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ABSTRACT 
 

LOW TEMPERATURE WAFER LEVEL VACUUM PACKAGING USING 

AU-SI EUTECTIC BONDING AND LOCALIZED HEATING 

 

by 

 

Jay S. Mitchell 

 

Co-Chair’s: Khalil Najafi and Yogesh B. Gianchandani 

 

An Au-Si eutectic wafer-level bonding process and a localized heating process, called 

differential backside heating, were developed for low-temperature vacuum packaging of 

MEMS devices.   

Using Au-Si eutectic bonding, devices were encapsulated by bonding a silicon cap 

wafer to a device wafer.  Au-Si eutectic bond rings melt at over 363 ºC allowing them to 

conform over topology such as electrical feed-throughs allowing for a vacuum seal.  

Detailed specifications are given for achieving uniform/strong bonds to poly-Si and Au 

bond rings in a bond recipe which includes vacuum pumping, an outgassing step, 

application of the bond pressure (~2.5 MPa), and heating to 390 °C.  Micromachined 

poly-Si Pirani vacuum sensors were developed, characterized and then packaged in the 

Au-Si eutectic bonding process in order to measuring vacuum pressures.  These packages 

had cavity dimensions of 2.3×2.3 mm wide with a depth of 90 µm.  Yields of 84.6% and 



 xxix 

94.1% were achieved in packages with bond ring widths of 100 and 150 µm.  With the 

use of getters and a pre-bond outgassing step, pressures from <3.7 to 23.3 mTorr were 

achieved.  Furthermore, pressures were shown to remain stable to within ±5 mTorr for 

over 3 years of testing, after 100 hours at 150ºC, and after 50 thermal cycles from -50ºC 

to 150ºC.    

Using differential localized heating, one of the two wafers to be bonded is heated from 

the backside, and the other is cooled from the backside, so that heat flows through the 

bond regions while the device regions stay relatively cool.  A bonder test setup was built 

where integrated temperature sensors on the device wafer were used to measure the 

temperature at different distances from the bond region during Si to glass and Si to Si 

bond experiments.  This technique was proven successful with temperature of 23% and 

41% of the bond ring temperature at 250 and 650 µm from the bond rings for bonds to 

glass and Si respectively.  These temperature rises were within 3% and 9% of those 

predicted by 3-D FEM thermal modeling.  In the Si to glass bond, bond rings were heated 

to 400ºC allowing for a Au-Si eutectic bond.   
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CHAPTER 1 
 

INTRODUCTION 

Only 7 years after the invention of the transistor in 1947, Texas Instruments was 

selling silicon transistors and by the early 1960’s the first computers were made using 

circuits with small scale integration.  Now integrated circuits (ICs) are an integral part of 

nearly all of the electronics that we use and the semiconductor industry has turned into a 

$200 billion/year market.  In contrast, the first microelectromechanical systems (MEMS) 

pressure sensors were not commercially available until the 1980s and it was not until the 

1990s that MEMS accelerometers were mass produced for automotive crash detection 

and that Texas Instruments brought DMD (digital micro-mirror devices) to market for 

projection displays.  Despite the fact that MEMS technology is based on the same 

fabrication and lithographic techniques used for the production of ICs, the 

commercialization of MEMS devices has lagged behind.  One reason for this longer 

gestation period is the added complexity in packaging MEMS devices which either 

prevents their commercialization or significantly adds to the cost of manufacturing.  

Furthermore, packaging often accounts for greater than 50% of the total cost of 

manufacturing a MEMS device [1-3]. 

In recent years, the MEMS market has grown significantly with a diverse set of 

MEMS devices currently on the market including: MEMS microphones which replace 

standard microphones in cell phones; MEMS pressure sensors used in wide variety of 

industrial and automotive application; accelerometers and gyroscopes used for traction 

control, GPS and image stabilization in camcorders and cell phones; and micromirrors 

which are the heart of Texas Instruments’ projection display technology.  In the near 

future we will also see a growing number of RF (radio frequency) switches and micro-

resonators used in wireless circuits; MEMS micro-mirrors used as optical cross-connects 
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in telecommunications networks; and an array of biomedical and micro-fluidics 

applications including implantable devices, devices for DNA manipulation and MEMS 

devices for drug delivery.  In fact, the MEMS market is currently a roughly $6 

billion/year market and is expected to grow to $18 billion by 2015 [4].  In this diverse 

and growing market, packaging remains the most costly and one of the most prohibitive 

steps in the manufacturing process.  

The goal of this thesis is to offer a wafer-level vacuum packaging solution which will 

help bring more MEMS devices to market.  To do this, four major criteria need to be met 

(Table 1.1):  i) the temperature at which the MEMS device is packaged should be low 

enough not to damage the device (≤400ºC for CMOS processes), ii) electrical connection 

should be made via feed-through interconnects,  iii) the packaging process should be 

conducted at the wafer-level (which means that all of the devices across a wafer are 

encapsulated at the same time), and iv) the packaging process should be capable of 

supporting vacuum pressures of less than ≤10 mTorr.  Sections 1.2 through 1.4 discuss 

the reasons behind these metrics. 

Table 1.1: The metrics used in this work for a generic wafer-level packaging process that can be used on a 
broad set of MEMS devices. 

Metrics Description  
Low temperature The process should be conducted at a low enough temperature 

not to damage the device (≤400ºC for CMOS processes) 

 Electrical Connection Electrical connection should be made via feed-through 
interconnects  

Wafer-level process The process should be conducted at the wafer-level 

 Vacuum Compatible The process should allow for vacuum packaging of  MEMS 
components (vacuum pressures ≤10 mTorr) 

 

In order to fulfill the metrics outlined in Table 1.1, a Au-Si eutectic wafer-level 

vacuum packaging process is detailed in Chapters 2 through 5 and a new technique called 

differential localized heating is introduced in Chapter 6.  The Au-Si eutectic wafer-level 

vacuum packaging process meets the metrics shown in Table 1.1 in the following ways:  

i) it is performed at a relatively low temperature ≤390ºC allowing for bonds to wafers 

fabricated in CMOS or CMOS-like processes, ii) the Au-Si eutectic layer melts during 

bonding allowing for bonds over non-planar surfaces such as electrical-feedthroughs, iii) 

bonds are conducted at the wafer-level so that all devices across a wafer get packaged at 
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the same time, and iv) with the integration of NanogettersTM [5, 6], vacuum pressures 

from <2 to 22.3 mTorr were achieved.  Furthermore, because the bond rings are patterned 

photo-lithographically, they can be as small as tens of microns in width, allowing for a 

small overall package size.  Differential localized heating allows for packaging processes 

like Au-Si eutectic bonding  to be performed at their desirable temperatures, but maintain 

a low temperature where devices are located, thus broadening  the scope of devices that 

can be packaged at the wafer-level. 

In the rest of Chapter 1, background on the need for a wafer-level packaging 

technology are presented, as well as a detailed look at other currently available packaging 

technology.  More specifically, Section 1.1 provides background on IC wafer-level 

packaging, followed by Section 1.2 which explains the need for wafer-level packaging in 

MEMS, and their various physical, electrical and thermal requirements.  Section 1.3 

explains various encapsulation techniques that have been applied and/or investigated by 

other researchers.  Section 1.4 details work done in vacuum packaging.  Section 1.5 

summarizes the motivation for using Au-Si eutectic wafer-level vacuum packaging as 

well as differential localized heating.  Finally, Section 1.7 provides the organization of 

the rest of the dissertation and Section 1.6 presents the contributions of this work to 

industry and the research community.  

1.1 IC WAFER LEVEL PACKAGING 

IC and MEMS packaging generally involve the process steps needed directly after 

fabrication of the devices on the wafer.  Table 1.2 shows how these packaging steps are 

categorized for the IC industry [7], giving some element and interconnection examples.  

Level 0 refers to the processes needed for fabrication of the functional IC or MEMS 

device, Level 1 involves the encapsulation processes and/or integration with a lead-frame 

package, Level 2 entails the integration of this component with other electrical 

components, typically on a printed circuit board (PCB), and Levels 3-5 account for 

assembly of the entire system.  References to IC and MEMS packaging usually pertain to 

levels 1 and 2. 
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Table 1.2: Package hierarchy for IC’s and MEMS devices. 

Level Element Packaged / Interconnected by 

Level 0 Transistor within IC or resonator in a 
micromachine 

IC metallization, wafer-level protection, 
thin-films 

Level 1 ICs, discrete components such as a 
Si/glass pressure sensor sandwich 

Wafer bonded, conventional lead frame 
packages, multi-chip module packages 

Level 2 Single- and multi-chip packages (a 
pressure sensor in a TO header) Printed wiring boards 

Level 3 Printed wiring boards Connectors/backplanes (busses), machined 
chassis or box 

Level 4 Chassis or box Connectors/cable harnesses 

Level 5 System itself (a computer or a gas alarm)  

 

Over the years, the IC industry has evolved towards wafer-level packaging (WLP) 

processes in order to reduce the costs of level 1 and 2 packaging.  The main technical 

drivers for IC packaging are thermal management and interconnection.  Thermal issues 

generally come into play when attaching the IC chip to a printed circuit board (PCB).  

Interconnection issues generally involve figuring out ways to deal with higher pin counts 

and higher signal frequencies.  As a result, ICs have evolved toward a technology called 

wafer-level chip scale packaging (WL-CSP).   

One component of WL-CSP is the mini ball grid array (mBGA) technology shown in 

Figure 1.1 which  re-routes bond pads (which are generally at the periphery of an IC) to 

flip chip pads [8-10].  This is accomplished by depositing two benzocyclobutene (BCB) 

passivation layers and an aluminum feed-through layer on top of the IC.  These feed-

throughs electrically connect the closely spaced interconnection pads at the periphery to 

solder ball joints which are evenly spaced across the die.  All of the deposition steps and 

the electroplating of the solder are done at the wafer-level.  Furthermore, the mBGA 

process allows for wafer-level burn-in and test (WLBT) and wafer-level testing of known 

good packages (KGP).  Such wafer-level testing can reduce testing costs by as much as 

50%. [10].  Even an epoxy resin “under fill” layer is applied at the wafer-level to fill the 

area between the solder joints in order to reduce mechanical stress.   
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Figure 1.1:   An SEM (left) and microscope photograph (right) of mBGAs. 

WL-CSP is an exciting set of technologies because they allow for all the IC 

packaging steps to be done at the wafer-level.  This technology has matured, being 

applied for passive devices, EEPROM, flash memory, DRAM, ASICs and 

microprocessors [11, 12].  As a further sign of this technology’s maturity, several 

foundries currently offer WL-CSP processing including Flip Chip International and 

Amkor Technology which are now ship more than a million units per week [11, 13].    

1.2 MEMS WAFER LEVEL PACKAGING 

Many of the same thermal management and interconnection issues involved in IC 

packaging also apply to the packaging of MEMS with a whole set of additional 

challenges.  These packaged parts in fact have micro- and nanometer dimension that need 

to interact with the environment for sensing but need protection from even the smallest 

particles.  Although no one package design is suitable for all applications, in general there 

are two tracks for packaging MEMS devices: chip-level packaging and wafer-level 

packaging.  Figure 1.2 shows a typical chip-level packaging sequence in which:  i) the 

device is first diced (sawed from the wafer it was fabricated on), ii) the device is released 

(etching a film away so that the moving part can move), iii) the device is encapsulated in 

a dual-in-line (DIP) package or using flip chip in package (FCiP) technology, and iv) the 

DIP or FCiP is plugged in or soldered onto a PCB to interact with drive circuitry or other 

components.  As labeled in Figure 1.2, steps ii) through iv) are costly because they are 

done serially on one device at a time.  Also, because steps ii) through iv) involve the 
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handling of un-capped micro-mechanical parts, this approach often results in reliability 

issues and yield loss.   

 

 
Figure 1.2:  A schematic showing the typical packaging steps in a MEMS chip level packaging process. 

Figure 1.3 shows a process sequence for the wafer-level packaging approach where 

devices:  i) are released at the wafer-level, ii) encapsulated (using either another wafer or 

a thin film) while they are still on the wafer, iii) diced, and iv) the package is wire-

bonded or flip chipped directly onto the PCB to interact with drive circuitry or other 

components.  In the wafer-level approach all of the devices are released and encapsulated 

at once (in steps i) and ii)) on the wafer—thus reducing cost.  In addition, these processes 

are done in a clean room environment which potentially increases their reliability.    

Furthermore, the wafer-level approach reduces overall package size which can help to 

further reduce the cost of manufacturing.   
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Figure 1.3:  A schematic showing the typical packaging steps in a MEMS wafer-level packaging process. 

It should be noted that Figures 1.2 and 1.3 are only simplifications of the packaging 

sequences needed for a MEMS device.  Depending on the application, MEMS devices 

often need high frequency electrical connections, fluidic connections, special non-stick 

coatings, are often intolerant of high temperatures and need special environments (such 

as hermetic or vacuum) for operation.   

In the rest of this section the physical requirements for MEMS packaging are 

discussed in detail in Section 1.2.1 and the electrical/interconnection and thermal 

requirements are then briefly covered in Sections 1.2.2 and 1.2.4. 

1.2.1 PHYSICAL REQUIREMENTS 

1.2.1.1 Packages with Access to the Environment 
Pressure sensors and microphones are two MEMS applications that need access to the 

environment for sensing but need protection from particulates, corrosion and harsh 

physical contact.  A schematic of NovaSensor’s pressure sensor package [14] is shown in 

Figure 1.4.  As shown, the wire bonds, electrical leads and the MEMS device are coated 

with a silicon gel.  The coated device is further encapsulated from physical contact by a 

metal package which is sealed with a welded joint, where electrical leads run out of the 
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package providing electrical connectivity.  An opening in the top of the package allows 

for ambient air to enter the package.  The silicone gel allows for protection of the metal 

lead on top of the MEMS device from corrosion while—as an incompressible solid—it 

transmits the pressure from ambient to the MEMS pressure sensor.  Figure 1.5 shows 

another approach used for access to/protection from the environment used for SiSonic’s 

production of MEMS microphones [15].  In this approach, the MEMS and IC 

components are encapsulated using FR4 PCB material with an acoustic port which is 

offset from the MEMS die in order to avoid particle accumulation or physical damage to 

the die.  

For the most part, both pressure sensors and microphones are packaged using chip-

level processes.  

 

 
Figure 1.4:  A schematic of a MEMS 

pressure sensor package [14]  

 
  

 
Figure 1.5:  A schematic of a MEMS microphone 

package [15]  

1.2.1.2 Stiction and Non-Stick Coatings  
Another class of devices require non-stick coatings so that moving parts do not adhere 

to sidewalls or get damaged when contact is made.  At the same time, these devices also 

need protection from the environment.  The iMEMS (integrated MEMS) process used for 

making Analog Devices inertial sensors [16], RF switches produced by Radent MEMS 

[17-19] and the Texas Instruments DMD projection displays [20, 21] fit into this category 

of devices.  The non-stick coatings that these devices employ are used to prevent stiction, 
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which is the permanent adherence of the moving part to a sidewall. Stiction of MEMS 

devices can occur either during release (etching of the film underneath the MEMS 

structure) or due to an outside acceleration which can cause the MEMS structure to crash 

into the sidewall.   

Stiction of the MEMS structure to the sidewall can be avoided by (1) making the 

restoring spring force relatively large, (2) increasing the surface roughness, (3) using 

“stiction reducing bumps” that reduce the contact area and thus reduce the stiction force 

[22], (4) using coatings which make the surface hydrophobic, reducing the affinity of 

water molecules to bond to the surface and thus reducing the stiction force [23] and (5) 

packaging the devices in an air damped environment (atmospheric pressure).   

Where as options 1 through 3 can be accomplished by changing the mechanical 

structure of the MEMS device without affecting later packaging steps, options 4 and 5 

can significantly add to packaging complexity.  For instance, depending on the 

composition of the non-stick coating, it can react or interact with the bond material [16].  

Furthermore, when packaging components near atmospheric pressure, it can be difficult 

to remove all of the moisture from inside of a package.  Figure 1.6 shows a packaging 

method employed by Texas instruments where they encapsulated a special gettering 

material which reacts with water vapor inside of the package.  Dramatic improvements 

were shown in accelerated temperature/humidity reliability testing of their micro-mirrors 

using this approach [21]. 

 
Figure 1.6:  A schematic of the encapsulation used for Texas Instruments micro-mirrors [21]  



 10 

1.2.1.3 Biomedical and Microfluidics Packaging 
Biomedical and micro fluidic MEMS are rapidly growing fields for research.  Two of 

the main drivers for implantable bioMEMS are to make smaller packages that will take 

up less space in the body and on ways to make interconnection to the device from outside 

of the body.  Figure 1.7 shows one such packaging solution developed at the University 

of Michigan where the device is encapsulated using an anodic bond where power is input 

and data is acquired using a wireless link [24-26].  Others have investigated MEMS 

pressure sensors for monitoring artery clogging, neural probes, cochlear implants and 

MEMS drug delivery systems.  These devices, which need to operate inside of the human 

body, will often require hermetic seals that are resistant to corrosion due to bio-fluids.  

Furthermore, because many of these devices are fabricated using polymers or polymer 

substrates, they cannot be exposed to high temperatures during the encapsulation process.  

 

 

Actual Device Encapsulated 
Hybrid Sensor 

 
Figure 1.7:  An encapsulation approach for implantable devices done at the University of Michigan [26]. 

1.2.1.4 Vacuum/Hermetic Encapsulation & Protection from the Environment 
There are two types of devices which require vacuum for optimal performance: i) 

resonators and resonant sensors, some of which require the reduced damping of a vacuum 

environment in order to achieve reasonable oscillation amplitudes; and ii) transducers 

that require a significant amount of thermal isolation.  These include micro-bolometers 

for infrared imaging (<10 mTorr) [27-29] and micro-resonators used for high accuracy 

clocks, filters and mixers in a wide range of RF applications (1 µTorr to 760 Torr) [30, 

31].  Even applications such as heated micro-columns used for gas chromatography [32, 
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33] can operate at as much as two orders of magnitude less power at milliTorr pressures.  

Furthermore, a much wider range of devices simply requires hermeticity or even 

protection from the environment.  This includes most of the devices described in Sections 

1.2.1.1,1.2.1.2 and 1.2.1.3.  

Motorola was one of the pioneers in wafer-level hermetic encapsulation technology 

with the development of its patented frit bonding processes in 1994 [34].  In the frit 

bonding process, a glass frit layer is used to adhere a cap wafer to the device wafer where 

individual glass frit bond rings encircle the devices (the details of this bond process will 

be given in Section 1.3.2.4).  Motorola and Analog Devices have since used frit bonding 

for the packaging of many of their commercial inertial sensors [35-38].  Several other 

companies have used unspecified wafer-level encapsulation processes including Radent 

MEMS [17-19] (see Figure 1.8) which used wafer-level packaging for hermetically 

sealing their RF switches and Raytheon which used wafer-level packaging to encapsulate 

their micro-bolometers (infrared sensors) at below 10 mTorr (a more complete list of 

vacuum encapsulation data throughout the literature will be given in Section 1.4).  

Piezoresistive pressure sensors and acoustic microphones (which were discussed in 

Section 1.2.1.1) also generally require an encapsulated reference volume which is often 

created using wafer bonding techniques.  These reference volumes generally require 

vacuum levels on the order of 1 Torr.    

 

Figure 1.8:  A scanning electron microscope (SEM) picture a wafer-level packaged micro-switch 
manufactured by Radent MEMS [17].  
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1.2.2 ELECTRICAL CONNECTION & INTEGRATION 

As explained in Section 1.2.1.4, nearly all MEMS devices need some kind of 

encapsulation.  This need for encapsulation makes it difficult to provide electrical 

connectivity.  There are two basic approaches used for providing electrical connectivity 

in a wafer-level packaged device: lateral feed-through interconnects and vertical feed-

through interconnects.  Lateral feed-throughs can be created using either metals or doped 

poly-Si in the same thin film processes used for the fabrication of the MEMS device.  

Figure 1.9 shows a schematic of an encapsulated device in which a bond ring is used to 

adhere a capping substrate to the device substrate.  In the case where the bond ring 

material is not electrically conductive, the bond ring material can go directly over the 

electrical feed-through.  If the bond ring material is electrically conductive, as is the case 

with a metal or alloy, a passivation material is required.  Lateral feed-throughs are 

desirable because they often can be integrated into the thin film process used to make the 

device.  On the other hand, because of resistive and capacitive parasitics, they may not be 

suitable for many high frequency applications such as RF MEMS switches and micro-

resonators.  The Radant MEMS packaged micro-switch which was shown in Figure 1.8 is 

one example where lateral feed-throughs were used for electrical interconnection.   

 

 
Figure 1.9:  A schematic illustrating lateral feed-throughs. 

As shown in Figure 1.10, vertical feed-throughs can be created through either the 

device substrate or the capping substrate.  This involves “bulk micromachining” which 

requires machining of the substrate itself as opposed to thin film deposition and 

patterning processes.  Wet chemistries for creating via holes through Si and glass 

substrates are cost efficient, but generally require a large amount of substrate area (for 
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instance etching through a 500µm glass wafer, under the best possible conditions requires 

more than a 1 mm diameter circular area on the back surface of the glass substrate).  

Using thinner substrates reduces the amount of surface area needed to accommodate the 

via hole, but as you reduce wafer thickness below 100 or 200 µm they become fragile and 

difficult to handle.  Deep reactive ion etching (DRIE) can be used to etch through very 

thick wafers with excellent aspect ratios allowing for holes through 500 µm thick 

substrates that take up only a few hundred square microns (i.e. on the order of 10×10µm 

or 20×20µm).  After etching the via whole a conductive layer then needs to be 

evaporated, sputtered and/or electroplated and in the case of Si, this conductive layer 

needs to be electrically insolated from the Si substrate. Overall, it can be significantly 

more challenging to design vertical feed-throughs, but as compared to lateral feed-

throughs, very low resistances and parasitics can be achieved using vertical feed-through 

interconnects.  Furthermore, such feed-through can allow for flip chip bonding of a die 

which is desirable for integration with PCBs or other types of substrates.  Their main 

drawbacks are the added complexity to the fabrication process and the potentially large 

die area the bond pads take up which can limit the number of interconnection lines.  

Figure 1.11 shows an Analog Devices accelerometer which was packaged using vertical 

feed-throughs.  This packaged device can potentially be flip chipped directly to a PCB.  

 

 
Figure 1.10:  A schematic illustrating vertical 

feed-throughs.  

    
Figure 1.11:  An SEM of a packaged 

accelerometer using vertical feed-throughs by 
Analog Devices [38].

1.2.3 INTEGRATION 

There are two general approaches for integrating a MEMS device with its drive 
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circuitry:  the two chip solution and the one chip solution.  In the two chip solution the 

MEMS device is fabricated on a different wafer and likely in a different process than the 

drive circuitry.  Figure 1.12 shows an example of the two chip solution in the packaging 

of a Motorola accelerometer [39] where the MEMS device is placed in a Ceramic Dual in 

Line Package (CERDIP) and interfaced with the CMOS drive circuitry via wire-bonds.  

The advantage of the two chip solution is that the processes and materials for the MEMS 

and CMOS devices can be optimized for each process.  As well, the MEMS and drive 

circuits can be tested and screened before integration so that a known-good-MEMS 

device is integrated with known-good-drive-circuitry allowing for a higher overall yield.  

The main disadvantage is a larger overall package size as compared to the 1-chip 

solution. 

Using the one chip solution on the other hand, the MEMS device and drive circuit are 

integrated on the same chip and therefore in the same MEMS process.  Figure 1.13 shows 

the “one chip” solution used by Analog Devices [40] where the device (in this case a 

gyroscope) is fabricated on the same substrate as the control electronics.  Analog Devices 

then packages these encapsulated dies either in a lead frame chip-scale package (LFCSP) 

or in a slightly adapted process where solder balls are reflowed through holes in the cap 

wafer using vertical feed-throughs (as was shown in Figure 1.11).  The advantage of the 

one chip solution is its overall smaller size and the clearer electrical signals between 

electronics and the MEMS device.  The disadvantage is that the MEMS process must be 

compatible with the process for the drive circuitry which strictly limits the design of the 

MEMS device.  Furthermore, the yield of the MEMS and drive circuitry are coupled.  In 

other words, if either the MEMS or drive circuits fails, the whole chip fails, so that the 

total yield equals the MEMS yield times the CMOS yield. 
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     Figure 1.12:  A Motorola accelerometer using 

the 2 chip approach [39].  

  
Figure 1.13:  An Analog Devices gyroscope 

using the 1 chip approach [40]. 

1.2.4 THERMAL REQUIREMENTS 

As will be discussed in Section 1.3 (MEMS Wafer Level Encapsulation Approaches), 

an encapsulation process can require temperatures anywhere from near room temperature 

to around 1000ºC with varying levels of hermeticity and process complexity.  This 

complicates the process since depending on the application, MEMS devices have varying 

tolerances to high temperatures.  For instance, MEMS devices fabricated in CMOS 

processes generally cannot handle temperatures higher than 400ºC since such 

temperatures can damage the top aluminum interconnection layer [41, 42].  In fact, the 

next generation of CMOS processes from 65 nm line widths and smaller will likely 

require lower and lower temperatures—even as low as 300ºC as CMOS technology 

continues to advance [42, 43].  Various MEMS processes also incorporate other metals 

which can inter-diffuse with each other or with other materials at temperature of 200ºC to 

400ºC or even lower, compromising the performance of the device.  Devices 

incorporating polymeric materials often have even more stringent temperature 

requirements and can be potentially damaged at temperature well below 200ºC.   

Another challenge in applying high temperatures during an encapsulation processes 

involves differences in the materials coefficients of thermal expansion (CTE).  These 

CTE mismatches cause the two materials being mated to expand or contract by different 
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amounts.  These expansions and contractions can induce stresses that affect performance 

or even damage the device and/or package. 

1.3 MEMS WAFER LEVEL ENCAPSULATION APPROACHES  

As discussed in Sections 1.2 and 1.3, wafer-level packaging is desirable for both ICs 

and MEMS mainly because it allows for low cost/high volume production, small size and 

improved reliability.  For the various classes of devices discussed in Section 1.2, nearly 

every one needs to be encapsulated to either provide vacuum/hermeticity or simple 

protection from the environment.  Furthermore, this encapsulation needs to be achieved at 

a temperature that will not ruin the device and it needs to be configured in a way that 

electrical signals can get in and out.  To accomplish both integration and 

vacuum/hermetic encapsulation, two distinct packaging approaches have evolved, the 

integrated encapsulation approach (using thin films) and the post processing approach 

(using wafer bonding).  These will be discussed next in Sections 1.3.1 and 1.3.2.     

1.3.1 INTEGRATED ENCAPSULATION (THIN FILM PACKAGING) 

Figure 1.14 shows an example of the integrated encapsulation approach [44]). In the 

integrated encapsulation approach the devices (and potentially the drive circuitry) are 

processed first, without etching any sacrificial layers needed for release of the device 

(Figure 1.14b).  Another sacrificial layer is then deposited and patterned atop the device 

layer (Figure 1.14c).  Next, an encapsulation layer is deposited and patterned with a fluid 

access hole (Figure 1.14d).  Finally, after etching of the sacrificial layer (Figure 1.14e), 

the fluid access holes are sealed under vacuum either using CVD thin films, evaporated 

metals or solder.   

Several authors have used approaches similar to the one shown in Figure 1.14 where 

phosphosilicate glass (PSG) or SiO2 were used as the sacrificial material, where 

hydrofluoric acid (HF) was used to etch the sacrificial layer and low pressure chemical 

vapor deposited (LPCVD) Si3N4 [44-46], deposition of silicon [47, 48] or a combination 

of poly-Si and aluminum [49] were used as the encapsulation layer.  Instead of using a 

fluidic access port, several authors have used porous poly-Si as the encapsulation 
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material [50-52].  These poly-Si layers are permeable to HF allowing for etching of the 

sacrificial layer.   

 

 
Figure 1.14:  A schematic showing the process flow for thin film encapsulation [44] 

Using the thin film encapsulation approach, Candler et al. and Kim et al. have 

demonstrated >1 year of vacuum encapsulation data and implemented extensive 

reliability testing with no detectible leak [53, 54].  Figure 1.15 shows an accelerometer 

which was fabricated and packaged using a similar thin film process, demonstrating the 

size advantage that can be gained using thin film packaging [55].   

 
Figure 1.15:  A packaged accelerometer developed by Stanford University and Bosch [55] 
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All of the above LPCVD processes involved relatively high temperature steps 

(generally >950ºC) either in the deposition of the sacrificial layer that goes over the 

device, deposition of the capping material or the material used to seal the package.  These 

temperatures are acceptable if the MEMS device process is integrated into those 

fabrication processes but can provide limitations in the design of the MEMS device. 

Others have offered lower temperature processes for device encapsulation.  Stark et al. 

[56, 57] at the University of Michigan used a variation of this approach, using photoresist 

as the sacrificial layer, an electroplated nickel encapsulation later and lead-tin solder balls 

for sealing the fluidic access port at 230ºC.  The main difficulty in using these thin metal 

film packages is in the TCE mismatch which causes large mechanical stresses and in the 

fact that solders tend to outgas, potentially raising the pressure in a vacuum packaging 

process.  Another low temperature approach involved depositing a polymeric 

encapsulation layer where the sacrificial layer was removed by thermal decomposition 

[58].  The highest temperatures that devices get exposed to using this process are during 

the thermal decomposition step at 200 to 300ºC.  Similarly with this process there should 

be issues with outgassing of the polymer which is problematic for vacuum packaging 

applications. 

Overall, the thin film packaging approach has a number of advantages.  As was shown 

in Figure 1.15, there is the potential for minimizing the overall package footprint.  This is 

important for applications that require small packages as well as for making an all around 

low cost device.  Furthermore, when the MEMS process steps can be integrated with a 

CMOS compatible thin film encapsulation process, it makes it easier to find a 

manufacturer for the MEMS device since there are a large number of foundries and 

contract manufactures that can handle CMOS processing.  On the other hand, using this 

approach generally requires long release times since the etchant attacks the sacrificial 

layer through fluidic access holes and then needs to get flushed out.  Furthermore, as 

mentioned earlier, the device process needs to be compatible with the process 

temperatures and materials used in the thin film process used for encapsulation. 

1.3.2 POST PROCESSING (PACKAGING USING WAFER BONDING) 

As compared to the integrated encapsulation approach, the post processing approach 
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can potentially be more flexible and applicable to a wider range of devices.  Figure 1.16 

shows a schematic of the basic concept behind the post processing approach.  In this 

approach, the device (and potentially the drive circuitry) is processed on one wafer and 

the cap wafer is fabricated separately.  The two wafers are then bonded using either 

fusion bonding, anodic bonding or an intermediate material such as glass frit, a polymer, 

a solder or a eutectic.  Figuring out how to apply these various bond techniques on a 

wafer with 100s or 1000s of MEMS devices and achieving successful hermetic and even 

vacuum tight seals on a high percentage of them can be difficult.  As compared to the 

integrated encapsulation approach, the die size can be significantly larger and in many 

cases more exotic materials and processes may be needed for implementation. 

In Sections 1.3.2.1 through 1.3.3, the various bonding techniques investigated for the 

post processing approach are discussed.     
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iii)
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Figure 1.16:  One encapsulation scheme using i) a cap wafer and a bond ring where ii) the wafers are 

bonded and iii) part of the top wafer is removed in order to access a bond pad for interconnection. 

1.3.2.1 Fusion (Direct) Bonding 
Fusion bonding is known to occur spontaneously when joining two very flat, clean 

surfaces.  Fusion bonds have been investigated between a wide range of material 

combinations including: GaAs-to-silicon, quartz-to-silicon, silicon-to-sapphire, sapphire-

to-GaAs, silicon-to-glass, silicon carbide-to-silicon and silicon-to-silicon both with and 

without intermediate SiO2 and Si3N4 layers [59-61].  Conventionally, wafers are pre-

etched and surface impurities are oxidized and/or desorbed away at elevated temperatures 
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in a vacuum chamber before bonding.  This leaves OH groups at the surface of the 

wafers, and it is believed that at room temperature the two wafers to be bonded are held 

together by van der Waals, capillary and electrostatic forces.  Once the wafers are 

brought together, the elevated temperature allows for strong covalent bonds to form.  

Conventional Si to Si and Si to SiO2 (on a silicon substrate) bonds require temperatures 

ranging from 600 to 1200 °C.   

Several authors have used another technique called plasma enhanced fusion bonding 

to achieve lower temperature fusion bonds.  With thorough cleaning and application of 

plasma before the wafers are joined, the wafers are made highly reactive before joining 

allowing for much lower temperature bonds.  Authors have reported plasma enhanced 

fusion bonds between Si and Si3N4 (on a Si substrate) at 300°C [62] and Si and SiO2 (on a 

Si substrate) at room temperature [63].    

Fusion bonds are widely used for silicon-on-insulator (SOI) wafer production. 

Although fusion bonds have been applied for fabrication of accelerometers [64] and 

pressure sensors [65] this bonding technology is not compatible for hermetic/vacuum 

sealing most MEMS devices.  One issue is the 600 to 1200 °C temperatures needed for 

standard fusion bonds.  As of yet, hermetic/vacuum seals have not been demonstrated 

with the lower temperature plasma enhanced bonding. Another limitation is the 

requirement for surface roughness of less then 50 Å.  Although the surfaces can be 

planarized to achieve this surface roughness, this adds significant complexity and cost to 

the device process. Furthermore, fusion bonding is extremely particle intolerant—

particles <1 µm in size for instance can result in un-bonded regions of 100 microns.  This 

necessitates the use of stringent cleaning procedures and careful handling before bonding.  

1.3.2.2 Anodic Bonding 
The anodic bonding process was first patented in 1968 [66], in which a metal to 

insulator and a semiconductor to insulator bonding process was described.  Since then, 

the most common use of anodic bonding has been between sodium rich Pyrex glass and 

silicon wafers.  In anodic bonding, the substrates are put into contact, heated to a 

temperature below their softening points and an electric field is applied.  With the 

induced electric field and elevated temperatures, sodium atoms from the glass then 
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migrate to the Si causing an even larger electric field at the interface.  It is believed that 

the combination of the electric field, the high temperatures, and the diffusion of sodium 

atoms allow for formation of chemical bonds between the two wafers. 

Voltages between 400 to 1500 V at temperatures ranging from 300 to 500°C are 

generally used depending on the composition and thickness of the substrates being 

bonded.  This technique has also been applied to a wider range of substrates using 

sputtered and evaporated thin films of glass to form bonds between various substrates and 

Si at temperatures as low as 135°C [67-69] and to metal surfaces [70-72]. 

A standard anodic bonding process can be applied at 300ºC with highly reliable 

hermetic/vacuum seals making them desirable for many applications.  Anodic bonding 

has been applied for vacuum/hermetic encapsulation of a wide range of MEMS devices 

including pressure sensors [73], gyroscopes [74], accelerometers [74, 75], flow sensors 

[76] and infrared sensors [77].  The scope of devices which anodic bonding can be 

applied to is limited by the need for a high electric field and the presence of sodium 

which can compromise integrated circuits and other device processes. Also, similar to 

fusion bonding, applications of anodic bonding are limited by its requirement for less 

then a 300 Å surface roughness.   

