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At address, Ĵ defines the target line. ˆˆ ˆ( , , )f f fi j k denotes a body-fixed frame at f 

(face frame), whereas ˆˆ ˆ( , , )s s si j k denotes a body-fixed frame at s (shaft frame) 

within the shaft near the end of the grip. (b) Exploded club head view showing 

how the face frame and the shaft frame are related by the manufactured lie and 

loft angles   and  .  ............................................................................................  14   

 

2.2 Definitions of dynamic loft ( )t , lie ( )t and face angle ( )t of the club head 

using projections of the face frame ˆˆ ˆ( , , )f f fi j k .  ..................................................  16 

 

2.3 Partially exploded CAD drawing of a portion of the miniature IMU showing 

position and orientation of MEMS accelerometer and angular rate gyros.  The 

location and orientation of the shaft reference frame ˆˆ ˆ( , , )s s si j k  is defined by 

the sense axes of a tri-axis accelerometer. Three angular rate gyros on 

mutually-orthogonal faces have sense axes aligned with the axes of the 

accelerometer. The sensor circuit boards are highlighted in green.  ....................  22 

 

2.4 Photo illustrates the major components of the fully assembled wireless IMU 

that fits within the small confines of the shaft of a golf club. An analog circuit 

includes the MEMS inertial sensors (see Fig. 2.3) and a digital circuit includes 

a microprocessor, wireless transceiver, and an antenna. A battery is housed 

within the hollow shaft-sensor coupling at the far left.  .......................................  23 

 

2.5 Calibration fixture used to characterize the 24 calibration constants for the 

assembled IMU. The principal components include a leveling plate, a bullseye 

level, a precision sensor mounting block, and a shaft with an optical encoder.  ..  25 

 



 

vi 

 

2.6 Single degree-of-freedom (pendulum) putting robot used to assess the accuracy 

of the sensor system during the dynamic phase of putting and at impact. Photos 

illustrate the principal components of the robot including a “shoulder” joint that 

allows rotation about one axis as measured by an optical encoder, adjustable 

(then fixed) “elbow” “forearm”, and “wrist” joints, and a clamp that grips the 

club.  .....................................................................................................................  28 

 

2.7 Dynamic loft, lie and face angles computed from MEMS sensor system for a 

typical swing using the putting robot.  .................................................................  29 

 

2.8 Enlarged view of dynamic tracking error during a typical swing with putting 

robot.  ....................................................................................................................  30 

 

2.9 Impact tape records of eight swings made with the putting robot. Left (putt nos. 

1-3) and right (putt nos. 5-8) records demonstrate that the clubface returns at 

impact to same position at address to within the (visual) accuracy of the tape 

(approximately 2 mm).  The two impact tape strips are for identical setups of 

the robot, but allow a clear view of the impact patterns.  The general 

dimensions of the tape are noted in the figure and the concentric circles 

increase in diameter by 1cm for each successive circle.  .....................................  31 

 

2.10 Computed Cartesian coordinates for path of point f on the face of the putter 

based on measured accelerometer and gyro data for a typical swing with the 

putting robot.  .......................................................................................................  32 

 

2.11 (Top) Overhead view of position data from one trial putt.  (Bottom) Face angle 

as a function of position.  Note the highly magnified scale for the X position 

coordinate (ordinate).  ...........................................................................................  33 

 

3.1 Illustration of pendulum and gate style putting strokes as viewed from 

overhead [41]. (a) Pendulum stroke is also referred to as the Pure Inline and 

Square (PILS) stroke by Pelz.  (b) Gate stroke, showing the club head moving 

on an arc and the clubface opening and closing during the stroke.  ....................  37 

 

3.2 Definition of two-parameter kinematic model for putting. (a) The parameter 

 defines the angle the rotation axis makes with the horizontal and the 

parameter 
armL defines the perpendicular distance from the rotation axis to the 

top of the grip (point s).  (b) View in the  ' 'ˆ ˆ,J K -plane showing the 

parameters 
armL , gripY , and the angle of rotation  about the rotation axis.  .......  39 

 

3.3 (a) Definitions of s
p

R


, f
s

R


, and f
p

R


, which are used to describe the predicted 

putter path based on the model proposed in this section.  (b) View looking 

down the 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation and Background 

 

Golf Swing Measurement Systems 

 

Golf swing training aids address one of the major obstacles towards advancement in the 

sport, namely developing a controlled and consistent swing. The most common swing 

measurement systems utilize photographic technologies including high-speed video, 

motion capture cameras, or stroboscopic photography. High speed video, which is 

extensively used to capture both club and human kinematics [1-3], requires the careful 

alignment and calibration of two (and preferably three) high-speed cameras. Once the 

video is captured, the rather large video data files must be analyzed which can become 

computationally burdensome. In addition, the finite precision of positional and angular 

coordinates derived from digital images of a club must be carefully considered 

particularly when trying to resolve the three-dimensional motions of a complete golf 

swing. Alternatively, one may use optical tracking systems that employ transmitting 

„markers‟ (often infrared LED‟s) placed on the golfer and the club. The use of optical 

markers may increase position accuracy and speed data analysis [4-6].  All camera-based 

systems require expensive equipment, careful set-up (alignment), and often controlled 

lighting.  These limitations frequently restrict their use to specialized indoor facilities, 

although systems for outdoor use also exist.  Motion capture is also possible using other 

media for triangulation including magnetic [7-8], radio frequency [9], and ultrasonic 

markers [10]. These alternatives may overcome some of the limitations of optical 

triangulation, such as the need for a direct line of sight, but they also have limitations 

arising from electro-magnetic and acoustic interference, portability, and cost. In addition, 
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all marker-based systems require the attachment of markers on, or in close proximity to, 

the club head which render these methods invasive to the club. 

  

Measured swing data has also guided the development of mathematical models of golf 

swings.   For instance, the multi-body models of Teu [11] and Tsunoda [12] are 

extensively compared with experimental swing measurements and reveal the limitations 

of the commonly used „double pendulum‟ model of a golf swing. For example, Iwatsubo 

[13] explores the validity of assuming a rigid link connecting the wrist and neck.  The 

planar dynamics of the golf swing predicted by the double pendulum model was 

addressed by Simon [14]. The interested reader is referred to [15] which reviews the 

scientific literature on swing dynamics including the many mathematical models of golf 

swings. 

 

Pertaining to golf instruction, measurements of club acceleration, angular velocity, and  

club head speed reveal distinct differences between professional and amateur golfers [16-

18]. Understanding and quantifying these differences is clearly essential for golf 

instruction.  Research in golf swing instruction has largely focused on the human kinetics 

of the swing motion.  For instance, high speed video was used to study the influences of 

hip and trunk motions [19-20].  Subsequently, shoulder [21-22] and knee [23] rotations 

were evaluated using optical motion tracking. The essential timing of all of these motions 

is emphasized in [15]. 

 

The golf swing measurement technologies reviewed above all generate quantitative 

measurements of swing dynamics. They also possess one or more major limitations 

including 1) extensive set-up and alignment, 2) restriction to indoor use, 3) high cost, 4) 

lack of portability, 5) placement of instruments (markers) on/near the head of the club, 

and 6) time consuming data processing and analysis.  This study introduces an alternative 

means to measure golf swing dynamics that largely overcomes these limitations. In 

particular, we introduce a miniature and wireless six degree-of-freedom MEMS inertial 

measurement unit (IMU) that fits entirely within the shaft of a golf club at the grip end. 

Upon the development of a companion measurement theory, the resulting golf swing 
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training system achieves one example of a broad class of possible sports training aids 

based on this concept [24-25]. 

 

The Opportunity for a MEMS-Based Measurement System 

 

The novel golf swing measurement system described in this study rests on the capabilities 

of MEMS inertial sensors including accelerometers and angular rate gyros.  Ultimately, 

the sensor data are integrated in computing the position and orientation of the club which 

may execute both slow and fast dynamics depending on the swing (e.g., a putting stroke 

versus a full swing).  The general system-level performance targets for an integrated IMU 

that can effectively resolve golf swings are summarized in the Table 1.1. 

 

System Level Performance Targets 

Resolution 
Angular < 1 deg 
Position < 6mm 

 

Current Draw < 40mA 

Sensor 
Ranges 

150 deg/s  & 1.5g (putting) 
2500 deg/s & 20g (full swing) 

Battery Life > 2 hours cont. 

Sense Axes 
Three-axis acceleration 
Three-axis angular velocity    

Cross Section 
Diameter 

< 13mm 

Table 1.1:  Performance targets for a miniature, MEMS-based IMU for 

resolving putting and full swings in golf and target limits on size and battery 

life. 

 

MEMS accelerometer technology is relatively mature with MEMS devices nearing 

inertial-grade performance.  The stringent stability requirements of inertial-grade devices 

establish performance goals for MEMS accelerometers as detailed in [26] and [27]. 

Specific device characteristics for accelerometers that enable the golf swing IMU 

described herein include low power (e.g., 600 A/axis ), programmable ranges (e.g., 1.5 g 

to 15 g for three-axis devices), and small footprint (e.g., 5mm x 5mm for three-axis 

devices); see, for example, [28].  Many commercially available devices may be readily 

employed as part of the golf swing sensor system. MEMS angular rate gyros are 

significantly more complicated than accelerometers and their design remains an active 

research topic; see, for example [29-32]. A major goal is again to attain inertial grade 

performance which demands superior sensitivity, resolution, scale factor stability, and 

bias drift stability [29].  Key device characteristics for gyros that enable the golf swing 
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sensor IMU include low power (e.g., 6 mA/axis), adjustable ranges (e.g., 75 deg/s to 

3000 deg/s), and small footprint (e.g., 7mm x 7mm); see, for example [33].  Several 

commercially available MEMS rate gyros meet these basic requirements. The ultimate 

performance of the integrated IMU rests on careful calibration of all (six) sensors as 

detailed herein.  A major consideration is sensor drift but this concern is somewhat 

lessened in the golf application due to the rather short integration time intervals 

associated with golf swings (2-3 seconds typical). 

 

Inertial Measurement Units and Error Sources 

 

As reviewed above, currently available MEMS inertial sensors enable the development of 

a miniature and wireless six degree-of-freedom inertial measurement unit for measuring 

the dynamics of a golf swing. Within the context of sports training devices, the MEMS 

inertial sensors are deployed on the sports equipment and therefore measure both 

acceleration and angular velocity in a body-fixed frame of reference. This is the 

configuration used in the distinct field of inertial navigation where body-fixed inertial 

sensors form what is often called a “strap down inertial navigation system” [27, 34-35]. 

Systems capable of accurately measuring the rigid body dynamics of an object using a 

plurality of accelerometers and rate gyroscopes are commonly called inertial 

measurement units (IMUs). It is important to recognize and understand the work in this 

different field as many challenges in accurately measuring the dynamics of sporting 

equipment relate to methods in using IMUs to navigate ships, aircraft, spacecraft and 

missiles.  Particularly useful are sensor error models and system calibration methods.  

 

At the device level, the dominant error sources are fixed bias, scale factor, cross-axis 

coupling, vibro-pendulous error and random error [27].  Vibro-pendulous errors occur 

when the sensor is subjected to vibration along the sensitivity and pendulum axes 

simultaneously.  Certain sensor designs are either impervious to or greatly reduce this 

error mechanism.  There are four categories of bias error [27]. Fixed or repeatable bias 

error is a component that is predictable and present each time the sensor is switched on.  

Temperature-induced bias error arises from the unwanted effects of device heating and 
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can be corrected with suitable calibration. Switch-on to switch-on bias is a random error 

which varies from run to run but is otherwise constant for any one run. In-run variations 

are a random bias which varies throughout a run and the precise form of this error varies 

from one sensor type to another. The first two bias error types (fixed and temperature-

induced) can be corrected with proper calibration.  The performance of an IMU will be 

limited by the latter two forms of bias error (switch-on and in-run).  These two types of 

error can also be compensated for if there is apriori knowledge about the motion of the 

body that can indicate the magnitude of these errors. 

 

Static and quasi-static calibration methods are often used to identify sensor bias, scale 

factor error and system-level misalignment of the sense axes.  Dynamic calibration 

methods are also used to quantify additional contributions to scale factor error as well as 

cross-coupling and vibro-pendulous error.  Titterton [27] suggests the following error 

models for accelerometers and gyros to cover the majority of sensor errors. 

 

Accelerometer Error Model 

 


actual measured

y zx x x

y A v z y A y A y A

z x y z z

f f f

a af a a

f B B a a S a M a w

f a a a a









 

      
      

          
      

      

 

 (1.1.1) 

 

f a g 
 

 , where f is the specific force measured by the accelerometers 

BA: A three element vector representing the fixed biases. 

Bv:  A 3x3 matrix representing the vibro-pendulous error coefficients. 

SA:  A diagonal 3x3 matrix representing the scale-factor errors. 

MA:  A 3x3 skew symmetric matrix representing the mounting misalignments 

and cross-coupling terms. 

wA: A three element vector representing in-run random bias errors. 



 

 6 

Rate Gyro Error Model 

 


actual measured

y z y zx x x x

y G g y ae z x ai z x G y G y G

x y x yz z z z

a aa

B B a B a a B S M w

a aa

  

   

    

   

 

          
          

                
          

          

 

 (1.1.2) 

 

BG: A three element vector representing the fixed biases. 

Bg: A 3x3 matrix representing the g-dependent bias coefficients. 

Bae: A 3x3 matrix representing the anisoelastic coefficients. 

Bai: A 3x3 matrix representing the anisoinertia coefficients. 

SG: A diagonal 3x3 matrix representing the scale-factor errors. 

MG: A 3x3 skew symmetric matrix representing the mounting misalignment 

and cross-coupling terms. 

wG: A three element vector representing the in-run random bias errors. 

 

In our research we will not need to consider all of the error sources incorporated into the 

two models above, however these error models serve as the foundation for our error 

correction strategies as will be described in Chapter 2. 

 

The Role of Shaft Flexibility 

 

The MEMS sensor technology discussed above is capable of measuring the rigid body 

motion of a golf club.  In golf, the shaft of a driver and an iron is flexible and it is known 

to deflect during highly dynamic swings.  Therefore, quantifying the contribution of 

flexible body dynamics to the golf swing is an important addition to a golf swing 

measurement system for drivers and irons.   By contrast, there is little to no flexible body 

dynamics for a putter. In this research, we ultimately predict the flexible body dynamics 

of the shaft via a mathematical model for which the input is the rigid body accelerations 

and angular accelerations measured by the MEMS sensor. An alternative approach would 

be to embed sensors in the shaft (e.g. strain gauges) to directly measure the flexible body 

components as in [36].  However, this „direct‟ approach has major disadvantages when 

considering future commercialization that include a) the invasive attachment of sensors 
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on or in the shaft (e.g., via epoxy), b) the added cost for significant preparation and 

installation of sensors during manufacturing, and c) the added system complexity 

(creation of many additional sensor channels, added signal conditioners, and significant 

temperature-dependence, etc.).  

 

The mechanics of a golf shaft during a swing is well-approximated using classical linear 

theories for the bending and torsion of beams.  A golf shaft has length to cross-section 

dimension (i.e. a slenderness ratio) consistent with the use of Euler-Bernoulli beam 

theory [37].  As mentioned above, the MEMS sensor directly measures the kinematics of 

the rigid motion of the shaft and specifically the rigid motion of the grip end of the club. 

This measured motion ultimately becomes the input to a flexible body model for the 

remainder of the club.  One derivation of the general theory for a flexible beam 

undergoing large prescribed rigid body motions is developed by Kane et al. [38]. This 

theory assumes the flexible motion remains „small‟ compared to the rigid body motion.  

Butler and Winfield [39] measured the deflections of the golf shaft and their results 

clearly demonstrate that the shaft deflections remain very small corrections to what is 

otherwise rigid body motion.  The theory developed by Kane et al. [38] simplifies 

significantly when applied to a golf club since the shaft has uniform mass density and is 

cone shaped (tapered) which adds symmetry (e.g., eliminates products of inertia).  For 

rotating circular beams, the model developed by Yigit et al. [40] is closer to that needed 

for a flexible golf club and thus it serves as a useful reference for this research. Suitable 

approximations to this model are also likely to yield accurate predictions of the flexible 

motion of a golf club as described in Chapters 5 and 6. 

 

1.2 Research Objectives and Organization of Dissertation 

 

Objectives  

 

The objective of this research is to develop an accurate golf swing measurement and 

analysis system that is highly portable and potentially quite inexpensive.  The 

measurement and analysis system relies on deducing the rigid body dynamics of the golf 
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club using embedded MEMS inertial sensors.  Flexible body dynamics, if and when 

needed, are estimated using dynamical models of flexible golf shafts. A major related 

objective is to identify promising metrics of swing performance by systematically 

analyzing player putting strokes and full swings.  These objectives are achieved through 

the theoretical and experimental studies outlined in the following five chapters. 

 

Organization of Dissertation  

 

Chapter 2 describes the theory, design and performance of a high-resolution, miniature, 

six degree-of-freedom, wireless IMU for measuring putting strokes.  Section 2.1 opens 

with a careful development of the measurement theory for obtaining the kinematics of the 

putting stroke. The theory details how the raw sensor data (body-fixed measurements of 

acceleration and angular velocity) is reduced to yield the orientation, position, and 

velocity of the putter relative to a lab-fixed frame of reference.  Section 2.2 follows with 

a detailed description of the wireless IMU design that includes sensors, micro-processor, 

wireless transceiver, and battery power supply.  Section 2.3 presents test results that 

systematically explore the accuracy of the wireless IMU following precise calibration. To 

this end, a putting robot is also introduced which independently measures the kinematics 

of the putting stroke using a high-resolution optical encoder.  

 

Chapter 3 employs the measurement theory and sensor hardware established in Chapter 2 

to identify promising metrics of putting performance. This chapter opens with a review of 

the major literature on putting techniques and Section 3.2 follows by introducing a simple 

but very useful kinematic model for all putting strokes.  This model is then applied to the 

highly controlled putting strokes using the putting robot (Section 3.3) and then to the 

unconstrained putting strokes of players (Section 3.4).  The results of Section 3.5 clearly 

demonstrate how this technology can successfully deduce common faults in the putting 

strokes of players with varying skill levels. 

 

Chapter 4 extends the measurement theory, hardware and experiments for putting strokes 

(Chapters 2 and 3) to the measurement and analysis of full golf swings with drivers and 
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irons.  The chapter opens by summarizing the necessary changes in the hardware for 

resolving highly dynamic swings with drivers and irons.  The resulting “high-range” 

sensor system is then used in Section 4.2 to explore the major features of the full golf 

swings. Results for the three-dimensional trajectory of the club and the clubface lie, loft 

and face angles reveal the major phases of the swing including the address, the 

backswing, the downswing, and the associated “wrist release” just prior to impact. 

 

The results of Chapter 4 report the rigid body dynamics of golf clubs during highly 

dynamic full swings. The influence of shaft flexibility is now examined in Chapter 5 in 

the context of a two-dimensional model for the flexible shaft/club head system. This 

model includes the planar bending of the shaft as induced by the acceleration and angular 

acceleration of the grip during a swing. The derivation of the resulting two-dimensional 

model for a flexible club is detailed in Section 5.1 while Section 5.2 summarizes 

companion experimental results.  Measurements of the bending natural frequency and 

transient dynamics for a flexible club demonstrate the accuracy of the two-dimensional 

model. 

 

The final chapter, Chapter 6, extends the theory of Chapter 5 to a full three-dimensional 

model of a flexible golf club.  Section 6.1 summarizes the derivation of the equations of 

motion for the shaft considering the simultaneous bending about two orthogonal axes and 

torsion about the long axis of the shaft.  Section 6.2 summarizes initial experimental 

results for validating the three-dimensional model. 

 

1.3  Summary of Major Research Contributions 

 

Overall this research contributes a highly portable and inexpensive measurement and 

analysis system for analyzing golf swing dynamics. This contribution follows from the 

theory, design, and experimental evaluation of a wireless, six degree-of-freedom, MEMS 

inertial measurement unit that fits wholly within the shaft of a golf club. Additional 

contributions follow from applying this novel technology to understand both putting 

strokes and full swings. 
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For analyzing putting strokes, the measurement and analysis system resolves the three-

dimensional position of the clubface to within 3 millimeters and the three-dimensional 

orientation of the clubface (i.e., the lie, loft and face angles) to within 0.5degrees, both 

with millisecond updates. This measurement speed and significant precision enable the 

detailed characterization of putting strokes. In particular, the measurements support a 

simple kinematic model for all putting strokes that unifies the “pendulum style” and “gate 

style” strokes previously distinguished in the literature.  In addition, a suite of “putting 

metrics” is identified that pin-points common putting faults from the measured club head 

trajectory and orientation.  These findings confirm the significant opportunity for using 

this technology for putting instruction and training. 

 

The same opportunity arises for full swings upon incorporating high-range angular rate 

gyros and accelerometers to resolve swings made with drivers and irons. By extending 

the measurement theory for putting, one can resolve the rigid-body dynamics of full 

swings from sensor data. Doing so immediately reveals two well-characterized swing 

planes, one for the backswing and one for the downswing, that are largely tangent to the 

otherwise three-dimensional trajectory of the club.  In addition, one observes the 

significant acceleration of the club head that results from the “release of the wrists” in the 

downswing just prior to impact. Furthermore, the predicted clubface lie, loft and face 

angles at address and at impact provide immediate and valuable metrics of swing 

performance. 

 

In addition to resolving the rigid body dynamics of a golf club, we propose and then 

demonstrate how the measurement theory can be extended to predict the flexible body 

dynamics as well, and with no additional sensor technology. Doing so relies on 

formulating dynamic models for the bending and twisting of the club shaft that 

incorporate, as inputs, the measured rigid body motion of the grip.  This research 

contributes both two- and three-dimensional forms of the flexible body model of a golf 

club and experimental data that support their accuracy. 
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Beyond golf, the measurement theory and hardware design described in this dissertation 

hold significant promise for training systems for numerous other sports including, for 

example, baseball, hockey, tennis, and bowling. In addition, this technology has 

relevance to far broader fields of application including, for example, sports injury 

mechanics, rehabilitation science, gait analysis, surgeon training, etc. This research has 

contributed the foundation for these upcoming applications, many of which have already 

been initiated as a direct result of this study. 
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CHAPTER 2 

WIRELESS MEMS INERTIAL SENSOR FOR 

MEASURING GOLF PUTTING DYNAMICS 

 

The objective of this chapter is to describe the design and performance of a novel sensor 

system. More specifically, we focus herein on a MEMS based IMU (inertial measurement 

unit) that measures the dynamics of the putting stroke, with stringent accuracy 

requirements placed on the computed orientation and position of the club head in three-

dimensions. We open by reviewing the measurement theory that enables one to employ a 

club-fixed MEMS inertial sensor to compute the kinematics of the club including 

dynamic lie, loft and face angles of the club head, the velocity of the club head, and the 

path described by the club head in space. Next, we summarize the sensor hardware that 

incorporates MEMS inertial sensors, a microprocessor, and a wireless transceiver into a 

miniature, battery-powered IMU that can fit within the small confines of the golf club 

shaft. We then present experimental data that demonstrates the accuracy of the sensor 

system in measuring putting dynamics. We close with conclusions and a summary of the 

performance characteristics of the assembled sensor system. 

 

2.1 Measurement Theory: Kinematics of a Golf Swing 

 

The overall objective of this measurement system is to predict the kinematics of a golf 

swing and specifically the orientation, velocity, and path of the club head; see for 

instance, [18-20], [41-42]. This paper assumes that the golf club remains rigid throughout 

the swing, which is an appropriate assumption for putting as the club undergoes a slow, 

smooth motion that will not lead to appreciable flexing of the shaft.  More precisely, we 

wish to predict three angles that define the orientation of the club head and the position 

and velocity of the geometric center of the face of the club head by exploiting 



 

 13 

measurements from MEMS inertial sensors mounted remotely and within the grip end of 

the shaft of the club. 

