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CHAPTER 1 
INTRODUCTION 

The radio frequency (RF) spectrum spans 11 orders of magnitude, from 

Extra Low Frequency (ELF) at 3 Hz, to Extra High Frequency (EHF) at 300 GHz 

[NTIA].  Microwave radiation occupies the upper third of this spectrum, from 300 

MHz to 300 GHz [Poz98], and is produced by a myriad of devices, including 

gyrotrons, klystrons, traveling wave tubes, and magnetrons.  The uses for this 

radiation are even more numerous, ranging from the mundane task of reheating 

leftovers, to the mission-critical detection of enemy aircraft with radar.  The 

microwave regime above 100 MW peak power is typically dubbed “high power 

microwaves” (HPM), and extends into peak powers as high as 15 GW [Ben07]. 

1.1 HPM Applications   

An active area of research on HPM is the development of sources for 

directed energy applications.  The remote neutralization or detonation of 

improvised explosive devices (IEDs), is another application currently in 

development.  In a similar effort, HPM devices have been deployed to jam and 

predetonate proximity-fused munitions.  These shells are fused to detonate at a 

specific distance from their target, and can be triggered by an appropriate 

microwave signal.  To protect aircraft against surface-to-air missiles during 

takeoff and landing, another HPM system, dubbed Vigilant Eagle, is being 

developed for ground-based deployment at airports [Ben07].  Outside the realm 

of directed energy, HPM devices are also used for power beaming [Nal78], space 

propulsion [Par04], and plasma heating applications [Pra04]. 

Within the HPM arena, relativistic magnetrons are among the most 

mature, tunable, and robust devices available.  Currently capable of efficiencies 
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approaching 30%, relativistic magnetron simulations [Lem99, Lem00] have 

shown that they are theoretically capable of 55% efficiencies, far from the 80+% 

efficiencies of conventional magnetrons, but still a high efficiency HPM source 

[Ben07].  Additionally, relativistic magnetrons have high average power (1 GW 

peak, 6 kW average), an important advantage for certain applications. 

Pulse shortening is a common problem among HPM devices, and is one 

of the causes of their reduced energy efficiency.  While voltage sources with 

microsecond pulse length are available, they still only generate microwave 

pulses 100’s of ns in length.  If the microwave pulse is short compared with the 

voltage pulse, one method of increasing the efficiency is to induce microwave 

oscillation earlier in the applied voltage.  This can be done by a variety of 

methods, including cathode priming [Jon04a], microwave priming [Nec05, Pen05, 

Whi05], and magnetic priming [Hof07, Jon04b, Nec03].  Among other cathode 

developments, this thesis will present another form of cathode priming. 

1.2 Electron Emission Mechanisms 

One of the most important components of a relativistic magnetron is the 

cathode, the electron source.  Current is emitted radially from a cylindrical 

cathode, by a combination of many emission processes.  We review here the 

mechanisms of electron emission from thermionic, field emission, explosive 

emission, and secondary electron cathodes.   

1.2.1 Thermionic Cathodes 

Thermionic, or “hot,” cathodes are heated to cause thermionic emission, 

according to the Richardson-Dushman equation: 

 2 2/ 120 exp w

B

ej A cm T
k T
φ⎛ ⎞

⎡ ⎤ ≅ −⎜ ⎟⎣ ⎦
⎝ ⎠

 (1.1) 

where T is the temperature in °K, kB is Boltzmann’s constant, and φw is the work 

function [Ric23].  Cathodes may be resistively heated by passing current through 

the cathode, or can be heated directly by an external e-beam [Her87] or laser 
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source [Bar01].  Resistive heating may occur in the University of Michigan 

(UM)/Titan magnetron if large currents are drawn through thin metal filaments on 

the cathode surface [Jon05]. 

1.2.2 Field Emission Cathodes 

Field emission, or “cold,” cathodes rely on electron tunneling at sufficiently 

high surface electric fields.  Their emission is governed by the Fowler-Nordheim 

equation: 

 

2
2

6
7

/ exp

1.4 10 9.87exp 6.53 10

FN
FN

FN FN

B DVJ A cm A
D V

A B

β
β

φ
φ φ

−
−

⎡ ⎤⎛ ⎞⎡ ⎤ = −⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎣ ⎦
⎡ ⎤×

= =⎢ ⎥
⎢ ⎥⎣ ⎦

×

 (1.2) 

where φ  is the work function in eV, D is the gap in cm, V is the voltage in Volts, 

and β  is the field enhancement factor. 

The fields are often enhanced by surface geometry or composition, and 

that enhancement is represented by β  in Eqn. (1.2).  Work at UM by M. C. Jones 

used small surface ripples and ridges on the all-metal Projection Ablation 

Lithography (PAL) cathode to enhance field emission [Jon04c].  A refinement of 

this concept has been employed by J. Booske at the University of Wisconsin with 

the invention of the Copper-Knife-Edge (CKE) cathode [He07].  Experiments with 

the CKE cathode have carefully monitored the emission current to investigate 

predictive models of Fowler-Nordheim current density.   

The cesium iodide coated carbon fiber cathode developed by D. A. Shiffler 

at Air Force Research Laboratory (AFRL), utilizes both the geometric field 

enhancement of its narrow carbon fibers and the reduced work function of its CsI 

coating to stimulate electron emission.  Tests of this cathode in a planar diode 

have yielded improved reproducibility and uniformity, low plasma generation, and 

no decrease in durability (compared to uncoated carbon fiber cathodes) [Shi00, 

Shi01a, Shi01b, Shi02a, Shi02b, Shi04a, Shi04b, Shi04c, Shi07].   
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Low-voltage Spindt field emitter arrays (FEAs) are a type of field emission 

cathode which has been pursued with great interest in recent years [Gam93].  

Recent experiments with FEAs, by D. R. Whaley at L-3 Communications Electron 

Devices, have produced currents of up to 4 A/cm2 at applied voltages of only 

30 V.  The resulting electron beam has been used to drive a traveling wave tube 

(TWT), producing 18 W of RF power at 4.1 GHz with 13 dB gain and 16.7% 

circuit efficiency [Wha07].   

1.2.3 Explosive Emission Plasma Cathodes 

Similar to field emission cathodes, explosive emission plasma cathodes 

also require very high surface fields, as the cathode forms plasma through 

breakdown of gases, contaminants, or metallic microfibers on the cathode 

surface [Mil98].  Once plasma is formed, it will become the source of electrons, 

and will emit according to the Space Charge Limited (SCL) Child-Langmuir (C-L) 

law (for a cylindrical geometry): 

 
3/2

6
2[ ] 14.68 10

p

LVI A
r β

−≈ ×  (1.3) 

where L is the effective emission length, rp is the anode radius, and β  is a 

function of the anode radius and effective cathode radius [Lug96].   

Perhaps the most ubiquitous explosive emission design consists of cotton 

fiber, velvet, or felt glued to the desired emission region of the cathode.  These 

cathodes have good emission uniformity and produce current densities on the 

order of kA/cm2, but are very susceptible to damage during operation [Adl85, 

Hin85].   

1.2.4 Secondary Electron Emission Cathodes 

Another electron emission mechanism of considerable interest to this work 

is secondary electron emission.  Electrons striking the cathode have a chance to 

induce electron emission.  For certain (material dependent) energy ranges, each 

electron striking the surface will, on average, result in the emission of more than 

one electron.  A much more detailed review of this mechanism is presented in 
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Chapter 2.  For a more comprehensive review of cathodes in general, see Ch. 9 

of [Bar01]. 

1.3 Scope of Thesis 

This thesis will discuss cold cathodes for high power microwave 

applications in relativistic magnetrons.  We will discuss both the Ablation Line 

Focused (ALF) cathode, designed with sharp surface features for field 

enhancement, and the Metal Oxide Junction (MOJ) cathode, designed for field 

enhancement at triple points (a metal-oxide-vacuum interface) and secondary 

electron emission.   

In Chapter 2, we will begin with the theory of field enhancement and 

electron emission at triple points.  We calculate the orbit of the first generation 

electrons, the seed electrons.  It is found that, despite the mathematically 

divergent electric field at the triple point, significant electron yield most likely 

results from secondary electron emission when the seed electrons strike the 

dielectric.  The analysis gives the voltage scale in which this electron 

multiplication may occur.  It also provides an explanation on why certain dielectric 

angles are more favorable to electron generation over others, as observed in 

previous experiments. 

Chapter 3 details the procedures used for fabrication of the ALF and MOJ 

cathodes.  ALF cathodes are fabricated using a KrF excimer laser focused 

through a cylindrical lens to ablate lines of material from the aluminum or 

stainless steel cathode surface [Jon05].  A variation of this design, Tri-ALF, 

creates three distinct emission regions, with the cathode milled out in between 

and filled with carbon paint.  MOJ cathodes use the KrF laser to ablate a hafnium 

target, creating a hafnium plasma plume, with a 100 mTorr O2/Ar background.  

The plume deposits ions, neutrals, and particulate through a screen or mesh onto 

the cathode, forming dielectric “islands” on the cathode surface.  The fabrication 

of control cathodes (polished stainless steel, dielectric coated, and metal-only) 

are also presented. 
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Chapter 4 discusses the experimental configurations used for plasma 

spectroscopy, as well as the major components of the accelerator and relativistic 

magnetron.  An explanation of the diagnostics associated with cathode voltage, 

cathode current, magnetic field, and microwave power are also presented.  

Where applicable, the calibration procedures for these diagnostics are detailed. 

Chapter 5 analyzes the cathode surfaces, with additional attention given to 

the hafnium oxide films used for MOJ cathodes, and a brief discussion of the 

plasma plumes generated during deposition.  ALF cathodes are analyzed with 

mechanical profilometry, as well as scanning electron microscope (SEM) 

imaging.  The hafnium oxide films are analyzed with SEM, X-ray Energy 

Dispersive Spectroscopy (XEDS), X-ray Diffraction (XRD), and profilometry.  

Additionally, film quality is examined through Capacitance-Voltage (C-V) testing. 

The results of cathode tests on the UM/Titan relativistic magnetron are 

presented in Chapter 6.  First, we compare the Tri-ALF cathode to ALF-2, its 

non-priming counterpart.  These results focus largely on the microwave 

properties of the cathode, as improved microwave performance was the crux of 

its design.  Next, we analyze data from the MOJ cathodes, focusing primarily on 

the emitted current and variations in the baseline results.  Finally, we conclude 

with a summary and appendices in Chapter 7. 
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CHAPTER 2  
ELECTRIC FIELD AND ELECTRON ORBITS NEAR A TRIPLE 

POINT 

2.1 Introduction 

The intersection between a metallic surface, a dielectric surface, and the 

vacuum region is generally known as a triple point [Mil95, Mes89, Bar01].  The 

triple point, in various settings, occurs naturally in all high voltage insulation 

systems, high power microwave windows, all oxide cathodes, and cold cathodes 

with adsorbed contaminants, etc.  It has received renewed attention in recent 

research on novel cathode development [Ums05, Shi05, Jon05] and on RF 

window breakdown [Neu01, Edm06, Kim06].  In all of the above systems, the 

triple point has long been considered as the source where the first electrons are 

produced when a sufficiently strong electric field is present.  The electric field at a 

mathematically sharp triple point could be infinite.  This divergent electric field 

has often been considered to contribute to a significant “field-enhancement 

factor”, leading to field emission of electrons [Ber77, And80, Sch98].  These first 

generation electrons, or seed electrons, once produced, may undergo rapid 

multiplication, either through impact ionization of neutrals [Gil86, Cun99], or 

through secondary emission if these seed electrons strike the dielectric surface 

with a sufficiently high energy [Vau93, Hac59].  Near the triple point, it has been 

speculated that “a single electron released from the cathode electrode can 

initiate a secondary emission avalanche” [And80]. 

Electron emission in the immediate vicinity of a triple point, under realistic 

conditions, is not easy to model.  The work function is usually not accurately 

known.  Neither is the electric field distribution, which depends not only on the 
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work function, but also on the local field enhancement factor, which itself may be 

strongly modified by the presence of space charge [Lug02, And94].  Each of 

these factors brings in tremendous uncertainties in the emission current density, 

as they all enter exponentially in the Fowler-Nordheim relation (for field emission 

[Fow28]) or the Richardson-Dushman-Schottky equation (for field-enhanced 

thermionic emission [Ric23]).  Even numerical simulation of emission physics in 

an idealized geometry might be difficult [Mil07, Pet05].  The divergence of the 

electric field at the triple point requires demanding resolution in numerical 

simulation, which becomes particularly challenging when electron dynamics is 

included.   

Bergeron [Ber77] considered the flashover mechanism that is initiated 

from the triple point of an insulator exposed to a high voltage.  He concentrated 

mainly on the secondary electron emission in regions sufficiently far away from 

the triple point and, strickly speaking, he omitted the triple point altogether.  

Schachter [Sch98] considered electron emission from the metallic surface near a 

triple point according to the Fowler-Nordheim equation.  He paid special attention 

to the local field enhancement factor, but omitted the electron dynamics 

altogether.  Perhaps more significantly, he neglected the inevitable secondary 

electron emission on the dielectric that is concomitant to the specific geometry 

that he considered.  Anderson and Brainard [And80] surveyed various scenarios 

of surface flashover mechanisms.  They concentrated mainly on plasma 

formation on the dielectric surface which was assumed to be already positively 

charged to some significant degree.  Thus, they paid little attention to the seed 

electrons.  As we shall show in Section 2.5, the consideration of the seed 

electrons might explain why certain dielectric angles are more susceptible to 

flashover than others.  

In this chapter, we examine the electric field in the immediate vicinity of 

the triple point.  We also compute the electron trajectory subject to such an 

electric field.  In particular, we consider the scale of the electric field, and the 

impact energy of the electron onto the dielectric, so that a seed electron is likely 

to initiate multiplication of electrons by secondary emission [Vau93, Hac59].  We 
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pay close attention to the mathematically divergent electric field at the triple point, 

in particular to a distance of order microns, or less, from the singularity.  Thus, 

our work focuses on the fate of the seed electrons and pertains to the first 

generation of electron multiplication at the triple point [Jor07b].  We do not 

consider the space charge effects, nor field enhancement due to dielectric 

charging, nor do we consider the Fowler-Nordheim coefficients which model 

material properties in field emission.  We simply assume that an electron is 

released from the metal surface (cathode) with essentially zero initial energy, and 

ask under what condition this electron would be likely to initiate secondary 

electron multiplication when it strikes the dielectric surface.  This work provides a 

partial explanation for electron emission from the metal-oxide junction and 

ablation line focused cathodes presented in this thesis.  It also holds relevance to 

the projection ablation lithography cathode [Boo07, Jon04, Jon05, Jor07], and 

our interest in rf window breakdown [Edm06, Kim06, Neu01].   

While our calculation of the seed electron assumes a DC, electrostatic 

field for the triple point, it is valid under rf condition also.  The justification for this 

is that we are looking at the immediate vicinity of the triple point, over a spatial 

scale length much less than the free space wavelength, in which case the rf field 

may be approximated by the electrostatic field.  [The Helmholtz equation (wave 

equation in frequency domain) reduces to the Laplace equation (electrostatic 

field equation) when the region of interest is much less than the free space 

wavelength.]  Moreover, the electron’s time of flight is usually much less than the 

rf period.  Thus the use of the electrostatic field suffices in the consideration of 

dynamics of a seed electron that is released from the immediate vicinity of a 

triple point.  The present analysis of the seed electron therefore also applies to a 

pulsed voltage.  In fact, the initiation mechanism plays a more important role in 

short voltage pulses than long voltage pulses [Mil95, And80, Det73]. 

In Section 2.2, we present the vacuum field for a general triple point 

geometry, where the angles subtended by the metal, dielectric, and vacuum, are 

arbitrary [Chu04].  The triple point geometries analyzed by Bergeron [Ber77] and 

by Schachter [Sch98] are recovered as special cases.  In Section 2.3, we 
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analyze the electron trajectory for the Bergeron geometry [Figure 2.2b], and 

determine the condition under which a seed electron likely produces secondary 

electrons on impact with the dielectric.  The scaled parameters are determined.  

In Section 2.4, we give a numerical example which illustrates why negative 

angles of θ  (defined in Figure 2.2 below) are more likely to produce secondary 

electron emission than positive θ  by a seed electron, a trend consistent with the 

well-known practices in high voltage insulation.  Concluding remarks are given in 

Section 2.6.    

2.2 Electric Field in the Immediate Vicinity of a Triple Point   

The immediate neighborhood of a triple point may be considered as two-

dimensional, with the metal-vacuum interface on the positive x-axis [Figure 2.1].  

The dielectric-vacuum interface lies at an angle θ  from the positive y-axis, 

measured from the counterclockwise direction, and the metal-dielectric interface 

lies at an angle α  from the positive x-axis, measured from the clockwise 

direction.  Thus, the angle subtended by the vacuum is pv = θ  + π/2, the angle 

subtended by the metal is pm = α, and the angle subtended by the dielectric is pd 

= 2π – pv – pm = 3π/2 – θ – α.  These angles of θ  and α are consistent with those 

used by Bergeron [Ber77] and Schachter [Sch98], respectively.  The geometry 

considered by Bergeron corresponds to α = π  (i.e., a metal half-space, see 

Figure 2.2), and the geometry considered by Schachter corresponds to θ  + α = 

π/2, (i.e., a dielectric half-space), with data presented mainly for α = π/6.  
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Figure 2.1 A general two-dimensional triple point. The directions of positive angles are shown. 

We assume that the potential, Φ, is zero on the metal in Figure 2.1, and is 

positive at large y.  The electrostatic potential in the vacuum region may be 

constructed from the fundamental solution in cylindrical coordinates (r, φ), 

 ( , ) sin( ); 0 / 2r rνϕ νϕ ϕ π θΦ = < < +  (2.1) 

where ν  is the index to be determined.  Equation (2.1) is the imaginary part of 

the analytic function zν in the cut z-plane (z = x + iy = reiφ), and therefore is a 

solution to the Laplace equation there.   In the dielectric region [Figure 2.1], this 

fundamental solution reads,  

 

[ ]{ }
[ ]{ } [ ]

sin (2 )
( , ) sin ( / 2 ) ;

sin ( / 2 ) (2 )

2
2

r rν ν ϕ π α
ϕ ν π θ

ν π θ π α

π θ ϕ π α

− −
Φ = +

+ − −

+ < < −

 (2.2) 

which ensures continuity of Φ  on the boundaries of the dielectric.  Continuity of  

φε ∂Φ∂ /  at the dielectric-vacuum interface then leads to the determinantal 

equation for the index ν  in the potential distribution, 
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where εr is the relative dielectric constant of the dielectric.  Once the index ν  is 

obtained from a specification of εr, α  and θ, the radial dependence of the electric 

field is rδ  for both the radial and azimuthal components [cf. Eq. (2.8) below], 

where the electric field index δ  is, 

 1δ ν= −  (2.4) 

The electric field at the triple point diverges if δ  is less than zero, and converges 

(to zero) if δ  is larger than zero.  The electric field in the entire vacuum region is 

a constant if δ  = 0, or ν  = 1, in which case this constant electric field is parallel to 

the y-axis [cf., Eq. (2.1)].  This occurs when tan pd  = εr cot θ , where pd = 3π/2 – θ 

– α  is the angle subtended by the dielectric [Figure 2.1].  This is easily derived 

from Eq. (2.3) after setting ν  = 1. 

