA containing the proper 

mutagenic sequence was used to transform chemically competent E. coli BL21 (DE3).  

The E. coli Bl21 (DE3) cells harboring the mutant pT7- 7/kdsAAa were grown in 2×YT 

medium (1 L) containing ampicillin (100 μg/mL) at 37oC with orbital shaking (250 RPM).  

When the culture had reached an absorbance of 1.5 at 600 nm, IPTG was added to a final 

concentration of 0.4 mM.  The culture was grown at 16oC for 16 h, and the cells were 

collected by centrifugation (18000×g, 20 min, at 4oC) and suspended in buffer A (20 mM 

Tris-HCl buffer, pH 7.5).  The cell suspension was subjected to sonication on ice (4×30 

sec, 2 min rests between pulses) and then clarified by centrifugation (18000×g, 40 min, at 

4oC) to produce a cell extract.  Solid sodium chloride was added to the cell extract to a 

final concentration of 0.1 M and the solution was heated in a boiling water bath for 2 min 

and then at 80oC for 10 min with continuous swirling [4].  The suspension was allowed 

to cool to room temperature and then placed on ice for 15 min.  Precipitated protein was 

removed by centrifugation (18000×g, 20 min, at 4oC).  DNase I and RNase A were 

added to the supernatant, and the mixture was incubated in a 37oC water bath for 30 min.  

The protein solution was dialyzed against 2 L buffer A overnight.  The protein then was 

applied to a Mono Q (10/10) column previously equilibrated with buffer A.  The column 

was developed at a flow rate of 1 mL/min using a linear gradient from 0 M to 0.3 M 

potassium chloride in the same buffer (over 60 min).  Fractions containing KDOPS, 

which resolved into a single peak, were pooled and judged by SDS-PAGE (~30 kDa).  

Solid ammonia sulfate was added to a final concentration of 20% (w/v).  The sample 

was filtered (0.22 µm) and applied to a Phenyl Superose column (10/10) equilibrated 

with 20% ammonia sulfate in buffer A.  The column was developed with a linear 
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gradient from 20% to 0% (w/v) ammonia sulfate in buffer A (over 120 min).  The 

majority of the protein of interest eluted as a single peak at 0% ammonium sulfate 

concentration.  The purity of the recombinant protein as judged by SDS-PAGE analysis 

was homogeneous (> 95%).  The purified proteins were pooled, dialyzed against 2 L 5 

mM Tris-HCl buffer (pH 7.5), and then frozen in dry ice with acetone and stored at -80oC.  

The total yield of homogenous KDOPSAa mutant protein was 5-10 mg protein/L of cell 

culture. 

Aminoff colorimetric assay [8] – Enzyme specific activity was measured in a 

final volume of 50 μL containing PEP (3 mM), A5P or E4P (0.5-10 mM), Tris-acetate 

buffer (100 mM, pH 7.5) using thin-walled PCR tubes as the reaction vessel.  The assay 

solution was pre-incubated at a desired temperature for 2 min and the reaction was 

initiated with the addition of enzyme (5 μg) and incubated at the desired temperature.  

At specified time, the reactions were stopped with the addition of 50 μL 10% ice-cold 

TCA (to a final concentration of 5%) and then centrifuged to remove precipitated protein.  

The 100 μL enzymatic reaction mixture was transferred into a 10-mL glass tube and 

subjected to total oxidation with 0.2 mL 0.025 M NaIO4 in 0.125 M H2SO4 at room 

temperature for 10 min.  The excess oxidizing agent was reduced by the addition of 0.4 

mL of 2% (w/v) NaAsO2 in 0.5 M HCl.  Following the disappearance of the yellow 

color, 1 mL thiobarbituric acid (0.36% w/v, pH 9.0) was added and the tube was heated at 

100oC for 10 min.  The amount of KDO8P produced was determined by measuring the 

absorption at λ = 549 nm (ε = 1.03×105 M-1cm-1 for the pink chromophore formed 

between α-formylpyruvate and thiobarbiturate) (Figure 2-8).  All assays were performed 

in triplicate. 



 26

Kinetic parameters [9] – A continuous spectrophotometric method for the 

measurement of the disappearance of the α, β-unsaturated carbonyl absorbance of PEP 

was used to determine kinetic parameters of KDOPS.  The standard assay mixture 

contained PEP (0.05-1 mM), A5P (0.05-1 mM), 100 mM Tris-acetate buffer (pH 7.5), 

and 5-15 μg KDOPS in 1 mL.  The first three reagents were mixed and pre-heated at 

60°C for 2 min.  The assay, initiated by the addition of the KDOPS, was monitored for 3 

min at λ = 232 nm for a decrease in absorption (ε = 2840 M-1cm-1 for the disappeared 

double bond).  Km and Vmax values were determined from a nonlinear regression of data 

pairs (substrate concentration, initial velocity) fit to the Michaelis-Menten equation using 

KaleidaGraph 3.08d.  All assays were performed in triplicate. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2-8.  Aminoff colorimetric assay. 
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2.2.3. Results and Discussion 

The KDOPSAa A47N48 to Pro, R49G, R106G, and R106Q mutants were 

constructed using QuickChange site-directed mutagenesis.  The L7 truncated KDOPSAa 

was constructed using the two-step PCR methodology described in the experimental 

procedure section.  All mutated and truncated proteins were overexpressed and purified 

to > 95% homogeneity as demonstrated by SDS-PAGE gel electrophoresis. 

 

Table 2-3.   Specific activity of wild-type and modified KDOPSAa. 

KDOPSAa mutant Specific activity at 60oC 

E4P (units/mg) 

Specific activity at 60oC 

A5P (units/mg) 

Wild Type KDOPSAa 0.07 1.88 

47AN48 to Pro 0.08 0.64 

R49G 0.05 0.32 

R106G 0.07 0.36 

R106Q 0.09 0.40 

L7 truncation 0.06 0.82 

 

All mutant and truncated proteins are still thermal stable similar to the wild-type 

KDOPSAa.  The activity of each mutant/truncated enzyme was measured at 60oC using 

the Aminoff colorimetric assay (Table 2-3).  First, to determine if the 

mutation/truncation affect A5P binding, the specific activity of the mutant/truncated 

KDOPSAa with A5P and PEP was measured.  The results show that compared to the 

wild-type KDOPSAa, the activity of all mutant/truncated enzymes is greatly reduced, 

which indicates that those residues and loop are important in the catalytic mechanism.  

Furthermore, to determine if the modifications could alter the substrate specificity of 
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KDOPSAa to utilize E4P as an alternate substrate, the specific activity of the modified 

KDOPSAa with EP4 and PEP was measured.  Unfortunately, none of the 

mutant/truncated enzymes display activity higher than 0.1 units/mg, which is similar to 

the wild-type KDOPSAa.  None of these mutant/truncated KDOPSAa can utilize E4P as 

an alternate substrate. 

To further verify that these residues and loop play an important role in A5P 

binding, the kinetic parameters of the mutant/truncated KDOPSAa with A5P were 

measured at 60oC using the continuous assay described in the experimental procedures 

section (see Table 2-4).  There was only a slight increase (within 2 fold) of Km
PEP in the 

mutant/truncated enzymes compared to the wild-type protein; however, the Km
A5P of the 

mutant/truncated enzymes was increased dramatically (> 50 fold).  These results 

indicate that these modifications primarily affect the A5P binding. 

 

Table 2-4.  Kinetic parameters of wild-type and modified KDOPSAa. 

KDOPSAa mutant Km
PEPat 60oC 

(μM) 

Km
A5P at 60oC 

(μM) 

kcat at 60oC 

(s-1) 

Wild Type KDOPSAa 155±8 26±4 0.42±0.06 

47AN48 to Pro 210±10 1692±28 0.12±0.02 

R49G 180±8 3244±39 0.06±0.01 

R106G 202±12 2578±36 0.08±0.01 

R106Q 195±9 2327±30 0.09±0.02 

L7 truncation 292±14 1168±27 0.17±0.03 
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The KDOPSAa A47N48 to Pro, R49G, R106G, R106Q mutants and the truncated 

L7 KDOPSAa do not display the desired substrate specificity to utilize E4P as an alternate 

substrate.  These mutant/truncated enzymes still catalyze the condensation of A5P with 

PEP, however at lower catalytic efficiency.  The kinetic parameters prove that these 

modification sites, selected via structure overlay, are very critical for A5P binding.  

However, changes to these sites only may not be sufficient to alter the substrate 

specificity of the enzyme.  There might be other trivial changes needed which cannot be 

found by simply comparing the active site structures.  Therefore, a more random 

experimental approach is demanded in order to potentially alter the substrate specificity 

of KDOPS. 

 

2.3. DOMAIN SWAPPING 

2.3.1. Introduction   

Recent analysis of amino acid sequences and X-ray structures suggest that the 

(β/α)8-barrel, which is the most frequently encountered protein fold [10], has potentially 

evolved by tandem duplication, fusion and mixing of (β/α)4-half-barrels [11, 12].  New 

(β/α)8-barrels with novel functions might have evolved by the exchange of (β/α)4 

half-barrels with distinct functional properties [13, 14].  All structures of KDOPSs and 

DAHPSs known to date display the (β/α)8-barrel topology.  If (β/α)8-barrels are 

composed of two independently evolving (β/α)4-half-barrels as described above, one 

could divide any KDOPS or DAHPS into two structural domains, namely the 

corresponding N- and C-terminal half-barrels.  Based on the crystal structures of both 

KDOPSs and DAHPSs, we found that the phosphorylated monosaccharide binding site is 
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primarily located at the N-terminal half barrel of the two enzymes; while the PEP binding 

site is located at the C-terminal half barrel (Figure 2-9) [15].  This suggests that the 

N-terminal half barrel of KDOPS and DAHPS might be critical for the binding of 

phosphorylated monosaccharide; while the C-terminal half barrel is responsible for the 

PEP binding.  Since the KDOPS and DAHPS are considered to be evolutionarily 

related, and these two enzymes mainly differed in utilizing different phosphorylated 

monosaccharide substrate, we hypothesize that KDOPS may have evolved by some 

critical changes in the N-terminal half barrel of DAHPS in order to alternate the substrate 

specificity from E4P to A5P. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2-9.  Equivalent active site residues in the active sites of KDOPSEc and DAHPSEc 

[15].  The Cα trace and side chains of KDOPSEc are shown with beige and chartreuse 
bonds, respectively.  The Cα trace and side chains of DAHPSEc are shown with salmon 
and gray bonds, respectively. 
 

Based on the half barrel hypothesis, it should be possible to alternate the 

substrate specificity of KDOPS to E4P by exchanging the N-terminal half barrel between 

KDOPS and DAHPS.  If we keep the C-terminal half barrel, but change the N-terminal 
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half barrel of KDOPS with the N-terminal half barrel of DAHPS, the resulting KDOPS* 

might be able to utilize E4P as an alternate substrate. 

First, a pair of KDOPS and DAHPS needs to be selected for the half barrel 

swapping experiments.  Since all known DAHPSs are metallo enzymes, the Class II 

metallo KDOPS should be closer to the DAHPS than the Class I non-metallo KDOPS.  

There are two reasons for this hypothesis.  One is that since we speculate that for 

KDOPS the loss of metal binding may be the evolutionary driving force, the metallo 

DAHPS and metallo KDOPS might be more ancient and more closely evolutionary 

linked to each other than the non-metallo KDOPS.  The second reason is that the 

metallo DAHPS and metallo KDOPS both have metal involved in their catalysis; thus, 

their catalytic mechanism might be more similar.  The A. aeolicus KDOPS (KDOPSAa)is 

a metallo enzyme and was well studied in our laboratory.  Thus, KDOPSAa might be a 

good candidate for the half barrel swapping experiment.  KDOPSAa is a 

hyperthermophilic enzyme and displays optimal activity at 95oC.  Two 

hyperthermophilic DAHPSs, Aeropyrum pernix DAHPS (DAHPSAp) and Thermotoga 

maritima DAHPS (DAHPSTm), have been studied in our laboratory.  DAHPSTm is 

feed-back regulated by its downstream products L-phe and L-tyr through a 

ferredoxin-like (FL) domain appended at the N-terminus.  The length of DAHPSTm is 

much longer than the unregulated KDOPSAa due to the extra FL domain.  Thus, 

DAHPSTm would not be the best choice for the half barrel swapping experiment with 

KDOPSAa.  DAHPSAp is an unregulated enzyme and has a similar length to the 

unregulated KDOPSAa.  The amino acid sequence alignment shows 22% identity and 

37% similarity between the KDOPSAa and DAHPSAp, which is relatively high among the 
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pairs of KDOPS and DAHPS we have searched by BLAST.  Thus, KDOPSAa and 

DAHPSAp were chosen for the half barrel swapping experiment.  Their crystal structures 

are available in our laboratory, which helped us design the experiments and analyze the 

results[2, 16].  The protein sequences of KDOPSAa and DAHPSAp were compared 

according to their α-helix (H) and β-strand (S) regions (Figure2-10).  The amino acid 

sequences of these two enzymes aligned very well.  The first four (βα)4 units and the last 

four (βα)4 units of KDOPSAa and DAHPSAp are linked by similar short loops 

“117TGR119” and “144SGK145”, respectively.  Thus the N- and C-terminal half barrels 

of the two enzymes can be defined as KDOPSAa1-118 and KDOPSAa119-267, DAHPSAp1-145 

and DAHPSAp146-276.  To exchange half barrels of the two enzymes crosswise, both in 

vivo and in vitro experiments were performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-10.  Sequence alignment of KDOPSAa and DAHPSAp.  The α-helix regions are 
shaded by blue, the β-strand regions are shaded by red.  The linkage between the two 
half barrels are shaded by yellow. 
 

In vitro — The in vitro half barrel swapping experiment required the generation 

of half barrel proteins including the N-terminal half barrel of KDOPSAa (KDOPSAa1-118), 

the C-terminal half barrel of KDOPSAa (KDOPSAa119-267), the N-terminal half barrel of 
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DAHPSAp (DAHPSAp1-145), and the C-terminal half barrel of DAHPSAp (DAHPSAp146-276).  

Then, the N-terminal half barrel proteins and the C-terminal half barrel proteins can be 

mixed together in various combinations.  If our hypothesis is true, the results might be 

as follows: 

1) The N-terminal half barrel of KDOPSAa (KDOPSAa1-118) + the C-terminal half barrel 

of KDOPSAa (KDOPSAa119-267) would still catalyze the condensation of A5P with PEP to 

form KDO8P; 

2) The N-terminal half barrel of DAHPSAp (DAHPSAp1-145) + the C-terminal half barrel 

of DAHPSAp (DAHPSAp146-276) would still catalyze the condensation of E4P with PEP to 

form DAH7P; 

3) The N-terminal half barrel of KDOPSAa (KDOPSAa1-118) + the C-terminal half barrel 

of DAHPSAp (DAHPSAp146-276) might be able to catalyze the condensation of A5P with 

PEP since the N-terminal half barrel of KDOPSAa normally binds A5P; 

4) The N-terminal half barrel of DAHPSAp (DAHPSAp1-145) + the C-terminal half barrel 

of KDOPSAa (KDOPSAa119-267) might be able to catalyze the condensation of E4P with 

PEP since the N-terminal half barrel of DAHPSAp normally binds E4P. 

 

 

 

 

 

 
 
 
Figure 2-11.  Cartoon of in vitro half barrel swapping between KDOPSAa and DAHPSAp. 
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In vivo – The in vivo half barrel swapping experiment requires two chimeric 

genes kdsAAa1-118aroGAp146-276 and aroGAp1-145kdsAAa119-267, which can be constructed by 

fusing the genes encoding for the N- and C-terminal half barrels of KDOPSAa and 

DAHPSAp crosswise (kdsAAa represents the gene for KDOPSAa, aroGAp represents the 

gene for DAHPSAp).  The resulting chimeric protein KDOPSAa1-118DAHPSAp146-276, 

which fuses the N-terminal half barrel of KDOPSAa to the C-terminal half barrel of 

DAHPSAp, may be able to catalyze the condensation of A5P with PEP; while the other 

chimeric protein DAHPSAp1-145KDOPSAa119-267, which fuses the N-terminal half barrel of 

DAHPSAp to the C-terminal half barrel of KDOPSAa may be able to catalyze the 

condensation of E4P with PEP based on our half barrel hypothesis. 

 

 

 

 

 

 

 
Figure 2-12.  Cartoon of in vivo half barrel swapping between kdsAAa and aroGAp.   

 

Construction of potentially regulated KDOPS – To date, all studies on 

KDOPSs reported that their enzymatic activity is unregulated by allosteric modifiers, 

while both unregulated and regulated DAHPSs have been found.  Most of the regulated 

DAHPSs have longer sequences and appear to contain two domains, a catalytic DAHPS 

domain plus an extra segment with divergent sequences at either the N- or C-terminus 

responsible for feed-back regulation or allosteric modification [16].  As in the case of 

in vivo
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DAHPSTm, the enzyme is feed-back regulated by L-phe and L-tyr through a 

ferredoxin-like (FL) domain appended at the N-terminus [17].  Previous experiment to 

truncate the FL domain from DAHPSTm resulted in a still active but unregulated DAHPS.  

This result suggests that the catalytic domain and regulation domain of DAHPS may 

function independently.  Thus, a novel experiment was designed to construct a 

potentially regulated KDOPS by using the in vivo domain swapping methodology.  If 

the FL domain from DAHPSTm could be fused to the N-terminus of KDOPSAa, the 

resulting chimeric KDOPSAa might also be regulated by L-phe and L-tyr (Figure 2-13).   

 

 

  

 

 

Figure 2-13.  Construct a potentially regulated KDOPS by domain swapping. 
 