 

Definitions of Reference Frames and Orientation Angles 

 

Consider Fig. 2.1(a) which illustrates a golf club at „address‟, where the club is first lined 

up with the ball, and at the end of the backswing for a typical putting stroke. The 

geometric center of the face of the club is denoted by point f and the location of the 

sensor module within the shaft at the grip end is denoted by point s. At address, point f 

coincides with point O which is the origin of an inertial or lab frame ˆ ˆ ˆ( , , )I J K .  In the lab 

frame, the unit vector K̂ points vertically up (gravity ˆg gK 


) and the unit 

vectors ˆ( , )I J


define the horizontal plane with Ĵ aligned with the initial target line of the 

clubface which is established at address. 



 

 14 

 

 

Figure 2.1: (a) Club illustrated at address (t=0) and at the end of the backswing during a 

putting stroke. The frame ˆ ˆ ˆ( , , )I J K denotes a lab-fixed (inertial frame) at O which 

coincides with the location of the centroid f of the clubface at address. At address, 

Ĵ defines the target line. ˆˆ ˆ( , , )f f fi j k denotes a body-fixed frame at f (face frame), whereas 

ˆˆ ˆ( , , )s s si j k denotes a body-fixed frame at s (shaft frame) within the shaft near the end of 

the grip. (b) Exploded club head view showing how the face frame and the shaft frame 

are related by the manufactured lie and loft angles   and  . 

 

A body-fixed frame ˆˆ ˆ( , , )f f fi j k is introduced at f, on the plane of the clubface, with 

ˆ
fj being the outward normal to this plane. The unit vector ˆ

fi lies in the plane of the face 

where it is chosen to be parallel to the flat indexing surface that defines the top of the 

clubface as shown in Fig. 2.1(b). The unit vector ˆ
fk then follows from ˆ ˆ ˆ

f f fk i j  . A 

second body-fixed frame ˆˆ ˆ( , , )s s si j k is introduced at point s within the shaft at the grip. 

This frame defines the three mutually-orthogonal sense axes of the accelerometers and 

the angular rate gyros located within the shaft as detailed in the following section. The 

two body-fixed frames differ by a rigid-body translation /s fr


(position of s relative to f) 

ˆ
fk

ˆ
fj

ˆ
sk



ˆ
sj

ˆ
fk

f

top edge 

ˆ
sk



ˆ
si

ˆ
fi

(a) (b) 
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and a rotation that is determined apriori by the known club geometry. The rotation matrix 

F SR defines this rigid body rotation per 

ˆ ˆ

ˆ ˆ

ˆ ˆ

f s

F S

f s

f s

i i

j R j

k k

   
   

    
    

  

 (2.1.1) 

which, in turn, depends upon two angles determined by the design of the club. These two 

angles, referred to as the manufactured club lie   and loft   angles in Fig. 2.1(b), yield 

the following form for this rotation matrix  

cos sin sin cos sin

0 cos sin

sin sin cos cos cos

F SR

    

 

    

 
 


 
  

 (2.1.2) 

The angles   and   are Euler angles and the rotation matrix of equation (2.1.2) is 

derived by first rotating an amount   about the ˆ
fj  direction and then an amount   about 

the ˆ
fi  direction.  Notice here that the third Euler rotation about the ˆ

fk  axis is 0. 

 

The sensor module within the shaft measures the acceleration of point s, denoted ( )S

sa t


, 

and the angular velocity of the club, denoted ( )S t


. Here the superscript S is used to 

emphasize that the components of these vectors are measured with respect to the body-

fixed frame ˆˆ ˆ( , , )s s si j k . The overall objective is to utilize these measurements, from 

MEMS inertial sensors mounted within the grip end of the shaft, to deduce the orientation 

of the club head as well as the velocity and position of point f dynamically during the 

putting stroke. 
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Defining the Orientation of the Club Head 

 

We begin by defining the orientation of the club head which is equivalent to describing 

the orientation of the body-fixed frame ˆˆ ˆ( , , )f f fi j k relative to the lab frame ˆ ˆ ˆ( , , )I J K . To 

this end, we introduce three orientation angles for the club head referred to as the 

dynamic loft  , lie  , and face   angles. These three angles, which are commonly 

mentioned in the literature on golf, are critical in understanding the kinematics of a golf 

swing. Despite their common use however, there does not appear to be precise definitions 

for these angles. We answer this shortcoming by introducing the following definitions in 

reference to Fig. 2.2. 

 

 

Figure 2.2: Definitions of dynamic loft ( )t , lie ( )t and face angle ( )t of the club head 

using projections of the face frame ˆˆ ˆ( , , )f f fi j k . 

 

Begin by defining the loft angle  as the angle formed between the normal to the face, 

ˆ
fj , and its projection, ˆ

projj , onto the horizontal plane. Next, define the lie angle  as the 

angle formed between the top edge of the face, ˆ
fi , and its projection, ˆ

proji , onto the 

horizontal plane. Finally, introduce the face angle  as the angle formed between 

ˆ
projj and the original target line Ĵ .  When 0  , the face angle is said to be „closed‟; 

whereas when 0  , the face angle is said to be „open‟. Ideally one desires that 0  at 

impact so that the ball travels solely along the original target line. For convenience below, 

  face 

  loft 

  lie target line 



 

 17 

we also introduce the angle  formed between ˆ
proji and Î which is determined by the prior 

three angles. To establish the relationship between   and the other three angles one could 

use any of the constraint properties of direction cosine matrices.  For example using the 

constraint that the columns of the matrix must be orthogonal, one could take the dot 

product of column 1 and 2, then solve for   in terms of the other three angles.  

Recognize that the dynamic loft,  , and lie,  , of the club head vary significantly with 

time during the swing and that they are also distinct from the previously introduced 

manufactured loft,  , and lie,  , of the club which remain constant. 

 

The dynamic orientation of the club head can now be defined by the rotation matrix 

L FR between the body-fixed frame at f and the lab frame at O per 

ˆ ˆ

ˆ ˆ

ˆ ˆ

f

L F

f

f

I i

J R j

K k

   
   

    
     

  

 (2.1.3) 

Using the above definitions for ( , , , )    , this rotation matrix becomes 

cos sin sin cos sin cos sin sin cos cos

sin cos cos cos sin sin cos cos cos sin

sin sin cos cos cos cos sin cos sin cos

L FR

         

         
         

 
 
 
 
 

 

  



 
(2.1.4) 

 

Deducing the Instantaneous Orientation of the Club Head from Sensor Data 

 

We shall now demonstrate how this rotation matrix can be constructed upon integrating 

the angular velocity of the club, ( )S t


, to obtain the instantaneous or dynamic clubface 

loft, lie and face angles.  The integration procedure begins by establishing the initial 

conditions of the clubface orientation angles as follows.   

 

At address (t=0), the club is at rest, and thus  

(0) 0S 


 (2.1.5) 

and  
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ˆ(0)S

sa gK


 (2.1.6) 

In (2.1.6), we recognize that the MEMS accelerometer, which measures dynamic signals 

down to DC, detects an apparent upwards acceleration equivalent to gravity during 

address. Transforming this measured initial acceleration of point s from the shaft frame to 

the face frame via (2.1.2) yields 

ˆ ˆˆ ˆ(0) (0) (0) (0) (0)F F S S F F F

s s x f y f z fa R a a i a j a k gK     
 

 (2.1.7) 

where ( (0), (0), (0))F F F

x y za a a are the three components of gravity with respect to the face 

frame. 

 

By definition at address, (0) 0   which then simplifies L FR   (2.1.4). Using this 

simplified form, (2.1.3) yields 

ˆˆ ˆ ˆsin (0) sin (0) cos (0)cos (0)cos (0)f f fK i j k        (2.1.8) 

Substituting (2.1.8) into (2.1.7) enables the solution of the initial clubface loft angle, 

1
(0)

(0) sin

F

ya

g
 

 
   

 

 (2.1.9) 

and the initial lie angle,    

1 (0)
(0) sin

F

xa

g
   

  
 

 (2.1.10) 

from the measured initial acceleration data. Computation of (0)  follows readily from 

the same simplified form of (2.1.4) by exploiting the properties of this orthogonal 

transformation. For instance, using the fact that the first two columns are orthogonal 

yields 

1 sin (0)sin (0)
(0) sin

cos (0)cos (0)

 


 

  
  

 
 (2.1.11) 

With the above initial conditions on the orientation angles, we now proceed to integrate 

the measured angular velocity vector forward in time. To this end, we rewrite the rotation 

matrix L FR  (2.1.4) in terms of standard Euler parameters [43] 
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   
   
   

2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2

1 2 3 4 2 1 3 4 2 3 1 4

2 2 2 2

1 3 2 4 2 3 1 4 3 1 2 4

2 2

2 2

2 2

L F

e e e e e e e e e e e e

R e e e e e e e e e e e e

e e e e e e e e e e e e

     
 

      
      

 (2.1.12) 

Evaluating both (2.1.4) and (2.1.12) at address (t=0) and equating components leads to 

the following initial conditions for the four Euler parameters 

1

4

sin (0) cos (0)cos (0)sin (0)
(0)

4 (0)
e

e

   
  (2.1.13) 

 

2

4

sin (0)cos (0)
(0)

4 (0)
e

e

 
  (2.1.14) 

 

3

4
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Next, we transform the measured angular velocity with components in the shaft frame to 

its equivalent representation with components in the face frame per 

F F S SR  
 

 (2.1.17) 

The Euler parameter state equations for the face frame are [43] 
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  (2.1.18) 

which may now be integrated forward in time using the initial conditions (2.1.13)-

(2.1.16) above and the measured angular velocity. This computation must also satisfy the 

constraint 2 2 2 2

1 2 3 4e e e e 1     which can be achieved in a variety of ways (e.g., via a 

penalty formulation following [44]). 

The resulting Euler parameters at each time step can then be used to reconstruct the 

dynamic orientation angles of the face frame. Equating the components of (2.1.4) and  

(2.1.12) and solving for the dynamic clubface loft, lie and face angles yields 
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 1

2 3 1 4( ) sin 2( )t e e e e    (2.1.19) 
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 (2.1.21) 

 

Deducing the Velocity and Position of the Club Head from Sensor Data 

 

Upon determining the dynamic orientation of the club head relative to the lab frame, one 

may now turn attention to computing the absolute velocity and position of the clubface in 

the lab frame by suitable integration of the accelerometer data. We begin by first 

determining the absolute velocity and position of point s. 

 

The acceleration of point s in the shaft is originally measured with respect to the shaft 

frame.  Its equivalent representation with respect to the lab frame can be constructed by 

two successive rotations 

ˆL L F F S S

s sa R R a gK   
 

 (2.1.22) 

Here, we also subtract gravity so that the remaining vector represents the absolute 

acceleration of point s. Integration of this result 

0

( ) ( )

t

L L

s sv t a t dt 
 

 (2.1.23) 

yields the absolute velocity of point s in the lab frame recognizing that (0) 0L

sv 


. One 

further integration yields the absolution position of point s in the lab frame 

0

( ) ( ) (0)

t

L L L

s s sr t v t dt r 
  

 (2.1.24) 

where 

/(0) (0) (0)L L L

s f s fr r r 
  

 (2.1.25) 
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At address, (0) 0L

fr 


by definition. Furthermore, 

s s
f f

L L F F S Sr R R r  
 

 (2.1.26) 

where s
f

Sr


 is a constant vector known apriori from the club geometry.  Pursuing our 

objective, one may now compute the absolute velocity and position of point f in the lab 

frame via 

 s
f

L L L F F S S L

f sv v R R r    
  

 (2.1.27) 
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 (2.1.28) 

where X,Y, and Z are Cartesian coordinates that describe the position of point f in a lab 

fixed frame. 

 

2.2 Miniature Wireless IMU Hardware 

 

Having established the measurement theory above, we now describe the inertial sensor 

unit that provides the requisite acceleration ( )S

sa t


 of point s and the angular velocity of 

the club, ( )S t


, both measured with respect to the shaft frame. Begin with Fig. 2.3, 

which illustrates an exploded view of the portion of the IMU that contains the MEMS 

inertial sensors.  

  



 

 22 

 
Figure 2.3:  Partially exploded CAD drawing of a portion of the miniature IMU showing 

position and orientation of MEMS accelerometer and angular rate gyros.  The location 

and orientation of the shaft reference frame ˆˆ ˆ( , , )s s si j k  is defined by the sense axes of a 

tri-axis accelerometer. Three angular rate gyros on mutually-orthogonal faces have sense 

axes aligned with the axes of the accelerometer. The sensor circuit boards are highlighted 

in green. 

 

This portion of the design consists of three sensor circuit boards (green) arranged to form 

three-mutually orthogonal planes. Mounted on the main board is a tri-axis accelerometer 

which defines point s. The orientation of the sense axes of this accelerometer defines the 

shaft fixed frame ˆˆ ˆ( , , )s s si j k . Three single-axis angular rate gyros are illustrated having 

sense axes aligned with ˆˆ ˆ( , , )s s si j k . The i-axis rate gyro is mounted on the main board 

whereas the j- and k-axis gyros are mounted on separate boards that define mutually-

orthogonal planes with the main board. The orientation of all three planes is achieved by 

a small, machined gyro fixture that also provides mechanical support. The entire sensor 

assembly is captured at the upper end by a cylindrical coupling (portion shown) that 

assures the proper positioning and alignment of the IMU within the shaft of the club. The 

coupling forms a close slip fit with the inner diameter of the shaft and positive orientation 

of the IMU is provided via a small key way machined on the end of the shaft. A photo of 
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the entire assembled IMU is shown in Fig. 2.4 which also shows the physical scale of the 

design relative to the grip end of a golf club. 

 

 

Figure 2.4:  Photo illustrates the major components of the fully assembled wireless IMU 

that fits within the small confines of the shaft of a golf club. An analog circuit includes 

the MEMS inertial sensors (see Fig. 2.3) and a digital circuit includes a microprocessor, 

wireless transceiver, and an antenna. A battery is housed within the hollow shaft-sensor 

coupling at the far left. 

 

The complete design yields a very compact and lightweight IMU that adds minimal mass 

to a golf club as detailed below.  An analog circuit, powered by a regulated 5V source, 

includes the MEMS inertial sensors described above as well as a battery housed within 

the shaft-sensor coupling at the far left. Also at the far left is a small cap that finishes the 

end of the design and it is the only portion visible when the IMU is installed.  A 

miniature power switch, which protrudes from this cap, is also visible in the photograph.  

A digital circuit finishes the opposite end of the design and it is powered by a regulated 

3V source.  The major digital components include a microprocessor (for performing 10-

bit A/D, controlling RF transmission, and other circuit functions), a low-power RF 

transceiver (2.4GHz), and a surface-mount antenna.  

 

The total continuous current draw of the assembled wireless IMU is 37mA including a 

28mA draw from the analog components and a 9mA draw from the digital components. 

The total assembled mass is 25.1gm with 7.1gm (28%) of that total attributed the 6V 
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battery which provides continuous operation for two hours. The total mass is extremely 

small relative to that of a golf club (e.g., 490gm) rendering it virtually undetectable. Note 

that the total mass of the IMU is also a small fraction of the mass of a grip alone (60gm). 

The performance and accuracy limits of the design are carefully evaluated next. 

 

2.3 Performance and Accuracy 

 

The putting stroke is an excellent candidate for this sensor system since 1) the dynamics 

of the stroke are well within the design ranges of commercial MEMS accelerometers and 

angular rate gyros, and 2) the outcome of the putt is highly dependent on the orientation 

and position of the club head [41]. In addition, the entire stroke is completed within a 

very short time frame (typically 1-2 seconds), which minimizes the adverse influence of 

sensor drift, and within a modest bandwidth (e.g., 25 Hz). The putting stroke, however, 

does place stringent accuracy limits on the computed orientation angles of the clubface. 

For example, to make a 20 foot putt, the face angle  must remain within 1 degree of the 

intended target line; refer to Fig. 2.2. 

  

The accuracy of the computed clubface orientation angles, club head velocity, and club 

head position rests on: 1) the performance limits of the inertial sensors, 2) the calibration 

of the fully assembled IMU, and 3) the data reduction (integration) methods employed. 

Fortunately, the low noise and bias drift stability characteristics of most commercial 

MEMS inertial sensors lead to acceptable resolution limits for acceleration and angular 

velocity over the short duration, low bandwidth dynamics of the putting stroke. For 

instance, under these conditions, the noise limits of commercially available 

accelerometers and angular rate gyros remain less than 2 mg and 0.3 deg/sec, respectively. 
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System-Level Calibration  

 

The system-level calibration of the wireless IMU employs algorithms adapted from [34-

35]. In particular, the IMU is subject to three precise 180 degree rotations about each of 

the sensor axes ˆˆ ˆ( , , )s s si j k in succession; refer to Fig. 2.3.  Prior to each rotation, the 

selected „active‟ axis is aligned with gravity (and to within 0.03 deg via a bullseye 

level) so that the associated accelerometer undergoes a 2g change following a 180 degree 

rotation about a horizontal axis. This procedure is achieved using the custom calibration 

fixture pictured in Fig. 2.5 that includes a leveling plate (with bullseye level), a precision 

mounting block with a bored hole for fixturing the IMU, and a ground shaft equipped 

with a high-resolution optical encoder. The encoder is used to insure a 180 degree 

rotation to within the encoder resolution limits ( 0.07 deg). 

 

 

Figure 2.5:  Calibration fixture used to characterize the 24 calibration constants for the 

assembled IMU. The principal components include a leveling plate, a bullseye level, a 

precision sensor mounting block, and a shaft with an optical encoder. 

 

Calibration of the accelerometers is achieved by noting the sum and difference of the 

acceleration signals before and after each 180 degree rotation.  The angular rate gyros are 

calibrated by requiring their integrated signals ultimately yield the controlled 180 degree 

rotation. This procedure characterizes 24 calibration constants for the assembled IMU. 
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Bullseye Level 

Sensor Block Shaft and 
Optical Encoder 
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These constants include the scale factor, the two cross-axis sensitivity scale factors, and 

the dc offset for each axis of the six degree-of-freedom sensor system. The cross-axis 

sensitivities originate from minute but unavoidable misalignment of the individual axes 

of each sensor relative to the axes ˆˆ ˆ( , , )s s si j k  defined by the shaft of the club.     

 

Once calibrated, the sensor system can be effectively used to measure putting strokes. 

Prior to doing so, however, we report next on the expected accuracy of these 

measurements. 

 

Accuracy 

 

We shall evaluate the accuracy of the sensor system by separately evaluating the 

accuracy achieved 1) at address of the ball, 2) during the putt, and 3) at impact of the ball.  

In each of these phases, the kinematical quantities obtained using the sensor system are 

benchmarked against those measured using independent instruments (e.g., optical 

encoders).  We begin by considering time 0t   when the club is at address with the ball. 

 

At address, the club is momentarily still and the accelerometer signals yield the initial lie 

and loft of the club head as discussed in Section 2.2; refer to Eq. (2.1.9) and (2.1.10).  To 

independently measure the initial orientation of the club, we again employ the calibration 

fixture which enables one to measure the lie and loft to within the limits of precision of 

the bullseye level ( 0.03 deg) and the optical encoder ( 0.07 deg). To this end, the 

platform is first leveled which establishes the origin (zero angle) for the optical encoder.  

The platform is then rotated about a horizontal axis to a new orientation as measured by 

the encoder and then held stationary while data are collected from the sensor.  The initial 

orientation angles calculated by the MEMS sensor system are compared to those 

measured by the encoder over a wide range of initial lie and loft as reported in Table 

2.12.. These results clearly demonstrated that the MEMS sensor system resolves the 

initial lie and loft angles to within 1

4
 deg. 
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Accuracy at Address 

Range of Lie Angles 50 deg 

 

Range of Loft Angles 50 deg 

Number of Tests 42 Number of Tests 40 

Average Angular Error .0 01deg Average Angular Error .0 05 deg 

Table 2.1:  Statistics of initial lie and loft angle testing.  Table reports differences 

(error) between angles measured using the MEMS sensor system and an optical 

encoder for numerous tests over a large ( 50 deg) range. 

 

The initial lie and loft angles form the initial conditions for the subsequent computation 

of the dynamic lie, loft and face angles during a putting stroke; refer to Section 2.2.  To 

evaluate the sensor accuracy during this dynamic phase and at impact with the ball, we 

designed an instrumented putting robot as illustrated in Fig. 2.6.  This is a passive single 

degree-of-freedom robot that executes a perfect “pendulum-style” putt [41] by swinging 

freely under gravity. Even though this system is completely passive it will be referred to 

as a robot, since previous golf literature refers to similar fixtures as “robots”. The robot 

swing is driven by gripping the upper arm and pulling the arm back to make the desired 

backswing and then releasing it, thereby allowing the forward swing to occur freely under 

the effect of gravity.  The club is clamped at the grip below an adjustable “wrist joint” 

which is at the distal end of an adjustable “forearm”. An “upper” arm connects an 

adjustable “elbow” joint to a “shoulder” joint which is supported by a horizontal shaft 

captured by a pair of bearings. The shaft incorporates an optical encoder for precise 

measurement of the rotation of the club ( 0.1 deg) about the shaft at the shoulder joint. 

The pendulum robot yields a highly repeatable putting stroke wherein the forward swing 

repeats (in reverse) the backswing. Thus, at impact, the club head must return to the same 

position and orientation it had at address. This required „closure‟ provides a powerful 

means to evaluate the accuracy of the sensor system during the dynamic phase of the 

putting stroke and with realistic putting speeds and range of motion. 
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Figure 2.6:  Single degree-of-freedom (pendulum) putting robot used to assess the 

accuracy of the sensor system during the dynamic phase of putting and at impact. Photos 

illustrate the principal components of the robot including a “shoulder” joint that allows 

rotation about one axis as measured by an optical encoder, adjustable (then fixed) 

“elbow” “forearm”, and “wrist” joints, and a clamp that grips the club. 

 

We next report results obtained from ten trials measured with the sensor system 

embedded in a club swung by the putting robot.  The results include the closure error at 

impact as well as the dynamic tracking error during the backswing and forward swing. 

By closure error, we refer to the difference in the computed club head lie, loft and face 

angles between address and impact.  Ideally, these differences should be zero as the 

putting robot enforces a kinematically closed path from address to impact.  In addition, 

the angle measured by the encoder is equal to the clubface loft angle which provides a 

quantitative means to assess the accuracy of the sensor system all throughout the putting 

stroke.  We refer to difference between these latter two measures as the dynamic tracking 

error. 
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Figure 2.7:  Dynamic loft, lie and face angles computed from MEMS sensor system for a 

typical swing using the putting robot.   

 

Figure 2.7 illustrates typical results for the dynamic loft, lie and face angles for a swing 

using the putting robot from address (t=0 sec) to impact (t1.5 sec.).  The initial (non-

zero) loft and lie angles at address are subtracted from these results to better illustrate the 

closure errors at impact. Thus, all three angles start at zero and should ultimately end at 

zero at impact for perfect closure. In the example shown however, there is a minute 

closure error for the loft angle which finishes approximately at + 0.07 degrees as shown 

in the enlarged view. The statistics of ten such closure tests are reported in Table 2.2 

which includes the mean and standard deviation for the closure errors for the lie, loft and 

face angles, rounded to the nearest 0.1 degrees, which is the resolution of the optical 

encoder used to benchmark the IMU accuracy.  These results confirm that the wireless, 

miniature IMU and the associated integration algorithm (Section 2.2) yield closure errors 

on the order of 0.1 deg (standard deviation) yielding highly accurate measurements of 

putting dynamics.  
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Angular Closure Errors for MEMS IMU 

 Lie 
Closure Error 

(deg) 

Loft 
Closure Error 

(deg) 

Face 
Closure Error 

(deg) 

Mean 0.0 0.0 0.0 
Stand. Dev. 0.1 0.1 0.1 

Table 2.2:  Mean and standard deviation of closure errors for clubface lie, loft and face 

angles for ten swings using putting robot.  Results are rounded to the nearest 0.1 degrees 

because that is the resolution of the optical encoder used for independent measure.   

 

 

Figure 2.8:  Enlarged view of dynamic tracking error during a typical swing with putting 

robot. 