Several limiting cases may be established.  As εr approaches infinity, the 

argument of the cotangent factor in Eq. (2.3) approaches π/2, yielding, 

 1 ;
3 2( ) / rν ε

α θ π
= → ∞

− +
 (2.5) 

which reduces to ½ for the geometry considered by Schachter, α + θ = π/2.  In 

the limit of εr = 1, it is easy to show from Eq. (2.3) that 

 1 ;
2 / r 1ν ε

α π
= →

−
 (2.6) 

Eq. (2.6) is independent of θ, as expected from Figure 2.1 in the εr = 1 limit.  It is 

also the same as that given by [Sch98]. 
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a) 

 b) 
Figure 2.2 (a) A two-dimensional triple point with a half-space metallic surface. (b) An anode-
cathode gap with voltage V and separation D.  The angle θ  illustrated in (b) is negative. 

In the geometry studied by [Ber77], on which we shall concentrate 

henceforth, we take α = π  (Figure 2.2).  The electric field index δ , obtained from 

solving Eq. (2.3) and using Eq. (2.4), is shown in Figure 2.3 as a function of θ  at 
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various values of εr.  It is seen that δ  and θ  have the same sign.  Thus, the 

electric field at the mathematically sharp corner is infinite (zero) when θ  < 0 (θ  > 

0).  For θ  = 0 and π /2, a constant, uniform electric field exists in the vacuum 

region (i.e., δ  = 0, or ν  = 1), as is expected of the geometry for these angles 

[Figure 2.2b]. Shown in Figure 2.3b are the magnified graphs for small values of 

θ .  Also shown in Figure 2.3a,b by the dashed lines is the asymptotic 

approximation of δ  for small θ ,  

 121 , ; ,
1

r

r

εθ 1ν δ δ α π θ
π ε

⎛ ⎞−
= + ≅ = <<⎜ ⎟+⎝ ⎠

 (2.7) 

which is readily derived from Eq. (2.3).  The smallness in the magnitude of δ  at 

small values of θ  (θ  < 0) suggests that the divergent electric field at the 

mathematically sharp corner of a triple point leads to a relatively mild field 

enhancement factor in the immediate vicinity of the triple point. The asymptotic 

expression (2.7) will also be useful to estimate the range of the angle θ  most 

likely for secondary electron multiplication [see Eq. (2.15) below].   

As just stated, the electric field at the triple point diverges (converges) for 

negative (positive) values of θ.  More significantly, for negative values of θ, the 

electric field orientation encourages an electron released from the metallic 

surface to strike the dielectric [Figure 2.4a], whereas the electric field for positive 

values of θ  tends to repel such an electron from the dielectric surface [Figure 

2.4b].  Despite the crudeness of such a model, this observation appears to be 

consistent with the experimental trends that negative θ  has a stronger tendency 

toward electron multiplication and flashover at the triple point than positive θ  

[Mil95, Ber77, Gil86, Det73]. 
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Figure 2.3 (a) The electric field index, δ, as a function of θ  for various values of εr.  (b) 
magnification of the boxed area in (a).  The dashed curves show the analytic approximations for 
small θ ,  Eq. (2.7). 

To explore the orbits of the seed electrons for positive and negative values 

of θ, we consider Bergeron’s idealized geometry [Figure 2.2b].  The cathode is 

located at y = 0, the anode is located at y = D and is held at a voltage V with 

respect to the cathode.  The dielectric with θ  < 0 is illustrated in Figure 2.2b.  In 
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the immediate vicinity of the triple point, i.e., r << D, the electric field E = -grad 

(Φ) is expected to be of the form [cf. Eqs. (2.1), (2.4)], 

 [0 sin( ) cos( )rE
a

δ

]νϕ ν⎛ ⎞= − +⎜ ⎟
⎝ ⎠

E r φ ϕ  (2.8) 

where E0 and a are the scale factors for the electric field and distance, which we 

shall determine shortly for Figure 2.2b.  Expressing the unit vectors r and φ in 

Cartesian coordinates, r = xcosφ + ysinφ  and φ = -xsinφ + ycosφ, and using Eq. 

(2.4), we may re-write Eq. (2.8) in Cartesian coordinates, 

 [0 sin( ) cos( )rE
a

δ

]δϕ δ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

E x y ϕ  (2.9) 

which we shall use in the integration of orbit of a seed electron.  Note that Eq. 

(2.9) may be written in the compact form, Ex + iEy = -iE0(z*/a)δ, where z = x + iy = 

reiφ is the complex variable (not to be confused with the z-axis) and the asterisk 

denotes the complex conjugate. Equation (2.9) shows that the x-component of 

the electric field changes sign with δ, and therefore with θ from Figure 2.3.  This 

explains the crucial difference in the orientations of the electric fields in Figure 

2.4 between positive and negative θ. 
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 a) 

 b) 
Figure 2.4 Electric fields for θ  < 0 (a), and for θ  > 0 (b), obtained from a numerical code.  Note 
that the electric field attracts a seed electron to the dielectric in (a), but repels a seed electron 
from the dielectric in (b).  

On the cathode surface, φ = 0, r = x [Figure 2.2a], and the cathode electric 

field becomes E = -yE0(x/a)δ.  The field enhancement factor is (x/a)δ.  To find E0 

and a, we simply compare this approximate cathode surface electric field with 

that obtained numerically from an electrostatic solver for the geometry shown in 

Figure 2.2b.  Sample electric fields in the vicinity of the triple point, obtained by 

D. M. French [Jor07b] are shown in Figure 2.4 for θ  < 0 and θ  > 0.  The 

numerical calculations of the electric field were done with the electrostatic solver 

in commercially available Ansoft Maxwell 2D software [Ans07].  In Figure 2.4, the 

geometry used was the parallel plate system (Figure 2.2b) of horizontal length 10 
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cm, anode-cathode gap D = 1 cm, and a potential difference V = 1 volt. To give a 

sense of scale, the vertical extent of the dielectric shown in Figure 2.4 is 2 mm.  

Using this code, the electric field far away from the triple point in the vacuum 

portion of the gap was found equal to V/D, as expected.  To model the case of 

infinite relative permittivity that will be presented in Figure 2.5, the relative 

permittivity (εr) of the dielectric was set at 10,000. This approximation is valid 

since the change in the electric field values calculated over εr  ranging from 1000 

to 100,000 was less than 0.5%.  (The value of δ  for εr = 1000 was shown in 

Figure 2.3). 

The vertical electric field on the cathode surface, Ey, is shown in Figure 

2.5, whose data were extracted from the electrostatic code and normalized for 

general values of D and V for the geometry shown in Figure 2.2b.  Figure 2.5a,b 

show data for negative values of θ  (θ  = -5.71° and -19.79°) and Figure 2.5c,d 

show data for positive values of θ  (θ  = 5.71° and 19.79°).  Also shown in Figure 

2.5 is the approximate surface electric field modeled by Eq. (2.9) using the 

constants,   

 0 / ,E V D a D= =  (2.10) 

We see from Figure 2.5a,b that, for θ  < 0, the approximation (2.10) is valid for a 

distance even up to x = D from the triple point along the metal cathode surface, 

over a large range of εr and θ.  For θ  > 0, this approximation is acceptable for  
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Figure 2.5 Comparison of the cathode surface electric field, obtained from a numerical code, with 
the analytic approximation, Eqs. (9) and (10), for the geometry of Figure 2.2b: (a) θ  = -5.71°, (b) 
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small values of θ, ( θ  = 5.71°, Figure 2.5c) at all values of εr but is only fair for 

larger, positive value of θ, ( θ  = 19.79°, Figure 2.5d). Equation (2.10) becomes a 

poorer approximation for large, positive values of θ  probably because of the 
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more pronounced effects of the vacuum region in Figure 2.2b.  The 

discrepancies may arise from the assumed constant [Eq. (2.10)] or from the 

assumed form of the solution [Eq. (2.9)], or a combination of the two.  Thus, 

particle trajectories computed from the approximate analytic electric field, to be 

reported below, will be less accurate for large, positive values of θ.  Fortunately 

cases with large positive θ   are of lesser interest to the present study.  Note that 

the field enhancement factors displayed in Figure 2.5 are relatively mild even at a 

location very close to the triple point (x/D = 0.0001), the maximum field 

enhancement factor being only 5.2, occurring for θ  = -19.79°, and εr = ∞ [Figure 

2.5b].  For the orbital study of a seed electron given in Sections 2.3 and 2.4, we 

shall simply use the approximate electric field given by Eqs. (2.9) and (2.10) for 

the geometry shown in Figure 2.2b. 

2.3 Trajectory of a Seed Electron  

 Since the electric field in the θ  < 0 case attracts an electron to the 

dielectric surface [Figure 2.4a], an electron released from the cathode near the 

triple point always strikes the dielectric even if this seed electron has a zero initial 

velocity.  The θ  > 0 case is entirely different.  The electric field tends to repel 

electrons from the dielectric surface [Figure 2.4b].  An electron released from the 

cathode must possess some initial velocity in the negative x-direction for it to 

impact onto the dielectric surface.  Thus, we consider these two cases, θ  < 0 

and θ  > 0, separately in this section. 

2.3.1 θ < 0 

For the case θ  < 0, a seed electron released from the cathode surface at 

(x, y) = (x0, 0) with zero initial velocity will always strike the dielectric surface.  In 

particular, we are interested in the impact energy of this seed electron to assess 

its likelihood in releasing a secondary electron, thereby initiating an avalanche 

process on the dielectric surface.  The electron trajectory is most conveniently 

represented in complex form, 
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where we have used Eq. (2.9) and the sentence that follows, as well as the 

approximation, Eq. (2.10).  The initial condition, at time t = 0, for this seed 

electron is z = x0, dz/dt = 0. 

This seed electron’s normalized trajectory, ζ = ζ(τ), is governed by the 

following non-dimensional equation and initial conditions,  

 ( *) , (0) 1, (0) 0i δζ ζ ζ ζ= = =  (2.12) 

where ζ = z/x0 and a dot denotes a derivative with respect to the normalized time 

τ = t/t0 with the time scale t0 given by,  

 
12

0
0

xmDt
eV D

δ−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.13) 

Note that the normalized Eq. (2.12) has only one dimensionless parameter, the 

electric field index δ, which depends only on εr and θ  [Figure 2.3].  Thus, a 

specification of εr and θ   completely determines the trajectory of any seed 

electron, regardless of the voltage, gap spacing, and this seed electron’s birth 

place as long as it is in the immediate vicinity of the triple point [Figure 2.2b].  

This seed electron hits the dielectric surface at the normalized time τf, at which 

the normalized coordinates is ζxf and ζyf  respectively in the x and y direction, the 

normalized velocity components are uxf and uyf , and the normalized impact 

energy is Wf = uf
2/2 =  (uxf

2 + uyf
2)/2.  The plots of these quantities are shown in 

Figure 2.6-Figure 2.9 over a wide range of εr and θ .  For the time being, let us 

focus on the left portion of Figure 2.6-Figure 2.9, as the initial conditions in Eq. 

(2.12) apply only to this regime, θ  < 0.  [The θ  > 0 case is treated in the next 

subsection, 2.3.2].  
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Figure 2.6 The normalized impact time, τf, as a function of θ  for various values of εr (solid and 
dashed curves).  Also shown is the normalized impact speed, uf  (upper triangles for εr = 2, and 
lower triangles for εr = infinity). 
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Figure 2.7 The x and y components of the normalized impact velocity as a function of θ  for 
various values of εr.  The magnitudes of the x-component are shown, for easier comparison with 
the y-component. 

-30° -20° -10° 0° 10° 20° 30°
0

2

4

6

8

10  εr = 2
 εr = 5
 εr = 10

 εr = ∞

W
f

θ  
Figure 2.8 The normalized impact energy as a function of θ  for various values of εr. 
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Figure 2.9 The normalized impact coordinates at various θ  for εr = 2 and εr = infinity.  From top to 
bottom, θ  = 5°, 10°, … 30° on the left, and θ  = -5°, -10°, … -30° on the right. 

Figure 2.6 shows that the normalized impact time τf and the normalized 

impact velocity uf are about equal.  This is because the normalized impact 

velocity uf is dominated by its y-component uyf, which is much larger than its x-

component uxf , as shown in Figure 2.7.  When θ  is small, the y-directed electric 

field is dominant and is almost a constant, therefore it gives an almost constant 

y-acceleration to the seed electron.  Thus uyf ≈  uf is approximately proportional 

to τf, the proportionality constant being unity in the normalized coordinates.  As θ  

approaches zero, both τf and uyf become large [Figure 2.6 and Figure 2.7] as the 

dielectric surface is almost parallel to the electron orbit of the seed electron, in 

which case this seed electron (with zero initial velocity) would travel a long time 

before it strikes the dielectric.  The normalized impact energy, Wf, follows a 

similar trend [Figure 2.8].  As θ →0 (θ < 0), one may very roughly estimate that 
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D
=  and 0 1

tanf
xy

θ θ
= ≈ .  From this we may make the approximations 

2
f yf fu u τ

θ
≈ ≈ ≈  and 1

fW
θ

≈ , as shown qualitatively in Figure 2.6-Figure 2.8.   

Note from Figure 2.6-Figure 2.8 that all of these quantities, Wf, τf and uyf, 

are insensitive to the precise values of εr.  Thus, the use of εr = infinity, together 

with the approximate Eq. (2.7), would provide a useful assessment of a seed 

electron which now serves as the primary electron for secondary emission on 

impact with the dielectric surface.  Figure 2.9 gives the normalized coordinates of 

this seed electron when it strikes the dielectric surface.  These impact 

coordinates lie on the dielectric surface. 

The dimensional quantities may be expressed in terms of the normalized 

quantities.   They are:  impact time tf = t0τf, impact coordinates (xf, yf) = x0(ζxf, ζyf),  

and impact velocity (vxf, vyf) = (uxf, uyf)x0/t0.  Of most interest is the dimensional 

impact energy Eimp, given by 

 
1

0 0
0 0( )imp f f

x xE e E x W eV W
D D

δ δ+⎡ ⎤⎛ ⎞ ⎛ ⎞= = ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (2.14) 

Figure 2.3 and Figure 2.8, together with Eq. (2.14), provide a ready assessment 

of whether secondary emission is likely to occur.  A condition for electron 

multiplication by secondary emission is that Eimp lies between E1 and E2, the 

range of impact energy for the secondary yield coefficient to exceed unity 

[Vau93, Hac59].  (E1 and E2 are also known as the first and second cross-over 

energy, respectively, in the secondary electron yield curve [Figure 2.10].  E1 is 

typically of order a few tens of eV, whereas E2 may exceed several keV, 

depending on the incident angle of the primary electron and on the roughness of 

the surface.   
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Impact Energy of a Seed Electron  
Figure 2.10 Sample secondary electron yield curve. 

Numerical examples and additional general representations of E1 and E2 may be 

found, respectively, in Table 1 of [Kis98] and Fig. 3 of [Ang98].) 

The electric field at the point of impact on the dielectric surface is also of 

interest.  Its magnitude, and the ratio of the tangential component (Et) and normal 

component (En), predicts the accessibility of secondary electron multiplication.  

From Eq. (2.8), the magnitude of the electric field on the dielectric surface at the 

point of impact is given by E0(rf/D)δ where rf = x0 (ζxf
2 + ζyf

2)1/2.  Also, setting φ  = 

θ  + π/2  in Eq. (2.8), we obtain the ratio of the tangential to normal component 

(with respect to the dielectric surface), Et/En = Er/Eφ = tan[ν (θ + π/ 2 )] = 

tan[(1+δ)(θ + π/2 )].  The numerical example shown in Section 2.4 illustrates that 

when the magnitude of the electric field falls in the 1MV/m – 10MV/m range, 

secondary electron multiplication is quite readily accessible over a wide range of 

dielectric materials and geometries.   

We estimate in Section 2.5 below [cf. Eq. (2.18)] the range of angles θ , 

 0

1

/ (1 )10 9.1
/ (40 )
mr

r

E eV
E eV

εθ
ε

⎛ ⎞+
> > − °× ×⎜ ⎟

⎝ ⎠
 (2.15) 

which most likely produces secondary electron avalanche on the dielectric by a 

seed electron. In Eq. (2.15), E0m (of order a couple eV’s) is the perpendicular 
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energy with which a secondary electron is ejected from the dielectric surface, and 

E1 (typical range between 20 – 100 eV) is the first cross-over energy above 

which the secondary electron yield exceeds unity [Kis98, Ang98, Vau93, Hac59].  

The range of angle given in Eq. (2.15) is remarkably consistent with the shaded 

curve given in Fig. 8.5 on p. 310 of Ref. 1, which shows data of the breakdown 

electric field with a short voltage risetime of 3 ns.  The last expression on the 

RHS of Eq. (2.15) also roughly corresponds to the minimum electric field for 

dielectric breakdown shown in Refs. [Mil95, Ber77, Gil86, Det73].  

2.3.2 θ > 0           

For θ  > 0, the seed electron released from the cathode surface has the 

tendency of being repelled from the dielectric surface [Figure 2.4b].  Thus, this 

seed electron will strike the dielectric surface only if it has a sufficiently negative 

x-component in its initial velocity.  To reduce the number of parameters, and to 

obtain some insight into the order of magnitude, we consider only the seed 

electron that has a sufficiently large negative x-component in its initial velocity so 

that it just grazes the dielectric surface.  For convenience, this seed electron is 

still assumed to have a zero initial y-component velocity. The trajectory of this 

electron, released from x = x0 at t = 0, is then again described by the normalized 

Eq. (2.12), except that the last initial condition is replaced by , where 

ux0 (< 0) is the normalized initial tangential velocity required for this seed electron 

to just barely touch the dielectric surface.  

xou=)0(ζ

Figure 2.11 shows this initial velocity 

as a function of θ  (θ  > 0 ) for various values of εr. 

 28



5° 10° 15° 20° 25° 30°
-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

u x0

θ

 εr= 2

 εr= 5

 εr= 10

 εr= ∞

 
Figure 2.11 The normalized x-component of initial velocity as a function of θ  (θ   > 0) for the seed 
electron to just graze the dielectric. 

With the initial velocity specified in Figure 2.11, we record the normalized 

impact time τf, the normalized impact coordinates ζxf and ζyf, the normalized 

impact velocity components uxf and uyf , and the normalized impact energy Wf = 

uf
2/2 =  (uxf

2 + uyf
2)/2.  The plots of these quantities, for θ  > 0,  have also been 

incorporated in the right side of Figure 2.6-Figure 2.9.  The right side of Figure 

2.6-Figure 2.9, for the case θ  > 0, is qualitatively similar to the left side of these 

figures, for the case θ  < 0, with one exception.  Note that for θ  > 15o, the initial 

velocity [Figure 2.11] and the impact velocity [Figure 2.7] have the same order of 

magnitude, regardless of the value of εr.  The required x-component of the initial 

velocity (in magnitude) of the seed electron would have been higher if we include 

a nonzero y-component initial velocity because in this case, the electron will 

move further away from the dielectric surface, per unit time.  Since few seed 

electrons could have an initial energy of order 10 eV, this means that it is 

comparatively less likely to initiate electron multiplication by the seed electrons 

for θ  exceeding 15° or so.  This is consistent with the vast experience in the 

studies of flashover mechanisms, especially for short voltage pulses, where the 
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role played by the seed electrons is expected to be more dominant than in a long 

voltage pulse [Mil95, Ber77, And80, Det73].  Using positive dielectric angles, θ, of 

order 15° at the triple points may then alleviate the flashover problem in high 

power dielectric rf windows.  

2.4 A Numerical Example  

In this section, we give a numerical example to show the range of 

parameters for the analysis outlined in Sections 2.2 and 2.3.  Specifically, we set 

V = 10 kV, D = 1 cm, E0 = 104 V/cm, x0 = 10μm, and εr = 2.  We separately 

consider the θ = -10° and 10° cases.  