1.3.2.3 Thermo-compression Bonding  
Thermo-compression bonding is applied by coating two wafer surfaces with metal and 

applying a large amount of force at an elevated temperature, providing enough energy to 

soften the metals and create covenant bonds.  This process is similar to fusion bonding in 

that it requires two clean and chemically active surfaces but unlike fusion bonding, 

thermo-compression bonding is intolerant of native oxides.  As a result, gold-to-gold 

bonds are the most common because of the inertness of gold, which makes them resistant 

to oxidation.   

Thermo-compression bonding is attractive because of its simplicity.  As a result, it has 

been used extensively for wire bonding and die attach for ICs but is more difficult to 

apply to full wafer bonds in MEMS applications.  These applications are limited by the 

need for very high bond pressures of around 100 MPa and temperatures of around 200 to 

400°C.  Most importantly, as with fusion bonding, thermo-compression bonding requires 
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extremely planar/low surface roughness surfaces material and is extremely intolerant of 

particles.  

1.3.2.4 Glass Frit Bonding 
One of the more commonly used methods for encapsulating circuits and MEMS 

devices is frit glass bonding.  In this process, a glass powder called glass frit is mixed 

with a paste consisting of solvent and organic binders.  The glass frit portion forms the 

majority of this mixture whereas the paste allows for the material to be screen printed, 

reducing the coefficient of thermal expansion (CTE) and helping to enhance the 

mechanical strength.   After screen printing the glass frit/paste mixture onto one of the 

wafer surfaces, the organics are outgassed and the glass melted through a temperature 

sequence.  Finally, at a temperate ≥450°C, the wafers are brought together and the melted 

glass layer is bonded to the surface of another wafer.  The softened glass frit and applied 

pressure during bonding allow for a hermetic seal.  The frit is then cooled and allowed to 

solidify forming a permanent bond.  Many types of glass frit are commercially available 

with different melting points, CTEs, organic binders, and screen printing properties.  

Most of the low temperature (~ 450 º C) frit glass formulations contain some lead.  

Glass frit has several advantageous properties.  It can be deposited on a wide range of 

materials, is non-conductive, can be applied directly over electrical feed-throughs and is 

softened during the bonding process allowing for bonds over non-planar surfaces.  Frit 

bonds have been incorporated into MEMS video scanners [78], resonant density sensors 

[79] and accelerometer and gyroscopes for automotive applications [35-39, 80].  A 

vacuum seal has even been demonstrated at the chip level using glass frit bonding  by 

ISSYS corporation using their patented NanogettersTM to achieve pressures as low as 850 

µTorr [5, 6]. 

The main drawbacks for frit bonding are its relatively high bond temperature of 

around 450°C which precludes its use in application to CMOS, and the need for screen 

printing which generally limits the patterning resolutions to no smaller than 150 µm [81].  

Another drawback is its lead content which may limit its applications because of 

impending world wide legislation which will ban the use of lead for most electronics. 
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1.3.2.5 Spin on Glass (SOG) Bonding 
Spin on glass (SOG) bonding is another glass seal wafer bonding technique where 

silanol (Si–OH) and methyl (CH3) polymers are dissolved in an alcohol/acetone solvent 

to form a spin-on material that is often referred to as a sol-gel [82, 83].  After spinning 

this material onto one of the wafers, the wafer pair is bonded at 250°C-400°C.  Typically 

the wafer pair is then exposed to a second higher temperature step (~1100°C) in order to 

improve the dielectric breakdown voltages.   As with frit bonding, SOG wafer bonding 

has the advantage of being able to conform over topology such as feed-throughs, but is 

limited in this respect because of maximum deposition thickness for sol-gel of less then 

1µm because of high internal stresses [83].  Furthermore the secondary high temperature 

step limits its application for most MEMS devices.     

1.3.2.6 Polymer/Adhesive Bonding 
Another approach to wafer-level encapsulation uses a polymer as an adhesive layer.  

In general polymers are deposited in liquid form through spin-on coatings and then cured 

at anywhere from room temperature up to 250ºC.  A number of polymers with varying 

material properties have been used for wafer bonding.  They include SU8 [84], BCB 

(benzocyclobutene) [85, 86], CYTOP (fluorocarbon polymer) [87, 88], PMMA 

(polymethylmethacrylat)[89], Polyimide [90], MYLAR [91], Parylene (poly-para-

xylylene) [92] and many different epoxies and waxes, and liquid crystal polymers (LCP).   

The advantage of using polymers is that they melt at low temperatures, allowing them 

to melt, conforming over features on the wafer.  This allows for bonding between two 

wafers that are not perfectly flat.  Furthermore, many polymers can be easily deposited as 

a viscous liquid through spin-on coating, and then cured at a moderate temperature.  

Polymers can be deposited on a wide range of materials and are non-conductive, so they 

can be deposited over electrically conductive feed-throughs.  CMOS and CCD devices in 

fact have been packaged for commercial applications in a glass-Si-glass wafer bond using 

epoxy [93].  Even so, polymer bonding is generally considered incompatible with 

vacuum packaging because of outgassing during the curing step or even hermetic 

encapsulation because of their high permiability.  Furthermore polymers are susceptible 

to water uptake and gas diffusion which leads to delamination at the bond interfaces and 
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therefore potential reliability problems. 

1.3.2.7 Solder/Eutectic Bonding 
Similar to frit and polymers, solders and eutectics can be used as an intermediate 

material to joint two wafers.  Solders and eutectics generally are metal alloys that melt at 

lower temperatures than the pure materials that make them up.  Using this type of 

bonding, the solder or eutectic is melted at above its melting temperature allowing it to 

conform over non-planar features and form a strong metallic bond between the 

solder/eutectic and a solder, metal or poly-Si film on another substrate.  Various alloys 

have been developed for the IC industry over the years for die attach and flip chip 

bonding which have been deposited both at the chip-level and wafer-level.  More recently 

various solders have been investigated for wafer-level vacuum/hermetic encapsulation.  

These solders and eutectic alloys have a wide range of melting temperatures including 

Al-Si (577 °C) [94], Au-Si (363 °C) [95-104], Au-Ge (360 °C) [105], Au-Sn (217 °C to 

420 °C)[106-108], Pb-Sn (182°C) [109, 110], Sn-Bi (130 °C) [57] and In-Sn (118 °C) 

[111, 112].   These solders are deposited by evaporating, sputtering and/or electroplating 

different combinations of metals or alloys.  Thin metal films like Ti, Cr, Pt, W, and Au 

are used as adhesion and seed layers for the solder or metal stack deposition.  Various 

authors have reported the use of unspecified solders for wafer-level vacuum packaging of 

micro-bolometer for IR imaging [27-29, 113] and  gyroscopes [114].  

Transient Liquid Phase (TLP) soldering is a type of solder bonding.  Using TLP 

soldering, a low melting temperature metal is sandwiched in between a higher melting 

temperature metal. The temperature is raised above the lower temperature metal’s 

melting point causing it to soften; allowing it to conform over non-planer surfaces.  It 

then diffuses into the higher melting temperature metal creating a solid metal alloy.  This 

new alloy then has a higher melting temperature than the original low temperature metal.  

In this way, the final bond joint has a higher melting temperature than the actual bonding 

temperature.  Ni-Sn TLP has been demonstrated at 300ºC (although the lowest theoretical 

temperature is 232ºC) with packaged vacuum sensors that demonstrate a strong vacuum 

seal [115-118].  These packages were shown to be able to hold vacuum at temperatures as 

high as 370ºC.    
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In eutectic bonding a metal is deposited onto a substrate material and then at an 

elevated temperature, atoms from the substrate material diffuse into the metal, forming an 

alloy that melts at a relatively low temperature.  This method has been employed by 

depositing gold onto germanium and onto silicon substrates in order to create Au-Ge 

[105] and Au-Si [95-104] intermediate layers that melt at 360ºC and 363ºC respectively 

and using Al deposited onto Si to create an Al-Si intermediate later that melts at 577ºC 

[94].  The Au-Si system in particular has been investigated by quite a few authors.  In 

particular, in previous publications involving the work reported in this dissertation, a high 

yield wafer- level vacuum encapsulation process in which a vacuum seal was held for >1 

year at pressures below 10 mTorr was demonstrated [104, 119, 120].  Chapters 2 through 

5 provide more detail on this work.  

Overall, solders and eutectics have the advantage that they allow for wafer bonds at 

relatively low temperatures and that they conform over non-planar surfaces.  

Furthermore, metals and alloys are much less permeable to gas and moisture than 

polymers or glasses, making them very desirable for hermetic and vacuum encapsulation.  

Despite the desirable qualities and extensive research employed to apply solders and 

eutectics for wafer-level packaging, there are a number of challenges in implementing 

these technologies which have stopped them from finding significant commercial use.   

One of the major difficulties with solders is the need for a seed layer.  These layers 

and the solders themselves inter-diffuse with each other and other material on the 

substrate, causing changes in metallurgy which can cause de-adhesion from the substrate, 

weak solder joints and shorting of electrical lines.  One solution is using a “diffusion 

layer” which prevents the materials to inter-diffuse.  Furthermore, currently available 

wafer bonding systems generally have long heating and cooling rates (on the order of 10s 

of minutes to an hour) as compared to chip-level bonding systems in which solder flip 

chip bonding can be performed in minutes.  This further exacerbates problems associated 

with metal inter-diffusion.   In general solder bonding methods have a lot of potential for 

enabling low temperature hermetic/vacuum encapsulation but are still immature 

technologies. 



 26 

1.3.3 LOCALIZED HEATING 

As has been discussed, the main reason for choosing low temperature bonding 

techniques is to reduce the exposure of devices to high temperatures which can 

compromise their performance.  One method for achieving this is to use a localized 

heating method.  Using localized heating, heat is generated near the bond joint while 

maintaining a lower relative temperature near the device.  Localized heating methods are 

desirable so that established high reliability bonding techniques can be employed for the 

hermetic/vacuum packaging of devices which can not handle those high temperatures.  

The following sections discuss localized heating methods that have been investigated in 

the literature which include:  resistive heating (Section 1.3.3.1), inductive heating 

(Section 1.3.3.2), and laser assisted bonding (Section 1.3.3.4).   

1.3.3.1 Resistive Heating 
Using resistive heating, a current is passed through a conductive material, causing 

joule heating.  Using this method, the resistor can be patterned in the shape of a bond ring 

in order to encircle the device to allow for encapsulation.  Both simulations and 

experiments have demonstrated that large temperature gradients can be achieved—for 

instants Cheng et al. was able to get a temperature drop of 700°C to around 50°C over a 

distance of less than 100µm from the location of the resistive heater [94].    This method 

has been used for bonding dies using plastic [121], PSG and Indium solder [122], fusion 

bonding [123], Au-Sn solder [124], and Au-Si eutectic and Al-Si eutectics [94, 123, 125].  

In each case, the interface material melts and conforms over the resistive heater and the 

feed-throughs.  In one case, a gold line was used as a resistive heater and as silicon 

diffused into the gold line the resistive heater acted as the bond interface in a Au-Si 

eutectic bond [125].  A vacuum package based on localized aluminum/silicon to glass 

solder bonding technique was even reported [94].   

In all of these cases, it was necessary to make electrical contact with the surface of one 

of the bond surfaces in order to apply a current.  It is therefore difficult to apply resistive 

heating at the wafer-level, and in all of the works described above, this technique was 

only applied one single dies.  One author addressed this issue by proposing to array  bond 

rings across an entire wafer, making electrical contact at the edge of two sides of the 
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wafer in order to apply a current [126].  This authors attempted to conduct wafer bonding 

experiments using Au-Sn solder but did not successfully achieve a bond.  Even so, this is 

a promising approach. 

1.3.3.2 Inductive Heating 
Using inductive heating, a resistor is fabricated out of a ferromagnetic material which 

forms the bond ring.  An inductive coil is then used to create a magnetic field which 

causes large eddy currents through this ferromagnetic material.  These eddy currents 

cause joule heating.  This method can therefore potentially be applied at the wafer-level 

without having access to the surface of the wafer.  Yang et al. [127] used inductive 

heating to bond a glass wafer to a silicon substrate using a nickel-cobalt layer and was 

able to achieve a bond strength of 18 MPa.  This technique has also been applied for chip 

level packaging of gyroscopes [128] and for chip-level packaging/assembly in bonds 

between silicon and steel [129] and for synthesis of carbon nanotubes [130].   

1.3.3.3 Electromagnetic Radiation Heating 
Large doses of microwave radiation (200 KHz.-20 GHz) in particular very readily heat 

metals while only marginally heating pure silicon and dielectric materials with low 

dielectric constants.  Microwave heating was successfully applied by Budraa et al. [131] 

in order to create fusion bond between two 1200Å layer of gold coated substrates at high 

vacuum.  Though this application of microwave heating was not specifically used for 

localized heating in this application, microwave heating is in fact a potential method for 

locally heating a bond rings at the wafer-level.       

Similarly, Bayrashev and Ziaie used RF radiation to heat a dielectric to achieve wafer 

bonding [132].  This technique uses a high frequency electric field to impart energy to an 

insulator.  Significant energy can be generated in dielectric molecules by agitating them 

in an alternating field.  In this work, two-inch diameter silicon wafers were bonded via 2-

20µm thick polyimide or photoresist intermediate layers.  These substrates were joined 

with high uniformity (> 95% bond area) in less than 7 minutes.  Similarly, though this 

application was not used for localized heating, it has great potential for use in localized 

heating of bond rings at the wafer-level. 
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1.3.3.4 Laser Assisted Bonding 
Lasers have long been used for welding, and have more recently been used for 

selective wafer bonding [133-137].  The large energy density of lasers allow for fast and 

localized heating.  One of the main challenges in applying laser assisted wafer bonding is 

choosing the correct materials.  These materials need to be chosen so that the wavelength 

of the laser is transparent to the substrate but so that the material at the bond ring absorbs 

the lasers energy.   

Researchers have used laser assisted bonding for anodic bonds [133, 134], indium 

bonds [135] and Pb-Sn bonds [136] in order to join silicon and glass dies.  In these cases, 

355 or 1064 nm wavelengths were used that were transparent to the glass but not to the 

material at the bond interface.  Spot sizes varying from 20 µm up to 1 mm were achieved.  

In the case of the 1mm spot size, a mask was used on top of the glass substrate to ensure 

that only the areas of interest would be heated.  In another study, a laser with a 

wavelength of 10.6 µm was used for joining silicon to silicon wafers using Au-Si and Al-

Si eutectics [137].  In each case, reasonably strong bond interfaces were achieved.  

One of the main drawbacks of this technique is that it is a serial process, although 

many emerging systems are capable of scanning large wafers for bonding.  The display 

manufacturing industry in fact uses this technology quite extensively for sealing and 

packaging of flat panel displays. 

1.4 PREVIOUS WORK IN MEMS VACUUM ENCAPSULATION 

As was outlined in Section 1.3, there are two distinct packaging approaches:  the 

integrated encapsulation approach (using thin films on a single wafer) and the post 

processing approach (using wafer bonding).  Vacuum packaging results using these two 

approaches are summarized in Sections 1.4.1 and 1.4.2 respectively.  

1.4.1 VACUUM ENCAPSULATION USING THIN FILM PACKAGING 

Table 1.3 summarizes the vacuum packaging results reported by various researchers 

using thin film packaging.  Sole use of low pressure chemical vapor deposited (LPCVD) 

films by these authors allows for aggressive pre-deposition chemical cleans.  This allows 
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for absorbed moisture and hydrocarbons to be removed in the LPCVD chamber directly 

before sealing at temperatures of 600 to 800°C.  These high temperatures allow for 

removal of a lot of atoms that could potentially outgas into the volume of the thin film 

package.  Even so, as illustrated in Table 1.3 most of these works only achieved pressures 

in the 100s of mTorr or Torr range.  Candler et al. was able to achieve pressures below 

7.5 mTorr with a packaging process in which the pressure inside of the package could be 

changed after packaging by in-diffusing or out-diffusion hydrogen at 300-400ºC.  

Candler et al. showed that nitrogen and even hydrogen at room temperature did not 

diffuse back into the package.  They also reported on the vacuum integrity after 416 days 

of testing and showed good performance in their packaged resonators even after >600 

cycles from -50 to 80ºC. 

     

Table 1.3:  Vacuum packaging results using the thin film packaging. 

Author Institution 
Encap-
sulation 
Material 

Sealing 
Temp. Sensor Pressure 

Leak 
Rate 
Data 

[53, 138] R. Candler 2006 Stanford & 
Bosch 

LPCVD 
Oxide 950ºC Resonator <7.5mTorr 416 

Days 

[47]K. Ikeda et al. 1990 
Yokogawa 

Electric 
Corporation 

Epitaxial Si NR 
 Resonator <50mTorr - 

[139] R. He 2007 UCLA LPCVD 
Poly-Si 600ºC Pirani Gauge 130 mTorr - 

[45]   L. Lin et al. 1998 Berkeley LPCVD 
Nitride NR Resonator 300 mTorr - 

[50] K. Lebouitz 1999 Berkeley Poly-Si 835ºC Resonator 600 mTorr - 

[56, 57]  B. Stark 2004 University of 
Michigan 

60Sn-40Bi 
Solder >130ºC Pirani Gauge 1.5 Torr 160 

Days 
[51] 

T. Tsuchiya 2001 Toyota Silicon 
Nitride NR Resonator 3 Torr ~600 

Days 
[55, 140] 

R. Candler et al. 2003 & 
W.T. Park et al. 2006 

Stanford & 
Bosch 

LPCVD 
Oxide NR Resonator 

(Accelerometer) 5 Torr - 

[46] Guckel et al. 1986 University of 
Wisconsin 

LPCVD 
Nitride NR Transducer NR - 

[44] C. Mastrangelo et al. 
1989 Berkeley LPCVD 

Nitride NR Pirani Gauge NR - 

[49] 
M. Bartek et al. 1997 

Delft 
University, 
Netherlands 

Poly-Si 575ºC Micro-diode NR - 

[49] 
M. Bartek et al. 1997 

 

Delft 
University, 
Netherlands 

Aluminum 150ºC Micro-diode NR - 

[58, 141] 
P. Monajemi 2006 Georgia Tech. Polymer & 

Metal 
200-

300ºC Resonator NR - 
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1.4.2 VACUUM ENCAPSULATION USING WAFER BONDING 

Table 1.4 summarizes the vacuum packaging results achieved without using getters, 

using the wafer bonding approach.  The materials used in wafer bonding techniques such 

as anodic, frit and solder bonding, often can not handle the same harsh cleaning 

procedures as the LPCVD films often used in the thin film encapsulation approach.  

Material such as frits, solders and electroplated metals also tend to outgas more than 

LPCVD films.  Furthermore, in the case of wafer bonding, sealing takes place in a wafer 

bonder at 200 to 450ºC as opposed to an LPCVD furnace at 600-900 ºC. These lower 

temperatures do not facilitate as much outgassing before sealing—and therefore, they are 

susceptible to more outgassing after sealing.  This is why, without using getters, pressures 

only as low as 0.5 and 1 Torr have been reported using anodic bonding [73, 142], 1 and 

1.5 Torr  using solder bonding [113, 114] and 0.15 Torr and 1.5 Torr using Frit Bonding 

[5, 114]. 

Table 1.4:  Vacuum packaging results using wafer bonding, and no getters. 

Author Institution 
Wafer/ 
Chip 
Level 

Encap-
sulation 
Material 

Max. 
Proc. 
Temp. 

(°C)  

Sensor Pressure 
Leak 
Rate 
Data 

[80] H.Song 2000 

Samsung 
Advanced 
Institute of 
Technology 

Wafer Glass 
Frit 450 Resonator 

(Gyroscope) 
150 

mTorr - 

[73] V. Chavan 
2002 

University of 
Michigan Wafer Glass-Si 

Anodic N.I. 
Capacitive 
Pressure 
Sensor 

~0.5 Torr - 

[142]    B. Lee 
2003 

Seoul National 
University, 

Korea 
Wafer Glass-Si 

Anodic N.I. Resonator 1 Torr - 

[113]  E. Mottin 
2001 

LETI LIR, 
France Wafer Au-Sn 

Solder N.I. Bolometer 1 Torr - 

[114] D. Sparks 
2001 

Delphi 
Automotive 

Systems 
Wafer Solder N.I. Resonator 

(Gyroscope) 1.5 Torr 42 days 

[143] Wolfgang 
2006 

 

Fraunhofer 
Institute for 

Silicon 
Technology 

Wafer Au-Si 
Eutectic 

380-
400ºC Resonator 7.5-12 

Torr - 

[144-146]                          
M. Esashi 1994 

Tokoku 
University, 

Japan 
Wafer Glass-Si 

Anodic* 400 
Infrared and 
Capacitive 
Pressure 

100-400 
Torr - 

[102] Y. Mei 2002 University of 
Michigan Wafer Au-Si 

Eutectic >363 None NR - 
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1.4.2.1 Applications of Getters in Micro-Packages   
Table 1.5 summarizes the vacuum packaging results achieved with getters using the 

wafer bonding approach.  Non-evaporatable getters (NEGs) were first investigated for 

micro-packaging in the 1990s [144-146].  Typically NEGs consist of sintered metal 

particles which are packaged or adhered onto one of the inside surfaces of a vacuum 

chamber or vacuum cavity.  There are two main drawbacks for applications of NEGs for 

micro-packaging:  1) the need for assembling or depositing sintered metal particle into 

the micro-cavity and 2) these sintered metal particles can shift inside of the package, 

interfering with the operation of the MEMS device.  To deal with the latter issue, Esashi 

et al. [144-146] used a configuration similar to the one shown in Figure 1.17.  As 

illustrated, the NEGs are housed in a separate compartment in order to minimize the 

amount of these particulates which get on the MEMS device.  As shown in Table 1.5, 

using NEGs, Esashi et al. reported vacuum pressures of 10 µTorr.  Caplet et al. [147] 

used a similar configuration and measured a pressure of around 3 mTorr.  
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Table 1.5:  Vacuum packaging results using wafer bonding and getters. 

Author Institution 
Wafer/ 
Chip 
Level 

Encap-
sulation 
Material 

Max. 
Proc. 
Temp. 

(°C)  

Sensor Getter Pressure 
Leak 
Rate 
Data 

[144-146]                          
M. Esashi 

1994* 

Tokoku 
University, 

Japan 
Wafer Glass-Si 

Anodic* 400 
Infrared and 
Capacitive 
Pressure 

NEG 10 uTorr - 

[5]            D. 
Sparks 2003 

Integrated 
Sensing 
Systems 
(ISYSS) 

Chip Glass 
Frit N.I. Resonator Thin Film 

(NanogettersTM) 850 uTorr - 

[142]    B. 
Lee 2003 

Seoul 
National 

University, 
Korea 

Wafer Glass-Si 
Anodic N.I. Resonator Thin film (Ti) 1 mTorr 40 

Days 

[147] S. 
Caplet 

CEA-DRT 
LETI/LIR, 

France 
Wafer Glass-Si 

Anodic 350 Resonator NEG 3 mTorr - 

[27-29]              
T. Schimert 

2001 

Raytheon 
Electronic 
Systems 

Wafer Solder N.I. Bolometer N.I. 4 mTorr ~950 
Days 

This Work 
University 

of 
Michigan 

Wafer Au-Si 
Eutectic 390 Pirani Gauge Thin Film 

(NanogettersTM) 
1-16 

mTorr 
1000 
Days 

[148] 
News 

Release 

Innovative 
Micro 

Technology 
IMT 

Wafer N.I N.I N.I Thin Film Getter <10mTorr N.I. 

[94] 
Y.T. Cheng 

2002 

University 
of Michigan Wafer Glass-Al 

Local-
ized 
800 

Resonator Ti/Au thin film 25 mTorr 392 
Days 

[149]   B. 
Lee 2000 

Seoul 
National 

University, 
Korea 

Wafer Glass-Si 
Anodic N.I. Resonant 

Accelerometer Ti thin film 200mTorr - 

[113] E. 
Mottin 2001 

LETI LIR, 
France Wafer Au-Sn 

Solder N.I. Bolometer NEG 1 Torr - 

 

NEGNEG

 

Figure 1.17:  In application of NEGs, a separate compartment is often used to house the NEG getters [5].      

An alternative to using NEGs is to sputter or evaporate a thin metal film such as Ti 
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which acts as the gettering material.  As opposed to sintered metal particles, thin metal 

films can be easily deposited and photo-lithographically patterned.  As a result, no special 

configurations are needed to physically separate the getter from the device.  Such a thin 

film can be photo-lithographically formed inside of the micro-cavity for wafer-level 

packaging.  ISSYS corporation first filed for a patent on May of 1999 describing the use 

of such a thin film getter and it was issued in December of 2002 [150].  It later published 

several papers reporting pressures as low as 850 µTorr [5, 6] and the application of this 

packaged getter for the packaging of its flow sensors [5, 6, 79].  ISYSS used glass frit 

bonding for encapsulation of their devices and a resonant sensor for measurement of 

vacuum.  Researchers at Seoul National University and Samsung also used Ti thin films 

to achieve pressures as low as 1 mTorr [142, 149] using anodic bonding, where a 

resonator was used for vacuum measurement.  In their study, the pressure was varied 

from 1mTorr to 1 Torr by varying the surface area of the deposited Ti [142].  

Furthermore, the MEMS foundry Innovative Micro Technology (IMT) recently 

developed a vacuum packaging process for its customers and reports high yields at under 

10 mTorr[148].     

1.5 SUMMARY & MOTIVATION 

The following sections summarize the demand for wafer-level packaging (Section 

1.5.1), summarize currently published MEMS wafer-level packaging approaches (Section 

1.5.2), and gives motivation for the work done in this dissertation (Section 1.5.3). 

1.5.1 DEMAND FOR GENERIC WAFER-LEVEL PACKAGING 

Section 1.2 (MEMS Wafer Level Packaging) motivated the use of wafer-level 

packaging, explaining its cost savings and the improved device reliability.  Section 

1.2.1.4 (Vacuum/Hermetic Encapsulation & Protection from the Environment), in 

particular, explained the physical motivation for vacuum/hermetically packaging MEMS 

devices.  Table 1.6 shows the pressures desired for a number of applications that require 

vacuum.  Most of the devices in Table 1.6 can be fabricated in standard CMOS processes 

that require temperatures of less than 400ºC.  RF MEMS switches on the other hand often 
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use metals that soften at higher temperatures and therefore can be intolerant of 

temperatures higher than 200-300ºC.  Also shown in Table 1.6 are the current market 

sizes and the predicted market sizes in 2011 for these MEMS applications [4].  As 

illustrated, the devices which require or can benefit from vacuum are predicted to 

represent an approximate $3.1 billion market in 2011.    

Table 1.6:  Desired vacuum packaging pressures for a number of applications.  Also included are the 
market sizes of each of those applications [4]. 

 Desired Vacuum Pressure Current 
Market 

Size  

2011 Market 
Size 

RF MEMS  
(Resonators and Switches) 1 mTorr  to 760 Torr [30, 31] $160M $820M 

Accelerometers (Resonant/ 
Piezoelectric/Capacitive) 100 mTorr to 760 Torr  $780M $1,400M 

Gyroscopes 1-10 mTorr [51, 151] $620M $920M 
IR MEMS* 1-10 mTorr [27-29] - - 

Total - $1560M $3,100M 
*No good market data 

 

1.5.2 CURRENTLY AVAILABLE TECHNOLOGIES 

Given this market demand, quite a few technologies have been developed to provide 

wafer-level vacuum packaging solutions.  These were detailed in Section 1.3 (MEMS 

Wafer Level Encapsulation Approaches) and Section 1.4 (Previous Work in MEMS 

Vacuum Encapsulation).  Table 1.7 lists some of the most impressive vacuum packaging 

results presented in the literature (a more comprehensive list was provided in Section 

1.4).  In all of these works, pressures below 10 mTorr were achieved.  In Table 1.7, for 

each packaging process, the metrics defined in Table 1.1 (listed at the beginning of the 

chapter) for achieving a wafer-level vacuum packaging process are shown and areas are 

highlighted where the packaging process does not meet one of these metrics.  As 

illustrated, one of the major issues is process compatibility.  For instance Esashi et al. 

[144-146] and Candler et al.’s [53, 138] processes can only be applied to devices that can 

be fabricated in certain process flows.  The other major issue was the lack of detail 

presented in many of these works.  This is generally the case for companies that publish 

their packaging work since they are interested in protecting their intellectual property 
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(IP).  In particular, in Schimert et al.’s work [27-29], not only was it be difficult to 

determine if all of the metrics were met, it would be extremely difficult to recreate their 

work from their published papers. 

Table 1.7:  Highlights of applicable packaging process from the literature showing how they fit the metrics 
defined here needed for a wafer-level vacuum packaging process. 

                                                                              Metrics 

Author Institution Pressure 
Bond 

(Temperature 
≤400ºC) 

 Electrical Connection/ 
Process Compatibility 

Wafer 
Level 

Process 

[144-146]                          
M. Esashi 1994* 

Tokoku 
University, 

Japan 
10 uTorr 400ºC Glass-Si Anodic (Can not bond 

over non-planar surfaces) Wafer 

[5] D. Sparks 2003 

Integrated 
Sensing 
Systems 
(ISYSS) 

850 uTorr N.I. (Details 
not specified)  Glass Frit Bonding (OK) 

Chip (not 
wafer-
level) 

[27-29]  T. 
Schimert 2001 

Raytheon 
Electronic 
Systems 

4 mTorr N.I. (Details 
not specified) Solder (Details not specified) Wafer 

[53, 138] R. 
Candler 2006 

Stanford & 
Bosch <7.5mTorr 950ºC  Thin Film Packaging (Not a 

generic process) Wafer 

This Work (Au-Si 
Eutectic Bonding) 

University 
of Michigan 

1-16 
mTorr 390ºC Au-Si Eutectic Wafer 

 

1.5.3 MOTIVATION FOR AU-SI EUTECTIC BONDING & BACKSIDE 
LOCALIZED HEATING 

Using Au-Si eutectic wafer-level bonding for vacuum packaging, devices can be 

packaged at a relatively low temperature (390ºC) in a wafer-level vacuum packaging 

process.  Table 1.8 summarizes how the Au-Si eutectic bonding process developed in this 

work meets the metrics defined in Table 1.1 for a wafer-level vacuum packaging process 

(listed at the beginning of the chapter).  Backside localized heating on the other hand will 

allow for packaging processes like Au-Si eutectic bonding  to be applied at temperatures 

from below 200ºC  to  below100ºC depending on the materials and geometries.     
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Table 1.8: How Au-Si eutectic bonding fits the metrics defined for a wafer-level vacuum packaging 
process (as defined in Table 1.1) that can be used on a broad set of MEMS devices. 

Metrics Description  
 Low temperature Au-Si bonds can be facilitated at a relatively low temperature (≤390ºC), 

allowing for bonds to wafers fabricated in CMOS or CMOS like processes. 

Electrical Connection The Au-Si eutectic layer melts during bonding allowing for bonds over non-
planar surfaces including electrical feed-throughs. 

 Wafer-level process Bonds are conducted at the wafer-level so that all of the devices across a 
wafer get packaged at the same time. 

Vacuum compatible With the integration of NanogettersTM, vacuum pressures <10 mTorr can be 
achieved. 

1.6 CONTRIBUTIONS OF THIS THESIS 

The major contributions are: 

• A comprehensive study on the mechanisms for a high yield, highly reliable 

wafer-level vacuum packaging process using Au-Si eutectic bonding for 

MEMS packaging. 

o A fully characterized, low temperature (≤390°C), eutectic wafer-level 

vacuum packaging process using the Au-Si eutectic system that allows 

for bonding to poly-Si and Au thin films allowing for wafer level 

packaging of a wide range of devices. 

o Detailed characterization and analysis of the Au-Si eutectic bond. 

o Comprehensive vacuum testing and methodology for achieving vacuum 

pressures below 10 mTorr using the Au-Si eutectic process. 

o A new vacuum Pirani gauge designed to measure a wide range of 

pressures from 760 Torr down to 1 mTorr.  

• A new wafer-level localized heating technique called differential localized 

heating which allows for localized heating of bond rings while the device is 

only exposed to 25% to 50% of the bond ring temperature. 

1.7 ORGANIZATION OF THESIS 

The Au-Si eutectic wafer-level vacuum packaging process is detailed in Chapters 2 

through 5 and a new technique called backside localized heating is introduced in Chapter 

6. 

More specifically, Chapter 2 gives a detailed background on previous Au-Si eutectic 
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research and details the bond experiments conducted.  From these bond experiments a 

bond recipe and process design rules are given.  Chapter 3 presents the fabrication 

process for Au-Si eutectic bonding including the cap wafer fabrication and device wafer 

fabrication.  Chapter 4 presents the design of a new Pirani (vacuum) sensor tailored 

specifically for characterization of vacuum packages.  In Chapter 5, the vacuum sensors 

developed in Chapter 4 were applied for measuring vacuum pressures in the Au-Si 

eutectic bonding process. 

Chapter 6 introduces, analyzes and demonstrates a new wafer-level localized heating 

approach.  Finally, Chapter 7 concludes the dissertation and suggests future work.  
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CHAPTER 2 
 

AU-SI EUTECTIC WAFER BONDING  

As detailed in Chapter 1, wafer-level packaging technologies are required for a wide 

range of MEMS devices.  Depending on the operating frequency, the geometry and/or the 

design of the device to be packaged, vacuum pressures ranging from 10 µTorr to 760 

Torr can be required and for an even larger scope of devices, hermeticity (the 

requirement that outside atoms do not penetrate the package) is required.  These strict 

requirements necessitate an excellent seal that is uniform not only across the bond ring, 

but across a full wafer of packaged part.  Characterization of a wafer-level vacuum 

packaging process is therefore very important.   

In this chapter, Au-Si eutectic bond experiment results are presented along with the 

requirements for achieving a uniform and strong bond.  These requirements can be 

separated into 3 categories as shown in Figure 2.1.  They include: a) the material 

requirements (Section 2.3), b) the bond recipe (Section 2.4), and c) considerations for the 

Au-Si eutectic viscous flow (Section 2.5).  The material requirements mainly depended 

on which materials were selected on the device wafer.  As summarized in Figure 2.1a, the 

device wafer bond ring materials included: un-doped poly-Si; heavily phosphorous doped 

poly-Si; and sputtered or evaporated Cr/Au.  The requirements for the bond recipe are 

summarized in Figure 2.1b were vacuum was first applied, then the outgassing step was 

applied, then the bond force was applied and finally the bond temperature was applied.  

The amount of bond force and timing of the bond force turned out to be one of the more 

critical factors in this bond recipe.  As summarized in  Figure 2.1c, Au-Si eutectic flow 

during bonding also played an important role in the bond quality and in whether or not 

devices or other features (such as the getter) would survive the bonding process.  As 

shown in Figure 2.1c, two different types of flow: compressive flow and lateral diffusion 

2020 
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were observed.  As well, the etched cavity had an effect on the Au-Si eutectic later flow 

and in some cases the Au-Si eutectic flowed inside of this cavity, interacting with the 

getter.  
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Figure 2.1:  A summary of the three sets of bond issues discussed in this chapter for Au-Si eutectic 
bonding.  They are a) the material requirements, b) the bond recipe and Au-Si eutectic flow. 

