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ABSTRACT

Random processes are often modeled as a summation of a finite number of sinu-

soidal components. Various individual time series are created through the randomly

chosen phase angles associated with each component. A specific event of the random

process is characterized by the time at which the event happens and the chosen set

of phase angles. Together, the time and the phase angle constitute the phase of each

component. If many samples of a given event are cataloged, a histogram of the phases

can be generated to produce a phase probability density function (PDF) that relates

the event to the spectrum of the random process and the number of components used

in the simulation.

Simulation of moderately rare events showed the component phase PDFs to be

non-uniform and non-identically distributed. These PDFs were modeled using a single

parameter, modified Gaussian distribution and used to generate design time series

with a specific event at a specific time. To eliminate the need for Monte Carlo

simulation, the single parameter of the phase distribution of each component was

determined by comparing the PDF of the rare event as calculated using the non-

uniform phase distributions to the PDF of the rare event as calculated using Extreme

Value Theory. This approach is convenient and efficient as the phase parameters do

not have to be estimated via Monte Carlo simulation; it is useful as the parameters can

be generated for extremely rare events as easily as moderately rare events. In addition,

xxxi



the comparison to Extreme Value Theory helps to quantify the risk associated with

rare events. An example application involving the springing of a Great Lakes bulk

carrier shows how the method of non-uniform phases correctly predicts the build up

of waves over several periods that produces a large bending moment.

xxxii



CHAPTER 1

Introduction

1.1 Background

The calculation of design ship responses has taken several traditional forms. Sta-

tic loads from extreme waves and general guidelines based on previously built ships

are two familiar approaches. The advent of more powerful computers and parallel

processing has created opportunities for fully nonlinear, physics-based long-term sim-

ulation of marine structure responses. However, processing power has not increased

so much that brute force simulation is feasible in early design cycles or optimization

routines. In recognition of this limitation of simulation, but still needing the informa-

tion that simulation yields, research has been conducted into generating ship-specific

design responses and waves in short time series that can give the same information

as long-term simulation.

1.2 Literature Review

Research into design events was originally focused on the generation of freak,

or rogue, waves. Part of this research then evolved into design waves in general:

generating waves with specific, given characteristics. The approaches used in creating

design waves were then applied to generating design responses, with linear systems

1
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theory allowing for back-calculation of the design wave associated with a given design

response.

The following sections focus on existing methods of generating design waves and

how they were applied to design responses. Building on this knowledge repository, a

new method was devised to emphasize the advantages of previous research and reduce

deficiencies.

1.2.1 Design Waves

Tromans et al. [1991] devised a method for predicting the shape of the most likely

extreme wave in the immediate vicinity of that same peak. This method is based on

linear, broad-banded wave theory and uses probability theory to find the expected

value of the wave shape given a particular wave height and zero slope. The random

ocean surface is designated as η:

η(x, y, t) =
N∑

j=1

√
2S+(ωj)∆ω cos(kjx cos θj + kjy sin θj − ωjt + εj) (1.1)

S +(ωj) is the single-sided spectrum that describes the ocean, ωj is the jth frequency,

kj is the jth wave number, θj is the direction of the jth wave, and εj is a random

phase angle uniformly distributed between −π and π. Tromans designates η1(t) as

the surface elevation at point (x1, y1) as a function of time. Suppose a crest passes

at some time t1 (η1(t1) = α and dη1(t1)/dt = 0). The conditional probability of η(t)

given η1(t1) = α and η̇1(t1) = 0 is:

p(η|η1 = α, η̇1 = 0) =
1√

2πσ2

e(−(η2−αρ)2/2σ2
2) (1.2)

Equation 1.21 is recognized as a Gaussian distribution with a mean of αρ. ρ is

1See [Tromans et al., 1991] Appendix A for derivation
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the autocorrelation function of the original process and defined as:

ρ(t) = <
{

1

σ2

∫ ∞

0

S+(ω) eiωtdω

}
(continuous spectrum)

u
1

σ2

N∑
j=1

S+(ω)∆ω cos ωjt (discrete spectrum) (1.3)

Therefore, the expected shape of η(t), E[η(t)], given a maximum value of α is just

the autocorrelation function of the process scaled by α. This result was originally

derived analytically by Lindgren [1970] and numerically by Boccotti [1983]. Taylor

et al. [1995] inserted this wave profile into any conventionally created random wave

train, thus giving the designer the option of producing a more extended irregular

wave record.

Another approach to tailoring waves was presented by Steinhagen [2002]. Stein-

hagen uses the Sequential Quadratic Programming method to optimize the phases

associated with an initial random wave train such that the result is the desired ex-

treme waves. Parameters in the optimization include: matching the target wave

height, the wavelength of the extreme wave, the maximum crest height, the time of

the extreme height, and wavemaker constraints while keeping the phases between −π

and π . The results, after the optimization routine has run, are the new phases to

be used with their respective wave components. This approach was used successfully

by Clauss [2002] [2004] in creating the wave train at the wavemaker that results in

an extreme wave down-tank. A nonlinear marching technique was then employed to

determine the true shape of the wave train down-tank, and this wave train was then

used in subsequent numerical experiments.

1.2.2 Design Responses

These approaches are insightful but deal solely with the waves. The response to

an extreme wave is still a reasonable prediction of design loads for structures such
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as offshore platforms since the response is driven primarily by hydrostatic changes.

However, for dynamic, moving ships there is no guarantee that the extreme response

occurs with the extreme wave. Adegeest et al. [1998] took the natural step of applying

Tromans’ method to finding the shape of the most likely extreme response. The

amplitudes and phases of the incident wave components could then be back-computed

via linear theory, giving the tailored wave shape near the desired crest. Pastoor [2002]

uses this idea of a most likely extreme response, as well as Volterra models, to predict

large responses as part of an overall assessment of nonlinear ship motions and loads.

Similarly, Clauss et al. [2003] used the roll response spectrum of the ship to further

tailor the waves according to his previous work [Clauss, 2002]. Jensen and Pedersen

[2006] employ the First-Order Reliability Method (FORM), often used in structural

mechanics, to determine the most likely critical wave episode leading to parametric

roll of two containerships.

1.3 Objectives

Computer simulation of ship responses is a valuable tool for designers. As such,

it needs to and will be used in early design analysis. In order to efficiently use

nonlinear, time domain simulators, short time series of the incident wave profile must

be produced such that the design response is achieved. The existing methods of

obtaining design responses and their corresponding excitation just described are all

sound, but are limited in that they either (A) produce only one design time series, or

(B) require a new analysis to produce a new time series. For example, the Tromans

model, using the autocorrelation function, has been shown to satisfyingly match the

average wave profiles that contain large crests [Pastoor, 2002], but any information

on leading or following behavior has been lost due to the averaging process. Any
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process that builds on this model will also have the same deficiency. The Steinhagen

model is theoretically capable of creating random time series, but the optimization

scheme must be re-run each time and there is no way to relate the random time

series to existing statistics. Neither approach is particularly conducive to quick initial

assessment of a potential new ship design.

Ideally, a ship designer would run a single analysis on a particular response, or

set of responses, and be able to generate many short time series to then use in addi-

tional simulations. The objective of this research is to determine a probabilistic-based

algorithm for creating such time series.

This work is based on the main assumption that the wave train that creates

a large nonlinear response is similar to the wave train that creates a large linear

response [Torhaug et al., 1998]. This assumption is necessary to the methodology as

straight-forward, long-term, nonlinear simulation in the time domain is too expensive

to use effectively in early design cycles. Therefore, if a large linear response and

excitation can by calculated, the search space in the nonlinear time domain can be

narrowed to a reasonable period.

This work also, as compared to the most likely extreme response mentioned previ-

ously (e.g. [Pastoor, 2002]), generates an ensemble of statistically-equivalent extreme

responses. This ensemble, based on the assumptions of stationarity and ergodicity,

has a corresponding ensemble of linear design response time series and their associ-

ated response-conditioned incident wave trains. Each of these response-conditioned

wave trains could then be used by the designer in subsequent nonlinear simulations.
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In other words, this approach may be seen as “Round 1” of the analysis of a

new design. If the proposed design passes Round 1, it proceeds to “Round 2” -

a comprehensive, long-term nonlinear simulation of the design to predict extreme

loads. “Round 3” might include model testing.

1.4 Contributions

The research conducted in support of this dissertation was done with an end goal

of helping naval architects evaluate potential new designs early in the design cycle. To

this end, the method presented here endeavors to create multiple design time series

from a single analysis with a minimum of information needed from the designer.

Multiple time series means that nonlinear statistics can be generated without costly

long-term simulations. A single analysis per case means less wasted resources. A

minimum of information means the designer does not have to be an expert in random

processes, extreme value theory, and probability to take advantage of the wealth of

information available from these research areas.

1.5 Overview

This dissertation begins with an investigation of Monte Carlo simulation of ran-

dom processes in Chapter 2. In particular, the investigation tries to determine, via

numerical simulations, what conditions occur at the time of an extreme value of a

random process. Based on these simulations a model is found that re-creates the con-

ditions found in Monte Carlo simulation but without having to actually do the Monte

Carlo simulations (Chapter 3). This model allows short time series containing design

events to be created with a minimum of information about the random process.

The process of creating design time series is part of a larger methodology of
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creating design loads for ships or other marine structures. The overall methodology

is described in detail with an emphasis on those steps relating to the creation of

design time series in Chapter 4. As an example of this methodology, the springing

bending moment of a Great Lakes bulk carrier is taken as the desired design response

in Chapter 5. The design time series that result from the springing example are

compared to those that would have been calculated if the bulk carrier was modeled

as a strictly rigid body.

In closing, future research and applications of this method are discussed in Chap-

ter 6. It is a very flexible method and applications are wide-ranging. Also included

are appendices that include many examples of this method of creating design time

series with extreme values.



CHAPTER 2

Random Processes

2.1 Introduction

The method presented in this paper has its roots in Monte Carlo simulations of

extreme events of generic random processes. A general investigation into random

simulations of rare events indicates that a specific event, xm, may be characterized by

certain non-uniform phase angle distributions without loss of spectral information.

The observations of non-uniform phase angles leads to three hypotheses concerning

the relationship between xm and the finite number of phase angles. These hypotheses

are tested, and the results are used to guide the model presented in Chapter 3.

2.2 Monte Carlo Simulation of Random Processes

As previously mentioned, a random process with an associated single-sided fre-

quency spectrum, S+(ω), may be approximated by the summation of a finite number

of components:

x(t) u
N∑

j=1

aj cos(ωjt + εj) (2.1)

where

aj =
√

2S+(ωj)∆ω (2.2)

8
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and εj is a random phase angle, uniformly distributed between −π and π. The random

process can also be described in terms of the moments of its frequency spectrum:

mk =

∫ ∞

−∞
ωkS+(ω)dω (2.3)

The largest value of x(t) that this model can generate is:

xmax =
N∑

j=1

aj (2.4)

The random process, x(t), is assumed to be stationary and ergodic. Therefore,

the probability density function (PDF) of x(t) is also assumed to be a zero mean,

Gaussian distribution,

fx(x) =
1

σ
√

2π
e−x2/2σ2

(2.5)

where

σ2 =
1

2

N∑
j=1

a2
j

and the cumulative density function (CDF) of x(t) is

Fx(x) = Φ
(x

σ

)
(2.6)

For sufficiently large N , the approximation of x(t) in Eq. 2.1 (the right-hand side)

can also be considered to be a zero-mean, Gaussian process.

2.2.1 Extreme Value Theory: Large Values vs. Positive Maxima

The stationary and ergodic random process in Eq. 2.1 has an envelope associated

with it that tracks the positive maxima and negative minima of the random process

(Fig. 2.1). Positive maxima are designated here as x̃ and defined as those values of

x(t) where ẋ = 0 and ẍ < 0. If x̃ is expressed in dimensionless form as ξ = x̃/σ, Ochi

[1990] derives the general PDF and CDF for positive maxima of a Gaussian process
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random process

envelope curve

Figure 2.1: A random process, x(t), and its envelope curve, x̃(t).

as:

fξ(ξ) =
2

1 +
√

1− ν2

[
ν√
2π

e−ξ2/2ν2

+
√

1− ν2ξ e−ξ2/2Φ

(√
1− ν2

ν
ξ

) ]

0 ≤ ξ < ∞ (2.7)

Fξ(ξ) =
2

1 +
√

1− ν2

[
1

2

(
1−

√
1− ν2

)
+ Φ

(
ξ

ν

)

−
√

1− ν2 e−ξ2/2Φ

(√
1− ν2

ν
ξ

) ]
, 0 ≤ ξ < ∞ (2.8)

where ν is the bandwidth parameter and is defined in terms of the spectral moments

as:

ν =

√
1− m2

2

m0m4

(2.9)

For example, if the process is narrow-banded, ν = 0 and Eq. 2.7 becomes the Rayleigh

distribution:

fξ(ξ) = ξ e−ξ2/2, 0 ≤ ξ < ∞ (2.10)

For a wide-band process, ν = 1, and Eq. 2.7 becomes a truncated Gaussian distribu-

tion:

fξ(ξ) =

√
2

π
e−ξ2/2, 0 ≤ ξ < ∞ (2.11)
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Continuing from Ochi, the PDF of the largest value in m observations of a random

process, z, is defined as:

fzm(z) = mfz(z) (Fz(z))m−1 (2.12)

Substituting Eqs. 2.5 and 2.6 and expressing x nondimensionally as ζ = x/σ gives

the extreme value PDF of the original random process:

fζm(ζ) = m
1√
2π

e−ζ2/2
(
Φ(ζ)

)m−1

(2.13)

Substituting Eqs. 2.7 and 2.8 gives the extreme value PDF of the positive maxima:

fξm(ξ) = m
2

1 +
√

1− ν2

[
ν√
2π

e−ξ2/2ν2

+
√

1− ν2ξ e−ξ2/2Φ

(√
1− ν2

ν
ξ

) ]

×
[

2

1 +
√

1− ν2

(
1

2

(
1−

√
1− ν2

)
+ Φ

(
ξ

ν

)

−
√

1− ν2 e−ξ2/2Φ

(√
1− ν2

ν
ξ

) )]m−1

(2.14)

The most likely extreme value in m samples, ẑm, is defined implicitly by:

1

m
= 1− Fz(ẑm) (2.15)

Simulating extreme events usually entails looking for the largest value of the ran-

dom process in a given time period. This extreme value would be, by definition, a

maximum. Therefore, one might begin an extreme value investigation by looking to

the distribution of the extreme maxima (Eq. 2.14), rather than the distribution of

extreme values (Eq. 2.13), as a guide for simulation. Regardless of how the simulation

of extreme events is executed, a histogram of the largest observation in m samples

should follow the theory compiled by Ochi, either fζm(ζ) or fξm(ξ).

