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ABSTRACT

Random processes are often modeled as a summation of a finite number of sinu-
soidal components. Various individual time series are created through the randomly
chosen phase angles associated with each component. A specific event of the random
process is characterized by the time at which the event happens and the chosen set
of phase angles. Together, the time and the phase angle constitute the phase of each
component. If many samples of a given event are cataloged, a histogram of the phases
can be generated to produce a phase probability density function (PDF) that relates
the event to the spectrum of the random process and the number of components used
in the simulation.

Simulation of moderately rare events showed the component phase PDFs to be
non-uniform and non-identically distributed. These PDFs were modeled using a single
parameter, modified Gaussian distribution and used to generate design time series
with a specific event at a specific time. To eliminate the need for Monte Carlo
simulation, the single parameter of the phase distribution of each component was
determined by comparing the PDF of the rare event as calculated using the non-
uniform phase distributions to the PDF of the rare event as calculated using Extreme
Value Theory. This approach is convenient and efficient as the phase parameters do
not have to be estimated via Monte Carlo simulation; it is useful as the parameters can

be generated for extremely rare events as easily as moderately rare events. In addition,

XXX1



the comparison to Extreme Value Theory helps to quantify the risk associated with
rare events. An example application involving the springing of a Great Lakes bulk
carrier shows how the method of non-uniform phases correctly predicts the build up

of waves over several periods that produces a large bending moment.
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CHAPTER 1

Introduction

1.1 Background

The calculation of design ship responses has taken several traditional forms. Sta-
tic loads from extreme waves and general guidelines based on previously built ships
are two familiar approaches. The advent of more powerful computers and parallel
processing has created opportunities for fully nonlinear, physics-based long-term sim-
ulation of marine structure responses. However, processing power has not increased
so much that brute force simulation is feasible in early design cycles or optimization
routines. In recognition of this limitation of simulation, but still needing the informa-
tion that simulation yields, research has been conducted into generating ship-specific
design responses and waves in short time series that can give the same information

as long-term simulation.

1.2 Literature Review

Research into design events was originally focused on the generation of freak,
or rogue, waves. Part of this research then evolved into design waves in general:
generating waves with specific, given characteristics. The approaches used in creating

design waves were then applied to generating design responses, with linear systems



theory allowing for back-calculation of the design wave associated with a given design
response.

The following sections focus on existing methods of generating design waves and
how they were applied to design responses. Building on this knowledge repository, a
new method was devised to emphasize the advantages of previous research and reduce

deficiencies.

1.2.1 Design Waves

Tromans et al. [1991] devised a method for predicting the shape of the most likely
extreme wave in the immediate vicinity of that same peak. This method is based on
linear, broad-banded wave theory and uses probability theory to find the expected
value of the wave shape given a particular wave height and zero slope. The random

ocean surface is designated as n:

\/25% (w;)Aw cos(kjz cos 0; + kjysinf; — w;t +¢€;) (1.1)

S+ (wj) is the single-sided spectrum that describes the ocean, w; is the 5 frequency,

Mz

n(z,y,1)
J=1

k; is the j™* wave number, 6; is the direction of the j™ wave, and ¢; is a random
phase angle uniformly distributed between —m and m. Tromans designates 7;(t) as
the surface elevation at point (z1,y;) as a function of time. Suppose a crest passes
at some time ¢; (7;(t1) = o and dn;(¢;)/dt = 0). The conditional probability of n(t)
given n;(t;) = a and 7 (t1) = 0 is:

. 1
p(n’m =a,m = O) - \/%O'
2

o= —ap)?/203) (1.2)

Equation 1.2' is recognized as a Gaussian distribution with a mean of ap. p is

1See [Tromans et al., 1991] Appendix A for derivation



the autocorrelation function of the original process and defined as:

1 [ .
p(t) = §R{—2/ St (w) e’”tdw} (continuous spectrum)
o= Jo
LN
8 — E SH(w)Aw cos w;t (discrete spectrum) (1.3)
o
Jj=1

Therefore, the expected shape of n(t), E[n(t)], given a maximum value of « is just
the autocorrelation function of the process scaled by «. This result was originally
derived analytically by Lindgren [1970] and numerically by Boccotti [1983]. Taylor
et al. [1995] inserted this wave profile into any conventionally created random wave
train, thus giving the designer the option of producing a more extended irregular
wave record.

Another approach to tailoring waves was presented by Steinhagen [2002]. Stein-
hagen uses the Sequential Quadratic Programming method to optimize the phases
associated with an initial random wave train such that the result is the desired ex-
treme waves. Parameters in the optimization include: matching the target wave
height, the wavelength of the extreme wave, the maximum crest height, the time of
the extreme height, and wavemaker constraints while keeping the phases between —m
and 7 . The results, after the optimization routine has run, are the new phases to
be used with their respective wave components. This approach was used successfully
by Clauss [2002] [2004] in creating the wave train at the wavemaker that results in
an extreme wave down-tank. A nonlinear marching technique was then employed to
determine the true shape of the wave train down-tank, and this wave train was then

used in subsequent numerical experiments.

1.2.2 Design Responses

These approaches are insightful but deal solely with the waves. The response to

an extreme wave is still a reasonable prediction of design loads for structures such



as offshore platforms since the response is driven primarily by hydrostatic changes.
However, for dynamic, moving ships there is no guarantee that the extreme response
occurs with the extreme wave. Adegeest et al. [1998] took the natural step of applying
Tromans’ method to finding the shape of the most likely extreme response. The
amplitudes and phases of the incident wave components could then be back-computed
via linear theory, giving the tailored wave shape near the desired crest. Pastoor [2002]
uses this idea of a most likely extreme response, as well as Volterra models, to predict
large responses as part of an overall assessment of nonlinear ship motions and loads.
Similarly, Clauss et al. [2003] used the roll response spectrum of the ship to further
tailor the waves according to his previous work [Clauss, 2002]. Jensen and Pedersen
[2006] employ the First-Order Reliability Method (FORM), often used in structural
mechanics, to determine the most likely critical wave episode leading to parametric

roll of two containerships.

1.3 Objectives

Computer simulation of ship responses is a valuable tool for designers. As such,
it needs to and will be used in early design analysis. In order to efficiently use
nonlinear, time domain simulators, short time series of the incident wave profile must
be produced such that the design response is achieved. The existing methods of
obtaining design responses and their corresponding excitation just described are all
sound, but are limited in that they either (A) produce only one design time series, or
(B) require a new analysis to produce a new time series. For example, the Tromans
model, using the autocorrelation function, has been shown to satisfyingly match the
average wave profiles that contain large crests [Pastoor, 2002], but any information

on leading or following behavior has been lost due to the averaging process. Any



process that builds on this model will also have the same deficiency. The Steinhagen
model is theoretically capable of creating random time series, but the optimization
scheme must be re-run each time and there is no way to relate the random time
series to existing statistics. Neither approach is particularly conducive to quick initial
assessment of a potential new ship design.

Ideally, a ship designer would run a single analysis on a particular response, or
set of responses, and be able to generate many short time series to then use in addi-
tional simulations. The objective of this research is to determine a probabilistic-based
algorithm for creating such time series.

This work is based on the main assumption that the wave train that creates
a large nonlinear response is similar to the wave train that creates a large linear
response [Torhaug et al., 1998]. This assumption is necessary to the methodology as
straight-forward, long-term, nonlinear simulation in the time domain is too expensive
to use effectively in early design cycles. Therefore, if a large linear response and
excitation can by calculated, the search space in the nonlinear time domain can be
narrowed to a reasonable period.

This work also, as compared to the most likely extreme response mentioned previ-
ously (e.g. [Pastoor, 2002]), generates an ensemble of statistically-equivalent extreme
responses. This ensemble, based on the assumptions of stationarity and ergodicity,
has a corresponding ensemble of linear design response time series and their associ-
ated response-conditioned incident wave trains. Each of these response-conditioned

wave trains could then be used by the designer in subsequent nonlinear simulations.



In other words, this approach may be seen as “Round 1”7 of the analysis of a
new design. If the proposed design passes Round 1, it proceeds to “Round 2”7 -
a comprehensive, long-term nonlinear simulation of the design to predict extreme

loads. “Round 3” might include model testing.

1.4 Contributions

The research conducted in support of this dissertation was done with an end goal
of helping naval architects evaluate potential new designs early in the design cycle. To
this end, the method presented here endeavors to create multiple design time series
from a single analysis with a minimum of information needed from the designer.
Multiple time series means that nonlinear statistics can be generated without costly
long-term simulations. A single analysis per case means less wasted resources. A
minimum of information means the designer does not have to be an expert in random
processes, extreme value theory, and probability to take advantage of the wealth of

information available from these research areas.

1.5 Overview

This dissertation begins with an investigation of Monte Carlo simulation of ran-
dom processes in Chapter 2. In particular, the investigation tries to determine, via
numerical simulations, what conditions occur at the time of an extreme value of a
random process. Based on these simulations a model is found that re-creates the con-
ditions found in Monte Carlo simulation but without having to actually do the Monte
Carlo simulations (Chapter 3). This model allows short time series containing design
events to be created with a minimum of information about the random process.

The process of creating design time series is part of a larger methodology of



creating design loads for ships or other marine structures. The overall methodology
is described in detail with an emphasis on those steps relating to the creation of
design time series in Chapter 4. As an example of this methodology, the springing
bending moment of a Great Lakes bulk carrier is taken as the desired design response
in Chapter 5. The design time series that result from the springing example are
compared to those that would have been calculated if the bulk carrier was modeled
as a strictly rigid body.

In closing, future research and applications of this method are discussed in Chap-
ter 6. It is a very flexible method and applications are wide-ranging. Also included
are appendices that include many examples of this method of creating design time

series with extreme values.



CHAPTER 2

Random Processes

2.1 Introduction

The method presented in this paper has its roots in Monte Carlo simulations of
extreme events of generic random processes. A general investigation into random
simulations of rare events indicates that a specific event, x,,, may be characterized by
certain non-uniform phase angle distributions without loss of spectral information.
The observations of non-uniform phase angles leads to three hypotheses concerning
the relationship between x,, and the finite number of phase angles. These hypotheses

are tested, and the results are used to guide the model presented in Chapter 3.

2.2 Monte Carlo Simulation of Random Processes

As previously mentioned, a random process with an associated single-sided fre-
quency spectrum, ST (w), may be approximated by the summation of a finite number

of components:
N

z(t) = Z a;j cos(w;t + €;) (2.1)

j=1

a; = 1/25% (w;)Aw (2.2)

where



and ¢; is a random phase angle, uniformly distributed between —7 and w. The random
process can also be described in terms of the moments of its frequency spectrum:
oo
my = / Wk ST (w)dw (2.3)
— 0o

The largest value of z(t) that this model can generate is:

N
j=1

The random process, z(t), is assumed to be stationary and ergodic. Therefore,

the probability density function (PDF) of x(t) is also assumed to be a zero mean,

Gaussian distribution,

folz) = —— /% (2.5)

where

and the cumulative density function (CDF) of z(t) is

Fo(z) = ® (—) (2.6)

g

For sufficiently large N, the approximation of z(¢) in Eq. 2.1 (the right-hand side)

can also be considered to be a zero-mean, Gaussian process.

2.2.1 Extreme Value Theory: Large Values vs. Positive Maxima

The stationary and ergodic random process in Eq. 2.1 has an envelope associated
with it that tracks the positive maxima and negative minima of the random process
(Fig. 2.1). Positive maxima are designated here as & and defined as those values of
x(t) where & = 0 and & < 0. If 7 is expressed in dimensionless form as £ = ¥/, Ochi

[1990] derives the general PDF and CDF for positive maxima of a Gaussian process
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envelope curve

random process

Figure 2.1: A random process, z(t), and its envelope curve, Z(t).

as:

_ 2 14 —£2 /2,2 ) —£2/2 ( 1—V2 )
fﬁ(g) 1+m[\/ﬂe +v1 V2£e P V 5

0<&<oo (2.7)

Fﬁ“):w%[% (1-vi=i) o (£)

v

V12 e (_”_’/25) ] ., 0<f<oo (28)

where v is the bandwidth parameter and is defined in terms of the spectral moments

as:
2

(2.9)

moiny
For example, if the process is narrow-banded, v = 0 and Eq. 2.7 becomes the Rayleigh

distribution:

fe@ =€e 2 0<E<o0 (2.10)

For a wide-band process, v = 1, and Eq. 2.7 becomes a truncated Gaussian distribu-

tion:

fe(§) = \/g e 0<f<x (2.11)
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Continuing from Ochi, the PDF of the largest value in m observations of a random

process, z, is defined as:

fem(2) = mfo(2) (Fu(2))" (2.12)

Substituting Eqs. 2.5 and 2.6 and expressing & nondimensionally as ( = z/o gives

the extreme value PDF of the original random process:

1 —¢2/9 m—1
fonlQ) == 2 (2(0)) (2.13)

2

Substituting Eqs. 2.7 and 2.8 gives the extreme value PDF of the positive maxima:

2
m
14++v1—12

fen(§) =

14 —€2/2,2 \/72 —£2/2 < 1-— V2 )
e +V1—-vie O —
or 3 ¢

_ﬁ( (1-vi) o ()

X

V112 e (17_”25) )] " (2.14)

The most likely extreme value in m samples, Z,,, is defined implicitly by:

Simulating extreme events usually entails looking for the largest value of the ran-
dom process in a given time period. This extreme value would be, by definition, a
maximum. Therefore, one might begin an extreme value investigation by looking to
the distribution of the extreme maxima (Eq. 2.14), rather than the distribution of
extreme values (Eq. 2.13), as a guide for simulation. Regardless of how the simulation
of extreme events is executed, a histogram of the largest observation in m samples
should follow the theory compiled by Ochi, either f, (¢) or fe, ().

A PDF of the extreme value of a process is useful for evaluating statistics and risk-

levels, but it cannot describe the specific conditions that caused that extreme value
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to appear, namely the time of the extreme value, ¢, and the corresponding phase, ¢;.
To do that, one has to return to the discrete representation of the random process in
Eq. 2.1. If the original process is simulated, then,
N
fen(Q)= P ( Z % cos(w;t + €;) = Cm> (2.16)
j=1

On the other hand, if only the positive maxima are investigated, then,

N N
a; a; .
fen (&) = P < > — cos(wit + €)= &n > —wysin(wt +¢;) =0,
=1 =1
N
Z —;]w? cos(w;t +€;) < 0) (2.17)
j=1

Determining the PDF of a summation of random variables is difficult, even if the
random variables are independent and well-behaved. In this thesis, Eq. 2.16 will be
used to determine the phases based on f¢, since numerical evaluation of Eq. 2.17 is
beyond the scope of this work.