 

Figure 2.8 illustrates an enlarged scale view of the dynamic tracking error defined as the 

instantaneous difference between the loft angle computed using the MEMS sensor and 

that reported by the optical encoder. The loft angle changes by approximately 15 degrees 

during the swing and the maximum tracking error remains smaller than 0.35 degrees and 

has an average of 0.15 degrees. The average of the ten trials was 0.11 degrees. The dither 

in Fig. 2.8 is due to comparing the analog output of the sensor to the digital signal from 

the optical encoder.  Since the resolution of the encoder is 0.1 degrees the fluctuation of 

approximately 0.1 degrees seen in Fig. 2.8 is expected.  These results confirm that the 

tracking errors are also on the order of 0.1 degrees.  



 

 31 

 

The results above consider the accuracy of the predicted lie, loft and face angles obtained 

using the rate gyro data and the algorithms summarized in Section 2.2. The accelerometer 

data are also used in tandem with the rate gyro data to predict the club head speed, the 

club head path, and ultimately the impact position of the ball on the clubface; refer again 

to Section 2.2. The putting robot requires that the clubface at impact align with its 

position and orientation at address. To demonstrate that the robot actually achieves this 

closed path, we directly measure the location of the impact using „impact tape‟ for a 

number of swings. Impact tape leaves a visible mark where ball impact occurs as seen in 

the images of Fig. 2.9. These images confirm that the club path closes at impact to the 

same position as at address to within the (visual) resolution of the tape (approximately 2 

mm).  

 

 
Figure 2.9:  Impact tape records of eight swings made with the putting robot. Left (putt 

nos. 1-3) and right (putt nos. 5-8) records demonstrate that the clubface returns at impact 

to same position at address to within the (visual) accuracy of the tape (approximately 2 

mm).  The two impact tape strips are for identical setups of the robot, but allow a clear 

view of the impact patterns.  The general dimensions of the tape are noted in the figure 

and the concentric circles increase in diameter by 1cm for each successive circle. 

 

The predicted path of the club head for a typical putt is illustrated in Fig. 2.10 which 

illustrates the computed Cartesian coordinates of point f on the clubface relative to the 

lab-fixed frame; refer to f
o

Lr


 in Fig. 2.1.  The path largely lies in the (vertical, 

ˆ ˆJ K plane) as expected. The maximum backswing position occurs at 32Y cm  where 

the clubface has also been lifted 3Z cm  above its height at address. The X motion 
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reaches a maximum 12mm  which should be zero based on robot construction, but is the 

sum total effect of finite precision on aligning the sensor in the golf club and aligning the 

club in the robot.  At impact, the closure on position is excellent as observable in the 

exploded view. Here the maximum position closure error is less than 3mm and it occurs 

in the vertical (Z) direction. The average and standard deviations of the position closure 

errors over ten swings are 0.0 1.5 mm for the X-direction and 2.0 1.3 mm for the Z-

direction. These tight errors on position closure again confirm the accuracy of the design 

and the data reduction algorithm for resolving the dynamics of a putting stroke.  

 

 

Figure 2.10:  Computed Cartesian coordinates for path of point f on the face of the putter 

based on measured accelerometer and gyro data for a typical swing with the putting 

robot. 

 

The accuracy measures above focus largely on the closure of the club head position and 

orientation at impact when using the putting robot.  Given that the backswing and the 

forward swing of the robot trace the same path, one can also evaluate the accuracy of the 

MEMS sensor system at intermediate times during the swing. For example, Fig. 2.11(top) 

illustrates the computed path of the club head during the backswing (blue curve) and the 

forward swing (red curve) for a typical putt using the putting robot.  The companion face 

angle data are presented in Fig. 2.11(bottom).  The forward path traces nearly perfectly 

the path of the backswing; note the highly magnified scale for motion in the lab-based X-
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direction (direction transverse to target line). Likewise, the face angle remains close to 

zero and retraces the same curve to a high degree. The small but systematic departure 

from the target line ( Ĵ -axis) in each case arises from a very small initial misalignment 

between the ˆ
fi axis of the sensor frame and the fixed axis of rotation of the putting robot. 

For this trial, the maximum deviation of the club head paths during the backswing and the 

forward swing is less than 1.5mm. Similarly, the maximum deviation between the face 

angles along these paths remains less than 0.03 degrees. Over ten such trails, the average 

and standard deviation for these path and angular errors were 2.3 1.3 mm and 

0.07 0.09 degrees, respectively. These results again confirm that the MEMS sensor 

system and the associated numerical algorithms yield outstanding positional and angular 

accuracies for the objective of resolving a putting stroke.  

 

 

Figure 2.11:  (Top) Overhead view of position data from one trial putt.  (Bottom) Face 

angle as a function of position.  Note the highly magnified scale for the X position 

coordinate (ordinate). 
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2.4 Closure 

 

This chapter presents the theory, design, and experimental evaluation of a miniature, 

wireless six degree-of-freedom inertial measurement unit (IMU) for computing the 

dynamics of a golf swing.  The design integrates a three-axis MEMS accelerometer, three 

single-axis MEMS angular rate gyros, a microprocessor, and a wireless (RF) transceiver 

in forming a battery-powered IMU that nests within the small confines of the shaft of a 

golf club. The inertial sensors, located at the grip end of the shaft, are used to compute 

the kinematics (e.g., velocity, position and orientation) of the club head located at the 

opposite end of the shaft. The requisite measurement theory is carefully developed and 

the accuracy of the assembled sensor system is systematically evaluated by experiment. 

The experiments utilize a putting robot that executes a highly repeatable „pendulum‟ 

stroke for putting. The robot is equipped with an optical encoder for independent 

assessment of swing kinematics.  

  

The achieved accuracy and performance of the MEMS sensor system for the target 

application (putting) are summarized in Table 2.3. 

  

Accuracy and Performance 

 Angular Accuracy Performance  

Initial Orientation .0 2 deg Total Mass 25 g 

Absolute Orientation .0 5 deg Total Current Draw 37 mA 

 Position Accuracy X-Section Diameter 13 mm 

Absolute Position 3 mm Continuous Run-Time 2 hr 

Table 2.3:  Achieved accuracy and performance characteristics of the miniature, wireless 

MEMS IMU for putting dynamics. 

 

By employing the measurement theory, the sensor system yields the position of the club 

head with an absolute accuracy of 3 mm and the orientation of the club head with an 

absolute angular accuracy of 0.5 degrees. The resulting design yields a highly portable, 

inexpensive, and highly accurate sensor system for measuring golf swing dynamics. 

Possible uses include golf swing training, custom club fitting, and club design. This 

sensor system also addresses many shortcomings of existing camera-based swing training 
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systems. The example sensor system for putters is readily adapted to other golf clubs 

(irons and drivers) by appropriately changing the dynamic ranges of the inertial sensors. 
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 CHAPTER 3 

UNDERSTANDING PUTTING STROKE KINEMATICS  

VIA THE MEMS SENSOR 

 

The objective of this chapter is to use the MEMS sensor detailed in the previous chapter 

to quantify the putting stroke and thereby advance the fundamental knowledge of putting 

techniques.  In realizing this objective, we also propose a generalization of all putting 

strokes by introducing a two-parameter kinematic model of putting.  This model unifies 

the previous classifications of putting strokes which were categorized as either 

“pendulum style” strokes or “gate style” strokes [41].  The MEMS sensor technology 

allows us to quantitatively explore these two putting styles and to demonstrate their 

strong relationship through a simple kinematic model. In addition, this chapter introduces 

a novel diagnostic tool for analyzing putting strokes and quantitative metrics for common 

putting faults.  We begin by reviewing the literature specific to putting techniques.  

 

3.1 Literature Specific to Putting Techniques 

 

A successful putt requires skill in reading the green, aligning the putt, and then striking 

the ball with the club.  This technology, which focuses on mechanics of the golf swing, is 

a tool to evaluate the last skill. Nevertheless, we recognize the importance of reading the 

green and properly aligning the putt at address. 

  

The putting stroke ultimately determines the initial velocity and angular velocity of the 

ball following impact.  These „initial conditions‟ for the ball following impact result from 

three prior conditions at the time of impact, namely: 1) the velocity of the club head, 2) 

the orientation of the club head, and 3) the impact location of the ball on the clubface.  As 

the means to explain how players develop these impact conditions, coaches and teachers 

often study related aspects of the putting stroke that are easier to describe such as the 
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“putter path” (e.g., the path traced by the centroid of the club head during putting) and the 

“power source” (e.g., the sources of the kinetic energy of the club). After surveying the 

writings of three well-respected teachers, David Pelz [41], Stan Utley [45], and Edward 

Craig [46], we summarize a contemporary understanding of the putting stroke. 

 

David Pelz, who is a coach of PGA players and author of Dave Pelz’s Putting Bible [41], 

advocates a kinematically simple and thus “repeatable” stroke often referred to as the 

“pendulum style” stroke. In this stroke, the putter head never deviates from the intended 

target line and the putter face remains square to this target line.  Thus, following address, 

the putter head is brought back along the target line and raised slightly above the green in 

proportion to the length of the „backswing‟. The forward swing is the reverse motion 

which is ideally powered solely by the gravitational potential energy of the club as if it 

were a simple pendulum; refer to Fig. 3.1(a). 

 

 

Figure 3.1: Illustration of pendulum and gate style putting strokes as viewed from 

overhead [41]. (a) Pendulum stroke is also referred to the Pure Inline and Square (PILS) 

stroke by Pelz.  (b) Gate stroke, showing the club head moving on an arc and the clubface 

opening and closing during the stroke. 

 

Pelz concludes that the pendulum style stroke, or the Pure Inline and Square “PILS” 

stroke, is the stroke players should adopt since the use of gravity alone to power the club 

leads to a highly repeatable stroke.  He also mentions that the “gate” or “screen door” 

stroke taught by Harvey Penick, a highly respected golf teacher, is based on a pendulum 

motion where the axis of rotation is inclined from the horizontal.  This is a keen 

(a) (b) 
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observation that we later return to in developing a simple kinematic model for all putting 

styles. Pelz asserts that if the axis of rotation is inclined from the horizontal, the player 

must supply a reaction force (actually a reaction torque) to maintain this angle against 

gravity.  This reaction force is a perturbation to the PILS stroke. 

 

Stan Utley, who is a current professional player, a current coach of PGA players, and 

author of The Art of Putting [45], teaches putting using a natural, free-flowing swing.  He 

advocates for the putting stroke being a miniature version of a “full swing‟ and this also 

leads to a “gate style” putting stroke. The gate style swing derives its name from the 

analogy of a swinging gate whose hinge line is not plumb. As the gate „opens‟, the center 

of mass of the gate raises slightly and then falls as the gate „closes.‟ Kinematically, the 

club head during a gate swing follows a slightly curved path, when viewed from 

overhead, the clubface opens relative to the target line during the backstroke, and then 

closes during the forward stroke.  Ideally, the clubface remains perpendicular to the 

putter path throughout the stroke so that at impact the face is again square to the target 

line; refer to Fig. 3.1(b). 

  

Edward Craig, who is the editor of Britian‟s top golf magazine Golf Monthly and author 

of Putt Perfect [46], discusses the potential benefits of both the gate and the pendulum 

strokes.  Craig focuses on the motion of the shoulder, arms and wrists and concludes that 

the motions of these body parts should be independent of the putter path.  He says that the 

shoulder muscles should be the power source for the backswing.  The arms and wrists 

should provide a rigid connection from the rotation axis to the putter.  The lower body 

should remain still. 

 

3.2 Two-Parameter Kinematic Model for Putting 

 

A keen reader may note that the description of the gate stroke above lacks a precise 

definition. By contrast, the pendulum (or PILS) stroke definition precisely describes the 

path and orientation of the putter head. Thus, while there are definitive means to test 

whether a stroke comes close to an ideal pendulum stroke, no analogous means have been 
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proposed to test whether a stroke comes close to an ideal gate stroke.  We shall now 

introduce a two-parameter kinematic model of the putting stroke that quantitatively 

predicts the path and orientation or the putter head for all strokes, including ideal 

pendulum and gate strokes.  Later, we also show that this model correlates well with the 

measured putts from players of varying skill levels.  

 

 

 

Figure 3.2: Definition of two-parameter kinematic model for putting. (a) The parameter 

 defines the angle the rotation axis makes with the horizontal and the parameter 

armL defines the perpendicular distance from the rotation axis to the top of the grip (point 

s).  (b) View in the  ' 'ˆ ˆ,J K -plane showing the parameters 
armL , gripY , and the angle of 

rotation  about the rotation axis. 

 

Figure 3.2 illustrates the proposed model which has a single rotational degree of freedom 

and is defined by the two parameters   and 
armL .    is the angle that the rotation axis 

makes with the horizontal and
armL  is the perpendicular distance from the rotation axis to 

the top of the grip. The top of the grip is essentially point s, the origin of the body fixed 

sensor frame  ˆˆ ˆ, ,s s si j k defined in the previous chapter.  
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Establishing the Model Parameters from Experimental Data 

 

We now illustrate how to construct the model parameters   and 
armL from the measured 

data from a player‟s putt. Doing so also allows us to predict the ideal kinematics of the 

player‟s putt as predicted by a model that most closely fits the player‟s natural stroke.  

This is a novel approach in that the player‟s stroke is ultimately compared to a standard 

that closely fits the natural stroke of the player rather than to some pre-determined 

standard (say a perfect pendulum stroke).  

 

Figure 3.2(a) illustrates a lab-fixed frame  ' ' 'ˆ ˆ ˆ, ,I J K , where 'Î  is aligned with the 

rotation axis. This frame is distinguished from the second lab-fixed frame  ˆ ˆ ˆ, ,I J K  by the 

rotation  about the 
'ˆ ˆJ J  axis.  The angular velocity vector 


 of the club is along 

'I


and thus orthogonal to Ĵ . The Î  and K̂  components of 


, 
x  and 

z respectively, 

are related to  through 

tan z

x


 


 (3.2.1) 

The quantities 
x  and 

z  can be derived from the sensor measurements of 


. 

 

The position vector s
p

R


 lies wholly within the  ' 'ˆ ˆ,J K  plane and the length of this vector 

is the parameter 
armL .  One may compute 

armL  from the Ĵ  component of the grip 

position gripY , upon computing the rotation angle  as suggested in Fig. 3.2(b).    is 

computed by integrating ( )t


using (0) 0  at address.  These quantities are related 

through  

 sin

grip

arm

Y
L 


 (3.2.2) 

The quantity gripY  is derived from the sensor measurements as detailed in Chapter 2.   
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Predicting the “Ideal Putt” Based on the Model 

 

Having established a method for determining the model parameters, we now predict the 

kinematics of the “ideal” putt as predicted by the model.  The key kinematical quantities 

to predict include the three club head orientation angles (lie, loft, and face angles) and the 

path of the putter head. 

 

The model assumes that the club rotates about a constant rotation axis, 
'I 

 
. Thus, the 

Euler parameters for this rotation are easily derived [43].  Explicit expressions for the 

rotation axis and Euler parameters as functions of  and  are 

1

2

3

4

ˆ ˆ ˆcos 0 sin

cos sin
2

sin 0
2

sin sin
2

cos
2

I J K

e

e

e

e





    

 
  

  
    

      
 







 

(3.2.3) 

In the previous chapter the relationships between the Euler parameters and the clubface 

orientation angles (lie, loft, and face angles) were derived and are reproduced here as 

 1

2 3 1 4( ) sin 2( )t e e e e    

 1

1 3 2 4( ) sin 2( )t e e e e    

1 1 2 3 42( )
( ) sin

cos

e e e e
t



   
  

 
 

(3.2.4) 

By substituting the results of Eq. (3.2.3) into Eq. (3.2.4), the simple kinematic model 

yields the lie, loft and face angles of the club head throughout the putting stroke. 

 

To predict the putter path, we now develop an expression for the vector f
p

R


illustrated in 

Fig. 3.3(a).  
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Figure 3.3: (a) Definitions of s
p

R


, f
s

R


, and f
p

R


, which are used to describe the predicted 

putter path based on the model proposed in this section.  (b) View looking down the 
'Î direction showing the constant length 

totL . 

 

Figure 3.3(b) illustrates the distance 
totL , which is the 'K̂ component of the vector f

p

R


 

when the club is at address 0 .  This distance is constant as it is determined by the 

(constant) putter geometry and the parameter 
armL .  To derive an expression for f

p

R


, first 

we establish f
s

R


 at address and then s
p

R


 for all time t as follows. 

 
' '

ˆ ˆ ˆ0 (0) (0) (0)

ˆ ˆsin cos

f
s

s
p

arm arm

R X I Y J Z K

R L J L K

  

   



  
(3.2.5) 

 

(3.2.6) 

f
s

R


 is most conveniently written using the  ˆ ˆ ˆ, ,I J K  frame while s
p

R


 is conveniently 

written using the  ' ' 'ˆ ˆ ˆ, ,I J K  frame.  The components of f
s

R


 are the result of calculating 

the initial position of the golf club as detailed in Chapter 2 and s
p

R


 can be derived by 

inspection of Fig. 3.2.  The transformation between these two frames,
'L LC , which is 

required prior to adding these two vectors, is given by 

Î

K̂
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p 
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R
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'

'

'

'

ˆ ˆ ˆ
cos 0 sin

ˆ ˆ ˆ0 1 0

ˆ ˆ ˆsin 0 cos

L L

I I I

J C J J

K K K

       
      

       
                   

 (3.2.7) 

Evaluating equation (3.2.6) at 0t   and 0 , and applying equation (3.2.7) yields the 

following expression for the vector f
p

R


at address 

     ' ' 'ˆ ˆ ˆ0 cos sin sin cosf
p

armR X Z I YJ X Z L K       


 (3.2.8) 

The distance 
totL  is the 'K̂  component.  The 'Î component remains constant since the 

club is rotating about the 'Î  axis.  The final expression for f
p

R


at any time t is given as 

follows where the superscripts L  and 'L  are used to denote which lab-fixed frame is used 

to describe each vector quantity. 

     

 

'

' '

' '

' ' 'ˆ ˆ ˆcos sin cos sin sin cosf
p

f f
p p

L

tot tot

L L L L

T
L L L L

R X Z I Y L J Y L K

R C R

C C

          







 
 (3.2.9) 

 

Equation (3.2.9) can now be used to predict the path of the center of the putter face, point 

f, throughout the putt.  

 

Shortly we shall demonstrate that this simple model correlates well with the measured 

putting strokes from subject players.  Before analyzing the player strokes however, we 

first present measurements of putts made using the putting robot described in the 

previous chapter. Doing so allows us to confirm the accuracy of the kinematic model in a 

mechanism that truly possesses just a single degree-of-freedom. 

 

3.3 Evaluation of Robot Putting Strokes Using Kinematic Model 

 

The putting robot introduced in the previous chapter is now used to demonstrate the 

utility of the two-parameter kinematic model under highly controlled conditions. Figure 

3.4 reintroduces the putting robot which is essentially a single degree-of-freedom 
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pendulum with adjustable linkages extending from the axis of rotation to the grip on the 

club. 

 

Figure 3.4: Images of the putting robot introduced in the previous chapter. 

 

The putting robot was used to perform both PILS strokes and gate strokes by simply 

controlling the orientation of the axis of rotation. For the PILS stroke, the angle 0 . 

For example gate strokes, the robot base was inclined to achieve
o10  .  Measured 

putting data for both types of strokes is summarized below. 

 

Starting with the PILS strokes, Eq. (3.2.1) was used to estimate an average inclination 

angle    
o1.1  from computed results of 

x and 
z . This rather small angle is quite 

reasonable considering that the robot base is essentially level.  Direct measurement of the 

parameter 
armL  provides 

armL   21.5 0.25 in.  This agrees well with the value 
armL   

21.51in (and standard deviation 0.37 in) predicted from Eq. (3.2.2) based on the average 

of 10 trials. Having established that parameters of the model and the physical set up agree, 

we next present results for the predicted and measured clubface orientation and path. 

 

The model predicts the orientation of the putter face throughout the putting stroke using 

Eqns. (3.2.3) - (3.2.4).  The sensor measurements provide direct measurement of these 

Rotation Axis 
Shoulder 

Forearm 

Elbow 

Wrist 

Optical Encoder 
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same quantities per the theory developed in Chapter 2.  Figure 3.5 compares the 

orientation angles of the putter face predicted by the model and measured from the sensor 

data for a typical PILS stroke by the putting robot.  The predicted loft angle (cyan curve) 

and the measured loft angle (blue curve) lie nearly on top of each other demonstrating 

excellent correlation between the simple model and the sensor measurements.  Similarly 

good agreement is observed for the face angle (black curve = predicted vs. green curve = 

measured).  A slight disparity exists between the measured lie angle (red curve) and the 

predicted lie angle (magenta curve).  This modest difference derives from a slight 

misalignment of the sensor axes in the putter relative the axis of rotation of the robot as 

revealed next in an analysis the putter path. 
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Figure 3.5: Measured and predicted orientation angles for a robot-generated PILS putting 

stroke.  The blue, red and green curves are the measured loft, lie, and face angles, 

respectively. The cyan, magenta and black curves are the corresponding angles predicted 

by the simple, two-parameter kinematic model. 

 

Having demonstrated good agreement between the predicted and measured orientation of 

the putter face, we now examine the putter path.  Figure 3.6 shows the predicted putter 

path (cyan curve) and the calculated putter path (backswing = blue curve; forward swing 

= red curve).  Notice that the measured path is very nearly straight (as predicted by the 

model) and that displacements along the lab-fixed “X” axis are greatly enlarged due to 

the refined vertical scale used in this figure (scale units of 0.1 in). The results shown in 

the Fig. 3.6(a) are uncorrected for the small misalignment of the sensor axes relative to 

the rotation axis of the putting robot.  This misalignment derives from several sources 

including: 1) the imprecise manner of gripping the club, 2) any slight misalignment of the 

sensor axes relative to the grip, and 3) the machining tolerances controlling the placement 

and orientation of the bearings supporting the robot shaft. Figure 3.6(b) shows the data 

corrected for misalignment, using a correction of 1.6o .  This correction is computed 

from 

   

 
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




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 
 
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where 
bt denotes the time at the end of the backswing and  ,f fX Y  are the 

 ˆ ˆ,I J Cartesian coordinates of clubface centroid, point f. 

 

 
Figure 3.6: Measured and predicted path for the center of the putter head during a robot-

controlled PILS putting stroke.  (a)  Uncorrected for slight misalignment of sensor axes to 

the robot rotation axis.  (b)  Corrected for this slight misalignment. 

 

The measured putter path, once corrected for slight sensor misalignment, is shown Fig. 

3.6(b) and it encircles the path predicted by the model. In particular, the measured path 

lies within 0.1 in of the predicted path with the greatest deviation occurring at the start of 

the backswing.  This early “error” likely derives from clearance and compliance of the 

putting robot mechanism.  During the backswing, the robot arm is pulled backwards from 

rest and any lateral clearance or compliance allows the putter head to move slightly along 

the lateral “X” axis.  Overall, these tests of a nearly perfect PILS stroke by the robot 

demonstrate that the simple kinematic model accurately predicts the path and orientation 

of the putter throughout this stroke as expected. 

 

The putting robot was then used to execute a nearly perfect gate strokes. To this end, the 

rotation axis of the robot was inclined approximately ten degrees using shims beneath the 

base of the robot.  Using Eqns. (3.1.1)-(3.1.2), we compute the average  =
o9.6  

(standard deviation 0.1o
) and the average calculated 

armL  = 22.35  in (standard deviation 
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1.14 in ) based on six trials. (The larger standard deviation for these parameters relative 

to those for the PILS trials is a likely the result of small wobbling of the robot base on the 

added shims.) 