A PDF of the extreme value of a process is useful for evaluating statistics and risk-

levels, but it cannot describe the specific conditions that caused that extreme value
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to appear, namely the time of the extreme value, t, and the corresponding phase, εj.

To do that, one has to return to the discrete representation of the random process in

Eq. 2.1. If the original process is simulated, then,

fζm(ζ) ≈ P

(
N∑

j=1

aj

σ
cos(ωjt + εj) = ζm

)
(2.16)

On the other hand, if only the positive maxima are investigated, then,

fξm(ξ) ≈ P

(
N∑

j=1

aj

σ
cos(ωjt + εj) = ξm

∣∣∣∣∣
N∑

j=1

−aj

σ
ωj sin(ωjt + εj) = 0,

N∑
j=1

−aj

σ
ω2

j cos(ωjt + εj) < 0

)
(2.17)

Determining the PDF of a summation of random variables is difficult, even if the

random variables are independent and well-behaved. In this thesis, Eq. 2.16 will be

used to determine the phases based on fζm since numerical evaluation of Eq. 2.17 is

beyond the scope of this work.

One way of investigating the effect of requiring extreme values to also be maxima

is to look at the difference between the left-hand sides of Eqs. 2.16 and 2.17. It so

happens that the left-hand sides of Eqs. 2.16 and 2.17 are similarly shaped if their

peak values are the same. Consider the following exercise. A Gaussian distribution,

a truncated Gaussian distribution, and a Rayleigh distribution are each used to cal-

culate an extreme value PDF (all distributions have been non-dimensionalized). The

Gaussian distribution describes a random process, ζ, and the truncated Gaussian and

Rayleigh distributions describe the associated envelope curves, ξ, if ν = 1 and ν = 0,

respectively. To determine m for each of these three cases, Eq. 2.15 is used with

ẑm = α, where α = 3, 4, 5, 6. This is equivalent to saying the most likely extreme

value in m samples is a 3σ, 4σ, 5σ, 6σ event. Because each of these three distribu-

tions have different CDFs, m will be a different number as determined by Eq. 2.15.
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Table 2.1 summarizes the number of samples, m, as a function of α and the type of

distribution.

ζ̂m or ξ̂m ζ: Gaussian ξ: Truncated Gaussian ξ: Rayleigh
α ν = 1 ν = 0
3.0 740 370 90
4.0 3.16e4 1.58e4 2980
5.0 3.49e6 1.75e6 2.68e5
6.0 1.01e9 5.05e8 6.56e7

Table 2.1: Number of observations, m.

For each case in Table 2.1, the extreme value PDF is calculated based on m and

according to Eq. 2.13 or Eq. 2.14. A comparison of the Gaussian distribution to

the truncated Gaussian distribution is shown in Fig. 2.2; the Gaussian distribution as

compared to the Rayleigh distribution is shown in Fig. 2.3. In the limiting case of ν =

1, the extreme value PDFs of the Gaussian distribution match those of the truncated

Gaussian due to the nature of the two distributions (mtrunc.Gaussian = mGaussian/2).

In the limiting case of ν = 0, the extreme value PDFs from the Gaussian distribution

are slightly more “peaky” than those of the Rayleigh distribution for lower values of

α, but become a better match as α increases.

This exercise demonstrates that, given a target event, the extreme value PDF

looks essentially the same regardless of whether it is based on extreme values of the

process or extreme positive maxima. Since the end goal was to relate an extreme

value PDF to the unknown conditions that cause an extreme value in a discrete

representation of a random process, it was decided to first concentrate on generating

extreme events. The effects of t and εj can therefore be calculated using the less

complex PDF of Eq. 2.16.
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Figure 2.2: Comparison of extreme value PDFs of a random process
with a Gaussian distribution and its envelope curve; ν = 1. Lines
represent the PDFs of the process and symbols represent the PDFs of
the envelope curve.
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2.2.2 Conditions That Cause Extreme Events

A typical time series generated by Eq. 2.1 is shown in Fig. 2.4. To determine how

to create a time series that has a specific value at a particular time, consider an event

x1 that occurs at time t1 (Fig. 2.5). x1 is defined as:

x1 ≡ x(t1) =
N∑

j=1

aj cos(ωjt1 + εj) (2.18)

x1 is a random instant of the Gaussian process x(t). Therefore, x1 is a random

variable with the same Gaussian distribution as x(t). Since x(t) is considered to be

a stationary and ergodic process, statistics related to the distribution of x1 can be

considered to be equivalent to statistics of x(t). The time series that contains x1 at

time t = 0 may be constructed utilizing the following change of variables:

t′ = t− t1 (2.19)

Substituting for t in Eq. 2.1 yields:

x(t′) =
N∑

j=1

aj cos(ωj(t
′ + t1) + εj) (2.20)

x(t′) =
N∑

j=1

aj cos(ωjt
′ + ωjt1 + εj) (2.21)

Defining a new phase, ε′j, as:

ε′j ≡ ωjt1 + εj (2.22)

results in x(t′) being written as:

x(t′) =
N∑

j=1

aj cos(ωjt
′ + ε′j) (2.23)

The question, then, is, “What is the effect of t1 on the distribution of ε′j?” To

answer this question, first allow the choice of t1 to be unconstrained. In this case,

t1 is a random number as is ωjt1. Since εj is uniformly distributed, and adding a
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Figure 2.5: Random events of a typical time series as determined by t1.
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Figure 2.6: Effect of t1 on ε′j: t1 is unconstrained, resulting in a uniform
distribution for ε′j.
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Figure 2.7: Effect of t1 on ε′j: t1 is the location of xmax, resulting in the
distribution for ε′j being a delta function.

number to a uniform distribution results in a uniform distribution, ε′j is also uniformly

distributed (see Fig. 2.6).

Now consider if t1 is the location of x(t) = xmax. In this case, ωjt1+εj has to equal

zero for j = 1, 2, · · ·N . Therefore, ε′j must also be zero for all j, and the resulting

PDF of ε′j is a delta function (see Fig. 2.7).

However, a designer will be interested in a specific value of x(t1) that is less than

xmax. So, what does the distribution of ε′j look like in this case? It is assumed that

the distribution morphs from a uniform distribution to a delta function as x1 → xmax,
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but what, exactly, is this transformation?

In the following analysis, the target value of x1 is actually xm, the largest value

of x1 in m samples. xm is itself a random variable whose PDF may be calculated via

Extreme Value Theory [Ochi, 1990]:

fxm(x) = mfx(x) (Fx(x))m−1 (2.24)

Substituting Eqs. 2.5 and 2.6 gives:

fxm(x) = m
1

σ
√

2π
e−x2/2σ2

(
Φ

(x

σ

))m−1

(2.25)

The most likely extreme value in m samples, x̂m, is defined implicitly by:

1

m
= 1− Fx(x̂m) (2.26)

In this example,

1

m
= 1− Φ

(
x̂m

σ

)
(2.27)

Equation 2.27 states that the designer need specify either m or x̂m to determine

Eq. 2.25.

2.3 Determining Phase PDFs

For a particular value of x1, t1 is unknown. However, in t′-space, x1 will always

occur at zero regardless of the value of t1. Therefore, histograms of ε′j may be gener-

ated by directly simulating Eq. 2.23. In fact, because x1 will always occur at t′ = 0,

Eq. 2.23 may be reduced to:

x1 = x(t′ = 0) =
N∑

j=1

aj cos(ε′j) (2.28)
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2.3.1 Investigating the Nature of Phase PDFs

To examine what sort of phase distribution leads to xm values, m samples of x1

are taken, and the set of ε′j that corresponds to the largest of these samples is saved.

This process is repeated many times to generate a subset of ε′j that correspond to

instances of xm.

Hypothesis 1. For a given value of m, the phases, ε′j, are independent and identi-

cally distributed (iid). In other words,

fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm) = fε′(z1|xm)fε′(z2|xm) · · · fε′(zN |xm) (2.29)

The validity of Hypothesis 1 may be checked by generating a phase histogram

corresponding to a given extreme value and then using that phase histogram, in lieu

of the original uniform distribution, to directly calculate a set of xm. If Hypothesis 1

is correct, the PDF of xm generated from Hypothesis 1 will match fxm(x) in Eq. 2.25.

To generate the phase histogram corresponding to an xm event, Eq. 2.28 is cal-

culated using a uniform distribution for ε′j. In the example that follows, aj is deter-

mined from an ITTC Sea State 3 spectrum (hpeak = 0.88, Tpeak = 7.5) with N = 101.

Other examples, using more severe sea states and different spectra altogether, may

be found in Appendix A. The frequencies, ωj, are equally spaced and are bounded by

ωmin ≤ ωj ≤ ωmax. ωmin and ωmax are defined as the smallest and largest frequency

such that S+(ωmin) = S+(ωmax) = 0.001S+(ωpeak). Also, m = 740, which corresponds

to the peak value of fxm(x) being 3.0σ (more examples with different parameters may

be found in Appendix A). 78,000,000 total samples of x1 were generated, so there are

M = 50, 000 samples of xm.

Figure 2.9 shows the phase histogram of all ε′j that result from this set of pa-

rameters. This phase distribution is decidedly non-uniform and looks rather like a
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Figure 2.8: Amplitudes corresponding to ITTC Sea State 3: hpeak =
0.88, Tpeak = 7.5, N = 101.
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Figure 2.9: Phase histogram for Hypothesis 1. ITTC Sea State 3:
hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event). M =
50, 000 samples.

Gaussian distribution perched on top of a uniform distribution. The phase distribu-

tion in Fig. 2.9 was then used to directly generate ε′j in Eq. 2.28. The resulting PDF

of x1 is plotted against that of xm, as calculated from Eq. 2.12, in Fig. 2.10. Visually,

it is clear that fx1(x) 6= fxm(x). The results shown in Appendix A are similar because

x has been non-dimensionalized on σ.

One quantitative measurement between two PDFs is the Kullback-Leibler diver-

gence (also known as information divergence, information gain, or relative entropy)
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and fx1(x) as calculated by Hypothesis 1. ITTC Sea State 3: hpeak =
0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event). M = 50, 000
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[Kullback & Leibler, 1951]. The Kullback-Leibler divergence between two PDFs, P

and Q, is denoted as DKL(P‖Q). DKL(P‖Q) is defined for continuous functions as:

DKL(P‖Q) =

∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx (2.30)

In Eq. 2.30, P is typically the target PDF, and Q would be the estimated PDF.

Substituting fxm(x) for P and fx1(x) for Q yields:

DKL(fxm(x)‖fx1(x)) =

∫ ∞

−∞
fxm(x) ln

fxm(x)

fx1(x)
dx (2.31)

DKL(fxm(x)‖fx1(x)) = 0 indicates a perfect match; for this example where m = 740,

DKL(fxm(x)‖fx1(x)) = 1.76. The discrepancy between fxm(x) and fx1(x) indicates

that Hypothesis 1 is incorrect.

Hypothesis 2. For a given value of m, the phases, ε′j, are independent and non-

identically distributed (inid). In other words,

fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm) = fε′1(z1|xm)fε′2(z2|xm) · · · fε′N (zN |xm) (2.32)
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Hypothesis 2, may be tested in the same manner as Hypothesis 1. Consequently,

the same simulation is carried out as was done to test Hypothesis 1; however, now

ε′j is separated by component. Each component, therefore, has its own phase his-

togram. Figure 2.11 shows the component phase histograms that resulted from the

same conditions as before: ITTC Sea State 3 spectrum (hpeak = 0.88, Tpeak = 7.5)

with N = 101 and m = 740, corresponding to the peak value of fxm(x) being 3.0σ,

and M = 50, 000 (more examples with different parameters may be found in Appen-

dix A). Clearly, the phase distributions vary by component. Components with large

amplitudes (see Fig. 2.8) have phase distributions that are focused about ε′j = 0, while

components that are small retain their near-uniform distribution. Those components

with non-uniform distributions look like Gaussian-type distributions, similar to the

distribution seen in Fig. 2.9.

As before, the phase distributions in Fig. 2.11 are used to directly generate ε′j in

Eq. 2.28 and estimate the PDF of x1. Figure 2.12 shows the comparison between

fxm(x) and the new PDF of x1. Visually, this fx1(x) is much improved over the

fx1(x) in Fig. 2.10. Quantitatively, DKL(fxm(x)‖fx1(x)) = 0.39, showing the distinct

improvement over the results with Hypothesis 1. However, fx1(x) still does not equal

fxm(x), it is far too broad, meaning that Hypothesis 2 is also incorrect.

Hypothesis 3. For a given value of m, the phases, ε′j, are fully and jointly distrib-

uted. In other words,

fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm) = f(z1, z2, · · · , zn, a1, a2, · · · , aN |xm) (2.33)

Hypothesis 3 may, in theory, be tested in the same manner as Hypotheses 1

and 2. However, this would require estimating the joint phase PDF as an N -

dimensional phase histogram and this is difficult to do. For example, if the range
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Figure 2.11: Phase histogram for Hypothesis 2. ITTC Sea State 3:
hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event). M =
50, 000 samples.
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of ε′j is coarsely split into 10 intervals, then the number of “bins” required to estimate

fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm) is 10N . If N is as few as 10, then 10,000,000,000 bins are

required to estimate fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm) (compared to 10×N = 100 bins to

generate a histogram similar to that in Fig. 2.11). On top of this, a sufficient number

of samples would need to be generated to populate the 10,000,000,000 bins. The

generation of this data is not feasible in this work.