One way of investigating the effect of requiring extreme values to also be maxima
is to look at the difference between the left-hand sides of Eqs. 2.16 and 2.17. It so
happens that the left-hand sides of Eqgs. 2.16 and 2.17 are similarly shaped if their
peak values are the same. Consider the following exercise. A Gaussian distribution,
a truncated Gaussian distribution, and a Rayleigh distribution are each used to cal-
culate an extreme value PDF (all distributions have been non-dimensionalized). The
Gaussian distribution describes a random process, ¢, and the truncated Gaussian and
Rayleigh distributions describe the associated envelope curves, &, if v =1 and v = 0,
respectively. To determine m for each of these three cases, Eq. 2.15 is used with
Zm = «, where a = 3,4,5,6. This is equivalent to saying the most likely extreme
value in m samples is a 30, 40, 50, 60 event. Because each of these three distribu-

tions have different CDFs, m will be a different number as determined by Eq. 2.15.
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Table 2.1 summarizes the number of samples, m, as a function of a and the type of

distribution.

fm or fm ¢: Gaussian ¢: Truncated Gaussian &: Rayleigh

o v=1 v=20
3.0 740 370 90
4.0 3.16e4 1.58e4 2980
5.0 3.49e6 1.75e6 2.68e5
6.0 1.01e9 5.05e8 6.56e7

Table 2.1: Number of observations, m.

For each case in Table 2.1, the extreme value PDF is calculated based on m and
according to Eq. 2.13 or Eq. 2.14. A comparison of the Gaussian distribution to
the truncated Gaussian distribution is shown in Fig. 2.2; the Gaussian distribution as
compared to the Rayleigh distribution is shown in Fig. 2.3. In the limiting case of v =
1, the extreme value PDF's of the Gaussian distribution match those of the truncated
Gaussian due to the nature of the two distributions (mrune.Gaussian = MGaussian/2)-
In the limiting case of v = 0, the extreme value PDFs from the Gaussian distribution
are slightly more “peaky” than those of the Rayleigh distribution for lower values of
a, but become a better match as « increases.

This exercise demonstrates that, given a target event, the extreme value PDF
looks essentially the same regardless of whether it is based on extreme values of the
process or extreme positive maxima. Since the end goal was to relate an extreme
value PDF to the unknown conditions that cause an extreme value in a discrete
representation of a random process, it was decided to first concentrate on generating
extreme events. The effects of ¢ and €; can therefore be calculated using the less

complex PDF of Eq. 2.16.
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Figure 2.2: Comparison of extreme value PDFs of a random process
with a Gaussian distribution and its envelope curve; v = 1. Lines
represent the PDFs of the process and symbols represent the PDF's of
the envelope curve.
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Figure 2.3: Comparison of extreme value PDFs of a random process
with a Gaussian distribution and its envelope curve; v = 0. Lines
represent the PDF's of the process and symbols represent the PDF's of
the envelope curve.
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2.2.2 Conditions That Cause Extreme Events

A typical time series generated by Eq. 2.1 is shown in Fig. 2.4. To determine how
to create a time series that has a specific value at a particular time, consider an event

x1 that occurs at time ¢; (Fig. 2.5). x; is defined as:
N
T =z(ty) = Z aj cos(wjty + €;) (2.18)
j=1
x1 is a random instant of the Gaussian process z(t). Therefore, z; is a random
variable with the same Gaussian distribution as z(t). Since z(t) is considered to be
a stationary and ergodic process, statistics related to the distribution of x; can be

considered to be equivalent to statistics of x(t). The time series that contains z; at

time ¢ = 0 may be constructed utilizing the following change of variables:

V=t—1 (2.19)
Substituting for ¢ in Eq. 2.1 yields:
N
z(t') = Z ajcos(wi(t' +t1) + €;) (2.20)
j=1
N
z(t') = Z ajcos(w;it’ + wjty +€;) (2.21)
j=1
Defining a new phase, €}, as:
6;- =wjt; +€; (2.22)
results in z(t') being written as:
N
z(t') = Z a; cos(w;t’ + €;) (2.23)
j=1

The question, then, is, “What is the effect of ¢; on the distribution of €;?” To
answer this question, first allow the choice of t; to be unconstrained. In this case,

t1 is a random number as is w;t;. Since €; is uniformly distributed, and adding a
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Figure 2.5: Random events of a typical time series as determined by ;.
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Figure 2.6: Effect of ¢, on €): ¢; is unconstrained, resulting in a uniform
distribution for €.
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Figure 2.7: Effect of ¢; on e;-: t1 is the location of z,,,,, resulting in the
distribution for €} being a delta function.
number to a uniform distribution results in a uniform distribution, € is also uniformly
distributed (see Fig. 2.6).

Now consider if ¢; is the location of z(t) = %4, In this case, w;t; +¢; has to equal
zero for 7 = 1,2,--- N. Therefore, e; must also be zero for all j, and the resulting
PDF of € is a delta function (see Fig. 2.7).

However, a designer will be interested in a specific value of z(¢;) that is less than
Tmaz- S0, what does the distribution of e;- look like in this case? It is assumed that

the distribution morphs from a uniform distribution to a delta function as z1 — Z,qz,
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but what, exactly, is this transformation?
In the following analysis, the target value of z; is actually x,,, the largest value
of x1 in m samples. z,, is itself a random variable whose PDF may be calculated via

Extreme Value Theory [Ochi, 1990]:

Fon () = mfo(a) (Fp(a)™ (2.24)

Substituting Egs. 2.5 and 2.6 gives:

N (<I> (§)>m_1 (2.25)

oV 2T o

The most likely extreme value in m samples, Z,,, is defined implicitly by:
LR (2.26)

In this example,

1 Tm

S -1-d (x—) (2.27)
Equation 2.27 states that the designer need specify either m or Z,, to determine

Eq. 2.25.

2.3 Determining Phase PDFs

For a particular value of x1, t; is unknown. However, in t’-space, x; will always
occur at zero regardless of the value of ¢;. Therefore, histograms of €; may be gener-
ated by directly simulating Eq. 2.23. In fact, because x; will always occur at t' = 0,

Eq. 2.23 may be reduced to:

T =z =0) = Zaj cos(€) (2.28)
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2.3.1 Investigating the Nature of Phase PDF's

To examine what sort of phase distribution leads to x,, values, m samples of x;
are taken, and the set of e;- that corresponds to the largest of these samples is saved.
This process is repeated many times to generate a subset of €, that correspond to

instances of x,,.

/

Hypothesis 1. For a given value of m, the phases, €;, are independent and identi-

cally distributed (iid). In other words,

ferey e (21,20, s 2n|Tm) = fo(21lwm) fo(22]@m) - - fo(2n]Tm) (2.29)

The validity of Hypothesis 1 may be checked by generating a phase histogram
corresponding to a given extreme value and then using that phase histogram, in lieu
of the original uniform distribution, to directly calculate a set of x,,. If Hypothesis 1
is correct, the PDF of x,, generated from Hypothesis 1 will match f,, (x)in Eq. 2.25.

To generate the phase histogram corresponding to an z,, event, Eq. 2.28 is cal-
culated using a uniform distribution for €;. In the example that follows, a; is deter-
mined from an ITTC Sea State 3 spectrum (Apear = 0.88, Tpeqr, = 7.5) with N = 101.
Other examples, using more severe sea states and different spectra altogether, may
be found in Appendix A. The frequencies, w;, are equally spaced and are bounded by
Winin < Wj < Winag- Wmin ad Wpe, are defined as the smallest and largest frequency
such that ST (wimin) = ST (Wimaz) = 0.0015T (Wpear ). Also, m = 740, which corresponds
to the peak value of f,, (x) being 3.00 (more examples with different parameters may
be found in Appendix A). 78,000,000 total samples of x; were generated, so there are
M = 50,000 samples of x,,.

Figure 2.9 shows the phase histogram of all €, that result from this set of pa-

rameters. This phase distribution is decidedly non-uniform and looks rather like a
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Figure 2.8: Amplitudes corresponding to ITTC Sea State 3: hpear =
0.88, Tpear = 7.5, N = 101.
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Figure 2.9: Phase histogram for Hypothesis 1. ITTC Sea State 3:

hpeak = 0.88, Tpear = 7.5, N = 101, m = 740 (a 3.00 event). M =

50,000 samples.
Gaussian distribution perched on top of a uniform distribution. The phase distribu-
tion in Fig. 2.9 was then used to directly generate €’ in Eq. 2.28. The resulting PDF
of x1 is plotted against that of x,,, as calculated from Eq. 2.12, in Fig. 2.10. Visually,
it is clear that f,, (x) # f.,, (x). The results shown in Appendix A are similar because
x has been non-dimensionalized on o.

One quantitative measurement between two PDF's is the Kullback-Leibler diver-

gence (also known as information divergence, information gain, or relative entropy)
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Figure 2.10: Comparison of f, (x), denoted “Extreme Value Theory”,
and f,, (x) as calculated by Hypothesis 1. ITTC Sea State 3: hpear =
0.88, Thear = 7.5, N = 101, m = 740 (a 3.0¢ event). M = 50,000
samples.

[Kullback & Leibler, 1951]. The Kullback-Leibler divergence between two PDFs, P

and @, is denoted as D (P||Q@). Dir(P||Q) is defined for continuous functions as:

DuPIQ) = [ piw 1n7?dw (2.30)

In Eq. 2.30, P is typically the target PDF, and () would be the estimated PDF.

Substituting f,, (x) for P and f,, (z) for Q yields:

ffﬂm(x)
Dtlfon @) = [ frnoyn iz (231)

Dk (fe, (x)] fz,(x)) = 0 indicates a perfect match; for this example where m = 740,
Dxr(fe, (z)] fey(x)) = 1.76. The discrepancy between f, (z) and f,,(z) indicates

that Hypothesis 1 is incorrect.

Hypothesis 2. For a given value of m, the phases, €., are independent and non-

J}

identically distributed (inid). In other words,

fs’le’2~~- e’N(Zb 22, 7ZN’$m> = fe’l('zl’xm)fe’z(z2’$m) T fe’N (ZN|xm) (232)
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Hypothesis 2, may be tested in the same manner as Hypothesis 1. Consequently,
the same simulation is carried out as was done to test Hypothesis 1; however, now
e; is separated by component. Each component, therefore, has its own phase his-
togram. Figure 2.11 shows the component phase histograms that resulted from the
same conditions as before: ITTC Sea State 3 spectrum (hpeqar = 0.88, Tpear = 7.5)
with N = 101 and m = 740, corresponding to the peak value of f, () being 3.00,
and M = 50,000 (more examples with different parameters may be found in Appen-
dix A). Clearly, the phase distributions vary by component. Components with large
amplitudes (see Fig. 2.8) have phase distributions that are focused about €; = 0, while
components that are small retain their near-uniform distribution. Those components
with non-uniform distributions look like Gaussian-type distributions, similar to the
distribution seen in Fig. 2.9.

As before, the phase distributions in Fig. 2.11 are used to directly generate €’ in
Eq. 2.28 and estimate the PDF of z;. Figure 2.12 shows the comparison between
fo () and the new PDF of zy. Visually, this f,,(z) is much improved over the
fz, (z) in Fig. 2.10. Quantitatively, Dgr(fz,, (@) fz,(z)) = 0.39, showing the distinct
improvement over the results with Hypothesis 1. However, f,, (z) still does not equal

fa,, (x), it is far too broad, meaning that Hypothesis 2 is also incorrect.

Hypothesis 3. For a given value of m, the phases, €}, are fully and jointly distrib-

uted. In other words,

faep e (21,22, 2n|em) = f(21, 22, -, 2y a1, a0, an|Tm) (2.33)

Hypothesis 3 may, in theory, be tested in the same manner as Hypotheses 1
and 2. However, this would require estimating the joint phase PDF as an N-

dimensional phase histogram and this is difficult to do. For example, if the range
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Figure 2.11: Phase histogram for Hypothesis 2. ITTC Sea State 3:
hpeak = 0.88, Thpear = 7.5, N = 101, m = 740 (a 3.00 event). M =
50,000 samples.
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Figure 2.12: Comparison of f, (x), denoted “Extreme Value Theory”,
and f,, (x) as calculated by Hypotheses 1 and 2. ITTC Sea State 3:
hpeak = 0.88, Tpear = 7.5, N = 101, m = 740 (a 3.00 event). M =
50,000 samples.
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of €. is coarsely split into 10 intervals, then the number of “bins” required to estimate

J
fedy e (21,22, 0+ 2n|Tm) 18 10N, If N is as few as 10, then 10,000,000,000 bins are
required to estimate fu .. ¢ (21,22, 2n|Tm) (compared to 10 x N = 100 bins to
generate a histogram similar to that in Fig. 2.11). On top of this, a sufficient number
of samples would need to be generated to populate the 10,000,000,000 bins. The
generation of this data is not feasible in this work.

It should be possible, however, to at least obtain an idea of the correlations that
exist between component phases, even if the actual dependencies are unknown. The

correlation function between the phases €] and €, is defined as:

P = E(eje) — E<€/)E(52) (2.34)

VEE?) - B(e)\B(4?) — E(c)’
M
M Zk—l €€k — <Zk—1 Elk) (Zk:l 6,2k>
Pe ey, = 2 (235)
M
\/M Zk 1€ (Zk 1 elk \/M Zk 1 62k2 - (Zk:l 6/2k>
In general, for the phases €] and €}, the correlation function is:

MZQ; Eg‘kﬁ;‘k - (Ek 1 zk) <Zk 1 ]k)
\/M Zk 16k — (ZQ/I:l 62k>2\/M 224:1 €}k2 - <Z£4:1 %)2

To investigate the correlation between all pairs of phase components, Eq. 2.36

(2.36)

N

is calculated for : = 1,2,--- N and 7 = 1,2,--- , N. The result of this calculation
is shown in Fig. 2.13. It is clear that no pairs of phases are correlated except for
the trivial case of ¢ = j in which they are perfectly correlated, as they should be.
Although Figure 2.13 indicates that the phase angles are uncorrelated, this does not
mean that the phases are independent.

Returning to Fig. 2.12, the PDF of z; from Hypothesis 2 is not unusable from
an engineering standpoint. The expected value f,, () is near the expected value of

fe., (z), although f,, (z) is much broader than the target PDF, f, (). In practice, this
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Figure 2.13: Correlation of phase pairs (€},¢;) for Hypothesis 2. ITTC

Sea State 3: hpear = 0.88, Tpear = 7.5, N = 101, m = 740 (a 3.00

event). M = 50,000 samples.
would result in more “scatter” when generating x; values from the non-uniform distri-
butions of €}, but this an improvement since generating x; from uniformly distributed
phases results in a Gaussian distribution of x; centered about x = 0. However, it
is not feasible to generate even Fig. 2.11 for rare events since the PDFs are based
on extensive numerical simulation. Therefore, a method needs to be found that will

allow a designer to estimate Fig. 2.11 without resorting to Monte Carlo simulation.

One possible method is presented in the next chapter.



CHAPTER 3

Modified Gaussian Phase Distribution

3.1 Introduction

Several steps are required to use non-uniform phase distributions to simulate short
time series that have a given extreme value. First, a random process, x(t) is acknowl-
edged to be approximated as a summation of components with non-uniform phase
angles. Next, a model for the non-uniform phase distribution is determined based on
numerical simulation. Then, the model’s parameters are specified according to the
extreme value, and sample time series are generated using the resulting non-uniform
phase distributions.