2.3.2. Experimental Procedures  

Construction of half barrel protein plasmids – To construct the plasmids 

which express either the N- or the C-terminal half barrels of each gene of interest, the 

following procedure was utilized (Figure 2-14).  A pair of complementary primers 

(shown in Table 2-5) were designed to incorporate a stop codon followed by a BamHI 

restriction site and an NdeI restriction site between the codons that were deemed as the 

end of N-terminal half barrel and the beginning of C-terminal half barrel (inserted 

sequence: 5’ TAAGAATCCCATATG 3’).  Standard QuickChange site-directed 

mutagenesis experiments (described in 2.2.2.) were performed using the primers, with the 
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pT7-7/gene (wild-type) as the template.  The plasmid of the N-terminal half barrel was 

obtained by self-ligating the BamHI digested mutagenesis product.  The plasmid of the 

C-terminal half barrel was obtained by self-ligating the NdeI digested mutagenesis 

product. 

 

 

 

 

Figure 2-14.  Construction of half barrel plasmid.   
 
 
Table 2-5.  Oligonucleotides used for in vitro and in vivo half barrel swapping. 

 Primers 

5’→ 3’ 

In vitro: 

forward 

reverse 

 

GCTGCAAAAACGGGATAACATATGAGGGCTGTAAACGTG  

CACGTTTACAGCCCTCATATGTTATCCCGTTTTTGCAGC 

In vivo: 

kdsAAa1-118aroGAp146-276 

1st PCR: forward 

1st PCR: reverse 

2nd PCR: reverse 

 

 

TAATACGACTCACTATAGGG 

CTTGAGGACAGGCTTTCCCGTTTTTGCAGCCGC 

GCATTGGTAACTGTCAGACC 

In vivo: 

aroGAp1-145kdsAAa119-267 

1st PCR: forward 

1st PCR: forward 

2nd PCR: reverse 

 

 

TAATACGACTCACTATAGGG 

CACGTTTACAGCCCTGCCGGACCTGCCCACCTC 

GCATTGGTAACTGTCAGACC 

 

Construction of fused half barrel plasmids – To interchange the N- and 

C-terminal half barrels fragments between KDOPSAa and DAHPSAp by in vivo expression 
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of a fused protein, plasmid which fused the N-terminal half barrel of one gene to the 

C-terminal half barrel of the other gene was constructed using a two-step PCR 

methodology (Figure 2-15).  All PCR primers used in this section are shown in Table 

2-5.  For example, to fuse the N-terminal half barrel of geneA to the C-terminal half 

barrel of geneB, the first PCR utilized the 20 base sequence upstream (5’) of the NdeI site 

of the geneA as a forward primer, a sequence complimentary to the gene fragment 

encoding for the last 15 bases of N-terminal half barrel of geneA and the first 15 bases of 

C-terminal half barrel of geneB as a reverse primer, and the pT7-7/geneA as a template.  

Conditions for PCR were as follows: the first step of 3 min at 95oC for one cycle; the 

second step of 36 cycles of 1 min at 95oC, 1 min at 55oC, 1 min at 72oC; the last step of 

one cycle of 5 min at 72oC.  The product of the first PCR reaction was applied to a low 

melting gel, and the desired DNA was extracted using QIAquick Gel Extraction kit.  

The second PCR reaction utilized the purified first PCR product as forward primer, the 

original reverse cloning primer of geneB (containing BamHI site) as reverse primer, and 

the pT7-7/geneB as template.  The purified PCR product was restricted with NdeI and 

BamHI.  The restricted product was ligated into an NdeI, BamHI and CIAP treated 

pT7-7 vector.  This ligation mixture was transformed into XL1-Blue competent cells.  

The sequence of the plasmid was verified by DNA sequencing. 

 

 

 

 

 
Figure 2-15.  Construction of fused half barrel plasmid.  
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2.3.3. Results and Discussion 

In vitro half barrel swapping – The plasmids pT7-7/kdsAAa1-118 and 

pT7-7/kdsAAa119-267, which express the N- and C-terminal half barrels of KDOPSAa 

respectively, were constructed using the methodology described above.  Overexpression 

of the N-terminal half barrel of KDOPSAa (KDOPSAa1-118) and the C-terminal half barrel 

of KDOPSAa (KDOPSAa119-267) were conducted in E. coli BL21 (DE3) as described in 

2.2.2.  Both KDOPSAa1-118 and KDOPSAa119-267 were found in the soluble fraction of 

their respective cell extracts (verified by SDS-PAGE).  The two half barrel proteins of 

KDOPSAa appeared to retain the wild-type protein thermostability, since they were still 

soluble after being heated at 100oC for 2 min and 80oC for 10 min as judged by 

SDS-PAGE.  The half barrel proteins were then purified utilizing standard purification 

procedures by an ion exchange Mono Q column, followed by a hydrophobic interaction 

Phenyl Superose column. 

To determine the ability of the KDOPSAa half barrel proteins to catalyze the 

condensation of A5P with PEP, the Aminoff colorimetric assay was used.  First, the 

activity of the two half barrel proteins was measured individually at 37oC and 60oC.  

The results showed that neither of the half barrel protein individually displayed any 

catalytic activity at either 37oC or 60oC, which is reasonable since each half barrel can 

only bind one of the two substrates needed for catalytic reaction.  Then, the two half 

barrel proteins were mixed together and tested for catalytic activity.  The half barrel 

protein mixture still displayed no activity at either 37oC or 60oC. 

The reason that the two half barrel KDOPSAa proteins do not display catalytic 

activity might be that they could not fold correctly.  To probe the folding of the two half 
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barrel proteins together, several methods were tested.  First, the two half barrel proteins 

were pre-incubated together for 10-30 min at 60oC and then tested by the Aminoff assay.  

The half barrel proteins might fold together better if a longer pre-incubation period is 

used.  However, no catalytic activity was detected after prolonged incubation.  Second, 

the two crude half barrel proteins were added together during the purification steps, since 

they may fold together correctly at the initial stage.  For example, the cell pellets of the 

two half barrel proteins were sonicated together, or the two half barrel proteins were 

heated together during the heat purification step.  The co-purified half barrel proteins 

still displayed no activity.  Finally, the two purified half barrel proteins were mixed 

together for complete unfolding in 8 M urea or 6 M guanidinium chloride, and refolded 

by removing the chaotropic agent by extensively dialysis against 5 mM of Tris (pH 7.5).  

This unfold and refold method has been widely used to facilitate correct protein folding 

[13].  The refolded half barrel proteins were still inactive.  

Plasmids encoding the N- and C-terminal half barrels of DAHPSAp were also 

constructed by Dr. Mi Zhou in Woodard laboratory using the same methodology.  

However, no protein overexpression was obtained. 

The results above demonstrate that the two half barrels from even the same 

original full length protein are not able to fold correctly to obtain activity.  Even if the 

half barrel proteins of DAHPSAp were obtained, the half barrels from KDOPSAa and 

DAHPSAp most likely would not fold together correctly to gain any catalytic activity.  If 

the protein containing half barrel proteins from KDOPSAa and DAHPSAp can be 

expressed from a whole gene, the chimeric protein might be able to fold correctly for 

catalysis.  Thus, the in vivo half barrel swapping experiment was performed.  
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In vivo half barrel swapping – The plasmids pT7-7/aroGAp1-145kdsAAa119-267 

(fused N-terminal half barrel of DAHPSAp with C-terminal half barrel of KDOPSAa), and 

pT7-7/kdsAAa1-118aroGAp146-276 (fused N-terminal half of KDOPSAa with C-terminal half 

of DAHPSAp) were constructed utilizing the 2-step PCR methodology described in the 

experimental procedures section.  The sequences of the two plasmids were verified by 

DNA sequencing.  Neither of the two chimeric proteins could be overexpressed using 

standard overexpression procedure.  Therefore, no further experiments could be 

performed to determine whether or not the fused half barrel proteins have the desired 

substrate specificity. 

The inability to alter the substrate specificity of KDOPS by half barrel swapping 

experiments suggests that exchanging the whole half barrel of KDOPS with DAHPS 

might have changed the protein structure too significantly, so that the resulting chimeric 

protein could not “digest” those changes correctly by itself to obtain catalytic activity.  

If only small portion of the enzyme is exchanged, the overall structure of the enzyme 

would not be disrupted and the modified enzyme may still retain catalytic ability.  Thus, 

experiment was performed to construct a potentially regulated KDOPS by domain 

swapping. 

Construct a potentially regulated KDOPS by domain swapping – Utilizing 

the in vivo domain swapping methodology, the regulation FL domain (residues 1-97) 

from DAHPSTm was fused to the N-terminus of KDOPSAa.  The pT7-7/FLTm1-97kdsAAa 

plasmid was successfully constructed.  Only insoluble protein was overexpressed using 

standard overexpression method, which indicates that the FL+KDOPSAa might have 

misfolded.  Adding less amount of IPTG (0.05, 0.1, 0.2 or 0.3 mM) did not help 

overexpress soluble protein.  In order to prevent aggregation of the protein, two special 
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methods were used.  One overexpressed the protein in E. coli RIL cell instead of the 

normal E. coli BL21-DE3 cell.  The E. coli RIL cells were used to overexpress proteins 

that contain R/I/L encoded by rare codons in the first 10 amino acid sequence [18].  The 

FL+KDOPSAa protein overexpressed in RIL cell still formed inclusion bodies.  Other 

methods of expressing soluble protein were attempted such as using the Chaperone 

Plasmid Set purchased from TAKARA for co-expression [19].  The plasmid set consists 

of five different types of “chaperone team” plasmids which were designed to enable 

efficient expression of multiple molecular chaperones known to work in cooperation in 

the folding process.  The FL+KDOPSAa protein was still expressed as an insoluble 

product.  

Neither the in vitro nor the in vivo half barrel swapping experiments was 

successful.  For the in vitro approach, the half barrel proteins were not able to fold 

correctly.  If the two half barrel proteins can be connected by a covalent bond, the 

resulting linear protein might be able to fold better.  For the in vivo approach, no fused 

chimeric proteins were obtained due to either none overexpression or insoluble 

overexpression.  If the protein overexpression problem could be solved, the activity of 

the chimeric proteins with either A5P or E4P as carbohydrate substrate could be 

measured by the Aminoff assay. 

 

2.4. DIRECTED EVOLUTION 

2.4.1. Introduction 

To modify the enzyme substrate specificity, two general routes are normally 

pursued.  One, described in section 2.2., is the structure-based engineering, which relies 
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on knowledge of an enzyme’s three-dimensional structure and an explicit molecular-level 

understanding of substrate recognition.  The other is directed evolution, a process 

dependent on the availability of a selection process for the desired enhanced or altered 

enzymatic properties from a created protein library [20].  Utilizing the directed 

evolution approach, impressive progress has been made in modifying enzyme substrate 

specificity.  For example, the substrate specificity of aspartate aminotransferase was 

successfully modified by directed molecular evolution using a combination of DNA 

shuffling and selection in an auxotrophic E. coli strain (Yano et al.) [21].  A rapid and 

sensitive selection system is required in directed evolution since the desired activity will 

be chosen from the enzyme library generated by random mutagenesis containing even > 

104 mutant enzymes.  An ideal selection system must be convenient and reliable, and the 

sensitivity of the process must be adjustable depending on the progress of the selection 

steps.  Previous reports show that bacterial knockout strain that is deficient in an 

enzyme with the desired activity is widely used as selection system for directed evolution 

[21].  Mutant enzymes that can reverse the phenotype of the knockout strain will be 

selected.  The sensitivity of the selection can be adjusted by supplementing the medium 

with an appropriate amount of the substrate or product. 

Since the structure-based engineering approach were not able to alter the 

substrate specificity of KDOPS as described above, the random methodology, directed 

evolution, was considered the next experiment to conduct.  First, an efficient and 

reliable selection system was needed. 

An auxotrophic E. coli CB717 strain that carries knockouts of all three 

chromosomal DAHPS genes, aroF, aroG, and aroH {C600 Leu Thi Δ (gal-aroG-nadA) 50, 
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ΔaroH::KanR ΔaroF::CatR TyrA+/F’ LacIq::Tn10 (TetR)} was obtained from Professor 

Ronald Bauerle at the University of Virginia [22].  For growth on glucose-containing 

minimal salts medium (M9), the CB717 strain requires supplementation with L-phe, L-tyr, 

L-trp, L-leu, L-thiamine, nicotinic acid and aromatic vitamins p-aminobenzoate (PABA), 

p-hydroxybenzoate (PHBA).  Since KDOPS cannot form DAH7P from PEP and E4P, if 

a mutant of KDOPS can be generated that can use E4P as substrate to form DAH7P, the 

mutant might also be able to restore aromatic prototrophy of CB717.  The auxotrophic E. 

coli CB717 seems to be an effective selection process to monitor the alteration in the 

substrate specificity of KDOPS to E4P.  Recently, Ran et al. have used the CB734 strain, 

a variant of CB717, as a selection tool for modifying the 

2-keto-3-deoxy-6-phosphogalactonate aldolase into an aldolase capable of condensing 

PEP and E4P to form DAH7P [23].  Thus, the methodology should also work for my 

directed evolution experiment to alter the substrate specificity of KDOPS to E4P.  

Alternatively, since DAHPS can catalyze the condensation of A5P with PEP at 

modest rate, enhancing the ability of DAHPS to utilize A5P as an alternate substrate 

might be easier and worth trying.  An E. coli KPM29 (ΔgutQ, ΔkdsD, ΔkdsA) knockout 

strain was constructed in our lab by Dr. Timothy Meredith, which knockouts both 

chromosomal API genes (form A5P) and the KDOPS gene [24].  Growth of the 

knockout strain is dependent on addition of exogenous A5P.  The LPS formation of this 

E. coli knockout strain is dependent on addition of both exogenous A5P and a plasmid 

containing KDOPS gene.  Cells without LPS cannot grow in high concentration bile 

salts (bio-detergent).  This KPM29 strain can grow in high concentration bile salts (> 

5000 μg/mL) in the presence of 30 μM A5P, 10 μM G6P (aids in sugar transport), and a 
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plasmid containing the KDOPS gene.  If the KDOPS gene is absent or is replaced by a 

DAHPS gene, the KPM29 strain can only grow in “extremely” low bile salts 

concentration (< 200 μg/mL).  Thus, this KPM29 strain can be used as the selection 

system for the directed evolution experiment to enhance the ability of DAHPS to utilize 

A5P as an alternate substrate.  If a mutant of DAHPS can catalyze the condensation of 

A5P and PEP at a higher rate and have more KDOPS activity, the mutant might be able to 

grow in higher bile salts concentration. 

Logically, the more similar the KDOPS and DAHPS are in amino acid sequence, 

structure, and mechanism, the easier it should be to alter the substrate specificity of 

KDOPS to E4P.  To select a good pair of KDOPS/DAHPS for the directed evolution 

experiments, the KDOPS which is the closest to its corresponding DAHPS should be 

found.  Since DAHPSs are all metallo enzymes, the Class II metallo KDOPS should be 

closer to the DAHPS than the Class I non-metallo KDOPS.  There are two reasons for 

this hypothesis.  One is that since we speculate that for KDOPS the loss of metal 

binding may be the evolutionary driving force, the metallo DAHPS and metallo KDOPS 

might be more ancient and more closely evolutionary linked to each other than the 

non-metallo KDOPS.  The second reason is that the metallo DAHPS and metallo 

KDOPS both have metal involved in their catalysis; thus, their catalytic mechanism 

might be more similar.  The A. aeolicus KDOPS (KDOPSAa) is a metallo enzyme and its 

structures with or without substrates have been well studied.  Thus, KDOPSAa seems to 

be an excellent candidate for the directed evolution experiments.  However, A. aeolicus 

is a hyperthermophilic microorganism [4].  Hyperthermophilic enzymes show optimal 

activity between 60oC and 110oC and typically do not function well below 40oC.  Since 
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the selection systems that will be used are both E. coli knockout strains, the directed 

evolution experiments will be conducted at 37oC.  At this temperature, 

hyperthermophilic KDOPS/DAHPS will not be able to display optimal activity, so a 

mesophilic pair of enzymes would be a better choice for the substrate alternation 

experiment utilizing directed evolution.  It is also logical to utilize the KDOPS/DAHPS 

from an organism for which the KDOPS/DAHPS are already available and well studied 

in our laboratory.  Based on the above criteria, the Porphyromonas gingivalis 

KDOPS/DAHPS (KDOPSPg/DAHPSPg) was chosen as templates for the directed 

evolution experiments.  P. gingivalis is implicated in periodontal diseases and 

cardiovascular diseases [16].  An amino acid sequence alignment (Figure 2-16) shows 

25% identity and 40% similarity between the KDOPSPg and DAHPSPg, which is 

relatively high among the pairs of KDOPS and DAHPS we have searched by BLAST 

(Figure 2-16). 

P._gingivalis_KDO8PS      MTNSNSLYERLQTADSFFLMAGPCAIESED------MALRIAERIVEVTS 
P._gingivalis_DAH7PS      MKYCDFTPLPLPSEPNTTVIAGPCSAESEEQIMTTARALRDEAGIRIFRA 
                          
P._gingivalis_KDO8PS      RLGIPYIFKGSYRKANRSRIDSFTGIGDEKALRILGKVGR---------- 
P._gingivalis_DAH7PS      GLWKPRTLPGCFEGVGETGLPWLVRVQDELDMLATTEVATREHVEQAMQA 
                          
 
P._gingivalis_KDO8PS      -----EFGVPTVTDIHETHEAA--MAAEYVDVLQIPAFLCRQTDLIVAAA 
P._gingivalis_DAH7PS      GIRILWLGARTTSNPFAVQEIADTIGKDESVIVLVKNPISPDLDLWTGAL 
                                
P._gingivalis_KDO8PS      YTGRIVNVKKGQFLSGEAMAFVARKCVDSGNSQVILTER----------- 
P._gingivalis_DAH7PS      ERLRQSGVRQIGAIHRGFSTYATKTFRNPPHWQIPFDLKRRFPSLTILCD 
                              
P._gingivalis_KDO8PS      -----------------GNTFGYTDLVVDYRNIP------AMRSLGFPVV 
P._gingivalis_DAH7PS      PSHITGQRDRIESVSQQAMEMNFDGLIIESHCCPDKALSDASQQITPTVL 
                                         
P._gingivalis_KDO8PS      MDVTHSLQQPNQGSG------------VTGGKPELIETIAKAAIAVGADG 
P._gingivalis_DAH7PS      AQILRRLRIPRRQSEKQDEELISWRMQIDQIDESIVELLARRMQVAYEIG 
                           
P._gingivalis_KDO8PS      LFIETH------------PDPASAKSDGANMLRLDLLEGLLTKLMRIRAA 
P._gingivalis_DAH7PS      LFKKEHNLAVVQNLRYEQLQRNRARTAALLGLDETFISELFSRIHEESVR 
                          
P._gingivalis_KDO8PS      IRD------------- 
P._gingivalis_DAH7PS      LQTLAPQKPHTDDCIS 
 

Figure 2-16.  Sequence alignment of KDOPSPg and DAHPSPg. 
 