It should be possible, however, to at least obtain an idea of the correlations that

exist between component phases, even if the actual dependencies are unknown. The

correlation function between the phases ε′1 and ε′2 is defined as:

ρε′1,ε′2 =
E(ε′1ε

′
2)− E(ε′1)E(ε′2)√

E(ε′1
2)− E(ε′1)

2
√

E(ε′2
2)− E(ε′2)

2
(2.34)

ρε′1,ε′2 =
M

∑M
k=1 ε′1kε

′
2k −

(∑M
k=1 ε′1k

)(∑M
k=1 ε′2k

)
√

M
∑M

k=1 ε′1k
2 −

(∑M
k=1 ε′1k

)2
√

M
∑M

k=1 ε′2k
2 −

(∑M
k=1 ε′2k

)2
(2.35)

In general, for the phases ε′i and ε′j, the correlation function is:

ρε′i,ε
′
j
=

M
∑M

k=1 ε′ikε
′
jk −

(∑M
k=1 ε′ik

)(∑M
k=1 ε′jk

)
√

M
∑M

k=1 ε′ik
2 −

(∑M
k=1 ε′ik

)2
√

M
∑M

k=1 ε′jk
2 −

(∑M
k=1 ε′jk

)2
(2.36)

To investigate the correlation between all pairs of phase components, Eq. 2.36

is calculated for i = 1, 2, · · · , N and j = 1, 2, · · · , N . The result of this calculation

is shown in Fig. 2.13. It is clear that no pairs of phases are correlated except for

the trivial case of i = j in which they are perfectly correlated, as they should be.

Although Figure 2.13 indicates that the phase angles are uncorrelated, this does not

mean that the phases are independent.

Returning to Fig. 2.12, the PDF of x1 from Hypothesis 2 is not unusable from

an engineering standpoint. The expected value fx1(x) is near the expected value of

fxm(x), although fx1(x) is much broader than the target PDF, fxm(x). In practice, this
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Figure 2.13: Correlation of phase pairs (ε′i,ε
′
j) for Hypothesis 2. ITTC

Sea State 3: hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ
event). M = 50, 000 samples.

would result in more “scatter” when generating x1 values from the non-uniform distri-

butions of ε′j, but this an improvement since generating x1 from uniformly distributed

phases results in a Gaussian distribution of x1 centered about x = 0. However, it

is not feasible to generate even Fig. 2.11 for rare events since the PDFs are based

on extensive numerical simulation. Therefore, a method needs to be found that will

allow a designer to estimate Fig. 2.11 without resorting to Monte Carlo simulation.

One possible method is presented in the next chapter.



CHAPTER 3

Modified Gaussian Phase Distribution

3.1 Introduction

Several steps are required to use non-uniform phase distributions to simulate short

time series that have a given extreme value. First, a random process, x(t) is acknowl-

edged to be approximated as a summation of components with non-uniform phase

angles. Next, a model for the non-uniform phase distribution is determined based on

numerical simulation. Then, the model’s parameters are specified according to the

extreme value, and sample time series are generated using the resulting non-uniform

phase distributions.

To begin, start with Eq. 2.23 and drop the prime from t:

x(t) =
N∑

j=1

aj cos(ωjt + ε′j) (3.1)

Recall that ε′j represents the random phase angle associated with frequency ωj, and

that it is non-uniformly distributed between −π and π. To emphasize this, and to

distinguish Eq. 3.1 from a usual random process with uniform phases (Eq. 2.1), mark

x with a prime:

x′(t) =
N∑

j=1

aj cos(ωjt + ε′j) (3.2)

The prime mark indicates a time series and set of phase angles associated with an

26
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extreme value at t = 0. Equation 3.2 defines a random process with a PDF of fx′(x)

and a CDF of Fx′(x).

3.2 Modeling Non-Uniform Phase Distributions

Numerical experiments (Section 2.3 and Appendix A) suggest that, due to the fi-

nite number of components, the presence of a specific large value at time t = 0 requires

a non-uniform phase distribution that is able to vary from component to component.

It was also observed that the phase PDFs appear to be Gaussian-type distributions

combined with some degree of uniform distribution. A model that exhibits similar

behavior was derived and is here termed a “Modified Gaussian” distribution. The

Modified Gaussian distribution is defined as the following on the interval −π ≤ z ≤ π:

fε′j(z) ≡ 1

λj

√
2π

e−z2/2λ2
j + C (3.3)

Fε′j(z) ≡ 1

2
erf

(
z

λj

√
2

)
+

1

2
erf

(
π

λj

√
2

)
+ C(z + π) (3.4)

C may be solved by utilizing the definition of a PDF, namely that

1 =

∫ π

−π

1

λj

√
2π

e−z2/2λ2
j + C

=
1

2
erf

(
π

λj

√
2

)
+

1

2
erf

(
π

λj

√
2

)
+ C(π + π)

= erf

(
π

λj

√
2

)
+ 2πC (3.5)

∴

C =
1

2π

(
1− erf

(
π

λj

√
2

))
(3.6)

Therefore, the model for the phase distribution is:

fε′j(z) =
1

λj

√
2π

e−z2/2λ2
j +

1

2π

(
1− erf

(
π

λj

√
2

))
(3.7)
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The first term of the right-hand side of Eq. 3.7 is recognized as a typical Gaussian

distribution. The second term of the right-hand side is, in essence, a uniform distrib-

ution that corrects the overall distribution by “bumping it up” such that it integrates

to 1. Equation 3.7 is extremely attractive as it has just one parameter per component:

λj. Generally, λj can take any non-negative, real value, but it is practically limited

to 0 ≤ λj ≤ 10, as can be seen in Figs. 3.1-3.3. For a uniform distribution, λj = 10,

and for a delta function, λj = 0. This phase model can now be fitted to the phase

distribution of each component via the single parameter, λj.
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Figure 3.1: Modified Gaussian phase PDF resulting from Eq. 3.7 with
λ = 10.
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Figure 3.2: Modified Gaussian phase PDF resulting from Eq. 3.7 with
λ = 2.
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Figure 3.3: Modified Gaussian phase PDF resulting from Eq. 3.7 with
λ = 0.5.

3.2.1 Comparison of Modified Gaussian Distribution to Monte Carlo
Simulation

There are three ways of testing the validity of using Eq. 3.7 as a model for non-

uniform phases:

1. Compare extreme value PDFs: fxm(x) = fx′(x)

2. Compare phase PDFs: fε′j ,MC(z) = fε′j ,MG(z)

3. Compare time series: average time series should approach αρ(t)

For items 1 and 2, the Kullback-Leibler divergence is again employed along with

visual verification. For item 3, sample time series are generated using the Modified

Gaussian phase distribution and compared to both Monte Carlo generated random

time series and to the average time series, αρ(t), where α = x̂m.

Continuing from Section 2.3, the same ITTC Sea State 3 spectrum (hpeak = 0.88,

Tpeak = 7.5) is used with N = 101 and m = 740 (recall that this corresponds to the

peak value of fxm(x) being 3.0σ). Starting with the Hypothesis 2 phase distribution

(Fig. 2.11), λj was chosen such that DKL(fε′j ,MC(z)‖fε′j ,MG(z)) is minimized. The

Modified Gaussian fit to the Hypothesis 2 phase PDF is termed “Hypothesis 2 Curve
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Fit,” and the results of this curve fitting are shown in Figs 3.4-3.9. It is clear, both

visually and from the DKL values in Fig. 3.6, that Eq. 3.7 is a reasonable fit for the

Hypothesis 2 phase distribution from Sec. 2.3. Comparing the extreme value PDFs,

DKL(fxm(x)‖fx′(x)) = 0.40, very similar to DKL(fxm(x)‖fx1(x)) based on Hypothesis

2. λj appears to somewhat track the amplitudes, aj, used to simulate the system,

indicating that the larger the amplitude, the more focused the phases will be to obtain

a given extreme value.

Fig. 3.9 shows sample design time series created using the phase PDFs determined

from Hypothesis 2 and Hypothesis 2 Curve Fit (Figs. 3.4 and 3.5). 2000 total time

series were generated from each phase PDF and an average time series calculated. The

two averaged time series (pink and teal lines) are so close to the scaled autocorrelation

function, x̂mρ(t) (red line), that the autocorrelation function completely obscures the

two averaged time series. That these three time series match is an indication that the

Modified Gaussian phase distribution can be used to model the phase distributions.

To better examine how the two averaged time series compare to each other, the

difference between the two time series is shown in Fig. 3.10. In this figure, x′ is

non-dimensionalized on σ, and the difference between the two time series is small

compared to the maximum value, x̂m.



31

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

  -180.0    
  -120.0    

  -60.0    
  0.0    

  60.0    
  120.0    

  180.0     0

 0.003

 0.006

 0.009

 0.012

 0.015

fεj’
(z|ωj)

Hypothesis 2

ωj (rad/s)

z (deg)

fεj’
(z|ωj)

Figure 3.4: Phase PDF for Hypothesis 2. ITTC Sea State 3: hpeak =
0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event).
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Figure 3.5: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea State 3:
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Figure 3.7: λj as determined by minimizing the Kullback-Leibler di-
vergence, DKL(fε′j ,MC(z)‖fε′j ,MG(z)). λj is practically capped at 10, as
λj ≥ 10 results in a uniform phase distribution. ITTC Sea State 3:
hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event).
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Other numerical simulations may be found in Appendix A. These simulations

indicate that Eq. 3.7 is also a reasonable model even for different spectra, m, and

N values. λj ultimately determines the PDF of x′(t) (Eq. 3.2). The conditions of

Eq. 3.2 ensure that a specific design event will occur at time t = 0. In other words:

x′(0) = x′ =
N∑

j=1

aj cos(ε′j) (3.8)

The PDF of x′ can be used to determine λj. This PDF, fx′(x), should match the

PDF of the extreme value that is specified by the designer. As in Sec. 2.3, the target

extreme value is denoted xm, the largest value in m samples of x, the original random

process. Therefore, Equation 2.25 needs to match the PDF of Eq. 3.2, but calculating

the PDF of a summation of random variable is challenging. Instead, one may use

the Characteristic Functions of the PDFs. The Characteristic Function contains the

same information as the PDF (similar to how Fourier Transforms in the frequency

domain contain the same information as the original time series in the time domain),

but is considerably easier to work with than PDFs for summations of variables.

3.3 Determining λj via Characteristic Functions

The Characteristic Function is, essentially, the Fourier Transform of the PDF

([Rozanov, 1969], page 75). Similar to a Fourier Transform pair, the transformation

between a PDF and its Characteristic Function is fully invertible, and all information

regarding the random process is retained. The Characteristic Function, ψ(s), of a

continuous random variable, Z, with PDF fZ(z) is defined as:

ψZ(s) = E[eisz] =

∫ ∞

−∞
eiszfZ(z)dz , −∞ ≤ s ≤ ∞ (3.9)
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For example, the Characteristic Function of fxm(x) is:

ψxm(s) =

∫ ∞

−∞
eisxfxm(x)dx

=

∫ ∞

−∞

m

σ
√

2π
eisx e−x2/2σ2

(
Φ

(x

σ

))m−1

dx (3.10)

To determine the Characteristic Function of fx′ , let us first define a new variable

Yj:

Yj = cos ε′j (3.11)

Now

x′ =
N∑

j=1

ajYj (3.12)

The CDF of Yj can be determined using Fε′j(z) through a variable transformation:

FYj
(y) =





0, y ≤ −1

P (cos ε′j ≤ y), − 1 ≤ y ≤ 1

1, 1 ≤ y

=





0, y ≤ −1

P (ε′j ≥ arccos y), − 1 ≤ y ≤ 1

1, 1 ≤ y

=





0, y ≤ −1

2(1− Fε′j(arccos y)), − 1 ≤ y ≤ 1

1, 1 ≤ y

(3.13)
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=





0, y ≤ −1

1− erf

(
arccos y

λj

√
2

)
+

arccos y

π

(
erf

(
π

λj

√
2

)
− 1

)
, − 1 ≤ y ≤ 1

1, 1 ≤ y

(3.14)

Differentiating Eq. 3.14 yields the PDF of Yj:

fYj
(y) =





0, y ≤ −1

d

dy
FYj

(y), − 1 ≤ y ≤ 1

0, 1 ≤ y

=





0, y ≤ −1

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

, − 1 ≤ y ≤ 1

0, 1 ≤ y

(3.15)

The characteristic function of fYj
(y) is:

ψYj
(s) =

∫ ∞

−∞
eisyfYj

(y)dy

=

∫ −1

−∞
eisyfYj

(y)dy +

∫ 1

−1

eisyfYj
(y)dy +

∫ ∞

1

eisyfYj
(y)dy

=

∫ −1

−∞
eisy0dy

+

∫ 1

−1

eisy

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

dy

+

∫ ∞

1

eisy0dy

= 0 +

∫ 1

−1

eisy

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

dy + 0
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=

∫ 1

−1

eisy

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

dy (3.16)

The Characteristic Function of fx′(x) can now be determine thusly:

ψx′(s) = E[eisx]

= E[eis(a1y1+a2y2+···+aNyN )]

= E[eisa1y1 eisa2y2 · · · eisaNyN ]

= E[eisa1y1 ]E[eisa2y2 ] · · ·E[eisaNyN ]

=
N∏

j=1

E[eisajyj ]

=
N∏

j=1

∫ ∞

−∞
eisajyjfYj

(y)dy

=
N∏

j=1

ψYj
(ajs) (3.17)

If the designer chooses a return period or risk-level then m is known. Also, aj is

assumed to be known. To determine λj, set the PDF of the extreme value (Eq. 2.25)

equal to the PDF of the summation with non-uniform phases (Eq. 3.12):

fxm(x) = fx′(x) (3.18)

or, alternatively, equate their respective Characteristic Functions:

ψxm(x) = ψx′(x) (3.19)

Substituting in Eqs. 3.10, 3.16, and 3.17 results in the following equation to be solved:

∫ ∞

−∞

m

σ
√

2π
eisx e−x2/2σ2

(
Φ

(x

σ

))m−1

dx

=
N∏

j=1

∫ 1

−1

eiajsy

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

dy

(3.20)
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There is one set of N unknowns in this equation: λj. Unfortunately, Eq. 3.20

is not easily integrable by analytical means, so it must be evaluated numerically. A

more difficult problem is the number of unknowns.