To begin, start with Eq. 2.23 and drop the prime from t:

N
z(t) = Z aj cos(wjt + €;) (3.1)

j=1
Recall that e;- represents the random phase angle associated with frequency w;, and
that it is mon-uniformly distributed between —7 and 7. To emphasize this, and to

distinguish Eq. 3.1 from a usual random process with uniform phases (Eq. 2.1), mark

r with a prime:

2 (t) = Z a; cos(wjt + €;) (3.2)

j=1

The prime mark indicates a time series and set of phase angles associated with an

26
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extreme value at ¢ = 0. Equation 3.2 defines a random process with a PDF of f..(z)

and a CDF of Fy/(x).

3.2 Modeling Non-Uniform Phase Distributions

Numerical experiments (Section 2.3 and Appendix A) suggest that, due to the fi-
nite number of components, the presence of a specific large value at time ¢t = 0 requires
a non-uniform phase distribution that is able to vary from component to component.
It was also observed that the phase PDFs appear to be Gaussian-type distributions
combined with some degree of uniform distribution. A model that exhibits similar
behavior was derived and is here termed a “Modified Gaussian” distribution. The

Modified Gaussian distribution is defined as the following on the interval —m < z < 7:

P
—
N
SN—
Il
\

IS
(V)
~
[\.)
>
N

+

Q

(3.3)

er (A f) 1 erf(#) +C(z+7) (3.4)

C may be solved by utilizing the definition of a PDF, namely that

S

—
N

N—
I

722/2)\2 i+ C

be /_A;%
_ %erf(/\\/_) 1erf<>\\/_>+0(7r+7r)

— ef (#) +2rC (3.5)

c = %(1— erf()\;:/?)) (3.6)

Therefore, the model for the phase distribution is:

fulz) = ﬁ o 217T (1 _ erf(}\j ﬂ)) (3.7)




The first term of the right-hand side of Eq. 3.7 is recognized as a typical Gaussian
distribution. The second term of the right-hand side is, in essence, a uniform distrib-
ution that corrects the overall distribution by “bumping it up” such that it integrates
to 1. Equation 3.7 is extremely attractive as it has just one parameter per component:
Aj. Generally, A\; can take any non-negative, real value, but it is practically limited
to 0 < A; <10, as can be seen in Figs. 3.1-3.3. For a uniform distribution, \; = 10,

and for a delta function, A\; = 0. This phase model can now be fitted to the phase
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distribution of each component via the single parameter, \;.

f..(2)

Figure 3.1: Modified Gaussian phase PDF resulting from Eq. 3.7 with

A = 10.

f.(2)

Figure 3.2: Modified Gaussian phase PDF resulting from Eq. 3.7 with

A=2.
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0.2

e —

z (rad)
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1 (2)
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Figure 3.3: Modified Gaussian phase PDF resulting from Eq. 3.7 with
A =0.5.

3.2.1 Comparison of Modified Gaussian Distribution to Monte Carlo
Simulation

There are three ways of testing the validity of using Eq. 3.7 as a model for non-

uniform phases:
1. Compare extreme value PDFs: f, (x) = fu(x)
2. Compare phase PDFs: fe;,Mc(Z) = fG;,MG(z)
3. Compare time series: average time series should approach ap(t)

For items 1 and 2, the Kullback-Leibler divergence is again employed along with
visual verification. For item 3, sample time series are generated using the Modified
Gaussian phase distribution and compared to both Monte Carlo generated random
time series and to the average time series, ap(t), where a = .

Continuing from Section 2.3, the same ITTC Sea State 3 spectrum (hpeqr = 0.88,

T

veak = 7.D) is used with N = 101 and m = 740 (recall that this corresponds to the

peak value of f, (z) being 3.00). Starting with the Hypothesis 2 phase distribution
(Fig. 2.11), A; was chosen such that Dgp(fe mc(2)|fe mc(2)) is minimized. The

Modified Gaussian fit to the Hypothesis 2 phase PDF is termed “Hypothesis 2 Curve
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Fit,” and the results of this curve fitting are shown in Figs 3.4-3.9. It is clear, both
visually and from the Dy, values in Fig. 3.6, that Eq. 3.7 is a reasonable fit for the
Hypothesis 2 phase distribution from Sec. 2.3. Comparing the extreme value PDFs,
Dgr(fe,, (x)| for(z)) = 0.40, very similar to Dgr(fe,, (2)] fz,(x)) based on Hypothesis
2. )\; appears to somewhat track the amplitudes, a;, used to simulate the system,
indicating that the larger the amplitude, the more focused the phases will be to obtain
a given extreme value.

Fig. 3.9 shows sample design time series created using the phase PDF's determined
from Hypothesis 2 and Hypothesis 2 Curve Fit (Figs. 3.4 and 3.5). 2000 total time
series were generated from each phase PDF and an average time series calculated. The
two averaged time series (pink and teal lines) are so close to the scaled autocorrelation
function, &,,p(t) (red line), that the autocorrelation function completely obscures the
two averaged time series. That these three time series match is an indication that the
Modified Gaussian phase distribution can be used to model the phase distributions.
To better examine how the two averaged time series compare to each other, the
difference between the two time series is shown in Fig. 3.10. In this figure, 2’ is
non-dimensionalized on o, and the difference between the two time series is small

compared to the maximum value, Z,,.
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Figure 3.4: Phase PDF for Hypothesis 2. ITTC Sea State 3: hpear, =
0.88, Tpear, = 7.5, N =101, m = 740 (a 3.00 event).
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Figure 3.5: Phase PDF for Hypothesis 2 Curve Fit. I'TTC Sea State 3:
hpeak = 0.88, Tpear = 7.5, N = 101, m = 740 (a 3.00 event).
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Figure 3.6: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(fe;,MC(Z>||fe;.,MG(z))- ITTC Sea State 3: hpeak = 088, Tpeak =
7.5, N =101, m = 740 (a 3.00 event).

Figure 3.7: A; as determined by minimizing the Kullback-Leibler di-
vergence, Dgr(fe vco(2)||fe ma(2)). Aj is practically capped at 10, as
A;j > 10 results in a uniform phase distribution. ITTC Sea State 3:
hpea = 0.88, Tpear = 7.5, N = 101, m = 740 (a 3.00 event).
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Figure 3.8: Comparison of f, (z), denoted “Extreme Value Theory”,
and f,, (x) as calculated by Hypotheses 1 and 2, and Hypothesis 2
Curve Fit. ITTC Sea State 3: hpear = 0.88, Tpear = 7.5, N = 101,
m = 740 (a 3.00 event).
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Other numerical simulations may be found in Appendix A. These simulations
indicate that Eq. 3.7 is also a reasonable model even for different spectra, m, and
N values. A, ultimately determines the PDF of 2/(t) (Eq. 3.2). The conditions of

Eq. 3.2 ensure that a specific design event will occur at time ¢ = 0. In other words:

Z(0)=12"= Z a; cos(€;) (3.8)

The PDF of 2’ can be used to determine A;. This PDF, f. (x), should match the
PDF of the extreme value that is specified by the designer. As in Sec. 2.3, the target
extreme value is denoted x,,, the largest value in m samples of x, the original random
process. Therefore, Equation 2.25 needs to match the PDF of Eq. 3.2, but calculating
the PDF of a summation of random variable is challenging. Instead, one may use
the Characteristic Functions of the PDFs. The Characteristic Function contains the
same information as the PDF (similar to how Fourier Transforms in the frequency
domain contain the same information as the original time series in the time domain),

but is considerably easier to work with than PDFs for summations of variables.

3.3 Determining )\; via Characteristic Functions

The Characteristic Function is, essentially, the Fourier Transform of the PDF
([Rozanov, 1969], page 75). Similar to a Fourier Transform pair, the transformation
between a PDF and its Characteristic Function is fully invertible, and all information
regarding the random process is retained. The Characteristic Function, ¢(s), of a
continuous random variable, Z, with PDF f;(z) is defined as:

o0

Vy(s) = Ele"*] = / e fy(2)dz, —o00 <5< 00 (3.9)

— 00
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For example, the Characteristic Function of f,, (z) is:

Uy, (8) = /oo e f, (z)dx

0 ) m—1
= / T gisz gma®/20° <(I> <§>> dz (3.10)
—oo OV 2T o

To determine the Characteristic Function of f,/, let us first define a new variable

Y;:
Yj = cose; (3.11)
Now
N
¥ =) a] (3.12)
j=1

The CDF of Y; can be determined using Fo (z) through a variable transformation:

0, y < —1
Fy,(y) = P(cose; <y), —1<y<1

L, 1<y

\

(

0, y < —1

= 4 2(1 = F.(arccosy)), —1<y<l1

/.
J

1 1<y

Y
\

(3.13)
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(

07 ) S -1
arccosy arccosy 7T
= 1—erf + erff[ —= | —-1), —1<y<1
Pt () T (e () ) e
(L 1<y
(3.14)

Differentiating Eq. 3.14 yields the PDF of Y}:

(
0, y< -1
o) = LR, —1<y<
u l<y
)
0, y<—1
) Vom0 e (1) 1<y<1
- y Yy
7T)\j\/ 1-— y2
0, 1<y
(
(3.15)
The characteristic function of fy, (y) is:
on(s) = [ ey
5 . -
= [ e [ e [T 6w
o 1 1
= / e”*Y0dy
—(arccos y)2 /2\2 s
+/1 e’isy 27]-6( y)/2]—)\jerf</\j\/§>—0—)\j dy
-1 7'[‘)\]'\/ 1-— y2
+/ e"¥0dy
1
— 0+ / oY oo et (555) + dy +0
—1 7T>\j\/ 1-— y2
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—(arccos y)2 /22 s
B /1 eisy 2T e ( y)?/2 J — )\] erf ()\j\/i) + )\] dy (3 16)
-1 A1 —y? '

The Characteristic Function of f,/(x) can now be determine thusly:

Yo(s) = Ele™]

— E[eis(alyl+a2y2+~~+aNyN)]

_ E[eisalyl eisagyz . eiSGNyN]
_ E[eisawl]E[eisazyz] . E[eisawyw]

N
_ HE[eisajyj]
7=1
N 00
TS
j=177>

= Hqﬁyj(ajs) (317)

If the designer chooses a return period or risk-level then m is known. Also, a; is
assumed to be known. To determine \;, set the PDF of the extreme value (Eq. 2.25)

equal to the PDF of the summation with non-uniform phases (Eq. 3.12):

Jon () = fur () (3.18)

or, alternatively, equate their respective Characteristic Functions:
Vo, () = o (2) (3.19)
Substituting in Egs. 3.10, 3.16, and 3.17 results in the following equation to be solved:

/OO m eisx e—x2/202 ((I) <E>>m1 dx
—oo OV 2T o

o @ (arccosy)®/227 Aj erf( T ) + A

N el
— H/ eiajsy AjV2
jo1 /-1 A/ 1 — y?

dy

(3.20)
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There is one set of N unknowns in this equation: A;. Unfortunately, Eq. 3.20
is not easily integrable by analytical means, so it must be evaluated numerically. A

more difficult problem is the number of unknowns.

3.3.1 Subplex Optimization

As previously stated, A\; can take any non-negative, real value. Therefore, there
are an infinite number of combinations of A;. It is possible that, given a starting set
of A\; and their corresponding characteristic functions, an optimization routine might
be able to determine the needed set of \; by comparing the characteristic function
based on A; (Eq. 3.17) to the characteristic function based on extreme value statitics
(Eq. 3.10).

There is a major hurdle, though, to implementing such an optimization algorithm.
Most optimization routines appear to be some form of the Nelder-Mead Simplex
Method [Nelder & Mead, 1965]. These approaches bracket an N-dimensional solution
with N 4 1 equally spaced indices. A cost function is checked at each index and
the solution is arrived at by moving around the indices via reflection, expansion,
contraction, and shrinkage. In this application, however, unless NN is trivially small
(say, N = 2), moving just one index around results in the same value for the cost
function. In other words, the Simplex Method is unable to determine the effect of
one single component on the overall process due to the large number of components.

A solution to this problem was developed by Rowan [1990]. His routine breaks
down N-dimensional problems into several lower-order problems that the Nelder-
Mead Simplex routines can handle. This approach was coined the Subplex Method,
and was used successfully by Steinhagen [2002].

Rowan has graciously put his Subplex routines into the public domain. These

routines have been obtained and implemented to solve for A; given a specific m or Z,,
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by minimizing the following cost function:

N, N
F =)0 e (si) = [ ] v, (s) (3.21)
k=1 j=1

Returning to the I'TTC Sea State 3 example, the above cost function was mini-
mized to determine \;. The results are shown in Figs. 3.12-3.14. The main difference
between generating \; from Monte Carlo simulation and generating A; from Subplex
optimization is hidden in Eq. 3.20. In Eq. 3.20, the right-hand side is v,/(s) and
depends upon both A; and a;. The presence of a; means that the Subplex algorithm
can recognize that different components have different effects on the process as a
whole. This is why the components with larger amplitudes have even more focused
phase distributions in Fig. 3.12 than in Figs. 2.11 or 3.5. To compensate for the larger
focusing of phases for the large amplitudes resulting from the Subplex approach, more
of the smaller components end up having a uniform phase distribution.

Comparing extreme value PDFs (Fig. 3.13), Dk (fs,, (2)| fo(z)) = 0.25, which
is actually better than the comparison from Hypothesis 2 Curve Fit. This is likely
due to the effects of a; as described above. The time series in Fig. 3.14 do not quite
average out to the scaled autocorrelation function, z,,p(t) due to the extreme focusing
of the phases of just a few components. As N increases, this focusing becomes less
extreme and the average time series smooths towards z,,p(t) (see Appendix A). The
other numerical simulations in Appendix A show that the Subplex approach works
equally well for other spectra, N, and m values.

The advantage of using the Subplex optimization approach is that it does not
depend upon Monte Carlo simulation. The only parameters that are needed are N,
a;, and either m or Z,,. This capability is important for cases where &, is a rare event
and Monte Carlo simulation is not feasible, such as in Appendix A. For lower values,

such as 30 events, it is easy to use both Monte Carlo simulation and the Subplex
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method to get sample time series. For larger events, such as 5o events, the Subplex
method gives useful information in a reasonable amount of time (approximately one
hour of computation time on a Dell Inspiron ME051 with Intel Pentium M 1.80 GHz
processor and 1 GB of RAM), whereas Monte Carlo simulation is too time-consuming

and impractical.

14 T T T T T T T

: Hypothesis 2 Curve Fit I_
12 e S ‘ ‘ Subplex X
10
8

N b

o

Figure 3.11: A; as determined by Subplex optimization compared to \;
as determined by minimizing Dgr(fe me(2)| fe.ma(2)). Aj is practi-
cally capped at 10, as A; > 10 results in a uniform phase distribution.
ITTC Sea State 3: hpear = 0.88, Tpear = 7.5, N = 101, m = 740 (a
3.00 event).
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Figure 3.12: Phase PDF from Subplex optimization of ;. ITTC Sea
State 3: hpear = 0.88, Thear = 7.5, N = 101, m = 740 (a 3.00 event).