If by using directed evolution, any mutant KDOPSPg plasmids can be selected 
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that display DAHPS activity or any mutant DAHPSPg plasmids can be selected to carry 

enhanced KDOPS activity, the sequences of these mutant plasmids can be compared to 

the wild-type enzymes in order to identify the primary mutation sites.  Important 

residues that have been mutated can be determined, and these residues might be critical 

for the substrate specificity.  Mutations on these residues only can be constructed to the 

wild-type enzyme.  Further study including in vitro characterization, kinetic and 

crystallography on those mutant enzymes might provide important information on the 

mechanism of substrate binding. 

 

2.4.2. Experimental Procedures 

Materials – Reagents used to make M9 medium including Na2HPO4, KH2PO4, 

NaCl, NH4Cl, MgSO4, CaCl2 and glucose were purchased from Fisher Scientific and Alfa 

Aesar.  Nutrients for the selection plates including L-thiamine, L-leu, nicotinic acid, 

casein hydrolysate, L-phe, L-tyr, L-trp, PABA, PHBA and bile salts were purchased from 

Sigma.  The pEXP5-CT/TOPO TA Expression kit was purchased from Invitrogen.  

The gene pulser™ 0.2 cm cuvette and the gene pulser™ II system used for 

electroporation were purchased from Bio-Rad.  XL1-Red competent cells and 

Mutazyme II® DNA polymerase were purchased from Stratagene. 

The general procedure – The procedure used in the directed evolution 

experiment is shown in Figure 2-17.  First, a mutant plasmid library will be generated 

by random mutagenesis experiments.  All the mutant plasmids in the library will then be 

transformed into the selection/knockout strain using electroporation.  If any positive 

plasmids grow on the selection plates, these plasmids will be purified and used as 



 47

templates for the next round of random mutagenesis experiments.  Otherwise, if no 

positive plasmid is selected, the whole mutant plasmid library will be used as template 

for the next round of random mutagenesis.  After several cycles, the mutant plasmids 

with the highest desired function will be transformed into an overexpression cell line for 

protein overexpression.  The mutant proteins will be characterized in vitro and their 

properties compared to the wild-type enzyme. 

 

 

 

 

 

 

 

 

Figure 2-17.  General procedure of directed evolution experiment. 
 

Traditional Error-prone PCR – The error-prone PCR methodology described 

by Cadwell and Joyce produces mutations at a rate of 6.6x10-3 per nucleotide [25].  PCR 

was performed in a 100 μL reaction mixture containing 20 mM Tris-HCl (pH 7.5), 50 

mM KCl, 7 mM MgCl2, 0.5 mM MnCl2, 0.2 mM dATP, 0.2 mM dGTP, 1.0 mM dCTP, 

1.0 mM dTTP, 5 U Taq polymerase, 10 ng gene template (pT7-7/kdsAPg or pT7-7/aroGPg) 

and 50 pmol primers.  The primers used for PCR were the original cloning primers (see 

Table 2-6).  Conditions for PCR were as follows: the first step of 3 min at 95oC for one 

cycle; the second step of 36 cycles of 1 min at 95oC, 1 min at 55oC, 1 min at 72oC; the 
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last step of one cycle of 5 min at 72oC.  The PCR products were digested with NdeI and 

BamHI, and ligated into NdeI, BamHI and CIAP treated pT7-7 vector.  The ligation 

mixture was transformed into XL1-Blue competent cells.  All grown plasmids were 

extracted and purified to generate the mutant plasmid library. 

 

Table 2-6.  Oligonucleotides used for error-prone PCR. 
 Primers 

5’→ 3’ 

KDOPSPg  forward 

          reverse 

TAATACGACTCACTATAGGG 

GCATTGGTAACTGTCAGACC 

DAHPSPg  forward 

          reverse 

TAATACGACTCACTATAGGG 

GCATTGGTAACTGTCAGACC 

 

XL1-Red competent cell (Stratagene) – A second method for introducing 

random mutations involves propagating the wild-type KDOPSPg gene into the XL1-Red 

E. coli mutator strain (Stratagene), which is deficient in three of the primary DNA repair 

pathways (mutS, mutD, and mutT mutations).  The random mutation rate in this triple 

mutant strain is ~5000 fold higher than that in wild-type E. coli.  Wild-type KDOPSPg or 

DAHPSPg gene (10-50 ng) was transformed into each 100 μL of XL1-Red competent 

cells with 1.7 μL of the β-mercaptoethanol added, followed by plating on LB-ampicillin 

agar plate.  The plate was incubated at 37oC for 24-30 h.  All the colonies were 

collected in 5 mL of LB broth with ampicillin and grown overnight at 37oC.  For higher 

mutation rate, the cells were diluted and grown overnight for as many cycles as desired.  

Plasmids were extracted and purified from 1.5 mL of the overnight culture and 

transformed into the XL1-Blue competent cells.  All grown plasmids were extracted and 

purified to generate the mutant plasmid library.  
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Mutazyme II® DNA polymerase – Mutazyme® II DNA polymerase is a novel 

error-prone PCR enzyme blend, which has been reported to generate 1-16 mutations per 

kb.  PCR was performed in a 50 μL reaction mixture containing 5 μL 10x Mutazyme II® 

reaction buffer, 1 μL 40 mM dNTP mix (200 μM each final), 0.5 μL primer mix (250 

ng/μL of each primer), 1 μL Mutazyme II® DNA polymerase (2.5 U), 1 μL template (100 

ng plasmid pT7-7/kdsAPg or pt7-7/aroGPg) and 41.5 μL water.  The primers used for 

PCR were the original cloning primers (see Table 2-6).  Conditions for PCR were as 

follows: the first step of 3 min at 95oC for one cycle; the second step of 36 cycles of 1 

min at 95oC, 1 min at 55oC, 1 min at 72oC; the last step of one cycle of 5 min at 72oC.  

The PCR products were digested with NdeI and BamHI, ligated into an NdeI, BamHI and 

CIAP treated pT7-7 vector, and transformed into XL1-Blue competent cells.  All grown 

plasmids were extracted and purified to generate the mutant plasmid library, 

Topo vector – To increase the transformation efficiency of the error-prone PCR 

product, a pEXP5-CT/TOPO® vector (Invitrogen) was used.  After the last cycle of the 

regular PCR program, a 1 h extension step at 72oC was included.  After the first 30 min 

of the cycle, 1 μL Taq Polymerase (1 U) was added to the PCR tube in order to add a 

single deoxyadenosine (A) to the 3’ ends of PCR product.  The PCR product was 

purified, 4 μL of which was applied to the TOPO cloning reaction with 1 μL salt solution 

included in the kit and 1 μL TOPO vector.  The linearized TOPO vector has single, 

overhanging 3’ deoxythymidine (T) residues, which allows PCR inserts to ligate 

efficiently with the vector.  The reaction mixture was then transformed into One Shot® 

TOP10 competent E. coli cells.  All plasmids grown were extracted and purified to 

generate the mutant plasmid library. 
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Electroporation – The mutant plasmid library was transformed into the 

selection/knockout strain by electroporation.  The selection/knockout strains were 

grown overnight at 37oC in 5 mL LB medium with the proper antibiotics.  Part of the 

overnight culture (~100 μL) was put into another 5 mL fresh LB medium with antibiotics, 

and was grown at 37oC until the OD600 = 0.4~1.  The cell was centrifuged at 5000×g for 

5 min.  The pellet was re-suspended in 1 mL H2O and centrifuged at 5000×g for 1.5 min.  

This washing step was repeated for 3 times.  After the washed cell pellet was 

re-suspended using 100-200 μL of H2O, 5 μL of the plasmid library was added.  The cell 

and plasmid mixture was swirled gently and transferred in to a Bio-Rad gene pulser™ 0.2 

cm cuvette on ice.  The Bio-Rad gene pulser™ II system was used for electroporation 

with voltage set at 2.5 V.   Immediately after electroporation, 800 μL LB was added to 

the cuvette.  All the solution in the cuvette was then transferred into a 1.5 mL eppendorf 

tube, shaken for 1 h at 37oC, and plated on the appropriate selection plates. 

Selection plates for altering the substrate specificity of KDOPS from A5P 

to E4P – The plates used to select mutant KDOPSPg plasmids with DAHPS activity all 

contained M9-agar with 50 μg/mL Kan, 100 μg/mL Amp, 6 mg/L thiamine, 25 mg/L leu, 

and 6 mg/L nicotinic acid.  Different nutrients were added to the plates to produce a 

gradient for selection sensitivity as follows: 1) no supplement, 2) 0.2 M IPTG, 3) 0.2 M 

IPTG + 1 g/L casein hydrolysate, 4) 0.2 M IPTG + 1 g/L casein hydrolysate + 40 mg/L 

phe, 5) 0.2 M IPTG + 1 g/L casein hydrolysate + 40 mg/L phe +40 mg/L tyr, 6) 0.2 M 

IPTG + 1 g/L casein hydrolysate + 40 mg/L phe + 40 mg/L tyr + 40 mg/L trp, 7) 0.2 M 

IPTG + 1 g/L casein hydrolysate + 40 mg/L phe + 40 mg/L tyr + 40 mg/L trp + 40 mg/L 

PABA + 40 mg/L PHBA. 
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Selection plates for enhancing the ability of DAHPS to utilize A5P as an 

alternate substrate – The plates used to select mutant DAHPSPg plasmids with enhanced 

KDOPS activity were LB-agar plates with 30 μM A5P, 10 μM G6P, and 100 μg/mL 

Amp.  In addition, bile salts with different concentration were added to the plates which 

produced a gradient in the selection sensitivity as follows:  1) no bile salts, 2) 100 

μg/mL, 3) 250 μg/mL, 4) 500 μg/mL, 5) 1000 μg/mL, 6) 1500 μg/mL, 7) 3000 μg/mL, 8) 

4000 μg/mL, and 9) 5000 μg/mL.  

 

2.4.3. Results and Discussion 

Random mutagenesis – Three methods were used in the random mutagenesis 

experiment to generate mutant plasmid library: traditional error-prone PCR, XL1-Red 

competent cells, and Mutazyme II® DNA polymerase.   

Using the XL1-Red competent cells, no mutations were obtained after 7 cycles.  

The company later reported that the XL1-Red competent cells had mutated back to the 

parent cell line which could not generate mutations. 

When traditional error-prone PCR (which uses Mn2+ and low-fidelity Taq DNA 

polymerase to increase the rate of mutation) was tested, over 4 mutations per gene per 

round were generated.  The error generation rate could be adjusted by altering the 

concentration of Mn2+.  However, some of the mutations were conserved in each round 

of mutagenesis, which restricted the diversity of the mutant plasmid library. 

The Mutazyme II® DNA polymerase was able to generate 2-3 mutations per 

gene in each round.  This is a reasonable rate as described by previous directed 

evolution reports [20].  After each round, over 10 mutant plasmids were purified 
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individually and DNA sequenced.  The results show that there were no conserved 

mutations generated.  Compared to traditional error-prone PCR, Mutazyme II® DNA 

polymerase turns out to be a better choice for the random mutagenesis experiment.  The 

only problem for using Mutazyme II® DNA polymerase to generate mutant plasmid 

library was that after the PCR products were digested with NdeI and BamHI, ligated into 

similarly digested pT7-7 vector, and transformed into XL1-Blue competent cells, less 

than 100 colonies grew on the plate after the transformation, probably due to low 

ligation/transformation efficiency.  Therefore, the pEXP5-CT/TOPO® vector was used 

as described in the experimental procedures section.  The PCR products with the 

additional single deoxyadenosine (A) on the 3’ ends were cloned directly into the TOPO 

vector to generate a large mutant plasmid library.  Over 200 mutant plasmids were 

generated in each round of mutagenesis, and were added to the mutant plasmid library.  

The updated mutant plasmid library was used as a template for the next round of 

mutagenesis.  After 10 rounds of mutagenesis, an enzyme library containing over 2000 

mutant plasmids with an average of 20-28 mutations on each plasmids were obtained. 

Alter the substrate specificity of KDOPS from A5P to E4P – The KDOPSPg 

gene was used as a starting template to conduct the directed evolution experiments in 

hopes of generating a mutant KDOPS with DAHPS activity.  The mutant KDOPSPg 

plasmid library after each round of random mutagenesis was transformed into the CB717 

selection/knockout strain and plated on the 7 selection plates containing different 

supplements.  The results are shown in Table 2-7. 

A series of control experiments were performed to ensure that the selection 

system was functional.  First, the CB717 selection/knockout strain itself was plated on 
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the selection plates.  Cells only grew on the plate with all nutrients supplied including 

aromatic amino acids and aromatic vitamins, which is consistent with the 

selection/knockout strain property.  Next, DAHPS genes from different microorganisms 

(P. gingivalis, E. coli, A. pernix, and T. maritime) were transformed into the CB717 strain 

and individually plated on selection plates.  According to our hypothesis, the CB717 

selection/knockout strain which contains DAHPS gene can produce aromatic amino acids 

and aromatic vitamins by itself.  The results proved our hypothesis because cells started 

to grow on plates with only IPTG and casein hydrolysate, and did not need exogenous 

aromatic amino acids or aromatic vitamins for growth.  The last control experiment was 

to transform the KDOPSPg and KDOPSEc genes into the CB717 selection/knockout strain.  

Since wild-type KDOPS has no DAHPS activity, cells grew only on the plate containing 

all nutrients supplied similar as the parent CB717 strain.  These control experiments 

verified that the selection system I developed by using CB717 selection/knockout strain 

is reliable and sensitive, and can be used in the directed evolution experiment to alter the 

substrate specificity of KDOPS to E4P.  If a mutant KDOPSPg can utilize E4P as an 

alternate substrate, the mutant should be able to grow without exogenous aromatic amino 

acids or aromatic vitamins. 

Next, the KDOPSPg mutant plasmid library was screened in the CB717 

selection/knockout strain after each round of random mutagenesis.  After 10 rounds of 

mutagenesis, a mutant plasmid library containing > 2000 mutant KDOPSPg plasmids with 

an average of 20-28 mutations on each plasmid was obtained.  However, all mutant 

plasmids still only grew on plates supplemented with all nutrients.  These results 
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indicate that no positive mutant KDOPSPg plasmid with DAHPS activity was generated 

in the directed evolution. 

 

Table 2-7.  Directed evolution of KDOPSPg.  All wild-type and evolved plasmids were 
transformed into CB717 selection/knockout strain.  No growth (-).  Growth (+).  

 M9 M9+ 

IPTG 

M9+IPTG 

+Casein 

Hydrolysate 

M9+IPTG 

+Casein 

Hydrolysate+

Phe 

M9+IPTG 

+Casein 

Hydrolysate+

Phe+Tyr 

M9+IPTG 

+Casein 

Hydrolysate 

+Phe+Tyr+Trp 

M9+IPTG 

+Casein 

Hydrolysate 

+Phe+Tyr+Trp 

+PABA+PHBA 

CB717 ONLY _ _ _ _ _ _ + 

Pg DAHPS WT 

Ec DAHPS WT 

Ap DAHPS WT 

Tm DAHPS WT 

_ _ + + + + + 

Pg KDOPS WT 

Ec KDOPS WT 

_ _ _ _ _ _ + 

1st round RM 

(2~4 mutations) 

_ _ _ _ _ _ + 

2nd round RM 

(5~8 mutations) 

_ _ _ _ _ _ + 

3rd round RM 

(6~10 mutations) 

_ _ _ _ _ _ + 

4th round RM 

(8~12 mutations) 

_ _ _ _ _ _ + 

5th round RM 

(10~15 mutations) 

_ _ _ _ _ _ + 

6th round RM 

(12~18 mutations) 

_ _ _ _ _ _ + 

……. _ _ _ _ _ _ + 

10th round RM 

(20~28 mutations) 

_ _ _ _ _ _ + 

 

Enhance the ability of DAHPS to utilize A5P as an alternate substrate – 

The DAHPSPg gene was used as a starting template to conduct the directed evolution 

experiments in hopes of enhancing the KDOPS activity of DAHPSPg.  The mutant 

plasmid library after each round of random mutagenesis was transformed into the KPM29 
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selection/knockout strain and plated on the selection plates which contained different 

concentration of bile salts.  The results are shown in Table 2-8. 

A series of control experiments were performed to ensure that the selection 

system was functional.  First, the KPM29 selection/knockout strain itself was plated on 

the selection plates.  Cells only grew on the plate with extremely low bile salts 

concentration (< 200 μg/mL), which indicates that no LPS was formed in the cell wall.  

This is consistent with the selection/knockout strain properties, since the KDOPS 

responsible for the maturation of LPS was absent.  Next, the KDOPSEc and KDOPSPg 

were transformed into the KPM29 strain and individually plated on selection plates.  