3.3.1 Subplex Optimization

As previously stated, λj can take any non-negative, real value. Therefore, there

are an infinite number of combinations of λj. It is possible that, given a starting set

of λj and their corresponding characteristic functions, an optimization routine might

be able to determine the needed set of λj by comparing the characteristic function

based on λj (Eq. 3.17) to the characteristic function based on extreme value statitics

(Eq. 3.10).

There is a major hurdle, though, to implementing such an optimization algorithm.

Most optimization routines appear to be some form of the Nelder-Mead Simplex

Method [Nelder & Mead, 1965]. These approaches bracket an N -dimensional solution

with N + 1 equally spaced indices. A cost function is checked at each index and

the solution is arrived at by moving around the indices via reflection, expansion,

contraction, and shrinkage. In this application, however, unless N is trivially small

(say, N = 2), moving just one index around results in the same value for the cost

function. In other words, the Simplex Method is unable to determine the effect of

one single component on the overall process due to the large number of components.

A solution to this problem was developed by Rowan [1990]. His routine breaks

down N -dimensional problems into several lower-order problems that the Nelder-

Mead Simplex routines can handle. This approach was coined the Subplex Method,

and was used successfully by Steinhagen [2002].

Rowan has graciously put his Subplex routines into the public domain. These

routines have been obtained and implemented to solve for λj given a specific m or x̂m
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by minimizing the following cost function:

f =
Ns∑

k=1

∣∣∣∣∣ψxm(sk)−
N∏

j=1

ψYj
(sk)

∣∣∣∣∣ (3.21)

Returning to the ITTC Sea State 3 example, the above cost function was mini-

mized to determine λj. The results are shown in Figs. 3.12-3.14. The main difference

between generating λj from Monte Carlo simulation and generating λj from Subplex

optimization is hidden in Eq. 3.20. In Eq. 3.20, the right-hand side is ψx′(s) and

depends upon both λj and aj. The presence of aj means that the Subplex algorithm

can recognize that different components have different effects on the process as a

whole. This is why the components with larger amplitudes have even more focused

phase distributions in Fig. 3.12 than in Figs. 2.11 or 3.5. To compensate for the larger

focusing of phases for the large amplitudes resulting from the Subplex approach, more

of the smaller components end up having a uniform phase distribution.

Comparing extreme value PDFs (Fig. 3.13), DKL(fxm(x)‖fx′(x)) = 0.25, which

is actually better than the comparison from Hypothesis 2 Curve Fit. This is likely

due to the effects of aj as described above. The time series in Fig. 3.14 do not quite

average out to the scaled autocorrelation function, x̂mρ(t) due to the extreme focusing

of the phases of just a few components. As N increases, this focusing becomes less

extreme and the average time series smooths towards x̂mρ(t) (see Appendix A). The

other numerical simulations in Appendix A show that the Subplex approach works

equally well for other spectra, N , and m values.

The advantage of using the Subplex optimization approach is that it does not

depend upon Monte Carlo simulation. The only parameters that are needed are N ,

aj, and either m or x̂m. This capability is important for cases where x̂m is a rare event

and Monte Carlo simulation is not feasible, such as in Appendix A. For lower values,

such as 3σ events, it is easy to use both Monte Carlo simulation and the Subplex
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method to get sample time series. For larger events, such as 5σ events, the Subplex

method gives useful information in a reasonable amount of time (approximately one

hour of computation time on a Dell Inspiron ME051 with Intel Pentium M 1.80 GHz

processor and 1 GB of RAM), whereas Monte Carlo simulation is too time-consuming

and impractical.
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Figure 3.11: λj as determined by Subplex optimization compared to λj

as determined by minimizing DKL(fε′j ,MC(z)‖fε′j ,MG(z)). λj is practi-
cally capped at 10, as λj ≥ 10 results in a uniform phase distribution.
ITTC Sea State 3: hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a
3.0σ event).
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Figure 3.12: Phase PDF from Subplex optimization of λj. ITTC Sea
State 3: hpeak = 0.88, Tpeak = 7.5, N = 101, m = 740 (a 3.0σ event).
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Figure 3.13: Comparison of fxm(x), denoted “Extreme Value Theory”,
and fx1(x) as calculated by Hypotheses 1 and 2, Hypothesis 2 Curve Fit,
and Subplex optimization. ITTC Sea State 3: hpeak = 0.88, Tpeak = 7.5,
N = 101, m = 740 (a 3.0σ event).



43

-6-4-2 0 2 4 6 8

-2
0

-1
5

-1
0

-5
 0

 5
 1

0
 1

5
 2

0

x’(τ) (σ)

τ 
(t

/T
p)

S
ub

pl
ex

 A
ve

ra
ge

A
ut

oc
or

re
la

tio
n 

F
un

ct
io

n

F
ig

u
re

3.
14

:
S
am

p
le

ti
m

e
se

ri
es

ge
n
er

at
ed

b
y

H
y
p
ot

h
es

is
2

an
d

H
y
p
ot

h
es

is
2

C
u
rv

e
F
it

p
h
as

es
.

IT
T

C
S
ea

S
ta

te
3:

h
p
ea

k
=

0.
88

,
T

p
ea

k
=

7.
5,

N
=

10
1,

m
=

74
0

(a
3.

0σ
ev

en
t)

.
A

ve
ra

ge
ti

m
e

se
ri

es
ge

n
er

at
ed

fr
om

20
00

sa
m

p
le

ti
m

e
se

ri
es

;
20

sa
m

p
le

ti
m

e
se

ri
es

ar
e

p
lo

tt
ed

.



CHAPTER 4

Method: Creating a Design Response

4.1 Introduction

In practice, the simulation of random processes assumes that a random process is

satisfactorily described by the summation of a large number of discrete components.

To create a design response, one also may assume that the incident wave that creates a

large linear response will be similar to the incident wave that creates a large nonlinear

response. Given these assumptions, there are three main elements to the methodology

presented here:

• non-uniform response phases are used to create an ensemble of different response

time series

• linear systems theory is used to generate the incident wave profiles from the

ensemble of response phases

• nonlinear seakeeping code simulates the responses of the ship to the ensemble

of incident waves

To summarize the first point, we have a random process,

x′ =
N∑

j=1

ajYj (4.1)
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where,

Yj = cos ε′j (4.2)

The phases, ε′j, are being modeled as:

fε′j(z) =
1

λj

√
2π

e−z2/2λ2
j +

1

2π

(
1− erf

(
π

λj

√
2

))
(4.3)

This PDF of x′, fx′(x), is compared to the PDF of the maximum value in m occur-

rences, fxm(x), and results in the following equation to solve:

∫ ∞

−∞

m

σ
√

2π
eisx e−x2/2σ2

(
Φ

(x

σ

))m−1

dx

=
N∏

j=1

∫ 1

−1

eiajsy

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

dy (4.4)

There is one set of N unknowns in this equation: λj, which are solved for via the

Subplex Optimization routine.

The application of linear systems theory to design responses is straightforward

and described in Sec. 4.2. The nonlinear seakeeping code may be any of a variety

of physics-based simulators, from in-house productions to commercial codes such as

FLUENTTM. The steps necessary to creating design responses using this method are

detailed in Sec. 4.3.

This method of creating design responses depends upon numerical approximations

to spectra, integrals, and optimum vectors. The computer program that implements

these approximations and runs the optimization algorithm is not of particular interest,

but the particulars of the numerical approximations should be documented. The

OPTLAMBDA program is a FORTRAN 90 program that implements the Subplex

Optimization process. A short description of this program may be found in Sec. 4.4

along with explanations of the nuances specific to this application.



46

4.2 Linear Systems Theory

A linear system may be represented by the schematic in Fig. 4.1. For a given

frequency, ωj, if one knows the response, Y (t), and the linear transfer function, H(ω),

then the input amplitude and phase may be calculated algebraically as:

xj =
yj

|H(ωj)| (4.5)

βj = αj − γj (4.6)

In this application, the input function is the incident wave, the linear function is

the Response Amplitude Operator (RAO) of the response, and the output function

is the design response. The relationships in Eqns. 4.5 and 4.6 hold forj = 1, 2, , N

because of the properties of superposition and orthogonality in linear systems. There-

fore, the incident wave may be calculated by:

η(x, y, t) =
N∑

j=1

ζj cos(ωjt− cos θkjx + sin θkjy + βj) (4.7)

Here, θ is the heading angle, αj is the response phase which will be determined

via the previous analysis for ε′j, and βj is the incident wave random phase calculated

from Eq. 4.6.

- -
Input

X(t)

Output

Y (t)
H(ω)

Process
Input X(t) = xje

i(ωjt+βj)

Output Y (t) = yje
i(ωjt+αj)

RAO H(ωj) = |H(ωj)|eiγj

Figure 4.1: Definition of the Variables in a Linear System.
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4.3 Algorithm

A flowchart showing the steps to create design responses using the method laid

out above is shown in Fig. 4.2. Highlights of the process are detailed in the following

sections.

4.3.1 Choosing a Response

The stochastic response can be anything that can be described by a linear trans-

form, either directly or indirectly. Examples include: roll, bending moment, torsion,

and relative motion/velocity of the bow to the ocean surface.

4.3.2 Calculating Input Spectrum and Transfer Function

A critical decision by the designer is the choice of operating conditions to explore.

First, a sea state must be chosen. Winterstein and Engebretsen (1998) describe how

design contours of significant wave height and peak period may be used to determine

input sea states of interest. Once the sea state is selected, an RAO may be calculated

by a linear seakeeping analysis. The RAO of the response of interest is also a function

of speed and heading angle. The authors suggest using polar plots to graph the root-

mean-square (RMS, designated by σ) of the process versus heading angle for each

speed. In the case of station dependent processes, such as bending moment, polar

plots can be created for each of the ships stations. Then, the designer can look for the

largest overall RMS value, thus determining the speed, heading angle, and possibly

station, to be used in generating the RAO.

4.3.3 Estimating Exposure Time and the Target Extreme Value (TEV)

There are several ways to describe the design response of a process. One method

simply states that the design response is the largest response in a time period, or
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Choose response

?
Calculate input spectrum

?
Calculate transfer function

?
Calculate Target Extreme Value (TEV)

?

¾

¾

m

´́
QQ ´́

QQ

TEV< xmax

TEV> xmax

increase N

decrease TEV

Optimize phase parameters, λj

?
Calculate phase PDF, fε′j(z)

?
Calculate linear design response

?
Calculate incident wave

?
Input incident wave to nonlinear simulator

?
Calculate nonlinear design response

Figure 4.2: Flowchart for design loads generation algorithm



49

return period (3 hours, 30 days, 30 years, etc.). If the process has an inherent time

scale, this exposure could be related to an average number of encounters. An alterna-

tive is to specify a particular response value that must be met, for example, from ship

classification rules. In either case, the design response has an associated risk level.

This risk level is related, in turn, to the normalized Target Extreme Value (TEV).

The TEV is the ensemble averaged response value that will be the maximum response

produced in the linear time series. For a design response specified by an exposure

time, the TEV is calculated by (Ochi, 1990, Eqn. 11.141):

TEV =

(
2 ln

(
Texposure

2π
(60)2

√
m2/m0

))1/2

(4.8)

Here, Texposure is the exposure time in hours and m0 and m2 are the zeroth and second

moment of the response spectrum, respectively. For a design response specified by an

actual response value, the TEV is calculated by:

TEV =
design response

σresponse

(4.9)

In other words, the Target Extreme Value is normalized by the RMS of the process.

For example, if the TEV is 3.0, then the design response can be said to be a three-

sigma event.

4.3.4 Checking for Sufficient Number of Components

As a result of the discretization of the response’s frequency spectrum, there is an

upper bound on the response due to Eq. 2.4:

Ymax =
N∑

j=1

yj (4.10)

As an engineer, the designer must deal properly with this limitation of computer

simulation. If, after choosing the frequency range and number of components, the
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TEV is greater than Ymax, the maximum attainable value of the model, the designer

has one of two alternatives. The recommended choice is to increase the number of

components, N , in order to increase the maximum attainable response and recalculate

the response RAO. If this is not feasible, then a lower TEV must be used.

4.3.5 Optimizing λj

The optimization of λj is the most time consuming step of this method. For

example, optimizing λj for N = 101 takes approximately 1.5 hours on a Dell Inspiron

ME051 with Intel Pentium M 1.80 GHz processor and 1 GB of RAM. However, once

the λj parameters have been determined for a given TEV, an infinite number of

individual time series can be generated.

4.3.6 Calculating the Incident Wave

To calculate the incident wave, reassign the variables from Sec. 4.2 according to

Table 4.1. At this step, every variable will be known except for αj, which can be solved

for using Eq. 4.6. The incident wave may now be input to a nonlinear seakeeping or

fluid dynamics program to determine the final predicted design load.

Table 4.1: Assignment of variables for calculating the incident wave

Variable Description

xj wave amplitude at frequency ωj

βj wave phase at frequency ωj

|H(ω)| RAO amplitude at frequency ωj

γj RAO phase at frequency ωj

yj response amplitude at frequency ωj

αj response phase at frequency ωj
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4.4 Computer Program: OPTLAMBDA

A computer program was needed to implement the subplex optimization routine in

order to solve for λj without resorting to Monte Carlo simulation. The OPTLAMBDA

program calculates the phase parameters, λj, for a given response and TEV.

This is a program written in Fortran 90. In general, OPTLAMBDA reads in a

discretized input spectrum and linear transfer function. The user then inputs the

TEV in terms of the RMS, σ, of the response. For example, for a TEV of 5.45σ,

the user would enter 5.45 as the target response. OPTLAMBDA then populates

arrays of fYj
(y) for a set number of λj, creating a look-up table to facilitate later

calculations of characteristic functions. The target PDF, fxm(x), is then calculated

numerically along with its characteristic function. The subplex optimization routine

is then implemented using the cost function defined in Eq. 3.21.

Tables of the input and output files, modules, subroutines, and functions may be

found in Appendix B.