1.8 T 1 T T T T T T
Extreme Value Theory ——— :
16 Monte Carlo
14 H Hypothesis 1
' Hypothesis 2
1.2 Hypothesis 2 Curve Fit

Subplex

fy (X)

m

x (0)

Figure 3.13: Comparison of f, (x), denoted “Extreme Value Theory”,
and f,, (z) as calculated by Hypotheses 1 and 2, Hypothesis 2 Curve Fit,
and Subplex optimization. ITTC Sea State 3: hpear, = 0.88, Tpeqr = 7.5,
N =101, m = 740 (a 3.00 event).



43

‘porjord oxe sorres owr) ojdures ()7 :SOLIOS QUL

ordures ())(0g WOIJ PajeIaUaS SoLIes aull) 98RISAY (1A O()'E ®) (0L = W ‘TOT = N ‘G'L = 17I[ ‘gg'0 = "%y :¢
99e1G ®oG NI, LI "seseyd 91 oA 7 sisoyjodAH pue g sisojodAH Aq pojerouss soumos owr) ojdweg :§1°¢ oInsrg

(“1m 2

0¢ ST 0T 1 0 G- 0T- ST- ON.@
“““““““““““““““““““““““““““““““““““““““““““““““““““““““ .VI
NI

{0 =

z =

““““““““““““ | B A I AR AR , 2
T UOMOUNG UOMBIOIIOD0INY e 9
—— dbeJay x9jdans L — e — e — e — 4s




CHAPTER 4

Method: Creating a Design Response

4.1 Introduction

In practice, the simulation of random processes assumes that a random process is
satisfactorily described by the summation of a large number of discrete components.
To create a design response, one also may assume that the incident wave that creates a
large linear response will be similar to the incident wave that creates a large nonlinear
response. Given these assumptions, there are three main elements to the methodology

presented here:

e non-uniform response phases are used to create an ensemble of different response

time series

e linear systems theory is used to generate the incident wave profiles from the

ensemble of response phases

e nonlinear seakeeping code simulates the responses of the ship to the ensemble

of incident waves

To summarize the first point, we have a random process,
N
T = Z a;Y; (4.1)
j=1
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where,

Y; = cos¢; (4.2)

The phases, e}, are being modeled as:

R S S I S W
fe(z) = W + 5 (1 erf()\j ﬁ)) (4.3)

This PDF of 2/, f./(z), is compared to the PDF of the maximum value in m occur-

rences, f,, (), and results in the following equation to solve:

/‘OO m eisx 6712/202 (@ <£))m—1 dx
—00 OV 2T o

o o reom /2 ek (125) 4+

N 1
— H/ eiajsy )\j\/§
j=17-1 ANV L —y?

dy (4.4)

There is one set of N unknowns in this equation: A;, which are solved for via the
Subplex Optimization routine.

The application of linear systems theory to design responses is straightforward
and described in Sec. 4.2. The nonlinear seakeeping code may be any of a variety
of physics-based simulators, from in-house productions to commercial codes such as
FLUENT™ . The steps necessary to creating design responses using this method are
detailed in Sec. 4.3.

This method of creating design responses depends upon numerical approximations
to spectra, integrals, and optimum vectors. The computer program that implements
these approximations and runs the optimization algorithm is not of particular interest,
but the particulars of the numerical approximations should be documented. The
OPTLAMBDA program is a FORTRAN 90 program that implements the Subplex
Optimization process. A short description of this program may be found in Sec. 4.4

along with explanations of the nuances specific to this application.
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4.2 Linear Systems Theory

A linear system may be represented by the schematic in Fig. 4.1. For a given
frequency, w;, if one knows the response, Y (t), and the linear transfer function, H(w),

then the input amplitude and phase may be calculated algebraically as:

Y
= TH(wy) 45)

Bi = o= (4.6)

In this application, the input function is the incident wave, the linear function is
the Response Amplitude Operator (RAQO) of the response, and the output function
is the design response. The relationships in Eqns. 4.5 and 4.6 hold forj = 1,2,, N
because of the properties of superposition and orthogonality in linear systems. There-

fore, the incident wave may be calculated by:
N
n(z,y,t) = Z (; cos(w;t — cos Ok;x + sin Ok;y + ;) (4.7)
j=1

Here, 0 is the heading angle, «; is the response phase which will be determined
via the previous analysis for €}, and 3; is the incident wave random phase calculated

from Eq. 4.6.

H(w)

Process
Input X (t) = x;e!@st+h)
Output Y (t) = y,el@ittas)
RAO  H(s,) = | H(wy)le™

Figure 4.1: Definition of the Variables in a Linear System.
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4.3 Algorithm

A flowchart showing the steps to create design responses using the method laid
out above is shown in Fig. 4.2. Highlights of the process are detailed in the following

sections.

4.3.1 Choosing a Response

The stochastic response can be anything that can be described by a linear trans-
form, either directly or indirectly. Examples include: roll, bending moment, torsion,

and relative motion/velocity of the bow to the ocean surface.

4.3.2 Calculating Input Spectrum and Transfer Function

A critical decision by the designer is the choice of operating conditions to explore.
First, a sea state must be chosen. Winterstein and Engebretsen (1998) describe how
design contours of significant wave height and peak period may be used to determine
input sea states of interest. Once the sea state is selected, an RAO may be calculated
by a linear seakeeping analysis. The RAO of the response of interest is also a function
of speed and heading angle. The authors suggest using polar plots to graph the root-
mean-square (RMS, designated by o) of the process versus heading angle for each
speed. In the case of station dependent processes, such as bending moment, polar
plots can be created for each of the ships stations. Then, the designer can look for the
largest overall RMS value, thus determining the speed, heading angle, and possibly

station, to be used in generating the RAO.

4.3.3 Estimating Exposure Time and the Target Extreme Value (TEV)

There are several ways to describe the design response of a process. One method

simply states that the design response is the largest response in a time period, or
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’ Choose response ‘

|

: increase N
’ Calculate input spectrum |«
’ Calculate transfer function ‘
l decrease TEV

Calculate Target Extreme Value (TEV)

TEV> Z4a

N

A
N
TEV< Zpa

Y

Optimize phase parameters, \;

|

Calculate phase PDF, fo (2)

|

’ Calculate linear design response ‘

|

’ Calculate incident wave ‘

l

Input incident wave to nonlinear simulator ‘

l

Calculate nonlinear design response ‘

Figure 4.2: Flowchart for design loads generation algorithm
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return period (3 hours, 30 days, 30 years, etc.). If the process has an inherent time
scale, this exposure could be related to an average number of encounters. An alterna-
tive is to specify a particular response value that must be met, for example, from ship
classification rules. In either case, the design response has an associated risk level.
This risk level is related, in turn, to the normalized Target Extreme Value (TEV).
The TEV is the ensemble averaged response value that will be the maximum response
produced in the linear time series. For a design response specified by an exposure

time, the TEV is calculated by (Ochi, 1990, Eqn. 11.141):

TEV = (2 In (%(60)%/%))1/2 (4.8)

Here, T.zposure 1s the exposure time in hours and mg and my are the zeroth and second
moment of the response spectrum, respectively. For a design response specified by an

actual response value, the TEV is calculated by:

TEV — design response

(4.9)

Uresponse

In other words, the Target Extreme Value is normalized by the RMS of the process.
For example, if the TEV is 3.0, then the design response can be said to be a three-

stgma event.

4.3.4 Checking for Sufficient Number of Components

As a result of the discretization of the response’s frequency spectrum, there is an

upper bound on the response due to Eq. 2.4:

N
Yimar = Y Uj (4.10)
j=1

As an engineer, the designer must deal properly with this limitation of computer

simulation. If, after choosing the frequency range and number of components, the
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TEV is greater than Y., the maximum attainable value of the model, the designer
has one of two alternatives. The recommended choice is to increase the number of
components, IV, in order to increase the maximum attainable response and recalculate

the response RAO. If this is not feasible, then a lower TEV must be used.
4.3.5 Optimizing \;

The optimization of ); is the most time consuming step of this method. For
example, optimizing A; for N = 101 takes approximately 1.5 hours on a Dell Inspiron
MEO051 with Intel Pentium M 1.80 GHz processor and 1 GB of RAM. However, once
the )\; parameters have been determined for a given TEV, an infinite number of

individual time series can be generated.
4.3.6 Calculating the Incident Wave

To calculate the incident wave, reassign the variables from Sec. 4.2 according to
Table 4.1. At this step, every variable will be known except for «;, which can be solved

for using Eq. 4.6. The incident wave may now be input to a nonlinear seakeeping or

fluid dynamics program to determine the final predicted design load.

Table 4.1: Assignment of variables for calculating the incident wave

Variable Description

T wave amplitude at frequency w;

B wave phase at frequency w;

|H(w)| RAO amplitude at frequency w;

V; RAO phase at frequency w;

Yj response amplitude at frequency w;

Q; response phase at frequency w;
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4.4 Computer Program: OPTLAMBDA

A computer program was needed to implement the subplex optimization routine in
order to solve for \; without resorting to Monte Carlo simulation. The OPTLAMBDA
program calculates the phase parameters, \;, for a given response and TEV.

This is a program written in Fortran 90. In general, OPTLAMBDA reads in a
discretized input spectrum and linear transfer function. The user then inputs the
TEV in terms of the RMS, o, of the response. For example, for a TEV of 5.450,
the user would enter 5.45 as the target response. OPTLAMBDA then populates
arrays of fy,(y) for a set number of );, creating a look-up table to facilitate later
calculations of characteristic functions. The target PDF, f, (x), is then calculated
numerically along with its characteristic function. The subplex optimization routine
is then implemented using the cost function defined in Eq. 3.21.

Tables of the input and output files, modules, subroutines, and functions may be

found in Appendix B.

4.4.1 Precalculating fy,(y)

A hurdle in using this approach to design loads is the singularity at y = £1 in
fv;(y) (Eq. 3.15). This singularity means that ¢y, (s) (Eq. 3.16) is not easily evaluated
numerically. It is also essential that 1)y;(0) = 1 to the limits of machine accuracy.
If this condition is not ensured, then H;V:1 Yy, (0) # 1, as it should, due to machine
inaccuracy and the entire characteristic function would be calculated incorrectly as
well. Therefore, an algorithm was devised to evaluate 9y, (s) numerically and ensure

that ¥y, (0) = 1 for all j.
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To begin, Eq. 3.15 may be rewritten thusly:

Vo e (/B enf (112 4

Aj
fr;(y) .
V1 —y
Dj
= = 4.11
4q; ( )
where
VI e e/ enf (112 4
pily) = (4.12)
’/T)\j
G = V1-y? (4.13)
A probability density function must integrate to zero. Therefore,
1
1= / v (y)dy (4.14)
-1

Evaluating this numerically using a simple integration scheme (in this case, the trape-

zoid rule) gives:

NY -1

1 = Z %(fyj(yk)-i‘ij(ka))Ay

O (i) | pies)
L Z Q(quk)*qj(ka))Ay (4.15)

An equal sign is used in Eq. 4.15 to ensure that the summation equals 1, even
though it is an approximation to an integral. Since A\; > 0, p;(yx) is defined for all
y; however, ¢;(yx) is undefined analytically at y = £1, the limits of integration, so
Eq. 4.15 cannot be calculated directly.

The discretized nature of Eq. 4.15 requires a value to be substituted for g;(y1)
and ¢;(yny) such that the summation in Eq. 4.15 equals 1. Since the nature of the
singularity is the same, 1/0, and a uniform Ay is being used, the same value can be
substituted for ¢;(y1) and g;(yny). The value to be substituted is designated ¢; and

is determined using the following analysis.
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First, segregate the singular terms, ¢;(y1) and ¢;(yny), in Eq. 4.15:

L /pi(yr) | pilye) N1 (i) | i)
b 2<qj<y1>+qj<y2>>A“ 2 2(qj<yk>+qj<yk+1>)Ay
1 (piyny-1) | pilyny)
+2 <Qj(yNY—1) - C]j(yNY)) Ay
NS () | i) 1 piye) 1 (pi(yny-1)
b ; 2 (qj(yk) " qj(yk+1)) Bt g (%‘(?ﬂ)) B3 (Qj(yNY—l)) B
1 (p;(y1) 1 (pj(yny)
2 <Qj(yl)) A (qj(yzvy)) a
NY -2 )
)

o o) av g () av e g () s

1
;
() (o) - (57) Gow) 1

Then, substitute g} for ¢;(y:1) and g;(yny) in Eq. 4.16.

NY -2

=S ) (200 ()
. (M) (é N (pj(yNva)Ay) (%) (4.17)

Finally, solve for ¢;:

1 = N§21 (pj(yk) +Pj(yk+1)>Ay+1

¢ (k) 4 (Yrs1) 2

(pj(?n)) Ay L (w) Ay

4 (y2) 2 \gj(yny-1)

+1* (pj(yl)Ay N pj(yNy)Ay)
q; 2 2
(pj(y1)Ay + pj(yNy)Ay>
2 2
i = NY-21 (pi(ue) | pi(yrt1) 1 (pi(y2) | pi(yny-1) (4.18)
_ 21 (pij(Yk i (Yk+1 1 j (2 i (UNY —1
1=2h= "3 <q§(yk> + qﬁ(ykm) Ay+ 3 <q§<y2) + qﬁ(yw_n) Ay
Once ¢ is calculated, then vy, (sy) can be evaluated numerically as
NY -1 ] ]
Vy,(sk) = Z <€_ijsyk§(ij (yx)) Ay + €_szsyk+1§(f1fj(yk+1))Ay> (4.19)
k=1

where ¢} is used in the calculation of fy,(y1) and fy,(ynyy) using Eq. 4.11.
The calculation for ¢; must be done for A; every time Yy, (s) is needed. During

the course of optimization, this calculation will be done thousands, if not millions,
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of times. In an effort to expedite the optimization process, fy(y) is calculated for a
large, but finite, number of possible values of A and saved as a look-up table. This
approach is possible as A is effectively bounded between 0 and 10. A = 0 is a Delta
Function and A = 10 is near enough to a uniform distribution as to make no difference.
When OPTLAMBDA is run, J); is rounded to the nearest of the possible values of A

(AX=0.02), and fy,(y) is located according to the new value of A;.

4.4.2 Calculating Characteristic Functions

Evaluating the characteristic functions v, (s) and ¢,/(s) numerically (Eq. 4.19)
requires a range of s along with an interval, As. Due to the similarity of the char-
acteristic function - probability density function pair to a Fourier Transform pair,
the range of s is calculated similar to the calculation of the frequency range when
performing a discrete Fourier Transform.

The maximum attainable value of the response is X4, (Eq. 2.4); this is analogous
to record length when using the Fourier Transform. The maximum frequency in the

frequency domain after a Fourier Transform is:

47
maxr — 4.20
“ Trecord ( )
Following this equation, the maximum value of s is calculated as:
4
Syag = — (4.21)

max

Just as the discrete Fourier Transform gives amplitudes and phases for —wy,4, <
W;j < Wmag, the characteristic function has a range of —s;,00 < Sp < Spae. Unlike
the Fourier Transform, however, there is no fixed number of points, k, at which the

characteristic function must be evaluated. Therefore, for a given number of points,
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NS, the s-step is calculated as:

Qsmaz

T NS —1

As (4.22)

In this way, the number of points at which the characteristic functions are evaluated
remains the same. Since the characteristic function is bounded by -1 and 1, this
allows for direct comparison of the final error between v, (s) and v¥,/(s) for different

response cases.