Section 2.1 first gives a background on previous research conducted in Au-Si eutectic 

bonding for die attach and for wafer-level bonding.  Section 2.2 then gives a brief 

description of the metrics for qualifying a uniform/strong bond (Appendix 1 gives a 

detailed description of these metrics).  Section 2.3 details the material requirements 

(summarized in Figure 2.1b), Section 2.4 justifies the various steps in the bond recipe and 

Section 2.5 describes some of the ways in which the Au-Si alloy flowed and how this 
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flow could be controlled.  Finally, Section 2.6 gives a brief summary of all of the bond 

test results.    

2.1 BACKGROUND & PREVIOUS WORK  

A eutectic reaction involves the formation of a liquid phase from two solid phases 

upon heating or conversely, the formation of two solid phases from a liquid phase upon 

cooling.  In a binary phase diagram, the eutectic point is at the intersection of the two  

liquidus lines and is generally at a significantly lower temperature than the melting point 

of either pure material.  Figure 2.2 shows the phase diagram for the Au-Si system [152, 

153].  As illustrated, Si and Au have melting temperatures of 1412ºC and 1063ºC.  Above 

the eutectic temperature (shown as 363ºC in Figure 2.2) at the eutectic composition of 

approximately 18.6±0.5 atomic % Si in Au the Au-Si alloy is in a completely liquid state.  

Although 363ºC is the generally accepted value for the eutectic temperature [152-155], 

other authors have measured it at slightly below 360ºC [156] and at 370ºC [157, 158].    
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Figure 2.2:  The Au-Si eutectic phase diagram [152]. 

Achieving this liquid state is desirable and/or necessary for strong die and wafer bonds 

because it conforms over topology and is highly reactive allowing for strong diffusional 

bonds to some materials.  In Figure 2.2 at compositions less than ~18.6 atomic % Si in 

Au, at temperatures above the eutectic temperature but below the liquidus line, the Au-Si 

alloy is composed partially of Au-Si eutectic and partially of Au precipitates ((Au) + 

Liq.).  Similarly, at compositions greater than ~18.6 atomic % Si in Au, at temperatures 

above the eutectic temperature but below the liquidus line, the Au-Si alloy is composed 

partially of Au-Si eutectic and partially of Si precipitates ((Si) + Liq.).  The percentage of 

Au-Si alloy and that of either Si or Au precipitate depend on the % of Si in Au and on the 

temperature.  This composition can be determined using the lever rule [159].  A detailed 

discussion on how the Au-Si alloy composition affects bond quality is presented in 
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Appendix 3. 

One method to create such a Au-Si eutectic alloy is to deposit the correct amounts of 

Au and Si onto a wafer’s surface and inter-diffuse them above their eutectic temperature.  

Another method for achieving this is to deposit the gold layer (with or without an 

adhesion layer between the gold and bulk silicon) on top of bulk silicon.  When going 

above the eutectic temperature (~363º C), Si from the bulk diffuses into the gold until the 

eutectic composition is reached.  This soft eutectic mixture acts as an adhesive layer, 

allowing for adhesion to other silicon or metallic surfaces.  This method for achieving a 

Au-Si eutectic bond is generally called Au-Si eutectic bonding.   

Understanding how this eutectic layer forms is important and as a result, the literature 

on Au-Si inter-diffusion and eutectic formation is substantial.  In Section 2.1.1 various 

studies on Au-Si inter-diffusion are presented.  This includes a discussion on Au silicide 

formation, SiO2 formation on top of Au thin films and a discussion on the atomic 

structure of Au-Si alloys films.  Section 2.1.2 then provides background on previous 

work done in Au-Si eutectic bonding for wafer-level vacuum packaging. 

2.1.1 SILICON DIFFUSION INTO AU THIN FILMS 

Reactions between Au and Si have been heavily studied because of the extensive use 

of Au-Si eutectic bonding in the die attach of ICs onto other surfaces such as PCBs.  

There are two methods generally used for implementation of this die attach method.  The 

first involves placing a Au-Si eutectic preform (a thin film of the Au-Si eutectic mixture) 

between the IC chip and the surface that it gets mounted too and raising the temperature 

above the eutectic temperature in order to create a strong bond.  Various authors have 

used this method for die attaching Si substrates [160, 161] and sapphire substrates (with 

either polysilicon, Au or no coating on the back surface) [100] and even transferring 

GaAs-AlGaAs structures onto Si substrates [162].  The second method involves 

depositing Au directly onto a Si surface on the backside of the IC chip and heating it to 

above the eutectic temperature so that Si diffuses into the Au film in order to create a soft 

Au-Si eutectic [163].  Samples are generally prepared by first removing the native oxide 

layer using a  hydrofluoric acid (HF) etch and taking the wafers directly to the evaporator 

or sputter vacuum chamber for Au deposition.  In some cases these sample were also 
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heated inside of the vacuum chamber or treated with an argon plasma in order to remove 

contamination.  The pre-deposition HF etch was necessary because Si oxidizes almost 

instantaneously when in contact with oxygen—the resulting native oxide can cause bad 

Au adhesion.  This method for die attach where Au and Si are inter-diffused to from a 

Au-Si eutectic is the most interesting for this work, since our films are formed in a 

similar manner. 

2.1.1.1 Low Temperature Si Diffusion and Silicide Formation 
For such die bonding using Au films deposited on a Si substrate, it would seem 

unlikely that strongly covalently bonded silicon atoms would diffuse out of a bulk Si 

substrate into the Au thin film at temperatures much lower than the melting temperatures 

of pure silicon.  Several authors have studied how this occurs and how it subsequently 

enables the formation of Au-Si silicides (silicides are metastable inter-metallic 

compounds that often form at metallic film interfaces) [96, 97, 101, 156, 164-170].  

Okuna et al. conducted experiments where Auger electron spectroscopy (AES) was used 

to measure the composition of Au films as they were deposited on a (111) oriented Si 

substrate [164, 165]. They found that films 2 monolayers thick could be heated up to 

700ºC without any Au-Si reaction.  On the other hand, films thicker than 5 monolayers 

thick inter-diffused during Au deposition at under 50ºC.  Similar (though not as detailed) 

results were found for gold films on top of (100) oriented silicon substrates [171].   

Hiraki suggests that this low temperature silicon diffusion is due to the larger 

availability of free electrons in thicker Au films allowing for Si atoms to break their 

strong covalent bonds [165].  Narusawa et al. [166, 167] took this study a step further 

observing a “diffuse interface” 45 and 20 monolayers thick between (110) and (111) 

orientated Si and Au which spontaneously forms upon deposition.  Nakashimi et al. [167] 

discovered that in this “diffuse interface” region, metallic Si is formed.  This metallic 

state is generally observed when the Si is in its liquid form and is characterized by a close 

packed lattice structure (as supposed to its semiconductor state which is characterized by 

a covalently bonded diamond lattice).  The Si atoms are therefore more mobile when they 

are in their metallic state and can be easily “ejected,” diffusing throughout the gold film 

at relatively low temperatures.     
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Such low temperature (even room temperature) diffusion through gold films has been 

evidenced by Au-Si silicide formation on top of Au thin films.  Green and Bauer [168, 

169] in fact studied Au-Si silicide formation on (100), (110) and (111) oriented silicon 

substrates for Au thicknesses from 100 Å to 1000 Å.  On these substrates, silicide 

formation was observed and studied at temperature from 250ºC to 300ºC on the top of the 

Au surface.  Such silicide formation was even observed at room temperature on the (111) 

oriented silicon substrate both at the Au-Si interface and on top of the Au thin film.  

2.1.1.2 Oxide Formation on Au Thin Films 
The fast diffusion of Si into Au at relatively low temperatures is convenient for the 

formation of the Au-Si alloy but also provides some challenges in that the Si in the Au-Si 

silicide readily oxidizes [97, 99, 165, 172-176].  Hiraki for instance observed that heating 

a 2000Å Au layer on a silicon substrate  to 100ºC for 10 minutes resulted in a 1000 Å 

thick SiO2 film [165].  This is remarkable in that such growth rates of thermal SiO2 films 

on a bare silicon wafer generally requires temperatures in the 700-900 ºC range.  The 

presence of an oxidizing atmosphere and subsequent oxidation in fact has been 

hypothesized to increase the diffusion of Si into Au [174].  These SiO2 films that grow on 

gold surfaces can act as diffusion barriers and can result in non-uniform bonds or can 

completely disallowing bonds between the Au-Si eutectic layer and the surface it gets 

bonded too[160].   

2.1.1.3 Structure of Au/Si Films after Intermixing  
Several authors have also studied the structure of Au and Si at temperatures above and 

below the eutectic temperature and how this effects Si diffusion into Au [97, 98, 176-

178].  Figure 2.3 shows tunneling electron microscope (TEM) photographs taken by Ma 

et al. [176] of a ~1400Å thick Au film deposited on a (100) silicon surface at 80ºC after 

sitting in air at room temperature.  As illustrated in Figure 2.3a, after 60 days in air, an 

amorphous Au-Si layer was formed with traces of Au4Si compound.  Figure 2.3b shows 

that after 150 days, the Au4Si layer grew further into the Si forming a much less uniform 

interface (the dotted line in Figure 2.3b shows where the original Au-Si interface was).   
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Figure 2.3:  A ~1400Å thick film deposited on (100) Si at 80ºC that sat in air at room temperature for a) 60 

days and the b) 150 days [176]. 

Chang et al. [97] took similar TEM photographs on 1500Å thick Au films deposited 

on (100) silicon surfaces which were subsequently annealed at 275, 300, 350 and 400ºC 

for 10 minutes in a nitrogen furnace.  At 275 and 350ºC very limited Si-Au intermixing 

was observed whereas at 350ºC some Au3Si compound formation was observed near the 

Au-Si interface.  At 400ºC on the other hand, Si islands were observed to have grown 

epitaxially (which means that they have the same orientation and crystalline structure as 

the substrate) through the Au film.  As well, much of the Au thin film was observed to 

have changed from its original poly-crystalline orientation, growing epitaxially in some 

places and forming the metastable compound Au3Si in others.  Chang et al. was surprised 

to observe only 7 atomic % Si in the Au film which according to the phase diagram in 

Figure 2.2 is well under the eutectic composition.  Cros et al. [178] seems to observe 

similar phenomena.  In their experiments, directly after deposition of a 3000Å film, the 

sample was immediately annealed at 415ºC for 20 minutes.  As with Cheng et al., silicon 

islands were observed in the Au thin film as well as a stable epitaxial Au structure at the 

Au-Si interface.  Next, this sample and another sample which had not been annealed at 

415 ºC where heated to 250 ºC.  Significantly more oxidation was observed in the sample 

that had not been annealed.  Cros’ assertion was that the formation of the epitaxial Au 

interface drastically reduced the Si out diffusion in the Au thin film.     

In another interesting study, Waghorne et al. [179] studied the actual structure of the 

Au-Si eutectic above the eutectic temperature in its liquid state.  They observed a close 

packed structure while in its liquid state.  Of most interest for Au-Si eutectic bonding was 
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that they observed a 1 to 2% expansion of the Au-Si alloy upon solidification.   

2.1.2 PAST WORK IN AU-SI EUTECTIC BONDING AT THE WAFER LEVEL 

A handful of authors have studied Au-Si eutectic bonding for wafer bonding 

applications.  Wolffenbuttel [101] conducted wafer bonding experiments between two Si 

wafers, each with 200Å/1000Å of Ti/Au on the front sides of the wafers in a dry oxygen 

or nitrogen flow at 400, 500, 600 and 800ºC.  As expected, Wolffenbuttel found that in an 

oxygen environment, reliable bonds were not achieved.  In vacuum he observed strong 

bonds at 800 ºC for bond times of 20 and 60 minutes but did not achieve strong bonds at 

400ºC even with bond times as long as 60 minutes and could only achieve strong bonds 

at 500 ºC and 600 ºC for bond times of 60 minutes.  Wolffenbuttel presumed that Ti acted 

as a diffusion barrier reducing the amount of diffusion of Si into Au.  He propose that 

significant Si out diffusion could not be achieved until the silicidation temperature of 

Si/Ti was reached at around 520ºC.  According to Wolffenbuttel’s argument, for our 

application, a Si/Cr silicide would need to be formed in order to achieve significant out 

diffusion.  This conflicts with our results since Cr was used as an adhesion layer for the 

bond experiments conducted in this work and Si/Cr silicides do not form at temperatures 

under 450ºC [43]—as will be reported in Sections 2.3 to 2.5, Si diffusion into Au was 

observed here resulting in repeatable bonds at temperatures of 390ºC to 410ºC.  

One of the more relevant works was conducted by Mei et al. [102].  In 2002 Mei et al. 

observed the bond quality for gold-silicon eutectic bonds using the following material 

combinations: Si/Ti/Au to Si/Ti/Au; Si/Ti/Au to Si; Si/Ti/Au to Si/PolySi; Si/Ti/Au to 

Si/Oxide; and Si/Ti/Au to Si/Nitride.  Of these, the bond quality and uniformity between 

Au-Au, Au-Si, and Au-PolySi was the best.  As illustrated in Figure 2.4, Mei et al. 

demonstrated the vacuum integrity of bonds to flat 3500Å thick poly-Si thin films using a 

diaphragm which buckled inwards due to vacuum inside of the cavity.  In 2006, Lee et al. 

used a similar method to create reference cavities for a capacitive absolute pressure 

sensor [180] using Au-Si eutectic bonding.  Very little detail on the bonding process and 

bond quality was reported in this work.  Also in 2006, as was summarized in Table 1.4 of 

Chapter 1, Wolfgang [143] at Fraunhofer Institute for Silicon Technology reported the 

use of Au-Si eutectic bonding where inertial sensors were packages and reliability test 
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data was taken.  Wolfgang measured vacuum pressures from 7.5 to 12 Torr using 

resonators, but did not present any details on the process.  

 

 

Figure 2.4:  Illustrates the method in which Mei [102] used for characterizing vacuum packages.   

2.2 BOND CHARACTERIZATION 

The uniformity and strength of bonds in this chapter were determined using the razor 

blade test and the shear test.  After bonding, wafers were partially diced (sawed) so that 

silicon caps were arrayed across the wafer as shown in Figure 2.5.  The razor blade test is 

a destructive test technique which involves wedging off these bonded caps from the 

device wafer.  The uniformity across the bond ring and across the wafer were then 

determined from inspection of the bond interface.  The razor blade test could be applied 

quickly on bonded chips across the wafer.  Using the razor blade test, it could be inferred 

whether or not a bond would result in a hermetic seal by whether or not either silicon 

transferred from the cap wafer to the device wafer or some of the thin films or the bulk 

silicon from the device wafer transferred to the cap substrate for the entire circumference 

of the bond.  Figure 2.5b shows a case where silicon has tore from the cap wafer adhering 

to the device wafer for the entire circumference of the bond.  A more detailed discussion 

of this test technique as compared to other available inspection techniques is detailed in 

Appendix 1. 
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Figure 2.5:  a) A picture where a wafer was partially diced so that caps were arrayed across the wafer, and 
b) a picture of a “dummy” device wafer substrate after a cap was torn off where Si tore for the entire 

circumference of the bond ring. 

The shear test was useful because it was a quantitative method for measuring the 

strength of bonds.  Using the shear test, caps were placed into a specially designed setup 

where a force was applied perpendicular to the face of the substrate as shown in Figure 

2.6a.  Figure 2.6b shows one of the caps sitting inside of the test setup where the slider, 

which applies the shear force, is pressed flush against the side of the cap.  A more 

detailed description of this test setup and test methodology are presented in Appendix 1.  

Also detailed in Appendix 1 are the military specifications which for the bond areas used 

in this work specify shear strengths of >6.15 MPa and >12.3MPa as passing.  For our 

bond experiments the more stringent >12.3MPa criterion was used.      

  

 

Figure 2.6: a) A schematic of how the shear force is applied and b) a picture of a diced package inside of 
the shear test setup. 
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SEM and EDX analysis, on the other hand, were used strictly for failure analysis and 

helped diagnose issues with the materials used and in the bond recipe. 

Table 2.1 summarizes the bond characterization techniques and the criterion used for 

determining bond quality and bond strength.  As explained in Chapter 1, these tests were 

only used for initial determination of bond quality—the hermeticity of bonds will be 

determined in Chapter 5 by their ability to hold vacuum. 

Table 2.1:  Summary of the test techniques and criterion used for determining hermetic/strong bonds. 

Test  
Result 

Test 
Method Pass Criterion 

General Quality Razor Blade 
Test 

Silicon transferred from cap to device wafer or thin film or 
silicon transferred from device to cap wafer for entire 

circumference of the bond 
Strength Shear Test Shear strength  of >12.3 MPa 

Failure Analysis SEMS & EDX - 

2.3 MATERIAL REQUIREMENTS FOR AU-SI EUTECTIC BONDS 

This section reports some of the specific requirements for material selection in 

conducting Au-Si eutectic bonding.  Most of the material requirements in executing a 

uniform/strong bond involved the bond ring material on the device wafer.   

Section 2.3.1 first presents the fabrication process for the wafers used for bond 

experiments.  Section 2.3.2 then presents a short discussion on thin film stack that makes 

up the bond ring on the cap wafer.  Finally, bond results are presented for bonds to un-

doped poly-Si (Section 2.3.3), heavily phosphorous doped poly-Si (Section 2.3.4) and 

Cr/Au (Section 2.3.5).   

2.3.1 WAFER FABRICATION FOR BOND EXPERIMENTS      

Chapter 3 will outline the full Au-Si eutectic bonding process used for device 

encapsulation.  Most of the initial bond experiments conducted in this chapter were 

fabricated in a significantly simplified version of the process used for device 

encapsulation.  The following sections outline the cap wafer fabrication (Section 2.3.1.1), 

the “dummy” device wafer fabrication (Section 2.3.1.2) and the wafer preparation for 

bond experiments (Section 2.3.1.3).   
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2.3.1.1 Cap Wafer Fabrication for Bond Experiments 
Figure 2.7 summarizes the configurations used for the cap wafers used in bond 

experiments.  For fabrication of these wafers, directly after a short buffered hydrofluoric 

acid (BHF) etching step, 200/5000 Å angstroms of chromium/gold was evaporated on top 

of bulk silicon using an E-beam Enerjet evaporator at ~2×10-6 Torr.  The BHF dip 

preceding the evaporation step was to ensure that the Cr/Au layer was directly in contact 

with the bulk Si and that a thick native oxide would not prevent inter-diffusion.  

Generally the wafers were inside of the evaporation vacuum chamber within 15 minutes 

of the BHF dip.  A 15 minute exposure to air should result in approximately 2 Å of oxide 

[181].  This layer acted as the seed layer for electroplating.   

Next, 10 to 20 microns of AZ 9260 photoresist was deposited and patterned, acting as 

a mold for the Au electroplating.  Electroplating was done using BDT-510 makeup 

plating solution with a stainless steal cathode on one side of the bath and the wafer on the 

other side serving as the anode.  A current source was used to supply the source current 

with the cathode attached to the positive side and clips touching the top of the wafer were 

connected to ground.  A current density of 2mA/cm2 resulted in a plating rate of around 

0.1 µm per minute (the wafers with 300 µm wide bond rings for example had an exposed 

surface area of ~3.75 cm2 and therefore a supply current of 7.5mA was used).  For the 

device bonds, the electroplated thicknesses ranged from 3 to 8 µm.  Half of the 

electroplating was done with the electrodes connected near the wafer flat and the other 

half with the wafer flipped around and the electrodes connected near the top edge of the 

wafer.  In some cases, failing to flip the wafers midway through electroplating resulted in 

bond rings which were 20% thicker near where the electrodes were connected as 

compared to those on the farthest edge.  Flipping the wafers half way through the 

electroplating process resulted in bond rings with an average bond ring thickness that was 

consistent across the wafer to with in ±5-10%. 

As shown in Figure 2.7b, for some of the bond experiments a cavity was 

anisotropically etched using Potassium Hydroxide (KOH).  This was done by first 

conducting a 30 second etch in 10:1 H2O:HF and then placing them in a KOH bath at 

90ºC.  This resulted in a ~1.1 µm per minute etch rate.  Sixty to ninety micron cavities 

were etched resulting in the sloped sidewalls shown in Figure 2.7b.  Because the Cr and 
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Au are inert to both HF and KOH, they did not need to be masked during this process 

step.  As shown in Figure 2.7c, in other wafers, deep reactive ion etching (DRIE) was 

used for patterning of the cavities.  In these cases, a 10 micron AZ 9260 photoresist was 

patterned over the bond rings and 90 µm cavities were etched using an STS Multiplex 

ICP DRIE. 
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Figure 2.7:  Schematics of the cap wafer configurations used for bond experiments in Chapter 2  showing: 
a) a cap wafer without an etched cavity, b) a cap wafer with a KOH or TMAH etched cavity and c) a cap 

wafer with a DRIE etched cavity. 

2.3.1.2 “Dummy” Device Wafer Fabrication 
Figure 2.8 summarizes the materials and configurations used for the “dummy” device 

wafers used for bond experiments in this chapter.  For these wafers, a dielectric layer was 

deposited followed by the layer to be bonded to (i.e. the bond-to layer).  The dielectric 

layer consisted of either 19000 Å of thermal SiO2 or a 19000Å/3000Å SiO2/Si3N4 stack 

(with LPCVD deposited Si3N4).  The latter most closely resembled the material sets in 

the bond processes which will be outlined in Chapter 3 used for device encapsulation.  

The bond-to layers experimented here were poly-Si and Cr/Au thin films of varying 

thickness.  Poly-Si layers 0.3, 0.8 and 2.2µm thick were deposed and in some cases the 

bond ring was patterned to 50, 150, 300 or 500µm and in other cases the poly-Si was not 

patterned at all.  Also, in some cases these poly-Si thin films were heavily phosphorous 

doped.  These different configurations are summarized in Figure 2.8a.  

For the bonds to Au thin films, a 500/5000 Å Cr/Au thin film was evaporated in an 

Energet Evaporator or sputtered using an Enerjet Sputter Coater.  In some cases the bond 

ring was patterned to 100, 150 or 300 µm and in other cases the Au was not patterned at 
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all.  These configurations are summarized in Figure 2.8b.   
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Figure 2.8:  Schematics of the different “dummy” device wafer configurations for bonds to poly-Si and Au. 

2.3.1.3 Wafer Preparation for Bond Experiments 
Directly before each bond, both the cap wafer and “dummy” device wafer were 

Piranha cleaned (an aggressive chemical clean where the wafers are dipped in an 

approximately 1 to 1 mixture of sulfuric acid and hydrogen peroxide) for 10 minutes in 

order to remove organic particles that could compromise the bond quality.  For the 

“dummy” device  wafers with poly-Si thin films, after the Piranha clean, the wafers were 

dipped in BHF in order to remove the native oxide.  Bonds were conducted anywhere 

from several minutes to several hours after this wafer preparation.   

In cases where the “dummy” device wafer was patterned, the bond rings on the cap 

wafer needed to be aligned to these bond rings on the “dummy” device wafer.  This was 

done using a SUSS microTec SB6 wafer alignment system.  This alignment system 

allowed for alignment tolerances anywhere from ±5 to ±100 µm.  After the alignment, the 

wafer which were then clamped into the alignment chuck, where transferred into either 

the SUSS microTec SB6 or SB6e bond chamber for bonding.  More details on this bond 

chuck and bond chamber are presented in Appendix 2.   
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2.3.2 A DISCUSSION ON THE CAP WAFER BOND RINGS 

One difference in our application as supposed to many of the studies presented in 

section 2.1 (Background & Previous Work) is that in those studies Au was deposited 

directly on top of the Si substrate.  In our application, a 200 Å thick Cr layer was used as 

an adhesion layer for a 5000 Å thick evaporated Au thin film to ensure excellent adhesion 

to any native oxide that formed on the surface of the Si wafer.  On top of those films, a 3-

8µm thick electroplated Au layer was deposited and then etched back by 5000Å (as 

described in the previous section).  As illustrated in Figure 2.9a, this means that Si needs 

to diffuse through a ~ 2 Å native oxide (the approximate amount of oxide that grows in 

15 minutes on a bare (100) oriented silicon wafer [181]) and a 200Å Cr layer to intermix 

with the evaporated and electroplated Au films. 
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Figure 2.9:  a) Schematic of the thin film stack where a native SiO2 and a Cr layer act as a potential 
diffusion layer for between the Si and the Au and b) an SEM of the rough electroplated Au layer.   

The native SiO2 and Cr layer do in fact seem to reduce the amount of silicon out 

diffusion into the Au layer at low temperatures.  As was explained in Section 2.1.1.2, a 

10 minute exposure at 100 ºC can result in a 1000Å thick SiO2 layer on top of an 

evaporated gold film deposited directly on top of a bulk Si layer.  In experiments 

conducted here, evaporated 200Å/5000Å Cr/Au films were heated up to ~315ºC in air for 

10 minutes without noticeable discoloration.  Furthermore, the wafers were placed on a 

probe station and probes were placed in contact with the surface of the Au.  A multimeter 

was used to indicate a short circuit.  This indicated that if there was SiO2 formation on 
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this surface, it was not significant—certainly not 1000Å thick.  At around 350ºC on the 

other hand, heating the wafer for several minutes caused it to become “cloudy.”  This 

time, probing the wafer with probes from a probe station, a multimeter was used to 

indicate an open circuit.  Although not conclusive, these experiments seem to indicate 

that SiO2 formation on top of the Au film is not a serious issue until the temperature is 

raised to near eutectic temperature.   

2.3.3 BONDS TO UN-DOPED POLY-SI 

There were no processing issues specific to bonds to un-doped poly-Si films.  

Therefore, only bond results for uniform/strong bonds are presented in this section.  

There were in fact quite a few bonds to un-doped poly-Si that were problematic.  Those 

technical issues applied for other material sets as well for bonds to un-doped poly-Si and 

were either caused by the bond recipe or by Au-Si eutectic flow.  Those bond results are 

therefore discussed in Section 2.4 (The Bond Recipe for Au-Si Eutectic Bonds) and 

Section 2.5 (Au-Si Eutectic Lateral Flow).  All of the bonds described in this section were 

between a cap wafer with a 300µm wide Au bond ring and a device wafer with either a 

0.3 µm or 2.2 µm thick un-doped poly-Si thin film.  For each case, the poly-Si film on the 

“dummy” device wafer was not patterned.  Figure 2.10 summarizes the dimensions of the 

thin films used in these bond experiments. 
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Figure 2.10:  The dimensions of the films for bonds from the experiments shown in Table 2.2. 

Table 2.2 shows all of the key parameters for these bonds.  All of the bonds in Table 
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2.2 were determined to be high quality by the razor blade test, where bulk Si tore from 

the cap wafer, adhering to the device wafer for the entire surface area of the bond ring.  

As illustrated in Table 2.2, quality bonds were demonstrated with and without an 

intermediate temperature step up to 60 minutes long and at bond temperatures of 410ºC 

for 40 minutes and 395ºC for 15 to 45 minutes.  As also illustrated in Table 2.2, 

successful bonds were demonstrated with Au bond rings on the cap wafer of 3 to 6 µm 

thick at bond pressures of 2.1 MPa and 2.7 MPa (1000N and 1300N of force).  Bonds 

using larger and smaller bond forces than these resulted in less consistent results and will 

be discussed in Section 2.4 (The Bond Recipe for Au-Si Eutectic Bonds). 

Table 2.2: Summary of hermetic/strong bonds to poly-Si thin films which passed the razor blade test.  All 
of these bonds were with 300 µm wide bond rings. 

Au-Si to poly-Si (0.3, 2.2 µm) bond 

Bond # 

Cap 
Bond 
ring 

Thick- 
ness 

Poly-Si 
Thick-
ness 

Bonder 
Intermediate 
Temperature 

Step 

Bond 
Temperature 

Step 

Bond 
Force Cavity 

Pass the 
Shear 
Test? 

22 6µm 0.3 µm  EVG 265ºC, 60min 395ºC*, 30min. 2.7MPa 
(1000N) - - 

24 3µm 0.3 µm EVG 265ºC, 40min. 395ºC*, 20min. 2.7MPa 
(1000N) - - 

25 5µm 0.3 µm EVG - 395ºC*, 40min. 2.7MPa 
(1000N) - - 

30 3.5µm 0.3 µm EVG - 395ºC*, 15min. 2.7MPa 
(1000N) - - 

36 3.5µm 0.3 µm EVG - 395ºC*, 40min. 2.7MPa 
(1000N) - 5/5 (15.0-

20.3 MPa) 

39 3µm 0.3 µm EVG - 395ºC*, 40min. 2.7MPa 
(1000N) - 5/5 (15.0-

27.8 MPa) 

55 3µm 0.3 µm EVG - 395ºC, 45min. 2.7MPa 
(1000N) DRIE  - 

109 4µm 2.2 µm SB6e - 410 ºC, 40min. 2.1MPa 
(800 N) - 5/5 (13.0-

19.7 MPa) 
 

As summarized in Table 2.2, in the shear tests for wafers #36, #39 and #109 all of the 

chips tested passed with shear strengths ranging from 13.0 MPa to >27.8 MPa.  Tables 

2.3, 2.4 and 2.5 show the details of the shear test results from these bonds.  As illustrated, 

for nearly all of the samples from bond #36, #39 and #109, the type of failure is listed as 

“sheared in the cap or device substrate” which as described in Appendix 1 means that 

they did not break near the bond ring interface—and as a result the bond interface could 

not be inspected after the shear test. 
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Table 2.3:  Shear test results for bond #36. 

Shear Test Results (Bond #36) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C3-R14 15.0 Sheared in cap or device substrate Pass 
C3-R10 21.3 Sheared in cap or device substrate Pass 
C4-R8 16.6 Sheared in cap or device substrate Pass 
C8-R6 19.7 Sheared in cap or device substrate Pass 
C5-R4 15.0 Sheared in cap or device substrate Pass 

Average Strength: 17.5 MPa     
Standard Deviation:  2.9 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table 2.4:  Shear test results for bond #39. 

Shear Test Results (Bond #39) 
 

Position 
Calculated Shear 
Strength (MPA) Type  of Failure Pass/Fail 

Unknown 26.1 Sheared in cap or device substrate Pass 
Unknown 15.0 Sheared in cap or device substrate Pass 
Unknown 26.1 Sheared in cap or device substrate Pass 
Unknown 24.5 Sheared in cap or device substrate Pass 
Unknown >27.8 Not enough force applied for failure Pass 
Average Strength: 23.9 MPa     
Standard Deviation:  5.1 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table 2.5:  Shear test results for bond #109. 

Shear Test Results (Bond #109) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

Unknown 13.4 Sheared in cap or device substrate Pass 
Unknown 15.0 Sheared in cap or device substrate Pass 
Unknown 19.7 Sheared in cap or device substrate Pass 
Unknown 19.7 Sheared in cap or device substrate Pass 
Unknown 19.7 Sheared in cap or device substrate Pass 
Average Strength: 17.5 MPa     
Standard Deviation:  3.1 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

2.3.4 BONDS TO PHOSPHOROUS DOPED POLY-SI 

Most of the bonds in the previous section (Section 2.3.3) where done to 0.3 µm thick 

un-doped poly-Si.  All of the bonds described in this section were between a cap wafer 
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with a 300µm wide Au bond ring and a device wafer with either a 0.8 µm or 2.2 µm thick 

poly-Si thin film.  In almost all of these bond experiments, the thicker poly-Si layer was 

heavily phosphorous doped.  In this section some specific issues involving bonds to 

heavily phosphorous doped poly-Si films are presented as well as methods for addressing 

those issues.   
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Figure 2.11:  The dimensions of the films for bonds from the experiments shown in a) Table 2.6 and b) in 
Table 2.8. 

In an earlier presentation of this work done in 2005, it was hypothesized that bonds to 

films thicker than 0.3 µm were problematic [104, 119].  In those publications two 

problems were observed:  a more significant lateral flow of the Au-Si alloy and a 

breaking of the underlying poly-Si at the interface between the poly-Si and the 

underlying dielectric.  Since then, more experiments have been conducted and as will be 

explained, the heavily phosphorous doping of these poly-Si layers seems to cause these 

phenomena.  Table 2.6 shows several bonds conducted to both 0.8µm and 2.2µm thick 

poly-Si thin films.  For each case, the poly-Si film on the “dummy” device wafer was not 

patterned.  Figure 2.11a summarizes the dimensions of the thin films used in these bond 

experiments.   

Bonds #31, #34, and #108 resulted in significant lateral flow of the Au-Si alloy.  

Figure 2.12a shows the results of one of these bonds after the wafers were pried apart 

using a razor blade.  The dark areas in the figure are where poly-Si tore off the SiO2 on 

the device wafer adhering to the cap wafer.  Figure 2.12b illustrates this phenomenon 

schematically, showing poly-Si torn away, adhering to the Au-Si eutectic on the cap 
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wafer.  It is evident from Figure 2.12a that the Au-Si eutectic spread laterally several 

millimeters during bonding.  It is not evident why these heavily phosphorous doped poly-

Si films appear to encourage lateral flow of the Au-Si alloy.  One potential explanation is 

that the presence of phosphorous changes the surface tension or some other property of 

the Au-Si alloy.  Furthermore, as evident in Figure 2.12, all of the bond rings across the 

wafer were easily pulled apart simultaneously when the wafers were pried apart.  This 

qualitatively indicated a very weak bond.      

Table 2.6:  Bond parameters for bonds conducted between a Au-Si bond ring and a 0.8µm and 2.2 µm thick 
Poly-Si film on a device wafer that was not patterned.   

Au-Si to poly-Si (0.8, 2.2 µm) bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Poly-Si 
Thick-
ness 

Device 
Bond 
Ring 

Width 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force Cavity 

Au-
Si 

Flow 
Bond 

Strength 

31 8µm 0.8µm 
n-doped 

No 
pattern EVG - 395ºC, 

15min. 
2.7MPa 
(1000N) - Flow Very 

weak 

34 2µm 0.8µm 
n-doped 

No 
pattern EVG - 395ºC, 

40min. 
2.7MPa 
(1000N) - Flow Very 

weak 

108 4µm 2.2µm 
n-doped 

No 
pattern SB6e - 410ºC, 

40min. 
2.1MPa 
(800 N) - Flow 1/5 (9-

15MPa) 

109 4µm 2.2µm No 
Pattern SB6e - 410ºC, 

40min. 
2.1MPa 
(800 N) - None - 
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Figure 2.12:  a) Photograph of the “dummy” device wafer after pulling the two bonded wafers apart for 
bond #31 and b) a schematic showing how the poly-Si was pulled of off the underlying dielectric. 

 

Bond #108 stayed well enough intact that chips could be diced allowing for the shear 

test to be applied.  As summarized in Table 2.6, for bond #108 only 1 out of 5 of the 

packages passed the shear test with shear strengths ranging from 9 to 15 MPa.  Table 2.7 

shows the details of the shear test results from this bond.  Inspecting samples after the 

shear test, it was evident that poly-Si tore from the device wafer adhering to the cap 

wafer in the same manner described above and illustrated in Figure 2.12.   
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Table 2.7:  Shear test results for bond #108. 