2.4.1 θ = -10° and εr = 2 

For θ = -10° and εr = 2, we obtain δ = -0.035 [Figure 2.3], (x0/D)δ = 1.27, τf 

= 3.22 [Figure 2.6], ζxf = 0.91, ζyf = 5.14  [Figure 2.9], uxf = -0.087, uyf = 3.16  

[Figure 2.7], Wf =  4.98 [Figure 2.8].  For these dimensionless parameters, we 

obtain the time scale t0 = 6.68 ps [Eq. (2.13)], velocity scale = x0/t0 = 4.73 x 106 

m/s.  At impact on the dielectric surface, the dimensional coordinates is (xf, yf) = 

x0(ζxf, ζyf) = (9.07, 51.4)μm, the impact velocity is (vxf, vyf) = (x0/t0)(uxf, uyf) = (-

4.12x105, 4.73x106) m/s, and the impact energy is 63.5eV [Eq. (2.14)].  This 

impact energy exceeds the first cross-over energy (E1) in the secondary yield 

curve for most dielectrics.  The electric field at the point of impact is 1.2 x 106 V/m 

[Eq. (2.8)], and the ratio of its tangential to normal component, Et/En = Er/Eφ = 

tan[(1+δ)(θ + π/2)] = 4.4 in magnitude.  This implies a very high probability of 

avalanche of secondary emission initiated by this seed electron, as explained in 

the analysis outlined in Section 2.5.  This is also in qualitative agreement with the 

data shown in Fig. 1 of [Ber77] for θ  = -10°.  

2.4.2 θ = 10° and εr = 2 

For the second case θ = 10° and εr = 2, we obtain δ = 0.038 [Figure 2.3], 

(x0/D)δ = 0.77, τf = 2.52 [Figure 2.6], ζxf = -0.56, ζyf = 3.16  [Figure 2.9], uxf = -
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0.11, uyf = 2.52  [Figure 2.7], Wf =  3.3 [Figure 2.8].  For these dimensionless 

parameters, we obtain the time scale t0 = 8.6 ps, velocity scale = x0/t0 = 1.17 x 

106 m/s.  The electron must possess an initial normalized x-directed velocity, ux0 

= -0.64 [Figure 2.11], to just graze the dielectric.  This corresponds to an initial x-

directed energy of 1.57 eV, a reasonable number for the initial energy of 

secondary electrons, but is perhaps on the high side for a seed electron.  At 

impact on the dielectric surface, this seed electron’s dimensional coordinates is 

(xf, yf) = x0(ζxf, ζyf) = (-5.6, 31.6) μm, the impact velocity is (vxf, vyf) = (x0/t0)(uxf, uyf) 

= (-1.28x105, 2.95x106) m/s, and the impact energy is 25.4 eV [Eq. (2.14)].  This 

impact energy barely reaches the first cross-over energy in the secondary yield 

curve typically.  The electric field at the point of impact is 8.04 x 105 V/m [Eq. 

(2.8)], and the ratio of its tangential to normal component, Et/En = tan[(1+δ)(θ + π 

/2)] = 4.1 in magnitude.  But the orientation of the electric field on the dielectric 

surface in this θ  > 0 case discourages further electron multiplication by the seed 

electron [Figure 2.4b].   

The comparison between the θ = -10° and 10° cases show that the seed 

electron with θ < 0 is far more likely to produce secondary electron emission on 

the dielectric surface of a triple point.  Other ranges of parameters may be 

similarly considered.  

2.5 Preferred Angles for Dielectric Breakdown  

We now can estimate the range of angles, θ   (θ  < 0), in Figure 2.2b which 

most likely initiates an electron avalanche on the dielectric surface by a seed 

electron, according to the single particle orbit considerations given in this 

chapter.  Let En be the component of the electric field normal to the dielectric 

surface and Et be the component of the electric field tangential to the dielectric 

surface.  On the dielectric surface, En = Eφ, Et = Er , and Eqs. (2.4) and (2.8) yield, 

 1tan[(1 )( / 2)] , 1.
2

t r r

n r

E E
E Eϕ

εδ θ π θ
ε θ

+
= = + + ≅ <<  (2.16) 
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In writing the last expression of Eq. (2.16), we have assumed θ  << 1, used the 

approximation (2.7) for δ , and expanded the tangent factor for small θ . 

A seed electron impacting on the dielectric surface may initiate an electron 

avalanche by secondary emission when the electric field has the orientation 

shown in Figure 2.4a [Kis98].  Let E0m = mvi
2/2 be the initial energy of a 

secondary electron associated with its initial velocity component (vi) that is 

normal to the dielectric surface.  This secondary electron will be accelerated by 

the tangential electric field, Et, during its time of flight T = 2vi/(eEn/m) before it is 

attracted back to the dielectric surface by the normal component of the electric 

field En.  The tangential velocity gain is vt = (eEt/m)T = 2vi nt EE / , and the impact 

energy is Eimp = mvt
2/2 = 4 E0m (Et/En)2 where we have ignored the initial energy 

E0m which is at least an order of magnitude smaller than Eimp for cases of 

interest.  For subsequent electron multiplication, Eimp should lie between E1 and 

E2 [Figure 2.10], the range of electron impact energy for secondary electron yield 

to exceed unity [Kis98, Ang98, Neu01].  This condition then reads, 

 ( )2
1 04 /m t n 2E E E E E< <  (2.17) 

Since E2 is of order several thousand eV’s, we may set it equal to infinity in Eq. 

(2.17).  Upon using Eq. (2.16), and remembering θ  < 0, Eq. (2.17) then gives the 

following range of θ  that would yield a secondary avalanche by the seed 

electron, 
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which is written in practical units in terms of typical values of E0m and E1.  Eq. 

(2.18) is reproduced as Eq. (2.15) of Section 2.3.1.  It gives the range of the 

angle θ  most likely to initiate electron multiplication on the dielectric surface by a 

seed electron.  For example, if we take εr = 2.8 (typical for PMMA), Eom = 3 eV, 

and E1 = 30 eV, the range of Eq. (2.18) is 0 > θ  > -25°.  This range of angle 

(dashed red lines) is then in good agreement with the shaded curve shown in 
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Figure 2.12, which shows data of the breakdown electric field with a short voltage 

risetime of 3 ns.   

 
Figure 2.12 Breakdown electric field with voltage risetimes of 3 and 50 ns applied to PMMA 
insulators [Mil95].  Red lines indicate bounds predicted by Eq. (2.18). 

For longer voltage risetimes, the role of initial electrons is less important 

[Ber77, And80, Det73].  If we assume that a steady state is reached with Eimp = 

E1, one may then argue that the angle given by the last term of the inequality of 

Eq. (2.18) [which was indeed obtained by setting Eimp = E1] may be taken as the 

angle most likely to observe breakdown.  With reasonable numbers inserted into 

that term, this angle may range between -5° and -30°, in qualitative agreement 

with the angles for lowest breakdown electric field according to the data 

presented in Refs. [Mil95, Ber77, Det73, Gil86]. 

2.6 Concluding Remarks  

In this chapter, we analyze the electric field in the immediate vicinity of a 

triple point, the field enhancement factor there, the electron orbit of a seed 

electron, and the likelihood of significant electron yield through a secondary 

electron emission cascade on the dielectric surface.  We concentrate on the 
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generic geometry shown in Figure 2.2b.  We estimate the range of the angle θ  

most likely to produce an avalanche of secondary electron emission [cf. Eq. 

(2.15)].  This range is found to be consistent with experiments, especially for 

short voltage pulses.  Simple formulas, in analytical and graphical forms, are 

presented to assess the impact energy of a seed electron, once the gap voltage, 

gap spacing, dielectric angle, and the birthplace of the seed electron is specified.  

Numerical examples are given.  A formula to assess the range of angles most 

likely to induce breakdown is presented, and shows good agreement with 

previously published results for short voltage risetimes. 

We find that a seed electron is far less likely to generate secondary 

emission for positive values of θ  because the electric field has a tendency to 

repel electrons from the dielectric surface, under the assumption that the 

dielectric surface is not positively charged as in this thesis.  Thus, only those 

seed electrons with a sufficiently large initial velocity toward the dielectric can 

participate in producing significant secondary yield.  The smaller fraction in the 

velocity distribution of the seed electrons that can participate in secondary 

electron multiplication may be one reason why a higher voltage can be sustained 

against dielectric flashover when θ  > 0 [And80, Ber77, Det73, Mil95]. 

While the above results are tantalizing in that they seem to be consistent 

with the conventional wisdom developed for the triple point, we must stress that 

they are inferred from the orbit of the first electrons.  We have ignored the 

charging on the dielectric surface which led to field enhancement and to 

sustained secondary electron cascade for θ  > 0.  We have not included the initial 

velocity distribution of the seed electrons, nor have we incorporated the Fowler-

Nordheim equation to account for the spatial distribution of these seed electrons 

released from the immediate vicinity of the triple point.  We have also ignored all 

space charge effects, and we have avoided the extremely difficult analysis of 

Child-Langmuir law in higher dimensions [Lau01, Lug02], in a metal-vacuum-

dielectric assembly.  On impact of the dielectric by the seed electron or by 

subsequent generations of secondary electrons, we have ignored the secondary 

yield curves, as well as plasma production on the dielectric surface as a result of 
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desorption and ionization.  Thus, we have not considered the spatial and time 

scale of the full avalanche, nor the effects of background gas pressure and gas 

composition. 

The preliminary analysis given in this chapter seems to suggest that 

ample secondary electrons may be generated by a seed electron released from 

the metallic cathode surface of a triple point that is subjected to a sufficiently high 

voltage.  One is led to wonder if an oxide or impurity adsorbed on a metallic 

cathode surface, forming locally a triple point, effectively amounts to a lower work 

function than that of the impurity and of the metallic surface.  Reduced effective 

work functions have been reported for dispenser cathodes, in which oxides are 

impregnated into a metal base in the form of islands [Gil86].  For the case of a 

single-tip field emitter, the site of an oxide impurity on the surface has also been 

known to be the location where the major field emission current is drawn [Tur89].  

In that case, one might also wonder if the triple point could have played a role in 

the current emission in the manner studied in this thesis.  Thus, while secondary 

electrons are the main electron sources in certain crossed-field amplifiers [Gil05], 

they might also have been the main electron source on hot cathodes [Gil86] and 

cold cathodes [Jon04, Jon05, Jor07] where there are triple points distributed over 

the cathode surface.   

Finally, we briefly comment on the case where there is an external 

magnetic field (B) which is perpendicular to the x-y plane [Fig. 2.2], as in a 

crossed-field device.  For B = 2.35 kG, the seed electron then has a Larmor 

radius rL = ~115 μm for the example given in Section 2.4.1.  Thus in this 

example, the seed electron does not complete a Larmor cycle before it strikes 

the dielectric.  However, for subsequent secondary electrons, we find rL = 25 μm, 

with an assumed initial emission energy of a secondary electron at 3 eV.  This 

indicates that a dielectric thickness of 100’s of microns (or larger) is capable of 

secondary electron multiplication in a crossed-field device. 
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CHAPTER 3  
FABRICATION TECHNIQUES FOR CATHODES AND FILMS 

As the previous chapter indicates, electrons are emitted at triple point 

junctions, both through field enhancement and secondary electron emission.  

While this is a typically a problem in HPM devices, we have sought to use this to 

our advantage by fabricating cathodes with many triple points along their surface. 

To this end, six different MOJ cathodes have been fabricated, and are 

denoted MOJ-01 through MOJ-06.  Two baseline cathodes, metal island only 

(MIO) and dielectric coated (DiCoat) were also fabricated for comparison with the 

MOJ series.  These cathodes, along with many silicon test samples, were 

created by focusing a KrF excimer laser onto the surface of a hafnium target in a 

100 mTorr O2/Ar environment.  This creates a plasma plume that deposits 

oxidized Hf through a mask onto the surface of a cathode (or silicon wafer).  The 

cathodes differ in the laser fluence used, as well as the pattern used to mask the 

cathode surface. 

Additionally, five ALF cathodes have been fabricated, denoted ALF-1 

through ALF-4, with Tri-ALF as the fifth.  The ALF cathodes were fabricated 

using the same laser, but with the beam focused through a cylindrical lens onto 

the cathode surface directly.  The resulting ablation creates ~1.5 cm long 

trenches in the cathode surface (Figure 5.1).  The ablation is performed in air, so 

the ablated material re-deposits on the sides of the trenches, creating many sets 

of peaks and valleys in the cathode surface (Figure 5.2). 
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3.1 Excimer Laser Configuration 

Fabrication of all cathodes and films was performed using a Lambda 

Physik Compex 205 excimer laser, with a pulse length of 20 ns and wavelength 

of 248 nm when using KrF as the lasing medium.  The laser’s internal voltage 

ranges from 18-26 kV, resulting in output pulse energies of 0-600 mJ. 

The output energy of the excimer laser increases non-linearly with the 

applied voltage, as measured by the laser’s internal energy monitor, as well as 

an external Lumonics 50D-171 energy monitor placed near the beam exit.  The 

laser energy is also seen to decrease with time, and consequently a new gas fill 

is required to restore full laser energy.  Originally the KrF excimer laser was fitted 

with a solid fluorine source (as well as dedicated Kr, Ne, and He cylinders), which 

keeps the hazardous fluorine gas in a more stable solid state, and only converts 

F2 into the gas phase when a new fill is requested.  However, there is 

considerable cost associated with replacing a solid fluorine source, and solid 

sources have been largely discontinued by Lambda Physik.  The laser was 

reconfigured to operate with a 280 liter pre-mixed (Spectra Gases) gas cylinder 

containing 0.085% F2, 1.68% He, 3.82% Kr, 94.4% Ne, while also requiring a 

separate neon cylinder as a buffer gas.  Due to the hazardous nature of fluorine, 

the cylinder must use pressure regulators designed for corrosive gases, and 

must be stored in a gas cabinet with active ventilation systems.  For additional 

protection, a fluorine leak detector and alarm could be installed within the 

cabinet.   

A 2000 liter pre-mix cylinder is projected to last for 10 gas fills, 

considerably smaller than the 33 fills available from a solid source.  However, 

one distinct advantage of the pre-mix cylinder over a solid source is the longevity 

of each gas fill.  Laser energy as a function of time remains relatively stable for 

450,000+ laser pulses, and then rapidly decreases after a certain time has 

elapsed and/or a certain number of shots have been performed.  When gas fills 

were performed using a solid source, the laser energy would steadily decay, but 

at an accelerated rate.  As such, if it is necessary to operate the laser near its 

maximum energy output, a pre-mixed cylinder provides a much longer 
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operational lifetime between gas fills (~500,000 laser pulses compared to 

~250,000 for the solid source). 

To determine laser fluence at the target, the unobstructed laser beam is 

measured internally and externally.  The beam is then measured after it passes 

through the laser window and the focusing lens.  The laser spot size at the target 

is measured by ablating a piece of exposed Polaroid film with 1 laser pulse at 

100 mJ energy (as measured by the laser’s internal energy monitor).  Multiplying 

the reported beam energy by the transmission percentage of the entrance 

window and lens, and dividing by the measured ablation region, gives the laser 

fluence (J/cm2) at the target surface.   

 %Beam EnergyFluence Transmission
Spot Size

= ×  (3.1) 

The transmission characteristics of the entrance window vary considerably 

with time, ranging from 50 to 90% transmission.  Particulate from the ablation 

process inevitably deposits on the internal surface of the window, reducing its 

transmittance.  To compensate for this time-varying transmittance, the window is 

periodically measured, cleaned with an optical polishing compound, and then re-

measured.  The total number of pulses fired by the laser is recorded at this time, 

and then also recorded again whenever a detailed calculation of the fluence is 

required.  If we know the transmittance of the “clean” window ( ), the 

transmittance of the “dirty” window ( ), the number of pulses between 

cleanings (

cleanT

dirtyT

totalτ ), and the number of pulses since the last cleaning ( 1τ ), we can 

interpolate the transmittance using the simple relation given in Eqn. (3.2).   

 1
clean dirty

clean
total

T T
Transmittance T τ

τ
−

= − ×  (3.2) 

Clearly this assumes a linear relationship between laser pulses and 

window transmittance, and for certain deposition scenarios this may not be 

accurate, but it gives an estimate that is acceptable for our purposes.  The 

window receives a much thicker coating, per shot, when a flat slab target is used 

(typically for spectroscopy measurements), compared to a pyramidal target used 

 38



for most ablation experiments.  If a mixture of these orientations is used between 

window cleanings, this is likely to introduce the most error into the transmittance 

estimate. 

The generic vacuum chamber setup is shown in Figure 3.1.  A turbopump 

and roughing pump bring the chamber down to vacuum on the mid 10-6 Torr 

scale, as measured by the KJL-G075N Ion Gauge.  For oxide deposition, a 

controlled amount of background gas (20% O2, 80% Ar) enters into the chamber 

through a mass flow controller.  This is held at a gas pressure of 100 mTorr, as 

measured by a KJL-6000 thermocouple gauge, connected to the KJL-4500 Ion 

Gauge controller.  Also shown in the figure is a generic substrate, which would 

either be a hollow cathode tube, a silicon wafer, or a thin metal film.  Attached to 

the substrate, is the high voltage supply occasionally used to supply bias voltage.  

Unless otherwise specified, no voltage was applied. 

 
Figure 3.1 Basic experimental configuration for all deposition experiments.  Vacuum chamber is 
held at 100 mTorr (Ar/O2) or ~10-6 Torr, depending on the experiment.  HV Supply is not used in 
most experiments. 
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3.2 ALF Cathode Fabrication 

The Ablation Line Focused (ALF) cathode consists of an aluminum or 

stainless steel rod with lines ablated around its circumference, Figure 3.2.  

 
Figure 3.2 Cathode dimensions for all MELBA-C cathodes.  Sleeve length for metal oxide junction 
(MOJ) and ALF cathodes is 27.4 cm as indicated. 

Cathodes are fabricated by masking the excimer laser beam to create a 0.8 cm x 

1.9 cm rectangle.  Masking the beam improves the uniformity by removing low 

intensity regions of the beam.  The beam is then focused through a UV-grade 

fused silica, cylindrical lens (f=30 cm, 2.5cm x 5.9 cm) onto the surface of the 

cathode stalk.  The resulting beam spot is typically 0.25 mm wide, with some 

variation depending on the precision of the lens alignment.  As shown in Figure 

3.3, the cathode is held by a National Aperture MicroMini rotary stage, which is 

computer controlled via LabVIEW [Appendix C].  This control program allows the 

user to rotate the cathode, fire the laser, or set up a fixed number of laser shots 

and rotations.  This greatly reduces the time and tedium associated with 

producing a cathode. 

 

Patterned 
From accelerator Region 0.635 

 cm 

27.4 cm 

57 cm
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Figure 3.3 Fabrication of Tri-ALF cathode using computer controlled rotary stage. 

All ALF cathodes were fabricated in open air.  If it became necessary to 

fabricate them in vacuum conditions, perhaps to reduce oxidation or 

redeposition, an appropriate rotational feedthrough would be necessary, as the 

computer controlled stage is not rated for vacuum operation. 