4.4.3 The subplx Routine

The OPTLAMBDA implements the Subplex optimization method worked out by
Thomas Rowan [Rowan, 1990]. The Subplex method is an involved program best
described by Rowan himself ([Rowan, 1990], Section 5.3):

The Subplex method is designed to remove the weaknesses of the sim-
plex method and to retain the positive features. Because of the difficulties
NMS! has on high-dimensional problems, the Subplex method’s approach
is to decompose the problem into low-dimensional subspaces that the sim-
plex method can search efficiently. Although SUBPLEX must be able to

maximize Bj, it is designed as a general-purpose optimization method
and is not tailored to any particular application.

The Subplex method routines were successfully used by OPTLAMBDA to de-
termine \;, but the author assumes no responsibility for any documentation, bugs,
features, etc. related to the Subplex method. A listing of the dependencies of the

Subplex method may be found in Table B.5.

'Refers to the Nelder-Mead Simplex Optimization routine, an algorithm frequently used in opti-
mizing noisy functions [Nelder & Mead, 1965].



CHAPTER 5

Examples

5.1 Introduction

The best way to understand the intricacies and implications of the method pre-
sented in Chapter 4 is to look at an example. A stochastic process that includes
both quasi-static and dynamic response is ship springing. Springing occurs when the
encounter frequency of the waves, or a harmonic of the encounter frequency, excites
the ship at its two-noded natural frequency. When springing occurs, it can greatly
add to the bending moment of the ship. Typically, the long Great Lakes ships (10004
ft, 305+ m) have been the ships concerned with the effects of springing; however, as
Very Large Crude Carriers and other ocean-going ships continue to increase their size,
springing becomes an important response to analyze.

The example presented below is a comparison of bending moment predictions for
the Great Lakes bulk carrier M/V Stewart J. Cort. Two different Target Extreme
Values (TEVs) are used for both a rigid body analysis and an elastic body analysis.
It will be shown that the effects of springing (the elastic body response) change the
expected shape of the extreme response. This, in turn, changes the shape of the wave
train that produces the large responses. The method for determining design responses

presented here is shown to reasonably reproduce both the linear bending moment

o6
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response and the incident wave that leads to the large response. The difference in the

wave profiles shows the need to address design responses, not just design waves.

5.2 Example: Springing of a Great Lakes Bulk Carrier

The M/V Stewart J. Cort has been measured extensively as to the effects of
springing on the ship’s hull [Various, 1979]. Particulars of the Cort may be found
in Table 5.1. Figure 5.1 shows a set of typical response spectra for midship bending
stress of the Cort [Various, 1979]. It is clear that there are two peak frequencies with
which a designer should be concerned. The lower frequency relates to wave-induced
bending stress and is associated with rigid body dynamics. The higher frequency
is related to the effects of springing and is associated with an elastic body analysis.
The three spectra that are shown in Fig. 5.1 emphasize that the effects of springing
should be included in the design analysis. Storm 1 produced more stress at the lower

frequencies, but Storms 2 and 3 produced much more stress at the higher frequencies.

Table 5.1: Main particulars of the Stewart J. Cort

Particular Value

LOA 1000 ft (305 m)
LBP 989 ft (301 m)
B 105 ft (32 m)

25.8 ft (7.86 m)
A 68,300 LT (69,400 t)
o 0.924

Vi 12.5 knots
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Figure 7. Typical Stress Response Spectra, Showing Wave-Induced
and Springing Stresses (8)

Figure 5.1: Typical bending moment response spectra of the Stew-
art J. Cort. Figure reproduced from ”Great Lakes Carriers Hull Stress
Monitoring System,” U.S. Department of Commerce, Maritime Admin-
istration, January 1979.

The implications of considering the springing phenomenon may be seen in Fig. 5.2.
The top signal is the combined bending stress at midship as measured aboard the
Cort. This signal was then filtered using a high-pass filter to produce the middle
signal, which is the bending stress due to springing. When the combined signal is
filtered using a low-pass filter, the bottom signal is produced, which is the bending

stress due to the waves.



29

"6L6T Arenue[ ‘UWOIPRIISIUTWIPY OWILIR]Y ‘©dIowo)) Jo juaunjredo( ‘G , WoISAG SULIOIUON SSoI}S [[NH SIOLLIR,) Soyer]
1edlIr) , WOoI} peonpoldal oMSBI] “40,) “f 14DMI]G Y} PILO(R PAINSLIUW S JUIWOW JUIPUI( JO SoLIs o) ojdureg :z'G oImsr

) 208 o T B e

4L OvMSIE  agmawed

at ,...a“.. 3t |.—|.._“

. .“ : : ; . T G
—. .:..ur_l._ VAN T 1= . L . L "
i . L H - , 1




60

It is clear that not only is the maximum of the combined signal nearly twice that of
either springing by itself or wave-induced bending stress by itself, but the maximum
does not coincide with the maxima of either of the two other signals. Therefore, it is
important to capture the response of the ship due to both wave-induced effects and
springing.

The following examples will calculate sample design loads for vertical midship
bending moment. The wave spectrum was determined by a storm measured at Eagle
Harbor on November 28, 1966. It is a two parameter spectrum with Hg, = 5.58m
and Tpeqr = 8.8s. The rigid body transfer function was estimated using the SHIPMO
program [Beck & Troesch, 1990] with a heading angle of 180°, forward speed of
6.43 m/s (12.5 knots), and 101 components. The elastic body transfer function was
approximated as follows.

The elastic body analysis follows the analysis used by Troesch [1984]. First-order
(linear) springing excitation and response are investigated in this work. In the model
used by Troesch, the first-order springing excitation is the wave-induced midship
bending moment of a rigid, inelastic hull (such as calculated by SHIPMO, above). In
this example, a linear transfer function is applied to the rigid body bending moment
to estimate the linear midship bending moment response of an elastic ship. The
elastic analysis is capable of capturing the springing phenomenon.

Designating the rigid body transfer function as H,;4;q (determined from SHIPMO),

the elastic body transfer function is calculated as:

1
Helastic(we) = 2Hm’gid(we) (1 + QZC w /w — w2/w2) (5].)

where w, is the encounter frequency, w,, is the ship’s natural frequency, and (, is the
damping ratio. For this example, w,, = 1.9 rad/s and (, = 0.0154. The range of w,

and w, is such that the response spectra are well approximated without bias by zero
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amplitude components, similar to how the range of w was determined in Section 2.3.1.
Using 101 components, the maximum attainable rigid body midship bending moment
response was 8.30y4gid BM, and the maximum attainable elastic body midship bending
moment response was 8.50qstic BM- 1 wo TEVs were used, 3.00 and 5.0c, both of
which are less than the maximum attainable value for both the rigid body case and
the elastic body case.

For TEV = 3.0, the phase parameters, A;, of the rigid body response and the elas-
tic body response were determined by matching the Hypothesis 2 phase distribution
as well as via the OPTLAMBDA program. Sample design time series for each case
were calculated using Eq. 3.2 with €; = «;, and the corresponding linear wave time
series were calculated using the relationships in Eqgs. 4.5 and 4.6. Comparisons to
nonlinear responses have not been done at this time; however, the wave phase angles,
B;, that correspond to each individual time series can be recorded and used in future

comparisons of linear vs. nonlinear simulations.

5.2.1 Target Extreme Value (TEV): 3.005y

The Modified Gaussian phase distribution was shown in Chapter 3 to be a rea-
sonable approximation to the non-uniform phase distribution that results from using
a finite number of Fourier components to create a large value of a random process.
Even though it is necessary to adopt Hypothesis 2 (i.e. the phases are independent
but non-identically distributed), the resulting sample time series have an average pro-
file similar to theoretical mean, the scaled autocorrelation function. Having arrived
at Hypothesis 2 via Monte Carlo simulation, the subplex optimization routine was
shown to generate the necessary phase parameters without resorting to brute force
simulation. This alternative approach is important as it allows for the simulation

of rare events that are difficult to find in Monte Carlo simulation. The subplex op-
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timization approach assumes the phases follow Hypothesis 2, and again the sample
time series have an average profile that matches the scaled autocorrelation.

To validate this method of producing design loads, both the design responses and
their attendant incident wave trains as calculated from the subplex method should be
compared to those as generated by brute force simulation. This comparison is done

for a 3.00 value of vertical bending moment at midship for the Cort.

Rigid Body Analysis

Figures 5.3- 5.15 highlight the results for a 3.00,, value of the vertical bending
moment at midship for the Cort as estimated using rigid body dynamics only (the full
analysis may be found in Appendix A). Figure 5.3 shows the component amplitudes
used in the rigid body analysis. The largest amplitude is at w; ~ 0.55 rad/s, but
there are many other significant amplitudes at frequencies greater than 0.55 rad/s.

Various extreme value PDFs for the response are shown in Fig. 5.4. These PDFs
are similar to those found in the earlier analysis using the nicely-behaved ITTC sea
spectrum. The phase PDFs based on Monte Carlo simulation using Hypothesis 2
(Figs. 5.5 and 5.6) show how the amplitude of a given component affects the phase
distribution of that component. The “ripples” in the phase PDFs mirror track the
peaks in the amplitudes (Fig. 5.3). Since the extreme value PDFs are similar to
those found earlier, it appears that the phase PDF developed from Hypothesis 2 is
an adequate description of the phases even for the more complex response spectrum
of this bending moment response.

The phase parameters, \;, found from the Subplex method are compared to those
found from Monte Carlo simulation in Fig. 5.7. For the largest amplitudes, A; as
calculated by Subplex optimization is less than A; from Monte Carlo simulation. For

the smalller amplitudes, there is more scatter to the Subplex ); because they are
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determined from an optimization algorithm which necessarily must be stopped at
some point in the calculations. However, the difference between the Hypothesis 2
phases (Fig. 5.5) and the Subplex phases (Fig. 5.9) shows that the overall process is
not sensitive to individual changes of phase distributions because the extreme value
PDFs in Fig. are similar. It is the focusing of several to many component phases
that is important in producing the desired response at time 7 = 0.

In this particular example, the characteristic functions do not match well (Fig. 5.8).
This is mostly due to the inherent limitations associated with restricting the phases
to be independent. It is possible that characteristic function agreement could be
improved by adjusting the parameters of the optimization routine.

Example response design time series are shown in Figs. 5.10, 5.12, and 5.14.
The average response time series all match the response’s autocorrelation function,
which supports the conclusion that useful design time series are created despite the
non-agreement of the extreme value PDFs. Individual response time series tend to
exhibit responses of + 205, followed by the build up of several response cycles to
reach the design response at time 7 = 0. The effect of phase independence is shown
in the variance of the maximum response at 7 = 0; one of the individual maximums
is a 4.50), response. There is also evidence of signal repetition in the time series,
an indication that the frequency discretization was not fine enough in this example.

The interesting portion of this exercise, of course, is the resulting incident wave
time series (Figs. 5.11, 5.13, and 5.15). The incident wave, as measured at midship of
the moving ship, was calculated using the relations in Eqgs. 4.5 and 4.6. In this case of
rigid body bending moment, the average wave profile that produces a 3.00 g, response
is not a large peak or trough, such as would be described by the autocorrelation

function (the autocorrelation function is plotted for reference in each set of wave time



series). Instead, it is a series of waves, with large peaks and troughs occurring about
two wave periods before and after the target event that occurs at time 7 = 0. The
individual time series have peaks and troughs that are equal to 3.00,4., they just
do not occur at 7 = 0. This quick investigation indicates that using a large design
wave to estimate large bending moment at midship would be inappropriate because

the wave autocorrelation function does not match the average wave profile that has
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been conditioned by the response.
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Figure 5.3: Rigid body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180°,
forward speed = 12.5 knots.
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Figure 5.5: Rigid body analysis: Stewart J. Cort. Phase PDF:
Hypothesis 2 for midship bending moment. TEV = 3.00p,,
N = 101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.6: Rigid body analysis: Stewart J. Cort. Phase PDF:
Hypothesis 2 (curve fit) for midship bending moment. TEV =
3.00py, N = 101, heading angle = 180°, forward speed = 12.5
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Figure 5.7: Rigid body analysis: Stewart J. Cort. A\; for midship
bending moment. TEV = 3.005,,, N = 101, heading angle =
180°, forward speed = 12.5 knots.
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Figure 5.8: Rigid body analysis: Stewart J. Cort. Characteristic
functions for midship bending moment. TEV = 3.00g),, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.9: Rigid body analysis: Stewart J. Cort. Phase PDF:
Subplex for midship bending moment. TEV = 3.00py, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Elastic Body Analysis

Figures 5.16 - 5.28 highlight the results for a 3.0c,, value of the vertical bending
moment at midship for the Cort as estimated using elastic body dynamics (the full
analysis may be found in Appendix A). Figure 5.16 shows the component amplitudes
used in the elastic body analysis. Comparing these amplitudes to the amplitudes
used in the rigid body analysis, one can see how the largest amplitude has shifted to
a frequency of 1.9 rad/s.

The various extreme value PDFs for the elastic body response are shown in
Fig. 5.17. Again, these PDFs are similar to those found in the earlier analysis using
the ITTC sea spectrum. The phase PDFs based on Monte Carlo simulation using
Hypothesis 2 (Figs. 5.18 and 5.19) show several regions of phase focusing, the great-
est focusing corresponding to the largest amplitude in Fig. 5.16. Since the extreme
value PDFs are similar to those found earlier, it again appears that the phase PDF
developed from Hypothesis 2 is an adequate description of the phases even for the
complex response spectrum of this bending moment response that has many signifi-
cant amplitudes spread throughout the frequency range.

The phase parameters, A;, found from the Subplex method are compared to those
found from Monte Carlo simulation in Fig. 5.20. For the largest amplitudes, A; as
calculated by Subplex optimization is slightly less than A; from Monte Carlo simu-
lation. For the smalller amplitudes, A; from the Subplex method is about twice as
large as \; from Monte Carlo simulation. The effects of the difference between the
Hypothesis 2 phases (Fig. 5.18) and the Subplex phases (Fig. 5.22) are apparent in
that their corresponding extreme value PDF's are not exactly the same. However, the
extreme value PDFs are still generally similar and support the claim that the overall

process is not sensitive to individual changes of phase distributions.
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The characteristic functions from the elastic body analysis (Fig. 5.21) are a poorer
match than was found for the rigid body analysis. It is presumed that the larger num-
ber of significant amplitudes makes it more challenging for the Subplex optimization
to determine the effects of each component. Appendix A contains examples in which
the agreement between characteristic functions is better.

Example response design time series are shown in Figs. 5.23, 5.25, and 5.27. The
autocorrelation function of the elastic body bending moment exhibits the ringing
behavior characteristic of springing. In other words, the bending moment builds
up over many wave periods. The average response time series from Monte Carlo
simulation and using the Modified Gaussian phase distribution exhibit this same
behavior. Individual response time series are closer to the average time series than
they were for the rigid body case. This could be due to the dominance of the largest
amplitude at the system’s natural frequency. The effect of phase independence is
shown in the variance of the maximum response at 7 = 0.