Shear Test Results (Bond #108) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C10-R8 10.2 Sheared in bond ring Fail 
C5-R13 15.0 Sheared in bond ring Pass 
C2-R8 8.7 Sheared in bond ring Fail 
C5-R1 10.2 Sheared in bond ring Fail 
C6-R8 10.2 Sheared in bond ring Fail 

Average Strength: 10.9 MPa     
Standard Deviation:  2.4 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

As a control experiment in Table 2.6, the 2.2 µm thick poly-Si “dummy” device wafer 

in bond #109 was not phosphorous doped (this bond was also presented in the previous 

section in Table 2.2).  This resulted in a bond in which there was no evidence of any 

lateral flow and where bulk Si tore from the cap wafer adhering to the device wafer.  In 

shear test results that were detailed in Section 2.3.3 (in the previous section) shear 

strengths of 13 to 19.7 MPa were achieved where all of the packages passed the shear 

test.  This seems to indicate that the excess lateral flow and weakened bond joints in 

bonds #31, #34 and #108 were due to the heavy doping of the poly-Si layer.  

In an attempt to stop lateral flow of the Au-Si alloy in bonds to phosphorous doped 

films, a number of bonds were conducted where the poly-Si bond-to layer was patterned 

to the same dimensions or to within 200µm of the dimensions of the cap wafer bond ring.  

Figure 2.11b summarizes these device dimensions and Table 2.8 shows the parameters 

for these bond experiments.  Figure 2.13 shows a bond ring from bond #101 after the cap 

was torn off using the razor blade test.  As illustrated, the 2.2µm thick poly-Si film de-

adhered from the device wafer, adhering to the cap side.     
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Table 2.8:  Bond parameters for bonds conducted between a Au-Si bond ring and a 0.8µm and 2.2 µm thick 
Poly-Si film on the device wafer where the device wafer was patterned to the same dimensions as the cap 

wafer or to within 100µm of the cap bond ring dimensions.   

Au-Si to poly-Si (0.8µm, 2.2 µm)  bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Poly-Si 
Thick-
ness 

Device 
Bond 
Ring 
Width 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force Cavity Bond 

Strength 

38 8µm 2.2µm 
n-doped 500 EVG - 395ºC, 

45min. 
2.7MPa 
(1000N) - 5/5 (20-

>28MPa) 

87 5µm 0.8µm 
n-doped 300 SB6e 345ºC, 

60min. 
410ºC, 
40min. 

9.9MPa 
(3700N) - - 

93 4.5µm 2.2µm 
n-doped 300 SB6e 345ºC, 

60min. 
410ºC, 
40min. 

9.9MPa 
(3700N) - - 

101 
(Device) 4.5µm 2.2µm 

n-doped 300 SB6e 345ºC, 
60min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH 5/6 (12-

25MPa) 
102 

(Device) 4µm 2.2µm 
n-doped 300 SB6e 345ºC, 

60min. 
410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

104 
(Device) 4µm 2.2µm 

n-doped 300 SB6e 345ºC, 
5min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

107 4µm 2.2µm 
n-doped 300 SB6e 345ºC, 

0min. 
410ºC, 
40min. 

9.9MPa 
(3700N) KOH 5/5 (15-

20MPa) 
 

 

 

Figure 2.13:  An SEM of a bond ring from bond #101 after the cap was torn off of the device wafer.  

Even so, shear tests seem to indicate a strong bond.  In fact, as shown in Table 2.8, 15 

of the 16 packages from bonds #38, #101 and #107 passed the shear test with shear 

strengths ranging from 11.8 to >27.8 MPa (the one that failed only failed by a small 

margin with a shear strength of 11.8 MPa).  Tables 2.9, 2.10 and 2.11. show the details of 
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these shear test results.  For many of the  samples from these bonds, the type of fracture is 

listed as “Si” which as described in Appendix 1 means that they fractured in the device or 

cap substrate, not in the bond ring—and as a result, the fracture mode of these devices 

could not be determined.  In several other samples the type of fracture is listed as “bond 

ring” which meant that cap was sheared off breaking somewhere near the bond ring 

interface.  After inspection, all of these samples fractured in similar ways to the bond 

shown in Figure 2.13, where the poly-Si tore completely off of the underlying SiO2 

sticking to the Au-Si eutectic layer on the cap.    

In addition, no lateral flow of Au-Si was observed for any of these bonds on the device 

wafer.  This is likely because the molten Au-Si alloy does not wet the SiO2 or Si4N3 

which surrounded the patterned poly-Si.   

Table 2.9:  Shear test results for bond #38. 

Shear Test Results (Bond #38) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C3-R14 22.9 Sheared in cap or device substrate Pass 
C3-R10 22.9 Sheared in cap or device substrate Pass 
C4-R8 22.9 Sheared in cap or device substrate Pass 
C8-R6 19.7 Sheared in cap or device substrate Pass 
C5-R4 >27.8 Sheared in cap or device substrate Pass 

Average Strength: 23.2 MPa     
Standard Deviation:  2.9 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table 2.10:  Shear test results for bond #101. 

Shear Test Results (Bond #101) 
 

Position 
Calculated Shear 
Strength (MPA) Mode of Failure Pass/Fail 

C5-R2 24.5 Sheared in cap or device substrate Pass 
C5-R6 13.4 Sheared in bond ring Pass 

C3-R14 11.8 Sheared in bond ring Fail 
C9-R8 16.6 Sheared in cap or device substrate Pass 
C2-R7 19.7 Sheared in bond ring Pass 
C8-R1 15.0 Sheared in bond ring Pass 

Average Strength: 16.8 MPa     
Standard Deviation: 4.6 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 
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Table 2.11:  Shear test results for bond #107. 

Shear Test Results (Bond #107) 
 

Position 
Calculated Shear 
Strength (MPA) type of Failure Pass/Fail 

C5-R14 16.6 Sheared in cap or device substrate Pass 
C5-R8 16.6 Sheared in bond ring Pass 
C4-R2 15.0 Sheared in bond ring Pass 
C10-R8 19.7 Sheared in bond ring Pass 
C2-R8 16.6 Sheared in bond ring Pass 
Average Strength: 16.9 MPa     
Standard Deviation:  1.7 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

2.3.5 BONDS TO AU FILMS 

This section presents results for Au-Si bonds to gold thin films.  All of the bonds 

described were between a cap wafer with a 100, 150 or 300µm wide Au bond rings and a 

device wafer with a 500Å/5000Å Cr/Au film.  Figure 2.14 summarizes the dimensions of 

the thin films used and Table 2.12 summarizes the bond parameters for these bond 

experiments.  In all of the bonds in this table a dehydration bake was used directly before 

placing the device wafer into the evaporator or sputter tool for the bond ring Cr/Au 

deposition (details of the deposition process were given in Section 2.3.1).  This bake was 

conducted in an oven at 110ºC for 30 minutes.  Results without this dehydration bake are 

discussed in the next subsection (Section 2.3.5.1).   

 

100, 150, 300 !m
width Au bond ring

500/5000 Å thick, 100, 150, 
300 !m wide Cr/Au

dielectric

100, 150, 300 !m
width Au bond ring

500/5000 Å thick, 100, 150, 
300 !m wide Cr/Au

dielectric

 

Figure 2.14:  The dimensions of the films for bonds from the experiments shown Table 2.12. 

As illustrated in Table 2.12, successful bonds were demonstrated with and without a 
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60 minute intermediate temperature step and at bond temperatures of 410ºC for 40 

minutes (as explained in Appendix 1 these bonds were done at 410ºC as opposed to 

390ºC because of an error in transferring the recipe to the SB6e bonder).  As also shown, 

Au bond ring thicknesses of 4 and 4.5µm were used on the cap wafer, with bond forces of 

1230N, 1850N and 3700N (9.9 MPa of bond pressure in each case because of the 

differing bond ring widths). 

Table 2.12: Bonds to Au thin films where the cap and device wafer had the same dimensions.  A 
dehydration bake was used for each of these bonds. 

Au-Si to Au (0.5µm) bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Mat- 
erial 

Under 
Bond 
Ring 

Pre-
Bake 
for 
Au 

Depo-
sition 

Bond 
Ring 

Width 
Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force 

Cav-
ity Strength 

95 4.5 
µm Ox/SiN Yes 300 SB6e 345ºC, 

60min. 
390ºC,  
40min. 

9.9MPa 
(3700N) - - 

97 4.5 
µm Ox/SiN Yes 300 SB6e 345ºC, 

60min. 
410ºC,  
40min. 

9.9Mpa 
(3700N) - - 

98 4.5 
µm Ox/SiN Yes 300 SB6e -. 410ºC,  

40min. 
9.9Mpa 
(3700N) - 5/5 (50-

64MPa) 
100 

(Device) 4 µm Ox/SiN Yes 300 SB6e - 410ºC,  
40min. 

9.9MPa 
(3700N) KOH 5/5 (18-

21MPa) 
103 

(Device) 4 µm Ox/SiN Yes 150 SB6e - 410ºC,  
40min. 

9.9MPa 
(1850N) KOH - 

105 
(Device) 4 µm Ox/SiN Yes 100 SB6e - 410ºC,  

40min. 
9.9MPa 
(1230N) KOH 5/5 (30-

54MPa) 
 

Table 2.12 also summarized the various shear test results and Tables 2.13, 2.14 and 

2.15 show the details of these tests.  In bond #100 which had the standard bond ring 

width of 300µm, all of the devices subjected to the shear test passed with shear strengths 

of 19 to 22 MPa.  Bonds #98 and #105 had bond ring widths of only 100 µm.  These 

bonds broke with roughly the same shear force, and because they had smaller bond ring 

areas, they had higher calculated shear strengths of 50 to 64 MPa and 30 to 54 MPa 

respectively.   Inspecting the bond rings after shear testing, in every case, bulk silicon 

tore from the cap wafer adhering to device wafers for the entire periphery of the bond.   
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Table 2.13:  Shear test results for bond #98. 

Shear Test Results (Bond #98) 
 

Position 
Calculated Shear 
Strength (MPA) Mode of Failure Pass/Fail 

C5-R2 49.7 Sheared in bond ring Pass 
C5-R7 63.9 Sheared in bond ring Pass 
C2-R8 54.4 Sheared in bond ring Pass 

C5-R14 68.7 Sheared in bond ring Pass 
C9-R10 63.9 Sheared in bond ring Pass 

Average Strength: 60.1 MPa     
Standard Deviation:  7.8 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table 2.14:  Shear test results for bond #100. 

Shear Test Results (Bond #100) 
 

Position 
Calculated Shear 
Strength (MPA) Mode of Failure Pass/Fail 

C6-R1 18.1 Sheared in bond ring Pass 
C10-R6 18.1 Sheared in bond ring Pass 
C6-R14 21.3 Sheared in bond ring Pass 
C3-R6 18.1 Sheared in bond ring Pass 
C6-R6 18.1 Sheared in bond ring Pass 

Average Strength: 18.8 MPa     
Standard Deviation: 1.4 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table 2.15:  Shear test results for bond #105. 

Shear Test Results (Bond #105) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C4-R1 54.4 Sheared in bond ring Pass 
C5-R14 54.4 Sheared in bond ring Pass 
C5-R6 30.7 Sheared in bond ring Pass 
C1-R8 59.2 Sheared in bond ring Pass 

C10-R7 44.9 Sheared in bond ring Pass 
Average Strength: 48.7 MPa     
Standard Deviation:11.3 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

The following subsections describe some specific technical issues for bonds to Cr/Au 

films and for bonds to glass using Cr/Au films. 
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2.3.5.1 Dehydration Bake 
Table 2.16 shows bonds in which a dehydration bake was not conducted directly 

before deposition of the Cr/Au layer in the evaporator or sputter tool.  In many cases this 

resulted in bonds that seem to have a different failure mechanism than the bonds to 

device wafers that did have a dehydration bake.  Figure 2.15 shows the results from the 

razor blade test on bond #92.  As illustrated, in some regions, Si transferred from the cap 

wafer to the device wafer, but in others the Cr/Au layer seems to have delaminated or 

actually broke in the underlying SiO2 layer.  Similar results were observed for bonds #90 

and #91.  As shown in the table, in Bond #91 in fact, a different metal stack was used: 

500Å/1000Å/5000Å Cr/Pt/Au as opposed to 500Å/5000Å Cr/Au.  This change did not 

seem to affect the outcome of the razor blade test.   

Table 2.16: Bonds to Au thin films where the cap and device wafer had the same dimensions and a 
dehydration bake was not used in several cases.  All of the bond ring widths were 300 µm. 

Au-SI to Au (0.5 µm) bond  

Bond 
# 

Cap 
Bond 
Ring 

Thick-
ness 

Mat- 
erial 

Under 
Bond 
Ring 

Pre-
Bake 
for 
Au 

Depo-
sition 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force 

Cav-
ity 

Adhesion 
to  

Dielectric Strength 

75 8 µm Ox No SB6 345ºC, 
60min. 

390ºC,  
40min. 

3.5MPa 
(1300N) - Good - 

90 4.5µm Ox No SB6e 345ºC, 
60min. 

390ºC,  
40min. 

9.9MPa 
(3700N) - Bad - 

91 4.5µm Ox/Cr 
/Pt/ No SB6e 345ºC, 

60min. 
390ºC,  
40min. 

9.9MPa 
(3700N) - Bad - 

92 4.5µm Ox No SB6e 345ºC, 
60min. 

390ºC,  
40min. 

9.9MPa 
(3700N) - Bad 5/5 (11.8-

26.1MPa) 
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Figure 2.15:  Microscope photographs of a) the “dummy” device side of a bond ring from bond #92 where 
in some parts of the bond ring silicon tore from the other wafer indicating a strong bond, in some parts the 

Cr/Au delaminated from the wafer and in some parts part of the SiO2 was pulled off of the device wafer.  b) 
Shows a close of view of an area where oxide was torn off and  c) shows an area (on a different bond ring) 

where the Cr/Au delaminated from the device wafer. 

It was presumed that this seeming lack of adhesion of the Cr/Au to the underlying 

dielectric layer was due to moisture.  This is common in deposition of metal films onto 

glass surfaces (which are similar to SiO2) and baking out the wafer before thin film 

deposition is a common method for addressing this problem.  It should be noted that 

Bond #75 in Table 2.16 did not seem to be affected by the lack of a dehydration bake 

step.  It is possible that less moisture collected on the surface of this wafer due to slightly 

different wafer preparation or that the smaller bond force of 1300N (3.9 MPa) had 

something to do with this. 

Shear tests were conducted on bond #92 as shown in Table 2.16.  Table 2.17 shows 

the details of these shear tests.  It is interesting to note that despite the seemingly different 

failure mechanism; 4 out of 5 of the samples tested passed the shear test with 11.8 to 26.1 

MPa shear strengths (the one that failed only failed by a small margin with a shear 
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strength of 11.8 MPa).  Even so, such a failure mechanism could provide a leak path.  

Furthermore, in bonds to device wafers with Pirani gauges (specifically in bond #100, the 

vacuum results for this wafer are detailed in Section 5.3.1.2 of Chapter 5), on several dies 

across the wafer, the feed-through lines were observed to be electrically open.  After 

prying off the caps, they were observed to have broken at the Cr dielectric layer interface 

or inside the dielectric itself.  In some cases, this fracturing actually went through the 

poly-Si feed-through line themselves.  The dehydration bake therefore seemed to be an 

important step. 

Table 2.17:  Shear test results for bond #92. 

Shear Test Results (Bond #92) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

Unknown 19.7 Sheared in bond ring Pass 
Unknown 26.1 Sheared in bond ring Pass 
Unknown 19.7 Sheared in bond ring Pass 
Unknown 19.7 Sheared in bond ring Pass 
Unknown 11.8 Sheared in bond ring Fail 
Average Strength: 19.4 MPa     
Standard Deviation:5.1 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

2.3.5.2 Patterning the Au 
Table 2.18 shows the parameters for one of the initial bonds to a Au thin film in which 

a bond was conducted onto a “dummy” device wafer with an un-patterned Au film.  

Figure 2.16 illustrates the results from this bond.  Because of the bad contrast in the 

photograph, a dotted line was drawn to show the outline of what remains of the bond ring 

from the cap side.  As illustrated in the figure, the Au-Si alloy diffused several 

millimeters laterally from the bond ring.  It was presumed that this lateral diffusion could 

have adverse effects on the bond quality and therefore the device bond ring was patterned 

to the same dimensions as the cap wafer bond ring for all experiments following this 

bond experiment.      
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Table 2.18: A bond to an Au thin films which was not patterned. 

Au-Si to Au (0.5 µm) bond 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Mat- 
erial 

Under 
Bond 
Ring 

Bond 
Ring 
Width 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond Force Cavity Strength 

32 1 µm Ox 300 SB6 - 395ºC,  
60min. 

5.2MPa 
(1000N) - - 

 

 

Figure 2.16:  The device side of bond #32 where a bond was done to an un-patterned Au thin film.  The 
dotted line shows the location of one of the bond rings. 

2.3.5.3 Bonds to Glass 
Table 2.19 shows the bond parameters for a bond to a Cr/Au layer deposited on a 

Pyrex glass wafer.  This bond passed the razor blade test and though shear tests were not 

conducted, it was qualitatively observed to be a strong bond.  Subsequently for work 

published by Lee et al. [182] a similar bond recipe was used for vacuum encapsulating 

gyroscopes and Pirani gauges in a hybrid bonding process.  Therefore, Au-Si eutectic 

bonding seems to be a viable method for packaging devices fabricated on glass 

substrates.  
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Table 2.19: A bonds to a Au thin films on glass. 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Mat- 
erial 

Under 
Bond 
Ring 

Pre-
Bake 
for 
Au 

Depo-
sition 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force 

Cav-
ity 

Adhesion 
to  

Dielectric Strength 

83 4 Glass No SB6 345ºC, 
60min. 

390ºC,  
40min. 

3.5MPa 
(1300N) - Good - 

 

2.4 THE BOND RECIPE FOR AU-SI EUTECTIC BONDS 

This section explains each of the steps in the bond recipe used for Au-Si eutectic 

bonding.  Though all of the process steps are explained in this section, most of the 

technical issues in this section that affected the bond quality involved the amount of bond 

force and the timing of that applied bond force (Section 2.4.3).  In bond experiments 

three different bonders were used: the EVG 510, the SUSS microTec SB6 and the SUSS 

microTec SB6e.  In some cases, before putting the wafers inside of the bond chamber, 

they were first aligned to each other  in the SUSS microTec SB6 wafer alignment system 

before going in the SB6 or SB6e bonders.  Appendix 2 presents more details on the three 

bonders used for bond experiments, the temperature calibration of these bond chambers, 

and the fixturing used for alignment of the wafers. 

Figure 2.17 shows a schematic of the bonding process where:  i) the bond chamber 

was pumped down to a pressure of around 10×10-6 Torr; ii) both the bottom heater and 

top heater were raised to 345ºC and held for 1 hour in the outgassing step; iii) physical 

contact was made between the wafers by removing the spacers, the bond force was 

applied, and the clamps holding the wafers together were removed; iv) the temperature 

was raised to the bond temperature which ranged from 390 to 410ºC and the temperature 

was held for a specified amount of time, generally 40 minutes.  After running the bond 

sequence, the wafers were then cooled to below 200ºC at which point they were pulled 

out of the wafer bonder. 
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ii) Outgassing Step
345ºC, 1 hour

Spacers Out Bond Force

Clamps Removed

iv) Bond Temperature
390 - 410ºC, 40 min.

iii) Contact/Force Applied 
~2.5 MPa

 
Figure 2.17:  The generic bond recipe. 

In the rest of this section, these bond steps are discussed in more detail.  Sections 2.4.1 

and 2.4.2 first present short discussions on the applied vacuum inside of the vacuum 

chamber (step 1) and the outgassing step (step 2).  Section 2.4.3 then presents a 

discussion on the magnitude and timing of the applied bond force (step 3).  Finally, 

Section 2.4.4 discusses the bond temperature step (step 4). 

2.4.1 STEP 1:  APPLICATION OF VACUUM 

The first step in the bonding processes in Figure 2.17 was the application of vacuum.  

Inside of the bond vacuum chamber, a pressure of between 10 and 20 µTorr was 

generally achieved.  This step had two motivations.  First, one of the goals of this thesis is 

to develop a vacuum package.  Therefore, pulling vacuum and holding the vacuum before 

the bond and during the bond was a necessary step.  Second, this step was useful if not 

necessary, even for packaging devices that do not need to operate in a vacuum 

environment.  This is because of the of Si diffusion into Au film during bonding.  As 

discussed in Section 2.1.1.2 (Oxide Formation on Au Thin Films) SiO2 formation on top 
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of Au films have been observed in the literature at temperatures well under the Au-Si 

eutectic temperature.  This SiO2 formation can act as a diffusion barriers and can result in 

non-uniform bonds [160].  For devices which need to be packaged at or near atmospheric 

pressure, one potential option would be to evacuate the chamber with a dry inert gas such 

as nitrogen or argon.   

2.4.2 STEP 2:  THE OUTGASSING STEP 

The outgassing step shown in Figure 2.17 was used specifically to aid in achieving 

lower vacuum packaged pressures.  During the outgassing step, the wafers were held 

apart for 60 minutes at  345ºC.  As will be discussed in Chapter 5, despite the fact that the 

vacuum chamber was at a pressure of 10 to 20 µTorr when the packaged cavities were 

sealed after completion of the bond, the pressures inside of the micro-package where 

measured at between 2 and 40 Torr without the advent of getters.  As will be discussed in 

Chapter 5, these elevated pressures were likely due to outgassing inside of the micro-

cavity after the packages were sealed.  The outgassing step was implemented in order to 

outgas the surfaces of the wafers before the devices were sealed.  Because the outgassing 

rates of materials in a vacuum environment generally reduce over time (even more so at 

elevated temperature) this outgassing step therefore should help reduce the amount of 

outgassing inside of the micro-cavity after sealing. 

Table 2.20 shows a summary of some of the bonding results presented in Chapter 5.  

In all of the bonds shown in Table 2.20  getters were used, but only #71 and #78 used the 

345ºC, 60 minute long outgassing step.  As illustrated, with the outgassing step pressures 

in the single and tens of milliTorr were achieved and without the outgassing step 

pressures in the hundreds of milliTorr were achieved.    
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Table 2.20:  A summary of the different pressures measured with/without an outgassing step for some of 
the bonds conducted in Chapter 5. 

Bond Location of Data Getters Outgassing 
Step Pressure Ranges 

#103, #105 Section 5.3.2 Yes No 77-2400 mTorr 
#71, #78 Section 5.3.3  Yes Yes <2-23.3 mTorr 

2.4.3 STEP 3:  WAFER CONTACT & BOND FORCE 

As shown in Figure 2.17, after applying the outgassing step, the wafers were brought 

into contact and the bond force was applied.  This entailed removing the spacers which 

held the wafers apart, applying the bond force and then finally removing the clamps 

which held the wafers together in the alignment fixture (details on the bond chamber and 

alignment fixturing are given in Appendix 2).  For a majority of the bonds, the bond 

pressure was around 2.5 MPa.  As will be described in the following sections, decreasing 

the bond pressure to 1.0 MPa (Section 2.4.3.1) and increasing the bond pressure to ~10 

MPa (Section 2.4.3.2) decreased the uniformity/strength of the bond.  Furthermore, the 

timing of the applied bond force also affected bond quality (Section 2.4.3.3). 

2.4.3.1 Low Bond Pressure Results (~1 MPa) 
Table 2.21 shows the bond parameters for a number of bonds conducted with bond 

pressures 1.0 MPa (a 390 N bond force).  All of these bonds involved a 300 µm wide 

bond ring and were to 0.3µm thick poly-Si.  As compared to the bonds from Table 2.2 

(the uniform/strong bonds to 0.3 µm poly-Si from section 2.3.3 which were done with 

bond pressure of 2.7 MPa (a 1000N bond force)), the shear test results conducted on 

these bonds were not as uniform.  In other words, in some parts of the wafer silicon tore 

from the cap wafer adhering to the device wafer for the entire periphery of the bond ring 

and in other parts of the wafer, less conformal bonds were observed.   
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Table 2.21: Summary of bonds to 0.3 µm thick poly-Si thin films (bond parameters summarized in Fig. 
2.29), in which a 390 N of bond force was applied. 

Bond # 
Cap Bond 

ring 
Thickness 

Bonder 
Intermediate 
Temperature 

Step 

Bond 
Temperature 

Step 

Bond 
Force 

Cavity Pass the 
Shear 
Test? 

51 3.5µm SB6 345ºC, 10min. 390ºC, 20min. 1.0MPa 
(390N) - - 

53 3.4µm SB6 345ºC, 10min. 390ºC, 35 min. 1.0MPa 
(390N) - 4/5 (12-

20MPa) 

56 8µm SB6 345ºC, 10min. 390ºC, 35min. 1.0MPa 
(390N) DRIE 3/5 (0-

23MPa) 

58 8µm SB6 - 390ºC, 40min. 1.0MPa 
(390N) - - 

 

Figure 2.18 shows one of the “dummy” device bond rings from bond #53 after the 

razor blade test.  As illustrated, silicon tore from the cap wafer and adhered to the 

“dummy” device substrate from some areas of the bond ring but not in others.  Figure 

2.18 seems to illustrate a non-uniform bond across this bond ring.  One likely cause is 

that the relatively lower bond force was not substantial enough to compress all of the 

bond rings enough across the wafer so that they all made good contact to the poly-Si on 

the “dummy” device wafer.   

 

Si Torn from 
Cap WaferNo Si Torn 

in this 
region

Si Torn from 
Cap WaferNo Si Torn 

in this 
region

 

Figure 2.18:  The “dummy” device substrate after a cap was sheared off for bond #53. 

As illustrated in Table 2.21, 7 out of 10 of the chips from bonds #53 and #56 passed 

the shear test with shear strengths ranging from 0 to 23 MPa.  Tables 2.22 and 2.23 show 

the details of these shear tests.  As shown, the failure mode for all of the bonds are listed 

as “bond ring,” indicating that all of the packages sheared off at the bond ring interface.  
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Most of the sheared packages showed similar results to the die shown in Figure 2.18 

where parts of the cap wafer adhered to the “dummy” device substrate where as others 

did not seem to make contact at all. 

Table 2.22:  Shear test results for bond #53. 

Shear Test Results (Bond #53) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

Unknown 13.4 Sheared in bond ring Pass 
Unknown 16.6 Sheared in bond ring Pass 
Unknown 19.7 Sheared in bond ring Pass 
Unknown 11.8 Sheared in bond ring Fail 
Unknown 13.4 Sheared in bond ring Pass 
Average Strength: 15.0 MPa     
Standard Deviation:3.2 MPa  

*Details on the interpretation of this data given in Section 2.2 and Appendix 1. 

Table 2.23:  Shear test results for bond #56. 

Shear Test Results (Bond #56) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C4-R1 16.6 Sheared in bond ring Pass 
C6-R7 8.7 Sheared in bond ring Fail 

C7-R13 15.0 Sheared in bond ring Pass 
C10-R9 0.0 Sheared in bond ring Fail 
C9-R8 22.9 Sheared in bond ring Pass 

Average Strength: 12.6 MPa     
Standard Deviation:8.7 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

2.4.3.2 High Bond Pressure Results (~10 MPa) 
Table 2.24 shows the bond parameters for a number of bonds conducted with bond 

pressure of 10.4 MPa (a 3900 N bond force).  All of these bonds involved a 300 µm wide 

bond ring and were to 0.3µm thick poly-Si.  As illustrated in the Table 2.24, none of the 

chips from bonds #60 passed the shear test with shear strengths ranging from 0 to 12 

MPa.  Table 2.25 shows the details of these shear tests.  Qualitatively from the razor 

blade test, bonds #61 and #65 seemed to have similar weak bond strengths.    
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Table 2.24: Summary of the bonds to 0.3 µm thick poly-Si thin films in which a very large bond force was 
used (3900N), which considered to be hermetic but “weak.” 

Bond 
# 

Cap Bond 
ring 

Thickness 
Bonder 

Intermediate 
Temperature 

Step 

Bond 
Temperature 

Step 
Bond 
Force Cavity Pass the 

Shear Test? 

60 8µm SB6 - 390ºC, 
40min. 

10.4MPa 
(3900N) DRIE 0/6 (0-11 

MPa) 

61 6µm SB6 - 390ºC, 
40min. 

10.4MPa 
(3900N) DRIE - 

65 8µm SB6 - 390ºC, 
40min. 

10.4MPa 
(3900N) DRIE - 

Table 2.25:  Shear test results for bond #60. 

Shear Test Results (Bond #60) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C6-R8 0.0 Sheared in bond ring Fail 
C5-R8 5.4 Sheared in bond ring Fail 
C2-R8 11.8 Sheared in bond ring Fail 
C5-R13 0.0 Sheared in bond ring Fail 
C6-R13 8.7 Sheared in bond ring Fail 
C6-R9 5.5 Sheared in bond ring Fail 
Average Strength: 5.2 MPa     
Standard Deviation:5.2 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

As compared to the bonds from Table 2.2 (the uniform/strong bonds to 0.3µm poly-Si 

from section 2.3.3 which were done with a bond pressure of 2.7 MPa (a 1000N bond 

force)), these shear test results were very poor.  Figure 2.19 shows SEMs of a cross-

section of the bond rings from bond #60.  Figure 2.19c shows a Dectak profilometery 

scan of this bond.  As illustrated, on the edge of the bond region on either side of the 

bond, in some places much of the bulk Si from the cap wafer pulled off, adhering to the 

device wafer; and in other places bulk Si from the device wafer pulled off adhering to the 

cap wafer. (Because of the scaling in Figure 2.19c, much of the scan is cut off.  The 

portion in the figure labeled “bulk Si adhered to device wafer” and “bulk Si adhered to 

cap wafer” are in fact 60 and -6.2 µm high indicating that bulk Si in fact did transfer from 

one wafer to the other).  In these areas, enough Au-Si alloy seems to have spread laterally 

to allowing for bonds outside of the original bond ring area.  In the bond region in the 

center of the scan, there are areas where most if not all of the 0.3 thick poly-Si layer had 
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been either consumed or pulled completely from the “dummy” device wafer.  In Figure 

2.19a and Figure 2.19b the dark regions show these areas where the poly-Si was pulled 

away.  

 

 
Figure 2.19:  For bond #60, an SEM of a) the top view of the bond ring on the “dummy” device wafer after 

the cap has been pulled off, b) a closer look at the bond ring, and c) a DEKTAK scan of a portion of this 
bond ring. 

Figure 2.20 shows the other side of the bond.  As shown in Figure 2.20c, even though 

the initial Au thickness was 8 µm, it squeezed down to approximately 2.5µm (31.25% of 

the original bond ring thickness) indicating that much of the Au-Si alloy had squeezed 

out of the originally 300 µm wide bond ring region.  This is also evidenced by the 

amount of Au-Si alloy which was shown to have spread in Figure 2.19a (the light areas 

outside of the bond ring region in Figure 2.19a is Au-Si alloy).  A more thorough 

discussion on such Au-Si eutectic flow will be given in Section 2.5.   
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It is also interesting to note that there is no sign of the poly-Si from the “dummy” 

device wafer even though it was observed to have been pulled off from the “dummy” 

device wafer.  It seems that the entire 0.3 µm thick poly-Si layer may have been 

completely consumed during the bond. 

 

 
Figure 2.20:  SEM of a) the cap side of the one of the bond rings from bond #60, b) a closer look at the Au-
Si alloy layer which still adheres to the cap side, and c) a cleaved section which show the thickness of this 

Au-Si alloy layer.   

In summary, the larger applied bond force seems to have been problematic in two 

ways:  1) it caused significant lateral flow of the Au-Si alloy out of the bond joint and 2) 

it seemed to reduce the strength of the bond joint.  The mechanism of this reduced 

strength is not known but it could result from either the lateral flow of Au-Si eutectic or 

from stress put on the bond joint itself due to the large bond force, weakening the bond 

between the poly-Si layer (or what was the poly-Si layer) and the underlying dielectric.  It 

is important to note that this problem was not observed in bonds to Cr/Au layers.  Bond 

forces of 3700N (a 9.9 MPa bond pressure) in fact were used in most of those bond 

experiments (Section 2.3.5, Bonds to Au Films).  The issues described above therefore 
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may have to do with the properties of the poly-Si in the presence of a large bond force 

(i.e. a low yield strength or poor adhesion to the underlying SiO2).     

2.4.3.3 Timing of the Applied Bond Pressure 
As was shown in Figure 2.17, the general bond recipe involved applying the bond 

force before going to the bond temperature (that is, before raising the temperature above 

the eutectic temperature).  Table 2.26 shows the bond parameters for several bonds in 

which the bond force was applied after the bond temperature was achieved.  

Table 2.26:  Summary of bonds to 0.3 µm thick poly-Si in which the bond force was applied after the bond 
temperature was achieved.  These all resulted in bonds that were considered non-hermetic and “weak.” 

Bond # 
Cap Bond 

ring 
Thickness 

Bonder 
Inter-

mediate 
temp. 

Bond 
Temp. 

Bond 
Force 

Force 
applied 

after Bond  
temp step? 

Cavity 
Etch Strength 

49 
(Device) 3 EVG - 395ºC, 

40min. 
2.7MPa 
(1000N) Yes TMAH - 

50 3 SB6 345ºC, 
10min. 

390ºC, 
20min. 

1.1MPa 
(430N) Yes TMAH 3/5 (5.5-

16.6 MPa) 

52 3.5 SB6 345ºC,  
10min. 

390ºC, 
35min. 

1.1MPa 
(430N) Yes KOH - 

54 3.6 EVG - 395ºC, 
35min. 

2.7MPa 
(1000N) Yes DRIE - 

 

Figure 2.21 shows SEM photographs of bond #49.  As illustrated, an actual device 

wafer was used in this bond (fabrication for device wafers is described in Chapter 3).  

DEKTAK profilometery showed that the poly-Si bond ring on the device substrate 

(Figure 2.21a), remained intact after the cap was pried off.  Figure 2.21b shows the cap 

side where indentations can be seen in the Au-Si eutectic where the feed-throughs made 

contact.  A closer look at this indentation in Figure 2.21c and Figure 2.21d show that the 

bulk silicon on the cap wafer had pressed flush to the 3000Å high feed-throughs—the 

highest topology on the device wafer.  As evident, nearly all of the Au-Si alloy squeezed 

out during the bond. What seems to have happened in all of the bonds shown in Table 

2.26 is the Au-Si eutectic alloy first formed and then when contact was made, nearly all 

of this molten liquid got squeezed out of the bond joint.  Figure 2.21d shows a schematic 

of how the silicon from the cap wafer appears to press flush against the bond ring on the 

device wafer during the bond.  This is also indicated in Figure 2.21a where the light areas 
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show a large volume of Au-Si alloy which has squeezed out of the bond joint.   