3.2.1 Tri-ALF Cathode Fabrication 

The Tri-ALF cathode is an extension of the basic ALF design.  This form of 

cathode priming, similar to the Tri-PAL design [Jon05], utilizes 3 distinct emission 

regions to stimulate electron bunching.  In addition, the non-ablated regions are 

milled out in sections 0.8 cm wide, 6.1 cm long, and 0.3 cm deep, and then 

covered with carbon paint, Figure 3.4.  Both the carbon paint and radius 

reduction are intended to suppress electron emission in those regions, further 

enhancing the priming effect.  The non-patterned regions of the cathode are a 

1.27 cm diameter Al 6061 rod polished with 2500 grit sandpaper. 
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Figure 3.4 Tri-ALF cathode after testing.  Only one of three patterned emission regions is visible, 
each region is 0.5 cm wide and 4.5 cm long. 

3.3 Thin Film Deposition 

In all thin film deposition experiments the excimer laser was focused by a 

30 cm focal length fused silica lens to spot sizes ranging from 0.4 mm2 to 1.3 

mm2, and entered the vacuum chamber through a fused silica window, as seen 

in Figure 3.1.  Laser pulse repetition rates of 10-15 Hz were employed, and laser 

energies ranged from 50 to 300 mJ at applied laser voltages of 18-25 kV, 

resulting in laser fluences between 2 and 40 J/cm2. 

The target used in all hafnium ablation experiments is a 0.25 mm thick 

hafnium foil, supplied by Alpha Aesar.  The purity is 99.5% metals basis, 

excluding Zr, and contains a nominal Zr concentration of 3%.  The purity is 

quoted as a “metals basis,” meaning the metallic content is 99.5% hafnium, but 

the non-metal (most notably, oxygen) content of the target is unknown.  The tip of 

a pyramidal target is covered with this foil, as seen in Figure 3.5, and the target 

rotates at approximately 20 RPM.  The specific rotational velocity is of little 

importance, but a rotating target provides a few important benefits.  First, it 

rasters the ablation plume side to side, slightly improving film thickness 

uniformity.  Additionally, it prevents severe localized heating of the target, 

reducing the rate of material removal and consequently increasing the usable 

lifetime of the hafnium foil.  Typical foil lifetimes at 20 J/cm2 were on the order of 

40,000 pulses.   
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1 cm 

 
Figure 3.5 Aluminum pyramid target, covered with four pieces of 0.25 mm thick Hf foil. 

As the laser pulse strikes the surface of the target, hafnium ions, neutrals, 

and particulate are ablated.  This ablation plume expands and moves away from 

the target surface, propelled by the initial energy of the ablated material.  Except 

for very extreme laser incidence angles (nearly parallel to the surface), the plume 

expansion will, primarily, be perpendicular to the target surface (Figure 3.17b) 

[Chr94].   

3.3.1 Thin Films on Silicon 

To test properties of the deposited cathode films, it was often impractical 

to analyze samples on the cathode surface, so test samples were fabricated on 

silicon wafers, approximately 2.5 cm by 2.5 cm.  These wafers were positioned 

within the chamber, 2-3 cm from the target surface, Figure 3.6. 
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Figure 3.6 Photograph of deposition setup with pyramid target and silicon wafer substrate.  
Target-substrate gap is 25 mm. 

For ion implantation, a negative potential could be applied to the substrate 

holder.  Conversely, a positive potential could be applied to ensure deposition of 

only neutrals and particulate. 

3.3.2 MOJ Cathode Fabrication  

Metal oxide junction (MOJ) cathodes consist of a grooved, aluminum 

support rod surrounded by a stainless steel sleeve, held in place by two spherical 

electrostatic endcaps.  The total cathode length is 57 cm, and the diameter is 

1.27 cm.  The length of the sleeve portion of the cathode is 27.4 cm, with a 

sleeve thickness of 0.086 cm, as shown in Figure 3.2.  During fabrication, the 

hollow sleeve is positioned 1.5-3.5 cm from the target surface.  The cathode 

sleeve is suspended from the top of the vacuum chamber (Figure 3.7), and 

masked by a perforated or woven mesh, as shown in Figure 3.8 and Figure 3.9.  
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Some oxide will be deposited outside the masked region, but that is easily 

removed by sandpaper before the cathode is used.   

The goal of patterning islands on the cathode was to maximize the 

number of triple points.  Because the triple points occur all along the edges of the 

islands, we must quantify them as a length-density, or the total length of metal-

dielectric-vacuum interfaces per unit area.  The woven mesh (Mesh A) has a high 

theoretical triple point length-density, at 360 mm/cm2.  Due to deposition under 

the wires, however, the true triple point density was much lower, as discussed in 

section 3.3.2.1.  After the disadvantages of a woven mesh were discovered, we 

switched to a perforated bronze mesh.  Two designs were tested, but they had 

similar theoretical triple point length-densities, at 130 mm/cm2 and 160 mm/cm2 

for Mesh B and C, respectively.  Though this appears substantially lower, the true 

triple point density for these meshes, and Mesh B in particular, is very close to 

the theoretical value, unlike the situation for Mesh A. 

 

Lens 

Perforated 
Mesh 

Cathode 

KrF Laser 

Vacuum 
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100 mTorr 

20% O2 
80% Ar 

KrF Laser 

Plasma 
Plume 

(a) 

Side View 

Top View 

Rotating 
Target 

(b) 

Figure 3.7 Experimental configuration for MOJ cathode fabrication.  
(a) Top view of setup. (b) Side view. 
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 2 mm

2 cm

Figure 3.8 Meshes used in fabrication of MOJ cathodes.  (Bottom) Close-up. 
From left: Mesh A, Mesh B, and Mesh C. 

 
Figure 3.9 Perforated bronze mesh used in fabrication of MOJ cathodes (Mesh B). 

While the ablation plume may contact the entire cathode surface, only the 

region closest to the target receives significant film deposition.  To increase the 

uniformity of the film, the cathode is manually rotated 6-8 times over the course 

of the deposition.  Each time a rotation is made, the vacuum chamber must be 

opened and then pumped back down to a vacuum on the 10-5 Torr scale.  If film 

uniformity was of great importance, a rotating vacuum feedthrough could be 

installed and the cathode could be continuously rotated during deposition, 

eliminating any exposure to air during the fabrication process and improving the 

uniformity of the peak dielectric thickness. 
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3.3.2.1 MOJ-01 Cathode Fabrication 

Unlike all other MOJ cathodes, MOJ-01 was fabricated using a woven 

mesh screen (Figure 3.8).  The screen had 0.6 mm diameter holes, and 54% 

open area, labeled as Mesh A.  The mesh screen was masked off, except for a 

0.6 cm by 1.7 cm region, preventing the ablation plume from contacting the 

cathode surface outside of this small area.  The total patterned area was 7 cm2.  

The laser fluence was 30 J/cm2, and 18000 pulses were used per section, 

resulting in a peak dielectric thickness of 900 nm.  The cathode was rotated 8 

times, in 45° increments, creating 8 sections.  All other MOJ cathodes used 6 

sections.   

During ablation, because the screen is a woven mesh, collisions within the 

plasma cause some film to be deposited underneath the wires, reducing the 

effectiveness of the mask from a theoretical triple point length-density of 360 

mm/cm2 to (at best) 100 mm/cm2.  This effect is easily seen in Figure 3.10, as the 

dielectric “islands” are actually connected on all four sides.  In this figure, the film 

is deposited on a flat silicon wafer, with the best mesh contact achievable.  The 

“at best” estimate of triple point length-density is based off this figure, but on the 

actual MOJ-01 cathode the mesh contact was worse and many regions clearly 

have no dielectric separation whatsoever. 

The rainbow pattern on the dielectric islands is due to the variation in 

dielectric thickness.  This creates Newton’s Rings, with certain wavelengths of 

light experiencing constructive interference as they reflect off the silicon 

substrate.  We use this effect in Chapter 5 to estimate film thickness. 

MOJ-01 was ablated using a high laser fluence (30 J/cm2), which created 

a large amount of surface particulate, shown in Figure 3.10 and more clearly in 

Figure 3.11.  This particulate results from molten metal that is ejected from the 

ablation site during the 20 ns laser pulse.  Using a shorter pulse laser, or 

reducing the laser fluence, will reduce the size and quantity of particulate 

[Chr94]. 
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1 mm 

 
Figure 3.10: MOJ-01 test sample, deposited on silicon using Mesh A.  The variation in dielectric 
thickness creates rainbow colored rings. 

By changing the lighting angle during inspection with a light microscope, 

we can substantially change the image.  Figure 3.10 and Figure 3.11 are images 

of the exact same region on the sample; the only change is the lighting angle.  If 

the lighting angle is reduced below ~15°, the incident light will undergo total 

internal reflection within the dielectric, scattering only off defects and providing us 

with an easy method of imaging the surface particulate.  From these images, we 

can also see that the particulate rarely deposits in the regions masked by the 

wire.  This is because the particulate is so massive that collisions in the plasma 

are not able to deflect it underneath the wire mesh.  The lighter ions, however, 

are able to change course near the cathode surface and deposit under the wires. 
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1 mm 

 
Figure 3.11 MOJ-01 test sample, deposited on silicon using Mesh A.  Imaged with low lighting 
angle to show particulate size, density, and location. 

3.3.2.2 MOJ-02 Cathode Fabrication 

To improve contact between the mesh and cathode, a perforated bronze 

mesh (Mesh B) was used for MOJ-02.  It was also wrapped completely around 

the cathode and clamped in place during deposition, as shown in Figure 3.9.  

This eliminated the need for any additional masking of the cathode during 

deposition.  The screen used for this cathode had 1.2 mm diameter holes, and 

37% open area.  Switching to a perforated mesh created much more distinct 

dielectric islands, as shown in Figure 3.12.  The laser fluence was also reduced 

to 1.5 J/cm2, with 18000 pulses per section, resulting in a peak dielectric 

thickness of 300 nm.  The patterned area was increased to 12 cm2.  This 

reduction in the laser fluence also greatly reduced the surface particulate, as 

shown in Figure 3.13.  Reducing the fluence also reduced the deposition rate 

and, consequently, the film thickness. 
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Figure 3.12 MOJ-02 pattern tested on silicon.  This cathode shows more distinct dielectric islands 
than the woven wire mesh. 

 
Figure 3.13 MOJ-02 sample deposited on silicon.  Shows greatly reduced surface particulate. 

3.3.2.3 MOJ-03 Cathode Fabrication 

MOJ-03 was fabricated under similar conditions as MOJ-02.  A different 

perforated bronze mesh was used, this one with 0.86 mm diameter holes in an 

1 mm 500  μm 

500 μm 500 μm 
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offset pattern, and 28% open area (Mesh C).  This mesh, as shown in Figure 3.8, 

had two different hole spacings.  In each row the holes were close together, but 

the rows were separated by a greater distance.  In areas where the perforated 

mesh made poor contact with the cathode surface, the dielectric was deposited 

in rows, rather than distinct islands, Figure 3.14.  The laser fluence changed 

slightly to 3.8 J/cm2, resulting in a peak dielectric thickness of 450 nm.  The 

patterned area was also increased to 28 cm2. 

 

500 μm 

Figure 3.14 MOJ-03 test sample on silicon.  This mesh resulted in dielectric rows, rather than 
distinct islands. 

3.3.2.4 MOJ-04 Cathode Fabrication 

To test the effects of particulate on cathode performance, MOJ-04 used 

the same mesh as MOJ-02 (Mesh B), but with a much higher laser fluence of 30 

J/cm2.  This mesh was chosen because it produced the most distinct dielectric 

“islands.”  The patterned area was also increased to 34 cm2.  The increased laser 

fluence resulted in a large amount of particulate (Figure 3.15), as well as an 

increase in dielectric thickness to 900 nm. 
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500 μm 500 μm 

Figure 3.15 MOJ-04 test sample on silicon, using the same mesh as MOJ-02.   

3.3.2.5 MOJ-05 Cathode Fabrication 

As shown in Chapter 2, negative dielectric angles (defined by Figure 2.2) 

produce the greatest field enhancement at the triple point, and also provide the 

best geometries for secondary electron multiplication.  For the other MOJ 

cathodes, collisions in the plasma plume create islands with greater dielectric 

thickness in the center, resulting in dielectric angles of nearly 90°, estimated from 

profilometer measurements.  In an unsuccessful attempt to create a cathode with 

more ideal dielectric angles, we used 12 copper tape strips, each 2 mm thick and 

7 cm long, to mask the deposition region of the cathode. 

 
Figure 3.16 MOJ-05 cathode prior to oxide deposition.  12 copper tape strips (2mm x 7cm) 
encircle the emission region. 

Because the copper tape has a lower profile on the surface of the cathode 

(compared to the bronze mesh) the oxide deposition is slightly more uniform in 
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the unmasked regions.  The resulting dielectric angle, however, was 89°, only an 

improvement of ~1°.  The geometry of the copper strips does, however, provide a 

lower triple point length-density, at 60 mm/cm2, smaller than any other MOJ 

cathode.  The cathode was patterned with a laser fluence of 26 J/cm2, using 4 

sections and 18000 pulses per section, resulting in an estimated peak thickness 

of 900 nm. 

3.3.2.6 MOJ-06 Cathode Fabrication 

To examine the role of secondary electrons in electron emission for the 

MOJ cathodes, we fabricated a cathode using a magnesium oxide (MgO) target 

instead of HfO2.  MgO has a high secondary electron emission (SEE) coefficient, 

measured in the literature to range from 17-25 [Whe58].  While the SEE 

coefficient of HfO2 is unknown, SEM measurements in Chapter 5 qualitatively 

indicate it is similar to copper, which has a SEE coefficient of ~2 [Bag00]. 

The cathode was fabricated using Mesh B, at a laser fluence of 7 J/cm2 

and a repetition rate of 10 Hz.  The deposition was performed in 6 sections, with 

18000 pulses per section, similar to previous MOJ cathodes.  To improve mesh 

contact, the patterned area was decreased to 20 cm2.  The use of an oxide 

(rather than metallic) target allowed the deposition to be performed in a vacuum 

of 2x10-5 Torr.  Because the target was a 1 cm3 MgO crystal, the standard 

aluminum pyramid could not be used, and a new target holder was fashioned, as 

shown in Figure 3.17. 
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a) b)

Figure 3.17 (a) Target holder for MgO substrate.  (b) 1 cm3 MgO target and plume during 
ablation.  The cathode is in the upper-right corner, 2.5 cm from the ablation target. 

These deposition conditions produced an MgO film with a peak thickness 

of 900 nm.  This thickness is similar to previous MOJ cathodes, despite using 

much lower laser fluence.  This may be explained by the reduced target-

substrate gap, which was 2.5 cm, compared to ~3 cm for previous cathodes.  A 

smaller gap provides higher peak thickness, but also decreases the uniformity of 

the film thickness.  Individual dielectric islands showed improved uniformity, 

easily seen on the left side of Figure 3.18.  The entire top of the island has as 

very similar color (thickness), and the edges show rapid color change.  This 

increase in uniformity is likely because Mg is much lighter than Hf, and is more 

easily scattered by collisions in the plasma plume. 
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500 μm 500 μm 
 

Figure 3.18 A single dielectric island from the MOJ-06 test sample on silicon, using Mesh B.  
(Left) High lighting angle showing dielectric. (Right) Low lighting angle showing particulate. 

3.3.3 Control Cathodes 

To test the effectiveness of our cathode patterning techniques, several 

“baseline” cathodes were fabricated and tested in the relativistic magnetron. 

3.3.3.1 Polished Stainless Steel (PSS) Cathode 

The most obvious cathode test is that of a sanded T304 stainless steel 

hollow rod, identical to the substrate used in the fabrication of MOJ cathodes.  

Type 304 stainless steel is an austenic steel alloy consisting of 0.15% carbon, 

2% manganese, 0.045% phosphorus, 0.03% sulfur, 1% silicon, 19% chromium, 

9.25% nickel, and 68% iron [Hen07].  Tests of this cathode give an indication of 

the cold-cathode emission currents obtained without any form of cathode 

patterning.  Fabrication of a PSS cathode is fairly straightforward; 91.4 cm long 

tubes of T304 stainless steel are cut into 27.4 cm lengths and 2 mm slots are cut 

into each end.  These slots ensure no gas will be trapped inside the hollow 

cathode when the magnetron is pumped down.  When the full cathode is 

assembled, the slots are covered by the electrostatic endcaps, so they do not 

affect the cathode’s emission properties.  The cathodes are rotated in a lathe 

while being sanded with sandpaper ranging from 600 to 2500 grit, a process that 
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normally takes 40 minutes.  The surface finish shown in Figure 3.19 is the typical 

end result. 

500 μm 

 
Figure 3.19 Light microscope image of the final surface of a polished stainless steel cathode.  
This is the typical stainless steel substrate surface finish of all MOJ cathodes before patterning. 
20X magnification. 

Three of these cathodes were fabricated and tested at various times (Table 6.1); 

this was done to check if anything had changed in the general magnetron 

operation or diagnostics. 

3.3.3.2 Dielectric Coated Cathode 

To ensure that the bulk dielectric was not enhancing electron emission 

from the MOJ cathodes, a fully dielectric coated cathode was fabricated.  The 

patterned region was 12.5 cm long, resulting in a total patterned area of 50 cm2.  

The hafnium oxide film was deposited in 4 sections (compared to 6-8 for MOJ 

cathodes), at 9000 pulses per section, with a laser fluence of 30 J/cm2, resulting 

in a peak dielectric thickness of 500 nm. 
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Figure 3.20 Photograph of the patterned region of the dielectric coated cathode.  The cathode 
diameter is 1.77 cm. 

3.3.3.3 Metal Island Only (MIO) Cathode 

To ensure that the metal particulate was not enhancing electron emission 

simply by creating field emission sites on the MOJ cathodes, we fabricated a 

cathode with metal-only islands.  This cathode was patterned in a 2x10-5 Torr 

vacuum, using Mesh B, with 6 sections, and 12000 laser pulses per section.  The 

laser fluence was 15 J/cm2, resulting in a peak film thickness of 1000 nm.  

Despite our best efforts to eliminate the formation of an oxide, a small amount of 

oxidation can be seen around the edges of each island, Figure 3.21.  Hafnium 

forms a very thin (~1 nm) oxide layer with room temperature exposure to air, and 

impurities within the hafnium target may also contribute additional oxygen during 

the deposition process.  This thin film, however, should be removed after the first 

few shots in the magnetron. 

 
500 μm 100 μm 

Figure 3.21 Single island on the MIO-1 test sample, deposited on silicon.  Zoomed region shows 
the formation of a thin oxide layer. 
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Treating the particulate as a hemisphere of metal in conductive contact 

with the cathode surface, basic electrostatics shows the electric field 

enhancement, β, is 2 at the tip of each particle. 
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CHAPTER 4  
EXPERIMENTAL CONFIGURATION AND DIAGNOSTICS 

The UM/Titan relativistic magnetron, located in the Plasma, Pulsed Power, 

and Microwave Laboratory at the University of Michigan, is a modified A6 

magnetron driven by the Michigan Electron Long Beam Accelerator (MELBA).  

MELBA is capable of producing voltages of up to -1 MV and pulses up to 1.5 μs 

long.  For the MOJ and ALF cathode tests, however, -300 kV pulses were used, 

with typical pulse lengths of 300-400 ns.  This chapter describes the 

experimental configuration of the magnetron and accelerator, as well as the 

configuration and calibration of the relevant diagnostics. 

This chapter also details the spectroscopic setup used to acquire the 

spectra shown in Chapter 5.  An Acton -300i spectrometer images plasma 

plumes ablated from flat hafnium targets.  This configuration simulates the 

conditions used during cathode preparation, allowing us to image the plasma 

without a complicated optical setup. 

4.1 Spectroscopy 

Spectroscopy data are obtained by expanding the image of the ablation 

plume onto the entrance slit of the Acton Research Corporation -300i 

spectrometer.  A 12.5 cm diameter, 34 cm focal length lens is placed between 

the plume and spectrometer; 42.5 cm from the plume, and 151 cm from the 

spectrometer.  This results in an image magnification of 3.5x at the spectrograph.  