The resulting incident wave time series are shown in Figs. 5.24, 5.26, and 5.28.
The incident wave, as measured at midship of the moving ship, was calculated using
the relations in Eqgs. 4.5 and 4.6. In this case of elastic body bending moment, the
average wave profile that produces a 3.00); response is not a large peak or trough,
such as would be described by the autocorrelation function (the autocorrelation func-
tion is plotted for reference in each set of wave time series). Instead, the waves exhibit
a “ringing” phenomenon that mimics the response, although the period of primary
wave build-up is much shorter than the period of response build-up. The frequency
of the waves in the time shortly prior to the design response (at time 7 = 0) seems
to be of particular importance. In this time period, most of the individual wave time

series have collapsed to similar profiles, with several wave encounters in a row being
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3.00,ave €vents. The rest of the time series do not appear to share common charac-
teristics. As seen with the rigid body analysis, it is clear that using a large design
wave to estimate large bending moment at midship would be inappropriate because
the wave autocorrelation function does not match the average wave profile that has

been conditioned by the response.
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Figure 5.16: Elastic body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180°,
forward speed = 12.5 knots.



74

1.8 T 1 T T T T T T
Extreme Value Theory —— §
16 K Monte Carlp ———— [/ -
14 H Hypothesis 1 ——— | i f i _
’ Hypothesis 2 ——
1.2 Hypothesis 2 Curve Fit
Subplex

S |

fy (X)

m

x (0)

Figure 5.17: Elastic body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 3.0, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.18: Elastic body analysis: Stewart J. Cort. Phase PDF:
Hypothesis 2 for midship bending moment. TEV = 3.00p);,, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.19: Elastic body analysis: Stewart J. Cort. Phase PDF: Hy-
pothesis 2 (curve fit) for midship bending moment. TEV = 3.005,,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.20: Elastic body analysis: Stewart J. Cort. \; for
midship bending moment. TEV = 3.005,,, N = 101, heading
angle = 180°, forward speed = 12.5 knots.
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Figure 5.21: Elastic body analysis: Stewart J. Cort. Character-
istic Functions for midship bending moment. TEV = 3.00g),,
N =101, heading angle = 180°, forward speed = 12.5 knots.

Subplex

0.03
0.025
0.02
0.015
0.01
0.005

Figure 5.22: Elastic body analysis: Stewart J. Cort. Phase
PDEF: Subplex for midship bending moment. TEV = 3.00,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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5.2.2 Target Extreme Value (TEV): 5.005),

The extensive simulations conducted for 3.0z, responses in the previous section
indicate that generating design loads using the Modified Gaussian distribution yields
useful results. The extreme value PDFs do not quite match, yet, but the resulting
time series for the response have the proper average (the autocorrelation function).
The average of the wave time series generated with via subplex optimization also
matches the average of those generated by Monte Carlo simulation, which justifies
using subplex optimization to directly generate the phase parameters, A;.

To show how valuable this method is, consider a design event of 5.00. A 5.00
event is much more rare than a 3.00 event and is accordingly much harder to sim-
ulate. Certainly, generating 50,000 samples of a 5.00 event is difficult. A fraction
of that potential simulation time could instead be used to generate \; directly, and
design response time series created using the Modified Gaussian non-uniform phase
distribution. This was done for both rigid body and elastic body bending moment at

midship of the Cort.

Rigid Body Analysis

The amplitudes used for this 5.00p); example are the same as were used for
the 3.00p), example because the same response conditions are being tested, just a
larger TEV is desired. Figures 5.29- 5.34 highlight the results for a 5.005;; value of
the vertical bending moment at midship for the Cort as estimated using rigid body
dynamics only (the full analysis may be found in Appendix A).

The extreme value PDFs from extreme value theory and the Subplex method
for the response are shown in Fig. 5.29. The two PDF's are a better match for this

5.00p) event than the 3.00p); event, likely due to the TEV being closer to the
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maximum attainable value. In other words, as the target extreme value approaches
the maximum value attainable by the discretization of the response spectrum, the
phase PDFs will each approach a delta function. Therefore, there is less variance in
the phases and less variance to the response PDF that results from the concentrated
phase PDF's.

The phase parameters, A;, found from the Subplex method are shown in Fig. 5.30.
All of the phase parameters are smaller than they were for the 3.00 ), event, reflecting
how the phases must be more concentrated to produce a larger TEV given the same
set of amplitudes. The characteristic functions (Fig. 5.31) are a much better match
than for the 3.00p); event. This is also likely due to the TEV being closer to the
maximum attainable value. The Subplex phase PDF in Fig. 5.32 shows how all of
the phases must be concentrated, to varying degrees, to produce this 5.00,; event.

Sample response design time series generated using the Subplex phase PDF are
shown in Fig. 5.33. The average response time series matches well with the response’s
autocorrelation function, which supports the conclusion that useful design time series
are created using the Subplex method without prior Monte Carlo simulation. The
individual response time series collapse to nearly the same behavior as the autocor-
relation function about 7 = 0. As with the 3.00); event, there is also evidence of
signal repetition in the time series, an indication that the frequency discretization
was not fine enough in this example.

The corresponding incident wave time series for these response time series are
shown in Fig. 5.34. The incident wave, as measured at midship of the moving ship,
was calculated using the relations in Eqgs. 4.5 and 4.6. As seen with the 3.00p),
event, the average wave profile that produces a 5.005); response is not a large peak

or trough, such as would be described by the autocorrelation function (the autocorre-
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lation function is plotted for reference in each set of wave time series). Instead, there
is a large trough before 7 = 0 and a large peak after. The trough and the peak could
both be described as 5.00,40e €vents, but only when they occur at the proper time

do they produce a 5.005,; response.
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Figure 5.29: Rigid body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 5.00,,, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.30: Rigid body analysis: Stewart J. Cort. \; for mid-
ship bending moment. TEV = 5.005,,, N = 101, heading angle
= 180°, forward speed = 12.5 knots.
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Figure 5.31: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 5.00,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.32: Rigid body analysis: Stewart J. Cort. Phase PDF:
Subplex for midship bending moment. TEV = 5.005y, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Elastic Body Analysis

The amplitudes used for this 5.00p,), example are the same as were used for the
3.00 5y example because the same response conditions are being tested, just a larger
TEV is desired. Figures 5.35- 5.40 highlight the results for a 5.00z); value of the
vertical bending moment at midship for the Cort as estimated using an elastic body
analysis (the full analysis may be found in Appendix A).

The extreme value PDFs from extreme value theory and the Subplex method
for the response are shown in Fig. 5.35. The two PDFs are a better match for this
5.00 gy event than the 3.00,; event, again likely due to the TEV being closer to the
maximum attainable value. However, the extreme value PDF's from the rigid body
analysis for a 5.00g); event are a better match than those in Fig. 5.35.

The phase parameters, A;, found from the Subplex method are shown in Fig. 5.36.
All of the phase parameters are smaller than they were for the 3.00 5, event, reflecting
how the phases must be more concentrated to produce a larger TEV given the same
set of amplitudes. The variation in A; still tracks the variation in the amplitudes,
though.

The characteristic functions (Fig. 5.37) are a much better match than for the
3.00 g event, though not as good as the rigid body 5.005,, event. The improvement
is likely due to the TEV being closer to the maximum attainable value, while the
number of significant amplitudes negatively impacts the results from the Subplex
optimization. The Subplex phase PDF in Fig. 5.38 shows how all of the phases must
be concentrated, to varying degrees, to produce this 5.005,; event.

Sample response design time series generated using the Subplex phase PDF are
shown in Fig. 5.39. The average response time series shows the same ringing behavior

of the response’s autocorrelation function, but the average appears to under-predict
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the response (as compared to the autocorrelation function) except for at 7 = 0. The
individual response time series also seem to under-predict the response except for at
7=0.

The corresponding incident wave time series for these response time series are
shown in Fig. 5.40. The incident wave, as measured at midship of the moving ship,
was calculated using the relations in Eqs. 4.5 and 4.6. Here, it is clear that a design
wave that is merely a large peak or trough would not result in the desired design
response. The conditioned incident waves show both a period of build-up in height
before the design response at 7 = 0 and a large trough-peak-trough combination
following the large response. In addition, there is, on average, a moderately large
trough before the design response occurs, but the large troughs and peak that occur

afterward could all be described as near-5.00,4,e €vents.
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Figure 5.35: Elastic body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 5.00,;, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.36: Elastic body analysis: Stewart J. Cort. \; for
midship bending moment. TEV = 5.005,,, N = 101, heading
angle = 180°, forward speed = 12.5 knots.
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Figure 5.37: Elastic body analysis: Stewart J. Cort. Character-
istic Functions for midship bending moment. TEV = 5.00,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure 5.38: Elastic body analysis: Stewart J. Cort. Phase
PDEF: Subplex for midship bending moment. TEV = 5.003,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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CHAPTER 6

Conclusions and Recommendations

6.1 Concluding Remarks

The research presented in this dissertation was primarily directed at the effect of
extreme values of a random process on the phase angles of its random components. In
particular, the PDF's of the component phases were found to be non-uniform when a
finite number of components is used. The non-uniform phase distributions were then
modeled with the Modified Gaussian distribution and related back to the extreme
value. In this way, statistically-equivalent design time series may be produced that
have a given extreme value at time t = 0.

The method presented here has several strengths. First, it is related to extreme
value theory, which is an established arm of mathematics and useful for quantifying
risk. Second, a single analysis results in many sample design scenarios that can be
used to estimate nonlinear statistics. Third, it is versatile; not only can any response
with a transfer function be analyzed, but the method does not restrict the form of the
response in any manner. These aspects are all important to a naval architect charged
with analyzing new, potential designs.

Based on the work presented in this dissertation, there must be a balance between

properly describing the response spectrum and producing an extreme value PDF

91
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that approaches the PDF predicted by extreme value theory. The limited number of
examples in Appendix A suggest that the number of components be just sufficient
that the extreme value PDF for a 3.00 event from Monte Carlo simulation match the
extreme value PDF as predicted by extreme value theory and that the target design
response is less than 75% of the maximum attainable response.

Measures of merit for the final comparison of target design response PDFs (ex-
treme value theory PDF vs. PDF resulting from phases with Modified Gaussian
distributions) include the average extreme values, the variance of the extreme values,
the most likely extreme values, and the divergence (such as Kullback-Leibler) of the
two PDFs. At a minimum, the average extreme value should be equal. The variance
of the extreme values will be different due to the necessary assumption that the phases
are independent, but this difference should be minimized. The most likely extreme
values should be similar in value, and the divergence, of course, should be minimized.

The major measure of merit concerning response design time series is that the
average response design time series should be equal to the response’s autocorrelation
function scaled by the target response value. Recall that this measure of merit does
not apply to the resulting incident wave time series that have been conditioned by
the response.

The end application of this method is to calculate short design time series that are
used with nonlinear, physics-based models to estimate long-term statistics without
costly long-term simulations in early design. The efficiency and versatility of this
method will allow a designer to make intelligent checks on the feasibility of new
designs before the design particulars are locked in and changes become expensive.
Optimization routines that analyze hundreds of different configurations can use this

approach of determining design loads to estimate ship motions and stresses for each
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and every configuration. This ability to intelligently check for designs that are very
good or very bad will reduce the search space for parameters and reduce the risk

associated with new designs.

6.1.1 Applications

The method presented in Chapter 4 of producing design response time series can
be directly applied to any ship or offshore structure response that can be described by
a linear transfer function. In addition to calculating design time series, the method
also provides a way to estimate the PDF of other responses given an extreme value
of another response. For example, a structural engineer may wish to know how
an extreme bending moment at midship affects the secondary and tertiary stresses in
certain members. The PDF of the member’s stress given an extreme bending moment
at midship may not be immediately obvious. However, if this method is used to get
the phase distributions of the bending moment response, the bending moment transfer
function will determine the phase distribution of the incident wave components. If
a finite element analysis is used to determine a transfer function for the member in
question, it can be used in conjunction with the incident wave phase distributions to
determine the phase distributions of the stress in the member. By the right-hand side
of Eq. 3.20, one can calculate the characteristic function of the stress in that member
given that the midship bending moment is large, and the corresponding PDF can be

found by inversing the characteristic function transformation in Eq. 3.9.

6.2 Recommendations for Future Research

There are two major areas that should be addressed in future research. The
first is to investigate the dependencies of fe o .. ¢ (21,29, , 2n|Tm). The second is

to expand the method to maximize/minimize multiple processes at the same time.
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Addressing these two areas will render this method a very powerful tool and will
create an analysis particularly suited to early design optimization cycles.

In addition to these two major areas of research, more extensive simulations should
be performed to better define the relationships between the number of components,
the maximum response attainable due to discretization, and the target design re-
sponse. These simulations should include cases with increased number of compo-
nents (say, NV = 201,501, 1001), as well multiple design response values and response

spectra.

6.2.1 Phase Dependencies

An obvious candidate for future research are the unknown dependencies of the
joint phase PDF, foo .. o (21,22, , 2n|%). The phase model in Chap. 3 and its
solution via Subplex optimization is an engineering approximation that is useful in
that it consistently generates an extreme value PDF that has the same peak value
as predicted by statistical theory. However, the PDF of z,, as estimated using the
Modified Gaussian phase distribution is still too broad due to the assumption that
the phases are independent. A natural starting point would be to investigate numer-
ically the effects of spectrum, N, and m on the joint phase PDF. These numerical

simulations would then hopefully lead to either an analytical solution or a convenient

model similar in vein to the Modified Gaussian phase distribution.

6.2.2 Expanding to Multiple Processes

There are many examples of situations where a designer wishes to maximize not
just one process but several. Slamming, while a highly nonlinear process, could be
predicted using a wave train designed to maximize both relative motion and relative

velocity at the bow. Relative motion, defined as the motion of the ship relative to the
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ocean surface, and relative velocity are linear processes and candidates for analysis
using this method. The relative motion at a point near the bow, n, and the relative
velocity, 77, have a joint extreme value PDF, f,, . (21, 22). Following the approach in

Chapter 3, one would solve:

fnm,ﬁn(zla'Z?) = fn/,ﬁ/('zl?ZZ) (61)

¢WM7777L(817 82) = 1/}77’77}’ (Sla 82) (62)

Because 1 and n can be related back to the incident wave via linear systems
theory, the solution to Eq. 6.1 could be formulated such that the result is one set of
A; that would define the phase PDF of the incident wave components, rather than
the response (as done in Chapter 4). Once A; has been calculated, sample design time
series would be generated which would maximize both relative motion and relative
velocity. These time series would then be used in nonlinear seakeeping programs that
are capable of detecting slamming.