According to our hypothesis, the KPM29 selection/knockout strain which contains the 

KDOPS gene can form LPS; thus, can grow in high concentration of bile salts.  The 

results proved our hypothesis because cells with KDOPSEc or KDOPSPg could grow in 

high concentration bile salts (> 5000 μg/mL).  The last control experiment was to 

transform the DAHPSEc and DAHPSPg genes into the KPM29 selection/knockout strain.  

Since the KDOPS activity of wild-type DAHPS is too weak to form LPS, cells grew only 

could only grow in low bile salts concentration (< 250 μg/mL).  These control 

experiments verified that the selection system I developed using KPM29 

selection/knockout strain is reliable and sensitive, and can be used in the directed 

evolution experiment to enhance the KDOPS activity in DAHPS.  If a mutant DAHPSPg 

can catalyze the condensation of A5P and PEP at a higher rate, the mutant might be able 

to grown in higher bile salts concentration. 

The DAHPSPg mutant plasmid library generated by each round of random 

mutagenesis was selected in the selection system.  After 10 rounds of mutagenesis, a 
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mutant plasmid library containing > 2000 mutant DAHPSPg plasmids with an average of 

20-28 mutations on each plasmid was obtained.  Unfortunately, no mutant DAHPSPg 

plasmids could grow in bile salts with concentration at 250 μg/mL or higher.  These 

results indicate that the KDOPS activity of DAHPSPg was not increased by the mutations 

generated in the directed evolution. 

 

Table 2-8.  Directed evolution of DAHPSPg.  All wild-type and evolved plasmids were 
transformed into KPM29 selection/knockout strain.  No growth (-).  Growth (+).  

 

Neither of the two directed evolution approaches worked after 10 rounds of 

experiments.  No further rounds were performed since most of the previously reported 

 No 

Bile 

salts 

100 

ug/ml 

Bile 

Salts 

250 

ug/ml 

Bile 

Salts 

500 

ug/ml 

Bile 

Salts 

1000 

ug/ml 

Bile 

Salts 

1500 

ug/ml 

Bile 

Salts 

3000 

ug/ml 

Bile 

Salts 

4000 

ug/ml 

Bile 

Salts 

5000 

ug/ml 

Bile 

Salts 

KPM29 ONLY + + _ _ _ _ _ NA NA 

Pg KDOPS WT 

Ec KDOPS WT 

+ + + + + + + + + 

Pg DAHPS WT 

Ec DAHPS WT 

+ + _ _ _ _ _ NA NA 

1st round RM 

(2~4 mutations) 

+ + _ _ _ _ _ NA NA 

2nd round RM 

(5~8 mutations) 

+ + _ _ _ _ _ NA NA 

3rd round RM 

(6~10 mutations) 

+ + _ _ _ _ _ NA NA 

4th round RM 

(8~12 mutations) 

+ + _ _ _ _ _ NA NA 

5th Round RM  

(10~15 mutations) 

+ + _ _ _ _ _ NA NA 

6th Round RM  

(12~18 mutations) 

+ + _ _ _ _ _ NA NA 

…… + + _ _ _ _ _ NA NA 

10th Round RM  

(20~28 mutations) 

+ + _ _ _ _ _ NA NA 
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success in changing the substrate specificity of enzyme by directed evolution was 

obtained within 7 rounds of experiments [20].  However, the two selection systems I 

developed were proved to be reliable and sensitive, and can be used in the future 

experiments. 
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CHAPTER 3 

DETERMINATION OF ALTERNATE CARBOHYDRATE 
SUBSTRATE FOR KDOPS 

 

 

3.1. SUMMARY 

In this chapter, different A5P analogues were tested as alternate substrates for 

KDOPS including monosaccharide analogues, phosphorylated monosaccharide 

analogues, arabinose arsenate ester, arabinose 5-homophosphonate and arabinose 

5-difluoromethylenephosphonate.  The ability of both A. aeolicus KDOPS (KDOPSAa) 

and E. coli KDOPS (KDOPSEc) to utilize these analogues as alternate substrates was 

measured using the Aminoff colorimetric assay [1].  Only 2-deoxy R5P and arabinose 

5-difluoromethylenephosphonate could be utilized as alternate substrates for KDOPSEc.  

In order to verify that KDOPSEc can catalyze the condensation of arabinose 

5-difluoromethylenephosphonate with PEP to form 3-deoxy-D-manno-octulosonate 

8-difluoromethylenephosphonate (KDOFP), large amounts of arabinose 

5-difluoromethylenephosphonate and PEP were enzymatically reacted with KDOPSEc.  

The product of this reaction was purified using anion exchange and desalting columns.  

Both NMR and mass spectrum analysis verify that KDOFP is the product of the reaction, 

which proves that arabinose 5-difluoromethylenephosphonate is indeed a substrate for 

KDOPS, but at a much slower rate than the natural substrate A5P. 
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3.2. INTRODUCTION 

KDOPS and DAHPS are two functionally related enzymes.  They catalyze 

similar condensation reactions, have similar tertiary and active site structures, and share 

similar mechanisms [2, 3].  The carbohydrate substrate of KDOPS, A5P, is one -CHOH- 

unit longer than E4P, the carbohydrate substrate of DAHPS.  DAHPS has been shown to 

catalyze the condensation of A5P with PEP albeit at modest rate [4], while KDOPS is not 

able to utilize E4P as an alternate substrate.  In chapter 2, different methods were used 

to alter the substrate specificity of KDOPS from A5P to E4P.  However, none of the 

modified KDOPS can utilize E4P as an alternate substrate.  In hopes of gaining more 

mechanistic information in substrate specificity of KDOPS, finding an alternate substrate 

for KDOPS from different A5P analogues would be the next reasonable step.  Different 

sets of A5P analogues are listed below. 

1) Monosaccharide analogues (see Figure 3-1) 

 

 

   

 

 

 

 
Figure 3-1.  Monosaccharide analogues of A5P.  

 

The major differences of these monosaccharide analogues from A5P is the lack 

of a negatively charged phosphate moiety, which is critical for interacting with the active 
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site residues of KDOPS to reside A5P.  Without the phosphate moiety, the 

monosaccharide analogues of A5P might not bind the enzyme any longer; thus, they 

should not be alternate substrates for KDOPS.  However, these monosaccharide 

analogues still contain the aldehyde group, which is also critical for substrate binding.  

Therefore, these analogues might still bind the enzyme, but less tightly and the chain may 

be more flexible.  The length of these monosaccharide analogues and stereochemistry of 

C2 may also affect the analogues ability to be utilized as alternate substrates for KDOPS. 

 

2) Phosphorylated Monosaccharide Analogues (see Figure 3-2) 

 

 

  

  

 

 

 

Figure 3-2.  Phosphorylated monosaccharide analogues of A5P. 
 

The phosphorylated monosaccharide analogues all contain the phosphate moiety 

similar to the natural substrate A5P.  They are different from A5P in length and in the 

stereochemistry of C2.  The 2-deoxy R5P has the same length as A5P but lacks the 

C2-OH group.  Due to the presence of both aldehyde group and phosphate moiety, these 

phosphorylated analogues should still be able to bind the enzyme.  The difference in 

length and stereochemistry of C2 however, might prevent these analogues from binding 
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with the correct orientation, thus affecting their ability to be alternate substrates for 

KDOPS.  Previous studies have shown that DAHPS can utilize R5P and 2-deoxy R5P as 

alternate substrates [4].   

 

3) Arabinose + Inorganic Arsenate (see Figure 3-3) 
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Figure 3-3.  Arabinose arsenate ester as A5P analogue.  
 

Sugar and inorganic arsenate are accepted by a wide variety of sugar phosphate 

utilizing enzymes as alternate substrate and have recently been used in large scale 

enzymatic synthesis of unphosphorylated carbohydrates [5, 6].  In this process, sugar 

and inorganic arsenate react reversibly and nonenzymatically in situ to form a sugar 

arsenate ester, which is recognized as an analogue of the phosphorylated sugar.  The 

sugar arsenate ester then serves as a substrate for enzyme.  After the enzymatic reaction, 

the product “ester” can spontaneously hydrolyze to release free sugar product and 

inorganic arsenate [7].  KDOPS is also a sugar phosphate utilizing enzyme.  Based on 

the mechanism described above, the arabinose arsenate ester might be used to mimic the 

A5P as an alternate substrate. 
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The enzyme A5P isomerase (API) is also under investigation in our laboratory.  

This enzyme forms A5P from ribulose 5-phosphate (Ru5P), which is the first committed 

step in the KDO biosynthetic pathway.  This enzyme is also a sugar phosphate utilizing 

enzyme.  Studies on API show that the ribulose arsenate ester can be utilized as an 

alternate substrate for this enzyme to form the unphosphorylated arabinose.  Thus, the 

arabinose ester might be able to serve as an alternate substrate for KDOPS to produce the 

unphosphorylated KDO. 

 

4) Arabinose 5-homophosphonate and Arabinose 5-difluoromethylenephosphonate 

(see Figure 3-4) 

 

 

 

 

 

 

 

 

Figure 3-4.  Chemically synthesized A5P analogues. 
 

Arabinose 5-homophosphonate and arabinose 5-difluoromethylenephosphonate 

were chemically synthesized by our collaborator at Peking University.  The phosphate 

group of A5P in these two analogues was replaced by a homophosphonate and a 

difluoromethylenephosphonate, respectively.  Results from previous studies show that 
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DAHPS can utilize erythrose 4-phosphonate and erythrose 4-homophosphonate as 

alternate substrates [8].  Based on the results, we hypothesize that KDOPS might also be 

able to utilize arabinose 5-homophosphonate as an alternate substrate.  Furthermore, 

fluorine is more electronegative than carbon; thus, arabinose 

5-difluoromethylenephosphonate should have a lower pKa than arabinose 

5-homophosphonate.  The pKa of arabinose 5-difluoromethylenephosphonate should be 

closer to the natural substrate A5P than that of the 5-homophophonate.  If arabinose 

5-homophosphonate can be an alternate substrate for KDOPS, arabinose 

5-difluoromethylenephosphonate should be an even better substrate.  

 

3.3. EXPERIMENTAL PROCEDURES 

Materials – Tris(hydroxymethyl)aminomethane was purchased from Research 

Organics.  Phosphoenolpyruvate mono(cyclohexylammonium) salt, thiobarbituric acid, 

D-erythrose, D-arabinose, D-ribose, D-glucose, R5P disodium salt, E4P disodium salt, 

2-deoxy R5P disodium salt, G6P disodium salt, sodium arsenate and ferric chloride were 

obtained from Sigma.  Arabinose 5-phosphate was prepared in our laboratory by Dr. 

Junhua Yan.  Acetic acid was purchased from Fisher Scientific.  Arabinose 

5-homophosphonate (containing 40% sodium acetate and only 55%~60% pure) and 

arabinose 5-difluoromethylenephosphonate (~70% pure) were chemically synthesized by 

our collaborator at Peking University.  Sodium thiophosphate was purchased from Alfa 

Aesar.  Malachite green carbinol hydrochloride, deuterium oxide (99.99% atom D; D2O) 

and orcinol were purchased from Aldrich.  The AG-MPI resin was purchased from 

Bio-Rad.  The Sephadex® G10 resin was purchased from Pharmacia Fine Chemicals.  
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Aminoff colorimetric assay [1] – Enzyme specific activity was measured in a 

final volume of 50 μL containing PEP (3 mM), A5P or its analogues (0.5-10 mM), 

Tris-acetate buffer (100 mM, pH 7.5) using thin-walled PCR tubes as the reaction vessel.  

The assay solution was pre-incubated at a desired temperature for 2 min and the reaction 

was initiated with the addition of enzyme (5 μg) and incubated at the desired temperature.  

At specified time, the reactions were stopped with the addition of 50 μL 10% ice-cold 

TCA (to a final concentration of 5%) and centrifuged to remove precipitated protein.  

The 100 μL enzymatic reaction mixture was transferred into a 10-mL glass tube and 

subjected to total oxidation with 0.2 mL 0.025 M NaIO4 in 0.125 M H2SO4 at room 

temperature for 10 min.  The excess oxidizing agent was reduced by the addition of 0.4 

mL of 2% (w/v) NaAsO2 in 0.5 M HCl.  Following the disappearance of the yellow 

color, 1 mL thiobarbituric acid (0.36% w/v, pH 9.0) was added and the tube was heated at 

100oC for 10 min.  The amount of KDO8P produced was determined by measuring the 

absorption at λ = 549 nm (ε = 1.03×105 M-1cm-1 for the pink chromophore formed 

between α-formylpyruvate and thiobarbiturate).  All assays were performed in triplicate. 

Kinetic parameters [9] – A continuous spectrophotometric method for the 

measurement of the disappearance of the α, β-unsaturated carbonyl absorbance of PEP 

was used to determine kinetic parameters of KDOPS.  The standard assay mixture 

contained PEP (0.05-1 mM), A5P (0.05-1 mM), 100 mM Tris-acetate buffer (pH 7.5), 

and 5-15 μg KDOPS in 1 mL.  The first three reagents were mixed and pre-heated at 

desired temperature for 2 min.  The assay, initiated by the addition of the KDOPS, was 

monitored for 3 min at λ = 232 nm for a decrease in absorption (ε = 2840 M-1cm-1 for the 

disappeared double bond).  The Km and Vmax values were determined from a nonlinear 
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regression of data pairs (substrate concentration, initial velocity) fit to the 

Michaelis-Menten equation using KaleidaGraph 3.08d.  All assays were performed in 

triplicate. 

Malachite Green Assay [10] – The presence of inorganic phosphate was 

detected utilizing a malachite green assay.  The molybdate/malachite green reagent was 

prepared by mixing the MG (0.045% malachite green hydrochloride) and AM (4.2% 

ammonium molybdate in 4 N HCl) solutions at a 3:1 ratio.  To 100 μL of the sample, 

800 μL of the ammonium molybdate/malachite green colorimetric reagent was added.  

The solution was mixed and incubated at room temperature for 1 min.  The green color 

development was quenched by the addition of 100 μL of a 34% (w/v) sodium citrate 

solution.  The amount of inorganic phosphate was determined by measuring the 

absorbance at λ = 660 nm (ε = 20,206 M-1 cm-1), utilizing KH2PO4 as a standard.   

Bial’s Test [11] – To detect the presence of D-arabinose 

5-difluoromethylenephosphonate, the Bial’s test was utilized.  To prepare Bial’s 

reagent, 0.3 g orcinol and 0.05 g ferric chloride were dissolved in 100 mL of 12 M HCl.  

The reagent was stored at 4oC in a brown bottle to protect it from light.  During the test, 

0.05-0.2 mL sample was added to 1 mL Bial’s reagent, and heated in 100oC for 2-5 min.  

Green color indicates the presence of pentose of hexose, while yellow color indicates the 

presence of disaccharides. 

Enzymatic Synthesis of KDOPF – The 3-deoxy-D-manno-octulosonate 

8-difluoromethylenephosphonate (KDOFP) was enzymatically synthesized from 

D-arabinose 5-difluoromethylenephosphonate and PEP in the presence of KDOPSEc.  

The reaction mixture contained 36 mg of D-arabinose 5-difluoromethylenephosphonate, 
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21 mg PEP, 500 μg KDOPSEc, and 2 mL buffer (200 mM BTP, pH 7.5) was incubated at 

37oC.  Progression of the reaction was monitored by 31P NMR.  After every 24 h, 

another 1.0 mg of KDOPSEc and 1.0 mg of PEP were added to the reaction mixture.  

The reaction was quenched after 96 h with 10% trichloroacetic acid to a final 

concentration of 5%.  The final product mixture was lyophilized and reconstituted in 4 

mL H2O.  The product was purified on an AG-MP1 anion exchange column utilizing a 

LiCl gradient (0-400 mM, 500 mL).  The fractions positive for the Aminoff assay 

(indicating the presence of a 3-deoxy monosaccharide), negative for the malachite green 

assay (indicating the absence of inorganic phosphate), and negative for the Bial’s test 

(indicating the absence of D-arabinose 5-difluoromethylenephosphonate) were pooled 

and lyophilized.  The lyophilized sample was dissolved in 1 mL H2O and loaded onto a 

G10 column.  The desired product was eluted with water, the Aminoff positive and 

AgNO3 negative (indicating the absence of salt) fractions were pooled and lyophilized.  

The lyophilized sample was dissolved in water and frozen at -80oC.  

31P NMR and 13F NMR analysis of KDOPF – The purified KDOPF, verified 

via the Aminoff assay, was further verified via 31P NMR and 13F NMR analysis.  NMR 

tubes consisted of 1 mg KDOPF dissolved in 90% H2O and 10% D2O in a total volume 

of 500 μL.  Sample was analyzed via 31P NMR or 13F NMR using a Bruker Advance 

DRX-300 instrument with the WALTZ16 proton decoupling.  A 10 sec delay was used 

during the acquisition to ensure complete relaxation of the phosphorus nucleus, allowing 

for direct integration of the peaks.  Each spectrum contained 128 scans.  As control 

experiments, inorganic phosphate, PEP and arabinose 5-difluoromethylenephosphonate 

were analyzed by 31P NMR or 13F NMR.   
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ESI- mass spectrum analysis of KDOPF – The KDOPF was further analyzed 

by mass spectroscopy.  The molecular weight was determined by electrospray with 

negative ion detection (ESI-) mass spectrum in the Department of Chemistry using 

Micromass LCT.   

 

3.4. RESULTS AND DISCUSSION 

3.4.1. Monosaccharide Analogues 

The specific activities of KDOPSAa to utilize the monosaccharide analogues of 

A5P as alternate substrates were measured at 60oC using the Aminoff assay.  Similarly, 

using the Aminoff assay, the specific activities of KDOPSEc with the monosaccharide 

analogues of A5P were measured at 37oC.  The results are shown in Table 3-1. 