 

 

 
Figure 2.21:  SEM of a) the device side of the one of the bond rings from bond #49 where mist of the Au-Si 
alloy has squeezed out from the bond joint, b) the cap side of bond #49, and c),d) a closer look at one of the 
feed-through indentations showing that the feed-through had pressed flush against the Si surface of the cap 

wafer squeezing out nearly all of the Au-Si liquid. e) Shows a schematic of how the silicon from the cap 
wafer appears to press nearly flush to the surface of the device wafer.   

As shown in Table 2.26 shear tests were conducted on bond #50.  Table 2.27 shows 

the details of these shear tests.  As shown, the shear strengths ranged from 5.5 to 16.6 

MPa with 3 out of 5 of the packages passing the shear test.  Inspecting the bond ring 

interface after the shear test showed similar results as were shown in Figure 2.21 where 
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the Au-Si alloy appeared to have completely squeezed out of the bond joint.   

Table 2.27:  Shear test results for bond #50. 

Shear Test Results (Bond #50) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C5-R2 16.6 Sheared in bond ring Pass 
C5-R7 8.7 Sheared in bond ring Fail 
C2-R8 15.0 Sheared in bond ring Pass 

C4-R14 13.4 Sheared in bond ring Pass 
C9-R8 5.5 Sheared in bond ring Fail 

Average Strength: 11.8 MPa     
Standard Deviation:4.6 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

2.4.4 THE BOND TEMPERATURE 

As was summarized in Figure 2.17, applied temperatures ranging from 390 to 410ºC 

were used in bond experiments with hold times ranging from 20 to 40 minutes.  As 

detailed in Appendix 2, in the EVG 510 and SB6 bonders, the temperatures sensor used 

for feedback and control inside of the bonder was not located close enough to the wafers 

for an accurate temperature measurement.  As a result, such long hold times and high 

temperatures relative the eutectic temperature (~363ºC) were used  to make sure that the 

wafers inside of the bonder had enough time to heat up.  As explained in the Appendix 2, 

in the SB6e bonder this design flaw was addressed with a thermocouple located only 

millimeters from the wafers during bonding and with a bonder design which allowed for 

much faster heating and cooling rates.  Though not studied here, this would allow for 

bond tests at closer to the eutectic temperature of ~363ºC with shorter hold times in order 

to reduce the thermal budget on the packaged device.   

2.5 AU-SI EUTECTIC LATERAL FLOW 

Appendix 3 presents an analysis on bond cross-sections for a number bonds from the 

bond experiments described in this chapter.  In this analysis, the composition for each of 

these bond rings was approximately 50 atomic % Si in Au.  As calculated in Appendix 3, 

for a given initial Au bond ring thickness, this additional Si content should increase the 
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bond ring volume by 2.22 times.  As a result, one of the more important issues in 

designing a bonding process is determining how to manage the resultant lateral flow of 

the Au-Si alloy.  Several parameters affect how the Au-Si alloy flowed including the 

applied bond force, the initial bond ring width, and the geometry of the cap wafer (i.e. 

whether or not a cavity was anisotropically etched).   

Section 2.5.1 first explains two types of lateral flow observed in bonded samples: 

compressive flow and diffusive flow.  Section 2.5.2 explains the effects of an 

anisotropically etched cavity on the Au-Si alloy flow.  Section 2.5.3 describes how the 

Au-Si alloy flowed onto the getters in device wafer bonds in several instances.  Finally, 

Section 2.5.4 provides analysis on how to predict the Au-Si alloy flow for a given 

geometry.    

2.5.1 COMPRESSIVE AND DIFFUSIVE FLOW (ANALYSIS OF BONDS #56, #51 
AND #36) 

Figure 2.22 shows a cross-section of bond #56 (already presented in Section 2.4.1) 

which was bonded at 390ºC for 35 minutes with a bond force of 390 N and an original 

Au thickness of 8 µm.  At the edge of the fractured bond outside of the bond ring, in 

Figure 2.22a, the distance between the original cap wafer and device wafer surfaces was 

measured at 5.1µm—thus inferring that the Au-Si eutectic compressed by around 3.9 µm 

from the original Au thickness of 8 µm.  The dotted line in Figure 2.22b shows 

approximately where the original Au/cap wafer interface was in the cross-section.  As 

illustrated, the Au-Si eutectic region has expanded into the cap wafer as far as 3µm past 

the original cap wafer interface.  (As was discussed in Section 2.1.1.3, similar effects 

have been observed in the literature in die attach bond experiments [97, 176]).   
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Figure 2.22:  SEMS of a cleaved bond ring from bond #56 showing a) the final distance between the 

original interfaces between the cap and device wafers and b) a cross-section of the bond ring where the 
dotted line shows the distance between the original interface at the cap wafer and the “dummy” device 

interface. 

Similar analysis was done for cross-sections from bonds #51 and #36 (from Sections 

2.4.1, and Section 2.3.3) which had similar bond temperatures, and an original Au bond 

ring thickness of 3.5µm and bond forces of 390 and 1000 N respectively.  Cross-sections 

and a summary of these bond are shown in Figure 2.23. As illustrated in Figure 2.23a and 

Figure 2.23b, this resulted in a final distances of 3.1 µm and 3.5 µm from the original 

bond interfaces on the cap wafer and the “dummy” device wafer’s bond interface.  As 

compared to bond #56 which compressed by approximately 2.9µm, the bond interfaces in 

bonds #51 and #36 seem to have compressed only a fraction of a micron or not at all.  

The main difference between these bonds and #56 was the original Au thickness.  

Analysis in Section 2.5.4 will attempt to explain these results.   
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Figure 2.23:  SEMS of a cleaved section of bond rings showing a cross-section where the dotted line shows 
the distance between the original interface at the cap wafer and the “dummy” device interface for a) bond 

#51 and b) bond #36. 

As expected, in each of the cases for bond #56, #51 and #36 (Figures 2.44 and 2.45) a 

noticeable amount of the Au-Si eutectic alloy actually squeezed out of the bond joint 

spreading laterally.  This lateral spreading occurred both uniformly, where the bond ring 

width was effectively increased (compressive flow) or diffused/flowed laterally (diffusive 

flow) forming a thin layer of Au-Si eutectic over the poly-Si.  Figure 2.24a and Figure 

2.24b illustrated these two types of flow schematically.  

 

a) b)a) b)
 

Figure 2.24:  A schematic showing how Au-Si alloy a) squeezes laterally, widening the effective bond 
width for bonds in which the cap wafer was not patterned or was patterned with a DRIE etch.  b) Shows 

Au-Si lateral flow where only a thin layer of Au-Si eutectic spread. 

Figure 2.25 shows an example of diffusive flow.  In this bond, silicon tore from the 

cap wafer adhering to the “dummy” device wafer.  The light areas in Figure 2.25a and 

Figure 2.25b are where Au-Si alloy has diffused/flowed more than 100 µm laterally 

across the poly-Si.  Figure 2.25c show a closer view of this Au-Si alloy layer which upon 
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even closer inspection was shown to be less then 50nm thick.  This diffusive flow was 

only observed on top of poly-Si and did not flow over dielectric layers. 

 

 
Figure 2.25:  a) SEM of a cleaved section of a bond ring from bond #36 showing where Si has torn from 

the cap wafer and the light area is Au-Si alloy which has spread laterally across the surface.  b, c) A closer 
look at this Au-Si that has spread across the top surface of the poly shows that it is only l0s of nanometers 

or even angstroms thick. 

2.5.2 EFFECTS OF AN ANISOTROPIC ETCHED CAVITY 

Figure 2.26 shows a cross-section from bond #71, a device wafer bond which was 

discussed in Chapter 5.  Figure 2.26a shows the anisotropically etched side walls of this 

cross-section.  As shown in Figure 2.26b the Au-Si alloy region compressed from its 

original thickness of 4 µm down to 1.5µm thick (though the original Au/cap wafer 

interface could not be discerned as was done in the bonds analyzed in the previous 

section).  This means that the bond ring compressed by 62.5% or more.  This is 

significantly more than in bonds #56, #51 and #36 which did not have anisotropically 

etched sidewalls.  Figure 2.26c shows that a relatively large volume of this Au-Si alloy 
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has squeezed out the sides of the bond.  Analysis in Section 2.5.4 discusses these results 

further. 

         

 
Figure 2.26:  a) An SEM of the cross-section of one of the bond rings from Bond #71 which shows the 

anisotropically etched side walls, b) a closer look showing the bond interface, and c) a look at the right side 
of the anisotropically etch side wall showing the large volume of Au-Si alloy which has squeezed out.  

 
In bond #71, the Au-Si only flowed laterally, but only where there was poly-Si on the 

device wafer—in other words, it did not flow onto the parts of the wafer where the top 

layer was dielectric.  This is likely due to the fact that Au-Si alloy (similar to most other 

solders) does not wet dielectric layers such as SiO2 or Si3N4.   

2.5.3 LATERAL FLOW ONTO GETTERS 

In several device wafer bonds shown in Table 2.28 the Au-Si alloy flowed on the cap 

wafer, spreading onto the getter.  The bonding results for these wafers were already 

presented in Section 2.3.4.  As was detailed there, the heavily phosphorous doped poly-Si 

layer on the device substrate was patterned to the same dimensions as those on the cap 
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wafer.  This effectively stopped the flow of the Au-Si alloy on the device wafer, but in 

bonds #101, #102 and #104 it had a tendency to flow on the cap wafer instead.   

Table 2.28:  Summary of bonds between cap wafers with 300µm wide bond rings to 2.2 µm thick heavily 
phosphorous doped  poly-Si thin films.  All of these were device wafer bonds which were conducted after 

CPD.   

Au-Si to poly-Si ( 2.2 µm)  bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Poly-Si 
Thick-
ness 

Device 
Bond 
Ring 
Width 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force Cavity Bond 

Strength 

101 
(Device) 4.5µm 2.2µm 

n-doped 300 SB6e 345ºC, 
60min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH 5/6 (11.9-

25MPa) 
102 

(Device) 4µm 2.2µm 
n-doped 300 SB6e 345ºC, 

60min. 
410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

104 
(Device) 4µm 2.2µm 

n-doped 300 SB6e 345ºC, 
5min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

 

Figure 2.27 shows one of the caps after bonding from bond #101 where some Au-Si 

alloy flowed on the cap wafer side.  Au-Si alloy did not spread onto the getter on every 

package in bonds #101, #102 and #104, but in many cases they did.  In most cases where 

the Au-Si alloy made contact with the getter, it diffused across the entire getter and as 

discussed in the vacuum encapsulation results presented in Appendix 5, this seemed to 

compromise the effectiveness of the getter for these wafers.  This compromising of the 

getters was not observed in device wafer bonds to un-doped poly-Si or to Au thin films.  

Since the Au-Si alloy seemed to have a greater tendency to flow laterally on heavily 

phosphorous doped poly-Si films (see Section 2.3.4), it is possible that the presence of 

phosphorous encouraged the flow of the Au-Si alloy in these cases.  On the other hand, 

there may have been another parameter which caused this lateral flow and resultant Au-Si 

eutectic/getter interaction (such as how close the gettering material was patterned on 

those particular wafers due to shadow mask misalignment).  Regardless, making sure that 

the Au-Si alloy does not interact with the getter is an important consideration in the 

design. 
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Figure 2.27:  An SEM photograph of the cap side of bond #101 where Au-Si alloy has flowed on the cap 

side.  

2.5.4 ANALYSIS OF AU-SI ALLOY FLOW 

In Appendix 3, the composition of the bond ring during a bond is discussed, as Si from 

the cap wafer diffused into the Au bond ring.  As is calculated in Appendix 3, even up to 

50 atomic % Si in Au, the bond joint should be around 59% eutectic alloy by volume.  

Therefore, for much of the 40 minutes that the bond ring is held above the eutectic 

temperature, it is likely viscous and some force should be required to counterbalance the 

applied bond force in order to reach equilibrium.  Figure 2.28 shows how the surface 

tension of the liquid may provide this counterbalancing force.  The schematic in Figure 

2.28a shows the melted bond ring, where w is the final width, Fb is the applied bond 

force, t is the final distance between the cap wafer and the device wafer and φ is the 

contact angle between the liquid and the silicon surface.  The length, L, of the bond ring 

goes into the page.  The bond force, Fb, gets distributed across the 124 bond rings 

spanning the wafer which are each initially 300µm wide, and essentially 10 mm long (the 

length around the periphery of each square bond ring).  As a result, the pressure inside the 

liquid, σL, is given by: 
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  Figure 2.28:  a) A schematic showing the different parameters which effect the calculations for achieving 
static equilibrium in the bond ring, and b) a closer look at how the pressure in the liquid is balanced by the 

surface tension. 

 
As shown in Figure 2.28b, at the liquid gas interface, the pressure inside the liquid is 

balanced by the surface tension (strength of the atomic bonds at the surface of the liquid), 

τs, which is a measurable quantity with units of force per length.  This force balance 

equation is: 
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Combining Equations 2.1 and 2.2, the final thickness to width ratio can be determined as: 
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Only one reference each was found for the surface tension and contact angle of Au-Si 

alloy mixtures.  Contact angles where found for molten Au-Si eutectic mixtures on (100) 

oriented Si by Ressel at el. [183] at temperatures from 400 to 800ºC ranging from 152º to 
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165º.  At 400ºC a contact angle of approximately 152º was measured.  Naidich at el. 

[184] on the other hand measure surface tensions of Au-Si mixtures at a range of 

compositions at temperatures from just under 400ºC to as high 1600 ºC of 0.7 to 1.1 N/m.  

Extrapolating from Naidich at el.’s graph of this data, at 50 atomic % Si in gold at 400ºC, 

the surface tension was approximately 0.85 N/m.  

Using these values for the surface tension and contact angle and Equation 2.3, the 

solid line in Figure 2.29 shows the predicted t/w as a function of the applied bond force 

Fb.  Also shown in Figure 2.29, are the measured t/w vs. Fb for bonds #36, #51, #56 and 

#60 and #71.  The final thicknesses and widths were measured through SEM photographs 

analyzed earlier in Section 2.5.  These values are summarized in Table 2.29.  As 

illustrated in Figure 2.29, the t/w ratios were all a bit higher than predicted by Equation 

4.3.  This could result from other factors which affect the amount that the bond joint 

compresses such as Si precipitate formation.  These Si precipitates were observed to be as 

large as 2 µm in diameter.  Also shown by the dashed line in Figure 2.29 is the predicted 

t/w assuming a surface tension of 2 N/m.  Though this line does not predict the exact t/w 

ratio, it could be used to better estimate the minimum t/w to be expected.   

The biggest significance of Figure 2.29 is that there is a correlation between the 

applied bond force, Fb, and the final t/w ratio and therefore, the amount of spreading of 

the Au/Si eutectic.  In cases where there was a lot of compression of the Au-Si bond ring, 

there was significant lateral flow.  Therefore, from Figure 2.29, smaller applied bond 

forces, or a thinner initial Au bond ring thicknesses clearly resulted in less spreading of 

the Au-Si eutectic out of the bond joint.     
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  Figure 2.29:  A graph of t/w vs. the applied force for several of the bonds discussed in section 2.6.2 and 
the modeled t/w vs. the applied bond force assuming a contact angle of 152º and a surface tension of 0.85 

and 2 N/m. 

Table 2.29:  The applied bond force and measured thicknesses and widths for bond rings after bonding for 
the bonds graphed in Figure 2.52. 

Bond 
# 

Bond 
Force 

Initial 
Bond ring 
Thickness 

Final Bond 
Ring 

Thickness 

Observed final 
cross-

sectional 
width thickness/width 

36 1000N 3.5 µm 3.5 µm 350 µm 0.01 
51 390N 3.5 µm 3.1 µm 300 µm 0.010333 
56 390N 8 µm 5.1 µm 445 µm 0.011461 
60 3900N 8 µm 2.5 µm 700 µm 0.003571 
71 1300N 4 µm 1.5 µm 300 µm 0.005 

2.6 SUMMARY OF BOND PARAMETERS 

The requirements for uniform/strong bonds were discussed in three parts: Sections 2.3 

explained the material requirements for Au-Si eutectic bonds, Section 2.4 described the 

bond recipe, and Section 2.5 explained specific issues in regarding the Au-Si alloy lateral 

flow.  

As was outlined Sections 2.3, cap wafers with Au bond rings were fabricated for bond 

experiments to: un-doped poly-Si, heavily phosphorous doped poly-Si and gold thin 

films.  Figure 2.30 summarizes some of the material selection and fabrication 



 93 

films.  Figure 2.30 summarizes some of the material selection and fabrication 

requirements for achieving uniform/strong bonds. 
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Figure 2.30:  A summary of the material requirements for bonds between a cap wafer with a Au bond ring 
and a device wafer with:  an un-doped poly-Si thin film, a heavily phosphorous doped poly-Si thin  film 

and gold thin film. 

As was summarized in Section 2.4, there were 4 key steps in the bond recipe: i) 

vacuum was applied, ii) the wafers were heated up to the outgassing temperature, iii) 

contact was made and the bond force was applied, and iv) the wafers were heated up to 

the bond temperature.  Figure 2.31 summarizes some of the requirements for each of 

these steps in the bond recipe.   
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Figure 2.31:  A summary of the important parameters in the bond recipe. 

Finally, as was outlined in Section 2.5 the amount of Au-Si eutectic lateral flow 

depended on several factors including:  the thickness of the Au bond ring, the amount of 

bond pressure applied and the geometry of the bond joint (i.e. whether or not there was an 

anisotropically etched cavity).  The following bullets summarize the important points 

from that section: 

• Larger bond pressures and thicker initial Au bond ring widths cause more lateral 

compressive flow. 

• A thin layer <50nm of Au-Si eutectic was observed to spread hundreds of 

microns laterally on a poly-Si surface during bonding. 

• Au-Si eutectic tended to flow into the adjacent anisotropically cavity causing 

more compressive Au-Si eutectic flow. 

• The amount of Au-Si eutectic flow could be roughly estimated taking into 

consideration force balance equations involving the surface tension and the 

contact angle of the Au-Si eutectic. 
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CHAPTER 3 
 

WAFER LEVEL PACKAGING USING AU-SI EUTECTIC 
BONDING 

This chapter presents the fabrication process for the cap and device wafers used for 

characterizing the vacuum integrity of packages in the Au-Si eutectic wafer bonding 

process.  The processes outlined in this chapter take into consideration all of the 

processing constraints laid out in Chapter 2.  

 

 
Figure 3.1:  The Au-Si Eutectic bonding process. 

Figure 3.1 shows the basic steps used in the full Au-Si eutectic packaging process 

where a gold thin film is first deposited on a silicon substrate via a chromium adhesion 

layer (Figure 3.1a), a cavity is micro-machined and a thin film getter is deposited inside 

of the cavity (Figure 3.1b).  Next the wafers are brought together (Figure 3.1c) and the 
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temperature is raised above the eutectic temperature (~363ºC) so that silicon diffuses into 

the gold layer allowing for the formation of a soft Au-Si eutectic layer (Figure 3.1d).  

This soft eutectic layer conforms over non-planar features such as electrical feed-through 

interconnects on the device wafer substrate—thus allowing for a vacuum tight seal.  

Finally, part of the top wafer is sawed away allowing access to the bond pads for 

electrical interconnection (Figure 3.1e). 

This process allows for encapsulation of devices on a wide range of substrates, 

including those fabricated in CMOS or CMOS like processes.  As an example, Figure 3.2 

shows a schematics of the SUMMiT VTM process from Sandia National Laboratories 

which is a process similar to many CMOS processes.  The SUMMiT VTM process 

consists of multiple stacks of Si3N4, SiO2 and poly-Si thin films, with a top metallization 

interconnection layer (often aluminum).  Figure 3.2b and Figure 3.2c show two 

approaches for packaging a device fabricated in this process.  In the first case as 

illustrated in Figure 2.2b, bonds could be made directly to one of the poly-Si layers. In 

the second case, a Cr/Au layer could be deposited onto a device wafer in the last several 

steps of processing.  This approach is particularly desirable because it allows for the 

packaging of devices fabricated on a wide variety of substrates.  Chromium and gold are 

particularly desirable material sets because both of these materials have negligible etch 

rates with nearly all common etchants used for device release including hydrofluoric acid 

(HF), potassium hydroxide (KOH) and xenon difluoride. 

In the vacuum packaging experiments conducted here, three different material sets 

were explored for device encapsulation:  1) bonds between a Au-Si layer and a 0.3 µm 

un-doped poly-Si thin film, 2) bonds between a Au-Si layer and 2.2 µm heavily 

phosphorous doped poly-Si thin film and 3) bonds between a Au-Si layer and a Cr/Au 

thin film.  The rest of this chapter outlines the processing done for these wafers used for 

device packaging. 

Section 3.1 outlines the cap fabrication process and Section 3.2 outlines the various 

device wafer processes.  Section 3.3 explains the processes used for device release 

(additionally  

Appendix 4 describes some bond results and yield reduction which resulted from the 

release process).  Section 3.4 presents the bond ring and device wafer layout.  Finally, 
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Section 3.5 explains the bond preparation and reviews the wafer bonding process 

developed in Chapter 2.  
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Figure 3.2:  a) The SUMMiT VTM thin film stack as an example of a CMOS process, b) bonding to the 

Poly-Si in this thin film stack and c) bonding to gold layer deposited on top of this thin film stack. 

3.1 CAP WAFER FABRICATION 

Figure 3.3 summarizes the process steps for fabricating the cap wafer.  The process 

begins with growth of a 1.9 µm thick thermal SiO2.    This thermal SiO2 is removed from 

the front side of the wafer using BHF (buffered hydrofluoric acid), masking the backside 

with photoresist.  Such a thick SiO2 layer was used to protect the backside of the wafer 

from a potassium hydroxide (KOH) etch in a later step.  Directly after this BHF etching 
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step, 200/5000 Å angstroms of chromium/gold was evaporated on top of bulk silicon, 

acting as the seed layer for electroplating.  These metals were deposited in an E-beam 

Enerjet evaporator at ~2×10-6 Torr.  The BHF dip preceding the evaporation step was to 

ensure that the Cr/Au layer was directly in contact with the bulk Si and that a thick native 

oxide would not prevent inter-diffusion.  Generally the wafers were inside of the 

evaporation vacuum chamber within 15 minutes of the BHF dip.  A 15 minute exposure 

to air should result in approximately 2 Å of oxide [181].   

 

 

Figure 3.3:  A summary of the bond ring fabrication process where a) the bond rings are patterned and 
electroplated, b) the cavity is KOH etched and c) the getter is patterned and deposited.  d) An SEM of a 

fabricated 150µm which encircles a getter.   

Next, 10 to 20 microns of AZ 9260 photoresist was deposited and patterned, acting as 

a mold for the Au electroplating.  Electroplating was done using BDT-510 makeup 

plating solution with a stainless steal cathode on one side of the bath and the wafer on the 

other side serving as the anode.  A current source was used to supply the source current 

with the cathode attached to the positive side and clips touching the top of the wafer were 

connected to ground.  A current density of 2mA/cm2 resulted in a plating rate of around 

0.1 µm per minute (the wafers with 300 µm wide bond rings for example had an exposed 

surface area of ~3.75 cm2 and therefore a supply current of 7.5mA was used).  For the 

device bonds, the electroplated thicknesses ranged from 4 to 6 µm.  This thickness range 

was determined to be optimum from bond experiments which are detailed in Chapter 2.  

Half of the electroplating was done with the electrodes connected near the wafer flat and 

the other half with the wafer flipped around and the electrodes connected near the top 
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edge of the wafer.  In some cases, failing to flip the wafers midway through 

electroplating resulted in bond rings which were 20% thicker near where the electrodes 

were connected as compared to those on the farthest edge.  Flipping the wafers half way 

through the electroplating process resulted in bond rings with an average bond ring 

thickness that was consistent across the wafer to with in ±5-10%.   

After electroplating the photoresist mold was removed in PRS2000 and the entire 

wafer was placed first in Type TFA Au etchant for ~2 minutes and then in CR-14 

chromium enchant for ~30 seconds in order to remove the seed layer.  The Au etch 

attacks the electroplated Au at roughly the same rate as the seed layer gold and therefore 

only about 0.5µm of electroplated Au got etched.  Next, directly after a 30 second etch in 

10:1 H2O:HF the cap wafer was placed in a KOH bath at 90ºC resulting in an etch rate of 

~1.1 µm per minute.  Sixty to ninety micron cavities were etched and the sloped 

sidewalls shown in Figure 3.3b and Figure 3.3d resulted from this anisotropic etch.  

Because the Cr and Au are inert to both HF and KOH, they did not need to be masked 

during this process step.  An alternative to KOH etching would be to use deep reactive 

ion etching (DRIE) for patterning of the cavities. 

The final step was the deposition of the getter (Figure 3.3c).  NanogettersTM [5, 6, 150] 

from Integrated Sensing Systems, Inc. (ISSYS, Inc.) were chosen as the gettering 

material.  This thin layer was deposited and patterned either using a lift off or a shadow 

mask process.  For the lift off process, 20 µm of AZ 9260 was spun on and then patterned.  

The wafers were then sent to ISSYS, Inc. so that the getter could be deposited.  The 

wafers were then placed in a beaker with acetone and the beaker was placed in an 

ultrasonic bath for 10 to 20 minutes.  This removed the photoresist, pulling off the 

NanogettersTM in areas which were not patterned.  Using the shadow mask method, a 

separate silicon wafer was patterned and then through wafer etched using an STS 

Multiplex ICP DRIE.  This wafer was then aligned to the cap wafer and clamped using 

metal clips and given to ISYSS for NanogettersTM deposition.  After the deposition of the 

NanogettersTM, only solvent cleans could be applied to the cap wafer because of material 

incompatibility issues with aggressive cleans such as Piranha or an RCA clean.   
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3.2 DEVICE WAFER FABRICATION 

It was desirable to evaluate the bond quality (and eventually vacuum integrity) when 

bonding to Au and poly-Si bond rings of varying thicknesses and dimensions.  To 

accommodate these materials and differing thicknesses into a process with insulated feed-

throughs and a poly-Si device layer, three different processes were developed.  In 

processes #1 and #2, 0.3 and 2.2 µm thick poly-Si bond rings were used, respectively, 

and in process #3, a 0.5 µm gold bond ring was used.  As a result, three different process 

flows were used for the fabrication of “dummy” device wafers.  As shown in Figure 3.4, 

these processes result in a 3000 Å poly-Si feed-through layer, a poly-Si or Au bond ring 

layer, a 3000 Å Si3N4 layer—which insulates the feed-through layer from the bond ring 

layer—and a 2.2 µm thick device layer in which Pirani gauges or micro-resonators could 

be formed.   

 
Figure 3.4:  The final structure of the device wafers for a) process #1 with a 0.3 µm thick poly-Si bond ring, 

b) process #2 with a 2.2 µm thick poly-Si bond ring and c) process #3 with a 0.5 µm thick Au bond ring. 

Figure 3.5, Figure 3.6 and Figure 3.7 summarize the process steps for processes #1, #2 

and #3 including the processing gasses, pressures and growth/etch rates for all of the 

furnace and etching steps. 

Process #1 started with the growth of a 1.9 µm thermal SiO2 and deposition of 1000 Å 

of low pressure vapor deposited (LPCVD) Si3N4.  Such a thick dielectric stack was 
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chosen because this process was designed to accommodate micro-resonators which need 

to be well insulated from the Si substrate because of parasitics (micro-resonators were in 

fact fabricated in this process but not tested).   These layers were used for electrical 

insulation from the substrate.  A 3000 Å layer of low stress LPCVD poly-Si was next 

deposited, followed by a heavy phosphorous doping step.  This poly-Si layer was 

patterned to form the anchors, feed-throughs and bond pads (Figure 3.5, step 1) and had a 

sheet resistance of approximately 35 Ω/square.  Next another 3500 Å of LPCVD Si3N4 

was deposited for passivation of the feed-through layer and then a 3500 Å layer of 

LPCVD poly-Si was deposited.  The poly-Si layer was then patterned/etched to define the 

bond ring layer (Figure 3.5, step 2) and then the Si3N4 was patterned/etched (Figure 3.5, 

step 3).  After this, a 3 µm layer of LPCVD SiO2 was deposited (Figure 3.5, Step 4) and 

patterned to define the sacrificial layer.  Next, roughly 2.2 µm of LPCVD poly-Si was 

deposited, heavily doped and patterned—this defined the device layer (Figure 3.5, Step 

5).  This layer had a sheet resistance ranging from 14-16Ω per square.  Finally, the wafers 

were soaked in BHF for 30 minutes in order to undercut the poly-Si Pirani gauge 

structure.  (Stoichiometric Si3N4 has an etch rate of approximately 9 Å/minute in BHF so 

that the 3000 Å thickness of Si3N4 was more than adequate to hold up to the final 30-

minute BHF etch so that the feed-throughs stayed electrically isolated from the bond 

rings).  Without letting the wafers dry, the devices were rinsed, soaked in methanol and 

then either dried on a hotplate or dried using a critical point drying (CPD), leaving the 

suspended Pirani gauge structure (Figure 3.5, Step 6).  More details on the release 

process will be given in Section 3.3 (Device Release). 

 



 102 

 

Figure 3.5:  The process steps for process 1 with 0.3 µm thick poly-Si bond rings included: 1) the 
deposition of dielectrics and the poly-Si used for the feed-throughs, 2) deposition of the Si3N4 later that 
insolated the feed-throughs and deposition and patterning of the poly-Si bond ring, 3)patterning of the 

Si3N4 layer, 4) deposition and patterning of the sacrificial layer, 5) deposition and patterning of the device 
layer, and 6) release of the device.  

As shown in Figure 3.6, process #2 is a shorter than process #1 because the poly-Si 

layer was used for both the device layer and the bond ring.  As in Process #1 this process 

started with a 1.9 µm thermal SiO2 and 1000 Å LPCVD Si3N4 layer is first deposited 

followed by a 3000 Å layer of low stress LPCVD poly-Si and a heavy phosphorous 

doping step.  This poly-Si layer was patterned to form the anchors, feed-throughs and 

bond pads (Figure 3.6, step 1).  Next both the 3000Å Si3N4 insulation layer and the 3 µm 

SiO2 sacrificial layer were deposited and patterned in order to open access to the feed-

through layer (Figure 3.6, step 2).  The 2.2 µm poly-Si device/bond ring layer was then 

deposited and patterned (Figure 3.6, step 3).  Finally, as in process #1, the devices were 

released by soaking them in BHF for 30 minutes, then rinsed in water, soaked in 

methanol and then either dried on a hotplate or using CPD (Figure 3.6, Step 4).   
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Figure 3.6:  The process steps for process 2 with 2.2 µm thick poly-Si bond rings included: 1) the 
deposition of dielectrics and the poly-Si used for the feed-throughs, 2) deposition and patterning of the 

Si3N4 insulation layer and the SiO2 sacrificial layer, 5) deposition and patterning of the device layer, and 6) 
release of the device. 

Figure 3.7 shows process #3, in which 0.5 µm thick Au bond rings were used.  As 

illustrated, steps 1 and 2 are identical to those explained for process #2 (Figure 3.7, Steps 

1 and 2).  Next, the 2.2µm LPCVD poly-Si device was deposited and patterned (Figure 

3.7, Step 3).  A dehydration bake was then conducted in an oven at 110ºC for 30 minutes 

(the need for this dehydration bake was explain in Section 2.3.5 of Chapter 2), directly 

after which the wafers were transferred directly into the Energet Sputter coater for the 

deposition of 500/5000Å of Cr/Au.  After patterning this layer, it was etched using type 

TFA Au etchant for 2 minutes and Cr-14 Chromium etch for 30 seconds (Figure 3.7, Step 

5).  These layers were sputtered because bonds were being conducted over top feed-

throughs and sputtering is a more conformal deposition process than evaporation.  After 

this, a 10 µm layer of AZ 9260 photoresist was spun over the Cr/Au layer to isolate the 

Cr/Au layer for the BHF etch.  This was used to prevent galvanic etching of the poly-Si 

device.  (In one of the first device releases using Au bond rings, after the BHF sacrificial 

etch, most of the poly-Si devices were etched away.  This was observed even though the 

Au bond rings were not in contact with the poly-Si device.)  The final step as in processes 

#1 and #2 included a BHF etch for 30 minutes, then a water rinse.  In process #3 it was 

next necessary to do a 5 minute acetone soak to remove the photoresist, then a 2 minute 

soak in isopropanol, then a 2 minute water rinse to remove any acetone scum.  Finally, as 

in processes #1 and #2, the wafers were soaked in methanol.  Last, as in the other two 

processes, the wafers were either dried on a hotplate or using CPD (Figure 3.7, Step 6).    
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Figure 3.7:  The process steps for process 3 with 0.5 µm thick Au bond rings included: 1) the deposition of 
dielectrics and the poly-Si used for the feed-throughs, 2) deposition and patterning of the Si3N4 insulation 
layer and the SiO2 sacrificial layer, 3) deposition and patterning of the device layer, 4) another patterning 

step on the sacrificial layer, 5)deposition of the Cr/Au bond ring, 6) deposition and patterning of a 
photoresist protective layer and 7) release of  the device followed by removal of the photoresist layer. 

3.3 DEVICE RELEASE 

As described in the previous section, the release process began by first etching away 

the sacrificial SiO2 layer in BHF and after a series of steps soaking them in methanol.  

After this soak, the wafers were either dried on a hot plate or placed in a CPD in order to 

conduct critical point drying.   

3.3.1 HOT PLATE RELEASE 

Methanol has a surface tension of  around 22.6×10-3 N/m as compared to the surface 

tension of water which is 72.8×10-3 N/m.  Evaporating away methanol therefore allowed 

for more fragile structures to stay freestanding as supposed to pulling down and sticking 

to the substrate because of these lower surface tensions.  CMOS grade methanol is 
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generally more than 99.8% pure.  Even so, as shown in Figure 3.8a and Figure 3.8b, if 

not dried quickly, a residue collected on the surface of the wafer.  This resulted in bad 

bonds and non-functional devices.  This residue could consist of the ≤0.2% impurities in 

the methanol or of impurities that collect in the methanol during processing.   

 

Figure 3.8:  Scum left over after the release process on a) a bond ring and b) on a device. 

It was observed experimentally that during release, as methanol dissolved from the 

wafer, this residue tended to accumulate in the last portions to dissolve from the wafer.  

Therefore, it was desirable to evaporate off methanol from the center of the first. To 

accomplish this, the device wafer was taken directly out of methanol and placed on a hot 

plate at 115ºC for about 20 seconds.  In order for the methanol to dry quickly from the 

center of the wafer, very good thermal contact needed to be made between the hotplate 

and the back surface of the wafer.  Therefore, it was necessary to quickly wipe off the 

backside of the wafer with a wipe before placing it onto the hotplate.  If done correctly, 

methanol scum only accumulated around the periphery of the wafer.   

Inevitably using this process, some residue did accumulate on the surface of the wafer.   

Appendix 4 discusses how this methanol residue affected the bond quality in several 

device wafer bonds.  

3.3.2 CRITICAL POINT DRYER (CPD) RELEASE 

As compared to water or even methanol, liquid CO2 has an even lower surface tension 

of around 5×10-3 N/m.  Soaking devices in liquid CO2 and taking liquid CO2 straight to 
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its gas phase therefore allows for even more fragile devices to get released without 

pulling down to the substrate.  A critical point dryer (CPD) allows for devices to be 

released in such a manner.   