With a spectrograph slit width of 7 μm, this corresponds to a plume width of 2 

μm.   
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Figure 4.1 Spectroscopy setup, showing the magnification of the ablation plume onto the 
spectrograph entrance. 

As shown in Figure 4.1, the image is reflected off a mirror before entering the 

spectrograph.  It is important that this mirror reflects light perpendicular to the 

entrance of the spectrograph.  If the light enters at an angle, the intensity will be 

reduced and shifting of the spectral lines may occur. 

Images are captured by a Princeton Instruments intensified CCD camera 

(model # ICCD-576/RB-EM), which is gated by a Princeton Instruments Detector 

Controller.  Gate widths of 50 ns to 10 ms are possible, with 50 ns used for all 

experiments reported here.  The pulse timing is controlled by a BNC 555-4 pulse 

generator, which triggers the excimer laser and then, after an adjustable delay, 

triggers the PI Detector Controller to send a gate pulse, Figure 4.2.   
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Figure 4.2 Spectroscopy timing and triggering. 

Timing is confirmed using a pin diode and the gate pulse, which are both sent to 

a TDS 3052 oscilloscope, sample traces are shown in Figure 4.3.  The pin diode 

has an additional 45 ns of cable delay, which has been accounted for in Figure 

4.3.  This figure shows the true spectrograph gate delay (100 ns), which results 

from a 50 ns delay on the PI Detector Controller and an 1100 ns delay on the 

BNC 555.  The pulse width is 50 ns. 
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Figure 4.3 Sample pulses for spectroscopy timing showing that 1150 ns of total programmed gate 
delay gives a 100 ns true delay. 
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4.2 Relativistic Magnetron 

Cathode experiments are performed on a 6-vane modified A6 relativistic 

magnetron from L-3/Titan Pulse Sciences.  This L-band magnetron is driven by 

the Michigan Electron Long Beam Accelerator (MELBA), generating frequencies 

on the order of 1 GHz.  The rounded anode vanes are 20.5 in length, at an anode 

radius, ra, of 3.2 cm.  The cathode radius, rc, is 0.635 cm and the outer cavity 

radius, rm, is 8.26 cm, as shown in Figure 4.4.   

 
Figure 4.4 Diagram of the on-axis view of the L-3/Titan relativistic magnetron, showing rounded 
vanes and cavity dimensions. 

ra
rc 

rm 

Figure 4.5 shows a view of the interaction cavity, taken from the end of the 

magnetron opposite the accelerator.  Between each vane is a coupling slot for 

microwave extraction.  Two slots are terminated with steel plates, one slot has a 

steel plate with a 2” glass viewport, while the other three slots (spaced 120° 

apart) are covered by 1.1 cm thick Lucite windows.   
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Figure 4.5 Magnetron diagram showing coupling slots and extraction windows. 

These windows allow microwave transmission while maintaining the magnetron’s 

internal vacuum.  Because of the large microwave powers produced, breakdown 

can occur across the windows, damaging the windows and leaving electron 

tracks.  An example of a damaged window is shown in Figure 4.6. 

 
Figure 4.6 Output waveguide window exhibiting breakdown on the vacuum-side of the window.  
The dark outline shows the size and shape of the magnetron coupling slots. 
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Attached to all three Lucite windows are L-band waveguides with internal 

dimensions of 16.51 cm by 8.255 cm.  L-band (WR-650) waveguides have a 

lower cutoff frequency of 0.91 GHz, and are recommended for operation in the 

1.12 -1.7 GHz range.  Consequently, the typical operational frequency of the UM 

magnetron is below the recommended range, but above the cutoff frequency.  All 

three waveguides connect to -50 dB microwave power couplers, and then 

terminate in carbon-coated horsehair loads. 

The magnetron, with the MELBA-C ceramic insulator, is held at a typical 

vacuum pressure on the 10-7 torr scale, though pressures as low as 6 x 10-8 torr 

have been achieved [JON05].  This is achieved with a rotary pump (200 l/min), 

for initial pumping, coupled with a CTI Cryogenics cryo-pump (1500 l/s).   

4.3 Accelerator 

MELBA has been used in experiments at the University of Michigan since 

1984 [Gil85, Lop03], and at the time of this publication, has fired over 12000 

shots.  In 2002, the plastic insulator stack was upgraded to a ceramic stack, with 

over 1900 shots fired since the upgrade.  Since the upgrade, MELBA is referred 

to as MELBA-C.  The accelerator components are shown in Figure 4.7, and all 

components are fully submerged in transformer oil.  The 16 capacitors (1 uF, 100 

kV) are charged in parallel and discharged in series through the 7 spark gap 

switches.  Two of the 16 capacitors are charged with reverse polarity, and help 

flatten the voltage pulse in a configuration known as an Abramyan circuit [Abr77, 

Jon05].  Series resistors, liquid copper sulfate resistors, and filter capacitors 

comprise the remainder of the accelerator circuit.  A circuit diagram is included in 

Appendix A [Jon05].  Typical pulses produce 1-10 kA of current at -300 kV, with 

pulse lengths ranging from 200 to 500 ns.  MELBA-C is capable of producing 

pulses 0.1-1.5 μs in length.  However, in order to protect the magnetron in the 

event of plasma closure, the pulse is shortened via an adjustable command 

crowbar switch to about 0.3-0.5 μs. 
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Figure 4.7 Diagram of MELBA-C, showing ceramic insulator stack, filter capacitors, charging 
capacitors, spark gap switches, series resistors, and the Abramyan resistor a) As seen from the 
west. b) As seen from the east. [modified image from Jon05] 

4.4 Electromagnets 

Two pulsed electromagnetic coils, provided by AFRL, produce an axial 

magnetic field for the magnetron, typically on the order of 2-3 kGauss.  However, 
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due to size constraints and the magnetron geometry, the magnets cannot be 

placed in a Helmholtz configuration (magnet separation equal to magnet radius), 

which would produce the most uniform magnetic field between the coils.   

 

Electromagnets

Magnetron 
View Port 

Output 
Waveguide

Figure 4.8 Picture of electromagnets and magnetron view port.  The magnets make direct contact 
with the extraction waveguide, defining the minimum separation. 

The axial magnetic field, however, remains sufficiently uniform over the 

interaction region in the center of the magnetron [Lop03].  The magnet is pulsed 

with 2.8-4.6 kV, generating 600 to 900 A of current and axial magnetic fields of 

2.0-3.0 kGauss.  Due to eddy currents in the magnetron body (magnetic 

diffusion), the magnetic field on axis will not be as large as basic solenoid 

equations would predict, and the peak field is delayed by ~4 ms (compared to the 

peak current in the coils).  To correct for this, calibrations were performed using a 

Lakeshore 420 Gaussmeter, and the MELBA-C trigger pulse is delayed by 8.2 

ms.  This ensures the Marx trigger occurs at the maximum magnetic field.   

4.5 Diagnostics & Calibrations 

For each relativistic magnetron shot, the entrance current, end-loss 

current, magnet current, and cathode voltage are recorded, as well as the 
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microwave power in all three extraction waveguides.  This section details the 

setup and calibration of these measurements. 

4.5.1 Electrical Diagnostics 

4.5.1.1 Cathode Voltage 

The cathode voltage is measured via a CuSO4 voltage divider installed on 

the ceramic insulator stack, inside the oil tank of the accelerator.  The probe is 

designed as a 100,000:1 resistive divider, but this value may change if air 

bubbles form near any of its electrodes.  This effect is easily noticed during 

MELBA-C runs, as the measured voltage can change dramatically, sometimes 

appearing to increase beyond the Marx erection voltage. 
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Figure 4.9 MELBA-C ceramic insulating stack with copper sulfate resistors and voltage monitor. 

To calibrate the high voltage probe, a circuit was constructed as shown in 

Figure 4.10.  The cathode stalk was biased with high voltage pulses, produced 

by the BWH pulser, a double-module Febatron.  These pulses ranged in 

magnitude from 28 to 41 kV.  This voltage was then directly measured with a 

North Star PVM-5 high voltage probe, and recorded on a nearby scope.  The 

cathode voltage was simultaneously measured by the standard screen room 
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setup.  All scope channels in the screen room were terminated in 50 Ω and 10x 

attenuators, consistent with the setup for all MELBA-C shots.  Comparing the two 

measured voltages gives a calibration constant of 84.6 kV/V, as shown in Figure 

4.11. 
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Figure 4.10 Experimental circuit for current and voltage calibrations. 

 68



-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

-40

-30

-20

-10

0

10

A
ct

ua
l V

ol
ta

ge
 [k

V
]

Voltage Monitor (VOLN) [V]

Vactual[kV]= VVOLN[V]*84.6 [kV/V]

 
Figure 4.11 Voltage calibration for MELBA-C, performed by Brad Hoff and Nick Jordan, 03-29-
2007.  The R-value of the fit was 0.99. 

4.5.1.2 Cathode Current 

The current produced at the surface of the cathode is divided into two 

measurements.  The primary measurement is the entrance current (ENTC) which 

is measured by the large (PSI installed) Rogowski coil imbedded in the 

magnetron side of the insulating stack.  The secondary measurement is the end-

loss current (PEAR), which is measured by a Pearson coil surrounding a 

grounding strap connected to a Poco graphite collector.  This collects electrons 

that escape the magnetron in the axial direction. 

Calibration of the Rogowski coil was conducted using the circuit shown in 

Figure 4.10.  During the calibration, endloss is obviously not a consideration, and 

only the ENTC channel is calibrated, as it corresponds to the output voltage of 

the Rogowski coil.  Two pre-calibrated Pearson coils provide a measurement of 

the current, which is recorded on a nearby scope.  The ENTC signal is 

simultaneously measured in the screen room through the standard cable length, 

10x attenuation, and 50 Ω termination.  The Pearson coils self-integrate the 

signal, producing output voltage directly proportional to the current, while the 

Rogowski output voltage is actually proportional to dI/dt.  After integrating the 
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ENTC signal, the currents were plotted and fitted to produce a calibration factor 

of 1.32 x 1010, as shown in Figure 4.12; this is noticeably lower than the 

previously measured factor of 3.0 x 1010 [Lop03].   
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Figure 4.12 MELBA-C current calibration performed by Brad Hoff and Nick Jordan, 02-20-2007.  
The R-value of the fit was 0.98. 

4.5.1.3 Magnetic Field 

The magnet current (called BLUE) provides a measurement of the 

magnetic field within the magnetron.  The magnet current is calibrated by 

charging the magnet capacitors, pulsing the magnets, and recording the internal 

magnetron magnetic field with a Lakeshore 420 Gaussmeter while 

simultaneously recording the magnet current in the screen room (via a Pearson 

coil).  This gives a direct relation between the magnet current and the magnetic 

field within the magnetron, as shown in calibration data taken by B. Hoff, Figure 

4.13.   
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Figure 4.13 Relationship between magnetic field on-axis in the magnetron and the measured 
voltage from the magnet current diagnostic, 4-19-2007.  The R-value of the fit was 1.00. 

By observing the time of the peak current and the time of the peak magnetic field, 

the penetration time for the magnetic field can also be calculated, and the 

appropriate delay (8.2 ms) can be programmed into the MELBA-C triggering 

system.  This will ensure the accelerator is fired in sync with the maximum 

magnetic field. 

4.5.2 Microwave Diagnostics 

Microwave signals are measured through all three extraction waveguides, 

and recorded as channels MPOV, MPOX, and MPOW.  A directional loop-

coupler placed in each extraction waveguide samples the microwaves at -50 dB, 

and passes the signal to the screen room, where it undergoes another -35 dB of 

attenuation.  The resultant microwave signal is passed to a HP8472B diode 

detector, which rectifies it to a voltage signal readable by the oscilloscopes.  

Calibration of the diode detector was performed by M. C. Jones [Jon05]. 

The typical microwave frequency of the relativistic magnetron (1 GHz) is 

beyond the capability of the 500 MHz oscilloscopes.  To circumvent this, a zero-

area B-dot loop is placed in the MPOV extraction waveguide.  The RF signal 
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from this B-dot loop is heterodyned with a local oscillator at a known frequency, 

typically between 1.1 and 1.3 GHz.  This produces a difference frequency within 

the oscilloscope bandwidth, and the frequency of the original signal is determined 

by processing the heterodyned signal in a time-frequency analysis (TFA) 

program, provided by Quantum Signal, LLC [Pet98, Jon05]. 
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CHAPTER 5  
MATERIALS AND PLASMA ANALYSIS 

The composition and characteristics of the plasma during cathode 

deposition can affect the surface properties of the completed cathode.  Those 

surface properties, in turn, can greatly impact the cathodes’ performance and 

longevity.  In this chapter, we employ optical emission spectroscopy to obtain an 

estimate of plasma temperatures and ionization states.  For the ALF cathodes, 

we obtain information about surface features from mechanical profilometry and 

Scanning Electron Microscopy (SEM).  For the MOJ cathodes, film composition 

is also an important consideration, and we use X-ray Energy Dispersive 

Spectroscopy (XEDS), coupled with SEM, to gain an understanding of the film 

stoichiometry.  X-ray diffraction provides some information about the crystal 

structure of the films, while capacitance-voltage measurements indicate the 

severity of defects both within our films and at film boundaries. 

5.1 ALF Cathode Materials 

The Ablation Line Focused (ALF) process results in a ring of ablation 

trenches approximately 300 μm wide, and 1.5-2 cm long.  These trenches are 

separated by un-ablated regions 100 μm wide.  This results in 100 ablation 

trenches encircling a 1.27 cm diameter cathode.  Many rings can be patterned 

next to each other to give the desired total emission area.   
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1.27 
cm 

2 cm
Figure 5.1 Ablated region of ALF-4b cathode showing “stacked” ablation rings to give 38 cm2 of 
total emission area. 

A SEM image of a single trench is shown in Figure 5.2, with a depth of 40 μm 

below the original cathode surface, as measured by a step profilometer with a 

diamond-tipped stylus.   

 
Figure 5.2 SEM image of a single trench on an ALF cathode ablated in air.  Total feature width is 
approximately 300 μm. 

If an ALF cathode is ablated in air, there is significant re-deposition of the 

particulate onto the cathode surface.  This creates small “crater-rims” on either 

side of the trench, giving a total trench-to-peak height of more than 100 μm.  A 

sample profilometer measurement is shown in Figure 5.3, where it is obvious that 

the two “crater-rims” are of greatly different heights. 
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Figure 5.3 Profilometer measurement of a single trench on the surface of an ALF cathode 
fabricated in air. 

5.2 Thin Films 

5.2.1 X-ray Energy Dispersive Spectroscopy (XEDS) 

X-ray Energy Dispersive Spectroscopy was performed using a UTW Si-Li 

Solid State X-ray Detector (with Integrated EDAX Phoenix XEDS system), 

coupled with a Phillips XL30 SEM, at the University of Michigan Electron 

Microbeam Analysis Laboratory (EMAL).  The XEDS spectrum of basic Hf and 

HfO2 films, shown in Figure 5.4, indicates the presence of oxygen, silicon, and 

hafnium; all expected quantities in the samples.  Both samples were prepared 

using the deposition setup shown in Figure 3.1, and were deposited on silicon 

substrates.  The first sample, shown in blue, was prepared in a 100 mTorr O2/Ar 

environment, with a ratio of 20% O2 and 80% Ar.  The argon was used in this 

mixture to provide collisions and reduce the danger of working with a gas cylinder 

of pure oxygen.  The second sample, shown in pink, was prepared in a 4x10-5 

Torr vacuum.   
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Figure 5.4 XEDS spectrum of thin films prepared in oxygen and vacuum environments. 

Both samples show a strong peak at 1.74 keV, which is likely a combined 

peak containing the Hf lines at 1.65 & 1.7 keV, as well as the silicon peak at 1.74 

keV.  The hafnium signal at 1.28 keV is slightly stronger for the sample prepared 

in vacuum.  As expected, the sample prepared in vacuum exhibits lower oxygen 

concentration, though we would expect the oxygen concentration to be almost 

zero.  Many factors may contribute to the presence of oxygen in the “pure 

hafnium” sample.  First, the hafnium target is 99.5% metals-basis pure.  This 

means it may contain non-metals without lowering the reported purity.  

Consequently, it is quite possible that oxygen is present within the target.  

Secondly, the hafnium target oxidizes when exposed to air.  This should only be 

a thin surface layer, and will be removed on the first target revolution during 

ablation, but oxygen will be present in the plume at this time.  Additionally, the 

silicon substrate will form a thin oxide layer from exposure to air prior to the 

deposition process, and the hafnium metal (once deposited) will form a thin oxide 

layer from exposure to air prior to XEDS analysis.  The oxygen content of these 
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layers may then be detected by XEDS.  These oxide layers should be very thin 

(on the order of nanometers), compared to the ~400 nm thickness of the sample.  

XEDS primarily probes the material in the top 20-1000 nm of the sample [Miy02].  

Lastly, a vacuum pressure of 4x10-5 Torr will still leave some oxygen within the 

chamber.  Recoating time is estimated at 150 μs per monolayer [Cun99].  At the 

elevated target and substrate surface temperatures present during pulsed-laser 

deposition, oxidation rates will increase; making the film more susceptible to 

impurities present in the vacuum chamber. 

5.2.2 Scanning Electron Microscopy (SEM) 

A Philips XL30 Scanning Electron Microscope was used to image the 

surface of silicon test samples.  A single dielectric island, shown in Figure 5.5, 

contains thousands of pieces of particulate, with a wide range of sizes.  The 

bright spot in the center of the film is a sign of damage to the film from the 20 kV 

electron beam used during SEM.  A close-up of one piece of particulate is shown 

in Figure 5.6, and it is apparent that individual particles vary widely in size, from 

10’s of microns to 10’s of nanometers in diameter.  In this image, even the 

particulate has particulate, with a small sphere attached to its surface.  If the 

particulate is pure metal, these small features on top of small features could lead 

to a large field enhancement factor [Mil07]. 
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Figure 5.5 SEM image of an entire HfO2 dielectric island, with thousands of surface particulate 
(light spots with dark rings surrounding them). 

 
Figure 5.6 SEM image of particulate on the dielectric surface.  Particulate ranges in size from 10’s 
of microns to 10’s of nanometers in diameter. 

To determine the composition of the particulate, we prepared a cross-

section of the hafnium oxide film and examined it using SEM. 
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Figure 5.7 Cross-sectional SEM image of HfO2 island on a silicon test sample.  The film has 
separated from the silicon during sample polishing. 

The white region in the center of Figure 5.7 is the HfO2 film.  In some regions, the 

film has separated from the silicon substrate, likely during the extensive polishing 

required for cross-sectional SEM.  From the scale given, the film is rather thin 

(compared to MOJ cathode films), on the order of 100 nm.  This is because the 

sample was cleaved through the side of a dielectric island, where the film is 

thinner, rather than at the peak thickness in the center. 

 In Figure 5.8, we see the cross-section of a piece of particulate (large 

bright spot) on the surface of the silicon.  To the right of the particulate, we see 

damage (darkened regions) inside the silicon.  This same “shadow” is visible in 

many other places along the silicon surface where particulate has deposited.  

This damage likely results from the thermal and kinetic energy of the particulate 

as it strikes the silicon surface.  An alternate explanation is that the damage is 

somehow a result of the polishing process.  
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Figure 5.8 Cross-sectional SEM image of particulate on the film surface.  The blue box and red 
line indicate the regions used for XEDS scanning in Figure 5.9 and Figure 5.10, respectively. 