Another example of a highly desirable combination of linear events is roll angle
and roll velocity. In capsize analysis, the roll angle of the ship is often not enough
to predict the onset of capsize (see reference to roll stuff). If this analysis can be
expanded to two incorporate two processes, however, both roll and roll velocity can
be maximized with a single design wave train. The same could be done for any of the

many combinations of stress and shear at different points of a ship’s hull.
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APPENDIX A

Test Cases

Table A.1: Test Cases Matrix

Case No. Spectrum TEV N
1 ITTC SS3 3.00 51
2 ITTC SS9 3.00 51
3 ITTC SS3 5.00 51
4 ITTC SS9 5.0c 51
5 ITTC SS3 3.00 101
6 ITTC SS9 3.00 101
7 ITTC SS3 5.00 101
8 ITTC SS9 5.00 101
9 S.J. Cort rigid body BM 3.00c 101
10 S.J. Cort rigid body BM 5.00c 101
11 S.J. Cort elastic body BM 3.00 101
12 S.J. Cort elastic body BM 5.00 101
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A1l Casel
Case 1
Hygyg 0.88 m
Theak 7.50 sec
N 51
Wmin 0.451 rad/s
Wnaz 4.005 rad/s
O spectrum 0.220 m
O simulation 0.220E400 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 6.80 Osim
TEV 3.00  oim
TEV /maximum attainable value 0.44
m 740
Monte Carlo Simulation yes

time to run subplex optimization 12106. sec
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Case

Extreme Value PDF Comparison

HOchi 3.15
Hyve 3.03
M1 1.45
HH?2 3.02
HH2CF 2.95
Hsubplex 3.12
OOchi 0.36
oMcC 0.30
OH1 0.98
OH2 0.70
OH2CF 0.67
O subplex 0.69
MC: Dir(fo, (@) for (2)) 0.08
HL: Dgr(fo, (2)] for (%)) L7
H2: Dir(fo,, (@) far (2)) 0.29
H2CF: Dir(fe,, (@)l for () 0.28

Subplex: Dk (fe, ()| fz, (z)) 0.18
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Figure A.1: Amplitudes corresponding to ITTC Sea State 3:
hpeak = (.88 m, Tpeak =75 S, N = 51.

18 """"""" r r r r | L D LD |
Extreme Value Theory § § : :
16 H Monte Carlo ——— |77 P P .
1.4 H Hypothesis 1 ——— [ ... e SRRSOt SRRSO SRR i
' Hypothesis 2 —— ; : ; ;
1.2 H Hypothesis 2 Curve Fit ——— |- e R L SRR -
L Subplex —— i i i ?

x(0)

Figure A.2: Comparison of f, (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3t hpear = 0.88 m, Tpeur, = 7.5 8, N = 51, m = 740 (a 3.00
event).
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Figure A.3: Phase histogram for Hypothesis 1. ITTC Sea State
3t hpear = 0.88 m, Tpear, = 7.5 s, N = 51, m = 740 (a 3.00
event). M = 50,000 samples.
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Figure A.4: Phase histogram for Hypothesis 2. ITTC Sea State
3t hpear = 0.88 m, Tpear. = 7.5 8, N = 51, m = 740 (a 3.00
event). M = 50,000 samples.
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Figure A.5: Correlation of phase pairs (¢j,¢;) for Hypothesis 2.

ITTC Sea State 3: hpear = 0.88 m, Tpeur = 7.5 s, N = 51,
m = 740 (a 3.00 event). M = 50,000 samples.
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Figure A.6: Phase PDF for Hypothesis 2 Curve Fit. [TTC Sea
State 3: hpear = 0.88 m, Tpeqr = 7.5 8, N =51, m = 740 (a 3.00
event).
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Figure A.7: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(fe;.,MC(Z)er;.,]bfG(Z))- ITTC Sea State 3: hpeak = (.88 m,
Tpear =755, N =51, m = 740 (a 3.00 event).
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Figure A.8: ); as determined by Subplex optimization compared
to A; as determined by minimizing DKL(fez_ch(z)HfE{I_,MG(z)).
A; is practically capped at 10, as A\; > 10 results in a uniform

phase distribution. ITTC Sea State 3: hpear = 0.88 m, Tpear =
7.5s, N =51, m =740 (a 3.00 event).
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Figure A.9: Comparison of characteristic functions ¢, (z), de-
noted “Extreme Value Theory”, and ,,(s) as calculated by
Subplex optimization. ITTC Sea State 3: hpear = 0.88 m,
Tpear =755, N =51, m = 740 (a 3.00 event).

Subplex
fe; 21wy \

0.014

0.015 0.012
0.01

0.012 0.008
0.006
0.004

0.002

Figure A.10: Phase PDF from Subplex optimization of A;.
ITTC Sea State 3: hpear = 0.88 m, Tpeqr, = 7.5 s, N = 51,
m = 740 (a 3.00 event).
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A.2 Case 2
Case 2
H,, 1400 m
Theak 20.00 sec
N 51
Wmin 0.169 rad/s
Wmaz 1.502 rad/s
O spectrum 3.500 m
O simulation 0.350E+01 MKS units
O simulation | O spectrum 99.98%
maximum attainable value 6.80 Osim
TEV 3.00  oim
TEV /maximum attainable value 0.44
m 740
Monte Carlo Simulation yes

time to run subplex optimization 18340. sec
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Case

Extreme Value PDF Comparison

HOchi 3.15
Hyve 3.03
M1 1.45
HH?2 3.02
HH2CF 2.95
Hsubplex 3.13
OOchi 0.36
oMcC 0.30
OH1 0.99
OH2 0.70
OH2CF 0.67
O subplex 0.69
MC: Dir(fo, (@) for (2)) 0.08
HL: Dgr(fo, (2)] for (%)) 1.76
H2: Dir(fo,, (@) far (2)) 0.29
H2CF: Dir(fe,, (@)l for () 0.28

Subplex: Dk (fe, ()| fz, (z)) 0.17
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Figure A.16: Amplitudes corresponding to ITTC Sea State 9:
hpeat = 14.0 m, Tyear, = 20.0' 5, N = 51.
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Figure A.17: Comparison of f,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpear = 14.0 m, Tpeqr = 20.0 s, N = 51, m = 740 (a 3.00
event).
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Figure A.18: Phase histogram for Hypothesis 1. ITTC Sea State
9: Ppear = 14.0 m, Thear = 20.0 s, N = 51, m = 740 (a 3.00

event). M = 50,000 samples.
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Figure A.19: Phase histogram for Hypothesis 2. I'TTC Sea State
9: hpear = 14.0 m, Tpear = 20.0 s, N = 51, m = 740 (a 3.00
event). M = 50,000 samples.
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Figure A.20: Correlation of phase pairs (ej,¢;) for Hypothesis

2. ITTC Sea State 9: hpear = 14.0 m, Tpeqr = 20.0 5, N = 51,
m = 740 (a 3.00 event). M = 50,000 samples.
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Figure A.21: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 9: hpear = 14.0 m, Tpear = 20.0 s, N = 51, m = 740 (a
3.00 event).
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Figure A.22: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(f63_7Mc(Z)erg_ijg(z)). ITTC Sea State 9: hpeak =14.0 m,

Tpear = 20.0 s, N =51, m = 740 (a 3.00 event).

14 , T

1 1 1 1
; Hypothesis 2 Curve Fit
12 oo i I ‘ _ Subplex X 4

] S ——

Figure A.23: A, as determined by Subplex optimiza-
tion compared to A; as determined by minimizing
DKL(fefj,JVIC<Z)"fs},]VIG(Z))' A, is practically capped at 10,
as A; > 10 results in a uniform phase distribution. I'TTC Sea
State 9: hpear = 14.0 m, Tpear = 20.0 s, N = 51, m = 740 (a
3.00 event).
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Figure A.24: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and ,,(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeqr = 14.0 m,
Tpear = 20.0 s, N =51, m = 740 (a 3.00 event).
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Figure A.25: Phase PDF from Subplex optimization of A;.
ITTC Sea State 9: hpear = 14.0 m, Tpeur = 20.0 s, N = 51,
m = 740 (a 3.00 event).
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A.3 Case 3
Case 3
Hygyg 0.88 m
Theak 7.50 sec
N 51
Wmin 0.451 rad/s
Wnaz 4.005 rad/s
O spectrum 0.220 m
O simulation 0.220E400 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 6.80  Ogim
TEV 5.00  osim
TEV /maximum attainable value 0.74
m 3488555
Monte Carlo Simulation no
time to run subplex optimization 4341. sec

Extreme Value PDF Comparison

HOchi 5.10
Hsubplex 5.07
0Ochi 0.24
O subplex 0.64

Subplex: Dk (fe,, (z)] fa, (2)) 0.22
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Figure A.31: Amplitudes corresponding to ITTC Sea State 3:
Ppear, = 0.88 m, Theqr = 7.5's, N = 51.
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Figure A.32: Comparison of f,,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3: hpeak = 0.88 m, Tpear, = 7.5 8, N = 51, m = 3,488,555 (a
5.00 event).
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Figure A.33: ); as determined by Subplex optimization. A; is
practically capped at 10, as A; > 10 results in a uniform phase
distribution. ITTC Sea State 3: hpear = 0.88 m, Tpeqr, = 7.5 s,
N =51, m = 3,488,555 (a 5.00 event).
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Figure A.34: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and 1., (s) as calculated by
Subplex optimization. ITTC Sea State 3: hpeer = 0.88 m,

Tpear = 758, N =51, m = 3,488,555 (a 5.00 event).
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Figure A.35: Phase PDF from Subplex optimization of A;.
ITTC Sea State 3: hpear = 0.88 m, Tpeqr = 7.5 5, N = 51,

m = 3,488,555 (a 5.00 event).
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A.4 Case 4
Case 4
H,, 14.00 m
Theak 20.00 sec
N 51
Wmin 0.169 rad/s
Wmaz 1.502 rad/s
O spectrum 3.500 m
O simulation 0.350E+01 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 6.80  Ogim
TEV 5.00  osim
TEV /maximum attainable value 0.74
m 3488555
Monte Carlo Simulation no
time to run subplex optimization 5182. sec

Extreme Value PDF Comparison

HOchi 5.10
Hsubplex 5.08
0Ochi 0.24
O subplex 0.63

Subplex: Dk (fe,, (z)] fa, (2)) 0.20
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Figure A.37: Amplitudes corresponding to I'TTC Sea State 9:
Ppear = 14.0 m, Theqr = 20.0 s, N = 51.
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Figure A.38: Comparison of f,,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpear, = 14.0 m, Tpeqr = 20.0 s, N = 51, m = 3,488,555 (a
5.00 event).
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Figure A.39: ); as determined by Subplex optimization. A; is
practically capped at 10, as A; > 10 results in a uniform phase
distribution. ITTC Sea State 9: hpeqr = 14.0 m, Tpeqr = 20.0 s,
N =51, m = 3,488,555 (a 5.00 event).
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Figure A.40: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and 1., (s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeer = 14.0 m,

Tpear. = 20.0 8, N = 51, m = 3,488,555 (a 5.00 event).
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Figure A.41: Phase PDF from Subplex optimization of A;.
ITTC Sea State 9: hpeary = 14.0 m, Ty, = 20.0 s, N = 51,
m = 3,488,555 (a 5.00 event).
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A.5 Case 5
Case 5
Hygyg 0.88 m
Theak 7.50 sec
N 101
Wmin 0.451 rad/s
Wnaz 4.005 rad/s
O spectrum 0.220 m
O simulation 0.220E400 MKS units
O simulation | O spectrum 99.98%
maximum attainable value 9.61 o4
TEV 3.00  oim
TEV /maximum attainable value 0.31
m 740
Monte Carlo Simulation yes

time to run subplex optimization 55136. sec
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Case

Extreme Value PDF Comparison

HOchi 3.15
Hyve 3.09
HH1 1.44
HH?2 3.10
HH2CF 2.96
Hsubplex 3.14
OOchi 0.36
oMcC 0.33
OH1 1.00
OH2 0.84
OH2CF 0.82
O subplex 0.79
MC: Dir(fo, (@) for (2)) 0.02
HL: Dgr(fo, (2)] for (%)) L7
H2: Dir(fo,, (@) far (2)) 0.38
H2CF: Dir(fe,, (@)l for () 0.38

Subplex: Dk (fe, ()| fz, (z)) 0.28
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Figure A.43: Amplitudes corresponding to ITTC Sea State 3:
hpeak = 0.88 m, Tpeak =175 S, N = 101.
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Figure A.44: Comparison of f,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3t hpear = 0.88 m, Tpeqp = 7.5 s, N = 101, m = 740 (a 3.00
event).
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Figure A.45: Phase histogram for Hypothesis 1. ITTC Sea State
3 Ppear = 0.88 m, Thear = 7.5 s, N = 101, m = 740 (a 3.00

event). M = 50,000 samples.
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Figure A.46: Phase histogram for Hypothesis 2. I'TTC Sea State
3: hpear = 0.88 m, Tpear = 7.5 8, N = 101, m = 740 (a 3.00
event). M = 50,000 samples.
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Figure A.47: Correlation of phase pairs (ej,¢;) for Hypothesis

2. ITTC Sea State 3: hpear = 0.88 m, Tpeqr = 7.5 5, N = 101,
m = 740 (a 3.00 event). M = 50,000 samples.
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Figure A.48: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 3: hpear = 0.88 m, Tpear = 7.5 s, N = 101, m = 740 (a
3.00 event).
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Figure A.49: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(f63_7Mc(Z)erg_ijg(z)). ITTC Sea State 3: hpeak = (.88 m,

Tpear = 7.5's, N =101, m = 740 (a 3.00 event).
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Figure A.50: \; as determined by Subplex optimiza-
tion compared to A; as determined by minimizing
DKL(fefj,JVIC<Z)"fs},]VIG(Z))' A, is practically capped at 10,
as A; > 10 results in a uniform phase distribution. I'TTC Sea
State 3: hpear = 0.88 m, Tpear = 7.5 8, N = 101, m = 740 (a
3.00 event).
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Figure A.51: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and ,,(s) as calculated by
Subplex optimization. ITTC Sea State 3: hpear = 0.88 m,

T

p

cak = 7.5's, N =101, m = 740 (a 3.00 event).
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Figure A.52: Phase PDF from Subplex optimization of A;.
ITTC Sea State 3: hpear = 0.88 m, Tpeur = 7.5 s, N = 101,

m = 740 (a 3.00 event).
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A.6 Case 6
Case 6
H,, 1400 m
Theak 20.00 sec
N 101
Wmin 0.169 rad/s
Wmaz 1.502 rad/s
O spectrum 3.500 m
O simulation 0.350E+01 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 9.61 o4
TEV 3.00  oim
TEV /maximum attainable value 0.31
m 740
Monte Carlo Simulation yes

time to run subplex optimization 5H7T75.  sec
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Case

Extreme Value PDF Comparison

HOchi 3.15
Hyve 3.09
M1 1.43
HH?2 3.10
HH2CF 2.96
Hsubplex 3.14
OOchi 0.36
oMcC 0.33
OH1 1.00
OH2 0.85
OH2CF 0.83
O subplex 0.79
MC: Dir(fo, (@) for (2)) 0.02
HL: Dgr(fo, (2)] for (%)) 1.76
H2: Dir(fo,, (@) far (2)) 0.39
H2CF: Dir(fe,, (@)l for () 0.39

Subplex: Dk (fe, ()| fz, (z)) 0.26
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Figure A.58: Amplitudes corresponding to I'TTC Sea State 9:
hpeat = 14.0 m, Tpear, = 20.0 5, N = 101.
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Figure A.59: Comparison of f,,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpear = 14.0 m, Tpeor, = 20.0 s, N = 101, m = 740 (a 3.00
event).
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Figure A.60: Phase histogram for Hypothesis 1. ITTC Sea State
9: hpear = 14.0 m, Theqp = 20.0 s, N = 101, m = 740 (a 3.00
event). M = 50,000 samples.
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Figure A.61: Phase histogram for Hypothesis 2. I'TTC Sea State
9: hpear = 14.0 m, Tpear, = 20.0 s, N = 101, m = 740 (a 3.00
event). M = 50,000 samples.
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Hypothesis 2
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Figure A.62: Correlation of phase pairs (¢;,¢;) for Hypothesis 2.
ITTC Sea State 9: hpear, = 14.0 m, Tpear = 20.0 s, N = 101,

m = 740 (a 3.00 event). M = 50,000 samples.
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Figure A.63: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 9: hpear, = 14.0 m, Tpeqr = 20.0 8, N = 101, m = 740 (a
3.00 event).
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Figure A.64: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(f63_7Mc(Z)erg_ijg(z)). ITTC Sea State 9: hpeak =14.0 m,

Tpear: = 20.0 s, N =101, m = 740 (a 3.00 event).