The CPD is a small pressure chamber which allows for liquid CO2 to be pumped in.  

When using the CPD for release, dies or wafers were first place inside of the chamber 

soaking in a small amount of methanol.  These soaking dies or wafers were then cooled 

to below 5ºC at a pressure of 1350 pounds per square inch (psi).  Liquid CO2, which 

remains in its liquid state at this temperature and pressure, was then pumped into the 

chamber from a CO2 cylinder.  This liquid CO2 was used to flush out the methanol.  Next, 

the pressure inside of the chamber was slowly raised so that the CO2 changed directly to 

its gas phase. 

Initially there were difficulties with an organic, solvent or other residues spreading 

across the entire wafer when using the CPD.  The cause of this residue was not entirely 

evident.  In later release experiments (and subsequent bond experiments) a methodology 

was developed to eliminate this residue.  First, it was important to clean the CPD 

chamber before releasing devices in case previous users had placed “dirty” wafers (with 

photoresist or other organic residues) into the tool directly before release.  The best way 

to clean the chamber before use was to run the CPD process with a clean “dummy” 

wafer.  It was also important to orient the wafers upside down inside of the chamber. This 

was accomplished by placing the wafer face down in the chamber on top of an O-ring. 

This was necessary because a thin residue (which could be a solvent, organic or other 

type of residue) was observed to accumulate on the top surface.   

Though there were initial problems with cleanliness using CPD, with careful 

preparation using critical point drier as supposed to a hotplate release actually resulted in 

a much more repeatable and clean wafer surface to bond to.  The bond yield results 

presented in Chapter 5 reflect this.       

3.4 BOND RING & DEVICE LAYOUT 

Figure 3.9a shows a wafer with 124 vacuum encapsulated devices and Figure 3.9b 

show a close up view of one of the packages.  Figure 3.9c shows an SEM image of one of 

these packages which was sawed in half in order to view a cross section of the package.    
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Figure 3.9:  a) A wafer with 124 vacuum encapsulated devices, b) a closer view of one of the packages and 
c) an SEM of a diced package showing the micro-vacuum cavity. 

Figure 3.10 shows a close up view of a package where the dotted lines show the 

location of the 300 µm wide bond ring which encompassed a 2.3 by 2.3 mm area.  On the 

cap wafer, bond rings 300, 150, 100 and 50 µm wide were experimented.  For bond tests, 

in some cases a much wider bond ring was used on the device wafer (500 µm wide) to 

increase the wafer alignment tolerance.  In many cases it was preferable to make the bond 

ring widths the same on the cap and device wafers (as will be discussed in Chapter 2).  

The alignment tolerance on the SUSS SB6 bond aligner ranged from ±5 to ±20 µm and 

therefore was not a significant issue for larger bond ring widths (a more detailed 

discussion on bond alignment and the fixtures used for alignment and bonding are given 

in Appendix 2).  
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Figure 3.10:  a) A top view of one of the caps showing the bond ring dimensions and the bond pads used 

for interconnection. 

Figure 3.11a shows an SEM of a package where the Au-Si eutectic was re-melted on a 

hot plate and the cap pulled off showing the sensors (Pirani gauges in this case) which the 

melted bond ring encircled.  As shown in the SEM photograph, the feed-through 

interconnects run underneath the bond ring, electrically connecting the bond pads to the 

sensors. Figure 3.11b and Figure 3.11c show a close-up of these feed-throughs.  As 

explained in the previous section these feed-through interconnects are insulated by a 

3000Å layer of Si3N4 which prevents the feed-throughs from electrically shorting to the 

bond ring.  
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Figure 3.11:  a) A closer view where the Au-Si eutectic has been melted in order to remove the cap, b) an 
SEM of on of the feed-throughs running underneath a feed-through and c) a closer look at one of the feed-

throughs. 

3.5 WAFER PREPARATION FOR BONDING 

Directly before each bond, both the cap wafer and device wafers were cleaned.  In 

each case where getters were not used, the cap wafers were Piranha cleaned (an 

aggressive chemical clean where the wafers are dipped in an approximately 1 to 1 

mixture of sulfuric acid and hydrogen peroxide) for 10 minutes in order to remove 

organic particles that could compromise the bond quality.  Wafers in which 
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NanogettersTM were used on the cap wafer could not be exposed to a Piranha clean 

because of material incompatibility (as specified by ISSYS, Inc.).  A solvent clean 

instead was used where the cap wafer was first dipped into acetone for 2 minutes, dipped 

in isopropanol for 2 minutes, rinsed in water for 5 minutes and then dried.  It was 

important to transfer the wafers quickly from the acetone to the isopropanol and then to 

the water rinse so that a residue did not accumulate from the solvents.   

For the device wafers, a Piranha clean was always conducted directly before the 

release process.  In the wafers which had poly-Si bond rings, the native oxide on the 

poly-Si bond ring got etched during the 30 minute BHF release.  Bonds were conducted 

anywhere from several minutes to several hours after this wafer preparation. 

Cap and device wafer alignment was done using the SUSS microTec SB6 wafer 

alignment system.  This alignment system allowed for alignment tolerances anywhere 

from ±5 to ±100 µm.  After the alignment, the wafer which were then clamped into the 

alignment chuck, were transferred into either the SUSS microTec SB6 or SB6e bond 

chamber for bonding.  More details on this bond chuck and bond chamber are presented 

in Appendix 2.   

Finally, Figure 3.12 summarizes the bond recipe used for vacuum packaging device 

wafers.  This process involved:  i) pumping down the bond chamber to around 10×10-6 

Torr; ii) heating both the bottom heater and top heater to 345ºC and hold for 1 hour in the 

outgassing step; iii) making physical contact between the wafers by removing the 

spacers, then applying the bond force was applied, and the clamps holding the wafers 

together; and iv) raising the temperature to the bond temperature which ranged from 390 

to 410ºC and holding that temperature for 40 minutes.  After running the bond sequence, 

the wafers were then cooled to below 200ºC at which point they were pulled out of the 

wafer bonder.  In several of the bonds step 2, the outgassing step, was eliminated.  The 

vacuum encapsulation data for these wafers is presented in Chapter 5 
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Figure 3.12:  The bond process used for vacuum encapsulation of sensors (Pirani gauges) in Chapter 5. 
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CHAPTER 4 
 

PIRANI (VACUUM) SENSOR DESIGN AND TESTING  
 

This section presents the design and characterization of Pirani vacuum gauges used for 

characterization of vacuum/hermeticity.  In Section 4.1 a brief discussion is presented on 

the methods available for vacuum/hermeticity characterization and on the motivation for 

use of Pirani gauges in this application.  Section 4.2 provides a background on past Pirani 

gauge research, Section 4.3 outlines the Pirani gauge design, Section 4.4 explains some 

fabrication issues specific to these devices and in Section 4.5 the gauges are 

characterized.  Finally, Section 4.6 explains the test methodology used for vacuum 

characterization.  

4.1 METHODS FOR VACUUM/HERMETIC CHARACTERIZATION 

4.1.1 LEAK RATE TESTERS 

One of the more common methods for characterizing micro-packages involves using a 

leak detection setup.  The specifications for such a leak detection setup are detailed in the 

Military Specifications titled: Department of Defense Test Method Standard for 

Microcircuits (Mil-Spec-883F method 1014.11) [185].  There are two types of tests 

specified, one for fine leak assessment and one for gross leak assessment.  For the 

applications in this work, we are primarily interested in fine leak detection.   

The leak test for fine leak assessment is called the Helium leak test.  Using this test 

method the package is generally placed inside of a pressure chamber and pressurized to 

several atmospheres of pressure with helium and held for 2 to 10 hours.  The necessary 

pressures and hold times are specified depending on the package size (anywhere from 0.5 
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to 10 cubic centimeters (cc)).  The purpose of this He exposure is to force He atoms into 

the package through a leak path.  After sitting inside of the pressure chamber, the 

packages are placed into another chamber with a He detector.  An equation is given for 

determining the leak rate in MIL-SPEC-883F, for a given package volume, time and 

pressure inside of the He chamber.  Details on the requirements for this test setup up are 

also given in MIL-SPEC-883F.  The pass criterion for this test technique is a leak rate of 

less than 10-9 cc/s at atmospheric pressure and the minimum measurement resolution is 

generally no greater than 10-12 cc/s at atmospheric pressure.   

4.1.2 PACKAGED SENSOR 

Encapsulating a sensor inside of the micro-package is an alternative to trying to pass 

gases such as helium through the bond seal. Using this method, the pressure inside of a 

vacuum cavity is measured over a specified amount of time, t.  Measuring the change of 

pressure, ΔP, knowing the volume, V, the leak rate can be determined:  

t

V

Torr

P
RateLeak !

"
=
760

          (4.1) 

Although this takes a significantly more sophisticated package design, this is often 

practical since the end goal is generally to package some kind MEMS device and in some 

cases, a pressure sensitive MEMS device.   

Resonators, micro-bolometers and Pirani gauges have all been used for micro-package 

characterization.  Resonant devices (which include micro-resonators and gyroscopes) are 

often pressure sensitive due to squeeze film damping of the molecules in the atmosphere 

in which they resonate.  The pressure sensitivity of the resonant device depends on its 

geometry and resonant mode.  Lower frequency devices generally have larger amplitude 

vibration and are therefore more pressure sensitive, especially at pressures in the mTorr 

or even µTorr range.  Unfortunately these types of devices can be difficult to calibrate 

and test.   

Both Pirani gauges and micro-bolometers consist of suspended thin film resistors 

which heat up different amounts depending on how much heat conducts through the 

ambient air around them.  Because micro-bolometer and Pirani gauges are essentially 
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suspended resistors, they are easy to design for measurement of specific pressure ranges 

from above atmospheric pressure (760 Torr), to the µTorr range.  Pirani gauges are also 

easy to calibrate and test.  

Tables 4.1 and 4.2 compare the resolutions of the He-leak rate test to the use of a 

packaged sensor.  In these tables typical package volumes for several applications 

ranging from 0.0375 cm3 down to 2.5×10-6 cm3 are used.  For these different package 

volumes, Table 4.1 shows how fine of a pressure change can effectively be measured in 

units of Torr/days (converted from a flow rate of cc/s at atmospheric pressure to units of 

pressure/day for the given package volume).  As illustrated, the pressure measurement 

resolution gets worse as the package dimensions shrink.  This is particularly important for 

applications that require vacuum pressures in the mTorr range.  This is significant even 

for applications that simply require hermeticity where this amount of pressure change can 

represent a significant amount of moisture or other gasses that can deteriorate device 

performance.   

Table 4.1: Typical package dimensions for different types of devices, and given the leak rate measurement 
resolution (10-12 cc/s) the amount of time it would take for the package to leak by 1 Torr with a leak rate of 

the 10-12 cc/s. 

Type of Package Package 
Dimensions 

Package 
Volume  

Measurement 
Resolution 

Time for 1 Torr 
change in pressure 

Chip Scale 
Package 5×5×1.5 mm 0.0375 cm3 10-12 cc/s 47.6 days 

Gyroscope  
(wafer-level) 2×2×0.3 mm 0.0012 cm3 10-12 cc/s 1.52 days 

Package in this 
work (wafer 

level) 
2.3×2.3×0.1 mm 5.3×10-4 cm3 10-12 cc/s 0.67 days 

3-D Accelerometer 
(wafer level) 0.5×0.5×0.3 mm 7.5×10-5 cm3 10-12 cc/s 0.10 days 

Thin Film Package 
(wafer level) 0.5×0.5×0.01 mm 2.5×10-6 cm3 10-12 cc/s 0.0032 days 

  

Table 4.2 illustrates the advantage of using a sensor for characterization of package 

hermeticity/vacuum.  Table 4.2 shows the same devices and device dimensions as were 

shown in Table 4.1, but characterized with a sensor that has a 4 mTorr resolution (as was 

used in much of this work).  In each case, much finer leak rates can be detected.  As 

illustrated, for the package dimensions used in this work, a leak rate measurement of 

8.0×10-13 and 2.24×10-17 cc/s at atmospheric pressure can be measured in 1 day and 1 



 115 

year of measurement respectively.  This is several orders of magnitude better than the He 

leak test.  As illustrated in Table 4.2, using a packaged sensor, the leak rate measurement 

resolution increases as the package gets smaller and as measurements are taken for longer 

and longer periods of time.  

Table 4.2: Typical package dimensions for different types of devices, and given the a pressure 
measurement resolution (2 mTorr) the leak rate resolution in 1 day and 1 year.  Also shown is the time it 

would take for the package to leak by 1 Torr with this given leak rate measurement resolutions. 

   
Leak Rate Resolution 

(2 mTorr  pressure 
measurement resolution) 

Type of Package Package 
Dimensions 

Package 
Volume  1day 1 year 

Time for 1 Torr 
change in 
pressure 

 (with 1 year of 
measurement) 

Chip Scale 
Package 5×5×1.5 mm 0.0375 cm3 5.8×10-13 

cc/s 
1.59E×10-15 

cc/s 500 years 

Gyroscope 
(wafer level) 2×2×0.3 mm 0.0012 cm3 1.83×10-14 

cc/s 
5.07E×10-17 

cc/s 500 years 

Package in this 
work (wafer level) 2.3×2.3×0.1mm 5.3×10-4 cm3 8.18×10-15 

cc/s 
2.24×10-17 

cc/s 500 years 

3-D Accelerometer 
(wafer level) 0.5×0.5×0.3mm 7.5×10-5 cm3 1.16×10-15 

cc/s 
3.18×10-18 

cc/s 500 years 

Thin Film Package 
(wafer level) 0.5×0.5×0.01mm 2.5×10-6 cm3 3.87×10-17 

cc/s 
1.06×10-19 

cc/s 500 years 

4.2 BACKGROUND & PREVIOUS PIRANI GAUGE RESEARCH 

Micromachined Pirani gauges are now used and applied in both industry and research 

environments, employing a number of different geometries and materials.  As compared 

with conventional filament based Pirani gauges, these miniaturized versions have the 

advantage of small size, low power, low temperature operation, fast thermal response and 

a wide range of operating pressures.   

Micromachined Pirani gauges consist of a suspended resistor, where for a given 

current, the resistor heats up different amounts depending on the heat conducted through 

the gap, g, between the Pirani gauge and the substrate (Figure 4.1).  Structures that allow 

for more heat conduction through the gas, Hg, as compared to the anchors, Ha, allow for 

lower pressures to be measured.  Heat is conducted through the gas to the substrate as 

atoms in the gas interact with the suspended bridge.  At lower pressure where there are 

fewer atoms in the gas, the mean free path is much larger that the gap distance, which 

means the atoms in the gas mostly collide with the bridge and transfer heat from it.  

Therefore, pressure is less sensitive to gap dimension and more sensitive to the surface 
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area of the bridge.  At higher pressure, the mean free path of gas molecules is quite small 

and therefore, to increase interaction between the gas and the bridge, the gap has to be 

reduced.  Therefore, structures with smaller gaps between the Pirani gauge and the 

substrate allow higher pressures to be measured, and structures with larger surface area 

allow lower pressures to be measured.  Therefore, to have the largest possible dynamic 

range of operation, a gauge should have the largest possible surface area and have the 

smallest possible gap between this exposed surface area and the substrate.  Taking these 

factors into account, micro-machined Pirani gauges have been fabricated using a variety 

of processes and geometries.  These devices can be grouped into two categories: i) the 

resistor on dielectric membrane structure and ii) the micro-bridge structure. 

 

 
Figure 4.1:  a) A single beam micro-bridge structure, b) an illustration of the heat loss through the gas, Hg 

vs. the heat loss through the anchors, Ha, and the temperature profile across the beam. 

In the resistor on dielectric membrane structure, a serpentine metal [186-188] or poly-
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Si [189, 190] thin film resistor is patterned on top of a dielectric membrane made out of 

CVD (chemical vapor deposited) SixNy and/or SiO2.  The dielectric is used as a 

mechanical support and is needed because of the high residual stress of many metal and 

poly-Si thin films and the low mechanical rigidity the geometry of the resistor.  Typically 

a high temperature coefficient of resistance (TCR) metal such as platinum or nickel is 

used for the resistor material and the suspended structure is released by a bulk KOH etch 

(tens of microns deep) of the underlying silicon wafer.  Using such a structure, Shie et al. 

[186] presented a Pirani gauge with a measurement range from 10-7 to 1 Torr.  

Measurement of such low pressures required a constant temperature circuit in order to 

eliminate piezoresistive effects, as well as thermo-electric temperature stabilization and 

an integrated reference resistor to correct for ambient temperature fluctuations.  Others 

have created the resistor on dielectric membrane structure in a surface micromachining 

process by undercutting a thin poly-Si layer instead of the bulk silicon [187, 190-192].  

This allows for the creation of a smaller gap between the gauge and the substrate and 

therefore pressure measurement at higher pressure ranges.  Chou [187] in particular was 

able to measure pressures ranging from 10-1
 up to 105 Torr.     

The micro-bridge structure consists of a suspended beam or coil as was shown in 

Figure 4.1a.  Several researchers have fabricated this type of gauge by first sandwiching a 

suspended poly-Si layer in between a SixNy or SiO2 dielectric layer through a series of 

process steps and then etching the bulk Si underneath using KOH [193-195].  Swart [193] 

fabricated a 1200 µm long poly-Si coil using such a process in order to measure pressures 

ranging from 10-2 to 103 Torr.  Quite a few different micro-bridge geometries and 

materials have been used including a suspended platinum beam which was surface 

micromachined to achieve a 300 nm gap [196]; a 10 µm thick single crystal silicon beam 

made from a silicon on insulator (SOI) wafer [197]; a heavily boron doped (p++) single 

crystal silicon coil fabricated in the dissolved wafer process (DWP) [198] and a 

suspended poly-Si beam fabricated in the Sandia Ultra-planar, Multi-level MEMS 

Technology 5 (SUMMiT VTM) process [199].  In general, the micro-bridge structure is 

very easy to fabricate but because it is not mechanically supported by a membrane, it is 

difficult to achieve long, thin, thermally isolating structures—therefore it is difficult to 

measure lower pressures.  Table 4.3 summarizes these various results reported in the 
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literature.   

Table 4.3:  Summary of Pirani gauges used in the literature. 

Researcher/year Type of Gauge Pressure Measurement Range 

[186] Shie et al., 1995 * Resistor on dielectric membrane 
(Platinum) 

10-7 to 1 Torr* 
(1.33×10-4 to 1.33 Pa) 

[187] Chuo  et al., 1997 * Resistor on dielectric membrane 
(Platinum) 

10-1
 to 105 Torr* 

(13.3 to 1.33×107 Pa) 

[189] Robinson et al., 1991  Resistor on dielectric membrane 
(Poly-Si) 

10-2
 to 100 Torr 

(1.33 to 1.33×104 Pa) 

[190]Paul et al., 1994 Resistor on dielectric membrane 
(Poly-Si) 

0.75 to 7.5×103 Torr 
(102 to 106 Pa) 

[191] Stark et al., 2003 Resistor on dielectric membrane 
(Platinum) 

10-3 to 10 Torr 
(0.133 to 1.33×103 Pa) 

[192] De Jong et al., 2003 Resistor on dielectric membrane 
(Platinum) 

7.5×10-2 to 150 Torr 
(10 to 2×104 Pa) 

[196] Swart et al., 1994 Micro-bridge 
(1200µm long  Poly-Si coil) 

10-2 to 103 Torr 
(1.33 to 1.33×105 Pa) 

[194, 195] Mastrangelo and Muller, 
1999 

Micro-bridge 
(1200µm long Poly-Si beam) 

7.5×10-2 to 75 Torr 
(10 to 104 Pa) 

[196] Dom  et al., 2005 Micro-bridge 
(100µm long platinum beam) 

0.75 to 7.5×103 Torr 
(100 to 106 Pa) 

[197] Moelders et al., 2004 Micro-bridge 10-2 to 1 Torr 
(1.33 to 133 Pa) 

[198] Chae et al. 2003 Micro-bridge 
(p++ silicon coil) 

20×10-2 to 2 Torr 
(2.67 to 267 Pa) 

[199] Stark et al., 2005 Micro-bridge 
(Poly-Si beam) 

10-2
 to 100 Torr 

(1.33 to 1.33×104 Pa) 
* Used a constant temperature circuit in order to eliminate piezoresistive effects, as well as 
thermo-electric temperature stabilization and an integrated reference resistor to correct for 

ambient temperature fluctuations to extend the range of operation. 
 

In this thesis, a new micro-bridge Pirani gauge structure is described which allows for 

pressure measurement from 10-3 to 760 Torr with a combination of gauge structures 

fabricated on the same substrate, in a 1, 2 or 3 mask, CMOS compatible surface 

micromachined process without post-processing steps such as KOH etching.  This is 

accomplished using the ladder structure shown in Figure 4.2.  The ladder structure 

consists of structural supports that allow for a longer suspended beam lengths and heat 

spreading across the structural supports.  These two effects work together in extending 

the range of operation into lower pressure regimes.  Such a structure can be easily 

integrated into the process for a number of devices that require vacuum (such as 

gyroscopes and resonators) for in-situ characterization of vacuum pressure and have been 

successfully applied in the characterization of micro vacuum packages [119, 120].   
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Figure 4.2:  An SEM of the design 1 (D1) ladder structure. 

4.3 APPROACH AND DESIGN 

4.3.1 MODELING OF A SINGLE BEAM PIRANI GAUGE 

A single beam micro-bridge Pirani gauge (as was shown in Figure 4.1a) with a width, 

w, thickness, t, length, l, and a gap between the beam and the substrate, g, has a 

resistance, Rb that changes as the temperature changes.  The fractional resistance change, 

Gf, is proportional to the average change in temperature across the micro-bridge:  
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where R0 is the resistance at room temperature and ξ is the temperature coefficient of 

resistance (TCR).  Passing a current, Ib, through the micro-bridge causes its temperature 

to increase and therefore the resistance to increase.  The heat gets dissipated both through 

the gas separating the micro-bridge from the substrate, Hg, and through the anchors 

holding the micro-bridge to the substrate, Ha, resulting in a temperature profile similar to 
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the one that was shown in Figure 4.1b.  When the pressure, P, is reduced, less heat 

dissipates through the gas to the substrate causing the temperature and therefore the 

measured resistance to increase.  The pressure can therefore be measured by measuring 

the Pirani gauge resistance, Rb.   

In operation, the Pirani gauge measures pressures in three different regimes.  I) At 

relatively high pressures the mean free path for atoms is smaller than the gap distance, g, 

thus a very large amount of heat gets transferred through the air gap into the substrate.  

There is very little change in heat conduction as the pressure changes in this regime.  

Decreasing the gap distance, g, therefore helps increase the measurement resolution at 

higher pressures.  II)  At relatively moderate pressures the mean free path for atoms is 

much larger than the gap distance, g, and the amount of heat transferred through the gas 

is proportional to the density of atoms (the pressure) around the micro-bridge.  The gauge 

is most sensitive to pressure changes in this regime.  III)  At relatively low pressures a 

much larger percentage of the heat gets transferred through the anchors, Ha, as compared 

to that transferred through the gas, Hg.  This results in low pressure sensitivity.  In order 

to increase the range of operation into lower pressure regimes, a larger Hg/Ha must be 

achieved as is the case with longer and more slender (a smaller thickness and width) 

geometries.  

The analytical model derived by Mastrangelo and Muller [194] was used to better 

understand the operation of the micro-bridge Pirani gauge.  In this model, the temperature 

distribution on a single suspended beam such as the one shown in Figure 4.1a was 

predicted using a form of the steady state heat equation:    

 !" =#
$

u
dx

u
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       (4.3) 

where u is the micro-bridge temperature, ε is the heat loss through the gas, δ is the ohmic 

power generation, and x represents the position on a beam spanning from x=0 to x=l.  In 

modeling the micro-bridge, it was assumed that at the boundaries (x=0 and x=l), the 

temperature was fixed at room temperature, T0 (as was shown in Figure 4.1b).  This is an 

accurate assumption if heat is sunk efficiently from the beam to the substrate.  

Mastrangelo and Muller derived the following expression for the micro-bridge resistance, 
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Rb, as a function of ambient pressure, P: 
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and η is a correction factor taking into effect fringing heat flux through the gap and κg(P) 

and κb are the thermal conductivities vertically through the gas and laterally through the 

beam.  (Refer to Mastrangelo and Muller [194] for a complete derivation and explanation 

of theory.)  The thermal conductivity of highly phosphorus doped poly-Si, the micro-

bridge material used in this work, has been measured elsewhere, to be 14.2 W·m-1·K-1 

(Watts per meter Kelvin) [200].  The thermal conductivity of air, κg(P) ranges from 

around 2.2×10-2 W·m-1·K-1 at 760 Torr (atmospheric pressure) to 2.5×10-7 W·m-1·K-1 at a 

vacuum pressure of 10-3 Torr (calculated from equations in Mastrangelo and Muller 

[194]).  Because κb is so much larger than κg(P), a relatively long/thin micro-bridge is 

required to achieve enough thermal conduction through the gas to attain a highly 

sensitive pressure sensor.  

4.3.2 CONFIRMATION OF THE MODEL 

The accuracy of the model was tested by comparing the predicted results with that of 

five Pirani gauges from two different process runs with a width, thickness and length of 4 

µm, 2.2 µm and 250 µm and a gap distance of 2 µm (details of the processing and test 

procedure will be outlined in Section 4.4, Fabrication of Pirani Gauge Test Structures).  

Both in actual devices and the model, increasing the input current, Ib, caused the 

temperature to increase proportionally to the input power (Pb=Ib
2Rb).  In testing these 

devices, a sufficient current was applied so that the maximum fractional resistance 

change, Gf, between atmospheric pressure and vacuum (10-5 Torr in our vacuum 

chamber) was 1%.  In so doing, the measurement ranges of devices with different 
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material properties and different geometries could be directly compared.  Table 4.4 shows 

the current applied, the measured TCR, the resistivity, average temperature and the power 

dissipated across each of the micro-bridges.  The maximum average temperatures 

increase across each micro-bridge (measured at 10-5 Torr), ranged from 37.8ºC to 62.9ºC 

and were calculated using Equation 4.2.   

Table 4.4:  The input currents, initial resistance, TCR, maximum average temperature across the beam, 
input powers and the correction factors needed for the model to fit the data for each of the 5 single beam 

Pirani gauges tested. 

Measurant Beam 1 Beam 2 Beam 3 Beam 4 Double Beam 
Current (I) 622 µA 545  µA 538 µA 517  µA 739  µA* 

Initial Resistance (R0) 1529.3  Ω 1481.4  Ω 1481.4  Ω 1436.4  Ω 1103.0 Ω* 
Measured TCR (ξ ) 1.59×10-4 ºC-1 2.20×10-4 ºC-1 2.24×10-4 ºC-1 2.64×10-4 ºC-1 1.87×10-4 ºC-1 
Maximum (Average) 

Temperature Increase(TAve) 
62.9 ºC 45.6 ºC 44.6 ºC 37.8 ºC 53.5 ºC 

Power Dissipated 592 µW 440 µW 429 µW 384 µW 301 µW 
Modeling Correction Factor 1.539 1.584 1.572 1.658 1.834 
*The double beam consisted of two micro-bridge resistors in parallel and was fabricated in a different process run (as 
detailed in the Fabrication section).  The listed input currents and the measured resistance for the double beam 
structure are the input current and resistance across each of the parallel beams. 

 

Figure 4.3 shows that these devices have almost identical Gf vs. pressure behavior.  In 

the modeling results plotted in Figure 3.3, a 622 µA current, a TCR of 1.59×10-4 ºC-1 and 

a resistivity of 5.38×10-5 Ωm2 were applied (the parameters for the Beam 1 Pirani gauge 

shown in Table 4.4).  As shown in Figure 4.3 the modeling results for the Gf vs. pressure 

behavior differ from the test results by a factor of 1.54.  Inputting the currents, and the 

measured TCR’s and resistivities for each of the Pirani gauges from Table 4.4 resulted in 

the model over predicting Gf by factors of 1.54 to 1.84 (the correction factor).  This 

discrepancy could be a result of errors in the assumptions for the model or in the material 

properties.  However, as illustrated in Figure 4.3, multiplying the predicted change in 

resistance by a factor of 1/(the correction factor), the model results map directly over the 

test results.      
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Model vs. Test Data for Single Beams
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Figure 4.3:  The measured data for 4 single 4µm×2µm×250µm micro-bridges and two parallel micro-

bridges as compared to the modeling data.  Adding a correction factor, the modeling data maps directly 
over the measured data.  * See the note in Table 1 on the double beam structure. 

Because of the complexity of the expression for Rb in Equation 4.4, it is not initially 

evident how the design variables (w, t, l, and g) affect the performance of the device.  

This can be done numerically.  A nominal width, thickness and length of 4 µm, 2.2 µm 

and 250 µm were chosen, with the input current, TCR, resistivity and correction factor 

used in the corrected model plotted in Figure 4.3.  In the modeling results shown in 

Figure 4.4, the width and thickness were reduced by a factor of 4 and the length was 

increased by a factor of 4 in order to show the effects of changing the micro-bridge 

dimensions, where in each case a current of 155.5 µA (that is the current applied for the 

nominal case divided by 4) was applied.  In so doing, in each case, a maximum average 

resistance change of 1% was predicted at absolute vacuum.  Equation 4.2 therefore 

predicts that these micro-bridges should have the same average temperature increase as 

the nominal case.  As illustrated in Figure 4.4, for each case the change in resistance 

decreases from 1% at absolute vacuum, down to 0.01 to 0.2% at atmospheric pressure, 

where a larger slope indicates better device sensitivity.  These plots show that decreasing 

the width or thickness, or increasing the length shifts the performance curve to the left, 

indicating higher measurement sensitivities at lower pressures.  Increasing the length 

resulted in the most dramatic change in performance.  
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Figure 4.4:  Modeling data comparing the nominal case (a single 4µm×2µm ×250µm beam) with a single 

beam that is a quarter of the width, a quarter of the thickness, or four times the length. 

4.3.3 STRUCTURAL RIGIDITY 

In the design of a Pirani gauge, structural rigidity must also be considered.  Although 

designing a longer, thinner micro-bridge structure is desirable for measuring low 

pressures, it results in a decreased stiffness, SB, in the axis perpendicular to the substrate: 

3

3
12

L

Ewt
S
B
=      (4.6) 

where E is the Young’s Modulus.  A structure with a very small stiffness will get pulled 

down to the substrate during the release process (the details of the release process were 

discussed in Section 3.3 (Device Release) of Chapter 3, and will be discussed specifically 

in relation to the different Pirani gauge designs in Section 4.4.2 (Pirani Gauge Structure 

Release).  Furthermore, in the presence of a compressive stress, buckling is of major 

concern.  The following expression can be used to predict the critical intrinsic stress, σcrit, 

for out-of-plane and in-plane buckling respectively: 



 125 

2

22

3L

Eh
crit

!
" = ,    

2

22

3L

Ew

crit

!
" =        (4.7) 

In our 2.2 µm thick poly-Si, a residual stress of roughly 36 MPa was measured.  Given 

t = 2.2 µm and w = 4 µm, Equation 5.7 predicts out-of-plane buckling for lengths of ≥266 

µm and in-plane buckling for lengths of ≥484 µm.  Therefore, above 484 µm, a beam 

should buckle along both axes, causing the micro-bridge to become unstable so that it 

will collapse to the substrate surface with very little applied force.  On the other hand, if 

the micro-bridge only buckles in the out-of-plane direction (and away from the substrate) 

the beam will bend until enough of the intrinsic stress is relieved to reach static 

equilibrium.  As will be discussed in the fabrication section, beams with sufficient 

stiffness for release buckled only in the out-of-plane direction, always tended to buckle 

away from the substrate. 

The main motivation for using the ladder structure was to prevent horizontal buckling 

so that when longer and narrower suspended micro-bridge structures were fabricated, 

they buckled only in the vertical axis.  In so, they reached static equilibrium and survived 

the release process.  In using the ladder structure, the structural links were spaced far 

enough apart so that almost no current passes through them.  Therefore, roughly the same 

amount of heat gets generated across the micro-bridge.  Furthermore, some of the 

generated heat spreads across the structural links, allowing for a larger percentage of the 

heat to eventually conduct through the gas.  This combined with the longer suspended 

micro-bridge structure allows for a significantly larger Hg/Ha and therefore the ability to 

measure lower vacuum pressures.  

4.4 FABRICATION OF PIRANI GAUGE TEST STRUCTURES 

For the development of the Pirani gauge design (which is detailed in Section 4.3), the 

process flow outlined in Figure 4.5 was used.  In this process, a 3000 Å layer of LPCVD 

Si3Ni4 was first deposited to electrically insolate the devices from the substrate.  A 3000Å 

layer of LPCVD poly-Si was then deposited and then heavily phosphorous doped.  This 

poly-Si was patterned to form the lead/bond pad layer for the Pirani gauges (Figure 4.5a).  

A 2 µm LPCVD SiO2 sacrificial layer was next deposited.  This layer was then patterned 
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to allow for anchoring of the device layer to the leads (Figure 4.5b).  Finally a 2.2 µm 

layer of LPCVD poly-Si was deposited and doped with resistivities that ranged from 

3.49×10-5 Ωm2 to 5.38×10-5 Ωm2 depending on the process run and position on the wafer.  

This layer was patterned to form the device layer (Figure 4.5c).  Finally, the wafers were 

diced and the dies dipped in BHF (buffered hydrofluoric acid) for 30 minutes to etch the 

silicon oxide, in order to undercut the micro-bridges (Figure 4.5d).  (This release process 

was described in more detail in Section 3.3 of Chapter 3.) 

 

Figure 4.5:  Fabrication of the suspended beam structure consists of the deposition and patterning of a) 
poly-Si which forms the leads and bond pads, b) SiO2 which acts as a sacrificial layer and, c) a poly-Si 
structural layer. d) After dicing, the devices are release in buffered hydrofluoric acid (BHF) and then 

soaked in methanol.  e)  One possible reason for the tendency of beams to buckle upwards are the rounded 
concave edges created due to photolithography.     

The Pirani gauge structures studied in this section were fabricated on wafers from 

three different process runs.  The four single beam devices tested and one double beam 

structure (two micro-bridge resistors in parallel) discussed in Section 4.3.2 (Confirmation 

of the Model), were fabricated in run 1 and run 2 respectively.  Run 1 was fabricated 

using the full device wafer  process (Process #1) outlined in Section 3.2 (Device Wafer 

Fabrication) of Chapter 3 and the devices in this run had resistivities ranging from 

5.06×10-5 to 5.38×10-5 Ωm2.  Run 2 was fabricated using the process outlined above and 

resistivities ranged from 3.10×10-5 to 3.54×10-5 Ωm2 where measured.  Despite 

differences in resistivity and TCRs across all of these devices (as was illustrated in Table 
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4.4), they demonstrated identical Gf vs. pressure behavior (as was illustrated in Figure 

4.3). 

Several of the ladder structures designed which will be analyzed in the following 

sections were also fabricated in run 2.  Finally, run 3 was also fabricated in the full device 

wafer process (Process #1) outlined in Section 3.2 (Device Wafer Fabrication) of Chapter 

3 and the devices in this run had resistivities ranging from 3.49×10-5 to 4.42×10-5 Ωm2.  