The blue box over the center of the particulate in Figure 5.8 indicates the 

region which was examined with XEDS.  The results are displayed in Figure 5.9, 

and show that the interior of the particulate is almost entirely hafnium metal.  The 

many hafnium transitions are marked with blue lines, with the L-shell transitions 

marked by dashed lines.  The y-axis contains a break between 900 and 3000 

counts, increasing the visibility of the smaller peaks against the intense 1.65 & 

1.70 keV Hf-M lines.  The data were also broken into two distinct energy regions, 

with the lower region containing K and M-shell transitions, and the higher region 

containing only Hf L-shell transitions.  Peak fitting of the data give atomic 

percentages of 58% for hafnium, 24.5% for silicon, 10.1% for carbon, and 8% for 

oxygen.  The carbon is from the epoxy used in preparation of the sample.  

Because the sample can shift slightly during XEDS data capture, the region 

measured may not correspond exactly to the blue box in Figure 5.7. 
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Figure 5.9 XEDS spectrum of the interior of a single piece of particulate, shows many hafnium 
counts and minimal oxygen signal.  Note the breaks in the axes at 2.5 keV and 900 counts. 

XEDS also can determine atomic fractions as a function of position along 

a line, the results of which are displayed in Figure 5.10.  As expected, the 

hafnium concentration increases within the particulate, decreases around 3.2 μm, 

and increases again at the Si surface (where the HfO2 film exists).  Oxygen 

content remains roughly the same throughout the particulate, but its relative ratio 

to hafnium changes as the hafnium concentration changes.  Near the surface of 

the particulate (at 0.25 μm), the oxygen to hafnium ratio is nearly 2:1, as would 

be expected from the chemical formula (HfO2).  This may indicate the particulate 

is covered with a thin oxide layer, as expected.  The particulate will start as pure 

Hf metal, and may oxidize as it travels to the substrate, but most oxidation will 

occur once it has deposited.  Thus, the outer surface (away from the substrate) 

will oxidize the most, as shown in Figure 5.10.  
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Figure 5.10 Atomic percentage as a function of position [μm] across a piece of HfO2 particulate.  
The SEM image is displayed as the background, and the white line (at 37%) indicates the strip 
used to generate the plot. 

Scanning electron microscopy detects changes in surface topology from 

backscattered primary electrons, photon emission, and secondary electrons 

[Miy02].  For our purposes, this last detection method (secondary electrons) is of 

particular interest, as it allows us to infer a relative secondary electron emission 

coefficient for hafnium oxide.  By comparing the brightness of the HfO2 and 

copper regions of Figure 5.11, we see that the two materials appear to have 

similar secondary electron emission properties.  While there are many factors 

that contribute to SEM brightness, this at least allows us roughly estimate that 

the SEE coefficient of HfO2 is less than 5.  This will be important later, as we 

compare HfO2 to MgO. 
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Figure 5.11 SEM image of a MIO sample, where the islands are primarily Hf metal, but the edges 
have oxidized.  Also visible in the image is the edge of a piece of copper tape, as a reference 
point for secondary electron emission.  From this image we can roughly estimate the SEE 
coefficient of HfO2 to be close to that of copper (~2) [Bag00]. 

5.2.3 C-V Characteristics 

An important characteristic of thin films used for semiconductor devices is 

the defect concentration both within the film, and at material boundaries.  To 

measure this in our hafnium oxide films, we created a sample using a laser 

fluence of 31 J/cm2, at a repetition rate of 15 Hz, for a deposition time of 12.5 

min, using the setup shown in Figure 3.1.  The substrate was a 3 cm x 3 cm 

silicon wafer, which was then coated with hundreds of small gold electrodes 

(3.8x10-4 cm2), creating many capacitors across the film and substrate.  Due to 

the film non-uniformity, each dot on the surface had a slightly different 

capacitance.  Two locations on the film were measured, one corresponding to a 

500 nm film thickness, and the other to a 600 nm thickness.  These locations 

were then biased with -10 to 10 V, and the capacitance was recorded as the 

voltage increased, and then again as the voltage was decreased.   

The voltage spacing between the forward and reverse-based cases, VFB, 

is proportional to the density of the charges trapped in the film.  In an ideal film, 
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there would be zero defects, and thus zero places for charge to become trapped.  

The resulting hysteresis curves would then lie on top of each other.  As shown in 

Figure 5.12 and Figure 5.13, this is clearly not the case.   
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Figure 5.12 C-V measurement of 500 nm thick HfO2 film exhibiting significant charge trapping.  
Measurements were made at 1 MHz. 
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Figure 5.13 C-V measurement of 600 nm thick HfO2 film.  The increase in VFB indicates increased 
charge trapping and defects, indicating a significant portion of the defects occur within the film.  
Measurements were made at 1 MHz. 
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The difference between these figures, however, provides some useful 

information.  In the case of the thicker film, the charge trapping is much more 

severe.  This indicates that significant charge trapping is occurring within the 

oxide, rather than just at the HfO2-SiO2 interface. 

Creating a capacitor from the HfO2 film is also a means of measuring the 

dielectric constant at frequencies of interest in the semiconductor industry.  By 

measuring the capacitance at 1 MHz, we can determine the dielectric constant, 

rε  (or ) using the simple relation in Eq. κ (5.1), where C is the capacitance 

contributed by the HfO2, A is the area of a gold electrode, T is twice the film 

thickness, and 0ε  is the permittivity of free space.  For our “thick” sample, C = 36 

pF, T = 1.2 μm, and A = 3.8x10-4 cm2, resulting in κ = 130. 

 2

0

HfOC T
A

κ
ε

=  (5.1) 

When exposed to air at room temperature, silicon will form a native oxide 

layer (SiO2) approximately 1.5 nm thick.  Given a dielectric constant of 3.9 for 

SiO2, this film will contribute 440 pF to the overall capacitance.  As shown in Eq. 

(5.2), the measured capacitance is not solely due to the HfO2 film.   

 
2 2

1 1

measured HfO SiOC C C
= +

1  (5.2) 

After correcting for this SiO2 layer, measurements at the two film thicknesses 

mentioned above resulted in HfO2 dielectric constants of 130-310.  This number 

is considerably higher than the 20-25 typically quoted for HfO2 thin films, perhaps 

partly because these measurements were made on films 100s of nanometers in 

thickness, while most gate oxides are 10s of nm thick.  Other studies have 

indicated a sharp increase in dielectric constant with increasing film thickness 

[Nat98]. 

5.2.4 X-Ray Diffraction 

To gain some knowledge of the crystal structure of our hafnium oxide 

films, we employed a technique known as X-Ray Diffraction (XRD).  The 
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measurements were conducted on a θ/2θ Spellman/AEG FK 60-04 

diffractometer in a glancing angle (3°) configuration.  The only distinct peaks 

seen in the XRD results (Figure 5.14) were those of the silicon substrates.  This 

indicates the film is most likely an amorphous oxide.  Hafnium oxide with a cubic 

or monoclinic crystal structure will show many distinct peaks in the 25-40° (2θ) 

region [Per07]. 
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Figure 5.14 XRD spectrum from a sample of hafnium oxide.  The broad peak in the 25-40° region 
may indicate the film is amorphous.  The sharp peak at 62° corresponds to silicon. 

5.3 Plasma Spectroscopy 

To determine the temperature of the plasma plumes used in deposition of 

our thin films, we utilized plasma emission spectroscopy.  The setup for this 

measurement is detailed in Section 4.1.  As the laser strikes the surface of the 

hafnium and creates an ablation plume, we expect the plume to be hotter, 

denser, and more ionized than it will be at any later point in time.  Our 

measurements indicate, not surprisingly, that as the plume expands, the plume 

temperature will decrease and the ions will recombine to form neutrals.  First, in 

Figure 5.17, we look at a 2 μm vertical slice of the plume, 1.5 mm from the target 

surface, 100 ns after the laser pulse arrives, with an exposure time of 50 ns.  
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This is the minimum distance we are able to image, as the first 1 mm from the 

surface is extremely dense plasma which emits a continuum of Bremsstrahlung 

radiation.  In terms of temporal resolution, 50 ns is the best our equipment 

allows.  This spectrum shows many strong singly-ionized hafnium lines (Hf II - 

red), but only a few neutral hafnium lines (Hf I - blue).  As expected, at early 

stages the plume is primarily ionized.  It is possible that higher ionization states 

of hafnium exist in the plume, but their relative concentrations and lifetimes make 

them difficult to detect.  We were not able to definitively identify any Hf III lines in 

any of our spectra. 

Figure 5.18 shows a spectrum taken 9 mm from the target surface, 900 ns 

after the laser pulse arrives.  At this point the plume has cooled, expanded, and 

many of the ions have recombined.  Only a few strong Hf II lines (red) remain.  

To determine plume temperatures, the data shown in Figure 5.17 and 

Figure 5.18 were calibrated for intensity variations as a function of wavelength.  

This was done using an Optronics Laboratories Model 65 Precision Current 

Source, and OL-245A Standard of Spectral Irradiance.  The current source 

generates 6.5 A, creating a known filament temperature, and thus a known 

blackbody spectrum. 

The expected intensity of each spectral line in a plasma plume is given by 

Eq. (5.3).  However, if we plot k

B

E
k

 against the natural log of k ki

ki ki

g A
I λ

 and create a 

linear fit, the negative inverse slope of this line gives the temperature, in Kelvin, 

of the plume [Mar68, Hud65, Hol68, Sar74].  This assumes an optically thin 

source, an assumption that we did not verify. 

 exp
4

o k ki k
ki

ki B

hcN L g A EI
Z k Tπ λ

⎛ ⎞ ⎛ ⎞−⎛ ⎞= ⎜ ⎟ ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎟  (5.3) 

This method allows the use of relative intensities, rather than requiring absolute 

values.  It also allows us to ignore the constant, 
4

ohcN L
Zπ

, as this merely changes 

the y-intercept of the fit, and does not affect the slope.  After compensating for 

any uneven spectrograph response, the peaks are identified, fitted in 
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OriginPro 7.5©, and cross-referenced with the NIST database [NIST].  Transition 

probabilities ( ) for hafnium were not available through NIST, so 

alternate sources were used [Duq86, Law07].   

, ,k ki kg A E

y = -6.904E-05x + 1.398E+01
R2 = 1.023E-01
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Figure 5.15 Atomic Boltzmann plot for the spectrum shown in Figure 5.17, measured 1.5 mm 
from target, 100 ns after laser pulse arrives.  Resulting plasma temperature is ~15000 °K. 
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Figure 5.16 Atomic Boltzmann plot for the spectrum shown in Figure 5.18, measured 9 mm from 
target, 900 ns after laser pulse arrives.  Resulting plasma temperature is ~9000 °K. 

Using this technique, and assuming local thermal equilibrium prevails, we 

estimate the plasma temperature for the first case (Figure 5.17) to be ~15000 °K 

(2.3 ev), while the temperature in the second case (Figure 5.18) decreases to 

~9000 °K (0.8 eV). 

At any given distance from the target, we see the light emission from the 

plasma rise and fall, as the plume expands, recombines, and dissipates.  In 

Figure 5.19, the relative intensity of each spectrum is shown as a function of 

time.  For early times (50 ns), the plume is still expanding and most of it has not 

yet reached the area we are imaging.  The intensity peaks at 100ns, which is why 

that time is analyzed in Figure 5.17.  At later times, most of the plume has moved 

past the measurement point, and the remaining plasma has lower density. 
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Figure 5.17 Laser Induced Breakdown Spectroscopy of hafnium plume.  Measured 1.5 mm from target, 100 ns after laser pulse arrives.  Blue 
labels indicate neutral Hf lines, while red labels indicate singly-ionzed Hf.  The plume is primarily ionized hafnium. 
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Figure 5.18 Laser Induced Breakdown Spectroscopy of hafnium plume.  Measured 9 mm from target, 900 ns after laser pulse arrives.  Blue labels 
indicate neutral Hf lines, while red labels indicate singly-ionzed Hf.  The plume is primarily neutral hafnium. 
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Figure 5.19 Laser Induced Breakdown Spectroscopy of hafnium plume 1.5 mm from the target, measured at various times after the laser pulse 
arrives.  Figure 5.17 is the “100 ns” case on this plot, and was chosen for analysis because of its intensity. 



 

CHAPTER 6 
EXPERIMENTAL RESULTS OF LASER FABRICATED CATHODES 

ON THE UM RELATIVISTIC MAGNETRON 

This chapter presents the results of 400 cathode pulses on the U of M 

relativistic magnetron.  The cathode results are categorized into two main types:  

ALF cathodes and MOJ cathodes.  Within these major categories, we consider a 

number of design variations and baseline (comparison) cathodes.  For each 

cathode tested, the results are also divided into high (~2.82 kG) and low (~2.35 

kG) magnetic field cases.  We will focus primarily on the low magnetic field tests, 

as the high magnetic field tests do not show any additional information, and 

complicate the analysis.  Table 6.1 lists the cathodes tested, as well as the dates 

and shot numbers of each testing run.  For all cathode tests, the applied voltage 

is set to -300 kV, and the voltage, entrance current, magnet current, microwave 

power, and microwave frequency are recorded. 
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Table 6.1 Laser fabricated cathode tests on the UM/Titan relativistic magnetron. 

MELBA-C Shot #’s Cathode Type Test Date Fabrication Date 
11027-11056 Tri-ALF 6-6-2005 6-3-2005
11057-11077 Tri-ALF 6-8-2005 “ 
11078-11112 Tri-ALF 6-9-2005 “ 
11113-11161 Tri-ALF 6-10-2005 “ 
12207-12227 Tri-ALF* 11-15-2007 “ 
11416-11442 ALF-2 11-17-2006 6-2-2005 
11587-11605 Polished SS 12-12-2006 12-12-2006 
12111-12127 Polished SS 2 10-25-2007 10-25-2007 
12143-12162 Polished SS 3 11-1-2007 11-1-2007 
11609-11623 Dielectric Coated 12-14-2006 12-13-2006 
12050-12070 MIO 10-18-2007 7-9-2007 
11558-11584 MOJ-01 12-11-2006 11-27-2006 
12183-12206 MOJ-01 11-13-2007 “ 
11775-11808 MOJ-02 5-30-2007 4-12-2007 
11855-11879 MOJ-03 6-6-2007 5-9-2007 
12031-12049 MOJ-04 10-11-2007 7-13-2007 
12071-12090 MOJ-05 10-19-2007 10-16-2007 
12163-12182 MOJ-06 11-2-2007 10-29-2007 

6.1 ALF Cathodes 

The Ablation Line Focused (ALF) cathodes are the descendants of the 

Projection Ablation Lithography (PAL) cathodes previously tested at the 

University of Michigan [Jon05].  The two designs employ similar fabrication 

techniques, and both have the benefit of being entirely metal, which reduces 

plasma formation.  This also gives them increased longevity, as our results 

indicate the emission characteristics do not degrade with use. 

Previous MAGIC 2D simulations indicate that magnetron operation can be 

improved through a technique known as cathode priming.  This consists of 

fabricating N/2 emission regions on the cathode surface, where N is the number 

of vanes (6 for our magnetron).  This stimulates electron bunching into the π-

mode, resulting in faster microwave startup.  This concept was validated 

experimentally using PAL cathodes [Jon04].  Subsequent experiments have 

sought to improve this technique with the ALF cathode.   
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6.1.1 ALF-2 

The “baseline” case for this test is the ALF-2 cathode.  The simplest ALF 

pattern, ALF-2 consisted of a ring of ablation lines, 1.5 cm long, encircling the 

cathode.  With a cathode circumference of 4 cm, this gives a total emission area 

of 6 cm2.  This cathode was tested at a variety of magnetic fields, ranging from 

2.24 to 2.96 kGauss.  Data from a typical shot are presented in Figure 6.1. 
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Figure 6.1 Ninth shot fired with the ALF-2 cathode, MELBA-C Shot 11424.  Voltage, current, and 
microwave power traces are shown. 

The first 200-300 ns of the voltage pulse are very consistent on a shot-to-

shot basis, with similar rise times and peak voltages for all shots.  After the 

voltage overshoot, it returns to ~-300 kV and plateaus.  The length of the voltage 

pulse can vary widely from day-to-day or even on a per-shot basis, dependent on 

the breakdown of the spark-gap crowbar.  If the cathode produces plasma, the 

length of the voltage pulse often determines the maximum current.  The plasma 

expands away from the cathode at the plasma closure velocity, vc, and draws 

increasingly large currents (according to Child-Langmuir space charge limited 

emission, Eqn. (1.3)) as the effective cathode radius increases.  This effect is 
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clearly seen in Figure 6.5.  By necessity, this analysis ignores the magnetic field, 

as C-L SCL emission is valid only in the absence of a magnetic field. 

The ALF-2 cathode produced little plasma, and closure velocities were 

approximately 1-2 cm/μs, as shown in Figure 6.2.  The closure velocity was 

determined from a comparison of the theoretical and experimental perveances.  

The purple line indicates a linear fit to the theoretical perveance.  The closure 

velocity and effective emission length were varied to fit the theoretical perveance 

to the measured value.  This technique is explained further in Appendix B.2. 
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Figure 6.2 Closure velocity calculation for ALF-2, shot 11421.  Closure velocity is 1.1 cm/us with 
an effective emission length of 1.25 cm. 

Considering now the microwave signal in Figure 6.1, we see the 

microwave pulse begins very early in time, typically at (or before) the voltage 

peak and often at low current (< 0.5 kA).  The microwave signal is also 

heterodyned with a local oscillator, typically at 1.1 GHz, to produce the signal 

seen in the top half of Figure 6.3.  The bottom half of the figure shows the time-

frequency analysis (TFA) of this signal [Wil07, Pet98], which gives the peak 
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microwave frequency for each shot.  Dark red indicates regions of high intensity, 

while dark blue indicates low intensity.  The frequency for this shot was 995 MHz, 

indicating that the magnetron was operating in the π-mode (f > 988 MHz). 

 
Figure 6.3 Heterodyne signal (top) and corresponding TFA (bottom) for ALF-2, shot 11424.  The 
x-axis is Time [ns], and the y-axes are Amplitude and Microwave Frequency [MHz] for the top and 
bottom plots, respectively.  The highest intensity regions are shown in dark red, lowest intensity is 
dark blue. 

6.1.2 Tri-ALF Cathode 

The Tri-ALF cathode was designed for cathode priming, with three 

patterned emission regions.  Each region is 2 cm2, for a total of 6 cm2, equivalent 

to the area of the ALF-2 cathode.  Between the emission regions, the cathode 

was milled out and sprayed with carbon paint, in an attempt to suppress electron 

emission in those regions.  Over 150 shots were taken on this cathode, at a 

similar range of magnetic fields, 2.24 to 2.90 kGauss.  For better comparison with 

ALF-2 data, the shots used for analysis correspond as closely as possible to the 

magnetic fields used for ALF-2.  Data from a typical shot are presented in Figure 

6.4. 
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Figure 6.4 The 39th shot fired with the Tri-ALF cathode, MELBA-C shot 11065.  Voltage, current, 
and single waveguide microwave power traces are shown.  The microwave power trace is shown 
after 20 MHz filtering. 

From this voltage and current trace, we clearly see the plasma-closure 

effects described previously.  The voltage pulse is ~400 ns long, and very 

consistent.  The current, however, ramps up at a relatively constant rate.  In 

Figure 6.5, we determine the closure velocity for this shot to be 4.3 cm/μs, with 

an effective emission length of 2.75 cm.  The higher closure velocities for the Tri-

ALF series, compared to ALF-2, likely results from sharp corners and removal of 

the carbon paint.  Back-bombardment of the cathode surface will cause some 

ablation of the carbon, potentially creating plasma at the cathode surface.  