 

Figure 3.7 reports the dynamic lie, loft and face angles for a representative gate stroke 

predicted by the two-parameter kinematic model and as measured by the sensor. As in the 

case of the PILS stroke, the dynamic loft predicted for the gate stroke is in near-perfect 

agreement with the measured loft. Similarly, the predicted dynamic face angle is in 

reasonably close agreement with the measurements.  Unlike the PILS stroke where the 

face angle remained essentially zero, the gate stroke requires that the clubface open 

during the backswing (achieving a maximum of o2 for this modest example for which 

o10  ) and then close back to square on the forward swing.  This essential opening and 

then closing of the face angle during the putt is what many golf teachers and 

professionals identify as the key difference between the gate and PILS strokes.  Here 

again, the largest discrepancy between the model and measurements occurs for the lie 

angle and it again is largely attributed to a slight and unknown misalignment of the 

sensor axes relative to the axis of rotation of the robot.  This small discrepancy aside, 

these results demonstrate that one way to generate a gate stroke is to simply incline the 

axis of rotation. In the next section we will present further findings that suggest that most 

players exhibit a gate stroke developed in this very manner. 
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Figure 3.7: Measured and predicted orientation angles for a robot-generated gate stroke 

with o10  .  The blue, red and green curves are the measured loft, lie, and face angles, 

respectively. The cyan, magenta and black curves are the corresponding angles predicted 

by the simple, two-parameter kinematic model.  

 

The predicted and measured putter path for this example gate stroke is illustrated in Fig. 

3.8.  Figure 3.8(a) is not corrected for misalignment between the sensor and the robot, 

whereas Fig. 3.8(b) is corrected  2.92o .  The corrected measured path again encircles 

and closely follows that predicted by the simple kinematic model and with the small 

deviations attributable to robot clearance/compliance. 
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Figure 3.8: Measured and predicted path for the center of the putter head during a robot-

controlled gate stroke with o10  .  (a)  Uncorrected for slight misalignment of sensor 

axes to the robot rotation axis.  (b)  Corrected for this slight misalignment.  

 

Comparing the paths shown in Figs. 3.5 and 3.7 reveals that the gate stroke induces 

observable curvature to the path.  The simple kinematic model clearly shows why. The 

actually 3-D path (of the center of the face of the putter) remains a circular path but now 

in a plane inclined from vertical by the angle  . The projection of this 3-D path onto the 

horizontal (X-Y) plane leads to the illustrated curved arc whose curvature is proportional 

to  . Thus, for larger  , as will be seen in many player putts, this curvature may be 

substantially greater than the modest example illustrated by this gate stroke by the putting 

robot. By contrast, the putter path remains a straight line in the horizontal (X-Y) for an 

ideal PILS stroke.   

 

Overall, the results presented in this section demonstrate that the proposed two-parameter 

kinematic model accurately describes the idealized PILS and gate strokes performed by 

the putting robot. In the next section, we turn our attention to applying this model to the 

measured putting strokes from players of various skill levels. 
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3.4 Evaluation of Human Putting Strokes Using Kinematic Model 

 

It was expected that the two-parameter kinematic model of putting agree well with 

measured putts using the putting robot since the robot is a single degree-of-freedom 

mechanism for which 
armL  and  remain constant. The major finding within this section 

is that this simple model remains a very good approximation for players who naturally 

move free of the constraints of the putting robot. We shall begin by first introducing 

quantifiable metrics for comparing measured putting strokes to the model. 

 

Metrics for Comparing Measured Putting Strokes to Model 

 

Return to Fig. 3.2 and recall that the two-parameter kinematic model represents a single 

degree-of-freedom system allowing rotation about the inclined axis denoted by 'I


. 

Therefore, how well this model describes player putting rests in part on how closely 

player putting can be described by rotation about a fixed (inclined) axis. To quantify this 

idea, we propose the following metrics which describe the degree to which the measured 

angular velocity of the club is aligned with a constant axis of rotation inclined by an 

estimated angle  .  Let the club angular velocity vector be represented as 

ˆ ˆ ˆ
x y zI J K   


 (3.4.1) 

where ˆ ˆ ˆ( , , )I J K is the lab-based frame; refer to Fig. 3.2.  Next, let 
ave represent the 

average value of  computed using Eq. (3.2.1) for all times t for which | |


is greater 

than some reasonably small value, say 5 deg/sec. For slower angular velocities, the putter 

is essentially at rest. Next we introduce the following three error measures that describe 

the deviation of the measured angular velocity vector from one aligned with the rotation 

axis defined by 
ave .   

 



 

 52 

_

_

_

( ) cos ( ) deg
( ) ( ) 5

( )

( ) deg
( ) ( ) 5

( )

( ) sin ( ) deg
( ) ( ) 5

( )

   for     

                              for     

   for     

ave x

x err

y

y err

ave z

z err

t t
t t

st

t
t t

st

t t
t t

st

  
   




   



  
   
















 (3.4.2) 

If these error metrics remain small, then the putter is indeed rotating largely about a fixed 

axis as determined by the computed angle 
ave .   

 

The two-parameter kinematic model also assumes that the distance 
armL  remains constant 

thereby determining the length of an equivalent „pendulum‟ from the sensor module to 

the axis of rotation; refer again to Fig. 3.2.  We estimate
armL  by computing its average 

from Eqn. (3.2.2) using computed values of ( )gripY t and ( )t from the sensor data. We 

then compute the predicted club rotation 
model  from the simple kinematic model by 

again using Eqn. (3.2.2) with the average value of 
armL . The actual club rotation 

( )meas t can be computed directly from the sensor data according to 

 '
0

ˆ( )
t

meas t I dt  


 (3.4.3) 

using (0) 0meas  at address. The error between the measured rotation and that predicted 

by the model 

1

( ) ( ) deg
( ) 5

( )

1
sin

   for     model meas
err

meas

model grip

arm

t t
t

t s

Y
L



 
   



 
   

 



 (3.4.4) 

yields a fourth criterion for comparing a player putt to the simple kinematic model. 

These four criteria will now be applied to player putts to assess how well these putts 

conform to the assumptions of the simple kinematic model. 
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Analysis of Player Putts 

 

The putts presented in this section are examples selected from putting trials conducted 

over the past three years involving more than ten subjects putting in various conditions; 

from putts in the laboratory, to putts on artificial putting surfaces, to putts on actual 

putting greens. 

 

We begin by analyzing an example putt from a study conducted at the University of 

Michigan golf course. In this study, we selected two (approximately straight and level) 

putts of 15 ft and 5 ft and requested each subject to complete three putts at both distances.  

The example 15 ft putt illustrated in Fig. 3.9 was completed a collegiate-level 

competitive player.  Illustrated are the orientation and putter path measured by the sensor 

and predicted by the (best-fit) kinematic model. 

 

 

Figure 3.9:  Example 15 ft putt by subject B showing excellent agreement between 

measured and modeled putter kinematics. (a) shows the measured and predicted club 

head lie, loft and face angles as functions of time (blue, red, green = measured; cyan, 

magenta, black = model prediction).  (b) shows the path traced by the center of the 

clubface in the horizontal (X-Y) plane. 

 

The measured features illustrated in Fig. 3.9 are in excellent agreement with the model 

predictions.  In Fig. 3.9(a), the measured dynamic loft (blue curve) and lie (red curve) 

angles closely follow the predicted angles (cyan and magenta, respectively).  The 
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measured face angle (green) also follows a very similar trend to the predicted angle 

(black), which shows the clubface opening during the backswing and closing during the 

forward swing.  In Fig. 3.9(b), the predicted path (cyan) is closely traced by the measured 

clubface path (blue = backswing, red = forward swing); again, note the greatly magnified 

scale on the vertical axis.  This example putt exhibits the main characteristics of a gate 

stroke; 1) face opens during the backswing and closes during the forward swing, and 2) 

the projection of the putter path onto the horizontal plane is distinctly curved.  The 

overall close agreement with the model prediction is strong evidence that the model 

kinematics closely approximate actual putting kinematics for this subject.  Figure 3.10 

presents another view of the same data that allows direct estimation of the model 

parameters and (visual) comparison of the error metrics established by Eqns. (3.4.2) and 

(3.4.4). 

 

 
Figure 3.10:  Example 15 ft putt by subject B showing excellent agreement between 

measured and predicted putting kinematics. (a) shows the measured relationship between 

the angular velocity components 
x  and 

z  together with that predicted by the simple 

model. (b) shows the measured relationship between the rotation angle and the grip 

position coordinate gripY .  The measured points are plotted for the backswing and forward 

swing.  The best fit model predicts the green and black lines for the backswing and 

forward swing, respectively. 

 

Figure 3.10(a) reports the (lab-fixed) angular velocity component 
z  versus the 

component 
x .  The experimental data are plotted with the blue dashed line and the solid 
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red line is the best fit line to this data.  The slope of this trend line is used to estimate the 

model parameter 
ave , which is equivalent to averaging Eqn. (3.2.1) for all times t.  In 

this example, the results of the model closely approximate the experimental data.  Figure 

3.10(b) reports  sin meas  versus 
gripY  where 

meas  is calculated via Eqn. (3.4.3).  Data 

points for the backswing are plotted in blue and those for the forward swing are plotted in 

red. Separate linear trend lines are fit to the back and forward swings.  After reviewing 

the putts from numerous subjects, it became apparent that most putts exhibit two distinct 

trend lines when viewed as illustrated in Fig. 3.10(b).  Per Eqn. (3.1.2), the inverse of the 

slope of a trend line in this figure provides an estimate for the model parameter
armL . Thus, 

one can compute an effective 
armL for the backswing which is often distinct from that 

computed for the forward swing.  In the next section, we will further discuss how a 

measurable change in 
armL  from the backswing to the forward swing represents a 

common putting fault. In this example, however, the two trends lines lie nearly on top of 

each other indicating that a single value of 17.1armL in  for the model closely 

approximates the kinematics of both the back and forward swings.  For completeness, we 

report in Fig. 3.11 the error metrics defined by Eqns. (3.4.2) and (3.4.4).  
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Figure 3.11: Error metrics defined by Eqns. (3.4.2) and (3.4.4) for example 15 ft putt by 

subject B.  (a)  The three angular velocity error metrics.  (b)  Dynamic loft error metrics 

for the backswing and forward swing. 

 

The results of Fig. 3.11 demonstrate that the error metrics remain reasonably small 

throughout the putt.  The jumps in the data in Fig. 3.11(a) at approximately 1.45s and 

1.60s and the gap in the data of Fig. 3.11(b) occur at the end of the backswing and the 

start of the forward swing where the angular velocity remains less than the threshold (5 

deg/s).  The time averages of these five metrics are reported in Table 3.1. These average 

errors remain less than 5% indicating a superb overall fit to the assumptions of the simple 

kinematic model. 

  

Subject B 

15ft Putt 1 
 _x err  (%) _y err  (%) _z err  (%) _bck err  (%) _fwd err  (%) 

Average 4.54 4.00 -2.21 0.16 1.38 

STD 13.99 3.24 20.09 2.28 8.37 

Table 3.1:  Average errors between predicted and measured putt kinematics for the 

example 15 ft putt for subject B. 

 

As a second example, a putt from a different collegiate-level player is presented next that 

illustrates one of the more extreme cases where larger errors develop.  This example putt 

is taken from trials conducted with players from the University of Michigan Women‟s 

(a) (b) 

0.8 1 1.2 1.4 1.6 1.8 2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (sec)

E
rr

o
r 

M
e

tr
ic

s

Dynamic Loft Error Metrics
Subject B 15ft Putt 1     

 

 


bck err


fwd err

0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

E
rr

o
r 

M
e

tr
ic

s

Angular Velocity Error Metrics
Subject B 15ft Putt 1         

 

 


x err


y err


z err



 

 57 

Golf Team.  During these trials, three subjects completed 5 putts from 4 ft, 10 putts from 

8 ft, and 10 putts from 15 ft. The example chosen is one 8 ft putt from subject L.  

 

 

Figure 3.12:  Example 8 ft putt by subject L showing more discrepancy between 

measured and modeled putt kinematics. (a) shows the measured and predicted club head 

lie, loft and face angles as functions of time (blue, red, green = measured, cyan, magenta, 

black = model predictions).  (b) shows the path traced by the center of the face of the club 

head in the horizontal (X-Y) plane. 

 

From Fig. 3.12(a), note that the measured (blue) and predicted (cyan) loft angles match 

well indicating that this stroke conforms to a major prediction of the simple kinematic 

model.  The face angles show a very similar trend but the lie angles show opposite trends. 

A further comparison is provided in Fig. 3.13.  
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Figure 3.13:   Example 8 ft putt by subject L exhibiting less agreement with the simple 

kinematic model. (a) shows the measured relationship between the angular velocity 

components 
x and 

z together with that predicted by the simple model. (b) shows the 

measured relationship between the rotation angle and the grip position coordinate
gripY .  

The measured points are plotted for the backswing and forward swing.  The best fit 

model predicts the green and black lines for the backswing and forward swing, 

respectively. 

 

In Fig. 3.13(a) the measured angular velocity component increasingly deviates from the 

model trend (red) for 
x  > 40 deg/sec, which occurs towards the end of the forward 

swing.   Fig. 3.13(b) now clearly shows two distinct trend lines for the backswing and the 

forward swing, indicating distinct values for 
armL for these parts of the putting stroke.  

The abrupt change in 
armL occurs at the transition from the back to the forward swing, an 

issue that is discussed in the next section on common putting faults.  
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Figure 3.14: Error metrics defined by Eqns. (3.4.2) and (3.4.4) for an 8 ft putt by subject 

L. (a) Angular velocity error metrics.  (b) Dynamic loft error metrics for the backswing 

and forward swing using distinct values for 
armL . 

 

Figure 3.14 illustrates the time histories of the five error metrics for this example putt and 

the time averages of these error metrics are reported in Table 3.2.  Overall, the errors 

(ranging from 3%-17%) are approximately twice as large as in the last example and they 

are also on the extreme side of all measurements taken on elite golfers. Nevertheless, the 

model still appears to predict the kinematics of the putt with reasonably good fidelity (to 

within 20%). 

 

Subject L 

8ft Putt 2 
Ave _x err  

(%) 

Ave _y err  

(%) 

Ave _z err  

(%) 

Ave _bck err  

(%) 

Ave _fwd err  

(%) 

Average 9.06 16.48 -8.05 2.78 -2.85 

STD 16.25 6.23 20.02 10.98 5.26 

Table 3.2:  Average errors between predicted and measured putt kinematics for the 

example 8 ft putt for subject L. 
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Simple Kinematic Model Correlation Errors for 10 Subjects 

Subject Ave 
_x err  

(%) 

Ave 
_y err  

(%) 

Ave 
_z err  

(%) 

Ave 
_bck err  

(%) 

Ave _fwd err  

(%) 

J 1.92 5.45 -1.67 0.20 -3.14 

B 3.77 4.59 -2.78 -2.61 5.78 

R 8.07 5.67 -5.24 -0.12 -1.04 

L 9.02 14.33 13.45 2.00 4.33 

A 3.44 5.19 -12.81 5.71 0.64 

KK 0.10 5.95 1.51 4.34 -6.73 

JK -0.24 12.56 3.50 2.28 0.03 

K 8.01 7.51 -6.7 -12.04 -3.21 

T 8.16 10.04 -6.14 2.56 -5.98 

BT 10.17 27.85 0.90 9.04 -1.36 

Overall 5.24 9.91 -1.60 1.14 -1.07 

Table 3.3: Average error metrics for all (120) trials conducted on a total of 10 subjects.  

 

Table 3.3 reports the compilation of errors metrics for a total of 120 trials conducted on a 

total of 10 subjects.  For each subject, the average error metrics over all measured putts is 

reported to establish the overall fit of the kinematic model to that player. The subjects are 

arranged by skill level, with the first five subjects having played collegiate-level 

competitive golf and the last two subjects having just been introduced to the game.  Over 

all of these trials, the overall average error metrics (bottom row) confirm that the simple 

kinematic model remains accurate to within approximately 10%. This new and 

fundamental understanding of the putting stroke as viewed using the simple kinematic 

model might have significant diagnostic value in player assessment and training. 

 

3.5  Identification of Common Putting Faults 

 

Having shown that human putting strokes are reasonably well predicted by the simple 

kinematic model, we will now examine the sources of deviations from that model.  The 

model discussed thus far focuses on the kinematics of the putting strokes. In addition, one 

may also consider the forces and moments developed by the player at the grip that „drive‟ 

the putting strokes.  These forces and moments are often loosely referred to as the “power 

source” of a putt in popular descriptions of the game.  To aid our discussion of putting 

techniques, we first comment on the power sources. 
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The „power‟ used during the putting stroke may derive from two principal sources; 

namely, skeletal muscles and gravity.  Notable teachers, Pelz [41], Utley [45], and Craig 

[46], advocate that the muscles across the shoulder joints should be the main skeletal 

muscles recruited in putting while the elbow and wrist joints should remain essentially 

locked.  The shoulder muscles are used in the backswing to draw the club backwards 

opposite the target line and upwards against gravity. The experts concur that the forward 

swing should be powered by gravity alone. Under these circumstances the forward swing 

kinematics reduce to that of a gravity-driven pendulum allowing rotation about a 

(possibly inclined) fixed axis.  Similarly, the club and the player‟s arms form a rigid body 

pendulum.  In cases of very long putts and/or very slow greens, it may become 

kinematically impossible for players to develop the very long backswing required to 

power the forward swing by gravity alone.  In such instances, players will actively recruit 

muscles to provide the requisite additional power.  

 

With this basic understand of putting dynamics we move forward to the second goal of 

this chapter, to demonstrate how the MEMS sensor technology yields a novel tool for the 

analysis of putting technique.  Specifically, we will demonstrate how the sensor can 

measure common faults in putting technique.   

 

Most coaches would concur that faults in putting technique trace to one or more of the 

following principal sources:  

 Improper face angle at impact 

 Off-center impact of the ball on the clubface (related to putter path) 

 Improper use of wrist 

 Improper hand position relative to the club head at impact 

These are common faults specifically associated with the putting strokes (back and 

forward swing) and they are distinguished from any additional “faults” due to improperly 

aligning the putt and/or improperly reading the green. We shall explore each of these 

principal sources in turn and provide experimental data to support our claim that the 

MEMS sensor technology can identify faults in the putting stroke. 
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Improper Face Angle at Impact 

 

The face angle at impact is the single most critical parameter affecting the outcome of the 

putt.  According to Pelz [41], an improper face angle at impact adversely affects the putt 

four times more than an improper path of the putter alone.  For example, consider a 

straight 10 ft putt with the initial target line directed exactly to the center of the hole. A 

mere one degree open or closed face angle at impact will cause the ball to miss the hole.  

It is therefore imperative to measure and to understand how the face angle changes during 

the putting strokes in order to detect the root cause of this most common putting fault.   

A very effective way to view how errors in the face angle develop is to plot the face angle 

as a function of position during the back and forward swings as illustrated next. 

 

 

 

Figure 3.15:   Two example putts illustrating different faults leading to excessive face 

angles at impact.  Top figures illustrate the measured path of the club head (and ball 

impact location) as viewed in the horizontal (X-Y plane). Bottom figures illustrate the 

measured face angle as a function of position (Y coordinate of club head) in the stroke. 

The example to the left illustrates significantly different closure rates (deg/in) on the 

forward versus backswings. The example to the right illustrates a period of near-zero 

rotation at the start of the forward swing. 

 

Figure 3.15 presents two example putts having distinct root causes for excessive face 

angles at impact. The two bottom figures plot the face angle as a function of position 

within the stroke (as determined by the Y-coordinate of the club head) for both the back 

(blue) and forward (red) swings. Also shown is the predicted relation using the simple 
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kinematic model (cyan).  The top portions of the figures show the measured path of the 

club head as viewed in the horizontal (X-Y) plane which is discussed further below. 

 

From the bottom left figure, notice that the clubface opens at a slower rate during the 

backswing than the model predicts and then closes at a rate approximately equal to that of 

the model on the forward swing.  (These face angle rates are measured in degrees per 

inch of displacement along target line.) Our measurements of over 100 trials from 10 

subjects reveal that face angle faults frequently derive from different face angle rates for 

the back and forwards swings. This type of measurement is extremely difficult to make 

using existing camera-based systems and thus such diagnoses have not been readily 

available for player feedback/training.  Second, the simple kinematic model suggests an 

expected or „target‟ face angle rate that further discriminates the root cause problem of 

the putting fault. 

 

For the example putt on the right, the backswing has a well-defined face angle rate that 

closely matches the target rate predicted by the model. By contrast, the face angle rate for 

the forward swing matches that of the backswing (and model) only for the last two-thirds 

of the forward swing extending from approximately 8 0Y  in. For the first one-third of 

the forward swing, extending from approximately 11.5 8Y  in, the face angle rate is 

considerably less and ultimately leads to a net open face angle at impact of about 3o .  

Again, this analysis pin-points the root cause of the putting fault which in this case is a 

slow face angle rate at the very start of the forward swing. 
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Off-Center Impact 

 

The location of impact between the ball and the clubface is the second most important 

condition that determines ball dynamics following impact.  Off-center impacts produce 

less momentum transfer to the ball and may also allow the ball to diverge from the 

intended target line due to sudden, inadvertent changes to the face angle.  For example, 

impacts towards the heel (conversely the toe) of the club may allow the ball to veer left 

(conversely veer right) of the intended target line. To investigate where ball/head impact 

occurs, we now examine the final position of the club head from the measured club head 

path. In doing so, we tacitly assume that the player has centered the ball on the clubface 

at address (which is also part of our testing protocol). 

 

The impact locations for the two prior example putts illustrated in Fig. 3.15 can be 

deduced by inspection of the club head paths in the top figures.  For the example shown 

to the left, the impact occurs towards the toe (hence the center of the clubface finishes 

with 0X   in this example) by approximately 0.3X   in. Notice further that the club 

head remains largely “outside” (i.e., on the far side of) the target line 0X  and remains 

there until just before impact.  The proper path for both the ideal PILS and gate strokes 

with positive   is one that remains “even” with or “inside” the target line.  Only in the 

seldom seen style where 0  would the putter path be expected to lie outside the target 

line.  In this example, 0  and therefore the putter path would be expected to be inside 

the target line.  The club head path predicted by the simple kinematic model provides a 

possible target for the correct path for this subject.  

 

By contrast, for the example shown on the right, the club head at impact finishes nearly 

exactly at the same position where it began ( 0X  in) and thus this impact location is 

essentially perfect.  Although this putt achieves proper impact location, the putter path for 

remains largely inside the predicted path. 
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Improper Use of Wrists 

 

Many players unlock or “hinge” their wrists during the putting stroke which violates the 

advice of experts as well as the constraints of the simple kinematic model. As mentioned 

above, the experts concur that the putting stroke derives principally from rotation about 

the shoulder joints keeping the elbow and wrist joints locked. The sensor technology 

provides a quick means to detect inadvertent joint rotations.  

 

For example, the results shown in Fig. 3.16(a) illustrate a putt having a distinctly smaller 

value for 
armL during the forward swing ( 9.2 in) compared to that (14.7 in) for the 

backswing.  As a result, the player‟s hands “lag” behind the club head during the forward 

swing and create a final putter loft angle at impact that is about 3o greater than that at 

address.  This change in 
armL  and the resulting „lag‟ of the hands are measureable putting 

faults. In the previous section, we noted that many player putts exhibit this type of change 

in 
armL .  In nearly all examples observed to date (as in the example of Fig. 3.16), the 

change occurs precisely at the transition from the backswing to the forward swing. One 

possible explanation for this abrupt change is that the player allows his/her wrists to 

„break‟ or „hinge‟ at this transition.  That makes sense considering that the putter 

achieves its greatest angular acceleration at this transition and thus the reaction moment 

on the wrists also achieves a maximum.  

 

The example results illustrated in Fig. 3.16(b) represents an exaggerate putt intentionally 

executed using only wrist rotation.  The exceedingly small values for 
armL  (4.7 and 3.6 

in) measured for this putt confirm that the axis of rotation is uncharacteristically close to 

the top of the grip due to rotation largely about the wrist joints.  This limiting case 

confirms that any rotation about the wrist during normal putting will indeed decrease 

armL  as observed at the start of the forward swing in the example to the left.  The ability 

to identify if and where a player allows their wrists to break is a powerful aid in 

diagnosing this common putting fault. 
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Figure 3.16:  (a) example showing wrist-break at the end of the backswing.  (b) example 

is an exaggerated putt using only wrists and leading to very small values for 
armL as a 

result. 

 

Improper Hand Position Relative to Club Head 

 

It is also well-understood that putting faults arise from the improper positioning of the 

player‟s hands (grip) relative to the club head during the back and/or forward swings. 