Two of the ladder structure designs which will be analyzed in the following sections were 

fabricated in this run.  As with the single beam and double beam designs, despite minor 

differences in measured resistivities and TCRs from device to device, specific designs 

showed nearly identical performances (as will be shown in Section 4.5).  

4.4.1 DEVICE LAYOUT 

As was demonstrated in section 4.3 (Approach and Design), the main factor in the 

pressure measurement range for a single beam Pirani gauge were the device dimensions 

(length, width and thickness).   For the devices fabricated in this work, the thickness of 

the device layer remained constant at 2.2µm.  Therefore, the length and width of the 

devices were the predominant factors in determining their measurement ranges.  In the 

ladder structure devices, the size and number of cross-beams also affected the 

performance of the device.  Table 4.5 summarizes the geometries of the various Pirani 

gauge designs and the release process for each design.  In all of the designs shown, 

except for D3s, the structural links were made with the same width as the cross-beams.  

Also shown in Table 4.5 is whether or not the devices could be released in methanol or 

CO2—these results will be discussed specifically in the next Section 4.4.2 (Pirani Gauge 

Structure Release).   
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Table 4.5: The dimensions of the different Pirani gauge designs and how or whether or not they released. 

Structural Links Name Length Width Gap Width Number Release 

S1 250µm 4 µm 2 µm - - Methanol or CO2 
S2 500µm 4 µm 2 µm - - None 
S3 1000µm 4 µm 2 µm - - None 
D1 250µm 4 µm 3 µm 96 µm 9 Methanol or CO2 
D2 250µm 4 µm 2 µm 384 µm 9 Methanol or CO2 
D3 1000µm 4 µm 2 µm 384 µm 36 CO2 
D3s 1000µm 16 µm 3 µm 384 µm 36 Methanol or CO2 

 

The last structure shown in Table 4.5, D3s, was designed specifically to be more rigid 

so that it would release in CO2 or methanol, so a 16 µm width was used.  Because larger 

structural widths result in significantly larger release times in BHF (very long exposures 

to BHF can result in significant etching of a Si3N4 passivation layer which etches at ~9Å 

per minute) release holes were design into the D3s structure.  Figure 4.6 shows a close up 

view of the release holes for one of these structures.  Two different layouts were used for 

the D3s structures as shown in Figure 4.7.  As illustrated, in Figures 4.7a and 4.7b, these 

structures had 6 µm square holes with 6 µm spacing and 4 µm holes with 4 µm spacing.  

In each case, the holes allowed for enough BHF to get underneath the structures so that it 

would be completely released in less than 30 minutes. 

 

Etch holes 
for release
Etch holes 
for release

 

Figure 4.6:  A SEMS of one of the D4s structures showing a close up view.     
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Figure 4.7:  Layouts of the two D4s Pirani gauge designs.     

4.4.2 PIRANI GAUGE STRUCTURE RELEASE 

The device release process was discussed in detail in Section 3.3 of Chapter 3.  As was 

explained in Section 3.3, release was accomplished using either the hot plate release 

method or using CPD release.  Releasing with the CPD allowed for more fragile devices 

to be released.  As was shown in Table 4.5, single 4µmx2.2µmx250µm beams and 

4µm×2.2µm×250µm beams with structural links (S1,  D1 and D2) were sufficiently rigid 

not to require CPD for release.  On the other hand, the 4µm×2.2µm×500µm and 

4µm×2.2µm×1000µm single beam structures (S2 and S3) pulled down to the substrate 

during release—even with CPD.  This is consistent with Equations 5.7 which predicts 

buckling along both axis (and therefore an unstable structure) at above a 484µm length.  

Figure 4.8a shows a collapsed 4µm×2.2µm×1000µm single beam structure after release.   
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Figure 4.8:  a) Parallel 4µm×2.2µm×1000µm suspended beams which buckled along both axis and pulled 
down to the substrate, and b) the design 3 ladder structure which was successfully released, only buckling 

in the out-plane-plane direction, away from the substrate. 

The 4µm×2.2µm×1000µm ladder structure with thirty-six structural links (D3) is also 

shown in Fig. 3.8b.  This structure did successfully and consistently release with CPD.  

As also shown in Table 4.5, the stiffer 1000 µm ladder structure (D3s) that had a 3 µm 

gap was successfully released using hot plate release and using CPD release because of 

its structural rigidity. 

All of the ladder structures consistently buckled upwards.  In fact, the D3 and D3s 

structures buckled upwards approximately 6 µm.  As was shown in Figure 4.5e, one 

possible explanation is that the rounded concave geometry on the inside edges of the 

micro-bridge structure, created (incidentally) through photolithography, give the micro-

bridges a tendency to buckle upwards.  Another possible explanation is that there may be 

a stress gradient in the poly-Si.  Many thin films tend to have higher stresses in the initial 

layers due to lattice mismatches and/or changes in pressure or temperature during 

deposition.  The rounded edges at the supports, a stress gradient or a combination of these 

two effects could cause the tendency for the micro-bridge structure to always buckle 
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upward.    

4.4.3 PROCESS SIMPLIFICATION FOR OTHER APPLICATIONS 

For our application, it was desirable to have low profile leads that acted as feed-

throughs in a wafer-level bonding process—therefore the lead/bond pad layer (Figure 

4.5a) and the device layer (Figure 4.5c) were deposited and patterned in two different 

steps.  If feed-throughs are not a design concern, the lead/bond pad layer and device 

layer can be combined, resulting in a 2 mask process.  If the leads and bond pads have 

much larger dimensions than the Pirani gauge structure, the patterning step for the 

sacrificial layer can also be removed, making this into a 1 mask process.         

4.5 PIRANI GAUGE CHARACTERIZATION 

Traditionally a Wheatstone bridge [186-188, 194] is used to monitor the change in 

Pirani gauge resistance, Rb, during operation.  This configuration is well suited for 

accurate resistance measurements and can be easily integrated with circuitry.  An 

alternative method for Pirani gauge resistance measurement is to use the 4-point probe 

configuration shown in Figure 4.9 [191, 198, 201].  A 4-point probe consists of 2 leads on 

each side of the resistor, where a current Ib, is applied across two of the leads, and the 

voltage drop, Vb, is measured across the other.  Since the current is constant from the 

input to the output, the resistance of the micro-bridge, Rb, can be determined by Vb/Ib 

independent of the resistances of the leads running to the micro-bridge.  The main 

application for our Pirani gauges were for testing vacuum pressures in micro-vacuum 

cavities [119, 120] in which testing occurred both using probes on probe stations and 

wire bonds in DIPs (dual-in-line packages).  Through various bond tests and reliability 

tests, devices where either re-tested on the probe station or repackaged into a DIP causing 

small changes in the lead resistances which can potentially compromise calibration data if 

the Wheatstone bridge configuration is used.  Therefore, for our application, the 4-point 

probe configuration was ideal since these lead resistances do not effect the measurement 

of Rb. 
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Figure 4.9:  A schematic of the test setup where the Pirani gauges were tested in a 4-point probe 
configuration using a source meter to provide current and a multimeter to sense the voltage drop across the 
Pirani gauge.  The Pirani gauges were tested inside of a vacuum chamber where pressures were dialed in 

using a pressure controller.  A separate pressure sensor was used for measuring the pressures. 

 

Test data for Pirani gauge characterization was obtained using the setup illustrated in 

Figure 4.9 where the devices were placed in a vacuum chamber and measurements were 

taken via feed-throughs that ran into the test chamber.  During testing the vacuum 

chamber was backfilled with dry nitrogen and therefore the ambient gas used for 

calibration was nitrogen.  The gas which the gauge is calibrated in is important because, 

as shown in Equations 4.4 and 4.5, the thermal conductivity affects the performance of 

the Pirani gauge.  Although many commonly used gases (Ar, CO2, Ne, CO) have almost 

the same thermal conductivity as N2, light gases such as He and H2 have thermal 
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conductivities 2 and 4 times greater than that of nitrogen [202].  Considering Equations 

4.4 and 4.5, such a thermal conductivity change can change the measured pressure by 

factors of 2.5 and 5, respectively.  This should be taken into account in the calibration of 

the Pirani gauges for applications where the pressure measurement is performed in a 

predominantly helium or hydrogen environment. 

Vacuum pressures were achieved using a Varian SD-301 roughing pump together with 

a Varian 350 MacroTorr Turbo-V pump.  An MKS 600 Series Pressure Controller was 

used to dial in the desired pressures via a control valve and a MKS Baratron type 627 

pressure transducer.  These pressures were measured and recorded using a separate 

pressure sensor: a factory calibrated MKS Series 925C MicroPiraniTM Transducer with a 

reported 10-5 to 760 Torr range [203].  Even so, pressures could only be regulated to 

within ±2 mTorr and the chamber could only be pumped down to as low as 2 mTorr.  

Because of this, it was difficult to accurately characterize our Pirani gauges below 20 

mTorr.   

Using a LabviewTM program, currents were input using a Keithley 2400 SourceMeter 

in 500 millisecond pulses and the voltages measured using an HP 34401A multimeter in 

order to calculate the micro-bridge resistance in the 4-point probe configuration.  Holding 

a substantial current across the micro-bridge for many seconds or minutes caused the 

substrate to heat and therefore the boundary conditions at each end of the micro-bridge to 

rise above room temperature.  Using 500 millisecond pulses, the substrate did not have 

enough time to heat up, allowing for predictable results and for the boundary conditions 

to more closely match the model discussed earlier (Section 4.3).   

In determining the TCRs listed in Table 4.4 (in Section 4.3.2, Confirmation of the 

Model) for the micro-bridges, the resistance was measured using the same 4-point probe 

configuration, but in an oven held at 23ºC, 55ºC and 75ºC.  A low current was applied in 

these resistance measurements so that there was little ohmic heating of the Pirani gauge 

during the TCR measurement.  The slope of Gf (fractional resistance change) vs. ΔT was 

then used to calculate the TCR via Equation 4.2. 

Figure 4.10 shows the Gf vs. pressure for the D1, D2, D3s and D3 ladder structures.  

As illustrated, the pressure verses resistance data for each design has roughly the same 

shape on the log-linear graph, but operate in different pressure regimes—this shows that 
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the Pirani gauges can be designed specifically for a number of different pressure ranges.  

Going from the 4µm×2.2µmx250µm single beam structure, S1, to the 

4µm×2.2µmx250µm ladder structure, D1 (shown in Figure 4.1), there is almost a 5x shift 

towards lower pressures.  This clearly indicates that heat spreading through the structural 

links allows for measurement at lower pressures as predicted.  Looking at the D1 and D2 

data, it appears that increasing the structural link lengths from 96 to 384µm only changed 

the performance of the device slightly.  The D3 ladder structure (shown in Figure 4.8b) 

on the other hand, allowed for pressure measurement 100x lower than that for the 

4µm×2.2µmx250µm single beam design and more than 5x lower pressure measurement 

as compared to that predicted for the 4µm×2.2µmx1000µm structure.  This dramatic 

change in the measurement range is due to both the longer beam length and due to heat 

spreading across the structural supports.  The more rigid D3s gauge operates in a lower 

pressure range than that predicted for the 16µm×2.2µmx1000µm single beam structure 

but at nearly 5x higher pressure range then the D3 gauge. 
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Figure 4.10:  A plot of Gf vs. pressure for design 1, 2, 3s and 3 ladder structure Pirani gauges as compared 
to models of the 4µm×2.2µm×250µm, the 16µm×2.2µm×1000µm and 4µm×2.2µm×1000µm model for 

single beam Pirani gauges. 



 135 

The range of operation for these devices is limited by the measurement resolution of 

the voltage drop across the beam, Vb, for a given input current, Ib (Rb = Vb/Ib).  To 

visualize how this affects the measurement range, the data in the plots of Gf vs. pressure 

in Figure 4.10 are plotted in terms of the change in voltage, ΔV vs. pressure on a log-log 

plot in Figure 4.11—where we define ΔV as the change in the measured voltage from the 

maximum voltage measured at absolute vacuum, Vvac, (in this case <2mTorr):  

bvac
VVV !="        (4.8) 

As illustrated, in Figure 4.11, near the lower limit of pressure measurement, there is a 

linear relation between ΔV and pressure for each of the gauges—this is consistent with 

ΔV vs. pressure data for Pirani gauges in the literature [186-188].  Several factors limited 

the range of operation of these gauges.  First, as mentioned earlier, in the vacuum 

chamber, it was difficult to regulate the pressure accurately under around 20 mTorr.  The 

second major factor was our voltage measurement resolution.  In Figure 4.11, the 

horizontal line at 50µV represents approximately the limit of our voltage measurement 

resolution.  It is likely that ambient temperature fluctuation and piezoresitive effects 

contribute in this voltage measurement error.  The measurement range at the upper limit 

of operation was limited by the voltage resolution in a similar manner resulting in 

measurement ranges of approximately 5×10-2 to 760 Torr, 5×10-3 to 100 Torr and 10-3 to 

50 Torr (2×10-5) for D1, D3s and D3 gauges respectively.  Shie et al. [186] was able to 

extend the operation of their gauge by improving their voltage measurement resolution to 

better than 1 µV using a constant temperature circuit in order to eliminate the 

piezoresistive effects, as well as thermo-electric temperature stabilization and an 

integrated reference resistor to correct for ambient temperature fluctuations.  Similar 

circuitry and thermo-electric temperature stabilization could be used to improve the 

resolution the Pirani gauges presented here.  Assuming that the ΔV vs. pressure would 

stay linear (as modeling and test data in the literature predict), a 1 µV measurement 

resolution for instance would allow for pressure measurement below 1×10-5 Torr for the 

D3 gauge. 
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Figure 4.11:  The data for the Design 1, 3s and 3 gauges (from Figure 4.10) graphed in terms of ∆ V (∆V 
= Vmax – Vd) vs. pressure.  As illustrated, as the gauges approach the lower limits of there operation, there is 

a linear relation between voltage and pressure and therefore the lower limit of operation is limited by the 
ability to accurately measure voltage. 

4.6 IMPLEMENTATION FOR PACKAGE CHARACTERIZATION  

4.6.1 TEST METHODOLOGY 

Pirani gauges used for package characterization were calibrated by measuring the 

thermal impedance: 
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         (4.9) 

where PE is the electrical power and Tave is the average temperature across the 

microbridge.  Here the thermal impedance was used as supposed to measuring the voltage 

difference, ∆V, from Equation 4.8 which is commonly done in the literature [186-188, 

194].  In this application measuring ∆V was not practical for two reasons.  First, there 

was no way to calibrate the devices at the wafer-level before bonding.  Ideally, with 

access to a wafer-level vacuum probe station, each vacuum sensor would be calibrated 
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before packaging.  Second, even with such a calibration, the exposure to wafer bonding 

temperatures from 345 to 390ºC for 1 ¾ hour can change the resistivity  of the gauge (and 

therefore ΔV for a given input current) by as much as a percentage—thus invalidating any 

pre-calibration.  The thermal impedance on the other hand can be measure without pre-

calibrating the sensor and is less sensitive to changes in the resistivity of the gauge 

material.  Furthermore, because of the resistivity change of the gauges after bonding, 

device calibration was conducted after packaging.  This calibration process will be 

described in the next section (Section 4.6.2, Pirani Gauge Calibration).  

To measure the thermal impedance, a range of currents were first applied across the 

device and the voltage drop was measured in a 4-point probe configuration.  Given the 

TCR of the material, the applied power vs. average device temperature was graphed.  

(The TCR values though varied from device to device.  For simplicity, for package 

calibration, the TCR was always assumed to be 5×10-4).  The slope of this line results in 

the thermal impedance of the device, where the slope increases as the pressure decreases.  

Figure 4.12 shows power verses temperature data used for calculating thermal 

impedances in a D3s gauge.  During pressure measurement, currents were applied in 500 

ms pulses in succession from 500 µA to 900 µA with 50 µA steps for both the D1 and 

D3s gauges (the gauges used for almost all of the package characterization).       
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Figure 4.12:  Temperature verses power data for a D3s gauge illustrating the acquisition of thermal 
impedance data for pressure measurement.    
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Finally, an added advantage of using this method was that 9 measurements were taken 

(at different currents) for each measurement.  This added an averaging affect which 

increased the precision of the measurement.   

4.6.2 PIRANI GAUGE CALIBRATION 

4.6.2.1 Pressure Measurement Ranges 
For most of the package characterization, the D1 and D3s gauges were used together 

for measuring pressures ranging from 760 Torr down to around 2 mTorr.  Figure 4.13 

shows typical plots of thermal impedance vs. pressure for the D1 and D3s gauges.  

Pressures from 760 Torr to 50 Torr could be estimated using the D1 gauges.  Though it 

was difficult to fit a curve to this area, pressures could be resolved to better than an order 

of magnitude.  For measuring pressures between 2 and 50 Torr, the log-linear region of 

the D1 gauges was used.  As illustrated in Figure 4.14, a logarithmic function could be fit 

to this part of the curve.  Similarly, the log-linear region of the D3s curve could be used 

for measuring pressures between 0.1 and 4 Torr.  The D3s gauge could also be used for 

measuring pressures below 100mTorr.  Figure 4.14 shows a linear plot of the D3s gauge 

from.  As illustrated, from 50mTorr and below the gauge performance is linear.  As 

discussed previously, because of the limitations of the test setup, the pressure chamber 

could only be consistently pumped down to ~2 mTorr.  As a result, the Pirani gauges 

could not be characterized at lower pressures.      
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Typical Calibration Curves 
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Figure 4.13:  Typical D1 and D3s calibration curves. 
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Figure 4.14:  The linear portion of the calibration curve from. 

4.6.2.2 De-capping for Calibration 
As mentioned earlier, packages were calibrated after packaging.  To do this, caps 

where pulled off and the devices put into a dual-in-line package (DIP), wire bonded, and 

placed in a vacuum chamber (similar as to what was shown in Figure 4.9).  Shearing off 

the caps or using a razor blade to tear of the caps generally caused significant particles 

which coated the Pirani gauges therefore changing their performance.  Drilling a hole 
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through the cap similarly resulted in particles which coated the Pirani gauges.  Instead of 

either of these two methods for cap removal, caps were pulled of by heating up individual 

packages on a hot plate to melt the Au-Si alloy and then pulling them off with tweezers.  

To do this, the hot plate was first heat up to 390ºC.  This temperature was measured 

remotely using a factory calibrated Fluke 66 Infrared Thermometer.  The chip was then 

put onto the hot plate for approximately 30 seconds.  In several experiments other dies 

were exposed to this procedure and no noticeable change in performance was observed.  

Figure 4.15 shows a package in which the cap was pulled off for calibration. 

D1 Gauge

Melted Au -Si 
EutecticFeed -Throughs

D3s Gauge

D1 Gauge

Melted Au -Si 
EutecticFeed -Throughs

D3s Gauge

 

Figure 4.15:  Devices after de-capping. 

4.6.3 MEASUREMENT ERROR 

There are three general types of error that were considered for sensor calibration:  

accuracy, precision and the temperature sensitivity of the device.  These three types of 

error affected pressure measurement in different ways depending on the pressure range 

being measured.  Section 4.6.3.1 describes the measurement accuracy and its affects in 

choosing what operation regime of the Pirani gauges to use. Section 4.6.3.2 describes the 

measurement precision and the resultant measurement resolution.  Section 4.6.3.3 
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explains how the ambient temperature affects the device performance.  Finally, Section 

4.6.3.4 summarizes the measurement error and the range of operation of the Pirani 

gauges.  

4.6.3.1 Measurement Accuracy 
The measurement accuracy was determined predominantly by how well the calibration 

data matched the performance of the particular gauge being tested.  Therefore, for the 

best measurement accuracy each gauge would have been calibrated.  Unfortunately, this 

was not practical because the de-capping and calibration process was times consuming 

and because once the devices were de-capped, the packages could no longer be used for 

reliability or long term testing.  It was therefore desirable to test either several gauges 

from the wafer in which vacuum data was being collected, or from another wafer from 

the same lot.   

Figure 4.16 shows calibration curves from D1 and D3s gauges taken across the wafer 

for bond #71 (one of the device wafer bonds that will be described in Section 5.3.3.1 of 

Chapter 5).  As illustrated, there is significant variation in performance for different 

gauges across the wafer.  In the log-linear region of the D1 gauge, from 50 to 2 Torr, the 

predicted pressures for a given thermal impedance vary by approximate ±10 Torr down 

to approximately ±2 Torr.  In the log-linear region of the D3s gauges, from 4 to 0.1 Torr, 

the predicted pressures for a given thermal impedance vary by approximately ±0.5 down 

to approximately ±0.05 Torr.  Since the exact pressure was not as important as the change 

in pressure over time, such variation in pressure were deemed acceptable.  Therefore, for 

pressure measurement in these regimes, either several devices from the wafer being 

tested or several devices from a wafer from the same lot were used for calibration of all 

of the devices across that wafer. 
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Figure 4.16:  Calibration curves across a single wafer for D1 gauges (left) and D3s gauges(right). 

Pressure measurement below 100 mTorr on the other hand could not be so easily 

estimated.  Observing the graph of the D3s gauge curves in Figure 4.16, a thermal 

impedance of 40000 K/W could correspond to a pressure anywhere from <2 mTorr to 

100mTorr depending on which Pirani gauge was being tested.  This is a difference of 3 

orders of magnitude.  In this pressure range, it was therefore necessary to calibrate each 

individual gauge in order to reasonably predict the actual pressure inside of the packaged 

cavity.  

4.6.3.2 Precision 
The measurement precision was limited by the measurement error.  This measurement 

error resulted in part from noise in the current signal provided from the Keithley 224 

source meter and voltage measurement error from the Agilent 34401a multimeter.  Other 

authors have also observed piezoresistive effects, as well as local temperature 

fluctuations which affect the measurement precision [186].  

The measurement precision for D1 and D3 gauges where calculated using the test 

methodology outlined in Section 4.6.1.  These gauges were characterized at different 

pressures taking 11 successive thermal impedance measurements.  The test setup used for 

this characterization was described in section 4.5 and shown in Figure 4.9.  Here the 

measurement precision was defined by the 99% confidence interval.  Using a student T 

distribution, this 99% confidence interval is 2.718 standard deviation away from the 

mean.  Table 4.6 shows the results for a number of different pressures in the linear and 

log-linear regions of the D1 and D3s gauges.  In Table 4.6 the pressure measurement 
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resolution was calculated by multiplying the calculated thermal impedance measurement 

resolution, TIres, by the local slope of the thermal impedance vs. pressure: TIres×slope.  

Table 4.7 summarizes this data showing the approximate pressure measurement 

resolutions in different pressure regimes.  As illustrated, the pressure measurement 

resolution is estimated at around 1% and 1-2% respectively of the measured pressure for 

the D1 and D3s gauges in the log-linear regimes.  Below 50 mTorr in the D3s gauge on 

the other hand, the pressure measurement resolution was relatively constant.  The 

measured resolution was approximately ±2 mTorr.  Due to the pressure measurement 

setup during testing, pressure could only be held to within approximately ±1 mTorr.  The 

pressure measurement resolution below 50 mTorr therefore was likely better than the 

values shown in Table 4.6.  

Table 4.6: The measurement resolution of D1 and D3s gauges at different pressures. 

Pressure  Gauge 

Region of 
Graph 

Average 
Thermal 

Impedance 

 Thermal Impedance 
Measurement 

Resolution  
(99% Confidence 

Interval) 

Pressure 
Measurement 

Resolution  

46.0 Torr D1 Log-linear 16256 K/W 80.22 K/W ±0.44 Torr 
9.9 Torr D1 Log-linear 29781 K/W 57.2 K/W ±0.066 Torr 
3.1 Torr D1 Log-linear 41808 K/W 39.1 K/W ±0.012 Torr 
3.0 Torr D3s Log-linear 16345 K/W 142.3 K/W ±0.033 Torr 

996 mTorr D3s Log-linear 30792 K/W 96.33 K/W ±7.5 mTorr 
296 mTorr D3s Log-linear 49731 K/W 212.5 K/W ±4 mTorr 
99 mTorr D3s Log-Linear 61159 K/W 266.0 K/W ±2.1 mTorr 
30 mTorr D3s Linear 66840 K/W 190.9 K/W ±1.8 mTorr 
9.9 mTorr D3s Linear 68700 K/W 172.2 K/W ±1.7 mTorr 
3.0 mTorr D3s Linear 69481 K/W 96.3 K/W ±0.95 mTorr 

Table 4.7: The measurement resolution of D1 and D3s gauges in different pressures regimes. 

Pressure 
Range  Gauge Pressure Measurement 

Resolution  

2-50 Torr D1 ±1% of the measured 
pressure 

0.1-4 Torr D3s ±1-2% of the measured 
pressure 

<0.05 Torr D3s ±<2 mTorr 
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4.6.3.3 Error Due to Temperature Fluctuation 
Ambient temperature fluctuation was observed to cause changes in sensor 

performance.  This source of error contributes to the pressure measurement error because 

Pirani gauges use changes in temperature to sense pressure.  Overall it would be difficult 

to integrate a heater and temperature measurement setup into the Pirani calibration setup 

(described in Section 4.5 and shown in Figure 4.9) for characterizing the drift due to 

temperature fluctuation.  Therefore, the goal of this section was to get a reasonable 

estimate of the temperature sensitivity of these gauges. 

In the log-linear regions of each gauge (from 2 to 50 Torr and 0.1 to 4 Torr for the D1 

and D3s gauges respectively) the mathematical model described in section 4.3.1 

(Modeling of a Single Beam Pirani Gauge) was used to predict changes in the measured 

pressure.  In this model, the temperature was raised and lowered by 2.5ºC and the change 

in performance was observed.   

The model for the 4µm×2.2µm×250µm single beam (S1) was used to estimate the 

behavior of the 4µm×2.2µm×250µm ladder structure gauge (D1) and the 

16µm×2.2µm×1000µm single beam model was used to estimate the behavior of the 

16µm×2.2µm×1000µm ladder structure gauge (D3s).  In both cases, the model predicted 

an approximate -0.2% change in the measured pressure per 1ºC increase in temperature.  

Furthermore, the ideal gas law predicts a +0.33% change in the actual pressure per 1ºC 

in a sealed cavity.  For package characterization, it was difficult to decouple these two 

sources of fluctuation in the pressure measurement and in the actual pressure.   

In the linear region of pressure measurement for the D3s gauge (<50mTorr), there was 

actual test data to analyze the effects of temperature fluctuation on gauge performance.  

This data was taken during temperature ramping experiments of wafer-level vacuum 

packaged Pirani gauges (this temperature ramping experiment data is described in more 

detail in Section 5.4 (High Temperature Exposure, Thermal Cycling and Burn In) of 

Chapter 5).  Figure 4.17 shows thermal impedance data vs. temperature data for 5 gauges 

which were temperature ramped.  All of these gauges demonstrated highly regular 

behavior fitting a 3rd order polynomial fit with an R squared value of greater than 0.9999.  

Table 4.8 shows all of the base pressures determined after calibration and the slopes of 

thermal impedance vs. temperature (slope 1) determined from Figure 4.17.  Table 4.8 
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also shows the slope of pressure vs. thermal impedance (slope 2) determined from the 

calibration curves taken for each of the Pirani gauges (this calibration data is presented in 

Chapter 5.  Multiplying slope 1 times slope 2 (ΔTI/ºC × ΔP/ΔTI) gives an estimate of the 

temperature sensitivity of the sensor (ΔP/ºC).   

Table 4.8 also shows the calculated ΔP/ºC due to the ideal gas law for each gauge 

which ranged from ±5.5 to ±30 µTorr.  The calculated pressure change is therefore 

around three orders of magnitude lower than the measured ΔP/ºC on each of the Pirani 

gauges.  On the other hand, given the long mean free path length in this pressure regime, 

the ideal gas law may not apply.    
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Figure 4.17:  Five packaged D3s Pirani gauges which were temperature cycled for reliability testing. 

Table 4.8: The drift due to outgassing for D3s gauges at pressures ranging from 1.7 to 9 mTorr. 

Gauge  
Base 

Pressure 
at 23ºC 

Slope 1:  ΔTI/ ºC 
at  23ºC 

(From Figure 3.17) 

Slope 2: ΔP/ΔTI at  
23ºC  

(From Calibration 
Curves in Chapter4) 

Total Drift 
ΔP/ ºC 

Calculated 
ΔP/ ºC due 
to ideal gas 

law 
C8-R4 7.5 mTorr 102.9 -1.06E-05 -1.3 mTorr 25 µTorr 
C4-R6 9 mTorr 122.7 -1.57E-05 -1.9 mTorr 30 µTorr 
C4-R10 3.3 mTorr 109.4 -1.50E-05 -1.6 mTorr 11 µTorr 
C6-R6 7.8 mTorr 113.9 -1.69E-05 -1.9 mTorr 26 µTorr 
C8-R10 1.7 mTorr 101.8 -1.31E-05 -1.3 mTorr 5.5 µTorr 
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4.6.3.4 Summary of Pirani Gauge Performance 
Table 4.9 summarized the performance of the two gauges used for pressure 

measurement for pressures from <2 mTorr up to 760 Torr.  The various sources of error 

are summarized in this table for the different pressure measurement regimes.   Shown are 

i) the measurement resolution, ii) the pressure change inside of a micro-cavity due to the 

ideal gas law, iii) the average calculated drift due to temperature fluctuation and iv) the 

total calculated error from all of these sources. 

Table 4.9: The measurement resolution, drift and fluctuation due to the ideal gas law for D1 and D3s 
gauges in different pressures regimes. 

Pressure 
Range Gauge 

i) Pressure 
Measurement 

Resolution 

ii) Pressure 
Change in Due to 
Ideal Gas Law in a 

Sealed Cavity 

iii) Calculated 
Drift Due to 

Temperature 
Fluctuation 

iv) Total 
Calculated 

Error 
(assuming ±1ºC 

temperature  
fluctuation) 

50-760 
Torr D1 

Order of 
magnitude 
estimate 

- - - 

4- 760 
Torr D3s 

Order of 
magnitude 
estimate 

- - - 

2-50 
Torr D1 

1.5% of the 
measured 
pressure 

+0.33% of 
Pressure/ºC 

-0.2% of 
Pressure/ºC 

±0.033 to  
±0.82 Torr 

0.1-4 
Torr D3s 

1-2% of the 
measured 
pressure 

+0.33% of 
Pressure/ºC 

-0.2% of 
Pressure/ºC 

±4.1 to  
±65 mTorr 

<0.05 
Torr D3s <2mTorr Torr <+50 µTorr/ ºC -1.7 mTorr/ºC ±3.7 mTorr/ºC 
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CHAPTER 5 
 

VACUUM CHARACTERIZATION OF MICROPACKAGES 
 

In Chapter 2 bond experiments were conducted in the development of the Au-Si 

eutectic bonding process.  Using these results Chapter 3 presented a process for 

encapsulating sensors.  Chapter 4 then presented the design of Pirani (vacuum) gauges—

these Pirani (vacuum) gauges were designed specifically for integration with the Au-Si 

eutectic bonding process in Chapter 3.  This chapter present the vacuum data from these 

packaged Pirani gauges.   

In Chapter 3, three different device wafer processes were outlined:  i) a process with 

0.3 µm poly-Si bond rings, ii) a process with 2.2 µm heavily phosphorous doped poly-Si 

bond rings, and iii) a process with 500/5000Å Cr/Au bond rings.  Processes i) and iii) 

produced yields of better than 80%.  The vacuum packaging results for devices packaged 

in these processes are described in detail in the chapter.  The vacuum packaging results 

from process ii) on the other hand resulted in yields from 0-43% (these low yield results 

resulted in part from Au-Si eutectic lateral flow onto the getters—see Section 2.5.3 for 

more detail).  These vacuum packaging results are presented in . 

Figure 5.1 summarizes the data presented in this chapter.  As illustrated in Figure 5.1a, 

three different pressure regimes were achieved:  i) pressures of greater than 1 Torr were 

observed for bonds conducted without getters, ii) pressure greater than 100 mTorr where 

observed for bonds conducted with getters but without an outgassing step, and iii) 

pressures below 25mTorr were observed for bonds with getters and with the outgassing 

step.   

Figure 5.1b shows the estimated yield over time for 3 wafers.  As illustrated, bond #71 

and #105 had sharp decrease in yield over time whereas bond #103 appeared to have a 
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relatively flat yield over time.  A short discussion is presented at the end of the chapter on 

the possible processing issues that might cause these different behaviors. 
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Figure 5.1:  A summary of the data presented in this chapter showing a) the different pressure regimes that 
were achieved, and b) the yield over time estimated across several wafers. 

In this chapter, Section 5.1 first presents background on physical leaks and outgassing 

and their affect on the pressures inside of micro-packages.  Section 5.2 then presents 

specific attributes of the device layout for the wafers used in bond experiments that were 

important for device testing.  Section 5.3 presents the vacuum packaging and long term 

testing results.  Section 5.4 then presents some high temperature exposure and thermal 

cycling results.  Finally, Section 5.5 presents an overall summary of these vacuum 

results. 

5.1 PHYSICAL LEAKS AND OUTGASSING 

There are two major sources of pressure increase in micro-cavities:  1) through a 

physical leak path and 2) due to outgassing of molecules from the inside surface.  Section 

5.1.1 discusses physical leaks and Section 5.1.2 discusses outgassing as background for 

the pressure measurement results presented later in this chapter.   
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5.1.1 PHYSICAL LEAKS 

A leak generally refers to gas flowing from a high pressure region to a low pressure 

region through an opening.  Physical leak paths are particularly large challenges for 

MEMS devices packaged at the wafer-level because of their small volumes.  Table 5.1 

shows the leak rate for several different orifice sizes [204].  Given the smallest leak rate 

in Table 5.1 of 10-10 for a 1 cm long 0.2 µm diameter capillary, Table 5.2 shows the 

amount of pressure change that should occur for a number of typical package volumes.  

As illustrated, for the packages used in this work, such a capillary would result in a 163 

Torr increase in 1 day.  Given the 3.7 to 820 mTorr pressure measurement resolution 

(depending on the gauge and the pressure range) of the Pirani gauges used in this work 

(see Table 4.9 of Chapter 4), 1 day of testing should be more than enough to detect any 

physical leak.  Therefore, for package characterization in this chapter, physical leak paths 

are likely failure mechanisms only in cases where large sudden changes in pressure are 

observed (on the order of tens of  Torr in one 1 day).    

Table 5.1:  The leak rates calculated for a range of capillary sizes [204]. 

Leak Rate 
(torr.Liter.second-1) Equivalent Opening 

10-3 Rectangular slit with 1 cm width, 0.1 mm height and 1 cm depth 
10-4 Rectangular slit with 1 cm width, 30 µm height and 1 cm depth 
10-5 Capillary 1 cm long and 7 µm in diameter 
10-6 Capillary 1 cm long and 4 µm in diameter 
10-7 Capillary 1 cm long and 1.8 µm in diameter 
10-8 Capillary 1 cm long and 0.8 µm in diameter 
10-9 Capillary 1 cm long and 0.4 µm in diameter 
10-10 Capillary 1 cm long and 0.2 µm in diameter 



 150 

Table 5.2:  The amount of pressure change in 1 day for different package dimensions given a leak rate of 
10-10 Torr·Liter/second.   