Examination of the cathode after ~150 shots revealed some regions where the 

carbon paint had been completely removed. 

 98



0

50

100

150

200

250

300

350

100 150 200 250 300 350 400 450 500 550
Time [ns]

Vo
lta

ge
 [k

V]

0

5

10

15

20

25

30

Pe
rv

ea
nc

e 
[µ

P]

Voltage Theoretical Perveance
Experimental Perveance Linear Fit - Exp. Perv.

 
Figure 6.5 Closure velocity calculation for Tri-ALF, shot 11065.  Closure velocity of 3.8 cm/us with 
an effective emission length of 2.8 cm.  

6.1.3 Tri-ALF* Cathode 

The original tests of the Tri-ALF cathode were conducted before the 

addition of power couplers on all three microwave extraction waveguides, so 

microwave power data were only available from a single waveguide (MPOW).  

To improve the quality of comparisons of microwave characteristics, the Tri-ALF 

cathode was re-tested more than two years after the original run.  Data from this 

run are denoted Tri-ALF*, and include a microwave coupler in all three extraction 

waveguides.  The long delay between tests is less than ideal, as the magnetron’s 

performance may have changed, but it should still result in a more valid 

comparison of microwave performance.  The magnetic fields used to test this 

cathode are consistent with those used in testing ALF-2. 
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Figure 6.6 Closure velocity calculation for Tri-ALF*, shot 12213.  Closure velocity of 2.9 cm/us 
with an effective emission length of 2.35 cm. 

6.1.4 ALF Cathode Analysis 

In this section we will compare the results of the ALF cathodes, evaluating 

if the design objectives were met.  The section concludes with a summary of all 

relevant parameters in Table 6.2.  First, we consider the microwave performance 

of the cathodes.  When using the ALF-2 cathode, the magnetron operated in the 

π-mode (f > 980 MHz) for 68% of the shots, compared to only 17% for the Tri-

ALF and Tri-ALF* cathodes, as shown in Figure 6.7.  By this measurement, the 

Tri-ALF patterning is not successful in priming the magnetron into the desired 

mode.   

One other interesting result in Figure 6.7 is the fact that Tri-ALF* obeys 

the Buneman-Hartree resonance condition (Appendix B.1), while the other two 

cathodes do not.  All three shots taken above 3 kGauss (two shots share the 

same frequency and lie on top of each other in the figure) produced π-mode 

oscillation, while all other shots did not.  Three data points are hardly conclusive, 

but an interesting result nonetheless.  It is also a possibility that the milled out 
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sections of cathode are shifting the π-mode of the magnetron when a Tri-ALF 

cathode is installed.  While this information might be obtainable from a cold-test 

of the cavity, the plasma production at the cathode surface may alter the π-mode 

frequency beyond what a cold-test can predict.  Phase measurements during 

each shot (a capability currently being added) would be the best way to 

accurately determine when a cathode is operating in the π-mode. 
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Figure 6.7 Microwave frequency as a function of magnetic field for ALF-2 ,Tri-ALF and Tri-ALF*.  
The dashed line indicates the lower frequency threshold for π-mode operation.  ALF-2 shows a 
higher percentage of π-mode shots. 

Another intended priming effect of the Tri-ALF cathode was a reduction in 

microwave oscillation start-up time.  All times in this thesis are measured relative 

to V = -100 kV.  This point is defined as t =100 ns.  There are several reasons 

this method was chosen.  First, the voltage pulse often has a small “bump” that 

occurs before the voltage begins to rise, choosing a lower threshold value would 

cause all time measurements to fluctuate with this bump.  Second, the voltage 

rise-time is consistent on a shot-to-shot basis, and overlays of many shots show 

a consistent pulse shape when anchored at this voltage threshold (Figure 6.12).  
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Lastly, defining this point as t = 100 ns allows the entire pulse to occur in positive 

time. 

Consequently, we measure the time to current startup, time to microwave 

startup, and time to peak microwave power.  Current startup is defined as the 

time at which the current rises above 0.3 kA and microwave startup is defined as 

the time at which the total microwave signal rises above 6 MW.  The average 

values for these quantities are shown in Figure 6.8.  Based on the first run, the 

Tri-ALF cathode was not successful in reducing the startup time of the 

microwave pulse, or improving the microwave performance of the magnetron.  

The microwave performance of the cathode greatly improved in the second run, 

with the Tri-ALF* cathode producing slightly faster microwave startup, and 

roughly equivalent time to peak microwave power, when compared to ALF-2.  

Additionally, the peak power of ALF-2 was higher, at 84 ± 24 MW, compared to 

27 ± 9 MW for Tri-ALF (this total power is estimated by tripling the single 

waveguide measurement) and 72 ± 12 MW for Tri-ALF*.  The corresponding 

pulse width was 128 ± 18 ns for ALF-2, compared to only 66 ± 60 ns for Tri-ALF 

and 102 ± 19 ns for Tri-ALF*.   
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Figure 6.8 Average startup times for ALF cathodes.  The Tri-ALF cathode shows an increase in 
microwave startup time. 
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The Tri-ALF cathode did show a slight improvement, however, in current 

startup time.  This is not surprising, considering the current results presented in 

Figure 6.9.  The Tri-ALF cathode emitted larger average currents than the ALF-2 

cathode at all points of comparison, though no results are statistically significant 

as there was significant variance in the data.  This current performance did not 

persist for the Tri-ALF* testing, with the current decreasing at most points of 

measurement.  This is partly due to the faster microwave startup.  The 

microwave pulse typically starts during the initial current ramp up.  Consequently, 

earlier microwave startup will result in lower startup current for similar current 

pulses. 
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Figure 6.9 Average current results for ALF cathodes.  The Tri-ALF cathode emitted higher 
average currents at all four measurement times. 

Given the increased plasma closure velocities, inconsistent microwave 

priming, and higher emission currents of the Tri-ALF cathode, it is likely the 

cathode was producing plasma in the milled-out regions.  The carbon paint 

intended to suppress emission was instead fueling plasma creation.  Inspection 

of the cathode after 150+ shots revealed much of the carbon paint had been 

removed during testing, further reinforcing this hypothesis.  The results of Tri-
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ALF* also support this, as the carbon paint was not re-applied before this run.  

The plasma production increases the effective radius of the cathode and, 

consequently, the space-charge limited current increases.  The creation of a 

plasma cathode also masks the priming effect of three-region patterning, as the 

magnetron sees a plasma column, rather than three distinct emission regions. 
Table 6.2 Summary of average parameters for ALF cathodes. 

 ALF-2 Tri-ALF Tri-ALF* 
Time to Microwave Startup [ns] 143 ± 37 198 ± 53 131 ± 70 
Time to Peak Power [ns] 202 ± 41 230 ± 57 205 ± 66 
Pulse Width [ns] 128 ± 18 22 ± 20 102 ± 19 
Peak (Total) Microwave Power [MW] 84 ± 24 27 ± 9 72 ± 12 
Microwave Frequency [MHz] 991 ± 16 973 ± 14 978 ± 19 
Current at Peak Voltage [kA] 1.55 ± 0.56 1.71 ± 0.58 1.98 ± 0.59 
Current at Microwave Startup [kA] 0.53 ± 0.46 1.11 ± 0.56 0.38 ± 0.52 
Current at Peak Power [kA] 1.11 ± 0.56 1.52 ± 0.63 1.11 ± 0.39 
Current at 200 ns [kA] 1.74 ± 0.73 2.01 ± 0.40 1.85 ± 0.30 
Magnetic Field at Microwave Startup [kG] 2.64 ± 0.24 2.65 ± 0.23 2.63 ± 0.30 
Voltage at Microwave Startup [kV] 202 ± 77 292 ± 27 149 ± 93 

 

As mentioned at the beginning of this section, the ALF cathodes do not 

show any decrease in electron emission as a function of shot number.  Figure 

6.10 shows there is virtually no correlation between current and shot number.  

These results should not be extrapolated to the thousands of shots necessary in 

a repetitively pulsed system, but for our testing in a single-shot (<< 1 Hz) 

environment, they indicate we can expect the cathode to perform similarly at the 

beginning and end of an experimental run.  The slight increase in current may 

indicate some amount of cathode conditioning takes place, but the correlation is 

extremely weak (R2 values of 0.4 for ALF-2 and 0.05 for Tri-ALF) and the plot 

does not account for any trends due to magnetic field.   
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Figure 6.10 ALF cathode current measured at peak microwave power, as a function of shot 
number.  The solid and dashed lines are linear trendlines for the ALF-2 and Tri-ALF cathodes, 
respectively.  Cathodes show a slight increase in emission over the small number of shots tested. 

ALF cathode tests at the University of Wisconsin have reported a sharp 

decrease in emission after many thousands of shots and/or long term exposure 

to ambient air [Sch07].  Possible explanations include oxidation of the cathode 

surface and deterioration/removal of triple points and field-enhancing emission 

sites on the cathode. 

6.2 MOJ Cathodes 

Six metal oxide junction cathodes were tested in a series of seven 

cathode runs over a span of nearly a year.  In addition to being a challenging 

environment for cathode studies, MELBA-C and the relativistic magnetron do not 

always maintain consistent performance over such extended timescales; 

MELBA-C is typically “rebuilt” on a yearly basis.  To establish points of 

comparison, four baseline cathodes were tested in a series of five runs spanning 

a similar year-long timeframe.  In this section we will discuss the baseline 

cathode and the MOJ cathode results, concluding with a performance analysis. 
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6.2.1 Baseline Cathodes 

As mentioned in Chapter 3, a polished stainless steel (PSS) rod is the 

starting point for all MOJ cathode fabrication.  As such, it is a logical baseline.  

With an applied voltage of -300 kV, a bare metal cathode with no patterning will 

still emit some current.  With this in mind, we tested PSS1 immediately following 

the first run of MOJ-01.  PSS1 was later used to fabricate the dielectric coated 

(DiCoat) cathode.  Nearly a year later, we sought to re-establish our baseline, 

and ensure nothing in the magnetron operation or diagnostics had changed.  

Though PSS1 had been coated with dielectric, we sanded away the dielectric 

coating and returned the cathode to its original 2500-grit surface finish.  This 

cathode is denoted PSS2, and produced currents far below its original 

performance, as shown in Figure 6.11. 

While the data in Figure 6.11 appear to indicate that the magnetron 

operation or diagnostics had changed, it is also possible coating the cathode with 

dielectric and then re-finishing the surface had an adverse affect on its current 

emission performance.  Another possibility is that the additional sanding 

increased the smoothness of the surface (compared to PSS1).  To test this, 

PSS3 was created from a new piece of stainless steel tubing, and was only 

sanded to a 1500-grit finish.  At best, this cathode surface would still be rougher 

than the original PSS1 surface, and we could expect similar (or improved) 

emission.  Still, the results indicated reduced emission in comparison with PSS1.  

From the comparison of these three PSS cathodes, we can draw three 

conclusions: 1) Cathode results in earlier tests cannot be directly compared with 

later tests. 2) Polishing a stainless steel rod with a consistent procedure does not 

lead to consistent cathode performance. 3) Misalignment of the anode vanes in 

the first generation of experiments increased the peak electric field in the earlier 

data. 
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Figure 6.11 Averaged current traces for baseline DiCoat, PSS, and MIO cathodes, B ≈ 2.35 kG.  
Average voltage is shown in black. 

Figure 6.11 is produced by averaging the current traces of all “low” 

magnetic field shots for each cathode, where the magnetic field is 2.35 ± 0.05 

kG.  This average is based on approximately 10 shots for each cathode.  The 

first 200-300 ns of the voltage pulse are consistent on a shot-to-shot basis, but 

the pulse length varies from 350-600 ns.  As a result, the latter half of the current 

trace varies widely, and the average in this region is not meaningful.  Figure 6.12 

displays an example of this effect, where the current and voltage traces show a 

similar shape in every shot, but only at times earlier than 300 ns.  The dashed 

vertical line in Figure 6.11 is a visual indicator that data to the left of the line are 

more representative of each individual shot. 
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Figure 6.12 Current and voltage traces of MOJ-01 (Low B field) before averaging.  Voltages are 
very consistent from 0 to 300 ns. 

The sample-to-sample variation in emission thresholds for stainless steel 

cathodes has been noted previously [Lem88].  Those experiments, conducted at 

AFRL, found emission thresholds of stainless steel to vary from 230-380 kV/cm, 

compared to the narrower range of 220-250 kV/cm for copper.  When the 

stainless steel was “greened” (by heating to near-melting temperatures in a wet 

hydrogen environment) to form a thin chromium oxide coating, samples obtained 

threshold fields of up to 425 kV/cm. 

Simulations of the UM/Titan relativistic magnetron, performed by D. M. 

French using Maxwell 2D, show the peak electric field on the cathode surface is 

290 kV/cm at peak voltage (-300 kV).  This indicates, without additional field 

enhancement, field emission may not occur for some stainless steel cathodes.  

Data from PSS1 and PSS2, however, exhibit current turn on for voltages as low 

as -80 kV.  For PSS1 this could be attributed to electric field enhancements from 

the misaligned anode vanes, but this problem was corrected for the test of PSS2.  

PSS3 exhibited emission at any non-zero voltage level (within the capabilities of 

our measurement setup).  However, it should be noted that the UM cathodes 
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were tested in coaxial crossed E & B fields rather than a planar geometry with 

B=0 at AFRL.  Consequently, the UM experiments exhibited significant electron 

back-bombardment, which would lower the electron emission threshold electric 

field. 

 
Figure 6.13 Maxwell 2D simulation of electric fields inside the UM/Titan relativistic magnetron.  
Cathode is biased to -300 kV. 

6.2.2 MOJ-01, 02, & 03 

The first “generation” of MOJ cathodes was tested from December 2006 to 

June 2007.  The key variations between the designs were the mesh and laser 

fluence used during fabrication.  MOJ-01 used a woven wire mesh, creating poor 

surface contact during deposition and indistinct dielectric islands, but also utilized 

a laser fluence of 30 J/cm2, resulting in large amounts of surface particulate.  

MOJ-02 (Figure 3.13) & 03 (Figure 3.14) both used perforated meshes and 

~3 J/cm2 laser fluence for greatly reduced surface particulate (Figure 3.10 & 
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Figure 3.11).  The mesh used for MOJ-02 (Mesh B) created the largest dielectric 

“islands” and the best island separation of any mesh tested. 

Similar to the previous section, we present the results of these tests as a 

set of averaged current traces.  The polished stainless steel case is also included 

for comparison, as it was tested in roughly the same time period.  We see from 

Figure 6.14 that MOJ-01 & 02 produced the most current, while MOJ-03 was no 

better than PSS1.  MOJ-01 was inadvertently tested at a slightly lower magnetic 

field (2.27 kG) than MOJ-02 & 03 (2.35 kG).  This is relevant because current 

production for all cathodes was inversely proportional to magnetic field strength 

(Figure 6.18).  The dashed red line in Figure 6.14 indicates the current corrected 

for the magnetic field.  This correction is based on the scaling shown in Figure 

6.18. 
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Figure 6.14 Averaged current traces for MOJ-01, 02 & 03 cathodes, B ≈ 2.35 kG.  The PSS 
cathode is shown for comparison. Average voltage is shown in black.  The dashed red line is 
MOJ-01 adjusted for magnetic field. 

After accounting for magnetic field differences, MOJ-02 produced the 

highest average current, likely due to the improved dielectric separation its mesh 
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provided.  MOJ-01, however, had poor separation of its dielectric islands, yet still 

produced a large amount of current.  This is likely due to its large quantity of 

surface particulate.  In section 5.2.1 we examined an individual piece of 

particulate, and found it to be primarily hafnium.  If the dielectric islands on the 

cathode surface contain large amounts of particulate, they are each a source of 

additional triple points.  Moreover, the particulate diameter is much larger than 

the film thickness, and creates triple points with θ < 0, as diagrammed in Figure 

6.15.  In Chapter 2, this angle was shown to be favorable for field enhancement 

and secondary electron emission. 

 

HfO2 Film 

Hf Particulate 

Cathode 

θ < 0

Figure 6.15 Diagram of triple points caused by surface particulate.  Film thickness is <1 μm, 
particulate diameter ranges from 1-15 μm. 

The poor performance of MOJ-03 is attributable to both its poor dielectric island 

separation, and lack of surface particulate.  Given that MOJ-01 had even less 

distinct islands but still produced high current, the particulate may be the 

dominant factor. 

6.2.3 MIO and DiCoat 

While we have established that MOJ cathodes improve current production 

beyond that of polished stainless steel, we have not yet eliminated particulate 

field enhancement as the source of the increased emission.  To rule this out, we 

tested the Metal Island Only (MIO) cathode.  The MIO cathode was fabricated in 

the same setup as the MOJ-01 cathode, but at 10-6 Torr, rather than 100 mTorr 

O2/Ar background.  This results in large amounts of particulate, but no dielectric 

to form triple points.  Some surface oxidation will still occur when the cathode is 

exposed to air, but that thin oxide layer is likely to be removed in the first cathode 

test. 
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Another possible source of current is plasma production from the 

dielectric.  To ensure that the bulk dielectric is not the source of the additional 

current, we tested the Dielectric Coated (DiCoat) cathode.  The DiCoat cathode 

is simply a polished stainless steel cathode coated with a layer of hafnium oxide 

dielectric.  We would expect this dielectric coating to insulate the cathode, 

reducing electron emission.  This is verified in the results shown in Figure 6.16. 
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Figure 6.16 Averaged current traces for MIO and DiCoat cathodes, B ≈ 2.35 kG.  PSS1 and MOJ-
02 are shown for comparison. Average voltage is shown in black. 

As expected, the dielectric coated cathode performed worse than PSS1.  

While the MIO results verify that particulate field enhancement is not the source 

of the increased emission, it is somewhat unexpected that the results are also 

below that of PSS1.  It should be noted that the MIO cathode was tested much 

later than the “first generation” cathodes, the importance of which will be 

discussed further in the following section.   
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6.2.4 MOJ-04, 05, & 06 

The second “generation” of MOJ cathodes was tested from October to 

December 2007.  In August 2007, between testing of the first and second 

generation of MOJ cathodes, the magnetron was partially disassembled for an 

unrelated experiment.  Following the reassembly, all cathodes in the magnetron 

appeared to be producing reduced currents.  Consequently, this adds a large 

degree of uncertainty to any direct comparisons between the two generations of 

cathodes.  In an attempt to quantify the change in magnetron performance, PSS2 

and PSS3 were tested, as outlined in section 6.2.1.  The reduced current of 

PSS2 (compared to PSS1) revealed that the mis-aligned vanes during testing of 

the first generation significantly impacted the measured current.  PSS3 was 

tested within a week of PSS2, with corrected alignment for both, but still 

produced vastly different results.  From this, we discovered the surface treatment 

of the PSS cathodes, and possibly even the batch of stainless steel used, could 

have a large effect on their emission properties.  

In another attempt to correlate the first and second generations, we 

retested the MOJ-01 cathode (these data are labeled MOJ-01b).  This cathode 

had not shown a decrease in current as a function of shot number, and should 

not have deteriorated in any way during the year it was unused and stored in air, 

under protective plastic.  As such, it was a viable choice for verifying suspected 

changes in magnetron operation or diagnostics.  As Figure 6.17 shows, the 

retesting of MOJ-01 resulted in greatly reduced current. 