Ideally, the grip should be approximately even with the clubface at impact to obtain the 

proper loft at impact.  When the clubface is forward of the hands at impact, the loft at 

impact is greater than the pre-set loft designed for the putter.  Too much loft keeps the 

ball in flight too long, which contributes to poor ball tracking along the target line.  

Conversely, when the clubface is too far behind the hands at impact, the loft at impact is 

smaller than the pre-set loft design for the putter. Too little loft causes the ball to impact 

the ground too quickly (and possibly re-bound) which again leads to poor ball tracking.  

 

Data for two putts illustrated below demonstrate both of these faults; namely 1) a case 

where the hands excessively lead the club head at impact, and 2) a case where the hands 

excessively lag the club head at impact. Careful analysis of the data pin-points exactly 

where these faults arise in these examples. 
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Figure 3.17:  Loft angle ( sin ) versus grip position along target line (

gripY ). Example (a) 

demonstrates how the grip can lag the club head at impact leading to excessive loft at 

impact.  Example (b) demonstrates how grip can lead the club head at impact leading to 

insufficient loft at impact. Both faults develop early on in the backswing. 

 

The two example putts are illustrated by the results of Figs. 3.17-3.18. Figure 3.17 reports 

the measured change in sin( )  as a function of grip position 
gripY  during the backswing 

(blue) and forward swing (red) and as predicted by the simple kinematic model (green 

and black).  Fig. 3.18 reports the positions (Y coordinates) of the hands/grip (green) and 

the club head (blue) for the same trials.  

 

Starting with Fig. 3.17, notice that the forward swings (red) for both example putts 

largely conform to the predictions of the kinematic model (black). Thus, any faults 

deriving from improper hand position will largely develop during the backswings.   

For the example on the left in Fig. 3.17, the backswing begins with a substantial change 

in the grip position ( gripY ) but with little change in the loft angle ( sin ). Thus, the player 

begins this backswing by translating the club backwards without a commensurate 

rotation of the club.  As a result, the club head is drawn back at the start of the backswing 

by an amount nearly equal to that of the grip as clearly seen in the results of Fig. 3.18(a).  

The unusually large value for 
armL (36.6 in) computed for the backswing is consistent 

with the fact that backswing begins with translation and little rotation.  (For the limiting 

case of pure translation 
armL  ). The forward swing then proceeds as predicted by the 
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kinematic model and does not correct any of the error developed at the start of the 

backswing. As a result, the players hands substantially lag (-2 in) the club head at impact 

and the clubface has excessive loft. 

 

By contrast, the example shown in Figs. 3.17(b) and 3.18(b) illustrate a putt for which the 

hands lead the head substantially (+4 in) at impact leading to insufficient loft. The root 

cause of this putting fault is a “wrist break” at the very start of the backswing.  Notice 

from Fig. 3.17(b), that the backswing has an unusually small value (5.0 in) for
armL which 

is consistent with a wrist break; recall results for the “all-wrist” putt illustrated in Fig. 

3.16(b).  By contrast, the forward swing is more typical of a gate stroke for which 

16.7armL  in and hence it does not exhibit a possible „counter-correcting‟ wrist break. 

Thus, the player‟s hands remain considerable forward of the club head throughout the 

backswing and throughout the forward swing where they finish at impact with a large (4 

in) lead over the club head. This putt, while rather different from the example on the left, 

reinforces the same conclusion; namely, the backswing failed to follow the kinematics of 

the simple pendulum model where club motion develops solely through shoulder rotation.  

 

 
Figure 3.18:  Position of club head versus grip. Example (a) demonstrates how the grip 

can lag the club head at impact. Example (b) demonstrates how the grip can lead the club 

head at impact. Both faults develop early on in the backswing. 
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3.6 Closure 

 

This chapter advances our fundamental knowledge of putting strokes by exploiting 

measured putting kinematics provided by the MEMS sensor system.  In addition, this 

chapter introduces a unified kinematic model for putting that encompasses the previous 

“pendulum style” and “gate style” strokes discussed in the literature; see, for example, 

[41].  Finally, this chapter introduces a suite of putting metrics that can pin-point 

common putting faults.  In total, this measurement and analysis system provides 

significant and new capabilities for putting instruction. 

 

The simple kinematic model for putting reduces to a single-degree of freedom pendulum 

with two parameters  and 
armL  determined by the player‟s preferred putting style.  The 

parameter  defines the (average) inclination of the axis of rotation of the pendulum and 

the parameter 
armL defines the distance from the axis of rotation to the grip. Both  and 

armL  are computed from measured sensor data. Doing so yields a reasonably accurate 

prediction of the club head orientation (lie, loft and face angles) for both the back and 

forward swings. Comparison of the measured versus the predicted club head orientation 

yields considerable insight into the root causes of principal putting faults including the 

most common fault, namely an improper face angle at impact.  

 

In using the kinematic model, we often observe that the forward swing and backswing 

yield distinct values of the parameter 
armL . In particular, abrupt changes in 

armL reveal 

that the player has „broken‟ otherwise „locked‟ wrists during the stroke which leads to a 

second major putting fault. This improper use of the wrists can produce excessively large 

or excessively small loft angles at impact. Upon adding distinct values for 
armL for the 

forward and backswings, the simple kinematic model remains in good agreement with 

measured kinematics. 

 

The last section of this chapter introduces example metrics derived from the sensor data 

that pin-point common putting faults. By studying numerous putts from many subjects, it 
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became apparent that putting errors most often originate at the beginning of the 

backswing or at the transition between the back and forward swings.  A fundamental 

reason for this is that these points represent the periods of greatest angular acceleration, 

hence greatest reaction moments at the wrists. 
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CHAPTER 4 

EXTENSION OF MEMS INERTIAL SENSOR SYSTEM 

TO HIGHLY DYNAMIC GOLF SWINGS 

 

The objective of this chapter is to extend the measurement theory and hardware design 

developed in Chapter 2 for putters to the measurement of highly dynamic golf swings that 

arise with drivers and irons.  The immediate objective is to measure the rigid body motion 

of the golf club during what we refer to as a „full swing‟.   The additional flexible motion 

of the club, which may be induced by sizable rigid body accelerations, is discussed in 

both Chapters 5 and 6.  Representative results of full swing measurements and analyses 

will be presented to demonstrate the successful application of this technology for drivers 

and irons. We open by first reviewing the requirements for the sensors to support this 

new range of measurements. 

 

4.1 Sensor Requirements for Full swings 

 

During a full swing as illustrated in Fig. 4.1, the golf club achieves significantly larger 

acceleration and angular velocity than in putting.  Therefore the sensor system of Chapter 

2, that was optimized to resolve the putting stroke, is ill-suited to resolve a full swing.  A 

design capable of measuring the full swing requires sensors that can accurately resolve 

angular velocity upwards of 2000 deg/sec and accelerations (at the grip) in the range of 

10-15 g.  These rates follow from the observable fact that the golf club travels from the 

top of the backswing (shaft at the 3 o‟clock position in Fig. 4.1) to the impact position 

(shaft at the 6 o‟clock position in Fig. 4.1) within a mere 0.2 to 0.3 seconds [15]. 
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Figure 4.1: Stroboscopic photograph of Bobby Jones‟ golf swing which illustrates a full 

swing (downswing phase and follow through).  [47] 
 

Based on these high ranges a second-generation of the design described in Chapter 2 

(refer to Fig. 2.4) was created with rate gyros capable of measuring up to 3000 deg/sec 

and a tri-axis accelerometer with a 15 g dynamic range.  No additional hardware 

changes where required for this second-generation design.  In particular, the first-

generation design, which sampled the sensors at 1 kHz, still provides 200-300 samples 

during highly dynamic downswings.  The measurement and analysis of full swings using 

this second-generation “high-range” MEMS sensor is the focus for the remainder of the 

chapter. 

 

4.2  Measurement of Full Swings 

 

Low Speed Swings Using Putting Robot 

 

In Chapter 2, a simple putting robot was introduced that swings a golf club on a 

pendulum path under the action of gravity alone. The putting strokes considered were low 

speed and with loft ranges consistent with putting. We used this robot to establish that the 

first-generation sensor system accurately measures the orientation and position of the 

clubface.   Chapter 3 then introduced a two-parameter kinematic model of the putting 

stroke that was shown to predict the putts executed with the robot to a high degree of 

accuracy.  We now employ the robot and the two-parameter kinematic model to establish 

the accuracy of the second-generation sensor for „exaggerated‟ pendulum style strokes 

near the kinematic limits of the robot. These strokes, which induce club head speeds two 
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to three times those of typical putting strokes, are still substantially slower than full 

swings as reported later.     

 

Figures 4.2 and 4.3 present the results obtained for an example exaggerated pendulum 

robot „putt‟ measured using the high-range sensor design.  Figure 4.2 reports the 

measured loft, lie and face angles for a „putt‟ that resulted in nearly a o50 change of loft 

( o25  is substantial for putting). Also shown are the predicted loft, lie and face angles 

from the simple two-parameter model of Chapter 3.  

 

 

Figure 4.2: Measured and predicted orientation angles for an exaggerated robot putt.  The 

blue, red and green curves are the measured loft, lie, and face angles, respectively. The 

cyan, magenta and black curves are the corresponding angles predicted by the simple, 

two-parameter kinematic model.  

 

The agreement apparent in Fig. 4.2 between the measured loft angle (blue curve) and the 

predicted loft angle (cyan curve) is excellent.  There are small discrepancies between the 

measured and predicted face angle (green and black, respectively) and lie angle (red and 

magenta, respectively).  Overall, the measured lie, loft and face angles at impact return to 

within 0.2o  of their values at address, which is positive testimony of the overall 

accuracy of the high-range design for an „exaggerated‟ putt. 
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Figure 4.3: Measured and predicted path for the center of the club head during a robot-

controlled putt.  (a)  Uncorrected for slight misalignment of sensor axes to the robot 

rotation axis.  (b)  Corrected for this slight misalignment ( 1.4 o  misalignment) 

 

Consider next the club head path as one would observe from overhead in the horizontal 

(X-Y) plane. Figure 4.3 illustrates the measured club path and that predicted by the two-

parameter model where Y denotes position along the intended target line and X denotes a 

lateral deviation from that line. The scale for the lateral deviation is greatly exaggerated 

in the figure.  The uncorrected path of Fig. 4.3(a) shows a one-sided error due to a small 

misalignment of the sensor axes to the robot axis of rotation.  Following the methods of 

Ch. 3 (refer to Eq. 3.3.1), we correct for this modest ( 1.4 o
) misalignment to arrive at the 

results of Figure 4.3(b) which illustrate very good agreement (within 0.25 inch) between 

the measured and the predicted paths for this exaggerated robot putt.  

 

Overall, these tests demonstrate that the high-range sensor yields accurate results for the 

slow speed dynamics of putting that can be independently measured using the putting 

robot.  The high-range MEMS sensors incorporated in this second-generation design are 

reported to maintain their linearity throughout their measurement range [28, 33].  Given 

this expected sensor linearity, one may reasonably expect to achieve a similar level of 

accuracy for the higher speeds associated with full swings as discussed next. 
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High Speed Swings of Human Subjects 

 

The example full swings presented in the remainder of this chapter all have the general 

form of the swing previously illustrated in Fig. 4.1.  These swings were measured in the 

laboratory and with an impact made by striking a soft practice ball.  The swings we shall 

discuss, while not exhaustive in number, capture the major characteristics (e.g., range of 

motion, club head speed, and club trajectory) common to all full swings. Before doing so, 

however, we must revisit the definitions of the clubface lie, loft and face angles for the 

rather large range of motions associated with full swings. 

 

During a full swing these three orientation angles exhibit a considerably greater dynamic 

range than during a putt.  The first definitions of these orientation angles, as given in 

Chapter 2, did not explicitly describe their domain of definition which must now be 

understood to meaningfully discuss full swings.   

 

 

Figure 4.4:   (a) Location and orientation of body-fixed  ˆˆ ˆ, ,f f fi j k  and  ˆˆ ˆ, ,s s si j k frames.  

(b) Chapter 2 definitions for  lie (  ), loft ( ), and face ( ) orientation angles. 

 

Figure 4.4 contains images reproduced from Ch. 2 to refresh the reader with the 

definitions for the f and s body fixed reference frames and the orientation angles.  We 

begin by returning to the definition of the lie angle  as illustrated in Fig. 4.4(b).  The lie 

angle  is the angle formed between the horizontal plane and the unit vector ˆ
fi .  As 
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shown in Fig. 4.5 the lie angle, which is defined over the domain 90 90o o   , is 

positive when ˆ
fi is above the horizontal plane (a), achieves its maximum when  ˆ

fi  is 

vertically up (b), and is negative when  ˆ
fi  is below the horizontal plane (c). 

 

 
Figure 4.5:   Definition of the lie angle   and its domain 90 90o o   .  (a) Lie angle is 

positive when ˆ
fi  is above the horizontal plane  ˆ ˆ,I J .  (b) Lie angle achieves its 

maximum of 90o when ˆ
fi is vertically up.  (c) Lie angle is negative when ˆ

fi  is below the 

horizontal plane  ˆ ˆ,I J . 

 

Equivalently, when the K̂  component of the vector ˆ
fi  is greater than zero as in Fig. 

4.5(a), then   > 0.  When the K̂  component of the vector ˆ
fi  is less than zero as in Fig. 

4.5(c), then   < 0. When ˆˆ
fi K  then 90o  . Conversely, when ˆˆ

fi K  , then 90o   .   

 

In an analogous manner, the loft angle   is defined by the angle formed between the unit 

vector ˆ
fj  and the horizontal plane; refer to Fig. 4.4(b). Doing so establishes the domain 

for the loft angle as 90 90o o   .  
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Î

K̂

Ĵ
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Figure 4.6:  Definition of the face angle   and its domain 360 360o o   . (a) Face 

angle is positive due to counter-clockwise rotation of _
ˆ

f projj  from the Ĵ  axis. The face 

angle as shown in (b) is positive, while that in (c) is negative. 

 

We now review the definition of the face angle  employing the illustration of Fig. 4.6. 

The face angle   is the angle formed between the Ĵ  axis and the projection of ˆ
fj  onto 

the horizontal plane, denoted _
ˆ

f projj  in this figure.  Recall from Chapter 2 that, by 

definition, the face angle is zero at address since the target line ( Ĵ ) is established at 

address.  The face angle may then continuously change as the swing develops. A positive 

face angle results when  changes counter-clockwise from the Ĵ  axis. A negative face 

angle results when  increases clockwise from the Ĵ  axis. Thus, the domain of the face 

angle is 360 360o o   .  

 

In Fig. 4.6(a),   is positive as it resulted from the counter-clockwise rotation of _
ˆ

f projj  

from the Ĵ  axis.  Figures 4.6(b) and 4.6(c) show the same ˆ
fj  vector, but with   positive 

in (b) and negative in (c).  The face angle in Fig. 4.6(b) is again positive since it resulted 

from the counter-clockwise rotation of _
ˆ

f projj  from the Ĵ  axis. By contrast, the face 

angle in Fig. 4.6(c) is considered negative since it resulted from the clockwise rotation of 

_
ˆ

f projj  from the Ĵ  axis. 
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We now proceed to the analysis of an example full swing using a 6-iron. Figure 4.7 

illustrates the time history of the club head orientation (lie, loft and face angles) for a 

typical full swing similar to that illustrated in Fig. 4.1. 

 

 

Figure 4.7: Lie, loft and face angles as functions of time for a full swing with 6-iron 

(subject KK).  The annotations describe the approximate location of the golf shaft 

referred to as position on a clock.  Exploded view zooms in on the angles around impact.  

 

Focus first on the lie angle (red) which provides a clear indication of the phases of a full 

swing including 1) the address, 2) the backswing, and 3) the downswing.  The lie angle 

starts near 
o0 as the club shaft is held still at address at approximately the 6 o‟clock 

position. The lie angle then increases significantly as the backswing begins. When the 

club shaft reaches the 9 o‟clock position in the backswing, the unit vector ˆ
fi is nearly 

aligned with vertical and therefore the lie angle is nearly90o
.  The lie angle then 

decreases as the backswing continues, passing through 
o0 at approximately the 12 o‟clock 

position of the shaft, and then becoming negative as the shaft heads towards the 3 o‟clock 

position. The shaft frequently approaches or passes through the 3 o‟clock position near 

the end of the backswing at which instant the lie angle achieves its minimum as clearly 

observable in Fig. 4.7. The ensuing downswing phase is extremely short (approximately 

0.4 seconds in this example starting at 1.3sect  ) as the shaft essentially reverses its 

motion. As the shaft passes back through the 9 o‟clock position ( 1.6sect  ) the lie angle 
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again achieves a local maximum.  From that point onwards, the lie angle decreases 

rapidly to another local minimum at or near impact with the ball.  At impact the lie angle 

returns nearly to the value it started with at address and ideally the final lie angle should 

be o0  as this maximizes the potential contact area between the clubface and the ball. 

 

The face and loft angles of the club also reveal many key elements of the full swing. For 

example, the face angle monotonically decreases during the backswing as the clubface 

„opens‟ and then monotonically increases during the downswing as the clubface closes. 

During the downswing, there is a very pronounced increase in the rate of this closing as 

the shaft passes back through the 9 o‟clock position.  Starting approximately at the 9 

o‟clock position, players aggressively „release‟ their wrists and rotate the shaft about its 

long axis thereby increasing the rate at which the clubface is closing.  The two straight 

lines superimposed on the face angle in Fig. 4.7 highlight this large change in the closing 

rates. In particular, 
deg

sec
250   just before the 9 o‟clock position and then changes to 

deg

sec
1000   after the 9 o‟clock position for this example swing. This „release‟ also 

occurs very close to the local maximum observed in the lie angle.  Simultaneously, the 

loft angle also increases greatly at and beyond this „release.‟  As a result, the entire 

angular velocity of the club increases very substantially at and beyond the „release‟.  As 

the club approaches impact ( 1.720sect  in this example), the loft angle and face angle 

continue to change rapidly while the lie angle is nearly stationary as best seen in the 

exploded view in the right side of Fig. 4.7.   

 

Just as in the putting stroke, the final orientation of the clubface at impact should be the 

same as that at address. Measurable differences in lie, loft and face angles from address 

to impact are important swing metrics which we also referred to as “closure errors” in 

Chapter 2.  Table 4.1 reports the initial (at address) and final (at impact) orientation 

angles for the example swing of Fig. 4.7, and we remind the reader that the face angle at 

address is zero by definition.  The table lists values for lie, loft and face angles at the time 

of impact ( 1.720sect  ) as best estimated from the measured data as well as values 10 

milliseconds after this estimated impact time.  The rather large changes in the final loft 
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and face angles during this very short (0.010 second) period are further testimony to the 

large angular velocity of the club head near impact.  There is therefore significant 

sensitivity of the final loft and face angles with respect to the estimated time of impact. 

 

Subject KK 

6 Iron 

Initial Lie 

(deg) 

Final Lie 

(deg) 

Initial Loft 

(deg) 

Final Loft 

(deg) 

Final Face 

(deg) 

1.722secimpt   10.2 -1.0 24.8 20.7 -8.3 

0.01secimpt   10.2 0.4 24.8 27.1 6.7 

Table 4.1:  Initial and final orientation angles for trial reported in Fig. 4.7.  Final angles 

are reported for both the estimated impact time as well as 10 milliseconds later.  

 

The initial lie angle  =10.2o
at address indicates that the toe of the club head is initially 

higher than the heel.  It is desirable to strike the ball with  = 0o  as this maximizes the 

opportunity to impact the ball on the center, “sweet spot”, of the clubface.  The data of 

Table 4.1 confirms that the final lie angle for this swing is nearly 0o and hence the „error‟ 

at address was effectively corrected during the swing.  The manufactured loft of the 

example club is 30.5o  so this subject started with less loft than desired at address and 

then reduced the loft further at impact. The clubface is therefore de-lofted at impact yet 

the loft is also increasing significantly during the impact process as seen by the 7o
change 

in a mere 10 milliseconds.  If the face angle is not zero at impact, then the initial ball 

trajectory will not be aligned with the target line established at address.  The negative 

value of the face angle at impact ( 8.3   o
) indicates that the initial trajectory would be 

to the right of the target line.  However, the positive value ( 6.7  o ) a mere 10 

milliseconds later confirms that the clubface passes through the „square‟ position 

sometime time in between. Overall the time histories of the lie, loft and face angle 

provide significant insight into each phase of the swing and the orientation of the 

clubface at impact. 

 

To gain further insight into the full swing, we now present a three-dimensional view of 

the position of the club in Fig. 4.8, as computed from the measured sensor data using the 

algorithms detailed in Chapter 2.   This position data has been corrected for sensor drift 
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by assuming that the final club head position returns to its position at address.  While this 

essentially zeros the position error at impact, it also yields very strong conditions for 

eliminating drift errors in the rate gyros and accelerometers leading to accurate 

predictions of club head orientation and swing path. In future work, we will seek to relax 

this assumption so that the impact location of the ball on the clubface can also be 

predicted. 
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Figure 4.8: Swing path of full swing with 6-iron for example of Fig. 4.7 (subject KK). 

The centroid of the clubface is represented by the blue dots during the backswing and by 

the cyan dots during the downswing.  The grip (sensor location) is represented by the 

green dots in the backswing and by the (lighter) sea-green dots in the downswing.  The 

golf shaft is represented as a red line in the backswing and a magenta line in the 

downswing. The gray plane represents the best fit „swing plane‟ during the downswing. 

 

The path of the club in the figure is divided into the backswing and the downswing 

phases.  During the backswing, the clubface centroid is represented by the blue dot, the 

shaft is represented by the red line, and the grip position (sensor origin) is represented by 

the green dot.  In the downswing, the clubface centroid is represented by a cyan dot, the 

shaft is represented as a magenta line, and the grip position by the (lighter) sea-green dot.  

The time interval between successive images for the backswing is 0.010sec and 0.005sec 

for the downswing.  The gray plane superimposed on the club trajectory represents the 

best fit plane to the shaft position data during the downswing phase. 

 

From the perspective illustrated in Fig. 4.8, the position of the shaft and the club head at 

the end of the backswing can be readily identified.  This position is often used to assess 

the quality of the backswing.  The downswing arc is easily observable in Fig. 4.8, and its 

arc length could be calculated both for the grip and the club head. The length of the 

downswing arc for the club head is commonly associated with the final club head speed 

h

v
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for which a longer swing arc often correlates with a greater club head speed at impact.  

The reader can infer the speed of the club head by noting that higher speeds lead to 

greater spacing between successive images.   

 

Quantitatively, the instantaneous club head velocity is readily available from calculation 

following the algorithms detailed in Chapter 2 and the result is shown in Fig. 4.9 where 

the three components of the club head velocity vector are plotted as functions of time.   

For the swing considered here, the club head speed at impact was 52.7  mph (and a 

typical 5-iron (0.5” longer than a 6-iron) speed is be 77  mph, [48]).  This swing was 

intentionally performed at a reduced speed in the laboratory for safety.  The direction of 

the club head velocity at impact is also a key factor in determining the direction the ball 

will travel.  From Fig. 4.9, one observes that the lab-fixed Y component of the velocity 

dominates at impact as expected since the Y axis defines the target line established at 

address. The non-zero X  velocity component at impact however confirms that the club 

head trajectory is not perfectly aligned with the intended target line. 

 

 

Figure 4.9: Velocity of centroid of clubface for full swing (subject KK). Components 

reported for the lab-fixed frame.  The final data points are the values of the velocity 

components at impact. 

 

The images in Fig. 4.8 show that the backswing and the downswing are largely confined 

to two planes which we shall refer to as the “swing planes”; refer to grey plane in the 

figure for the downswing.  A swing plane can be defined by two angles: the angle 
v  that 
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the plane makes with the vertical Z axis, and the angle 
h  that the plane makes with the 

target line Y; refer to Fig. 4.8. We often observe that the swing plane that best fits the 

backswing is distinct from the one that best fits the downswing and this difference may 

later prove to be important in characterizing these phases of the swing.  In the example 

swing illustrated in Fig. 4.8, the „vertical‟ angle 21.3o

v   for the backswing and 

25.9v  o  for the downswing.  Similarly, the „horizontal‟ angle 
h =17.6o  for the 

backswing and 
h =5.8o  for the downswing indicating that the swing plane for the 

downswing is rather closely aligned with the target line as expected. 