 

Table 3-1.  Specific activities of KDOPS with monosaccharide analogues of A5P.  
Monosaccharide Specific Activity at 60oC 

KDOPSAa (units/mg) 

Specific Activity at 37oC 

KDOPSEc (units/mg) 

A5P 1.88 12.72 

D-Erythrose  0.06 0.08 

D-Arabinose 0.05 0.04 

D-Ribose 0.03 0.05 

D-Glucose ~0 ~0 

 

The specific activities of both KDOPSAa and KDOPSEc with the 

monosaccharide analogues of A5P and PEP are all < 0.1 units/mg.  These results 
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indicate that none of the monosaccharide analogues of A5P tested is an alternate substrate 

for KDOPS. 

These monosaccharide analogues differ from A5P mainly in the loss of 

phosphate moiety.  The active site structure of KDOPSAa with A5P, PEP and metal 

shows that A5P is mainly stabilized by a network of hydrogen bonds and salt bridges 

between its phosphate and aldehyde moieties and several active site residues (Figure 3-5) 

[12].  The phosphate moiety of A5P interacts with R49, S50, R106 and S197.  These 

interactions are considered critical for the A5P binding in KDOPS.  Therefore, the 

reason that these monosaccharide analogues cannot be utilized as alternate substrates for 

KDOPS may be the lack of phosphate moiety.  In this case, the monosaccharide 

analogues may not be able to bind KDOPS in the active site; or, they can still bind but are 

not correctly positioned and oriented due to the loss of important interactions between the 

phosphate moiety and active site residues. 

  

 

 

 

 

 

 

 

 
 
Figure 3-5.  Crystal structure of KDOPSAa active site with PEP, A5P and metal bound 
[12]. 
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3.4.2. Phosphorylated Monosaccharide Analogues  

The specific activities of both KDOPSAa and KDOPSEc to utilize 

phosphorylated monosaccharide analogues of A5P as alternate substrates measured by 

the Aminoff assay are shown in Table 3-2. 

The specific activities of both KDOPSAa and KDOPSEc with these 

phosphorylated monosaccharides and PEP, determined by measuring the absorption at λ 

= 549 nm in the Aminoff assay, are all < 0.1 units/mg.  These results suggest that none 

of the phosphorylated monosaccharide analogues of A5P is an alternate substrate for 

KDOPS. 

 

Table 3-2.  Specific activities of KDOPS with phosphorylated monosaccharide 
analogues of A5P. 

 
 

All the analogues tested herein contain both the phosphate moiety and the 

aldehyde group, which are considered critical in A5P binding.  Thus, they should still 

bind in the active site of KDOPS by interactions between their phosphate/aldehyde 

groups and important active site residues.  These phosphorylated monosaccharide 

Phosphorylated  

Monosaccharide 

Specific Activity at 60oC 

KDOPSAa (units/mg) 

Specific Activity at 37oC 

KDOPSEc (units/mg) 

A5P 1.88 12.72 

E4P 0.07 0.06 

R5P 0.03 0.05 

2-deoxy R5P* 0.03 0.04 

G6P ~0 ~0 
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analogues differ from A5P mainly in the chain length and stereochemistry of C2.  We 

hypothesize that these differences may prevent the analogues from properly being 

positioned to accept the nucleophilic attack of C3 of PEP. 

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  Crystal structure of KDOPSAa active site with PEP, E4P and metal bound 
[12]. 
 

In the active site structure of KDOPSAa with A5P and PEP, the C2-OH of A5P 

was hydrogen bonded to a water molecule located at the si side of PEP, this interaction 

might help correctly align the aldehyde group of A5P for the nucleophilic attack by C3 of 

PEP (Figure 3-5).  The crystal structure of KDOPSAa with PEP and E4P was also solved 

by our collaborator Dr. Domenico Gatti at Wayne State University (Figure 3-6) [12].  

This structure shows that E4P can still bind in the active site of KDOPSAa with its 

phosphate and aldehyde groups interacting with active site residues, which is consistent 

with our hypothesis.  Compared to the structure of KDOPSAa with PEP and A5P, E4P 

binds in the active site of KDOPSAa with a different orientation from A5P primarily due 
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to its different stereochemistry on C2-OH.  The C2-OH of E4P does not form hydrogen 

bond with the active site water molecule, but interacts with N48.  Due to this interaction, 

the aldehyde group of E4P is differently positioned from that of A5P.  The different 

orientation as well as the shorter length of E4P makes the aldehyde group of E4P too far 

away from the C3 of PEP for the neucleophilic attack.  Thus E4P cannot be utilized as 

an alternate substrate for KDOPS. 

The 2-deoxy R5P behaves differently from the other phosphorylated 

monosaccharide analogues.  For 2-deoxy R5P, the Aminoff assay solution does not 

show absorption at λ = 549 nm (the pink chromophore formed between α-formylpyruvate 

and thiobarbiturate), however there was a high absorption at λ = 530 nm.  The solution 

displays an orange color instead of the pink color in normal Aminoff assay solution.  

These phenomena on 2-deoxy R5P suggest that there might be a reaction undergone 

between 2-deoxy R5P and PEP with the presence of KDOPS, which gives the orange 

color and the absorption at λ = 530 nm.  Thus, a continuous assay which measures the 

disappearance of the α, β-unsaturated carbonyl absorbance of PEP was used to determine 

if there is turnover between 2-deoxy R5P and PEP catalyzed by KDOPSEc.  Based on 

the observation of the loss of absorbance at 232 nm, there appears to be reaction between 

2-deoxy R5P and PEP in the presence of KDOPSEc.  The kinetic parameters of the 

reaction were determined (Km
2d R5P = 50 μM, kcat = 0.12 s-1, by David L. Howe in 

Woodard laboratory) [9].  The Km for 2-deoxy R5P is approximately 1.5 times greater 

than the Km for A5P (Km
A5P = 30 μM), the kcat for 2-deoxy R5P is about 55 times lower 

than the kcat of A5P (kcat = 6.8 s-1) [13].  These results indicate that 2-deoxy R5P is an 

alternate substrate for KDOPS.  The product of the condensation reaction between 
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2-deoxy R5P and PEP catalyzed by KDOPS should be 

3,4-dideoxy-D-manno-octulosonate 8-phosphate (see Figure 3-7) instead of KDO8P, 

which might be the reason for the presence of the unusual absorbance at λ = 530 nm 

(orange color). 

 

 

 

 

  

 

 

 
Figure 3-7. Proposed condensation reaction of 2-deoxy R5P and PEP catalyzed by 
KDOPS. 

 

Both R5P and 2-deoxy R5P have the same length as A5P, the only difference 

between them is that 2-deoxy R5P does not have a hydroxyl group on C2.  The reason 

that 2-deoxy R5P is an alternate substrate for KDOPS but not R5P might be that the 

stereochemistry of C2 hydroxyl group in R5P is different from that in A5P.  As seen in 

the structure of KDOPSAa with PEP and E4P (Figure 3-6), the aldehyde group is not 

correctly oriented due to the different stereochemistry on C2 of E4P from that of A5P.  

The stereochemistry on C2 of R5P is the same as E4P.  Thus, R5P may also not be able 

to bind with correct orientation for catalysis.  In 2-deoxy R5P, the interaction between 

the C2-OH and the enzyme active site is lost, while interactions between the 

phosphate/aldehyde group and the enzyme are still present.  The 2-deoxy R5P analogue 
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still binds at the active site with more flexibility and thus undergoes condensation with 

PEP. 

 

3.4.3. Arabinose + Inorganic Arsenate  

To test if an arabinose arsenate ester can serve as an alternate substrate for 

KDOPS, PEP, arabinose and 120 mM sodium arsenate buffer (pH 7.6) were 

pre-incubated before the KDOPS was added to initiate the reaction.  Specific activities 

measured by the Aminoff assay are shown in Table 3-3. 

 

Table 3-3.  Specific activities of KDOPS with arabinose arsenate ester. 

 

The specific activities of both KDOPSAa and KDOPSEc to utilize arabinose, 

inorganic arsenate and PEP as substrates are < 0.1 units/mg, which indicates that 

arabinose arsenate ester is not a substrate for KDOPS. 

Results from previous studies report that inorganic phosphate, a product of the 

KDOPS catalyzed reaction, is a competitive inhibitor for KDOPS due to its ability to 

bind at the same active site position as the phosphate moieties of PEP [14].  Since 

 Specific Activity at 60oC 

KDOPSAa (units/mg) 

Specific Activity at 37oC 

KDOPSEc (units/mg) 

A5P + PEP in Tris-HCl buffer 1.86 12.72 

A5P + PEP 

in sodium arsenate buffer  

1.94 11.87 

Arabinose + PEP 

in sodium arsenate buffer 

0.03 0.07 
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inorganic arsenate has a similar structure to inorganic phosphate, it is likely that inorganic 

arsenate is also an inhibitor for KDOPS.  Thus, a control experiment was performed to 

determine if inorganic arsenate inhibits KDOPS.  The activity of KDOPS with A5P and 

PEP was measured in 120 mM sodium arsenate buffer (pH 7.6) instead of the normal 

Tris-HCl buffer.  As shown in Table 3-3, the specific activities of both KDOPSAa and 

KDOPSEc in sodium arsenate buffer remained the same as those in the Tris-HCl buffer, 

which suggests that inorganic arsenate is not an inhibitor for KDOPS.   

 

3.4.4. Arabinose 5-homophosphonate/Arabinose 5-difluoromethylenephosphonate  

The ability of both KDOPSAa and KDOPSEc to utilize arabinose 

5-homophosphonate or arabinose 5-difluoromethylenephosphonate as alternate substrate 

was measured by the Aminoff assay (Table 3-4).  

 

Table 3-4.  Specific activities of KDOPS with arabinose 5-homophosphonate and 
arabinose 5-difluoromethylenephosphonate. 

 

 Specific Activity at 60oC 

KDOPSAa (units/mg) 

Specific Activity at 37oC 

KDOPSEc (units/mg) 

A5P 1.88 12.72 

Arabinose 

5-homophosphonate 

~0 ~0 

Arabinose 

5-difluoromethylene 

phosphonate  

0.08 0.42 
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The specific activities of KDOPSAa and KDOPSEc with arabinose 

5-homophophonate and PEP are close to 0 units/mg.  This suggests that arabinose 

5-homophophonate is not an alternate substrate for KDOPS. 

For the condensation of arabinose 5-difluoromethylenephosphonate with PEP, 

no activity is displayed with KDOPSAa; however, KDOPSEc displays an activity of 0.42 

units/mg.  Although much lower (about 30 fold) than that of the KDOPSEc with A5P, 

this specific activity (0.42 units/mg) is still significant, especially compared to that of any 

other A5P analogues tested above (< 0.1 units/mg).  Thus, arabinose 

5-difluoromethylenephosphonate is considered to be an alternate substrate for KDOPSEc 

but with a slower turnover rate than the natural substrate A5P.  The reason that arabinose 

5-difluoromethylenephosphonate is an alternate substrate for KDOPSEc but arabinose 

5-homophosphonate is not may be due to their pKa values.  Fluorine is more 

electronegative than carbon; thus, the pKa of arabinose 5-difluoromethylenephosphonate 

should be lower than the pKa of arabinose 5-homophosphonate, and is closer to that of 

the natural substrate A5P.  Thus, arabinose 5-difluoromethylenephosphonate can be 

utilized as an alternate substrate for KDOPSEc. 

The condensation reaction between arabinose 5-difluoromethylenephosphonate 

and PEP catalyzed by KDOPSEc should produce inorganic phosphate and a KDO8P 

derivative, 3-deoxy-D-manno-octulosonate 8-difluoromethylenephosphonate (shown in 

Figure 3-8). 
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Figure 3-8.  Proposed condensation reaction of arabinose 5-difluoromethylene 
phosphonate and PEP catalyzed by KDOPSEc. 

 

To further confirm that arabinose 5-difluoromethylenephosphonate is a substrate 

for KDOPSEc and that the condensation reaction between arabinose 

5-difluoromethylenephosphonate and PEP forms the product 

3-deoxy-D-manno-octulosonate 8-difluoromethylenephosphonate (KDOFP), a large scale 

enzymatic synthesis of KDOFP by arabinose 5-difluoromethylenephosphonate, PEP and 

KDOPSEc was performed as described in the experimental procedure section.  

Progression of the reaction was monitored by 31P NMR (Figure 3-9).  The triple peak at 

4.4, 3.7, and 3.2 ppm corresponds to the coupling between the fluorine and phosphorus in 

arabinose 5-difluoromethylenephosphonate.  The 31P-19F coupling constant in this 

compound is ~200 Hz.  The peak at -2.3 ppm corresponds to the inorganic phosphate 

product of the reaction.    Seen from the spectra, from day1 to day 4, the inorganic 

phosphate peak increased compared to the arabinose 5-difluoromethylenephosphonate 

peak, indicating that reaction although slow continued and produced more inorganic 
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phosphate every day.  After 4 days, the reaction was stopped.  The reaction mixture 

was applied to an AG-MP1 anion exchange column.  The proposed product KDOFP was 

separated from the excess reagents and the inorganic phosphate product.  The product 

was then desalted using a G10 sizing column.  The purified reaction product was 

analyzed by 31P NMR, 19F NMR and mass spectrometer.  Figure 3-10 shows the 31P 

NMR spectrum of the purified reaction product.  There is a triple peak at 5.6, 4.9, and 

4.2 ppm, and the coupling constant is ~210 Hz.  This coupling constant is similar to the 

31P-19F coupling constant of the starting material, arabinose 

5-difluoromethylenephosphonate.  The results suggest that the product compound 

contains phosphorus and fluorine.  Figure 3-11 shows the 19F NMR spectrum of the 

purified reaction product.  The peaks in this spectrum indicate that the compound 

contains fluorine in its structure. 

The 31P and 19F NMR spectra can only prove the presence of phosphorus and 

fluorine in the compound but cannot absolutely confirm that the reaction product is 

KDOFP since the reagent arabinose 5-difluoromethylenephosphonate displays a 

somewhat similar spectrum (data not shown).  Thus, only the mass spectrum can 

distinguish between those two compounds.  Figure 3-12 shows the mass spectrum of the 

purified reaction product obtained through electrospray with negative ion detection.  

The proposed molecular weight of KDOFP is 351.0293 g/mol.  The exact mass of the 

purified product was measured by electrospray through negative ion detection (ESI-) 

mass spectrometer because of the potentially negative charged carboxyl and phosphonate 

group of KDOFP.  A primary peak at 351.0285 was shown in the mass spectrum, which 

validates that the product is indeed KDOFP. 
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Figure 3-9.  Progress of the enzymatic synthesis monitored by 31P NMR. 
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Figure 3-10.  31P NMR spectrum of the purified reaction product.  
 

 

 

 

 

 

 

 

 

 

 

Figure 3-11.  19F NMR spectrum of the purified reaction product. 
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Figure 3-12.  Mass spectrum of the purified reaction product obtained using electrospray 
with negative ion detection (ESI-). 
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The enzymatic synthesis of KDOFP by KDOPSEc with arabinose 

5-difluoromethylenephosphonate and PEP proves that arabinose 

5-difluoromethylenephosphonate is an alternate substrate for KDOPSEc.  However, the 

enzymatic yield of KDOFP was extremely low (< 2 mg, ~5%).  These results suggest 

that KDOPSEc might catalyze the condensation of arabinose 

5-difluoromethylenephosphonate and PEP at a much slower rate than the natural 

substrate A5P.  Extending the reaction time or increasing the enzyme quantity might 

help increase the yield of this enzymatic synthesis.   

Of all the A5P analogues tested in the present study, only 2-deoxy R5P and 

arabinose 5-difluoromethylenephosphonate were found to be alternate substrates for 

KDOPSEc.  Although, the results show that other A5P analogues investigated were not 

converted to the corresponding 3-deoxy monosaccharide by KDOPS, whether they bind 

the enzyme active site or not remains unclear.  To determine if these A5P analogues 

bind KDOPS, an isothermal titration experiment might be used in future studies.   
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CHAPTER 4 

INVESTIGATION OF THE METAL REQUIREMENTS OF KDOPS 
 

 

4.1. SUMMARY 

Metal can be considered to be a third substrate of KDOPS.  There are two 

classes of KDOPSs: Class I are non-metalloenzymes (represented by E. coli), while Class 

II (represented by A. aeolicus) are metalloenzymes [1].  All DAHPSs studied to date are 

metalloenzymes.  In this chapter, I focused on changing the metal requirements of 

KDOPSs in order to understand the catalytic or structural function of the metal.  The A. 

aeolicus KDOPS (KDOPSAa) C11N mutation successfully converted the wild-type 

metallo KDOPS into a non-metallo enzyme with comparable activity [2].  The activity of 

the E. coli KDOPS (KDOPSEc) N26C and M25P/N26C mutant enzymes can be increased 

by the addition of Mn2+ or Cd2+, suggesting that these two mutant KDOPSEc have some 

properties similar to that of metal-dependent KDOPS. 

Crystallography studies on the KDOPSAa C11N mutant were performed.  The 

crystal structure of the mutant enzyme was determined at a 2.2 Å resolution using 

molecular replacement.  The active site structures of wild-type KDOPSAa and KDOPSAa 

C11N mutant with or without substrates were compared to each other.  The restults 

suggest that the divalent metal plays an important structural role in maintaining correct 

orientation of A5P for catalysis. 
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4.2. INTERCONVERSION BETWEEN METALLO AND NON-METALLO 
KDOPSs 
 

4.2.1. Introduction  

In an early phylogenetic study, Birck et al. [1], in our laboratory analyzed the 

amino acid sequences of KDOPSs and identified two distinct Classes for KDOPSs, 

labeled Class I and II respectively (see Figure 4-1).  Class II KDOPSs originate from 

more ancient microorganisms than Class I KDOPSs.  Later, studies on several KDOPSs 

from different microorganisms showed that Class I KDOPSs are non-metalloenzymes 

(represented by E. coli), while Class II (represented by A. aeolicus) are metalloenzymes.  