The second generation of cathodes was designed to test possible 

emission theories resulting from the first generation.  First, particulate is an 

important source of additional triple points.  This was tested in MOJ-04, which 

used the same mesh as MOJ-02 (for good separation of the dielectric islands), 

while also using a high laser fluence for increased particulate.  Second, MOJ-05 

reduced the triple point length-density, a measure of the triple point length per 

unit area solely attributable to the edges of the dielectric islands.  Finally, MOJ-06 

tested the role of secondary electron emission, using MgO as the dielectric 

instead of HfO2.  MgO has a secondary electron emission coefficient of 17-25 

 113



[Whe58], higher than the SEE coefficient of ~2 for hafnium oxide that we 

estimated in Section 5.2.2. 
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Figure 6.17 Averaged current traces for MOJ-04, 05, & 06 cathodes, B ≈ 2.35 kG.  PSS2, PSS3, 
and MOJ-01b are shown for comparison. Average voltage is shown in black.  MOJ-01b indicates 
the second test of the original MOJ-01 cathode. 

While the current of MOJ-01b is considerably lower than the magnetic field 

corrected MOJ-01 (1.35 kA vs. 2.45 kA @ 225 ns, Figure 6.14), all of the second 

generation cathodes appear to improve on the original.  When compared to MOJ-

01b, MOJ-04 shows the largest increase in current, with MOJ-05 closely behind.  

Both cathodes also have faster current rise times, a characteristic that leads to 

higher currents at microwave turn-on, as shown in section 6.2.5 below.    

MOJ-06, testing secondary electron emission, produces only slightly more 

current than MOJ-01b, but also provides the best measure of current attributable 

to cathode patterning.  The justification of that statement is as follows.  PSS2, 

shown in orange in Figure 6.17, had very poor performance.  This polished 

stainless steel cathode was tested, removed from the magnetron, and 

immediately used in the fabrication of MOJ-06.  MOJ-06 was tested the very next 
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day, so nothing had changed in the magnetron and we had an ideal baseline for 

comparison.  While MOJ-04 & 05 could be compared to PSS2, as they were all 

tested in roughly the same timeframe, they are not guaranteed to possess the 

exact same surface roughness or bulk metal composition. 

6.2.5 Additional MOJ Comparisons 

To this point, we have focused almost solely on the average current 

performance of each cathode, as that is the primary goal of these cathodes.  In 

this section we will discuss a few other methods of quantifying emission current, 

as well as other metrics used to characterize cathode performance. 

We begin by considering the average magnetic field, Figure 6.19.  While 

this is not a function of the cathode (Figure 6.18 shows that it impacts emitted 

current for all MOJ cathodes), a consistent magnetic field increases the quality of 

comparisons between cathodes. 
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Figure 6.18 Current vs. magnetic field for all MOJ and baseline cathodes.  The linear fit shows 
current to be inversely proportional to magnetic field.  High and low magnetic field tests were 
conducted on alternating shots for every cathode, to eliminate any trends that might arise as a 
function of shot number. 
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Figure 6.19 Average (low) magnetic field for each cathode.  Each cathode was tested with 
magnet charging voltages of 3.6 kV (low) and 4.32 kV (high) to produce target magnetic fields of 
~2.35 kG and ~2.82 kG, respectively.  Cathodes with magnetic fields not significantly different 
from the target field are shown in blue. 

At a 0.05 significance level, a T-test reveals the B-fields used to test MOJ-

02 through MOJ-06, as well as MIO, are not significantly different.  As mentioned 

previously, the magnetic fields used in testing DiCoat, PSS1, and MOJ-01 are all 

significantly lower than the intended 2.35 kG field, while PSS2, PSS3, and MOJ-

01b are all significantly higher.  This result, coupled with the trend shown in 

Figure 6.19, should be taken into consideration when comparing current results. 

Microwave oscillation frequency is an important concern for relativistic 

magnetron operation.  It is usually desirable for the magnetron to operate in the 

π-mode, which lies above 980 MHz in our magnetron.  The Buneman-Hartree 

condition stipulates that for π-mode operation we must apply a magnetic field of 

approximately 3 kG.  These cathodes are all tested at fields well below 3 kG, but 

this critical field value is a function of the magnetron geometry, and will change if 

the cathode radius changes.  The physical radius is unchanged, since all the 

cathodes use the same 1.77 cm diameter stainless steel, but the effective radius 

will increase if plasma is produced.  Analyzing the oscillation frequency of each 

cathode may give an indication of how much plasma it is producing.   
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Figure 6.20 shows the average microwave oscillation frequency.  

Cathodes shown in blue indicate π-mode operation, as determined by a T-test at 

a 0.05 significance level.  There was no distinct trend among the MOJ cathodes 

with respect to π-mode operation (and, consequently, plasma production), 

though the PSS cathodes operated at lower frequencies as expected. 
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Figure 6.20 Average microwave oscillation frequency for each cathode.  Cathodes with significant 
π-mode oscillation are shown in blue. 

In previous sections, we compared the average current traces for each 

cathode.  If we are to measure the current at a specific time, the peak microwave 

power is a sensible place to do so.  While the microwave startup time may be an 

even better choice in some respects, the drawback is the increased sensitivity to 

noise.  The current at the peak microwave power gives a measurement of the 

current available to the magnetron for conversion into RF energy.   

Figure 6.21 displays the current for each cathode when the microwave 

power for that cathode is at its peak.  The results are relatively consistent with 

what we have seen previously.  The MOJ cathodes produce higher currents than 

the baseline cases, and MOJ-05 & MOJ-06 perform worse than the first test of 
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MOJ-01, but better than MOJ-01b.  Note that none of these currents have been 

adjusted for deviations in magnetic field. 
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Figure 6.21 Average current at peak microwave power for each cathode.   

For nearly every shot on every cathode, the microwave pulse begins (and usually 

also peaks) during the initial current rise.  Consequently, cathodes with fast 

current rise times will have higher currents in Figure 6.21. 

Another factor that could influence these results is the microwave startup 

time for each cathode.  Delayed microwave startup would give “better” results in 

Figure 6.21, since the cathode current would be measured later in the current 

rise.  Figure 6.22 shows there are not large variations in startup time.  Performing 

a one-sample T-test on the data and comparing to the overall mean of 203 ns, 

only 4 cathodes are significantly different at a 0.05 confidence level, and only 

MIO is significantly different at a 0.01 level. 

 118



0

50

100

150

200

250

300

DiCoat PSS PSS2 PSS3 MIO MOJ-
01

MOJ-
01b

MOJ-
02

MOJ-
03

MOJ-
04

MOJ-
05

MOJ-
06

Ti
m

e 
[n

s]

 
Figure 6.22 Time to peak microwave power (t=100 ns when V=100 kV, as previously defined).  
Cathodes which are not significantly different from the mean are shown in blue. 

As a final comparison of all cathodes, we present Table 6.3, Figure 6.23 

and Figure 6.24.  This table gives the relevant fabrication parameters, as well as 

the current density of each cathode.  The current density is calculated by 

subtracting the baseline current from the MOJ cathode current and dividing by 

the patterned area.  The two current density values for each cathode indicate low 

and high magnetic field tests, respectively.  Figure 6.23 and Figure 6.24 show the 

average current traces for low and high magnetic fields tests, respectively.  The 

high field results have not been discussed in detail because they are virtually the 

same as the low field results, but with reduced emission currents.  
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Table 6.3 Summary of relevant MOJ cathode parameters.  For current density, if the cathode 
produced less current than the baseline case, the current density reduction is shown in red. 

  MOJ-01 MOJ-02 MOJ-03 MOJ-04 MOJ-05 MOJ-06 Dielectric 
Coated

Patterned Area [cm2] 7 12 28 34 28 20 50 

Feature Size [μm] 950 1200 850 1200 1400 1200 N/A 

Feature Spacing [μm] 0-300 250 50-250 250 1400 250 N/A 

Peak Dielectric Thickness [nm] 900 300 450 900 900 900 500 

Laser Fluence [J/cm2] 30 1.5 3.8 30 26 7 30 

Sections 8 6 6 6 4 6 4 

Pulses per Section 18000 18000 18000 18000 18000 18000 9000 

Current Density [A/cm2] 77 - 79 29 - 48 0 - 2 4-6 2 - 11 65 - 35 12 - 19
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Figure 6.23 Average current traces for all MOJ and baseline shots at low magnetic field (≈2.35 kG). 
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Figure 6.24 Average current traces for all MOJ and baseline shots at high magnetic field (≈2.82 kG). 
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CHAPTER 7 
SUMMARY AND CONCLUSIONS 

Two new cathode designs for cold cathode emission in a relativistic 

magnetron were presented, both theoretically and experimentally.  We began 

with an overview of HPM and relativistic magnetron research, and followed with a 

brief summary of important emission fundamentals and recent work. 

We then discussed the theory of field enhancement and electron emission 

at triple points.  We calculated the orbit of the first generation electrons, the seed 

electrons.  We found that, despite the mathematically divergent electric field at 

the triple point, significant electron yield most likely results from secondary 

electron emission when the seed electrons strike the dielectric.  We also 

provided an explanation on why certain dielectric angles are more favorable to 

electron generation over others, as observed in previous experiments.  As our 

analysis considers only seed electrons, we ignored dielectric charging and space 

charge effects, and did not account for initial velocity distributions or initial spatial 

distributions. 

To test this theory in practice, we fabricated six metal oxide junction (MOJ) 

cathodes.  These cathodes were created by ablating a Hf or MgO target in a 100 

mTorr O2/Ar environment, and depositing the resulting oxide through a mask.  

This creates many dielectric “islands” on the cathode surface, the edges of which 

form triple points.  The ablation process, when executed at sufficiently high laser 

fluence, will generate large quantities of particulate.  The particulates deposit on 

the cathode surface and proved to be an important contributor to the emission 

characteristics of the cathodes. 

The first generation of cathodes consisted of MOJ-01, 02, & 03.  MOJ-01 

possessed large quantities of particulate, but poor dielectric island separation.  

Conversely, MOJ-02 had small amounts of particulate and distinct dielectric 
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islands.  MOJ-03, however, had small amounts of particulate and dielectric 

separation slightly worse than MOJ-02.  The final three MOJ cathodes comprised 

the second generation.  MOJ-04 had both distinct dielectric islands and large 

quantities of surface particulate.  MOJ-05 tested a different masking pattern, with 

decreased triple point length-density.  Lastly, in MOJ-06 the dielectric material 

was changed from HfO2 to MgO because a material with a high secondary 

electron emission coefficient was desired.  

The cathode tests were divided into two generations, based on the date of 

testing, and further sub-divided into “low” (2.35 kG) and “high” (2.82 kG)  

magnetic field cases.  Within the first generation, we verified the concept of the 

triple point cathode, showing 30% greater emission current when compared to 

either a polished stainless steel or dielectric coated cathode.  Comparisons of the 

MOJ-01 & 03 cathodes indicated surface particulate may play a large role in 

current production through the creation of additional triple points.  Comparing 

MOJ-02 & 03 revealed that distinct dielectric islands improve electron emission, 

likely due to the enhanced triple point length-density.  We also found that the 

emission current is inversely proportional to magnetic field strength, and 

corrections were proposed for cathode tests with deviant magnetic fields. 

Between the first and second generations the magnetron was 

disassembled, and it was discovered that the anode block was not seated 

properly.  This resulted in non-uniform radial electric fields at the cathode 

surface, invalidating direct comparisons of the two cathode generations. 

The second generation cathodes tested several theories of electron 

emission stemming from results of the first generation.  First, however, we 

established a point of comparison between the two generations by re-testing the 

MOJ-01 cathode (these data are referred to as MOJ-01b).  The second test of 

this cathode produced 50% lower currents when measured at the peak 

microwave power.  Comparisons of MOJ-04 to MOJ-01b indicated that large 

amounts of particulate, coupled with distinct dielectric islands, improved the 

electron emission of the cathodes.  MOJ-05, with lower triple point length density 

than other cathodes, showed that emission current is not directly proportional to 

 124



the total triple point length, suggesting edge/end effects may be important.  MOJ-

06 displayed the importance of secondary electron emission, by replacing the 

HfO2 dielectric with MgO, which has a considerably higher secondary electron 

emission coefficient.  While this cathode exhibited the least emission of the 

second generation of cathodes, direct comparisons with its stainless steel 

baseline resulted in a 30-500% current increase (depending strongly on the point 

of comparison). 

In another method of linking the two generations of cathodes, we retested 

the cathode used in the original polished stainless test.  The results changed 

dramatically, exhibiting a 60% reduction in current at peak microwave power, and 

as much as a 6x reduction in current at other points of measurement.  To analyze 

the importance of cathode surface preparation, we prepared another polished 

stainless steel cathode which foregoes the final sanding step to ensure the 

roughest surface finish of any polished stainless steel cathode tested.  This had a 

substantial impact on the emission, increasing the current by up to a factor of 8.  

We found that the exact composition and surface treatment of the stainless steel 

can have a significant impact on the final cathode performance. 

Another design, the Ablation Line Focused (ALF) cathode, was also 

presented.  This cathode is created by ablating 100 μm deep channels into the 

surface of a cathode stalk, using a 600 mJ (peak) KrF excimer laser.  This 

increases the β of the surface, enhancing field emission.  This was established 

as the baseline case, ALF-2. 

Combining the ALF process with previous work on cathode priming, we 

presented two datasets from the Tri-ALF cathode.  This cathode exhibited 

plasma closure and higher currents than ALF-2, but had mixed results with 

respect to microwave output.  The first dataset, tested with microwave power 

measured out of only one waveguide, had poor microwave performance in all 

categories.  The second dataset, with three power measurements, displayed 

greatly improved microwave performance, but inconclusive evidence of cathode 

priming.  Carbon paint, designed to suppress electron emission on the cathode 

surface, may aid in plasma formation, inhibiting any cathode priming effects. 
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Analyses of the cathode surfaces were offered, with additional attention 

given to the hafnium oxide films used for MOJ cathodes, and a brief discussion of 

the plasma plumes generated during deposition.  ALF cathodes were analyzed 

with mechanical profilometry, as well as scanning electron microscope (SEM) 

imaging.  The hafnium oxide films were analyzed with SEM, X-ray Energy 

Dispersive Spectroscopy (XEDS), X-ray Diffraction (XRD), and profilometry.  

Additionally, film quality was examined through Capacitance-Voltage (C-V) 

testing. 

The experimental configurations used for plasma spectroscopy, as well as 

the major components of the accelerator and relativistic magnetron, were also 

outlined.  An explanation of the diagnostics associated with cathode voltage, 

cathode current, magnetic field, and microwave power were presented.  Where 

applicable, the calibration procedures for these diagnostics were given. 
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APPENDIX A 
MELBA-C Circuit Diagram 
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APPENDIX B 
Supplemental Theory 

B.1 Magnetron Operation 

A very brief overview of magnetron operation is given here.  For more 

detailed explanations, see [Lop03, Jon05, Whi05].  A magnetron is a crossed-

field device, meaning that the electric and magnetic fields are perpendicular to 

each other.  A magnetron is classified as “relativistic” when the applied voltage is 

on the order of 511 keV, the rest mass enregy of an electron.   

In the magnetron, electrons are emitted from the cathode surface and 

accelerated toward the anode by the electric field.  Because a magnetic field is 

present, the electrons experience a Lorentz force ( ( )q E v B+ × ), and are 

accelerated back toward the cathode.  This insulates the gap, and prevents 

current from streaming directly to the anode, Figure B.1. 

The magnetic field required to insulate the diode is known as the Hull 

Cutoff, which is given in Eqn. (B.1) for a cylindrical geometry, accounting for 

relativistic effects [Ben07]. 

 
2

2 2

2
Hull

eff

mc eV eVB
eD mc mc

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (B.1) 

where Deff is the effective gap, and all other symbols have their usual meanings. 

For efficient interaction between the electron beam and RF wave, the 

magnetron must operate within a specific voltage-dependent magnetic field 

range.  The most efficient, and usually most desirable, mode is the π-mode, 

where a 180° RF phase shift occurs between each anode cavity.  The Buneman-

Hartree resonance condition defines the relationship between the applied voltage 

and magnetic field, if synchronism is desired between the RF wave and electron 

beam.  Equation (B.2) is the Buneman-Hartree resonance condition for a 

cylindrical geometry, accounting for relativistic effects [Ben07]. 
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 (B.2) 
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where n is the mode number, ωn is the frequency of the nth mode, ra is the anode 

radius, and Deff is the effective gap.  A diagram of the Buneman-Hartree condition 

and Hull Cutoff for the UM/Titan relativistic magnetron is provided in Figure B.2.  

For our operating voltage of 300 kV, a magnetic field of 1.4 kG is required for 

diode insulation, and a field of ~3 kG is desired for efficient π-mode operation. 

 
Figure B.1 Diagram of a planar magnetron showing the electron motion and relevant fields (image 
from [Whi05]).  Though the actual magnetron is a cylindrical geometry, the motion is easier to 
visualize in planar format. 
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Figure B.2 Buneman-Hartree resonance conditions for the 2π/3- and π-modes, as well as the 
Hull cutoff condition for the UM/Titan relativistic magnetron (image from [Jon05]). 

B.2 Inferred Plasma Closure Velocity Calculations 

If a cathode has formed a plasma, and is operating according to space-

charge limited emission in the absence of a magnetic field, the plasma closure 

velocity traditionally has been inferred from measurements of the perveance (I / 

V3/2).  We can compare this measured perveance to the theoretical perveance 

(derived from the Space Charge Limited Child-Langmuir law) [Lan22, Dow52],  

 

6
3/2 2
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2 11 43 ... ln
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V r
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r v t

β

β

−= ≈ ×

⎡ ⎤
= − + − + = ⎢ ⎥+⎣ ⎦

 (B.3) 

where L is the effective length of the emission region, ra is the anode radius, rc is 

the cathode radius, vc is the plasma closure velocity, and t is time elapsed since 

plasma formation. 
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To determine the closure velocity, the experimental and theoretical values 

of 1/ P  are plotted over the voltage flat-top.  The experimental value is then fit 

with a linear trendline and the effective length and plasma closure velocity are 

adjusted to achieve the best match of the theoretical curve.  Adjustment of the 

closure velocity primarily affects the slope of the line, while the effective length 

primarily affects the y-intercept. 

This analysis makes the (often questionable) assumption of Space Charge 

Limited emission, but is particularly useful in long voltage pulse shots with 

obvious plasma closure.  While the effective emission length is hard to predict, 

we would expect it to be consistent for any given cathode, but this is not always 

the case.  These analyses must be taken with a grain of salt, as the effect of the 

crossed magnetic field is not included. 
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APPENDIX C 
Directory of Program Code 

This appendix contains descriptions of programs I have written as well as 

their electronic locations.  All my data, program code, and electronic copies of 

presentations and thesis, can be found on the fileserver (plasma-fs), under 

student data. 

A program to control the rotary stage during ablation of ALF cathodes is 

contained in a LabVIEW 8.2 library titled ALF Automation.llb.  The program has 3 

modes: one that simply rotates the cathode, one that rotates and fires the laser a 

set number of times, and one that just fires the laser.  The program is designed 

to be used in conjunction with a BNC-555 pulse generator, to control when the 

laser will be fired, as well as the rep rate. 

The LabVIEW UIs to analyze MELBA data are contained in the Data 

Analysis Tools\MELBA Labview folder.  These UIs replace the function of 

Megagui, allowing the user to view the voltage, current, magnetic field, and 

microwave power data.  The Phase Math VI is designed for use with a 4 channel 

phase discriminator, to calculate the phase of the microwave oscillation. 

All Excel macros are in Word file called “Excel Macros”.  Most macros 

have a description of their functions within the macro comments. 
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