4.4.1 Precalculating fYj
(y)

A hurdle in using this approach to design loads is the singularity at y = ±1 in

fYj
(y) (Eq. 3.15). This singularity means that ψYj

(s) (Eq. 3.16) is not easily evaluated

numerically. It is also essential that ψYj
(0) = 1 to the limits of machine accuracy.

If this condition is not ensured, then
∏N

j=1 ψYj
(0) 6= 1, as it should, due to machine

inaccuracy and the entire characteristic function would be calculated incorrectly as

well. Therefore, an algorithm was devised to evaluate ψYj
(s) numerically and ensure

that ψYj
(0) = 1 for all j.
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To begin, Eq. 3.15 may be rewritten thusly:

fYj
(y) =

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

√
1− y2

=
pj

qj

(4.11)

where

pj(y) =

√
2π e−(arccos y)2/2λ2

j − λj erf
(

π
λj

√
2

)
+ λj

πλj

(4.12)

qj(y) =
√

1− y2 (4.13)

A probability density function must integrate to zero. Therefore,

1 =

∫ 1

−1

fYj
(y)dy (4.14)

Evaluating this numerically using a simple integration scheme (in this case, the trape-

zoid rule) gives:

1 =
NY−1∑

k=1

1

2

(
fYj

(yk) + fYj
(yk+1)

)
∆y

1 =
NY−1∑

k=1

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y (4.15)

An equal sign is used in Eq. 4.15 to ensure that the summation equals 1, even

though it is an approximation to an integral. Since λj > 0, pj(yk) is defined for all

y; however, qj(yk) is undefined analytically at y = ±1, the limits of integration, so

Eq. 4.15 cannot be calculated directly.

The discretized nature of Eq. 4.15 requires a value to be substituted for qj(y1)

and qj(yNY ) such that the summation in Eq. 4.15 equals 1. Since the nature of the

singularity is the same, 1/0, and a uniform ∆y is being used, the same value can be

substituted for qj(y1) and qj(yNY ). The value to be substituted is designated q∗j and

is determined using the following analysis.
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First, segregate the singular terms, qj(y1) and qj(yNY ), in Eq. 4.15:

1 =
1

2

(
pj(y1)

qj(y1)
+

pj(y2)

qj(y2)

)
∆y +

NY−2∑

k=2

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y

+
1

2

(
pj(yNY−1)

qj(yNY−1)
+

pj(yNY )

qj(yNY )

)
∆y

1 =
NY−2∑

k=2

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y +

1

2

(
pj(y2)

qj(y2)

)
∆y +

1

2

(
pj(yNY−1)

qj(yNY−1)

)
∆y

+
1

2

(
pj(y1)

qj(y1)

)
∆y +

1

2

(
pj(yNY )

qj(yNY )

)
∆y

1 =
NY−2∑

k=2

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y +

1

2

(
pj(y2)

qj(y2)

)
∆y +

1

2

(
pj(yNY−1)

qj(yNY−1)

)
∆y

+

(
pj(y1)∆y

2

)(
1

qj(y1)

)
+

(
pj(yNY )∆y

2

)(
1

qj(yNY )

)
(4.16)

Then, substitute q∗j for qj(y1) and qj(yNY ) in Eq. 4.16.

1 =
NY−2∑

k=2

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y +

1

2

(
pj(y2)

qj(y2)

)
∆y +

1

2

(
pj(yNY−1)

qj(yNY−1)

)
∆y

+

(
pj(y1)∆y

2

)(
1

q∗j

)
+

(
pj(yNY )∆y

2

)(
1

q∗j

)
(4.17)

Finally, solve for q∗j :

1 =
NY−2∑

k=2

1

2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y +

1

2

(
pj(y2)

qj(y2)

)
∆y +

1

2

(
pj(yNY−1)

qj(yNY−1)

)
∆y

+
1

q∗j

(
pj(y1)∆y

2
+

pj(yNY )∆y

2

)

q∗j =

(
pj(y1)∆y

2
+

pj(yNY )∆y

2

)

1−∑NY−2
k=2

1
2

(
pj(yk)

qj(yk)
+

pj(yk+1)

qj(yk+1)

)
∆y + 1

2

(
pj(y2)

qj(y2)
+

pj(yNY−1)

qj(yNY−1)

)
∆y

(4.18)

Once q∗j is calculated, then ψYj
(sk) can be evaluated numerically as

ψYj
(sk) =

NY−1∑

k=1

(
e−ixjsyk

1

2

(
fYj

(yk)
)
∆y + e−ixjsyk+1

1

2

(
fYj

(yk+1)
)
∆y

)
(4.19)

where q∗j is used in the calculation of fYj
(y1) and fYj

(yNY ) using Eq. 4.11.

The calculation for q∗j must be done for λj every time ψYj
(s) is needed. During

the course of optimization, this calculation will be done thousands, if not millions,
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of times. In an effort to expedite the optimization process, fY (y) is calculated for a

large, but finite, number of possible values of λ and saved as a look-up table. This

approach is possible as λ is effectively bounded between 0 and 10. λ = 0 is a Delta

Function and λ = 10 is near enough to a uniform distribution as to make no difference.

When OPTLAMBDA is run, λj is rounded to the nearest of the possible values of λ

(∆λ = 0.02), and fYj
(y) is located according to the new value of λj.

4.4.2 Calculating Characteristic Functions

Evaluating the characteristic functions ψxm(s) and ψx′(s) numerically (Eq. 4.19)

requires a range of s along with an interval, ∆s. Due to the similarity of the char-

acteristic function - probability density function pair to a Fourier Transform pair,

the range of s is calculated similar to the calculation of the frequency range when

performing a discrete Fourier Transform.

The maximum attainable value of the response is xmax (Eq. 2.4); this is analogous

to record length when using the Fourier Transform. The maximum frequency in the

frequency domain after a Fourier Transform is:

ωmax =
4π

Trecord

(4.20)

Following this equation, the maximum value of s is calculated as:

smax =
4π

xmax

(4.21)

Just as the discrete Fourier Transform gives amplitudes and phases for −ωmax ≤

ωj ≤ ωmax, the characteristic function has a range of −smax ≤ sk ≤ smax. Unlike

the Fourier Transform, however, there is no fixed number of points, k, at which the

characteristic function must be evaluated. Therefore, for a given number of points,
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NS, the s-step is calculated as:

∆s =
2smax

NS − 1
(4.22)

In this way, the number of points at which the characteristic functions are evaluated

remains the same. Since the characteristic function is bounded by -1 and 1, this

allows for direct comparison of the final error between ψxm(s) and ψx′(s) for different

response cases.

4.4.3 The subplx Routine

The OPTLAMBDA implements the Subplex optimization method worked out by

Thomas Rowan [Rowan, 1990]. The Subplex method is an involved program best

described by Rowan himself ([Rowan, 1990], Section 5.3):

The Subplex method is designed to remove the weaknesses of the sim-
plex method and to retain the positive features. Because of the difficulties
NMS1 has on high-dimensional problems, the Subplex method’s approach
is to decompose the problem into low-dimensional subspaces that the sim-
plex method can search efficiently. Although SUBPLEX must be able to
maximize B∗

L, it is designed as a general-purpose optimization method
and is not tailored to any particular application.

The Subplex method routines were successfully used by OPTLAMBDA to de-

termine λj, but the author assumes no responsibility for any documentation, bugs,

features, etc. related to the Subplex method. A listing of the dependencies of the

Subplex method may be found in Table B.5.

1Refers to the Nelder-Mead Simplex Optimization routine, an algorithm frequently used in opti-
mizing noisy functions [Nelder & Mead, 1965].



CHAPTER 5

Examples

5.1 Introduction

The best way to understand the intricacies and implications of the method pre-

sented in Chapter 4 is to look at an example. A stochastic process that includes

both quasi-static and dynamic response is ship springing. Springing occurs when the

encounter frequency of the waves, or a harmonic of the encounter frequency, excites

the ship at its two-noded natural frequency. When springing occurs, it can greatly

add to the bending moment of the ship. Typically, the long Great Lakes ships (1000+

ft, 305+ m) have been the ships concerned with the effects of springing; however, as

Very Large Crude Carriers and other ocean-going ships continue to increase their size,

springing becomes an important response to analyze.

The example presented below is a comparison of bending moment predictions for

the Great Lakes bulk carrier M/V Stewart J. Cort. Two different Target Extreme

Values (TEVs) are used for both a rigid body analysis and an elastic body analysis.

It will be shown that the effects of springing (the elastic body response) change the

expected shape of the extreme response. This, in turn, changes the shape of the wave

train that produces the large responses. The method for determining design responses

presented here is shown to reasonably reproduce both the linear bending moment

56
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response and the incident wave that leads to the large response. The difference in the

wave profiles shows the need to address design responses, not just design waves.

5.2 Example: Springing of a Great Lakes Bulk Carrier

The M/V Stewart J. Cort has been measured extensively as to the effects of

springing on the ship’s hull [Various, 1979]. Particulars of the Cort may be found

in Table 5.1. Figure 5.1 shows a set of typical response spectra for midship bending

stress of the Cort [Various, 1979]. It is clear that there are two peak frequencies with

which a designer should be concerned. The lower frequency relates to wave-induced

bending stress and is associated with rigid body dynamics. The higher frequency

is related to the effects of springing and is associated with an elastic body analysis.

The three spectra that are shown in Fig. 5.1 emphasize that the effects of springing

should be included in the design analysis. Storm 1 produced more stress at the lower

frequencies, but Storms 2 and 3 produced much more stress at the higher frequencies.

Table 5.1: Main particulars of the Stewart J. Cort

Particular Value

LOA 1000 ft (305 m)

LBP 989 ft (301 m)

B 105 ft (32 m)

T 25.8 ft (7.86 m)

∆ 68,300 LT (69,400 t)

CB 0.924

Vk 12.5 knots
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Figure 5.1: Typical bending moment response spectra of the Stew-
art J. Cort. Figure reproduced from ”Great Lakes Carriers Hull Stress
Monitoring System,” U.S. Department of Commerce, Maritime Admin-
istration, January 1979.

The implications of considering the springing phenomenon may be seen in Fig. 5.2.

The top signal is the combined bending stress at midship as measured aboard the

Cort. This signal was then filtered using a high-pass filter to produce the middle

signal, which is the bending stress due to springing. When the combined signal is

filtered using a low-pass filter, the bottom signal is produced, which is the bending

stress due to the waves.
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It is clear that not only is the maximum of the combined signal nearly twice that of

either springing by itself or wave-induced bending stress by itself, but the maximum

does not coincide with the maxima of either of the two other signals. Therefore, it is

important to capture the response of the ship due to both wave-induced effects and

springing.

The following examples will calculate sample design loads for vertical midship

bending moment. The wave spectrum was determined by a storm measured at Eagle

Harbor on November 28, 1966. It is a two parameter spectrum with Hsig = 5.58m

and Tpeak = 8.8s. The rigid body transfer function was estimated using the SHIPMO

program [Beck & Troesch, 1990] with a heading angle of 180◦, forward speed of

6.43 m/s (12.5 knots), and 101 components. The elastic body transfer function was

approximated as follows.

The elastic body analysis follows the analysis used by Troesch [1984]. First-order

(linear) springing excitation and response are investigated in this work. In the model

used by Troesch, the first-order springing excitation is the wave-induced midship

bending moment of a rigid, inelastic hull (such as calculated by SHIPMO, above). In

this example, a linear transfer function is applied to the rigid body bending moment

to estimate the linear midship bending moment response of an elastic ship. The

elastic analysis is capable of capturing the springing phenomenon.

Designating the rigid body transfer function as Hrigid (determined from SHIPMO),

the elastic body transfer function is calculated as:

Helastic(ωe) = 2Hrigid(ωe)

(
1

1 + 2iζoωe/ωn − ω2
e/ω

2
n

)
(5.1)

where ωe is the encounter frequency, ωn is the ship’s natural frequency, and ζo is the

damping ratio. For this example, ωn = 1.9 rad/s and ζo = 0.0154. The range of ωo

and ωe is such that the response spectra are well approximated without bias by zero
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amplitude components, similar to how the range of ω was determined in Section 2.3.1.

Using 101 components, the maximum attainable rigid body midship bending moment

response was 8.3σrigid BM, and the maximum attainable elastic body midship bending

moment response was 8.5σelastic BM. Two TEVs were used, 3.0σ and 5.0σ, both of

which are less than the maximum attainable value for both the rigid body case and

the elastic body case.

For TEV = 3.0, the phase parameters, λj, of the rigid body response and the elas-

tic body response were determined by matching the Hypothesis 2 phase distribution

as well as via the OPTLAMBDA program. Sample design time series for each case

were calculated using Eq. 3.2 with ε′j = αj, and the corresponding linear wave time

series were calculated using the relationships in Eqs. 4.5 and 4.6. Comparisons to

nonlinear responses have not been done at this time; however, the wave phase angles,

βj, that correspond to each individual time series can be recorded and used in future

comparisons of linear vs. nonlinear simulations.

5.2.1 Target Extreme Value (TEV): 3.0σBM

The Modified Gaussian phase distribution was shown in Chapter 3 to be a rea-

sonable approximation to the non-uniform phase distribution that results from using

a finite number of Fourier components to create a large value of a random process.

Even though it is necessary to adopt Hypothesis 2 (i.e. the phases are independent

but non-identically distributed), the resulting sample time series have an average pro-

file similar to theoretical mean, the scaled autocorrelation function. Having arrived

at Hypothesis 2 via Monte Carlo simulation, the subplex optimization routine was

shown to generate the necessary phase parameters without resorting to brute force

simulation. This alternative approach is important as it allows for the simulation

of rare events that are difficult to find in Monte Carlo simulation. The subplex op-
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timization approach assumes the phases follow Hypothesis 2, and again the sample

time series have an average profile that matches the scaled autocorrelation.

To validate this method of producing design loads, both the design responses and

their attendant incident wave trains as calculated from the subplex method should be

compared to those as generated by brute force simulation. This comparison is done

for a 3.0σ value of vertical bending moment at midship for the Cort.