All DAHPSs studied to date are metalloenzymes.                               

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4-1.  Phylogenetic tree generated by maximum-likelihood analysis from the 
sequences of 29 KDOPS sequences from various organisms [1].  Class I is predicted to 
maintain the characteristics of the model E. coli enzyme (no metal requirement), while 
Class II, including the A. aeolicus enzyme, is predicted to require a divalent metal for 
catalysis.  
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Two questions need to be answered in studying the metal requirements of 

KDOPSs were aksed. One is to determine what causes the differences in the metal 

requirements of the two classes of KDOPSs.  The other is to identify the role of the metal 

in structure and catalysis.  

The crystal structure of KDOPSAa with Cd2+ was solved by Dr. Domenico Gatti 

at Wayne State University.  In the crystal structure of KDOPSAa, four residues C11, H185, 

E222, and D233 are found to form the octahedral metal binding site for Cd2+ with a water 

molecule being the sixth ligand (E222 provides two ligands) [3]. (see Figure 4-2) 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4-2.  Metal binding site of KDOPSAa [3]. 

 

Sequence alignment studied to date (see Figure 4-3) shows that all four of these 

residues are absolutely conserved in Class II KDOPSs and all DAHPSs (see Figure 4-4). 
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 Organism Partial sequence    Accession No. 

 
 
Class I 
 

E. coli 
P. aeruginosa 
V. cholera 
S. typhimurium 
Y. pestis 
H. influenzae 

22 FGGMNV 
22 FGGMNV 
22 FAGMNV 
22 FGGMNV 
22 FGGMNV 
22 FGGMNV 

201 THALQC 
199 THALQM 
201 THSLGM 
201 THALQC 
201 THALQC 
201 THSLQC 

237 FIEAHP 
235 FLEAHP 
237 FLEAHP 
237 FLESHP 
237 FLEAHP 
237 FLEAHP 

249 CDGPSA 
247 CDGPCA 
249 CDGPSA 
249 CDGPSA 
249 CDGPSA 
249 CDGPSA 

P17579 
AAG07024 
Q9KQ29 
Q8XGR9 
CAC90835 
P45251 

 
 
 
Class II 
 
 

 
A. aeolicus 
C. jejuni 
H. pylori 
C. psittaci 
R. prowazekii 
C. pneumoniae 

 
07 IAGPCA 
07 IAGPCV 
14 IAGPCV 
09 IAGPCV 
21 IAGPCQ 
09 IAGPCV 

 
184 THSVQL 
194 THSVQM 
203 THSVQM8 
188 THSVQL 
198 THSVQQ 
188 THSVQL 

 
220 FMETHP 
230 FFETHI 
239 FAETHI 
224 FIETHM 
234 YMEVHQ 
224 FIETHT 

 
232 SDASTQ 
242 CDGPNM 
251 SDGANM 
236 SDAASM 
246 SDGPCM 
236 SDAASM 

 
O66496 
Q9PIB8 
Q9ZN55  
Q46225  
NP_220456       
Q9Z7I4    

 
Figure 4-3.  Sequence alignment of representative KDOPSs.  Sequences were aligned 
using Clustal W.  Invariant residues that are putative metal-binding sites are shaded (C11, 
H185, E222, and D233 based on amino acid sequence for KDOPSAa).  The conserved N 
residues in the Class I were shaded in red.  The sequences are followed by their NCBI 
accession numbers. 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Organism 
 
C. pneumoniae 
C. trachomatis 
P. abyssi 
P. furiosus 
T. maritima 
E. faecalis 
B. subtilis 
S. pyogenes 
C. acetobutyricu 
A. pernis 
H. influenzae 
E. coli 
P. agglomerans 
B. aphidicola 
C. glutamicum 
P. aeruginosa 
V. cholerae 
S. typhimurium 
S. cerevisiae 
A. orientalis 

Partial sequence                                    Accession No. 
 
044 AGPCTL   216 DPSHA   243 MIEVH   255 C—-DAK   NP_224680 
037 AGPCTL   208 DPSHA   235 MIEVH   247 C—-DGS   NP_219891 
031 AGPCAI   201 DPSHP   228 LVEVH   240 S--DSK   B75161 
028 AGPCSI   198 DPSHP   225 MVEVH   237 S--DSQ   NP_579419 
099 AGPCSV   269 DPSHS   296 IVEVH   308 S--DGK   E72388 
099 AGPCSI   269 DPSHG   296 IVEIH   308 S--DGP   AAG53674 
123 VGPCAV   293 DVTHS   320 MAEVH   332 S--DSA   P39912 
020 VGPCSI   190 DVSHS   217 MMEVH   229 S--DAA   AAK34362 
099 AGPCSI   269 DPSHA   296 MIEVH   308 S--DGQ   AAK78868 
043 AGPCSV   213 DPSHP   240 IVEVH   252 S--DAK   E72643 
065 IGPCSI   273 DFSHA   308 MVESH   331 SITDAC   P44303 
058 IGPCSI   265 DFSHA   300 MVESH   323 SITDAC   P00886 
057 IGPCSL   264 DFSHG   299 MIESF   322 SITDPC   O54459 
057 IGPCSV   264 DFSHG   299 MIESF   322 SITDAC   P46245 
066 VGPCSV   271 DASHA   306 MIESF   336 SVTDKC   P35170 
059 IGPCSI   267 DCSHA   302 MVESH   326 SITDAC   B83426 
058 VGPCSV   266 DFSHA   301 MAESF   324 SITDPC   AAF73000 
059 CGPCSI   266 DCSHG   301 MIESN   325 SVTDAC   P21307 
067 IGPCSL   278 DCSHG   313 MIESN   339 SVTDAC   NP_010320 
065 TGPCSI   273 DASHD   308 MLESN   331 SITDAC   T17477 

Figure 4-4.  Sequence alignment of representative DAHPSs.  Sequences were aligned 
using Clustal W.  Invariant residues that are putative metal-binding sites are shaded (C61, 
H268, E302, and D326 based on amino acid sequence for E. coli phe-sensitive DAHPS).  
The sequences are followed by their NCBI accession numbers. 

 

In the non-metallo Class I KDOPSs, three of the four residues (H185, E222, and 

D233) are conserved, while C11 (A. aeolicus numbering) has been replaced by an N26 (E. 

coli numbering) residue.  The crystal structures reveal that these key metal binding site 
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amino acids are similarly arranged in both KDOPS and DAHPS [4]. 

Based on these analyses, it is postulated that the Cys and Asn may be the key 

residues responsible for the difference in the metal requirements of the two KDOPS 

classes.  Thus, it should be relatively straight forward to change the metal requirements 

for the enzymes.  To test this hypothesis and verify the role of the Cys, Asn, and metal 

involved in the mechanism, the KDOPSAa C11N mutant was constructed to convert the 

metallo KDOPSAa into a non-metallo enzyme.  As control experiments, the KDOPSAa 

C11G, C11S, C11S mutants were constructed.  In the C11G mutant, Gly has no side 

chain, and should not bind metal.  The sulfur in Cys is replaced by an O in the C11S 

mutant to test if the Ser can coordinate with the metal or not.  The C11K mutant should 

not bind metal any longer since Lys is potentially positive charged.  But the positive 

charge introduced by Lys might be able to substitute the positive charge carried by the 

metal to maintain the active site geometry.  The KDOPSEc N26C mutant was also 

constructed in order to convert the non-metallo KDOPSEc into a metallo enzyme.   

 

4.2.2. Experimental Procedures   

Materials – Polymerase chain reaction (PCR) primers were synthesized by 

Invitrogen.  PCR was performed using a MJ Research PTC-200 Peltier Thermal Cycler.  

The Wizard® Plus SV Minipreps DNA purification kit was utilized for plasmid isolation 

and purification.  Chemically competent E. coli XL1-Blue (Stratagene), chemically 

competent E. coli BL21 (DE3) (Novagen) were used for plasmid transformations.  

Restriction enzymes and DpnI were purchased from New England Biolabs.  DNA 

sequencing was performed by the University of Michigan Biomedical Resources Core 
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Facility.  Protein dye reagent concentrate was purchased from Bio-Rad.  

Tris(hydroxymethyl)aminomethane was purchased from Research Organics.  

Phosphoenolpyruvate mono(cyclohexyl ammonium) salt, thiobarbituric acid, and bovine 

albumin serum (BSA) were purchased from Sigma.  Arabinose 5-phosphate was 

prepared and purified by Dr. Junhua Yan in Woodard laboratory.  Enzyme grade KCl, 

NaCl, ammonium sulfate, and acetic acid were purchased from Fisher Scientific.  DNase 

I and RNase A were purchased from Roche.  High grade spectra/Por® 7 dialysis tubing 

(15,000 molecular weight cut-off and metal free) was purchased from VWR.  The 

Millex® syringe driven filter units (0.22 μm) was purchased from Millipore.  Phenyl 

Superose (HR 10/10) and Mono Q (HR 10/10) chromatography columns were purchased 

from Amersham Pharmacia Biotech, and were run in the FPLC® system purchased from 

Pharmacia. 

Sequence Analysis – Database searching of multiple microbial organisms was 

performed utilizing the BLAST program at the NCBI website 

(http://ncbi.nlm.nih.gov/BLAST).  Multiple sequence alignments were generated using 

Clustal W (http://www.ebi.ac.uk/clustalw). 

Protein Concentration Assay – Protein concentration was determined using the 

Bio-Rad Protein Assay Reagent assay.  BSA served as a standard for this assay.  

One Dimensional Polyacrylamide Gel Electrophoresis – Sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) used to confirm the weight and 

purity of proteins, was performed under reducing condition on a 12% polyacrlamide gel 

with the Mini-PROTEAN II electrophoresis unit (Bio-Rad).  Protein samples of 5-15 μg 

were used for analysis on the SDS-PAGE gels.  Gels were stained and visualized with a 
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0.25% Commassie Brilliant Blue R-250 solution. 

Construction, Overexpression, and Purification of mutant KDOPSs –The 

plasmids of KDOPS mutants were prepared by the QuickChange site-directed 

mutagenesis kit described by M.P. Weiner [5].  Two oligonucleotide primers, see Table 

4-1, each containing the desired mutagenic replacement codon, were designed as forward 

and reverse primers.  PCR was performed in a 50 μL reaction mixture containing 5 μL 

10× react ThermolPol buffer, 2 μL 50 mM MgCl2, 1 μL miniprep pT7-7/kdsA plasmid 

(wild-type KDOPS expression vector) as a template, 1 μL forward primer, 1 μL reverse 

primer, 2 μL dNTP mixture, 37 μL H2O, and 1 μL high-fidelity Vent DNA polymerase.  

Conditions for PCR were as follows: the first step of 3 min at 95oC for one cycle; the 

second step of 16 cycles of 30 sec at 95oC, 1 min at 55oC, 6.5 min at 72oC; the last step of 

one cycle of 5 min at 72oC.  The PCR product containing the linear mutant plasmid was 

treated with DpnI to digest the parental methylated pT7- 7/kdsA DNA template.  The 

DpnI digestion reaction mixture, containing the mutagenic DNA, was used to transform 

supercompetent E. coli XL1-Blue cells.  Plasmid DNAs were isolated and purified from 

each of the clones and initially characterized by restriction digestion and then DNA 

sequenced. 

DNA containing the proper mutagenic sequence was used to transform 

chemically competent E. coli BL21 (DE3).  The E. coli Bl21 (DE3) cells harboring the 

mutant pT7- 7/kdsA were grown in 2×YT medium (1 L) containing ampicillin (100 

μg/mL) at 37oC with orbital shaking (250 RPM).  When the culture had reached an 

absorbance of 1.5 at 600 nm, IPTG was added to a final concentration of 0.4 mM.  The 

culture was grown at 16oC for 16 h, then the cells were collected by centrifugation 
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(18000×g, 20 min, at 4oC) and suspended in buffer A (20 mM Tris-HCl buffer, pH 7.5).  

The cell suspension was subjected to sonication on ice (4×30 sec, 2 min rests between 

pulses) and then clarified by centrifugation (18000×g, 40 min, at 4oC) to produce the cell 

extract.  For mutant KDOPSAa only, solid sodium chloride was added to the cell extract 

to a final concentration of 0.1 M and the solution was heated in a boiling water bath for 2 

min and then at 80oC for 10 min with continuous swirling [6].  The suspension was 

allowed to cool to room temperature and then placed on ice for 15 min.  Precipitated 

protein was removed by centrifugation (18000×g, 20 min, at 4oC).  DNase I and RNase 

A were added to the supernatant and incubated in 37oC water bath for 30 min.  The 

protein solution was dialyzed against buffer A overnight.  The protein then was applied 

to a Mono Q (10/10) column previously equilibrated with buffer A.  The column was 

developed at a flow rate of 1 mL/min using a linear gradient from 0 M to 0.3 M potassium 

chloride in the same buffer (over 60 min).  The fractions containing KDOPS, which 

resolved into a single peak, were pooled and judged by SDS-PAGE (~30 kDa).  Solid 

ammonia sulfate was added to a final concentration of 20% (w/v). The sample was 

filtered (0.22 µm) and applied to a Phenyl Superose column (10/10) equilibrated with 

20% ammonia sulfate in buffer A.  The column was developed with a linear gradient 

from 20% to 0% (w/v) ammonia sulfate in buffer A (over 120 min).  The majority of the 

protein of interest eluted as a single peak at 0% ammonium sulfate concentration.  The 

purity of the recombinant protein was homogeneous as judged by SDS-PAGE analysis (> 

95%).  The purified proteins were pooled, dialyzed against 5 mM Tris-HCl buffer (pH 

7.5), and then frozen in dry ice with acetone and stored at -80oC.  The total yield of 

homogenous KDOPS protein was 5-10 mg protein/L of cell culture. 
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Table 4-1.  Oligonucleotides used for the mutagenesis of KDOPS. 
Target 

Amino 

Acid 

Primers 

5’→ 3’ 

 

Resulting 

Amino 

Acid 

C11 

 

GTGATAGCTGGACCCAATGCGATAGAGAGCGAGG 

CCTCGCTCTCTATCGCATTGGGTCCAGCTATCAC 

N 

C11 

 

GTGATAGCTGGACCCTCGGCGATAGAGAGCGAGG 

CCTCGCTCTCTATCGCCGAGGGTCCAGCTATCAC 

S 

C11 

 

GTGATAGCTGGACCTAAGGCGATAGAGAGCGAGG 

CCTCGCTCTCTATCGCCTTAGGTCCAGCTATCAC 

K 

C11 

 

GTGATAGCTGGACCCGGGGCGATAGAGAGCGAGG 

CCTCGCTCTCTATCGCCCCGGGTCCAGCTATCAC 

G 

N26 CGTACTGTTGGGCGGTATGTGCGTGTTGGAATCTC 

GAGATTCCAACACGCACATACCGCCCAACAGTA 

C 

M25 

N26 

CGTACTGTTGGGCGGTCCGTGCGTGTTGGAATCTC 

GAGATTCCAACACGCACGGACCGCCCAACAGTA 

P 

C 

 

Aminoff colorimetric assay [7] – Enzyme specific activity was measured in a 

final volume of 50 μL containing PEP (3 mM), A5P (3 mM), Tris-acetate buffer (100 mM, 

pH 7.5) using thin-walled PCR tubes as the reaction vessel.  The assay solution was 

pre-incubated at a desired temperature for 2 min and the reaction was initiated with the 

addition of enzyme (5 μg) and incubated at the desired temperature.  At specified time, 

the reactions were stopped with the addition of 50 μL 10% ice-cold TCA (to a final 

concentration of 5%) and centrifuged to remove precipitated protein.  The 100 μL 

enzymatic reaction mixture was transferred into a 10-mL glass tube and subjected to total 

oxidation with 0.2 mL 0.025 M NaIO4 in 0.125 M H2SO4 at room temperature for 10 min.  

The excess oxidizing agent was reduced by the addition of 0.4 mL of 2% (w/v) NaAsO2 in 

0.5 M HCl.  Following the disappearance of the yellow color, 1 mL thiobarbituric acid 
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(0.36% w/v, pH 9.0) was added and the tube heated at 100oC for 10 min.  The amount of 

KDO8P produced was determined by measuring the absorption at λ = 549 nm (ε = 

1.03×105 M-1cm-1 for the pink chromophore formed between α-formylpyruvate and 

thiobarbiturate).  All assays were performed in triplicate. 

Kinetic parameters [8] – A continuous spectrophotometric method for the 

measurement of the disappearance of the α, β-unsaturated carbonyl absorbance of PEP 

was used to determine kinetic parameters of KDOPS.  The standard assay mixture 

contained PEP (0.05-1 mM), A5P (0.05-1 mM), 100 mM Tris-acetate buffer (pH 7.5), and 

5-15 μg KDOPS in 1 mL.  The first three reagents were mixed and preheated at 60°C for 

2 min.  The assay, initiated by the addition of the KDOPS, was monitored for 3 min at λ 

= 232 nm for a decrease in absorption (ε = 2840 M-1cm-1).  The Km and Vmax values were 

determined from a nonlinear regression of data pairs (substrate concentration, initial 

velocity) fit to the Michaelis-Menten equation using KaleidaGraph 3.08d.  All assays 

were performed in triplicate. 

Temperature optima – The temperature optimum of mutant KDOPS was 

determined by measuring the activity of the mutant enzyme at different temperature 

between 30oC and 100oC using the Aminoff assay. 

Thermostability – Purified enzyme (2 mg/mL) in 100 mM Tris-acetate buffer 

(pH 7.5) was constantly maintained at 90oC in thin-walled PCR tubes.  At various times, 

aliquots of enzyme (5 μg) were removed and subjected to the Aminoff assay. 