 

Recall that the results of Table 4.1 demonstrate that the loft and face angles at impact are 

sensitive to the estimated impact time. Moreover, the impact time observed in the sensor 

data actually occurs slightly earlier than the associated impact with a perfectly rigid golf 

club, as assumed in our analysis of the data. During a highly dynamic golf swing, the golf 

shaft flexes and twists, and at impact the club head normally “leads” the grip. In other 

words, the Y position of point f (on the face of the club head) at impact is greater than the 

Y position of point s (within the grip) at impact [18, 39, 49].  The analysis of the sensor 

data tacitly assumes that the golf shaft remains rigid during the swing, an assumption that 

will also be re-examined in Chapters 5 and 6.  Due to these facts, the measured swing (for 

a flexible club) would then take slightly longer to reach impact if the club were truly rigid.  

We believe that this time delay might be approximately 0.01 seconds for the swing 

illustrated in Fig. 4.8 .  Extending these results by an additional 0.01 seconds leads to the 

results shown in Fig. 4.10.  Notice now that the grip end of the club at impact finishes 

very close to its initial position at address. In fact, the final shaft orientation at impact is 

very similar to its initial orientation at address. 
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Figure 4.10: Swing path of full swing 6-iron from Fig. 4.8 with an assumed impact 

delayed by 0.01 seconds.  

 

We conclude this section by presenting results for an example swing with a driver swung 

at full speed. Doing so confirms much of what was observed with the slower swing with 

the 6-iron discussed previously. 
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Figure 4.11: Swing path of full swing with driver (subject G). The centroid of the 

clubface is represented by the blue dots during the backswing and by the cyan dots during 

the downswing.  The grip (sensor location) is represented by the green dots in the 

backswing and by the (lighter) sea-green dots in the downswing.  The golf shaft is 

represented as a red line in the backswing and a magenta line in the downswing. The gray 

plane represents the best fit „swing plane‟ during the downswing. 

 

Figure 4.11 illustrates the three-dimensional trajectory of the club and Fig. 4.12 reports 

the associated time histories for the clubface lie, loft and face angles. For this swing, the 

vertical swing plane angle, 
v , is 39.7o

 and 43.7o
 for the backswing and downward 

swing, respectively.  These angles are significantly greater than those for the 6-iron swing. 

This is expected since the driver is significantly longer that the 6-iron (46in for driver 

versus 37.25in for the 6-iron).  At impact the club head velocity now attains 87.5mph 

which is very typical of the club head speed for drivers [48].   The horizontal swing plane 

angle, 
h , is 5.2o  and 4.3o  for the backswing and downward swing, respectively. These 

small values confirm that both of these swing planes are well aligned with the target line. 

 

The resulting lie, loft and face angles, illustrated in Fig. 4.12, also confirm the major 

features noted previously for the swing with a 6-iron (and a different subject). This 

considerable agreement lends confidence to the future use of these „swing signatures‟ for 

comparing swings of players with different skill levels.  Notice again that the lie angle 
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clearly demarcates the important phases of the swing including address, the backswing, 

and the downswing. The final values of the lie, loft and face angles at impact are again an 

important metric of swing performance. 

 

 

Figure 4.12: Orientation angles as function of time for a full swing with driver with final 

time 0.01 seconds after impact time estimated from the sensor measurements (subject 

G ). 

 

Table 4.2 reports the „closure data‟ for this swing with a driver. The lie, loft and face 

angle values reported in the first row follow from the estimated impact time from the 

sensor data. The values of these angles 0.01 seconds later are also reported in the second 

row for comparison. Again, notice that while the final lie angle is essentially stationary, 

the loft and face angles continue to change rather rapidly near impact.  Note also that the 

swing for this subject nearly matches the manufactured club lie at address but decreases 

the lie at impact by approximately 7 degrees.  The initial loft at address is very close to 

the manufactured club loft of 9o and the final loft also remains reasonably close to this 

value.  The open face angle at impact suggests that the initial ball trajectory would be 

right of the target line based on the estimated impact time from the sensor data; see value 

in first row.  By contrast, if the „impact‟ time were delayed by a mere 10 milliseconds, 

then the face angle is very slightly closed. Clearly, the determination of the actual impact 

time (or impact time interval) is critical to an accurate determination of the orientation of 

the club head during impact with the ball. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5
-150

-125

-100

-75

-50

-25

0

25

50

75

100

Dynamic Orientation Throughout Swing
Subject G Driver                    

Time (sec)

A
n

g
le

 (
d

e
g

)

 

 

Loft

Lie

Face



 

 88 

Subject G 

Driver 

Initial Lie 

(deg) 

Final Lie 

(deg) 

Initial Loft 

(deg) 

Final Loft 

(deg) 

Final Face 

(deg) 

1.462secimpt   1.4 -6.7 9.8 5.7 -14.0 

0.01secimpt   1.4 -6.6 9.8 10.4 0.6 

Table 4.2: Initial and final orientation angles for trial reported in Fig. 4.11.  Final angles 

are reported for both the estimated impact time as well as 10 milliseconds later. 

 

4.3  Closure 

 

This chapter describes the successful extension of the hardware and analysis methods 

developed first for putting in Chapter 2 to „full swings‟ using irons and drivers. For low 

speed swings that can be independently measured using the putting robot, we confirm 

that the second-generation “high-range” sensor system accurately predicts the planar and 

exaggerated pendulum stroke. The remainder of the chapter analyzes the high speed 

swings by human subjects using both irons and drivers. 

 

The analysis of swings made with irons and drivers reveal important features common to 

all full swings. First, the three major phases of a full swing, including the address, the 

backswing and the downswing, are readily distinguished using the dynamic lie angle. 

Second, the loft and face angles change very rapidly during the final portion of the 

downswing following the „release‟ of the wrists starting at approximately the 9 o‟clock 

position with impact occurring at approximately the 6 o‟clock position. Both the 

backswing and the downswing are largely confined to distinct swing planes that are well 

defined from the three-dimensional club trajectories computed from the sensor data. The 

orientation of the swing plane with respect to vertical and with respect to the target line 

established at address may become useful metrics in future studies of golfer skill. In 

addition, the measured club head speed and the lie, loft and face angles at impact are of 

immediate use in assessing golfer skill.  However, we also note that the measurement of 

the impact time or the impact time interval requires further study and definition, perhaps 

by independent means. 
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CHAPTER 5 

PLANAR FLEXIBLE MODEL OF A GOLF CLUB 

AND EXPERIMENTAL VALIDATION 

 

The objective of this chapter is to derive and validate a model which predicts the flexible 

motion of a golf club.  The overall motion of the club can be decomposed into the rigid 

body motion of the grip and the flexible motion of the shaft relative to the grip; refer to 

Chapter 2. Recall that the flexible motion is driven by the rigid body motion and that the 

sensor system precisely measures the latter. Thus, a model for the flexible body motion 

may now be developed with the measured rigid body motion as the “excitation”. The 

overall motion, of course, ultimately defines the absolute motion of the club head and 

predicting this overall motion is now the goal of this chapter.  This chapter establishes 

this modeling concept by considering the simpler case of a purely planar motion of the 

club head.  Chapter 6 extends this planar model to a full three-dimensional model. 

 

5.1 Derivation of Planar Model (Lagrange Formulation) 

 

 
Figure 5.1: Diagram of planar model. Points s, h and c denote the origin of the shaft 

frame, the hosel (point of intersection of shaft and club head), and the mass center of the 

club head, respectively. Two generalized coordinates (
v and 

v ) are introduced to 

describe the deflection and rotation of the end of the shaft at the hosel.  

 

Figure 5.1 illustrates a massless and flexible beam (the shaft of the club) attached to the 

club head (rigid body) of mass m. These components form the dynamic model of the golf 
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club.  The lab fixed frame  ˆ ˆ,I K  is introduced with the unit vector K̂ aligned with 

vertical  ˆg gK 


. Point s, located at the grip end of the club, represents the location of 

the MEMS accelerometer as previously introduced in Chapter 2.  The body fixed 

reference frame  ˆˆ ,s si k  is located at s and defines the tangent and normal directions of 

the undeformed or rigid shaft (solid line in Fig. 5.1).   A second body-fixed frame  ˆˆ ,c ci k  

is located at the mass center of the club head c, and defines the tangent and normal 

directions of the deformed shaft at the end of the shaft denoted as point h.  Point h is 

introduced at the intersection of the shaft and the club head and it is commonly referred 

to as the hosel.  The coordinate  ,x t  represents the deflection of the flexible shaft from 

its undeformed configuration with x being the independent spatial coordinate measured 

along the undeformed shaft from s towards h.  The deflection of the shaft at point h 

(where x=L) is denoted as 
v  (the deflection at the hosel) and the slope of the shaft at this 

same point h is denoted as 
v (the rotation of the deformed shaft relative to the 

undeformed shaft at the hosel).   

 

It is assumed that the shaft bends as an inextensible and massless Euler-Bernoulli beam. 

The justification for using the linear approximations inherent in Euler-Bernoulli beam 

theory rests on the observed fact that a typical maximum deflection of the shaft at the 

hosel in a highly dynamic swing remains less than 15 cm [39] relative to a typical shaft 

length of 110 cm [50].  Thus the shaft, which is truly slender, undergoes deflections that 

are also reasonably small. Likewise, the mass of a typical shaft is approximately 110 gm 

(steel) or 75 gm (graphite) [50] relative to the mass of a typical head which is 200 gm 

(driver) or 265 gm (irons) [50].  This fact, coupled to the fact that the shaft only changes 

direction once, between the back and forward swings, during the swing (prior to impact) 

suggests that one can reasonably ignore the mass of the shaft to a first approximation. 

The justification for ignoring the extension of the shaft rests on the fact that the shaft is 

considerably stiffer in extension than bending and that any possible extension due to the 

„spin up‟ has negligible influence on the club dynamics. Of course, any of these 



 

 91 

assumptions could be relaxed in the future should they someday be deemed important for 

improved model accuracy.  Dissipation, while initially ignored in the derivation, is 

appended to the model at the end. 

 

We now seek to describe the deflection of the beam,  ,x t , wholly in terms of the two 

generalized coordinates,
v and 

v .  First, we establish the boundary conditions for the 

beam.  At point s we require that the flexible beam remain tangent to the undeformed or 

„rigid‟ beam.  The kinematics of this rigid beam are directly measured via the sensor 

system.  Thus, the flexible beam must satisfy a „clamped‟ boundary condition at the 

origin, s, of the shaft frame.  Meanwhile, the slope and deflection at the opposite end, 

point h, are the generalized coordinates 
v and 

v , respectively. Consider next Fig. 5.2 

which shows a cantilevered beam subjected to a terminal force and moment. 

 

 

Figure 5.2:  Cantilevered Euler-Bernoulli beam subject to terminal force F and bending 

moment M.  

 

By superposition of classical solutions for this Euler-Bernoulli beam, the displacement 

 ,x t , and the slope of the beam centerline,  ' ,x t , are 
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 (5.1.1) 

Evaluating these functions at x=L and solving for F and M in terms of 
v and 

v  yields 
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Substituting (5.1.2) into (5.1.1) yields 

 
 2 2

3

3 2
,

v v v vx L L x L x
x t

L

   


   
  (5.1.3) 

This displacement, now expressed as a function of the two generalized coordinates, will 

be used in determining the strain energy of the beam. 

 

The potential energy due to elastic deformation can be generalized as: 

 
1

2
strainV Fx  (5.1.4) 

with F being a generalized force and x being a generalized displacement. If we consider a 

beam subject to a normal stress, the potential energy per unit volume is 

1

2
straindV   (5.1.5) 

Applying Hooke‟s law (and ignoring Poisson contractions), the strain energy per unit 

volume is simply. 

21

2
straindV E  (5.1.6) 

Figure 5.3 illustrates the kinematic relationship between the strain, the curvature
1


 of the 

neutral axis, and the distance y of a beam element from the neutral axis. 
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Figure 5.3:  Kinematic relationship between radius of curvature and strain in a beam due 

to bending. 

 

Combining this result with (5.1.6) and integrating over the volume of the beam yields the 

strain energy: 
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 (5.1.7) 

recalling that integral of 2y over the cross section area is defined the area moment of 

inertia I.  Following the standard sign convention introduced in Bedford [37], the 

relationship between curvature and the displacement of the neutral axis,  ,x t , is 

2

2

1 ( , )x t

x
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





 (5.1.8) 

which, when substituted into (5.1.7) yields 

2
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2
strain

L

x t
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  (5.1.9) 

Substituting the displacement (5.1.3) into (5.1.9) and integrating along the length of the 

beam leads to the following expression of the beam strain energy wholly in terms of the 

two generalized coordinates 
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 2 2 2

3

2 3 3v v v v

strain

EI L L
V

L

    
  (5.1.10) 

 

The 2D model considers the club‟s motion in the vertical  ˆ ˆ,I K plane, therefore the 

potential energy due to gravity must also be included.  Fig. 5.4 provides two illustrations 

to aid in the development of an expression for the gravitational potential.  The 

gravitational potential of the club head of mass m is 

gravV mgZ  (5.1.11) 

where Z is the height of the head measured in the inertial frame. Refer to Fig. 5.4 where  

Z is the K̂ component of the position vector cR


 .  Here, capital R denotes a position vector 

defined in the inertial frame. 

 

 
Figure 5.4:  Definition of the gravitational potential energy of the club head.  The initial 

position with Z=0 and a general position 0Z  . 
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.  Here, the 

lower case r denotes a position vector measured in a body-fixed frame.  At this point it is 

convenient to introduce the coordinate transformations from  ˆˆ ,s si k  to   ˆˆ ,c ci k  and from 
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 ˆ ˆ,I K  to  ˆˆ ,s si k per the following illustration.  These transformations will be referred to 

as c sC and s LC  respectively. 
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 (5.1.12) 

In doing so, we also assume that the angle 
v  remains small to be consistent with the 

Euler-Bernoulli hypothesis of small rotations of the beam cross section.  Expanding the 

terms of c
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 leads to 
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Transforming the result of (5.1.13) to the inertial reference frame and substituting into cR


 

provides 
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 (5.1.14) 

which yields the gravitational potential wholly in terms of the two generalized 

coordinates.  The gravitational potential and the strain energy constitute the total potential 

energy function for the model. We now turn our attention to describing the kinetic energy. 

 

Since the shaft is considered to be massless the kinetic energy reduces to that of the club 

head.  The total kinetic energy is thus given by 
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where 
cv


is the absolute velocity of point c, 
c


is the absolute angular velocity of the club 

head and 
yyI is the centroidal mass moment of inertia about the out of plane axis ˆ

cj .  

 

The following equation block (5.1.16) details the expansions used to develop the kinetic 

energy. These expansions demonstrate that the vectors 
cv


and 
c


can be written in terms 

of known geometrical quantities, namely L, 
cx , and 

cz , known measurands from the 

inertial sensor system, namely 
xv , 

zv , 
s (refer to Chapter 2), and finally the generalized 

coordinates and their derivatives,  , , ,v v v v     . 
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  from eq. (5.1.13)
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(5.1.16) 

At this point we introduce Lagrange‟s equation: 

 
0 1,2

strain grav

i i i

V Vd T T
i

dt q q q

   
    

   
     (5.1.17) 

with all necessary quantities developed above in terms of the generalized coordinates, 

denoted as 
iq .  Evaluating Lagrange‟s equation yields the following two equations of 

motion 



 

 97 

 

   

2 2

2

3 2

2 2 2 2 2

2

2

0

0 2

2 0

12 6

6 4

sin

v

v

c

c yy c c

c y

c y

y c y c y

c y c y c y c y c x c z c y

c y z y

Mq Cq Kq F

q

m mz
M

mz I mx mz

mx
C

mx

EI EI
m m z x

L L
K

EI EI
m z x m x z x v z v Lx

LL

m x v g

F









  

    

  

   

 
  
 

 
  

  

 
  

 

 
     

  
         
  

  



 



  

  

 

 

2

2 2

cos sin ...

s x c y

y c c s x y c z c c s c z y c x c y

yy c c y

v L z

m L x gx v x v x gz z v z v Lz

I mz mx



     



   
 
       
 
   
 



 

                                                                                        

 

(5.1.18) 

where nonlinear terms have also been dropped.  

 

The matrix equations of (5.1.18) are a coupled set of 2
nd

 order ordinary differential 

equations (ODE‟s) for the two unknowns generalized coordinates.  There are numerous 

ways to numerically solve these ODE‟s with the measured data from the MEMS sensors.  

One method is to first decouple the highest order derivatives terms to arrive at a set of 

second order equations which can then be readily cast in first order form for 

implementation in standard ODE solvers. We pursued this direction to integrate the 

equations of motion using standard Matlab solvers.  

 

5.2 Experimental Validation of Planar Model 

 

Having developed a planar model that describes the flexible motion of a golf club, we 

now seek to utilize this model in predicting the total motion of the club head.  Before 

doing so however, a number of model parameters must be determined from experiments 

or from known geometric and inertial properties of the club being analyzed as reviewed 

below.  
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The parameters
cx and 

cz describe the location of the mass center, c, relative to the hosel, 

h, and are a function of the club head geometry.  The parameter L is the distance from s 

to h as determined by the shaft geometry and the placement of the sensor within the shaft.  

yyI and m define the club head inertia properties for the planar model. The shaft flexural 

rigidity EI can be estimated by numerous methods.  One method is to establish E from 

the specific shaft material and then determine an average I, based on the shaft geometry.  

Golf shafts are tapered and therefore I varies along the length of the shaft.  In the 

derivation above, we assumed an average value of I though the model could readily be 

modified to account for the exact taper.  A pragmatic alternative is to simply measure the 

average EI for the entire assembled club experimentally by fitting a model for an 

equivalent uniform shaft to the experimental data for static shaft deflection as described 

further in this chapter. 

 

We sought to develop a simple experimental method to directly measure the generalized 

coordinates, 
v  and 

v , for a club.  We elected to use a standard (30Hz frame rate) video 

camera and a specially designed club with dynamics both slow and large enough to 

resolve with a video camera.  The club was also designed to make the calculation and 

identification of the model parameters relatively straight forward.  A standard golf shaft 

was used with a large aluminum head for this purpose as shown later in Fig. 5.6.  The 

associated model parameters are reported in Table 5.1.  Note that the club head mass (4 

lb) is about an order of magnitude larger than that standard club (0.46 lb) which leads to 

the intentional slow and exaggerated shaft flexing in these tests.  
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Parameter Value Units 

 

Parameter Value Units 

L 3.69 ft cm  4.18 lbm 

cx  0.15 ft zzI  25.93 10  
2lbm ft  

cz  0.00 ft EI 188 2lbf ft  

Table 5.1: Parameters for club used in the validation of the planar 

model. 

 

Video Calibration 

 

Three calibration steps are needed in order to make an accurate comparison between the 

video data, the measurements from the MEMS sensor, and ultimately the output from the 

planar model.  The first step is to synchronize in time the data from the MEMS sensor 

and the camera. This entails determining the frame rate of the camera and identifying a 

starting event which is clearly visible in the camera and simultaneously detectable in the 

MEMS sensor data.  The total time of the video clip is divided by the total number of 

frames in that clip to determine an average frame rate per 

sec Total Clip Time s
Frame Rate ( )= ( )

frame Total frames F
 (5.2.1) 

To ensure good synchronization of a video clip, the club head was first impacted on a 

(wooden) backstop block as illustrated in Fig. 5.5.  This impact causes high frequency 

vibration of the shaft which is easily identified in the MEMS sensor output, as also shown 

in Fig. 5.5.  From this test the impact frame in the video and the impact time in the sensor 

data are determined.  This information, along with the frame rate, enables the 

synchronization of events between the video and sensor data per 

1
( )Event Frame Impact Frame

Frame Rate
impact et t    (5.2.2) 

The time when an event occurs in the MEMS data are denoted as 
et . 
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Figure 5.5: An example illustration of how the MEMS data and the video file are 

synchronized in time. Frame 300 shows club head just prior to impacting the wooden 

back stop. Frame 301 shows club head during impact. 

 

The second step in calibrating the video is to covert pixel discretization to dimensions of 

length.  This calibration is accomplished by viewing an object of known length in the 

video.  For these experiments, the reference lengths used were the edges of the club head.  

The calibration is done in both the horizontal and vertical directions to account for any 

differences caused by the camera lens.  The vertical and horizontal lengths of the club 

head were measure using a dial caliper (accurate to 0.001”).  Figure 5.6 below identifies 

key points on the test club and includes an exploded view of the club head section.  The 

exploded view of the club head shows example data for calibration of the horizontal and 

vertical pixel-to-inch scale factor.  

 

Frame 300 Frame 301 

Impact with 
backstop block 

Raw angular velocity data 
from MEMS sensor 
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Figure 5.6: Right image shows the flexible club experimental setup calling out key 

points. Left image is a zoomed-in view of the club head that shows an example 

calculation of the horizontal and vertical pixel-to-inch scale factor calibrations. 

 

The pixel-to-inch scale factor calibrations are given by 

,v h

vert horz

in in
SF SF

pixel pixel
 
 

 (5.2.3) 

 

The third step in calibration is to measure the misalignment of the camera‟s vertical axis 

from true vertical.  The MEMS sensor accurately measures the sensor‟s orientation 

relative to gravity.  The sensor is mounted in the shaft and therefore calculates the 

orientation of the shaft relative to vertical.  The orientation of the shaft in the video can 

be calculated from points P1 and P2 shown in Fig. 5.6, using the following relationship. 

1 2

1 2

2 1
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   
    
   

  

  

 
  
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 (5.2.4) 
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The vertical misalignment of the camera axis, 
vert , represents the difference of the 

MEMS sensor measurement, 
MEMS , and 

video , calculated from analyzing the video.  The 

amount of misalignment was one degree on average for the following tests. 

 

The other points noted in Fig. 5.6 include the positions of two clamps attached to the 

shaft that can be used to hold a second and rigid „pointer‟ shaft just in front of the club.  

The clamps also serve as visible reference points for determining locations on the shaft 

during analysis of the video.  When the „pointer‟ shaft is attached to the club, it tracks the 

orientation of the grip section of the shaft with no deflection and thus follows the 

dynamics of a perfectly „rigid‟ shaft. Three different methods for determining the 

orientation of the grip end of the shaft where the sensor is mounted were explored.  The 

first method uses a long „pointer‟ shaft of nearly equal length to the flexible shaft and 

mounted in front of the flexible shaft relative to the camera.  This long pointer shaft 

would offer the best opportunity to observe the motion of the rigid shaft were it not for 

the unavoidable vibrations caused during movement.  A small damping element was 

added to the top the club head to partially address this concern.  The second attempt was 

to use a rather short (approximately 1 ft long) pointer shaft which, being stiffer, did not 

suffer the same vibrations.  However, the shorter length leads to poorer resolution of 

position and orientation from the pixilated video output.  The final method was to use the 

shaft clamp as a reference point for the position of the grip end of the club and then use 

the MEMS sensor data to establish the orientation of the rigid portion of the shaft in the 

video. This final method proved to be inaccurate and the results will not be presented.  

 

We present next three types of tests that serve to validate the flexible golf club planar 

model. These tests include 1) static measurements of shaft deflection, 2) dynamic 

measurements of the natural frequency of the shaft/head system, and 3) the transient 

measurements of the shaft/head system dynamics under measured accelerations of the 

grip. 
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Test 1: Validation of Static Deflections 

 

The simplest validation test is to compare the output of the planar model with the static 

deflection of the club under gravity as measured by video.  This test consists of holding 

the shaft at a known and constant angle relative to vertical and then measuring the 

resulting static deflection of the shaft.  The results of this test were also used to determine 

the average EI for the club.  Under static conditions, the planar model reduces to 

 

3 2

2

( 0 0 0 0)

12 6
sin

cos sin6 4

v v y y v v x z x z

sv

c s c sv

v v v v

EI EI
mgL L

mg x zEI EI

L L

     



 

         

 
    

          
  

      ,  ,  , 

 (5.2.5) 

which can readily be solved for the static shaft displacement and rotation at the hosel.  