Rigid Body Analysis

Figures 5.3- 5.15 highlight the results for a 3.0σBM value of the vertical bending

moment at midship for the Cort as estimated using rigid body dynamics only (the full

analysis may be found in Appendix A). Figure 5.3 shows the component amplitudes

used in the rigid body analysis. The largest amplitude is at ωj ≈ 0.55 rad/s, but

there are many other significant amplitudes at frequencies greater than 0.55 rad/s.

Various extreme value PDFs for the response are shown in Fig. 5.4. These PDFs

are similar to those found in the earlier analysis using the nicely-behaved ITTC sea

spectrum. The phase PDFs based on Monte Carlo simulation using Hypothesis 2

(Figs. 5.5 and 5.6) show how the amplitude of a given component affects the phase

distribution of that component. The “ripples” in the phase PDFs mirror track the

peaks in the amplitudes (Fig. 5.3). Since the extreme value PDFs are similar to

those found earlier, it appears that the phase PDF developed from Hypothesis 2 is

an adequate description of the phases even for the more complex response spectrum

of this bending moment response.

The phase parameters, λj, found from the Subplex method are compared to those

found from Monte Carlo simulation in Fig. 5.7. For the largest amplitudes, λj as

calculated by Subplex optimization is less than λj from Monte Carlo simulation. For

the smalller amplitudes, there is more scatter to the Subplex λj because they are
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determined from an optimization algorithm which necessarily must be stopped at

some point in the calculations. However, the difference between the Hypothesis 2

phases (Fig. 5.5) and the Subplex phases (Fig. 5.9) shows that the overall process is

not sensitive to individual changes of phase distributions because the extreme value

PDFs in Fig. are similar. It is the focusing of several to many component phases

that is important in producing the desired response at time τ = 0.

In this particular example, the characteristic functions do not match well (Fig. 5.8).

This is mostly due to the inherent limitations associated with restricting the phases

to be independent. It is possible that characteristic function agreement could be

improved by adjusting the parameters of the optimization routine.

Example response design time series are shown in Figs. 5.10, 5.12, and 5.14.

The average response time series all match the response’s autocorrelation function,

which supports the conclusion that useful design time series are created despite the

non-agreement of the extreme value PDFs. Individual response time series tend to

exhibit responses of ± 2σBM followed by the build up of several response cycles to

reach the design response at time τ = 0. The effect of phase independence is shown

in the variance of the maximum response at τ = 0; one of the individual maximums

is a 4.5σBM response. There is also evidence of signal repetition in the time series,

an indication that the frequency discretization was not fine enough in this example.

The interesting portion of this exercise, of course, is the resulting incident wave

time series (Figs. 5.11, 5.13, and 5.15). The incident wave, as measured at midship of

the moving ship, was calculated using the relations in Eqs. 4.5 and 4.6. In this case of

rigid body bending moment, the average wave profile that produces a 3.0σBM response

is not a large peak or trough, such as would be described by the autocorrelation

function (the autocorrelation function is plotted for reference in each set of wave time
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series). Instead, it is a series of waves, with large peaks and troughs occurring about

two wave periods before and after the target event that occurs at time τ = 0. The

individual time series have peaks and troughs that are equal to 3.0σwave, they just

do not occur at τ = 0. This quick investigation indicates that using a large design

wave to estimate large bending moment at midship would be inappropriate because

the wave autocorrelation function does not match the average wave profile that has

been conditioned by the response.
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Elastic Body Analysis

Figures 5.16 - 5.28 highlight the results for a 3.0σBM value of the vertical bending

moment at midship for the Cort as estimated using elastic body dynamics (the full

analysis may be found in Appendix A). Figure 5.16 shows the component amplitudes

used in the elastic body analysis. Comparing these amplitudes to the amplitudes

used in the rigid body analysis, one can see how the largest amplitude has shifted to

a frequency of 1.9 rad/s.

The various extreme value PDFs for the elastic body response are shown in

Fig. 5.17. Again, these PDFs are similar to those found in the earlier analysis using

the ITTC sea spectrum. The phase PDFs based on Monte Carlo simulation using

Hypothesis 2 (Figs. 5.18 and 5.19) show several regions of phase focusing, the great-

est focusing corresponding to the largest amplitude in Fig. 5.16. Since the extreme

value PDFs are similar to those found earlier, it again appears that the phase PDF

developed from Hypothesis 2 is an adequate description of the phases even for the

complex response spectrum of this bending moment response that has many signifi-

cant amplitudes spread throughout the frequency range.

The phase parameters, λj, found from the Subplex method are compared to those

found from Monte Carlo simulation in Fig. 5.20. For the largest amplitudes, λj as

calculated by Subplex optimization is slightly less than λj from Monte Carlo simu-

lation. For the smalller amplitudes, λj from the Subplex method is about twice as

large as λj from Monte Carlo simulation. The effects of the difference between the

Hypothesis 2 phases (Fig. 5.18) and the Subplex phases (Fig. 5.22) are apparent in

that their corresponding extreme value PDFs are not exactly the same. However, the

extreme value PDFs are still generally similar and support the claim that the overall

process is not sensitive to individual changes of phase distributions.
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The characteristic functions from the elastic body analysis (Fig. 5.21) are a poorer

match than was found for the rigid body analysis. It is presumed that the larger num-

ber of significant amplitudes makes it more challenging for the Subplex optimization

to determine the effects of each component. Appendix A contains examples in which

the agreement between characteristic functions is better.

Example response design time series are shown in Figs. 5.23, 5.25, and 5.27. The

autocorrelation function of the elastic body bending moment exhibits the ringing

behavior characteristic of springing. In other words, the bending moment builds

up over many wave periods. The average response time series from Monte Carlo

simulation and using the Modified Gaussian phase distribution exhibit this same

behavior. Individual response time series are closer to the average time series than

they were for the rigid body case. This could be due to the dominance of the largest

amplitude at the system’s natural frequency. The effect of phase independence is

shown in the variance of the maximum response at τ = 0.

The resulting incident wave time series are shown in Figs. 5.24, 5.26, and 5.28.

The incident wave, as measured at midship of the moving ship, was calculated using

the relations in Eqs. 4.5 and 4.6. In this case of elastic body bending moment, the

average wave profile that produces a 3.0σBM response is not a large peak or trough,

such as would be described by the autocorrelation function (the autocorrelation func-

tion is plotted for reference in each set of wave time series). Instead, the waves exhibit

a “ringing” phenomenon that mimics the response, although the period of primary

wave build-up is much shorter than the period of response build-up. The frequency

of the waves in the time shortly prior to the design response (at time τ = 0) seems

to be of particular importance. In this time period, most of the individual wave time

series have collapsed to similar profiles, with several wave encounters in a row being
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3.0σwave events. The rest of the time series do not appear to share common charac-

teristics. As seen with the rigid body analysis, it is clear that using a large design

wave to estimate large bending moment at midship would be inappropriate because

the wave autocorrelation function does not match the average wave profile that has

been conditioned by the response.
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Figure 5.16: Elastic body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180◦,
forward speed = 12.5 knots.
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5.2.2 Target Extreme Value (TEV): 5.0σBM

The extensive simulations conducted for 3.0σBM responses in the previous section

indicate that generating design loads using the Modified Gaussian distribution yields

useful results. The extreme value PDFs do not quite match, yet, but the resulting

time series for the response have the proper average (the autocorrelation function).

The average of the wave time series generated with via subplex optimization also

matches the average of those generated by Monte Carlo simulation, which justifies

using subplex optimization to directly generate the phase parameters, λj.

To show how valuable this method is, consider a design event of 5.0σ. A 5.0σ

event is much more rare than a 3.0σ event and is accordingly much harder to sim-

ulate. Certainly, generating 50,000 samples of a 5.0σ event is difficult. A fraction

of that potential simulation time could instead be used to generate λj directly, and

design response time series created using the Modified Gaussian non-uniform phase

distribution. This was done for both rigid body and elastic body bending moment at

midship of the Cort.

Rigid Body Analysis

The amplitudes used for this 5.0σBM example are the same as were used for

the 3.0σBM example because the same response conditions are being tested, just a

larger TEV is desired. Figures 5.29- 5.34 highlight the results for a 5.0σBM value of

the vertical bending moment at midship for the Cort as estimated using rigid body

dynamics only (the full analysis may be found in Appendix A).

The extreme value PDFs from extreme value theory and the Subplex method

for the response are shown in Fig. 5.29. The two PDFs are a better match for this

5.0σBM event than the 3.0σBM event, likely due to the TEV being closer to the
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maximum attainable value. In other words, as the target extreme value approaches

the maximum value attainable by the discretization of the response spectrum, the

phase PDFs will each approach a delta function. Therefore, there is less variance in

the phases and less variance to the response PDF that results from the concentrated

phase PDFs.

The phase parameters, λj, found from the Subplex method are shown in Fig. 5.30.

All of the phase parameters are smaller than they were for the 3.0σBM event, reflecting

how the phases must be more concentrated to produce a larger TEV given the same

set of amplitudes. The characteristic functions (Fig. 5.31) are a much better match

than for the 3.0σBM event. This is also likely due to the TEV being closer to the

maximum attainable value. The Subplex phase PDF in Fig. 5.32 shows how all of

the phases must be concentrated, to varying degrees, to produce this 5.0σBM event.

Sample response design time series generated using the Subplex phase PDF are

shown in Fig. 5.33. The average response time series matches well with the response’s

autocorrelation function, which supports the conclusion that useful design time series

are created using the Subplex method without prior Monte Carlo simulation. The

individual response time series collapse to nearly the same behavior as the autocor-

relation function about τ = 0. As with the 3.0σBM event, there is also evidence of

signal repetition in the time series, an indication that the frequency discretization

was not fine enough in this example.

The corresponding incident wave time series for these response time series are

shown in Fig. 5.34. The incident wave, as measured at midship of the moving ship,

was calculated using the relations in Eqs. 4.5 and 4.6. As seen with the 3.0σBM

event, the average wave profile that produces a 5.0σBM response is not a large peak

or trough, such as would be described by the autocorrelation function (the autocorre-
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lation function is plotted for reference in each set of wave time series). Instead, there

is a large trough before τ = 0 and a large peak after. The trough and the peak could

both be described as 5.0σwave events, but only when they occur at the proper time

do they produce a 5.0σBM response.
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Figure 5.29: Rigid body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 5.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure 5.30: Rigid body analysis: Stewart J. Cort. λj for mid-
ship bending moment. TEV = 5.0σBM , N = 101, heading angle
= 180◦, forward speed = 12.5 knots.

-1

-0.5

 0

 0.5

 1

 1.5

-6e-009-4e-009-2e-009  0  2e-009 4e-009 6e-009

ψ
(s

)

s

Extreme Value Theory
Subplex

Figure 5.31: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 5.0σBM ,
N = 101, heading angle = 180◦, forward speed = 12.5 knots.
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Elastic Body Analysis

The amplitudes used for this 5.0σBM example are the same as were used for the

3.0σBM example because the same response conditions are being tested, just a larger

TEV is desired. Figures 5.35- 5.40 highlight the results for a 5.0σBM value of the

vertical bending moment at midship for the Cort as estimated using an elastic body

analysis (the full analysis may be found in Appendix A).

The extreme value PDFs from extreme value theory and the Subplex method

for the response are shown in Fig. 5.35. The two PDFs are a better match for this

5.0σBM event than the 3.0σBM event, again likely due to the TEV being closer to the

maximum attainable value. However, the extreme value PDFs from the rigid body

analysis for a 5.0σBM event are a better match than those in Fig. 5.35.

The phase parameters, λj, found from the Subplex method are shown in Fig. 5.36.

All of the phase parameters are smaller than they were for the 3.0σBM event, reflecting

how the phases must be more concentrated to produce a larger TEV given the same

set of amplitudes. The variation in λj still tracks the variation in the amplitudes,

though.

The characteristic functions (Fig. 5.37) are a much better match than for the

3.0σBM event, though not as good as the rigid body 5.0σBM event. The improvement

is likely due to the TEV being closer to the maximum attainable value, while the

number of significant amplitudes negatively impacts the results from the Subplex

optimization. The Subplex phase PDF in Fig. 5.38 shows how all of the phases must

be concentrated, to varying degrees, to produce this 5.0σBM event.

Sample response design time series generated using the Subplex phase PDF are

shown in Fig. 5.39. The average response time series shows the same ringing behavior

of the response’s autocorrelation function, but the average appears to under-predict
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the response (as compared to the autocorrelation function) except for at τ = 0. The

individual response time series also seem to under-predict the response except for at

τ = 0.

The corresponding incident wave time series for these response time series are

shown in Fig. 5.40. The incident wave, as measured at midship of the moving ship,

was calculated using the relations in Eqs. 4.5 and 4.6. Here, it is clear that a design

wave that is merely a large peak or trough would not result in the desired design

response. The conditioned incident waves show both a period of build-up in height

before the design response at τ = 0 and a large trough-peak-trough combination

following the large response. In addition, there is, on average, a moderately large

trough before the design response occurs, but the large troughs and peak that occur

afterward could all be described as near-5.0σwave events.
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Figure 5.35: Elastic body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 5.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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CHAPTER 6

Conclusions and Recommendations

6.1 Concluding Remarks

The research presented in this dissertation was primarily directed at the effect of

extreme values of a random process on the phase angles of its random components. In

particular, the PDFs of the component phases were found to be non-uniform when a

finite number of components is used. The non-uniform phase distributions were then

modeled with the Modified Gaussian distribution and related back to the extreme

value. In this way, statistically-equivalent design time series may be produced that

have a given extreme value at time t = 0.

The method presented here has several strengths. First, it is related to extreme

value theory, which is an established arm of mathematics and useful for quantifying

risk. Second, a single analysis results in many sample design scenarios that can be

used to estimate nonlinear statistics. Third, it is versatile; not only can any response

with a transfer function be analyzed, but the method does not restrict the form of the

response in any manner. These aspects are all important to a naval architect charged

with analyzing new, potential designs.

Based on the work presented in this dissertation, there must be a balance between

properly describing the response spectrum and producing an extreme value PDF

91
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that approaches the PDF predicted by extreme value theory. The limited number of

examples in Appendix A suggest that the number of components be just sufficient

that the extreme value PDF for a 3.0σ event from Monte Carlo simulation match the

extreme value PDF as predicted by extreme value theory and that the target design

response is less than 75% of the maximum attainable response.