Metal Analysis of KDOPS – The protein from the mutant constructs was 

isolated and purified as described above.  Protein from each of these mutants was 

divided into three aliquots, one portion (as isolated) was left untreated, the second portion 
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(apo) was treated with 10 mM EDTA for 2 h at 25ºC to remove metal and dialyzed 

against metal-free buffer to remove EDTA, while the third portion (all) was obtained by 

treating the apo enzyme with a mixture of metal salts (Table 4-2) at 100 μM for 2 h at 

25oC and passed through a desalting column to remove excess metal ions.  The protein 

fractions were subjected to the Aminoff assay and metal analysis.  The amount of bound 

metal in each portion of the mutant protein as well as in the wild type KDOPSs was 

determined using high-resolution inductively coupled plasma-mass spectrometry 

(ICP-MS) [9] in the University of Michigan, Department of Geology by Dr. Ted Huston. 

 

4.2.3. Results and Discussion 

The KDOPSAa mutants C11N, C11S, C11K and C11G as well as the KDOPSEc 

mutants N26C were constructed utilizing standard techniques.  The proteins from these 

mutant constructs were isolated and purified as described in the experimental procedures 

section.  The amount of bound metal in each of the mutant and wild-type KDOPSs was 

determined using ICP-MS.  The enzymatic activity of the protein was measured using 

the Aminoff standard discontinuous assay.  The metal content and specific activity of 

each mutant and wild-type KDOPSs are shown in Table 4-2. 

The results demonstrate that the wild-type metallo KDOPSAa need metal to be 

active.  The KDOPSAa C11N mutant does not bind metal any longer and is still as active 

as wild-type KDOPSAa.  The KDOPSAa C11G, C11S, and C11K mutants also do not 

bind metal but display minimal activity.  The wild-type non-metallo KDOPSEc does not 

need metal to be active, and its activity is much higher ( > 6 fold) than the wild-type 

metallo KDOPSAa.  The KDOPSEc N26C mutant binds metal but has minimal activity.  
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The data suggests that the KDOPSAa C11 mutations indeed alter the metal binding ability 

of the enzyme.  The non-metallo active KDOPSAa C11N mutant was further studied.  

When individual metal salt was added to the Aminoff assay mixture of the apo KDOPSAa 

C11N mutant, no metal ion tested caused an increase in enzyme activity (Table 4-3).  

The present of metal ions at high concentration however inhibited the C11N mutant 

catalytic activity. 

The KDOPSAa C11N mutant was kinetically characterized to compare its 

properties to that of the wild-type KDOPSAa [6].  To determine kinetic constants, a 

continuous assay monitoring the disappearance of the PEP double bond was used.  The 

temperature optima, thermal stability and kinetic parameters for both the KDOPSAa C11N 

mutant and wild-type KDOPSAa are summarized in Table 4-4.  As seen in the table, the 

C11N mutant enzyme is still thermol stable.  The KDOPSAa C11N mutant is catalytically 

more efficient since its kcat/Km is higher than that of the wild-type KDOPSAa.  The lower 

Km
PEP value of KDOPSAa C11N suggests KDOPSAa C11N binds PEP much tighter 

compared to the wild-type KDOPSAa.  While the KDOPSAa C11N mutant displays many 

of the characteristics of the thermostable metallo family, the kinetic parameters for the 

KDOPSAa C11N mutant are more similar to the kinetic values of the non-metallo 

KDOPSEc (Km
A5P = 30 μM, Km

PEP = 19 μM, kcat = 6.8 s-1) than that to the wild-type metallo 

KDOPSAa values [10].  
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Table 4-2.  Metal analysis of KDOPSs. 
Incubation metal salt 

(Molarequivalentmetal/enzyme 
subunit) 

Zinc  Cadmium Manganese  Copper  Cobalt Nickel Magnesium Iron  Specific 
activity 
(units/mg) 

AA Wildtype 
 

As isolated 
Apo 
All 

0.51 
0.02 
0.12 

---- 
---- 
0.36 

---- 
---- 
0.04 

0.02 
---- 
0.24 

---- 
---- 
0.04 

---- 
---- 
0.04 

0.09 
0.05 
0.11 

0.06 
0.02 
0.08 

1.88 
0.08 
1.98 

AA C11N 
 
 

As isolated 
Apo 
All 

0.04 
---- 
0.08 

---- 
---- 
0.03 

---- 
---- 
0.03 

0.02 
---- 
0.08 

---- 
---- 
0.04 

---- 
---- 
0.04 

0.04 
---- 
0.05 

---- 
---- 
0.06 

1.47 
1.70 
1.40 

AA C11G 
 
 

As isolated 
Apo 
All 

0.07 
0.02 
0.09 

---- 
---- 
0.02 

---- 
---- 
---- 

0.01 
---- 
0.01 

---- 
---- 
0.02 

---- 
---- 
---- 

---- 
---- 
0.02 

---- 
---- 
0.02 

0.08 
0.04 
0.09 

AA C11S 
 
 

As isolated 
Apo 
All 

0.02 
0.01 
0.09 

---- 
---- 
0.02 

---- 
---- 
0.02 

0.02 
---- 
0.14 

---- 
---- 
0.02 

---- 
---- 
0.03 

---- 
---- 
0.03 

---- 
---- 
0.07 

0.11 
0.12 
0.04 

AA C11K 
 

As isolated 
Apo 
All 

0.05 
0.02 
0.06 

---- 
---- 
---- 

---- 
---- 
---- 

---- 
---- 
---- 

---- 
---- 
---- 

---- 
---- 
---- 

---- 
---- 
0.04 

---- 
---- 
---- 

0.07 
0.15 
0.22 

EC Wildtype 
 

As isolated 
Apo 
All 

0.02 
0.02 
0.06 

---- 
---- 
0.02 

---- 
---- 
0.02 

0.02 
---- 
0.35 

---- 
---- 
0.03 

---- 
---- 
0.03 

0.04 
0.07 
0.08 

0.01 
0.02 
0.03 

12.72 
12.28 
0.80 

EC N26C 
 
 

As isolated 
Apo 
All 

0.12 
0.08 
0.17 

---- 
---- 
0.13 

---- 
---- 
0.05 

0.10 
---- 
0.54 

---- 
---- 
0.04 

---- 
---- 
0.06 

0.07 
0.05 
0.10 

0.04 
0.03 
0.12 

0.07 
0.17 
0.03 

EC M25P/N26C As isolated 
Apo 
All 

0.65 
0.02 
0.04 

---- 
---- 
0.16 

---- 
---- 
0.32 

0.02 
---- 
0.02 

---- 
---- 
---- 

---- 
---- 
---- 

0.02 
0.02 
---- 

0.04 
---- 
0.17 

0.35 
0.76 
0.98 

 Blank ---- ---- ---- ---- ---- 0.02 ---- ---- ---- 
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Table 4-3.  KDOPSAa C11N mutant activity with different metal.  
Metal Salt Specific Activity (units/mg) 

Apo 1.70 

MgCl2 (0.1 mM) 1.54 

ZnSO4 (0.1 mM) 1.38 

FeSO4 (0.1 mM) 1.47 

CoCl2 (0.1 mM) 1.38 

NiCl2 (0.1 mM) 1.50 

MnCl2 (0.1 mM) 

MnCl2 (0.5 mM) 

MnCl2 (1.0 mM)  

MnCl2 (3.0 mM) 

1.45 

1.36 

1.24 

1.15 

 

Table 4-4.  Comparison of kinetic parameters between wild-type KDOPSAa and C11N 
mutant. 

 Wild-type KDOPSAa KDOPSAa C11N mutant 

Optimal temperature (oC) 95 90 

Half-life at 90oC (hr) 1.5 0.5-0.75 

kcat at 60oC (s-1) 0.42±0.06 0.64±0.04 

Km
A5P at 60oC (µM) 26±4 30±4 

Km
PEP at 60oC (µM) 155±8 12±2 
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The metal binding and enzymatic activities of the KDOPSAa C11 control 

mutants, namely C11G, C11S and C11K, are shown in Table 4-2.  The C11G mutant 

does not bind metal because of the missing key metal ligand, and has no activity since it 

has neither a metal at active site nor an Asn at the C11 position.  Replacing the sulfur of 

the Cys metal ligand with an oxygen [11] in the C11S mutant again results in a 

catalytically inactive KDOPS that does not bind a metal ion.  Since it has been 

speculated that the γ-nitrogen of the Class I N26 may interact with the negatively charged 

carboxylate moiety of PEP at the active site to adjust the angle of the carboxylate 

π-electron system with the carbon-carbon double bond π-electron system in order to 

facilitate the anti-Michael addition to C3 of PEP [12, 13], the C11K mutant was 

constructed and tested for both enzymatic activity and its ability to bind divalent metal ion.  

While an unlikely metal binding ligand, the ω-nitrogen of the C11K KDOPS has the 

potential to be positively charged at the active site and might assist in aligning the orbital 

angles by interaction with the carboxylate anion as observed for the γ-nitrogen of the N26 

of wild-type KDOPSEc.  The C11K mutant does not bind metal and is inactive. 

The data presented above demonstrates that the mutation of a single conserved 

amino acid, C11, in a metallo KDOPS (KDOPSAa) to an Asn found in non-metallo 

KDOPS results in a catalytically functional enzyme.  Examination of the crystal 

structure of wild-type KDOPSAa reveals that the four metal binding ligands are positioned 

solely on one side of the metal ion, whereas the other side of the metal is facing the 

substrate PEP [3].  This suggests that the function of the metal may be to orient the PEP 

in a manner similar to that discussed for the function of the γ-nitrogen of the non-metallo 

N26.  In addition to the loss of the chelating sulfur atom, the exchange of an Asn for the 
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Cys at position 11 likely destroys the geometry necessary for proper metal binding, and 

thus the mutant enzyme does not bind metal.  Results from in silico mutation, utilizing 

the Swiss-PdbViewer software, suggest that the functional amide group of N11 fills the 

hole left from the loss of the metal.  The carboxamide’s carbonyl oxygen appears to be 

capable of hydrogen bonding to both E222 and D233, which might help maintain the 

active site geometry; further, the γ-nitrogen of N11 is positioned to interact with PEP 

similar to that predicted for the N26 of KDOPSEc.  In short, the carboxamide group of 

the Asn in the C11N mutant may substitute for the function normally performed by the 

metal.  Regardless of the exact role, our results demonstrate that the active site residue 

occupying position 11 in KDOPSAa plays a major role directly by interacting with the PEP 

moiety or indirectly by furnishing a ligand for metal binding needed for catalytic activity.  

The single amino acid substitution, C11N mutation, in KDOPSAa successfully converted 

the metallo wild-type KDOPS into a non-metallo enzyme. 

For KDOPSEc, the change of N26 to Cys only slightly increases the metal 

binding; however the mutant enzyme displays minimal activity. Therefore, converting a 

non-metallo enzyme into a metallo enzyme by KDOPSEc N26C mutant, was not 

successful.  Therefore, a closer examination of the amino acid sequences of the metallo 

and non-metallo enzymes (see Figure 4-3, 4-4) were perfomed.  The results show that 

the amino acid residues near the metal binding site are very similar in both metallo and 

non-metallo enzymes.  The only exception is that there is a conserved Pro immediately 

before the Cys in the metallo enzyme families; while for all the non-metallo enzymes, the 

residue before the Asn is a conserved Met.  The crystal structure of the metallo 

KDOPSAa shows that the P10 introduces a turn structure in the protein due to the cyclic 
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nature of its pyrrolidine side group.  This Pro residue might play a role in positioning the 

C11 to the proper orientation that facilitates the metal binding.  The M25, instead of Pro, 

in the KDOPSEc N26C mutant might likewise be unable to assist in the positioning of the 

C26 for metal coordination due to the lack of the turn structure.  Therefore, the 

KDOPSEc M25P/N26C double mutant was constructed. 

The specific activities and metal contents of the KDOPSEc M25P/N26C double 

mutant enzyme were measured using the same methodology described in the 

experimental procedures section.  The results are shown in Table 4-2.  Although still 

much lower than the wild-type KDOPSEc , the activity of the KDOPSEc M25P/N26C 

double mutant is slightly higher than the KDOPSEc N26C single mutant.  Most 

interestingly, the activity of the all KDOPSEc M25P/N26C mutant (0.98 units/mg), which 

binds Mn2+ and Cd2+, is higher than the activity of the as isolated enzyme (0.35 units/mg), 

which bind Zn2+.  These results suggest that the M25P/N26C mutant activity may have 

different affinities for different metal ions.  In order to understand the dependence of the 

M25P/N26C mutant activity on different divalent metals, the mutant enzyme activity was 

determined under conditions in which EDTA-treated enzyme was incubated in the 

Aminoff assay reaction mixture containing various concentrations (0.001-5 mM) of 

individual metal (Figure 4-5) [9].  The results show that the addition of Mn2+ at high 

concentration increases the mutant enzyme activity slightly, while all other metal ions 

inhibit the mutant enzyme. 

Experiments were next performed to study the dependence of KDOPSEc N26C 

mutant activity on divalent metals (see Figure 4-6).  The KDOPSEc N26C apo enzyme 

has almost no activity; however the addition of Mn2+ or Cd2+ dramatically stimulates the 
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mutant enzyme activity by 6 fold or 4 fold, respectively.  Other metal ions do not 

increase the activity of the mutant enzyme.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4-5. Concentration dependence of KDOPSEc M25P/N26C mutant activity on 
divalent metals. 

 

The above results suggest that the KDOPSEc N26C or M25P/N26C mutants are 

activated by Mn2+ or Cd2+.  Previous studies show that the highest activation of the 

metallo wild-type KDOPSAa was also achieved with Mn2+ or Cd2+.  Thus, the KDOPSEc 

N26C or M25P/N26C mutants have some properties similar to that of the 

metal-dependent KDOPS, and may be considered as Mn2+ or Cd2+ dependent enzymes. 

Studies on the metal requirements of KDOPS suggest a hypothesis for the 

evolution of KDOPS.  The metallo KDOPSs are more ancient and have lower activity 

than the non-metallo KDOPSs.  Loss of metal can be considered an evolutionary driving 

force for KDOPS.  One amino acid substitution, Cys to Asn, is needed for KDOPS to 
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survive without metal.  This is the reason that the metallo KDOPSAa can be converted 

into a non-metallo active enzyme by C11N mutation.  Then, some additional secondary 

structural changes are required for the non-metallo KDOPS to gain higher catalytic 

activity.  The inability to convert the non-metallo KDOPSEc to a metallo, enzymatically 

active enzyme by the N26C mutation might be due to these secondary changes in enzyme 

structure in addition to the single-site amino acid substitution.  The Met/Pro might be the 

most obvious change.  However, there are other more subtle changes that cannot be 

identified by simply comparing the structures or sequences between the two classes of 

KDOPSs. 

 

 

 

 

 

 

 

 

 

 
Figure 4-6.  Concentration dependence of KDOPSEc N26C mutant activity on divalent 
metals. 

 

The results above demonstrate that the Cys and Asn are really critical for the 

differences in the metal requirements of the two classes of KDOPSs.  However, the role 

of the metal still remains unclear.  Thus, the crystal structure of the KDOPSAa C11N 
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mutant in the presence of both substrates was solved, which might provide insight into. - 

the role and function of the metal and Asn. 

 

4.3. THE CRYSTAL STRUCTURE OF AQUIFEX AEOLICUS KDOPS C11N 
MUTANT 
 

4.3.1. Introduction   

Several crystal structures of KDOPSEc and KDOPSAa were determined by our 

collaborator Prof. Domenico Gatti at Wayne State University in collaboration with our 

laboratory [3, 14].  The two proteins both adopt a (β/α)8-barrel topology, and share many 

similarities.  The crystal structure of KDOPSAa with both substrates (A5P and PEP) as 

well as a metal ion was resolved, since KDOPSAa is a hyperthermophilic enzyme, it 

displays optimal activity at 95oC but does not function well below 40oC [6].  However, 

the crystal structure of KDOPSEc with both substrates could not be obtained due to 

turnover of the two substrates under crystallization and/or data collection conditions. 

As described above, the KDOPSAa C11N mutation successfully converted the 

metallo wild-type KDOPSAa to a non-metallo KDOPS by single amino acid substitution 

[2].  Solving the crystal structure of this mutant protein might provide useful information 

on how the metal and/or Asn functions catalytically or structurally.  The crystallization 

conditions for the mutant KDOPS should be similar to that of the wild-type KDOPSAa.  

Since the structure of wild-type KDOPSAa with both substrates is available, molecular 

replacement could be used to determine the crystal structure of KDOPSAa C11N mutant 

with substrates.  In the wild-type KDOPSAa active site (Figure 4-7), the major role of 

C11 appears to be helping bind the metal ion with its chelating sulfur atom.  The metal 
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ion is also coordinated to a water molecule bound on the si side of PEP.  This water 

molecule is within hydrogen bonding distance to the C2-OH of A5P.  How the N11 

functions in the non-metallo KDOPSAa C11N mutant to replace the C and metal ion might 

be revealed by comparing the active site structure of the KDOPSAa C11N mutant to that of 

the wild-type KDOPSAa [15]. 

 

 

 

 

 

 

 

 

 

Figure 4-7.  The structure of KDOPSAa active site with A5P, PEP and metal [15]. 
 
 

4.3.2 Experimental Procedures  

Materials – Sodium acetate was purchased from J.T.Baker chemical company.  

Polyethylene glycol (PEG) 4000, Linbro® plate and siliconized glass circle cover slides 

(22 mm) used for hanging drop crystallization were purchased from Hampton Research.  

The molecular biology grade glycerol and ethylene glycol were purchased from Sigma.  

Phosphoenolpyruvate mono(cyclohexylammonium) salt were obtained from Sigma.  

Arabinose 5-phosphate was prepared in our laboratory by Dr. Junhua Yan.  The 
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KDOPSAa C11N mutant protein was prepared as described in 4.2.2, and concentrated to 

10 mg/mL in 5mM Tris-HCl buffer (pH 7.5). 