Equation (5.2.5) can also be solved for EI in terms of the displacement at the hosel.  This 

latter calculation results in 

  2

0)

2 3 sin 3 cos

6

c

c s c s

v

z

mgL L z x
EI

 





 


(for this club   

 (5.2.6) 

The variables 
v  and 

s , measured from a video image, are then used to estimate EI.   

 

Figure 5.7 is a typical video frame analyzed during the static testing.  Recall that the 

generalized coordinates of the flexible model are the deflection of the hosel 
v  and the 

rotation of the shaft at the hosel 
v , both measured relative to the undeformed shaft as 

shown in Fig. 5.7. 
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Figure 5.7: Example of static deflection test.  The pointer shaft is defined by points P1
‟
 

and P4.  The flexible club shaft passes though points P4, P5 and P1.  Points P1 and P5 

define the tangent at the end of the shaft and the angle formed between this tangent and 

the pointer shaft is denoted by
v .  The deflection of P1 from the pointer shaft is denoted 

by
v . 

The tests were conducted at three nominal angles 
s 15, 20 and 30 degrees. At each 

angle 
v , 

v , and 
s  were computed as detailed in (5.2.7) below. 
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 (5.2.7) 

The calculated EI for each trial, using the computed values of 
v  and 

s , are given in 

Table 5.2.  

P1 

P1
’ 

P5 

P4 

v

v

s
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Trial v  (in) 
v  (deg) EI ( 2lbf ft ) 

Trial 1 1.31 15.5 182 

Trial 2 1.63 21.8 203 

Trial 3 2.57 30.9 178 

Table 5.2: Results of EI calculated from static video tests 

 

The value for EI used in the model, calculated as the average from the three trials above, 

is 188 2lbf ft .  Using this average value of EI in the planar model results in the following 

comparison of the video measurements and model predictions for these three trials.  

 

Trial 
Approx. 

Ang. 
v  Video 

(in) 
v  Model 

(in) 

Error 

(in) 
v  Video 

(deg) 
v  Model 

(deg) 

Error 

(deg) 

Trial 1 15 1.37 1.27 0.10 5.9 2.5 3.4 

Trial 2 20 1.63 1.76 -0.13 1.9 3.5 -1.6 

Trial 3 30 2.57 2.44 0.13 5.6 4.8 0.8 

Table 5.3: Comparison of video measurements to planar model predictions for static tests. 

 

From this table, one observes that the shaft deflection at the hosel as predicted by the 

model lies within 0.15 inches of the measured deflection obtained from video.  One error 

source arises from the limited resolution of the video.  For instance, a one pixel error in 

locating points P1 or P1‟ in Fig. 5.7 translates to a displacement resolution error of 

approximately 0.09 inches.  From Table 5.3, one also observes that the shaft rotation at 

the hosel as predicted by the model lies within about three degrees of that measured from 

video. In making these comparisons, however, one must understand the relatively poor 

resolution of 
v from the video images. In particular, a 1 pixel error in locating either 

point P1 or P5 to define the tangent at the end of the shaft as shown in Fig. 5.7, leads to 4 

degree error in the measured value of 
v . Thus the video images, while convenient, have 

limited resolution in achieving more-refined comparisons with the model. Nevertheless, 

the generally good agreement observable in the data of Table 5.3 clearly suggests that the 

model can be used to estimate the static deflection of the club. 

An alternative method for determining EI was explored whereby, a small portion of the 

grip end of the shaft was clamped with the shaft horizontal and then a series of weights 
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were hung at the opposite end of the shaft to generate lateral deflections under a known 

tip loads. The tip deflections so measured can be used to determined the average flexural 

rigidity of the shaft.  From the classical result for a cantilever beam with constant cross-

section the relationship between EI and the deflection at L is given by [37] 

3 3

3 3L

L

FL FL
EI

EI



    or     (5.2.8) 

However this procedure did not yield any better results than determining EI from the 

static video tests as described above. 

 

Test 2: Validation of Fundamental Natural Frequency 

 

A logical next step in validating the model is to compare the predicted fundamental 

natural frequency of the assembled club with that measured in the laboratory.  The free 

response form of equations (5.1.18) is found by setting the excitation terms 

 , , , , ,y y x x z zv v v v    to zero. Doing so leads to 
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 (5.2.9) 

from which the natural frequencies can be calculated by considering perturbations about 

the static equilibrium.  Equation (5.2.9) is of the form M K Fx x  .  The static 

equilibrium, *x x , satisfies *Kx F  . Considering perturbations of the form 

*( ) ( )x t x x t  ,  reduces (5.2.9) to 

1
0

0c c
s s

hh
M K
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 
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  (5.2.10) 

To find the natural frequencies, we seek solutions of the form 

c
s

h i tXe 




 
  

  
 (5.2.11) 

which leads to the elementary eigenvalue problem 

 1 2M K X X 
 

 (5.2.12) 
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Employing the model parameters listed in Table 5.1, the fundamental natural frequency 

computed from the above eigenvalue problem is 1.39 Hz.  The natural frequency was 

then experimentally measured by clamping the club with the shaft approximately aligned 

with vertical ( 90s  ), deflecting the club head and then allowing the club to vibrate 

freely.  The frequency of this free vibration was measured by a MEMS accelerometer to 

be 1.30 Hz.  Thus, model slightly over-predicts (+7% error) the fundamental natural 

frequency which could derive from an overestimate of the equivalent (averaged) value for 

EI.  Part of this error is also likely to arise from clamping the shaft which necessarily 

shortens (hence stiffness) the shaft relative to the model. The error could also be caused 

by approximating the actual tapered shaft with a constant cross-section model.  However, 

the overall good agreement clearly shows that the model adequately describes the free 

vibration characteristics of the club. 

  

Test 3: Validation of Deflection under Measured Acceleration 

 

A standard video camera was again used to measure the motion of the shaft under 

„forced‟ conditions wherein the grip was swung (i.e., accelerated). The camera was 

oriented so that the optical axis was approximately perpendicular to the plane of motion 

of the club. We then provided a planar acceleration to the club (with large aluminum 

block) which caused significant flexing of the shaft over a long enough time period that 

the video camera could capture the resulting motion.  The swing was also measured by 

the MEMS sensor which measures the full 3D rigid body motion of the grip.  The sensor 

measurements in the  ˆˆ ,s si k  plane were extracted from the data and used as input to the 

planar model. The output of this model was then directly compared to the video 

measurements as summarized below.  

 

The first step in making a comparison between experiment and theory was to compare the 

rigid body motion of the club measured by the MEMS sensor system to that estimated 

from video. In particular, we used the MEMS sensor to compute the angle 
s illustrated 

in Fig. 5.7 at the time of maximum deflection and then compared this computed angle to 
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that measured from video.  The results for six representative trials are reported in Table 

5.4. 

 

Trial 

Sensor 

Time 

Video 

Frame 

Video 

max 
s  

(deg) 

MEMS 

max 
s  

(deg) 

Error 

(deg) 

Long Pointer 2 2.356 306 23.5 23.1 0.4 

Long Pointer 3 2.780 533 22.4 20.8 1.6 

Long Pointer 4 2.853 257 19.2 19.0 0.2 

Short Pointer 1 1.928 350 27.9 28.8 -0.9 

Short Pointer 2 2.073 301 26.8 29.5 -2.7 

Short Pointer 3 2.245 305 24.9 25.4 -0.5 

Table 5.4: Comparison of rigid body dynamics from video and MEMS sensor. 

 

Inspection of this table reveals good agreement between the predicted orientation of the 

grip and that measured from the video. The agreement is most often within one degree 

which perhaps is not unexpected given the known accuracy of the MEMS sensor system 

from the more refined validation testing discussed in Chapter 2.  

 

A similar procedure was then used to compare the flexible body motion predicted by the 

planar model with direct measurements from video.  Table 5.5 summarizes the results for 

nine trials.    

 

Trial v  Video 

(in) 
v  Model 

(in) 

Error 

(in) 
v  Video 

(deg) 
v  Model 

(deg) 

Error 

(deg) 

Long Pointer 2 F 286 2.32 1.87 0.45 0.1 3.6 -3.5 

Long Pointer 2 F 290 1.75 1.74 0.01 4.1 3.4 0.7 

Long Pointer 3 F 514 2.52 2.05 0.47 0.2 4.0 -3.8 

Long Pointer 3 F 518 2.21 1.78 0.43 3.9 3.5 0.4 

Long Pointer 4 F 261  2.30 1.90 0.40 1.0 3.7 -3.7 

Long Pointer 4 F 267 1.84 1.46 0.38 1.1 2.9 -1.8 

Short Pointer 1 F 334 2.27 2.30 -0.03 5.6 4.5 1.1 

Short Pointer 2 F 282 1.67 1.94 -0.27 4.2 3.8 0.4 

Short Pointer 3 F 291 2.51 1.95 0.56 8.1 3.8 4.3 

Table 5.5: Comparison of flexible body dynamics from video and planar model 
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The generalized coordinates (
v and 

v ) as calculated from video analysis and from the 

flexible model are reported in the table above at the time when the maximum deflection 

was noted in the video.   (There were two distinct frames in the „long pointer‟ trials where 

v  appeared to be a local maximum, so both times where analyzed.)  As in the static tests, 

a 1 pixel difference in determining 
v from the video leads to a 4 degree change in this 

angle, so the errors in 
v noted in this table generally fall well within this limit of angular 

resolution from video.  The resolution on deflection by video is again 0.09 inches per 

pixel. The errors however are generally greater than this resolution limit and the planar 

model nearly always under-predicts the shaft deflection.  One possible source of this error 

may well be the unknown damping present in the shaft as described next. 

 

Recall that the derivation of the planar model ignores dissipation. However, in the 

simulations leading to the results of Table 5.5, dissipation was incorporated by adding a 

linear damping term to both equations of motion.  Specifically a terms proportional to 
v
  

and 
v
  were added to (5.1.18).  While the damping constants for these terms are not 

known apriori, one could tune them and doing so does alter the results reported above for 

the transient response of the club. Such tuning may well improve the agreement between 

the measured results and the planar model. 

 

5.3 Closure 

 

The purpose of this chapter was to demonstrate that a model of the golf club could be 

used in tandem with the measured motion of the grip to deduce the total (rigid + flexible) 

motion of the club head. The results presented herein suggest this to be true beginning 

with the conceptually simpler case of planar dynamics. The planar model rather 

accurately predicts the static deflection of the club head and the natural frequency of the 

shaft/club head system. In response to a swing (measured acceleration of grip), the same 

model provides reasonable estimates of the deflection of the club head that are largely 

within the (somewhat crude) resolution limits of standard video.  
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Given these initial results for planar dynamics, we extend the approach in Chapter 6 to 

describe the three-dimensional dynamics of a flexible golf club. In particular, Chapter 6 

includes bending about two orthogonal axes of the shaft and twisting about the long axis 

of the shaft. 
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CHAPTER 6 

THREE-DIMENSIONAL FLEXIBLE MODEL 

 OF A GOLF CLUB 

 

The objective of this chapter is to extend the model derived in Chapter 5 to fully three-

dimensional golf swings.  This model will therefore account for shaft bending about two 

orthogonal axes and torsion about the centerline. The bending and torsion of the shaft are 

„driven‟ by the acceleration (linear and angular) developed at the grip. Recall that the 

MEMS sensor system provides measurements of this „input‟ and thus it can be used in 

conjunction with this flexible club model to predict the position and orientation of the 

club head due to both rigid and flexible body contributions. In addition, this chapter 

includes a limited validation study where predictions of the three-dimensional flexible 

model are compared with experimental observations from video. 

 

6.1 Derivation of 3D Model (Lagrange Formulation) 

 

Definition of Model and Unknowns 

 

To begin, we introduce the golf club in three-dimensional space as illustrated in Fig. 6.1.  

This figure depicts the club with the shaft flexed (dashed line).   As in the previous 

chapter, the shaft will be treated as a massless, inextensible, Euler-Bernoulli beam of 

length L and the club head will be considered a rigid body of mass m.  Justification for 

the use of Euler-Bernoulli assumptions were given in Chapter 5.   
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Figure 6.1: Schematic of 3D model. Points s, h and c denote the origin of the shaft frame, 

the hosel (point of intersection of shaft and club head), and the mass center of the club 

head, respectively. Dashed line represents the deflected shaft.  The position vectors sR


 

and cR


are measured in the lab-fixed frame  ˆ ˆ ˆ, ,I J K  whereas the position vectors h
s

r


 and 

c
h

r


are measured in the body-fixed frame  ˆˆ ˆ, ,s s si j k .  

 

Three coordinate systems are introduced with analogous definitions to those for the two-

dimensional model.  The lab-fixed frame  ˆ ˆ ˆ, ,I J K , is centered at point o with K̂  aligned 

with the vertical direction  ˆg gK 


.  The body-fixed frame  ˆˆ ˆ, ,s s si j k , is centered at 

point s where the ˆ
sk direction is tangent to the undeformed or rigid shaft and  ˆ ˆ,s si j are in 

the directions normal to the rigid shaft.  The body-fixed frame  ˆˆ ˆ, ,c c ci j k is centered at c 

with the ˆ
ck  direction tangent to the deformed or flexible shaft and  ˆ ˆ,c ci j  are normal 

directions to the flexible shaft.  The position vectors sR


 and cR


 define the position of the 

shaft (grip) and the mass center of the club head respectively, as measured in the lab-

fixed frame. The position vector h
s

r


 is measured in the body-fixed s-frame and the 

position vector c
h

r


is measured in the vector body-fixed c-frame.   

 

Deflection of the shaft in the  ˆˆ ,s si k plane will be described with the variable  ,x t  

where x is the independent spatial coordinate measured along the undeformed shaft from 

s 

c 

ˆ
sk

ˆ
ck

ˆ
si

g


h 
x

Î

K̂

Ĵ

ˆ
sj

ˆ
cj

ˆ
ci

c
h

r


cR


sR


h
s

r


o 



 

 113 

s towards h.  In the orthogonal plane,  ˆˆ ,s sj k plane, deflection of the shaft is assigned the 

variable  ,w x t .  Twisting of the shaft about the ˆ
sk direction is denoted by the variable 

 ,x t .   

 

For the three-dimensional problem, five generalized coordinates (5 degrees-of-freedom) 

are required to describe the flexible body dynamics of the club head relative to the rigid 

shaft. (The sixth dof is eliminated due to the assumption of inextensibility.) The 

deflection of the shaft at point h in the  ˆˆ ,s si k plane is denoted by 
v  (the deflection at the 

hosel) and the slope of the shaft at this same point h is denoted as 
v (the rotation of the 

deformed shaft relative to the undeformed shaft at the hosel). These quantities are 

identical to those introduced in the two-dimensional model.  Counter-clockwise (CCW) 

rotation of the deformed shaft relative to the undeformed shaft is defined to be positive 

about the ˆ
sj  direction.  The analogous definitions for the displacement and slope at the 

hosel in the  ˆˆ ,s sj k plane lead to the coordinates 
w  and 

w , respectively.  For 
w , the 

positive sign convention is defined as CCW rotation about the ˆ
si  direction of the 

deformed shaft relative to the undeformed shaft.  The twist of the shaft at point h relative 

to point s is defined as the coordinate 
h .  Positive twist is defined as CCW twisting 

about the ˆ
sk . 

 

We now turn attention to developing the equations of motion of our five dof model using 

a Lagrangian formulation. The major steps of the derivation are summarized below and 

the final linear equations of motion are provided in full in Appendix A. 

 

Potential Energy 

 

Using the definitions of the generalized coordinates above, we first develop expressions 

for the strain energy and gravitational potential energy which constitute the potential 
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energy for our five dof model. The boundary conditions are the same as in the two-

dimensional model.  The left boundary is equivalent to a „clamped‟ boundary condition 

and the right boundary conditions are the deflections and rotations described by the 

generalized coordinates.  The bending strain energy for bending in the  ˆˆ ,s si k plane is the 

same as the previous chapter Eqn. (5.1.10) as given by 

 2 2 2

_ 3

2 3 3v v v v

ik bend

EI L L
V

L

    
  (5.1.10) 

Similarly, the bending strain energy for bending in the  ˆˆ ,s sj k plane is 

 2 2 2

_ 3

2 3 3w w w w

jk bend

EI L L
V

L

    
  (6.1.1) 

 

Next, we describe the twisting of the shaft,  ,x t , wholly in terms of the generalized 

coordinate 
h .  Fig. 6.2 shows an image of the cantilevered shaft with circular cross-

section subject to a torque, T, which is the reaction torque from the club head on the shaft. 

 

 
Figure 6.2:  Cantilevered Euler-Bernoulli beam subject to torque T applied at the end.  

 

Considering the equilibrium of an infinitesimal section of length dx, the differential 

equation of equilibrium for torsion is  

" 0GJ   (6.1.2) 

when no distributed torque is present [51] and GJ denotes the shaft torsional stiffness.  

Therefore '  is a constant.  Applying the boundary condition,  0 0   leads to the 

classical result  

s 

T 

h 

x
h

 ,x t

ˆ
sk
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 
T

x x
GJ

   (6.1.3) 

 for   as a function of x.  The twist at the end of the shaft is 

  h

TL
L

GJ
    (6.1.4) 

Solving (6.1.4) for T and substituting into (6.1.3) yields the shaft twist 

  hx x
L


   (6.1.5) 

as a function of x and the generalized coordinate  
h .  The strain energy for the shaft due 

to torsion is 

 
2

0

2

,

2

2

L

tor

h

x tGJ
V dx

x

GJ

L





 
  

 




 (6.1.6) 

where Eqn. (6.1.5) has been substituted [51]. 

 

Summing all the terms associated with strain energy yields the result 

 2 2 2 2 2 2 2 2 2

3

2
3 3 3 3

2
strain v v v v w w w w h

EI GJ
V L L L L

L L
                (6.1.7) 

 

The remaining potential energy derives from gravity and is given by 

gravV mgZ  (6.1.8) 

where m is the mass of the club head, g is the acceleration due to gravity, and Z is the 

K̂ component of  the position vector cR


, refer to Fig. 6.1.  The expansion for cR


 will be 

developed below in the derivation of the kinetic energy.  Combining the strain energy, 

(6.1.7), and the gravitational potential energy, (6.1.8), yields the total potential energy for 

the model. 
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Kinetic Energy 

 

Just as in the two-dimensional case, we formulate the kinetic energy of the club head.  In 

three-dimensions, the kinetic energy of this rigid body is  

1 1

2 2

T T

c c c c cT mv v I  
  

 (6.1.9) 

where 
cv


 is the absolute velocity of mass center, c, 
c


 is the absolute angular velocity of 

the club head (hence the angular velocity of the body-fixed frame at c), and cI  is the 

inertia tensor defined by the body-fixed frame at the mass center, c.   

 

Beginning with the translational component of the kinetic energy, the velocity vector 
cv


 

can be expanded as 

c
h

c h cv v r  
  

 (6.1.10) 

where 
hv


 is the absolute velocity of hosel (point h) and c
h

r


 is the position of c relative to 

h.  This position vector is a function of the club head geometry and is constant when 

written in the  ˆˆ ˆ, ,c c ci j k  frame as 

ˆˆ ˆ
c

h
c c c c c cr x i y j z k  


 (6.1.11) 

The velocity of the hosel can also be expanded as 

h h
s s

h s sv v v r   
   

 (6.1.12) 

where 
sv


 is absolute velocity of sensor origin (point s) which is derived from 

measurements as detailed in Chapter 2.  The velocity vector h
s

v


 is the velocity of point h 

relative to point s.  The third term of this expression contains 
s


 which is the absolute 

angular velocity of the body-fixed reference frame at s, which is again derived from 

measurement. The vector h
s

r


 is the position of point h relative to point s.  This position 

can be written as 

ˆˆ ˆ
h

s
v s w s sr i j Lk   


 (6.1.13) 
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using the definitions of the generalized coordinates introduced at the beginning of the 

chapter.  The time derivative of Eqn. (6.1.13) leads to an expression for h
s

v


as 

ˆ ˆ
h

s
v s w sv i j  

    (6.1.14) 

Return to equation (6.1.10) and expand 
c


 as 

c
s

c s   
  

 (6.1.15) 

where c
s




 is the angular velocity of the c-frame relative to the s-frame.  That relative 

angular velocity can also be expressed in terms of the generalized coordinates per 

ˆˆ ˆ
c

s
w s v s h si j k     

     (6.1.16) 

 The signs of the terms above reflect the sign conventions for positive rotations 

introduced previously. 

 

To develop a full expression for the translational kinetic energy all vectors will first be 

transformed into components in the  ˆˆ ˆ, ,s s si j k  frame.   The transformation from the shaft 

frame,  ˆˆ ˆ, ,s s si j k , to the club head frame,  ˆˆ ˆ, ,c c ci j k , can be written as  [43] 

2 3 3 2 2

1 2 3 1 3 3 1 3 1 2 1 2

3 1 1 2 3 3 2 1 3 1 1 2

cos cos sin cos sin

sin sin cos cos sin cos cos sin sin sin sin cos

sin sin cos sin cos sin sin cos cos sin cos cos

c sC

    

           

           

 
 

  
 
   

 

(6.1.17) 

where  1 2 3, ,    are three successive CCW rotations about the positive  ˆˆ ˆ, ,s s si j k  axes, 

respectively.  The (Euler) angles  1 2 3, ,    are related to the generalized coordinates 

 , ,w v h    by the following 

1

2

3

w

v

h

 

 

 



 

 

 (6.1.18) 

Substituting Eqn. (6.1.18) into the transformation matrix (6.1.17) yields 

1

1

1

h v

c s

w v h w v h w

h w v v h w

C

 

      

     

 
 

   
 
    

 (6.1.19) 



 

 118 

where sin   and cos 1  are used in keeping with the kinematic assumption of 

(small rotation) Euler-Bernoulli beam theory.  In addition, only terms of second order or 

lower will be retained in (6.1.19) as only these terms will contribute toward the linear 

equations of motion in the end.  In other words, terms up to second order in the kinetic 

energy yield the first order terms in the equations of motion. The final expression for 
cv


 

is 

 h h c c
s s s h

s c

c s s sv v v r C r        
      

 (6.1.20) 

 

Continuing on, we now focus on the rotational portion of the kinetic energy, 

1

2

T

rot c c cT I 
 

, realizing that 
c


 has already been defined in the s-frame above and cI  

is constant in the c-frame.  Transforming cI  to the s-frame leads to the final expression 

   
1

2

T
T s c s c

rot c c cT C I C 
 

 (6.1.21) 

for the rotational kinetic energy.  

 

Having established the kinematic relations above, we now return to the missing part of 

the potential energy formulation that relies on formulating an expression for the position 

vector cR


. Notice that 

 h c
s h

L s s c

c sR R C r C r  
   

 (6.1.22) 

where 
L sC  is the transformation from the s-frame to the lab-fixed frame  ˆ ˆ ˆ, ,I J K  as 

introduced in Chapter 2, and where  
T

s c c sC C .  The K̂  component of this vector, 

namely Z, is needed for the gravitational potential energy Eqn. (6.1.8).  
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Linear Equations of Motion 

 

With complete expressions for the potential and kinetic energies, we turn our attention 

obtaining the five equations of motion via Lagrange‟s equations as follows 

 
0 1,2,3,4,5    

strain grav

i i i

V Vd T T
i

dt q q q

   
    

   
 (6.1.23) 

 

The quantities 
iq  denote the generalized coordinates  , , , ,v w v w h     .  In formulating 

these equations, we retaining only the linear terms in the generalized coordinates which 

leads to a system of linear differential equations of the form 

Mq Cq Kq F  
      (6.1.24) 

The complete form of Eqn. (6.1.24) is provided in Appendix A.   

 

6.2 Experimental Validation 

 

We present next a limited set of experiments that were used to validate the three-

dimensional model for a flexible golf club outlined above.  The experiments follow 

closely those performed for the two-dimensional model of Chapter 5. Due to limited time, 

these experiments are not exhaustive, but they do offer some validation of both the 

natural frequencies of the flexible club as well as transient dynamics during a controlled 

swing. 