14 , T

1 1 1 1
; Hypothesis 2 Curve Fit
12 oo i I ‘ _ Subplex X 4

Figure A.65: A; as determined by Subplex optimiza-
tion compared to A; as determined by minimizing
DKL(fefj,JVIC<Z)"fs},]VIG(Z))' A, is practically capped at 10,
as A; > 10 results in a uniform phase distribution. I'TTC Sea
State 9: hpear = 14.0 m, Tpear = 20.0 s, N = 101, m = 740 (a
3.00 event).
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Figure A.66: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and ,,(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeqr = 14.0 m,

T

p

cak = 20.0 s, N =101, m = 740 (a 3.00 event).
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Figure A.67: Phase PDF from Subplex optimization of A;.
ITTC Sea State 9: hpear, = 14.0 m, Tpeqr = 20.0 s, N = 101,

m = 740 (a 3.00 event).
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A.7 Case 7
Case 7
Hygyg 0.88 m
Theak 7.50 sec
N 101
Wmin 0.451 rad/s
Wnaz 4.005 rad/s
O spectrum 0.220 m
O simulation 0.220E400 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 9.61 0ogim
TEV 5.00  osim
TEV /maximum attainable value 0.52
m 3488555
Monte Carlo Simulation no
time to run subplex optimization 28157. sec

Extreme Value PDF Comparison

HOchi 5.10
Hsubplex 5.09
0Ochi 0.24
O subplex 0.74

Subplex: Dk (fe,, (z)] fa, (2)) 0.49
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Figure A.73: Amplitudes corresponding to ITTC Sea State 3:
hpea = 0.88 M, Tyear, = 7.5 8, N = 101.
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Figure A.74: Comparison of f,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3: hpear, = 0.88 m, Thper = 7.58, N = 101, m = 3,488,555 (a
5.00 event).
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Figure A.75: ); as determined by Subplex optimization. A; is
practically capped at 10, as A; > 10 results in a uniform phase
distribution. ITTC Sea State 3: hpear = 0.88 m, Tpeqr, = 7.5 s,
N =101, m = 3,488,555 (a 5.00 event).
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Figure A.76: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and 1., (s) as calculated by
Subplex optimization. ITTC Sea State 3: hpeer = 0.88 m,

Tpear = 7.5 '8, N =101, m = 3,488,555 (a 5.00 event).
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Figure A.77: Phase PDF from Subplex optimization of A;.
ITTC Sea State 3: hpear = 0.88 m, Tpeqry = 7.5 5, N = 101,

m = 3,488,555 (a 5.00 event).
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A.8 Case 8
Case 8
H,, 14.00 m
Theak 20.00 sec
N 101
Wmin 0.169 rad/s
Wmaz 1.502 rad/s
O spectrum 3.500 m
O simulation 0.350E+01 MKS units
O simulation/ O spectrum 99.98%
maximum attainable value 9.61 0ogim
TEV 5.00  osim
TEV /maximum attainable value 0.52
m 3488555
Monte Carlo Simulation no
time to run subplex optimization 75098. sec

Extreme Value PDF Comparison

HOchi 5.10
Hsubplex 5.08
0Ochi 0.24
O subplex 0.71

Subplex: Dk (fe,, (z)] fa, (2)) 0.41




m

fy (%)

154

12 T T T T T T T
1 A R R —
A7 T (N S N T T
s : 1 ; ; : : :
E 3 ST i
g 08 g
@ : : : : : : :
0.4 s Ry S A AR ]
02 o Mg
0 1 l 1 1 1 i i
0O 02 04 06 08 1 12 1.4
wj(rad/s)

Figure A.79: Amplitudes corresponding to ITTC Sea State 9:
hpeat = 14.0 m, Tpear, = 20.0 5, N = 101.
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Figure A.80: Comparison of f,,  (z), denoted “Extreme Value
Theory”, and f,,(z) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpear = 14.0 m, Tpeqr = 20.0 s, N = 101, m = 3,488,555 (a
5.00 event).
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Figure A.81: ); as determined by Subplex optimization. A; is
practically capped at 10, as A; > 10 results in a uniform phase
distribution. ITTC Sea State 9: hpeqr = 14.0 m, Tpeqr = 20.0 s,
N =101, m = 3,488,555 (a 5.00 event).
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Figure A.82: Comparison of characteristic functions v, (x), de-
noted “Extreme Value Theory”, and 1., (s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeer = 14.0 m,

Tpear. = 20.0 8, N = 101, m = 3,488,555 (a 5.00 event).
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Figure A.83: Phase PDF from Subplex optimization of A;.
ITTC Sea State 9: hpeqr, = 14.0 m, Tpeqr = 20.0 s, N = 101,
m = 3,488,555 (a 5.00 event).
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A.9 Case9
Case 9
Heading Angle 180.00 deg
Forward Speed 6.43 m/s
Hg, 558 m
Tpeak 8.80 sec
N 101
Wmin 0.350 rad/s
Wnaz 2.500 rad/s
Twave 1.395 m
Oresponse 0.240E4+09 MKS units
maximum attainable value 827 Ogim
TEV 3.00  ogim
TEV /maximum attainable value 0.36
m 740
Monte Carlo Simulation yes
time to run subplex optimization 38298. sec
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Case

Extreme Value PDF Comparison

HOchi 3.15
Hyve 3.02
M1 1.10
HH?2 3.02
HH2CF 2.93
Hsubplex 3.11
OOchi 0.36
omc 0.30
OH1 1.01
OH2 0.72
OH2CF 0.70
O subplex 0.68
MC: Dir(fo, (@) for (2)) 0.08
HL: Dgr(fo, (2)] for (%)) 2.27
H2: Dir(fo,, (@) far (2)) 0.30
H2CF: Dir(fe,, (@)l for () 0.30

Subplex: Dk (fe, ()| fz, (z)) 0.15
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Figure A.85: Rigid body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180°,
forward speed = 12.5 knots.
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Figure A.86: Rigid body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 3.005);, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.87: Rigid body analysis: Stewart J. Cort. Phase his-
togram for Hypothesis 1, midship bending moment. TEV =
3.00gr, N = 101, heading angle = 180°, forward speed = 12.5
knots.
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Figure A.88: Rigid body analysis: Stewart J. Cort. Phase his-
togram for Hypothesis 2, midship bending moment. TEV =
3.00py, N = 101, heading angle = 180°, forward speed = 12.5
knots.
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Figure A.89: Rigid body analysis: Stewart J. Cort. Correlation
of phase pairs (¢,¢}) for Hypothesis 2. TEV = 3.0055, N = 101,
heading angle = 180°, forward speed = 12.5 knots.
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Figure A.90: Rigid body analysis: Stewart J. Cort. Phase PDF
for Hypothesis 2 Curve Fit, midship bending moment. TEV =
3.00y, N = 101, heading angle = 180°, forward speed = 12.5
knots.
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Figure A.91: Rigid body analysis: Stewart J. Cort. Comparison
of Hypothesis 2 and Hypothesis 2 Curve Fit phase PDFs us-
ing the Kullback-Leibler divergence, Dy (fe amc(2)||fer ma(2))-
TEV = 3.00gy, N = 101, heading angle = 1J800, forward speed
= 12.5 knots.
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Figure A.92: Rigid body analysis: Stewart J. Cort. \; for mid-
ship bending moment. TEV = 3.005,,, N = 101, heading angle
= 180°, forward speed = 12.5 knots.
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Figure A.93: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 3.00p,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.94: Rigid body analysis: Stewart J. Cort. Phase PDF
for Subplex optimization, midship bending moment. TEV =
3.00py, N = 101, heading angle = 180°, forward speed = 12.5
knots.
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Case 10
Heading Angle 180.00 deg
Forward Speed 6.43 m/s
Hyg, 5.58 m
Tpeak 8.80 sec
N 101

Wmin 0.350 rad/s
Wnaz 2.500 rad/s
Twave 1.395 m
Oresponse 0.240E4+09 MKS units
maximum attainable value 827 Ogim
TEV 9.00  ogim
TEV /maximum attainable value 0.60

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 29089. sec
Extreme Value PDF Comparison

HOchi 5.10

Hsubplex 5.07

OOchi 0.24

O subplex: 0.64

Subplex: Dgr(fe,, (2)|| fo, (z)) 0.20
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Figure A.104: Rigid body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180°,
forward speed = 12.5 knots.
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Figure A.105: Rigid body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 5.005);, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.106: Rigid body analysis: Stewart J. Cort. A; for
midship bending moment. TEV = 5.005,,, N = 101, heading
angle = 180°, forward speed = 12.5 knots.
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Figure A.107: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 5.00,/,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.108: Rigid body analysis: Stewart J. Cort. Phase
PDF for Subplex optimization, midship bending moment. TEV
= 5.00y, N = 101, heading angle = 180°, forward speed =
12.5 knots.
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Case 11
Heading Angle 180.00 deg
Forward Speed 6.43 m/s
Hg, 558 m
Theak 8.80 sec
N 101

Wmin 0.350 rad/s
Winaa 1.250 rad/s
Twave 1.395 m
Oresponse 0.671E4+09 MKS units
maximum attainable value 850 Ogim
TEV 3.00  ogim
TEV /maximum attainable value 0.35

m 740

Monte Carlo Simulation yes

time to run subplex optimization 62719. sec
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Case

11

Extreme Value PDF Comparison

HOchi 3.15
I123v¢e; 2.94
HH1 1.26
HH?2 2.94
HH2CF 2.87
Hsubplex 3.12
OOchi 0.36
omMcC 0.27
OH1 1.00
OH2 0.63
OH2CF 0.61
O subplex 0.61
MC: Dir(fo, (@) for (2)) 0.22
HL: Dr(fo, (2)] for (%)) 2.05
H2: Dir(fo,, (@) far (2)) 0.25
H2CF: Dir(fe,, (@)l for () 0.28

Subplex: Dgp(fe, ()| fz, (z)) 0.09
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Figure A.111: Elastic body analysis: Stewart J. Cort. Ampli-
tudes for midship bending moment. N = 101, heading angle =
180°, forward speed = 12.5 knots.
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Figure A.112: Elastic body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 3.005);, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.113: Elastic body analysis: Stewart J. Cort. Phase
histogram for Hypothesis 1, midship bending moment. TEV =
3.00gr, N = 101, heading angle = 180°, forward speed = 12.5

knots.
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Figure A.114:

knots.
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Elastic body analysis: Stewart J. Cort. Phase
histogram for Hypothesis 2, midship bending moment. TEV =
3.00py, N = 101, heading angle = 180°, forward speed = 12.5
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Figure A.115: Elastic body analysis: Stewart J. Cort. Corre-
lation of phase pairs (¢,¢;) for Hypothesis 2. TEV = 3.00p,

N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.116: Elastic body analysis: Stewart J. Cort. Phase
PDF for Hypothesis 2 Curve Fit, midship bending moment.
TEV = 3.00g), N = 101, heading angle = 180°, forward speed
= 12.5 knots.
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Figure A.117: Elastic body analysis: Stewart J. Cort. Compari-
son of Hypothesis 2 and Hypothesis 2 Curve Fit phase PDFs us-
ing the Kullback-Leibler divergence, Dy (fe amc(2) || fer ma(2)).
TEV = 3.00gy, N = 101, heading angle = 1J800, forward speed
= 12.5 knots.
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Figure A.118: Elastic body analysis: Stewart J. Cort. \; for
midship bending moment. TEV = 3.00,;, N = 101, heading
angle = 180°, forward speed = 12.5 knots.
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Figure A.119: Elastic body analysis: Stewart J. Cort. Charac-
teristic Functions for midship bending moment. TEV = 3.00 g,
N =101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.120: Elastic body analysis: Stewart J. Cort. Phase
PDF for Subplex optimization, midship bending moment. TEV
= 3.00y, N = 101, heading angle = 180°, forward speed =
12.5 knots.
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Case 12
Heading Angle 180.00 deg
Forward Speed 6.43 m/s
Hyg, 5.58 m
Tpeak 8.80 sec
N 101

Wmin 0.350 rad/s
Wnaz 1.250 rad/s
Twave 1.395 m
Oresponse 0.671E4+09 MKS units
maximum attainable value 850 Ogim
TEV 9.00  ogim
TEV /maximum attainable value 0.59

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 21651. sec
Extreme Value PDF Comparison

HOchi 5.10

Usubplex 5.06

OOchi 0.24

O subplex: 0.72

Subplex: Dgr(fe,, (2)|| fo, (z)) 0.42
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Figure A.130: Elastic body analysis: Stewart J. Cort. Ampli-
tudes for midship bending moment. N = 101, heading angle =
180°, forward speed = 12.5 knots.
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Figure A.131: Elastic body analysis: Stewart J. Cort. Extreme
value PDF's for midship bending moment. TEV = 5.005);, N =
101, heading angle = 180°, forward speed = 12.5 knots.
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Figure A.132: Elastic body analysis: Stewart J. Cort. \; for
midship bending moment. TEV = 5.005,,, N = 101, heading
angle = 180°, forward speed = 12.5 knots.
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Figure A.133: Elastic body analysis: Stewart J. Cort. Charac-
teristic Functions for midship bending moment. TEV = 5.005,,,
N =101, heading angle = 180°, forward speed = 12.5 knots.



190

Subplex

fsi‘(zluﬁ) \

0.014
0.012
0.01

0.008
0.006
0.004
0.002

Figure A.134: Elastic body analysis: Stewart J. Cort. Phase
PDF for Subplex optimization, midship bending moment. TEV
= 5.00y, N = 101, heading angle = 180°, forward speed =

12.5 knots.
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APPENDIX B

Computer Program OPTLAMBDA

B.1 Input and Output Files

Table B.1: Input files for the OPTLAMBDA program (see Table 4.1

for variable assignments)

Input File Columns Description

InputSpectrum.dat Wj, T; the spectrum that describes the operating
sea state; depends on incident wave spec-
trum

SubplexParam.dat parameters for the subplex optimization
routine

TransferFunction.dat |H(wj)|, 7; transfer function of the response in ques-
tion; depends on speed, heading angle, re-

sponse, etc.
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