Measures of merit for the final comparison of target design response PDFs (ex-

treme value theory PDF vs. PDF resulting from phases with Modified Gaussian

distributions) include the average extreme values, the variance of the extreme values,

the most likely extreme values, and the divergence (such as Kullback-Leibler) of the

two PDFs. At a minimum, the average extreme value should be equal. The variance

of the extreme values will be different due to the necessary assumption that the phases

are independent, but this difference should be minimized. The most likely extreme

values should be similar in value, and the divergence, of course, should be minimized.

The major measure of merit concerning response design time series is that the

average response design time series should be equal to the response’s autocorrelation

function scaled by the target response value. Recall that this measure of merit does

not apply to the resulting incident wave time series that have been conditioned by

the response.

The end application of this method is to calculate short design time series that are

used with nonlinear, physics-based models to estimate long-term statistics without

costly long-term simulations in early design. The efficiency and versatility of this

method will allow a designer to make intelligent checks on the feasibility of new

designs before the design particulars are locked in and changes become expensive.

Optimization routines that analyze hundreds of different configurations can use this

approach of determining design loads to estimate ship motions and stresses for each
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and every configuration. This ability to intelligently check for designs that are very

good or very bad will reduce the search space for parameters and reduce the risk

associated with new designs.

6.1.1 Applications

The method presented in Chapter 4 of producing design response time series can

be directly applied to any ship or offshore structure response that can be described by

a linear transfer function. In addition to calculating design time series, the method

also provides a way to estimate the PDF of other responses given an extreme value

of another response. For example, a structural engineer may wish to know how

an extreme bending moment at midship affects the secondary and tertiary stresses in

certain members. The PDF of the member’s stress given an extreme bending moment

at midship may not be immediately obvious. However, if this method is used to get

the phase distributions of the bending moment response, the bending moment transfer

function will determine the phase distribution of the incident wave components. If

a finite element analysis is used to determine a transfer function for the member in

question, it can be used in conjunction with the incident wave phase distributions to

determine the phase distributions of the stress in the member. By the right-hand side

of Eq. 3.20, one can calculate the characteristic function of the stress in that member

given that the midship bending moment is large, and the corresponding PDF can be

found by inversing the characteristic function transformation in Eq. 3.9.

6.2 Recommendations for Future Research

There are two major areas that should be addressed in future research. The

first is to investigate the dependencies of fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm). The second is

to expand the method to maximize/minimize multiple processes at the same time.
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Addressing these two areas will render this method a very powerful tool and will

create an analysis particularly suited to early design optimization cycles.

In addition to these two major areas of research, more extensive simulations should

be performed to better define the relationships between the number of components,

the maximum response attainable due to discretization, and the target design re-

sponse. These simulations should include cases with increased number of compo-

nents (say, N = 201, 501, 1001), as well multiple design response values and response

spectra.

6.2.1 Phase Dependencies

An obvious candidate for future research are the unknown dependencies of the

joint phase PDF, fε′1ε′2··· ε′N (z1, z2, · · · , zN |xm). The phase model in Chap. 3 and its

solution via Subplex optimization is an engineering approximation that is useful in

that it consistently generates an extreme value PDF that has the same peak value

as predicted by statistical theory. However, the PDF of xm as estimated using the

Modified Gaussian phase distribution is still too broad due to the assumption that

the phases are independent. A natural starting point would be to investigate numer-

ically the effects of spectrum, N , and m on the joint phase PDF. These numerical

simulations would then hopefully lead to either an analytical solution or a convenient

model similar in vein to the Modified Gaussian phase distribution.

6.2.2 Expanding to Multiple Processes

There are many examples of situations where a designer wishes to maximize not

just one process but several. Slamming, while a highly nonlinear process, could be

predicted using a wave train designed to maximize both relative motion and relative

velocity at the bow. Relative motion, defined as the motion of the ship relative to the
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ocean surface, and relative velocity are linear processes and candidates for analysis

using this method. The relative motion at a point near the bow, η, and the relative

velocity, η̇, have a joint extreme value PDF, fηm,η̇n(z1, z2). Following the approach in

Chapter 3, one would solve:

fηm,η̇n(z1, z2) = fη′,η̇′(z1, z2) (6.1)

ψηm,η̇n(s1, s2) = ψη′,η̇′(s1, s2) (6.2)

Because η and η̇ can be related back to the incident wave via linear systems

theory, the solution to Eq. 6.1 could be formulated such that the result is one set of

λj that would define the phase PDF of the incident wave components, rather than

the response (as done in Chapter 4). Once λj has been calculated, sample design time

series would be generated which would maximize both relative motion and relative

velocity. These time series would then be used in nonlinear seakeeping programs that

are capable of detecting slamming.

Another example of a highly desirable combination of linear events is roll angle

and roll velocity. In capsize analysis, the roll angle of the ship is often not enough

to predict the onset of capsize (see reference to roll stuff). If this analysis can be

expanded to two incorporate two processes, however, both roll and roll velocity can

be maximized with a single design wave train. The same could be done for any of the

many combinations of stress and shear at different points of a ship’s hull.
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APPENDIX A

Test Cases

Table A.1: Test Cases Matrix

Case No. Spectrum TEV N

1 ITTC SS3 3.0σ 51

2 ITTC SS9 3.0σ 51

3 ITTC SS3 5.0σ 51

4 ITTC SS9 5.0σ 51

5 ITTC SS3 3.0σ 101

6 ITTC SS9 3.0σ 101

7 ITTC SS3 5.0σ 101

8 ITTC SS9 5.0σ 101

9 S.J. Cort rigid body BM 3.0σ 101

10 S.J. Cort rigid body BM 5.0σ 101

11 S.J. Cort elastic body BM 3.0σ 101

12 S.J. Cort elastic body BM 5.0σ 101
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A.1 Case 1

Case 1

Hsig 0.88 m

Tpeak 7.50 sec

N 51

ωmin 0.451 rad/s

ωmax 4.005 rad/s

σspectrum 0.220 m

σsimulation 0.220E+00 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 6.80 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.44

m 740

Monte Carlo Simulation yes

time to run subplex optimization 12106. sec
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Case 1

Extreme Value PDF Comparison

µOchi 3.15

µMC 3.03

µH1 1.45

µH2 3.02

µH2CF 2.95

µsubplex 3.12

σOchi 0.36

σMC 0.30

σH1 0.98

σH2 0.70

σH2CF 0.67

σsubplex 0.69

MC: DKL(fxm(x)‖fx1(x)) 0.08

H1: DKL(fxm(x)‖fx1(x)) 1.77

H2: DKL(fxm(x)‖fx1(x)) 0.29

H2CF: DKL(fxm(x)‖fx1(x)) 0.28

Subplex: DKL(fxm(x)‖fx1(x)) 0.18
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Figure A.1: Amplitudes corresponding to ITTC Sea State 3:
hpeak = 0.88 m, Tpeak = 7.5 s, N = 51.
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A.2 Case 2

Case 2

Hsig 14.00 m

Tpeak 20.00 sec

N 51

ωmin 0.169 rad/s

ωmax 1.502 rad/s

σspectrum 3.500 m

σsimulation 0.350E+01 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 6.80 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.44

m 740

Monte Carlo Simulation yes

time to run subplex optimization 18340. sec
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Case 2

Extreme Value PDF Comparison

µOchi 3.15

µMC 3.03

µH1 1.45

µH2 3.02

µH2CF 2.95

µsubplex 3.13

σOchi 0.36

σMC 0.30

σH1 0.99

σH2 0.70

σH2CF 0.67

σsubplex 0.69

MC: DKL(fxm(x)‖fx1(x)) 0.08

H1: DKL(fxm(x)‖fx1(x)) 1.76

H2: DKL(fxm(x)‖fx1(x)) 0.29

H2CF: DKL(fxm(x)‖fx1(x)) 0.28

Subplex: DKL(fxm(x)‖fx1(x)) 0.17
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Figure A.16: Amplitudes corresponding to ITTC Sea State 9:
hpeak = 14.0 m, Tpeak = 20.0 s, N = 51.
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Figure A.17: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 740 (a 3.0σ
event).
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Figure A.18: Phase histogram for Hypothesis 1. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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Figure A.19: Phase histogram for Hypothesis 2. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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Figure A.20: Correlation of phase pairs (ε′i,ε
′
j) for Hypothesis

2. ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51,
m = 740 (a 3.0σ event). M = 50, 000 samples.
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Figure A.21: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 740 (a
3.0σ event).
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Figure A.22: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). ITTC Sea State 9: hpeak = 14.0 m,

Tpeak = 20.0 s, N = 51, m = 740 (a 3.0σ event).
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Figure A.23: λj as determined by Subplex optimiza-
tion compared to λj as determined by minimizing
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). λj is practically capped at 10,
as λj ≥ 10 results in a uniform phase distribution. ITTC Sea
State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 740 (a
3.0σ event).
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Figure A.24: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeak = 14.0 m,
Tpeak = 20.0 s, N = 51, m = 740 (a 3.0σ event).
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Figure A.25: Phase PDF from Subplex optimization of λj.
ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51,
m = 740 (a 3.0σ event).
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A.3 Case 3

Case 3

Hsig 0.88 m

Tpeak 7.50 sec

N 51

ωmin 0.451 rad/s

ωmax 4.005 rad/s

σspectrum 0.220 m

σsimulation 0.220E+00 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 6.80 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.74

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 4341. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.07

σOchi 0.24

σsubplex 0.64

Subplex: DKL(fxm(x)‖fx1(x)) 0.22
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Figure A.31: Amplitudes corresponding to ITTC Sea State 3:
hpeak = 0.88 m, Tpeak = 7.5 s, N = 51.
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Figure A.32: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 51, m = 3, 488, 555 (a
5.0σ event).
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Figure A.33: λj as determined by Subplex optimization. λj is
practically capped at 10, as λj ≥ 10 results in a uniform phase
distribution. ITTC Sea State 3: hpeak = 0.88 m, Tpeak = 7.5 s,
N = 51, m = 3, 488, 555 (a 5.0σ event).
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Figure A.34: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 3: hpeak = 0.88 m,
Tpeak = 7.5 s, N = 51, m = 3, 488, 555 (a 5.0σ event).
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Figure A.35: Phase PDF from Subplex optimization of λj.
ITTC Sea State 3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 51,
m = 3, 488, 555 (a 5.0σ event).
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A.4 Case 4

Case 4

Hsig 14.00 m

Tpeak 20.00 sec

N 51

ωmin 0.169 rad/s

ωmax 1.502 rad/s

σspectrum 3.500 m

σsimulation 0.350E+01 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 6.80 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.74

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 5182. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.08

σOchi 0.24

σsubplex 0.63

Subplex: DKL(fxm(x)‖fx1(x)) 0.20
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Figure A.37: Amplitudes corresponding to ITTC Sea State 9:
hpeak = 14.0 m, Tpeak = 20.0 s, N = 51.
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Figure A.38: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51, m = 3, 488, 555 (a
5.0σ event).
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Figure A.39: λj as determined by Subplex optimization. λj is
practically capped at 10, as λj ≥ 10 results in a uniform phase
distribution. ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s,
N = 51, m = 3, 488, 555 (a 5.0σ event).
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Figure A.40: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeak = 14.0 m,
Tpeak = 20.0 s, N = 51, m = 3, 488, 555 (a 5.0σ event).
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Figure A.41: Phase PDF from Subplex optimization of λj.
ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 51,
m = 3, 488, 555 (a 5.0σ event).
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A.5 Case 5

Case 5

Hsig 0.88 m

Tpeak 7.50 sec

N 101

ωmin 0.451 rad/s

ωmax 4.005 rad/s

σspectrum 0.220 m

σsimulation 0.220E+00 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 9.61 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.31

m 740

Monte Carlo Simulation yes

time to run subplex optimization 55136. sec
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Case 5

Extreme Value PDF Comparison

µOchi 3.15

µMC 3.09

µH1 1.44

µH2 3.10

µH2CF 2.96

µsubplex 3.14

σOchi 0.36

σMC 0.33

σH1 1.00

σH2 0.84

σH2CF 0.82

σsubplex 0.79

MC: DKL(fxm(x)‖fx1(x)) 0.02

H1: DKL(fxm(x)‖fx1(x)) 1.77

H2: DKL(fxm(x)‖fx1(x)) 0.38

H2CF: DKL(fxm(x)‖fx1(x)) 0.38

Subplex: DKL(fxm(x)‖fx1(x)) 0.28
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Figure A.43: Amplitudes corresponding to ITTC Sea State 3:
hpeak = 0.88 m, Tpeak = 7.5 s, N = 101.
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Figure A.44: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 740 (a 3.0σ
event).
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Figure A.45: Phase histogram for Hypothesis 1. ITTC Sea State
3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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Figure A.46: Phase histogram for Hypothesis 2. ITTC Sea State
3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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′
j) for Hypothesis

2. ITTC Sea State 3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101,
m = 740 (a 3.0σ event). M = 50, 000 samples.
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Figure A.48: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 740 (a
3.0σ event).
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Figure A.49: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). ITTC Sea State 3: hpeak = 0.88 m,

Tpeak = 7.5 s, N = 101, m = 740 (a 3.0σ event).
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Figure A.50: λj as determined by Subplex optimiza-
tion compared to λj as determined by minimizing
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). λj is practically capped at 10,
as λj ≥ 10 results in a uniform phase distribution. ITTC Sea
State 3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 740 (a
3.0σ event).
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Figure A.51: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 3: hpeak = 0.88 m,
Tpeak = 7.5 s, N = 101, m = 740 (a 3.0σ event).
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Figure A.52: Phase PDF from Subplex optimization of λj.
ITTC Sea State 3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101,
m = 740 (a 3.0σ event).
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A.6 Case 6

Case 6

Hsig 14.00 m

Tpeak 20.00 sec

N 101

ωmin 0.169 rad/s

ωmax 1.502 rad/s

σspectrum 3.500 m

σsimulation 0.350E+01 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 9.61 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.31

m 740

Monte Carlo Simulation yes

time to run subplex optimization 55775. sec
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Case 6

Extreme Value PDF Comparison

µOchi 3.15

µMC 3.09

µH1 1.43

µH2 3.10

µH2CF 2.96

µsubplex 3.14

σOchi 0.36

σMC 0.33

σH1 1.00

σH2 0.85

σH2CF 0.83

σsubplex 0.79

MC: DKL(fxm(x)‖fx1(x)) 0.02

H1: DKL(fxm(x)‖fx1(x)) 1.76

H2: DKL(fxm(x)‖fx1(x)) 0.39

H2CF: DKL(fxm(x)‖fx1(x)) 0.39

Subplex: DKL(fxm(x)‖fx1(x)) 0.26
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Figure A.58: Amplitudes corresponding to ITTC Sea State 9:
hpeak = 14.0 m, Tpeak = 20.0 s, N = 101.
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Figure A.59: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 740 (a 3.0σ
event).
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Figure A.60: Phase histogram for Hypothesis 1. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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Figure A.61: Phase histogram for Hypothesis 2. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 740 (a 3.0σ
event). M = 50, 000 samples.
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Figure A.62: Correlation of phase pairs (ε′i,ε
′
j) for Hypothesis 2.

ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101,
m = 740 (a 3.0σ event). M = 50, 000 samples.

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014

0.2
0.4

0.6
0.8

1.0
1.2

1.4

  -180.0    
  -120.0    

  -60.0    
  0.0    

  60.0    
  120.0    

  180.0     0

 0.003

 0.006

 0.009

 0.012

 0.015

fεj’
(z|ωj)

Hypothesis 2 (Curve Fit)

ωj (rad/s)

z (deg)

fεj’
(z|ωj)

Figure A.63: Phase PDF for Hypothesis 2 Curve Fit. ITTC Sea
State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 740 (a
3.0σ event).
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Figure A.64: Comparison of Hypothesis 2 and Hypothesis 2
Curve Fit phase PDFs using the Kullback-Leibler divergence,
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). ITTC Sea State 9: hpeak = 14.0 m,

Tpeak = 20.0 s, N = 101, m = 740 (a 3.0σ event).
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Figure A.65: λj as determined by Subplex optimiza-
tion compared to λj as determined by minimizing
DKL(fε′j ,MC(z)‖fε′j ,MG(z)). λj is practically capped at 10,
as λj ≥ 10 results in a uniform phase distribution. ITTC Sea
State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 740 (a
3.0σ event).
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Figure A.66: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeak = 14.0 m,
Tpeak = 20.0 s, N = 101, m = 740 (a 3.0σ event).
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Figure A.67: Phase PDF from Subplex optimization of λj.
ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101,
m = 740 (a 3.0σ event).
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A.7 Case 7

Case 7

Hsig 0.88 m

Tpeak 7.50 sec

N 101

ωmin 0.451 rad/s

ωmax 4.005 rad/s

σspectrum 0.220 m

σsimulation 0.220E+00 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 9.61 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.52

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 28157. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.09

σOchi 0.24

σsubplex 0.74

Subplex: DKL(fxm(x)‖fx1(x)) 0.49
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Figure A.73: Amplitudes corresponding to ITTC Sea State 3:
hpeak = 0.88 m, Tpeak = 7.5 s, N = 101.
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Figure A.74: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
3: hpeak = 0.88 m, Tpeak = 7.5 s, N = 101, m = 3, 488, 555 (a
5.0σ event).
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Figure A.75: λj as determined by Subplex optimization. λj is
practically capped at 10, as λj ≥ 10 results in a uniform phase
distribution. ITTC Sea State 3: hpeak = 0.88 m, Tpeak = 7.5 s,
N = 101, m = 3, 488, 555 (a 5.0σ event).
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Figure A.76: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 3: hpeak = 0.88 m,
Tpeak = 7.5 s, N = 101, m = 3, 488, 555 (a 5.0σ event).
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Figure A.77: Phase PDF from Subplex optimization of λj.
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m = 3, 488, 555 (a 5.0σ event).
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A.8 Case 8

Case 8

Hsig 14.00 m

Tpeak 20.00 sec

N 101

ωmin 0.169 rad/s

ωmax 1.502 rad/s

σspectrum 3.500 m

σsimulation 0.350E+01 MKS units

σsimulation/σspectrum 99.98%

maximum attainable value 9.61 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.52

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 75098. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.08

σOchi 0.24

σsubplex 0.71

Subplex: DKL(fxm(x)‖fx1(x)) 0.41
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Figure A.79: Amplitudes corresponding to ITTC Sea State 9:
hpeak = 14.0 m, Tpeak = 20.0 s, N = 101.
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Figure A.80: Comparison of fxm(x), denoted “Extreme Value
Theory”, and fx1(x) as calculated by Hypotheses 1 and 2, Hy-
pothesis 2 Curve Fit, and Subplex optimization. ITTC Sea State
9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101, m = 3, 488, 555 (a
5.0σ event).



155

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

λ j

ωj

Subplex

Figure A.81: λj as determined by Subplex optimization. λj is
practically capped at 10, as λj ≥ 10 results in a uniform phase
distribution. ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s,
N = 101, m = 3, 488, 555 (a 5.0σ event).
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Figure A.82: Comparison of characteristic functions ψxm(x), de-
noted “Extreme Value Theory”, and ψx1(s) as calculated by
Subplex optimization. ITTC Sea State 9: hpeak = 14.0 m,
Tpeak = 20.0 s, N = 101, m = 3, 488, 555 (a 5.0σ event).
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Figure A.83: Phase PDF from Subplex optimization of λj.
ITTC Sea State 9: hpeak = 14.0 m, Tpeak = 20.0 s, N = 101,
m = 3, 488, 555 (a 5.0σ event).
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A.9 Case 9

Case 9

Heading Angle 180.00 deg

Forward Speed 6.43 m/s

Hsig 5.58 m

Tpeak 8.80 sec

N 101

ωmin 0.350 rad/s

ωmax 2.500 rad/s

σwave 1.395 m

σresponse 0.240E+09 MKS units

maximum attainable value 8.27 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.36

m 740

Monte Carlo Simulation yes

time to run subplex optimization 38298. sec
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Case 9

Extreme Value PDF Comparison

µOchi 3.15

µMC 3.02

µH1 1.10

µH2 3.02

µH2CF 2.93

µsubplex 3.11

σOchi 0.36

σMC 0.30

σH1 1.01

σH2 0.72

σH2CF 0.70

σsubplex 0.68

MC: DKL(fxm(x)‖fx1(x)) 0.08

H1: DKL(fxm(x)‖fx1(x)) 2.27

H2: DKL(fxm(x)‖fx1(x)) 0.30

H2CF: DKL(fxm(x)‖fx1(x)) 0.30

Subplex: DKL(fxm(x)‖fx1(x)) 0.15
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Figure A.85: Rigid body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180◦,
forward speed = 12.5 knots.
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Figure A.86: Rigid body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 3.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.87: Rigid body analysis: Stewart J. Cort. Phase his-
togram for Hypothesis 1, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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Figure A.88: Rigid body analysis: Stewart J. Cort. Phase his-
togram for Hypothesis 2, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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Figure A.89: Rigid body analysis: Stewart J. Cort. Correlation
of phase pairs (ε′i,ε

′
j) for Hypothesis 2. TEV = 3.0σBM , N = 101,

heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.90: Rigid body analysis: Stewart J. Cort. Phase PDF
for Hypothesis 2 Curve Fit, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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Figure A.91: Rigid body analysis: Stewart J. Cort. Comparison
of Hypothesis 2 and Hypothesis 2 Curve Fit phase PDFs us-
ing the Kullback-Leibler divergence, DKL(fε′j ,MC(z)‖fε′j ,MG(z)).
TEV = 3.0σBM , N = 101, heading angle = 180◦, forward speed
= 12.5 knots.
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Figure A.92: Rigid body analysis: Stewart J. Cort. λj for mid-
ship bending moment. TEV = 3.0σBM , N = 101, heading angle
= 180◦, forward speed = 12.5 knots.
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Figure A.93: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 3.0σBM ,
N = 101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.94: Rigid body analysis: Stewart J. Cort. Phase PDF
for Subplex optimization, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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A.10 Case 10

Case 10

Heading Angle 180.00 deg

Forward Speed 6.43 m/s

Hsig 5.58 m

Tpeak 8.80 sec

N 101

ωmin 0.350 rad/s

ωmax 2.500 rad/s

σwave 1.395 m

σresponse 0.240E+09 MKS units

maximum attainable value 8.27 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.60

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 29089. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.07

σOchi 0.24

σsubplex 0.64

Subplex: DKL(fxm(x)‖fx1(x)) 0.20
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Figure A.104: Rigid body analysis: Stewart J. Cort. Amplitudes
for midship bending moment. N = 101, heading angle = 180◦,
forward speed = 12.5 knots.
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Figure A.105: Rigid body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 5.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.106: Rigid body analysis: Stewart J. Cort. λj for
midship bending moment. TEV = 5.0σBM , N = 101, heading
angle = 180◦, forward speed = 12.5 knots.
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Figure A.107: Rigid body analysis: Stewart J. Cort. Character-
istic functions for midship bending moment. TEV = 5.0σBM ,
N = 101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.108: Rigid body analysis: Stewart J. Cort. Phase
PDF for Subplex optimization, midship bending moment. TEV
= 5.0σBM , N = 101, heading angle = 180◦, forward speed =
12.5 knots.
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A.11 Case 11

Case 11

Heading Angle 180.00 deg

Forward Speed 6.43 m/s

Hsig 5.58 m

Tpeak 8.80 sec

N 101

ωmin 0.350 rad/s

ωmax 1.250 rad/s

σwave 1.395 m

σresponse 0.671E+09 MKS units

maximum attainable value 8.50 σsim

TEV 3.00 σsim

TEV/maximum attainable value 0.35

m 740

Monte Carlo Simulation yes

time to run subplex optimization 62719. sec
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Case 11

Extreme Value PDF Comparison

µOchi 3.15

µMC 2.94

µH1 1.26

µH2 2.94

µH2CF 2.87

µsubplex 3.12

σOchi 0.36

σMC 0.27

σH1 1.00

σH2 0.63

σH2CF 0.61

σsubplex 0.61

MC: DKL(fxm(x)‖fx1(x)) 0.22

H1: DKL(fxm(x)‖fx1(x)) 2.05

H2: DKL(fxm(x)‖fx1(x)) 0.25

H2CF: DKL(fxm(x)‖fx1(x)) 0.28

Subplex: DKL(fxm(x)‖fx1(x)) 0.09
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Figure A.111: Elastic body analysis: Stewart J. Cort. Ampli-
tudes for midship bending moment. N = 101, heading angle =
180◦, forward speed = 12.5 knots.
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Figure A.112: Elastic body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 3.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.113: Elastic body analysis: Stewart J. Cort. Phase
histogram for Hypothesis 1, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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Figure A.114: Elastic body analysis: Stewart J. Cort. Phase
histogram for Hypothesis 2, midship bending moment. TEV =
3.0σBM , N = 101, heading angle = 180◦, forward speed = 12.5
knots.
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Figure A.115: Elastic body analysis: Stewart J. Cort. Corre-
lation of phase pairs (ε′i,ε

′
j) for Hypothesis 2. TEV = 3.0σBM ,

N = 101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.116: Elastic body analysis: Stewart J. Cort. Phase
PDF for Hypothesis 2 Curve Fit, midship bending moment.
TEV = 3.0σBM , N = 101, heading angle = 180◦, forward speed
= 12.5 knots.
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A.12 Case 12

Case 12

Heading Angle 180.00 deg

Forward Speed 6.43 m/s

Hsig 5.58 m

Tpeak 8.80 sec

N 101

ωmin 0.350 rad/s

ωmax 1.250 rad/s

σwave 1.395 m

σresponse 0.671E+09 MKS units

maximum attainable value 8.50 σsim

TEV 5.00 σsim

TEV/maximum attainable value 0.59

m 3488555

Monte Carlo Simulation no

time to run subplex optimization 21651. sec

Extreme Value PDF Comparison

µOchi 5.10

µsubplex 5.06

σOchi 0.24

σsubplex 0.72

Subplex: DKL(fxm(x)‖fx1(x)) 0.42
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Figure A.130: Elastic body analysis: Stewart J. Cort. Ampli-
tudes for midship bending moment. N = 101, heading angle =
180◦, forward speed = 12.5 knots.
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Figure A.131: Elastic body analysis: Stewart J. Cort. Extreme
value PDFs for midship bending moment. TEV = 5.0σBM , N =
101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.132: Elastic body analysis: Stewart J. Cort. λj for
midship bending moment. TEV = 5.0σBM , N = 101, heading
angle = 180◦, forward speed = 12.5 knots.
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Figure A.133: Elastic body analysis: Stewart J. Cort. Charac-
teristic Functions for midship bending moment. TEV = 5.0σBM ,
N = 101, heading angle = 180◦, forward speed = 12.5 knots.
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Figure A.134: Elastic body analysis: Stewart J. Cort. Phase
PDF for Subplex optimization, midship bending moment. TEV
= 5.0σBM , N = 101, heading angle = 180◦, forward speed =
12.5 knots.
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APPENDIX B

Computer Program OPTLAMBDA

B.1 Input and Output Files

Table B.1: Input files for the OPTLAMBDA program (see Table 4.1

for variable assignments)

Input File Columns Description

InputSpectrum.dat ωj, xj the spectrum that describes the operating

sea state; depends on incident wave spec-

trum

SubplexParam.dat parameters for the subplex optimization

routine

TransferFunction.dat |H(ωj)|, γj transfer function of the response in ques-

tion; depends on speed, heading angle, re-

sponse, etc.
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Clauss, G. F., & Kühnlein, W. L. 1997. Simulation of design storm wave con-
ditions with tailored wave groups. Proc. First International Offshore and Polar
Engineering Conference, 228–237.

Clauss, G. F., & Steinhagen, U. 1999. Numerical Simulation of nonlinear transient
waves and its validation by laboratory data. Proc. First International Offshore and
Polar Engineering Conference, 368–375.

Clauss, G. F., Hennig, J., Schmittner, C. E., & Kühnlein, W. L. 2004. Non-
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