 

Natural Frequencies of Club 

 

Experimental results for the two-dimensional model of Chapter 5 already considered the 

natural frequency for shaft bending in a single plane.  The two-dimensional model 

provided a very reasonable estimate for this natural frequency.  The model parameters 

given in Table 5.1 were used as inputs for both bending axes in the three-dimensional 

model.  A similar eigenvalue problem to that described by Eqs. 5.2.9 to 5.2.12 was 

analyzed for the 3-D model resulting in the prediction of the two bending natural 
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frequencies as 1.39 Hz which shows that the bending natural frequencies for the 3-D 

model converge to that of the 2-D model (1.39 Hz from 2-D model). 

 

A new feature of the three-dimensional model is that it explicitly accounts for the torsion 

of the shaft.  Thus, one could now use a measured torsional natural frequency of the club 

to provide further validation of the three-dimensional model. To this end, the torsional 

natural frequency of the same exaggerated club introduced in the previous chapter was 

measured by clamping the grip end of the shaft, applying a torque to the aluminum block 

club head, and then allowing the system to vibrate freely.  From the recorded free 

response, this natural frequency was measured to be 14.4 Hz.  A similar eigenvalue 

problem to the one considered in (5.2.12) was constructed for the three-dimensional 

model.  The eigenvalue problem for torsion upon substituting the club properties is given 

as 

0

where 

zz h tor h

tor

I K

GJ
K

L

  





 (6.2.1) 

The model parameters detailed in Table 5.1 were used as input to this eigenvalue problem 

together with the following estimate of GJ 

 
 2146

1

0.29  for steel

EI
GJ lbf ft

v

v

  




 (6.2.2) 

obtained by relating the previously measured bending stiffness (EI) to the torsional 

stiffness (GJ) of a circular shaft. Doing so leads a predicted value of the torsional natural 

frequency as 23.3 Hz.  This is a 62% error in predicting the torsional natural frequency.  

The main cause of this discrepancy is the assumption that the shaft can be model as a 

constant cross-section.  Revisiting Eq. (6.1.2) and allowing J to vary along the length of 

the shaft results in the boundary value problem 

"( ) 0

(0) 0 ( ) and h

GJ x

L



  



 
 (6.2.3) 

The solution of (6.2.3), separating the variables, leads to 

( )GJ x d Tdx   (6.2.4) 
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Next we assume that the shaft tapers linearly from an outer diameter of 
1D  at 0x   to an 

outer diameter of 
2D  at x L  and that the shaft has a constant thickness of t .  Therefore 

 J x  can be approximated by the function 

     
4 4

1 2 1 1 2 1 2
32

x x
J x D D D D D D t

L L

     
               

 (6.2.5) 

The parameters 
1D , 

2D , and t  for the measured club are 0.59in, 0.34in and 0.02in 

respectively.  Integrating the left hand side of Eq. (6.2.3) from 0 to 
h , the right hand 

side from 0 to L and substituting the known constants leads to 

339883
h

in T

G


 
  (6.2.6) 

where G is the shear modulus of the shaft (steel).  The twist at x L , 
h , is related to the 

stiffness parameter 
torK  by 

24.2tor

h

T
K ft lb


    (6.2.7) 

Now we substitute the new value for 
torK  into (6.2.1), which leads to a predicted natural 

frequency of 18.5 Hz.  This reduces the natural frequency discrepancy to 28%.  Further 

refinement of the torsional model could be accomplished by accounting for the fact that 

the actual shaft maintains the outer diameter of 
2D  for approximately the last 9in of the 

46in shaft and modeling the shaft in discrete sections since the real shaft is stepped.  

During so will ultimately reduce 
torK  further and thus lower the predicted natural 

frequency. 

 

Transient Response 

 

The transient response of the two-dimensional model was validated by comparing the 

transient motion measured by standard video to the model predictions.  The model 

predictions used the measured sensor data for a simple swing (slow slewing motion) that 

was largely confined to the vertical plane. Only the associated two-dimensional 
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components of the measured sensor data were used for validation of the two-dimensional 

model.   

 

Here, we return to that same experiment but now include the complete three-dimensional 

components of the measured sensor data as input to the three-dimensional model. Again 

we add in dissipation terms proportional to the generalized velocities as we did in the 2D 

model simulation.  Our expectation is that the three-dimensional model will largely 

replicate the results of the two-dimensional model but that there should also be torsional 

and out-of-plane bending components that are excited during the experiment.  The 

computed output of the three-dimensional model is presented below. 

 

 

Figure 6.3:  Simulation results of three-dimensional flexible shaft model using measured 

input from MEMS sensor system. This test is described in Chapter 5.  (a) Computed time 

histories of the two displacement coordinates, 
v  and 

w .  (b) Computed time histories of 

the three rotation coordinates, 
v , 

w , and 
h .  The results from the 2D model are 

superimposed in black. 

  

Figure 6.3 illustrates the time histories for the five generalized coordinates computed for 

the slow „slewing‟ experiment of the club previously described in Chapter 5.  The red 

curves of Fig. 6.3, which represent the two “in-plane” degrees-of-freedom, are nearly 

identical to those computed for the two-dimensional model (black curves). (Minute 

difference do exist due to the coupling terms with the out-of-plane motion components in 
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the equations of motion for the three-dimensional model.) The two data points illustrated 

in Figs. 6.3(a)-(b) designate the maximum in-plane displacement and rotation of the club 

head as predicted by the three-dimensional model. These values closely reproduce those 

of the two-dimensional model which correlate reasonably well with those measured via 

video as described in Chapter 5. The out-of-plane bending and rotation components (blue 

curves) comparably small indicating that the club motion is indeed largely planar as 

expected.  The torsional motion, though clearly excited, is also reasonably small (never 

exceeding 4.5 degrees) and it also clearly shows oscillations in response to inadvertent 

torque inputs applied to the shaft during the experiment. Unfortunately, there was no 

means to detect/measure these small torsional motions via the video camera. 

 

6.3  Closure 

 

This chapter provides an important extension of the results of Chapter 5. In particular, we 

derive a five degree-of-freedom model that describes the three-dimensional flexible body 

dynamics of a golf club. The model captures the two-axis bending of the shaft as well as 

the twisting of the shaft.  These bending and twisting motions are ultimately induced by 

the golfer through linear and angular accelerations developed at the grip during the swing. 

The MEMS sensor system allows one to measure these „inputs‟ to the flexible body 

motion. A limited amount of experimental validation is also presented in this chapter 

which includes analyses of the natural frequencies of a club in torsion and the transient 

response of a club in a slow slewing motion. Additional validation is recommended in the 

future by employing golf clubs with embedded strain gauges and/or through a refined 

analysis of high-speed video/motion capture cameras. 

  

Overall, the flexible body modeling efforts described in Chapters 5 and 6 add new 

capabilities to the original use of the MEMS sensor system as a means to track the rigid 

body dynamics of the club.  The two- and three-dimensional models of a flexible club 

require apriori knowledge of a limited number of club parameters that describe the shaft 

geometry and stiffness (in both bending and torsion) and the geometry and inertia 

properties (mass and inertia tensor) of the club head. Once these parameters are specified, 

they are used to define a flexible body model of the golf club that enables the prediction 
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of the overall motion of the club (both rigid and flexible motions components) based on 

the measured motion components from the MEMS sensor system. 



 

 125 

CHAPTER 7 

CONTRIBUTIONS, CONCLUSIONS  

AND FUTURE DIRECTIONS 

 

7.1 Contributions and Conclusions 

 

Overall, this research contributes a novel technology for measuring the three-dimensional 

motion of a golf club that is highly portable and far less expensive when compared to 

state-of-the-art camera based measurement systems.  The marrying of MEMS inertial 

sensors with a wireless transceiver yields a compact and lightweight design that fits 

wholly within the grip end of the club. The broad uses of this technology include golf 

swing training, golf club design, and custom golf club fitting. We summarize briefly 

below four major outcomes. 

 

The first major outcome of this research is the design, fabrication and testing of a novel, 

miniature, wireless, six degree-of-freedom, inertial measurement unit (IMU) for 

measuring the rigid body dynamics of a golf club.  A second major outcome is the 

development of a companion measurement theory that uses the sensor acceleration and 

angular velocity signals to compute the three-dimensional kinematics of a golf club 

including the club head path and velocity, and the club head orientation (lie, loft and face 

angles). A third major outcome is the use of the hardware and measurement theory to 

understand the major features of putting strokes and full swings. Finally, a fourth major 

outcome is the prediction of flexible body motion using measured sensor signals as input 

to flexible golf club models.  The application of this sensor hardware and measurement 

theory leads to the following conclusions for golf swing dynamics. 

 

The systematic evaluation of putting strokes with a putting robot demonstrates that one 

can predict the three-dimensional position of the club head to within 3mm and the 
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orientation of the club head (lie, loft and face angles) to within 0.5o , all with millisecond 

updates. An in depth study of putting techniques also reveals that this technology can pin-

point common putting faults including, for example, 1) excessive face angles at impact, 

2) off-center impacts of the ball on the clubface, and 3) improper uses of the wrists. A 

second-generation design that incorporates higher-range sensors allows the concept to be 

extended to full swings. The analysis of swings made with irons and drivers readily 

distinguishes important features within the three major phases of a full swing; namely, 

the address, the backswing, and the downswing.  For example, both the backswing and 

the downswing are largely confined to distinct swing planes and the orientation of these 

two planes can be calculated from the sensor data.  The significant linear and angular 

accelerations developed at the grip during the final stage of the downswing may induce 

flexible body motion of the club. Both two- and three-dimensional models describing the 

bending and twisting of the shaft are derived to estimate these flexible body components.  

The MEMS sensor system provides the essential inputs to these models thereby allowing 

one to incorporate flexible body influences with no additional sensors/instrumentation.  

 

7.2 Future Directions 

 

This research has laid the foundation for the application of MEMS inertial sensor 

technology to the analysis and teaching of golf swings. However, it is important to 

recognize that success in golf follows from a combination of skills, including developing 

highly effective swing mechanics. For example, success in putting requires that a player 

correctly read the green, align to the intended target line, and then finally execute an 

accurate stroke.  In this context, this technology provides a truly superior means for 

assessing the latter skill, namely the development of an effective putting stroke.  

Indeed, the studies included in Chapter 3 provide compelling evidence that this 

technology can pin-point common faults in the putting stroke through systematic analysis 

of the club head position and orientation. Of course one way to remedy any fault is 

through concerted practice with specific and timely feedback. In some instances and 

alternative may be to alter the club characteristics to minimize the fault leading to the 
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concept of custom club fitting. In either instance, this technology provides the essential 

measurement hardware and analysis theory to guide and to track improvements. 

 

Additional research and development is now necessary to improve the analysis of full 

golf swings.  In particular, the need exists to precisely identify the first instance of 

ball/club impact as input to the analysis of full swings.  A second area of improvement 

lies with the identification and systematic correction of measurement errors, including 

sensor bias error.  Beyond these improvements in predicting the rigid body motion during 

full swings, one should focus on improving the predictions of the flexible body motion.  

Advances will follow from developing/using a fully instrumented golf club that senses 

strain and/or displacements for two-axis bending and torsion.  These measurements will 

no doubt enable additional improvements to the three-dimensional model of a flexible 

club. A ready starting point would be to explicitly account for the taper of the shaft.  

 

Despite these limitations, this research overall has contributed a promising technology to 

the advance the game of golf. 

 



Appendix A: Three-Dimensional Model Equations

This appendix contains the full expression for all the terms of the 3D flexible model
described in Chapter 6. The 3D model is of the form:

M~̈q + C~̇q + K~q = ~F
Where: ~q = (δv, δw, θv, θw, ψh)

Gerneralized Mass Matrix Terms

The following matrix is the generalized mass matrix:

M =




m 0 mzc 0 myc

0 m 0 mzc −mxc

mzc 0 mx2
c + mz2

c + Iyy mxcyc myczc

0 mzc mxcyc my2
c + mz2

c + Ixx −mxczc

myc −mxc myczc −mxczc mx2
c + my2

c + Izz




Generalized Damping Matrix Terms

Here are the generalized damping trems:

C11 = 0

C12 = −2mωz(t)

C13 = 2mxcωy(t)

C14 = 2mycωy(t)− 2mzcωz(t)

C15 = 2mxcωz(t)

C21 = 2mωz(t)

C22 = 0
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C23 = 2mzcωz(t)− 2mxcωx(t)

C24 = −2mycωx(t)

C25 = 2mycωz(t)

C31 = −2mxcωy(t)

C32 = 2mxcωx(t)− 2mzcωz(t)

C33 = 0

C34 = mωz(t)x
2
c + mvy(t)xc + Lmωx(t)xc + 3mzcωx(t)xc −mycvx(t) + Lmycωy(t) +

3myczcωy(t) + my2
cωz(t)− 2mz2

cωz(t)

C35 = −2mωx(t)x
2
c −3mycωy(t)xc +3mzcωz(t)xc +mzcvy(t)+mycvz(t)+my2

cωx(t)+
mz2

cωx(t) + Lmzcωx(t)

C41 = 2mzcωz(t)− 2mycωy(t)

C42 = 2mycωx(t)

C43 = −mωz(t)x
2
c −mvy(t)xc−Lmωx(t)xc− 3mzcωx(t)xc + mycvx(t)−Lmycωy(t)−

3myczcωy(t)−my2
cωz(t) + 2mz2

cωz(t)

C44 = 0

C45 = mωy(t)x
2
c − mvz(t)xc − 3mycωx(t)xc − mzcvx(t) − 2my2

cωy(t) + mz2
cωy(t) +

Lmzcωy(t) + 3myczcωz(t)

C51 = −2mxcωz(t)

C52 = −2mycωz(t)

C53 = 2mωx(t)x
2
c + 3mycωy(t)xc − 3mzcωz(t)xc −mzcvy(t)−mycvz(t)−my2

cωx(t)−
mz2

cωx(t)− Lmzcωx(t)

C54 = −mωy(t)x
2
c + mvz(t)xc + 3mycωx(t)xc + mzcvx(t) + 2my2

cωy(t) −mz2
cωy(t) −

Lmzcωy(t)− 3myczcωz(t)

C55 = 0
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Generalized Stiffness Terms

Here are the generalized stiffness terms:

K11 = −mωy(t)
3 −mωz(t)

2 + 12EI
L3

K12 = mωx(t)ωy(t)−mω̇z(t)

K13 = −mzcωy(t)
2 −mzcωz(t)

2 + mxcωx(t)ωz(t) + mxcω̇y(t)− 6EI
L2

K14 = mzcωx(t)ωy(t) + mycωx(t)ωz(t) + mycω̇y(t)−mzcω̇z(t)

K15 = −mycωy(t)
2 −mxcωx(t)ωy(t)−mycωz(t)

2 + mxcω̇z(t)

K21 = mωx(t)ωy(t) + mω̇z(t)

K22 = −mωx(t)
2 −mωz(t)

2 + 12EI
L3

K23 = mzcωx(t)ωy(t) + mxcωz(t)ωy(t)−mxcω̇x(t) + mzcω̇z(t)

K24 = −mzcωx(t)
2 −mzcωz(t)

2 + mycωy(t)ωz(t)−mycω̇x(t)− 6EI
L2

K25 = mxcωx(t)
2 + mycωy(t)ωx(t) + mxcωz(t)

2 + mycω̇z(t)

K31 = −mzcωy(t)
2 −mzcωz(t)

2 + mxcωx(t)ωz(t)−mxcω̇y(t)− 6EI
L2

K32 = mzcωx(t)ωy(t) + mxcωz(t)ωy(t) + mxcω̇x(t)−mzcω̇z(t)

K33 = −mx2
cωx(t)

2 + 2Ixzωz(t)ωx(t) + 2mxczcωz(t)ωx(t)−mx2
cωy(t)

2 −mz2
cωy(t)

2 −
mz2

cωz(t)
2 −mxcv̇x(t) + mzcv̇z(t) + myczcω̇x(t) + Lmxcω̇y(t) + mxcycω̇z(t) + 4EI

L

K34 = −mωx(t)ωy(t)y
2
c +mω̇z(t)y

2
c−mxcωx(t)

2yc+mxcωz(t)
2yc−2gm(e1e3−e2e4)yc−

mvz(t)ωy(t)yc + mvy(t)ωz(t)yc + Lmωx(t)ωz(t)yc + 2mzcωx(t)ωz(t)yc − mv̇x(t)yc +
Lmω̇y(t)yc +2mzcω̇y(t)yc +mz2

cωx(t)ωy(t)+mxczcωy(t)ωz(t)+mxczcω̇x(t)−mz2
c ω̇z(t)

K35 = −mωy(t)ωz(t)x
2
c −mω̇x(t)x

2
c − 2mzcωx(t)ωy(t)xc + mycωx(t)ωz(t)xc

− 2mycω̇y(t)xc + mzcω̇z(t)xc + myczcωx(t)
2 − myczcωy(t)

2 − 2gm(e2e3 + e1e4)zc +
mzcvz(t)ωx(t)−mzcvx(t)ωz(t)+mz2

cωy(t)ωz(t)+Lmzcωy(t)ωz(t)+mycv̇z(t)+my2
c ω̇x(t)

K41 = mzcωx(t)ωy(t) + mycωx(t)ωz(t)−mycω̇y(t) + mzcω̇z(t)
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K42 = −mzcωx(t)
2 −mzcωz(t)

2 + mycωy(t)ωz(t) + mycω̇x(t)− 6EI
L2

K43 = −mω̇z(t)x
2
c − mycωx(t)

2xc + mycωz(t)
2xc + mzcωy(t)ωz(t)xc − mv̇y(t)xc −

Lmω̇x(t)xc − 2mzcω̇x(t)xc − 2gm(e1e3 − e2e4)yc − mycvz(t)ωy(t) − my2
cωx(t)ωy(t) +

mz2
cωx(t)ωy(t) + mycvy(t)ωz(t) + Lmycωx(t)ωz(t) + 2myczcωx(t)ωz(t)−myczcω̇y(t) +

mz2
c ω̇z(t)

K44 = −my2
cωx(t)

2 −mz2
cωx(t)

2 −my2
cωy(t)

2 −mz2
cωz(t)

2 + 2Iyzωy(t)ωz(t)
+2myczcωy(t)ωz(t)−mycv̇y(t)+mzcv̇z(t)−Lmycω̇x(t)−mxczcω̇y(t)−mxcycω̇z(t)+

4EI
L

K45 = mω̇y(t)x
2
c + mzcωx(t)

2xc −mzcωy(t)
2xc −mycωy(t)ωz(t)xc −mv̇z(t)xc

−2mycω̇x(t)xc+2gm(e1e3−e2e4)zc+mzcvz(t)ωy(t)+2myczcωx(t)ωy(t)−mzcvy(t)ωz(t)+
my2

cωx(t)ωz(t)−mz2
cωx(t)ωz(t)− Lmzcωx(t)ωz(t)−my2

c ω̇y(t) + myczcω̇z(t)

K51 = −mycωy(t)
2 −mxcωx(t)ωy(t)−mycωz(t)

2 −mxcω̇z(t)

K52 = mxcωx(t)
2 + mycωy(t)ωx(t) + mxcωz(t)

2 −mycω̇z(t)

K53 = −mωy(t)ωz(t)x
2
c+mω̇x(t)x

2
c−2mzcωx(t)ωy(t)xc+mycωx(t)ωz(t)xc+mycω̇y(t)xc

− 2mzcω̇z(t)xc + myczcωx(t)
2 −myczcωy(t)

2 − 2gm(e2e3 + e1e4)zc + mzcvz(t)ωx(t) −
mzcvx(t)ωz(t) +mz2

cωy(t)ωz(t)+Lmzcωy(t)ωz(t)−mzcv̇y(t)−mz2
c ω̇x(t)−Lmzcω̇x(t)

K54 = mωx(t)ωz(t)y
2
c +mω̇y(t)y

2
c +2mzcωx(t)ωy(t)yc−mxcωy(t)ωz(t)yc+mxcω̇x(t)yc−

2mzcω̇z(t)yc + mxczcωx(t)
2 − mxczcωy(t)

2 + 2gm(e1e3 − e2e4)zc + mzcvz(t)ωy(t) −
mzcvy(t)ωz(t)−mz2

cωx(t)ωz(t)−Lmzcωx(t)ωz(t)+mzcv̇x(t)−mz2
c ω̇y(t)−Lmzcω̇y(t)

K55 = −mx2
cωx(t)

2 + 2Ixyωy(t)ωx(t)− 2mxcycωy(t)ωx(t)−my2
cωy(t)

2 −mx2
cωz(t)

2 −
my2

cωz(t)
2−mxcv̇x(t)−mycv̇y(t)−Lmycω̇x(t)−myczcω̇x(t)+Lmxcω̇y(t)+mxczcω̇y(t)+

GJ
L

Generalized Forces

Here are the generalized forces:

F1 = m(−xcωy(t)
2+vz(t)ωy(t)+ycωx(t)ωy(t)−xcωz(t)

2+2ge1e3−2ge2e4−vy(t)ωz(t)−
Lωx(t)ωz(t)− zcωx(t)ωz(t) + v̇x(t)− Lω̇y(t)− zcω̇y(t)− ycω̇z(t))

F2 = m(−ycωx(t)
2−vz(t)ωx(t)+xcωy(t)ωx(t)−ycωz(t)

2+2ge2e3+2ge1e4+vx(t)ωz(t)−
Lωy(t)ωz(t)− zcωy(t)ωz(t) + v̇y(t) + Lω̇x(t) + zcω̇x(t) + xcω̇z(t))

F3 = m(ωx(t)ωz(t)x
2
c − ω̇y(t)x

2
c + Lωx(t)

2xc + zcωx(t)
2xc + Lωy(t)

2xc − zcωz(t)
2xc +

vy(t)ωx(t)xc−vx(t)ωy(t)xc +ycωy(t)ωz(t)xc +v̇z(t)xc +ycω̇x(t)xc +g(−xce
2
1 +2e3zce1−
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e2
2xc+e2

3xc+e2
4xc−2e2e4zc)+zcvz(t)ωy(t)+yczcωx(t)ωy(t)−zcvy(t)ωz(t)−z2

cωx(t)ωz(t)−
Lzcωx(t)ωz(t) + zcv̇x(t)− z2

c ω̇y(t)− Lzcω̇y(t)− yczcω̇z(t)))− Iyyω̇y(t)

F4 = Ixxω̇x(t) + m(ωy(t)ωz(t)y
2
c + ω̇x(t)y

2
c + Lωx(t)

2yc + Lωy(t)
2yc + zcωy(t)

2yc −
zcωz(t)

2yc+vy(t)ωx(t)yc−vx(t)ωy(t)yc+xcωx(t)ωz(t)yc+v̇z(t)yc−xcω̇y(t)yc+g(−yce
2
1+

2e4zce1− e2
2yc + e2

3yc + e2
4yc + 2e2e3zc)− zcvz(t)ωx(t) + xczcωx(t)ωy(t) + zcvx(t)ωz(t)−

z2
cωy(t)ωz(t)− Lzcωy(t)ωz(t) + zcv̇y(t) + z2

c ω̇x(t) + Lzcω̇x(t) + xczcω̇z(t))

F5 = m(−ωx(t)ωy(t)x
2
c−ω̇z(t)x

2
c+ycωx(t)

2xc−ycωy(t)
2xc+vz(t)ωx(t)xc−vx(t)ωz(t)xc+

Lωy(t)ωz(t)xc+zcωy(t)ωz(t)xc−v̇y(t)xc−Lω̇x(t)xc−zcω̇x(t)xc+g(−2e2e3xc−2e1e4xc+
2e1e3yc − 2e2e4yc) + ycvz(t)ωy(t) + y2

cωx(t)ωy(t)− ycvy(t)ωz(t)− Lycωx(t)ωz(t)
− yczcωx(t)ωz(t) + ycv̇x(t)− Lycω̇y(t)− yczcω̇y(t)− y2

c ω̇z(t))− Izzω̇z(t)
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