Crystal Screening and Crystallization – Purified KDOPSAa C11N mutant was 

concentrated to 10 mg/mL.  Crystals were obtained by vapor diffusion in hanging drops.  

A series of conditions were screened [9].  The best condition for crystal growth was that 

10 mg/mL protein mixed 1:1 with the reservoir solution containing 100 mM sodium 

acetate (pH 4.8) and 4-6% polyethylene glycol 4000.  The crystallization trays were 

incubated at room temperature for 2-3 days.  Crystals about 0.2-0.6 mm3 in single were 

picked with cryoloop and soaked in the holding solution containing 100 mM sodium 

acetate (pH 4.8), 21% polyethylene glycol 4000, 16% glycerol, and 5% ethylene glycol 

for 24 h at room temperature.  The crystals were then soaked with 8 mM PEP and 10 mM 

A5P at 4oC for 2 h, and finally frozen in liquid nitrogen. 

Data collection, crystal structure determination and refinement – The X-ray 

diffraction data was collected at the Synchrotron 5ID-B beam line by the Life Sciences 

Collaborative Access Team (LSCAT) at Advanced Photon Source (APS) in Argonne 

National Laboratory.  The data was processed using d*trek program [16].  The 

KDOPSAa C11N mutant crystals belong to C2 space group, with a = 146.017 Å, b = 

51.0956 Å, c = 213.5525 Å.  The structure of KDOPSAa C11N mutant was determined at 

2.2 Å resolution by molecular replacement using the program Phaser [17], with wild-type 

KDOPSAa as a search model.  The protein structure was refined iteratively by alternating 

REFMAC refinement [18], and model building using COOT [19].  The structure 

contains six monomers of mutant KDOPSAa in an asymmetric unit (one full tetramer and a 

half of another tetramer, with the other half generated by a crystal symmetry operation).  
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The structure also contains six phosphate molecules, each bound at the active sites of the 

six KDOPS monomers.  Water molecules were placed in peaks > 3σ of (Fo - Fc) electron 

density.   

 

4.3.3. Results and Discussion 

The KDOPSAa C11N mutant crystals, 0.2-0.6 mm3 in single, from the final 

crystal screen were selected for data collection (Figure 4-8).   

 

 

 

 

 

 

 

Figure 4-8.  Pictures of KDOPSAa C11N mutant crystals used for X-ray analysis.  
 

Previous crystal structure studies on the wild-type metallo KDOPSAa report that 

the crystals of the wild-type KDOPSAa display a pink color, which is due to the presence 

of metal ion in the enzyme.  The crystals of the C11N mutant KDOPSAa grown in our 

laboratory are colorless.  The difference in the color of the crystals might indicate that 

the metal requirement has changed in the mutant enzyme. 

Statistics of the data collection and refinement are shown in Table 4-5.  The 

structure contains six monomers (one full tetramer and a half of another tetramer) in the 

asymmetric unit, and was refined at 2.2 Å.  The Ramachandran plot is shown in Figure 
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4-9, indicating how the crystal data fits into the secondary structure including α-helixes, 

β-strands and loops. 

 

Table 4-5.  Crystallographic data collection and structure refinement statistics for 
KDOPSAa C11N mutant.  Highest resolution shell values are shown in parentheses. 

KDOPSAa C11N mutant, 6 monomers per asymmetric unit 

Space group C2 

Cell dimensions 

a, b, c (Å) 

α, β, γ (o) 

 

146.017, 51.0956, 213.5525 

90, 97.8512, 90 

Resolution(Å) 48.18-2.20 (2.28-2.20) 

Rmerge 0.071 (0.296) 

I/δI 13.8 (5.3) 

Completeness 100% (100%) 

Data 

Collection 

 

Redundancy 7.84 (7.43) 

Resolution (Å) 40.00-2.20 (2.26-2.20) 

No. reflections 76047 (5565) 

R/Rfree (5% test size) 0.22/0.27 (0.25/0.33) 

Refinement 

 

R.m.s. deviations from ideal geometry 

Bond length (Å) 

Bond angles (o) 

 

0.022 

1.97 
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Figure 4-9.  Ramachandran plot of KDOPSAa C11N mutant crystal structure.  A 
represents α-helix.  B represents β-strand.  L represents loop. 
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Many similarities are seen in the crystal structure of the KDOPSAa C11N mutant 

and the wild-type KDOPSAa [3].  One asymmetric unit of the KDOPSAa C11N mutant 

structure contains one full tetramer and half of another tetramer, while the wild-type 

KDOPSAa structure contains one tetramer in one asymmetric unit.  Each monomer of the 

KDOPSAa C11N mutant folds into a (β/α)8 barrel structure: 8 parallel β-strands 

surrounded by 8 α-helixes.  The active site of each monomer is located at the C-terminal 

end of the barrel in each subunit at the interface of the adjacent subunit.  A phosphate 

molecule is found bound in each of the active sites (Figure 4-10).   

 

 

 

 

 

 

 

 

 

 

 
Figure 4-10.  Overall structure of one asymmetric unit in KDOPSAa C11N mutant.  The 
phosphate ions bound in each monomer are shown in red. 

 

The overall feature in the structure of wild-type KDOPSAa is conserved in the 

C11N mutant structure.  The key difference appears around the replacement position.  

As expected, no metal is visible in the active site, since KDOPSAa C11N mutant is a 
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non-metallo enzyme.  As described in the experimental procedures session, during the 

crystallization procedure, the crystal of KDOPSAa C11N mutant was soaked in a solution 

containing PEP and A5P in order to obtain a crystal structure with both substrates in the 

active site.  However, in the final resolved structure, only a phosphate ion is found in the 

active site.  The phosphate ion binds at the same active site position as the phosphate 

moiety of PEP in wild-type KDOPSAa structure [3], and is stabilized by a network of 

electrostatic interactions and hydrogen bonds between the phosphate ion and the back 

bone of A102 and the side chains of K124 and R154 (Figure 4-11).  

 

 

 

 

 

 

 

 

 
 
Figure 4-11.  The phosphate ion bound in the active site of KDOPSAa C11N mutant.  
The protein is shown in green, while the phosphate ion is shown in orange.  

 

No phosphate ion was introduced into the protein during the protein purification 

or crystallization procedure; thus, the reason that a phosphate ion is present at the active 

site might be that when PEP and A5P were soaked into the crystal, an enzymatic turnover 

occurred slowly under the experimental conditions.  In this case, a phosphate ion might 
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be bound at the active site, since the release of inorganic phosphate is the kinetic 

bottleneck of the catalytic reaction.  

While the crystal structure of KDOPSAa C11N mutant with phosphate ion in the 

active site was obtained in our laboratory, the crystal structures of KDOPSAa C11N 

mutant with both substrates (PEP+A5P) was very recently solved by our former 

collaborator Professor Domenico Gatti at Wayne State University using different 

crystallization technology [20].  These two structures are almost identical in both overall 

structure and active site, which offers an opportunity for us to investigate the structure of 

the KDOPSAa C11N mutant in more detail. 

In both our and Professor Gatti’s structures, the carboxamide group of N11 

forms hydrogen bonds with the carboxylate oxygen of E222 (one of the four metal 

binding residues in metallo KDOPS) and the hydroxyl group of S232.  These 

interactions are not seen in the wild-type enzyme (where C11 is present) and might help 

maintain the active site geometry.  The functional carboxamide group of N11 fills the 

hole left by the loss of the metal.  In the active site of C11N mutant with both substrates 

(shown in Figure 4-12), a water molecule is located at the re side of PEP, and is well 

positioned for a nucleophilic attack on C2 of PEP.  This water molecule is also found in 

the wild-type KDOPSAa at a similar place.  The most interesting thing in the structure 

with both substrates is that the carboxamide group of N11 is within hydrogen bonding 

range to the C2-OH of A5P.  Due to this interaction, A5P binds with an orientation 

different from that of the wild-type KDOPSAa.  In the active site of the wild-type 

KDOPSAa, there is a water molecule at the si side of PEP, which is coordinated to the 

divalent metal, and also forms a hydrogen bond to the C2-OH of A5P (see Figure 4-7).  
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While in the KDOPSAa C11N mutant, the C2-OH of A5P displaces this water molecule 

and is hydrogen bonded to N11 and H185 [3].  These results suggest that the metal in the 

wild-type metallo KDOPSAa might function by coordinating to a water molecule which 

forms hydrogen bond with C2-OH A5P and helps correctly orienting A5P for the 

nucleophilic attack by C2 of PEP.  In the KDOPSAa C11N mutant, no metal is bound; the 

N11 replaces the metal in helping orient A5P by direct hydrogen bond between the 

carboxamide group of N11 and C2-OH of A5P.  Thus, the metal/Asn might play an 

important structural role through maintaining correct orientation of A5P in the enzyme 

active site to allow the catalysis.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4-12.  Active site structure of KDOPSAa C11N mutant with both substrates.  
A5P is shown in purple stick, PEP is shown in yellow stick, and N11 is shown in green 
stick.  Other active site residues are shown in green line.  
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The results also indicate that the C2-OH group of A5P is important in correctly 

aligning the aldehyde group of A5P for catalysis.  A different stereochemistry on the C2 

will not be accepted.  Thus, as described in Chapter 3, R5P was an alternate substrate for 

KDOPS due to its different stereochemistry on C2.  The 2-deoxy R5P could be utilized 

as an alternate substrate since it does not have hydroxyl group on C2, and may not be 

misoriented. 

 

4.4. ACKNOWLEDGEMENTS 

I want to thank Dr. Ted Huston in the University of Michigan, Department of 

Geology for help determine metal content of KDOPS using high-resolution inductively 

coupled plasma-mass spectrometry (ICP-MS)., Dr. Oleg Tsodikov and Dr. Tapan Biswas 

for their help and assistance during the refinement of the crystal structure of KDOPSAa 

C11N mutant, Dr. Vijayalakshmi Janakiraman for her help in crystallization and data 

process, and Prof. Domenico Gatti at Wayne State University for solving the crystal 

structure of KDOPSAa C11N mutant with substrates.  And I would like to thank 

members in the Woodard group for all their help. 

 

 

 

 

 

 

 



  117

4.5. REFERENCES 

1. Birck, M.R., R.W. Woodard, and C.o.P.U.o.M.C.S.A.A.M.I.U.S.A. Department of 
Medicinal Chemistry, Aquifex aeolicus 3-deoxy-D-manno-2-octulosonic acid 
8-phosphate synthase: a new class of KDO 8-P synthase? Journal of molecular 
evolution., 2001. 52(2): p. 205-14. 

 
2. Li, J., et al., Conversion of Aquifex aeolicus 3-Deoxy-d-manno-octulosonate 

8-Phosphate Synthase, a Metalloenzyme, into a Nonmetalloenzyme. J Am Chem 
Soc, 2004. 126(24): p. 7448-9. 

 
3. Duewel, H.S., et al., Substrate and metal complexes of 

3-deoxy-D-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus at 
1.9-A resolution. Implications for the condensation mechanism. The Journal of 
biological chemistry., 2001. 276(11): p. 8393-402. 

 
4. Shumilin, I.A., R.H. Kretsinger, and R.H. Bauerle, Crystal structure of 

phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase 
from Escherichia coli. Structure Fold Des, 1999. 7(7): p. 865-75. 

 
5. Vandeyar, M.A., et al., A simple and rapid method for the selection of 

oligodeoxynucleotide-directed mutants. Gene, 1988. 65(1): p. 129-33. 
 
6. Duewel, H.S., et al., Functional and biochemical characterization of a 

recombinant 3-Deoxy-D-manno-octulosonic acid 8-phosphate synthase from the 
hyperthermophilic bacterium Aquifex aeolicus. Biochemical and biophysical 
research communications., 1999. 263(2): p. 346-51. 

 
7. Aminoff, D., Methods for the Quantitative Estimation of N-Acetylneuraminic Acid 

and their Application to Hydrolysates of Sialomucoids. Biochem. J., 1961. 81: p. 
384-392. 

 
8. Howe, D.L., et al., Mechanistic insight into 

3-deoxy-D-manno-octulosonate-8-phosphate synthase and 
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase utilizing phosphorylated 
monosaccharide analogues. Biochemistry., 2003. 42(17): p. 4843-54. 

 
9. Duewel, H.S., R.W. Woodard, and U.o.M.A.A.M.U.S.A. Interdepartmental 

Program in Medicinal Chemistry, A metal bridge between two enzyme families. 
3-deoxy-D-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus 
requires a divalent metal for activity. The Journal of biological chemistry., 2000. 
275(30): p. 22824-31. 

 
10. Salleh, H.M., et al., Essential cysteines in 3-deoxy-D-manno-octulosonic acid 

8-phosphate synthase from Escherichia coli: analysis by chemical modification 
and site-directed mutagenesis. Biochemistry., 1996. 35(27): p. 8942-7. 

 



  118

11. Park, O.K., R. Bauerle, and U.o.V.C.V.U.S.A. Department of Biology, 
Metal-catalyzed oxidation of phenylalanine-sensitive 
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: 
inactivation and destabilization by oxidation of active-site cysteines. Journal of 
bacteriology., 1999. 181(5): p. 1636-42. 

 
12. Li, Y., et al., The hard-soft acid-base principle in enzymatic catalysis: dual 

reactivity of phosphoenolpyruvate. Proceedings of the National Academy of 
Sciences of the United States of America., 1996. 93(10): p. 4612-6. 

 
13. Shumilin, I.A., et al., The high-resolution structure of 

3-deoxy-D-arabino-heptulosonate-7-phosphate synthase reveals a twist in the 
plane of bound phosphoenolpyruvate. Biochemistry., 2003. 42(13): p. 3766-76. 

 
14. Radaev, S., et al., Structure and mechanism of 3-deoxy-D-manno-octulosonate 

8-phosphate synthase. J Biol Chem, 2000. 275(13): p. 9476-84. 
 
15. Wang, J., et al., Structures of Aquifex aeolicus KDO8P synthase in complex with 

R5P and PEP, and with a bisubstrate inhibitor: role of active site water in 
catalysis. Biochemistry., 2001. 40(51): p. 15676-83. 

 
16. Broennimann, C., et al., The PILATUS 1M detector. J Synchrotron Radiat, 2006. 

13(Pt 2): p. 120-30. 
 
17. McCoy, A.J., et al., Likelihood-enhanced fast translation functions. Acta 

Crystallogr D Biol Crystallogr, 2005. 61(Pt 4): p. 458-64. 
 
18. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular 

structures by the maximum-likelihood method. Acta Crystallogr D Biol 
Crystallogr, 1997. 53(Pt 3): p. 240-55. 

 
19. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. 

Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32. 
 
20. Kona, F., et al., Structural and mechanistic changes along an engineered path 

from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate 
synthases. Biochemistry, 2007. 46(15): p. 4532-44. 

 
 



  119

CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

This dissertation focused on studying the substrate specificity and metal 

requirements of KDOPS through mutagenesis studies, substrate analogue studies, and 

X-ray crystallography study in order to gain mechanistic insight into KDOPS.    

In chapter 2, three methodologies including structure based engineering, domain 

swapping and directed evolution were used to alter the substrate specificity of KDOPS 

from A5P to E4P.  Although none of the modified KDOPS could utilize E4P (the 

substrate of DAHPS) as alternate substrate, several important amino acid residues or loop 

involved in monosaccharide substrate binding in KDOPS were defined.  The results 

show that changes to these residues or loop remarkably affect the A5P binding.  For 

future experiments, the mutations or truncation made to these critical residues or loop 

could be combined in order to make the KDOPS substrate binding site more similar to 

that of the DAHPS.  Thus, the resulting modified KDOPS might be able to utilize E4P 

as an alternate substrate. 
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In chapter 3, different A5P analogues were tested as alternate carbohydrate 

substrates for KDOPS. Only 2-deoxy R5P and arabinose 

5-difluoromethylenephosphonate were found to be alternate substrates for KDOPS albeit 

at modest rates. Enzymatic synthesis of 3-deoxy-D-manno-octulosonate 

8-difluruomethylenephosphonate (KDOFP) was performed using 

5-difluoromethylenephosphonate, PEP and E. coli KDOPS (KDOPSEc).  NMR analysis 

and mass spectrum of the reaction product verify that 5-difluoromethylenephosphonate is 

indeed an alternate substrate for KDOPSEc, but with a much lower rate than the natural 

substrate A5P.  The yield of this enzymatic synthesis reaction might be increased by 

extending the reaction time or supplementing more enzymes in order to synthesize more 

KDOFP for future studies of other KDO8P utilizing enzymes.  Solving the crystal 

structure of KDOPSEc with arabinose 5-difluoromethylenephosphonate and PEP might 

provide more information on how this alternate substrate binds the active site for 

catalysis. 

In chapter 4, the interconversion between metallo and non-metallo KDOPS was 

conducted in order to gain mechanistic information concerning the two different KDOPS 

classes.  The A. aeolicus KDOPS (KDOPSAa) C11N mutant successfully converted the 

metallo wild-type KDOPS into a non-metallo enzyme by single amino acid substitution.  

The activity of KDOPSEc N26C and M25P/N26C mutants can be increased by addition of 

Mn2+ or Cd2+, which suggests that these KDOPSEc mutants have some properties similar 

to the metallo KDOPS.  The crystal structure of KDOPSAa C11N was solved in our 
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laboratory and concurrently by our former collaborator Professor Domenico Gatti at 

Wayne State University.  The combined results suggest that the metal or N11 plays an 

important structural role in maintaining correct orientation of A5P for catalysis.  In 

future study, solving the crystal structures of KDOPSEc N26C and M25P/N26 mutants 

might help better understand the role of these active site residues. 

In conclusion, the results in this thesis help better understand the substrate 

binding modes in KDOPS and help begin to understand the difference between metal and 

non-metallo KDOPSs.  Directions are provided for more in-depth investigation into the 

mechanism of KDOPS in future mutagenesis and X-ray crystallography studies. 
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