Type of Package Package 
Dimensions Leak Rate  

Pressure 
Rise in 1 

day 
Chip Scale 
Package 5×5×1.5 mm 10-10 

Torr·Liters/Second 0.23 Torr 

Gyroscope 
(wafer level) 2×2×0.3 mm 10-10 

Torr·Liters/Second 7.2 Torr 

Package in this 
work (wafer level) 2.3×2.3×0.1mm 10-10 

Torr·Liters/Second 163 Torr 
3-D Accelerometer 

(wafer level) 0.5×0.5×0.3mm 10-10 
Torr·Liters/Second 115 Torr 

Thin Film Package 
(wafer level) 0.5×0.5×0.01mm 10-10 

Torr·Liters/Second 3456 Torr 

 

5.1.2 OUTGASSING IN MICRO-CAVITIES 

Throughout the vacuum science literature, much work has been reported on 

developing and improving macro-scale vacuum systems and on the study of the effects of 

outgassing [205-208], but there is very little data to on the behavior of vacuums in micro-

cavities (1x10-9 to 1x10-6 liters).  Outgassing involves desorption of materials (such as 

H2O, H2, N, O and CO2 and hydrocarbons) from the inside surface and bulk of vacuum 

chambers.  Extensive investigations have been conducted to determine how to remove 

these atoms from vacuum systems in order to lower pressures (Figure 5.2a and Figure 

5.2b).  Typically H2O is the dominant outgassing molecule [205, 206].  In humid 

environments (such as a cleanroom), hundreds of monolayers of H2O can form on the 

surface of a wafer.   



 151

a) b) 

c) 

Device Wafer

Cap Wafer

Getter

a) b) 

c) 

Device Wafer

Cap Wafer

Getter

 

Figure 5.2:  An illustration of a) molecules which have adsorbed on the surface or into the bulk of the 
micro-vacuum chamber, b) molecules that desorb off of the chamber walls to increase the pressure and c) 

these molecules reacting with the getter to lower the package pressure.     

In standard vacuum systems the pressure, p, can be calculated as a function of time: 
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where p0 is the pressure at the pump, S is the pump speed, V is the volume of the 

chamber, and 
inQ&  is the flow rate into the vacuum chamber.  This flow rate is generally 

dominated by outgassing.  The flow rate due to outgassing is conventionally modeled as: 
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where A is a geometrical factor, and a1h and α are fitting parameters.   

On the other hand, in a sealed micro-cavity, there is only the net flow into the 

cavity,
inQ& .  Assuming there is no leak path, the pressure, p, in this micro-cavity can be 

determined as: 
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Considering Equations 5.1and 5.3 the pressure inside a sealed micro-cavity will be 

significantly higher than the vacuum chamber it was sealed in for two reasons:  1) the 

micro-cavity is not continuously pumped as in the case for Equation 5.1, and 2) Equation 

5.3 shows that for a given surface area, smaller volumes will cause higher pressures—

thus the larger surface to volume ratio of micro-cavities causes higher pressures.   

Another important parameter for outgassing is temperature.  In addition to Equation 

6.4, the outgassing rate, 
OUTGASQ& , is often modeled as a function of the diffusion constant: 

)(DfQOUTGAS =
& , where D is the diffusion constant of the particular molecule being 

outgassed from a specified material.  This diffusion constant is generally determined 

from the Arrhenius diffusion equation as [206]:   

)/exp(0 RTEDD !"=     (5.4) 

where D0 is a constant, ΔE is the thermal activation energy which is a constant, R is the 

gas constant, and T is the temperature.  As would be expected, the amount of outgassing 

increases with increased temperature. 

There are two important points to consider from this discussion:  i)  micro-cavities are 

particularly susceptible to outgassing because of their high surface to volume ratios and 

ii) increases in temperature should facilitate more outgassing.   

5.2 DEVICE LAYOUT CONSIDERATIONS FOR TESTING 

Details on the processing of the cap and device wafers were described in Chapter 3 as 

well as some of the details of the layout and size of the bond rings used.  This section 

describes some specifics of the layout that were important for Pirani gauge testing.  

Figure 5.3 shows the device layout of each cell for the packages fabricated for this study.  

As illustrated, each cell consisted of 4 dies which take up a 5.4 by 8.1 mm area.  In each 

die, there are bond pads on the periphery of the die and a bond ring that encircles each 

device.  As shown, there are D1 and D3s Pirani gauges (their design was detailed in 

Chapter 4) as well as resonators and a test structure.  The resonators and the test structure 
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in fact were not tested in this work.  As illustrated, in 3 of the 4 dies, there are D1 Pirani 

gauges and in 2 of the 4 dies there are D3s Pirani gauges.  As explained in Chapter 4 (see 

Table 4.9), the D1 and D3s gauges were used for accurate pressure measurement from 50 

Torr to 2 Torr and 4 Torr to 2 mTorr respectively.  Pressures outside of this range were 

determined using an order of magnitude estimation.   
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Figure 5.3:  Layout of the packaged sensors used for characterization of micro-packages.  The resonators 
and Test structures were not utilized in this work. 

Figure 5.4 shows a wafer with 124 packaged devices which were created using the 

above described layout.  As illustrated there are 10 rows and 14 columns.  Comparing 

Figure 5.3 and Figure 5.4, all of the devices which are in an odd column and an odd row 

or an even column and an even row have the D3s Pirani gauges.  Pressures in the mTorr 

range could therefore be measured in these packages.  On the other hand, the D1 gauges 

were in all of the packages except in those dies in the even column and even row.  In all 

of these packages pressure in the Torr range could be accurately measured. 
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Figure 5.4:  A wafer with 124 packaged devices in which there are 10 columns and 14 rows. 

5.3 VACUUM PACKAGING RESULTS 

Table 5.3 summarizes the vacuum packaging results across 6 wafers in which Pirani 

gauges were packages.  Including in Table 5.3 is the measured pressure range across the 

wafer and the initial yield.  The initial yield was defined by the packages ability to hold 

vacuum.  In calculating the yield, the pressure necessary for a “passing” package varied 

depending on the pressure ranges which were achieved across that wafer.  As a metric, 

for packages in vacuum, packages with pressures greater than 3 standard deviations 

outside of the mean were considered outliers.  These outliers were determined to have 

“failed” and were counted against the yield.   

All of the bonds in this section used the bonding process described in Chapter 3 (both 

with and without the outgassing step).  As illustrated in Table 5.3, there were three 

pressure regimes which were achieved depending on the process parameters:  i) pressures 
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of greater than 1 Torr where observed for bonds conducted without getters, ii) pressures 

between 100 mTorr and 2.5 Torr where observed for bonds conducted with getters but 

without the outgassing step, and iii) pressures below 25 mTorr were achieved with getters 

and with the 60 minute, 345ºC outgassing step.  Sections 5.3.1 describes the vacuum 

results for bonds without getters, Section 5.3.2 describes the vacuum results for bonds 

with getters but without an outgassing step, and Section 5.3.3 describes the vacuum 

results for bonds with getters and with an outgassing step.   

Table 5.3:  Various device bonds with pressures in three different pressure ranges. 

Bond 
# 

Bond 
Ring 
width 

Device 
Bond Ring 
(material/ 
thickness) 

Release Getter Outagassing 
Step 

Pressure 
Range Yield 

No getters (>1 Torr) 

67 300 µm  Poly-Si 
(0.3µm)  Methanol No Yes ~1.6-11.8 T* 17/17  

(**) 

100 300 µm  Au   
(0.5µm) Methanol No No 2.4-43.5 T 37/46 

(80.4%)
Getters/No Outgassing Step (100 mTorr-2.5 Torr) 

103 150 µm  Au 
(0.5 µm) CPD Yes  

(Shadow Mask) No 150-980 mT 55/58 
(94.1%)

105 100 µm  Au 
(0.5 µm) CPD Yes  

(Shadow Mask) No 77-2400 mT  44/52 
(84.6%)

Getters/Outgassing Step (<20 mTorr) 

71 300 µm  Poly-Si 
(0.3µm) Methanol Yes 

(Lift off) Yes 1.9-16.3 mT 51/63 
(81.0%)

78 300 µm  Poly-Si 
(0.3µm) Methanol Yes 

(Shadow Mask) Yes <2 -23.3 mT  16/47 
(34.0%)

*Calibrated using devices from other wafers in the same lot. 
**Not enough data to calculate approximate yield. 

5.3.1 BONDS WITHOUT GETTERS, >1 TORR PRESSURE 

As shown in Table 5.3, in bonds #67 and #100 getters were not used.  The measured 

packaged pressures across these wafers ranged from 2-45 Torr.  Because pressures were 

in the Torr range, the log-linear region of the D1 gauges were used for pressure 

measurement (see Table 4.9 in Chapter 4).  Bonds #67 and #100 differ from each other in 

two ways:  the device bond ring material (bond #67 used poly-Si for the device wafer 

bond rings and bond #100 used Au on the device wafer bond rings) and the use of an  

outgassing step (bond #67 used an outgassing step and bond #100 did not).  Though the 

bond ring material could potentially affect the yield, it likely would not affect the 
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packaged pressures.   

5.3.1.1 Analysis of Bond #67 
The devices used for calibration of bond #67 were taken on D1 gauges from bond #71, 

since these two wafers were fabricated in the same lot and had similar R0 (low current 

resistance) values.  Figure 5.5 shows the calibration curves taken from bond #71, where 

Pirani gauges were taken from the top, bottom, center, left and right sections of the wafer.  

As a comparison, bond #67 gauges had R0 values from 485.70-581.78Ω as compared to 

bond #71 gauges which had R0 values from 505.21-671.03Ω.  Furthermore, for all of the 

devices probed across bond #67, a measurement at atmospheric pressure was taken 

before they were packaged.  The measured thermal impedances were between 4629-7601 

K/W as compared to those used for calibration  in bond #71 which were between 5629-

7382 K/W.        

Figure 5.6 shows the measured thermal impedances across bond #67 (left) and the 

estimated pressures calculated from those thermal impedances (right).  These pressures 

were calculated using the average of the calculated pressure predicted from the two fit 

lines in the calibration plot (Figure 5.5).  Assuming that the thermal impedance vs. 

pressure curve of each device fits somewhere between the two fit lines in Figure 5.5, each 

of the estimated pressures is within ±2 Torr of the actual value.  As illustrated, pressures 

ranging from 2.6±2 to 11.7±2 Torr were measured.  Because pressures from only 17 

packages were measured, the yield on this wafer was not estimated. 
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Figure 5.5:  Calibration curves for Pirani gauges from D1 gauges from bond #71.  Devices from these 
wafers, fabricated in the same lot, had nearly identical low current resistances and had atmospheric pressure 

measurements in the same range. 
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Figure 5.6:  The thermal impedance measured on gauges across bond #67 (left) and the estimated pressures 
corresponding to these measurements (right). 
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packages.  The devices taken for these calibration curves were from bond #100.  These 

gauges were taken from the wafer after packaging and were taken from the top, center 

and bottom of the wafer (the specific locations for each of these devices are highlighted 

in Figure 5.8).  Figure 5.8 shows the measured thermal impedances across bond #100 

(left) and the estimated pressures calculated from those thermal impedances (right).  As 

illustrated, there were quite a few packages which could not be evaluated because of non-

functional devices.  In most of the packages marked sensor not functioning in Figure 5.8, 

there were problems with the feed-through interconnect lines.  This may have resulted 

from a processing issue described in Section 2.3.5.1 in Chapter 2, from an insufficient 

dehydration bake before depositing the Cr/Au bond ring on the device wafer. 

The pressures listed in Figure 5.8 were calculated using the average of the calculated 

pressure predicted from the two fit lines in the calibration plot (Figure 5.7).  It was 

assumed that if more gauges had been taken from the wafer for characterization, a larger 

variance in performance would have been seen.  Therefore, the error in the pressure 

measurement was assumed to be ±2 Torr as was the case in the previous section.  As 

illustrated in Figure 5.8, pressures ranging from 2.4±2 to 43.6±2 Torr were measured.  

One package had an estimated pressure of approximately 100 Torr.  Though this package 

held vacuum, it was considered an outlier and was counted against the yield.  Of the 46 

packages tested, 37 where determined to be in an acceptable pressure range (that is, <3 

standard deviations from the mean for packages which held some level of vacuum).  An 

initial yield of 80.4% was therefore calculated. 
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Figure 5.7:  Calibration curves for Pirani gauges from D1 gauges from bond #100.  The devices used for 
calibration were taken from the top, bottom and center of the wafer and are highlighted in figure 4.11. 
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Figure 5.8:  The thermal impedance measured on gauges across bond #100 (left) and the estimated 
pressures corresponding to these measurements (right). 

5.3.1.3 Long Term Testing for Bonds without Getters 
In addition to the initial pressure measurement data, pressures were monitored over 

Calibration (Bond #100)

y = -10158Ln(x) + 55813

R2 = 0.9967

y = -10388Ln(x) + 57993

R2 = 0.9935

0

10000

20000

30000

40000

50000

60000

70000

0.01 0.1 1 10 100 1000

Pressure [Torr]

T
h
e
rm

a
l 
Im

p
e
d
a
n
c
e
 [
K

/W
]



 160 

time for the 15 packages tested from bond #67.  In Figure 5.9 and Figure 5.10, these 

pressures were graphed verses time.   

Figure 5.9 shows 9 packages with measured pressures ranging from 3 to 12 Torr 

where the pressure fluctuated from ±0.10 to ±0.51 Torr.  Part of this fluctuation may have 

resulted from measurement error.  For the D1 gauge in the 3 to 12 Torr pressure range, 

the calculated measurement error ranged from ±0.031 to ±0.16 Torr (see Table 4.9 of 

Chapter 4).  This only accounted for some of the observed pressure fluctuation over time.  

One possible additional source of these measured pressure fluctuations over time may 

have been from adsorption and desorption of gases to and from the inside cavities 

(chemisorption and outgassing).   
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Figure 5.9:  Pressures determined from the measured thermal impedances over time using the calibration 
curves in Figure 5.5 to determine pressures.  All of these devices had ±0.5 Torr or less pressure fluctuation 

over time. 

Figure 5.10 shows the 6 packages in which the pressures changed by >3 Torr in 1 

month to 1 year of testing.  In all of these packages there was a net increase in pressure 

over time.  As illustrated, C1-R5 experienced a sudden change in pressure from 14.5 Torr 

to approximately 100 Torr in the 39th day of testing.  This sudden change in pressure 

may indicate a physical leak.  The pressure for C5-R3 fluctuated up and down with a net 

increase over time.  The other four packages demonstrated a fairly consistent pressure 
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increase that slowed over time.  This slow measured pressure increase over time is likely 

caused by outgassing.   
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Figure 5.10:  Pressures determined from the measured thermal impedances over time using the calibration 
curves in Figure 5.5 to determine pressures.  All of these devices had a >3 Torr pressure change over time. 

To observe whether these trends were consistent with typical outgassing trends, the 

pressures in Figure 5.10 were converted to units of outgassing flow rate per unit area, 

AQ& , using the following expression:    

cavity

cavity

A

PV
AQ

!"
=&     (5.5) 

where Vcavity is the volume of the cavity, Acavity is the surface area inside of the cavity, and 

ΔP is the change in pressure.  ΔP was estimated at each time increment by taking the 

slope of three pressure measurements vs. time in Figure 5.10.  This slope was calculated 

using: the data point taken directly before the pressure measurement, Pt-1; the data point 

at that time increment, Pt; and the data point taken directly after that time increment, 

Pt+1: 

),,( 11 +!=" tttt PPPslopeP     (5.6) 

The resultant graph of AQ&  vs. time is shown in Figure 5.11.  As illustrated on the 

log-log plots, the calculated outgassing rates for each of the packages demonstrates 

somewhat of a power law decay over time as would be expected for Outgassing [205-
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208].   
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Figure 5.11:  The outgassing/area for 4 packages from bond #67.  

5.3.2 BONDS WITH GETTERS, >100 mTORR PRESSURE 

As was shown in Table 5.3, in bonds #103 and #105 getters were used, and the 345ºC 

1 hour long outgassing step was omitted.   These bonds resulted in pressures ranging 

from 100 mTorr to 2.4 Torr.  Because pressures were in the hundreds of mTorr, the log-

linear region of the D3s gauges were used for pressure measurement (see Table 4.9 in 

Chapter 4).  As compared to many of the other bond tests, thinner bond ring widths of 

150 and 100 µm respectively were used in these bonds and in both cases, the bond ring 

material on the device side was Au.   

5.3.2.1 Analysis of Bond #103 
Figure 5.12 shows the calibration curves used for predicting the pressures measured in 

the bond #103 gauges.  The devices taken for these calibration curves were from bond 

#103.  These gauges were taken from the wafer after packaging and were taken from the 

top, center and bottom of the wafer (the specific locations for each of these devices are 

highlighted in Figure 5.13).  Figure 5.13 shows the measured thermal impedances across 

bond #103 (left) and the estimated pressures calculated from those thermal impedances 

(right).  These pressures were calculated using the average of the calculated pressure 

predicted from the two fit lines in the calibration plot (Figure 5.12).  Assuming that the 

thermal impedance vs. pressure curve of each device fits somewhere between the two fit 
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lines in Figure 5.12, each of the estimated pressures is within ±100 mTorr of the actual 

value.  As illustrated in Figure 5.13, pressures ranging from 150±100 to 980±100 mTorr 

were calculated.  One package had a measure pressure of approximately 5.2 Torr.   

Though this package held vacuum, it was considered an outlier and was counted against 

the yield.  Of the 58 packages tested, 55 where determined to be in an acceptable pressure 

range (that is, <3 standard deviations from the mean for packages which held some level 

of vacuum).  An initial yield of 94.1% was therefore calculated. 

 

 

Figure 5.12:  Calibration curves for Pirani gauges from D3s gauges from bond #103.  The devices used for 
calibration were taken from the top, bottom and center of the wafer and are highlighted in Figure 5.13. 
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Bond #103
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Figure 5.13:  The thermal impedance measured on gauges across bond #103 (left) and the estimated 
pressures corresponding to these measurements (right). 

5.3.2.2 Analysis of Bond #105 
Figure 5.14 shows the calibration curves used for predicting pressures in bond #105 

packages.  The devices taken for these calibration curves were from bond #105.   These 

gauges were taken from the wafer after packaging and were taken from the top, center 

and bottom of the wafer (the specific locations for each of these devices are highlighted 

in Figure 5.15).  Figure 5.15 shows the measured thermal impedances across bond #105 

(left) and the estimated pressures calculated from those thermal impedances (right).  

These pressures were calculated using the average of the calculated pressure predicted 

from the two fit lines in the calibration plot (Figure 5.14).  Assuming that the thermal 

impedance vs. pressure curve of each device fits somewhere between the two fit lines in 

Figure 5.14, each of the estimated pressures is within ±50 mTorr of the actual value.  As 

illustrated in Figure 5.15, pressures ranging from 77±50 mTorr to 2.4±0.05 Torr were 

measured.  Several packages also had pressures of around 50 Torr.  Though these 

packages held vacuum, they were considered outliers and were counted against the yield.  

Of the 52 packages tested, 44 where determined to be in an acceptable pressure range 

(that is, <3 standard deviations from the mean for packages which held some level of 
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vacuum).  An initial yield of 84.6% was therefore calculated. 

 

Figure 5.14:  Calibration curves for Pirani gauges from D3s gauges from bond #105.  The devices used for 
calibration were taken from the top, bottom and center of the wafer and are highlighted in Figure 5.15. 
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Figure 5.15:  The thermal impedance measured on gauges across bond #105 (left) and the estimated 
pressures corresponding to these measurements (right). 
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This calculated yield is approximately 10% lower than that measured for bond #103.  

One major difference between these two bonds was the bond ring width of 100 µm as 

opposed to the bond ring width of 150 µm for bond #105.  Another difference between 

these two bonds involved lithography issues in the patterning of bond rings for bond 

#105.  Figure 5.16 shows bond rings from bond #105 in which Au etchant undercut the 

photoresist pattern during patterning of the Au bond rings.  As illustrated in Figure 5.16a, 

some bond rings were completely compromised, so that the bond ring was no longer 

contiguous around the device.  As shown in Figure 5.16b, other bond rings were only 

partially compromised.  Even so, there did not seem to be a correlation between bond 

rings which were partially or even fully compromised and those which did not hold 

vacuum.   

a) b)a) b)

 

Figure 5.16:  a) A bond ring which was completely compromised and b) a bond ring which was partially 
compromised on the device wafer substrate of bond #105. 

5.3.2.3 Long Term Testing for Bonds with Getters but Without an Outgassing 
Step 

Long term testing was conducted on bonds #103 and #105.  Figures 5.17 and 5.18 

show the pressures measured over time for packages across bonds #103 and #105 which 

had pressures ranging from 100 mTorr to 2.3 Torr with pressure fluctuations from ±1 to 

±25 mTorr over time.  For the D3s gauge in the 100 mTorr to 2.3 Torr pressure range, the 

calculated measurement error was ±4.1 to ±33 mTorr (see Table 4.9 in Chapter 4).  This 

measurement error could account for much or all of the pressure fluctuations in many of 

the packages.  Pressure fluctuations could also result in part from adsorption and 
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desorption of gases to and from the inside cavities of the package through outgassing as 

well as through various chemical reactions with the getters. 

 

 

Figure 5.17:  Packages from bond #103 which demonstrated changes of pressure from ±1 to ±25mTorr.  
These pressures were determined from the measured thermal impedances on bond #103 over time using the 

calibration curves in Figure 5.12. 

Pressure Over Time from Bond #105

(Packages with Relatively Small  Changes in Pressure)

0

1

2

3

0 50 100 150 200

Time [Days]

P
re

s
s
u
re

 [
T

o
rr

]

Pressure Over Time from Bond #105

(Packages with Relatively Small  Changes in Pressure)

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Time [Days]

P
re

s
s
u
re

 [
T

o
rr

]

a) b)

Pressure Over Time from Bond #105

(Packages with Relatively Small  Changes in Pressure)

0

1

2

3

0 50 100 150 200

Time [Days]

P
re

s
s
u
re

 [
T

o
rr

]

Pressure Over Time from Bond #105

(Packages with Relatively Small  Changes in Pressure)

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Time [Days]

P
re

s
s
u
re

 [
T

o
rr

]

a) b)
 

Figure 5.18:  Packages from bond #105 which demonstrated changes of pressure from ±1 to ±25mTorr. 
These pressures were determined from the measured thermal impedances on bond #105 over time using the 

calibration curves in Figure 5.14.   

Figures 5.19 and 5.20 show data for packages from bonds #103 and #105 with >1 Torr 

of pressure change over time.  As illustrated in Figure 5.19, 3 of the 4 packages in bond 

#103 that demonstrated large changes in pressure went all of the way to atmospheric 

pressure.  The fourth package showed a slow rise in pressure from around 10 Torr to 

around 30 Torr by the 124th day.  As shown in Figure 5.20 on the other hand, there were 

quite a few more packages with significant pressure fluctuations in bond #105.  Figure 
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5.20a shows two of these packages which appeared to go all of the way to atmospheric 

pressure and two more that ended up around 30 Torr.  Furthermore, Figure 5.20b shows 

several packages with pressure changes from +0.25 to +1.5 Torr.  As mentioned 

previously, the main difference between bond #103 and #105 were their bond ring widths 

of 150 and 100 µm respectively and photolithographic issues in the patterning of bond 

#105 bond rings.  Both of these factors may have played a role in the number of packages 

which showed significant changes in pressure over time.  

 

 

Figure 5.19:  Packages with relatively large changes in pressure from bond #103.  These pressures were 
determined from the measured thermal impedances on bond #103 over time using the calibration curves in 

Figure 5.12.   
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Figure 5.20:  Packages with relatively large changes in pressure from bond #105.  These pressures were 
determined from the measured thermal impedances on bond #105 over time using the calibration curves in 

Figure 5.14. 
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In summary, for each of the packages in bonds #103 and #105, the measured pressures 

either remained stable to within ≤±25 mTorr over time, or their was a 1 to 760 Torr 

increase in pressure in successive measurements.  In estimating the yield over time, 

packages which remained stable to within ±25 mTorr “passed.”  Packages with pressure 

increases greater than 1 Torr were determined to have “failed.”  The failed packages 

counted against the yield.  This given, Figure 5.21 shows the yield over time for bonds 

#103 and #105.  As illustrated, they started with yields of 94.1% and 83% and ended up 

with yields of 86.8% and 61.5% after around 200 days of testing. 
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Figure 5.21:  The yield over time for bond #103 and #105. 

5.3.3 BONDS WITH GETTERS, <25 mTORR PRESSURES 

As was shown in Table 5.3 in bonds #71 and #78, getters were used along with a 

345ºC, 1 hour long pre-bond outgassing step.  Because many of the packages across these 

wafers demonstrated pressures below 25 mTorr, the linear region of the D3s gauges were 

used for pressure measurement (see Table 4.9 in Chapter 4).  As was discussed Chapter 4, 

for accurate pressure measurement in the 0 to 50 mTorr pressure range, each individual 

Pirani gauge needed to be calibrated for package characterization.   

5.3.3.1 Analysis of Bond #71 
Figure 5.22a shows the calibration curves for the 8 Pirani gauges calibrated across 



 170 

bond #71 (the specific locations for each of these devices are highlighted in Figure 5.23).  

These gauges were taken from the wafer after packaging.  Figure 5.22b shows the linear 

portions of calibration curves for each of the gauges in the 0 to 50 mTorr pressure range.  

Figure 5.23 shows the measured thermal impedances across bond #71.  Underneath many 

of the listed thermal impedances are the pressures determined from the calibration curves.  

These pressures were determined in three different ways depending on the measured 

thermal impedance.  For packages with thermal impedances from 0 to 5000 K/W, order 

of magnitude approximations were used to estimate the pressures using the calibration 

curves in Figure 5.22a.  For packages with thermal impedances from 5000 to 23120 K/W 

the average of the two log-linear curve fits in Figure 5.22a were used.  Finally, for 

packages with pressures from 36882 K/W to 60300 K/W it can be seen from Figure 5.22a 

that the pressures should likely be under 100mTorr.  For these packages the linear portion 

of the calibration curve for each device in Figure 5.22b was used for calibration.  (As 

discussed in Section 4.6.2 (Pirani Gauge Calibration), for accurate pressure 

measurements in this pressure regime, each gauge needed to be calibrated individually 

after packaging.)   

Packages with thermal impedances ranging from 0 to 23120 K/W were determined to 

have pressures ranging from 760 down to 0.7 Torr.  Though many of these packages held 

vacuum, they were considered outliers and were counted against the yield.  For the 

packages with thermal impedances from 36882 to 60300 K/W, 8 were randomly de-

capped and calibrated—as mentioned earlier, these calibration curves are shown in Figure 

5.22. As illustrated from Figure 5.23, the calculated pressures for these packages ranged 

from <3.7 to 16.3 mTorr. (A pressure of 1.9 mTorr was calculated for C8-R10 but 

because of the measurement error of ±3.7 from Table 4.9 in Chapter 4 the pressure was 

estimated at <3.7mTorr). 

Of the 63 packages tested, 51 demonstrated thermal impedances from 36882 K/W and 

60300 K/W. As mentioned above, looking at the graphs in Figure 5.22, these packages 

were likely to have pressures under 100mTorr.  Furthermore, all of the 8 packages in 

which were de-capped and calibrated demonstrated pressures from <3.7 to 16.3 mTorr.  

Defining “passing” devices as those with pressures likely under 100 mTorr, the initial 

yield was calculated to be 81.0%. 
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Figure 5.22:  Calibration curves for Pirani gauges from D3s gauges from bond #71 showing a) the entire 
plot on a log-linear plot and b) the linear portion of each of the 8 calibrated Pirani gauges.  
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Thermal Impedances (K/W) & Pressures
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Figure 5.23:  The thermal impedance measured on gauges across bond #71 and the estimated pressures 
corresponding to several packages which were de-capped and calibrated. 

5.3.3.2 Analysis of Bond #78 
Figure 5.24a shows the calibration curves for the 4 Pirani gauges calibrated across the 

bond #78 (the specific locations for each of these devices are highlighted in Figure 5.25).  

Figure 5.24b shows the linear portions of the calibration curves for each of the gauges in 

the 0 to 50 mTorr pressure range.  Figure 5.25 shows the measured thermal impedances 

across bond #78.   

Similar to the analysis of bond #71, for packages with thermal impedances from 0 to 

5000 K/W the calibration curve in Figure 5.24a was used to make an order of magnitude 

approximation of the pressure and for thermal impedances from 5000 to 32007 K/W the 

average of the two log-linear curve fits in Figure 5.24a were used to calculate the 

packaged pressure.  Finally, for packages with pressures from 36882 and 47959 K/W it 



 173 

can be seen from Figure 5.24a that the pressures should likely be under 100mTorr.  For 

these packages the linear portion of the calibration curve for each device in Figure 5.24b 

was used for calibration.  (Once again, as discussed in Section 4.6.2 (Pirani Gauge 

Calibration), for accurate pressure measurements in this pressure regime, each gauge 

needed to be calibrated individually after packaging.)   

Packages with thermal impedances ranging from 0 to 32007 K/W were determined to 

have pressures ranging from 760 down to 0.253 Torr.  Though many of these packages 

held vacuum, they were considered outliers and were counted against the yield.  For the 

packages with thermal impedances from 36882 and 47959 K/W, 4 were randomly de-

capped and calibrated—as mentioned earlier, these calibration curves are shown in Figure 

5.24.  In Figure 5.24b the dashed lines show the thermal impedances measured for Pirani 

gauges in packages C4-R8, C7-R9 and C8-R8.  Each of these thermal impedances is 

slightly higher than that measured during calibration at 2 mTorr.   As discussed in Section 

4.6.2 (Pirani Gauge Calibration), the calibration setup could not be pumped down below 

around 2 mTorr.  The Pirani gauges therefore could not be characterized at lower 

pressures.  Furthermore, from Table 4.9 in Chapter 4 the total measurement error was 

estimated at ±3.7 mTorr.  As result, as shown in Figure 5.25, the thermal impedance is 

listed as <3.7 mTorr.  Package C2-R10 on the other hand had a packaged thermal 

impedance of 48354 K/W and therefore from the calibration curve, a calculated packaged 

pressure of 23.3 mTorr.  

Of the 47 packages tested, 16 demonstrated thermal impedances from 36882 and 

47959 K/W. As mentioned above, looking at the graphs in Figure 5.22, these packages 

were likely to have pressures under 100mTorr.  Furthermore, each of the 4 packages 

which were de-capped and calibrated demonstrated pressures from <3.7 to 23.3 mTorr.  

Defining “passing” devices as those with pressures likely under 100 mTorr, the initial 

yield was calculated to be 34.0%. 
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Figure 5.24:  Calibration curves for Pirani gauges from D3s gauges from bond #78 showing a) the entire 
plot on a log-linear plot and b) the linear portion of each of the 4 calibrated Pirani gauges.  The dotted lines 

show the measured thermal impedance while the device was still capped for C4-R8, C7-R9 and C8-R8.  
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Figure 5.25:  The thermal impedance measured on gauges across bond #78 and the estimated pressures 
corresponding to several packages which were de-capped and calibrated. 

5.3.3.3 Long Term Testing for Bonds with Getters and With an Outgassing Step 
Long term testing was conducted on packages from bond #71.  As was discussed 

previously, for most of the packages across this wafer, packages needed to be de-capped 

and the Pirani gauge inside needed to be calibrated in order to accurately measure the 

packaged pressure.  Figure 5.26 shows the pressures measured over time for the 8 

packages which were de-capped and then calibrated after day 23, 70 and 215 of testing.  

Figure 5.26a shows the packages which had ±2 mTorr or less variation in pressure over 

time.  Figure 5.26b shows a package where the pressure increased by 35 mTorr on day 

215 of testing.    
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Figure 5.26:  Graphs of pressures over time for packages which were individually de-capped and calibrated 
where Figure 5.22 shows the calibration curves.  a)  Shows packages with changes in pressure over time of 
±2 mTorr or less and b) shows one package in which the pressure increased to around 40 mTorr at the 215 

day of testing. 

Besides de-capping devices for calibration, many packages were also taken for 

reliability testing (these reliability tests will be detailed in Section 5.4).  Figure 5.27 

shows log for day 7, 161, 810 and 1095 for which packages were taken out for de-

capping and reliability tests.  As can be seen in Figure 5.27, 15 packages total were taken 

for de-capping even though only 8 were used for calibration.  The other seven were 

damaged during the de-capping process and their calibration curves could not be used.  

Also shown in Figure 5.27 are the packages which failed over time.  Packages with >5 

mTorr increase over time were determined to have failed.  The methodology for 

determining whether or not these packages had significant pressure changes is discussed 

below. 

The pressures and the change in pressure over time for un-calibrated packages with 

pressures likely <100 mTorr (the packages with initial thermal impedances from 36882 

K/W and 60300 K/W from Section 5.3.3.1) were estimated assuming an initial pressure, 

Pi, and assuming a thermal impedance vs. pressure slope, Si.  The following equation was 

then used for estimating the pressure in these packages, PE: 

  iiiE PSTITIP +⋅−= )(       (5.7) 

Where, TIi was the initial thermal impedance and TI was the thermal impedance at each 

time after the initial thermal impedance measurement.  Looking at Equation 5.7, Pi is the 
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estimated pressure for the first thermal impedance measurement.  Every estimated 

pressure after that measurement depends on the relative change in thermal impedance, (TI 

- TIi), times the slope of thermal impedance vs. pressure, Si. 

In Equation 5.7, an initial pressure, Pi, of 7.5 mTorr was chosen because this was the 

average initial pressure calculated from the 8 packages which were de-capped across 

bond #71 (Section 5.3.3.1).  Similarly, a pressure vs. thermal impedance slope, Si, of 

1.5×10-5 Torr·W/K was assumed since this was the average slope of the calibration 

curves taken from bond #71 (see Figure 6.24b in Section 5.3.3.1).  These values were 

used in the following equation for estimating package pressure: 

0075.0105.1)( 5
+!"#=

#

iE
TITIP     (5.8)  
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Figure 5.27:  A snap shot of the log for the testing of packages from bond #71 over time on day 7, 161, 810 
and 1095.  The legend at the bottom of the figure shows which packages failed over time (increased by 
>5mTorr), which packages were taken for calibration and which packages where taken for reliability 

testing. 

Using Equation 5.8 for estimating the pressure and the pressure change over time, 

Figure 6.31 shows 11 packages which maintained pressures to within ±5 mTorr over 3 

years of long term testing.  The total measurement error for the D3s gauges in the 0 to 50 

mTorr range was approximately ±3.7 mTorr (see Table 4.9 in Chapter 4).  This 
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measurement error could account for much or all of the pressure fluctuations in many of 

these gauges.  Pressure fluctuations could also have resulted from adsorption and 

desorption of gases to and from the inside cavities of the package through outgassing as 

well as through various chemical reactions with the getters. 
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Figure 5.28:  The estimated pressure over time for 11 packages which maintained pressures to with in ±5 
mTorr over 3 years of testing.  

Figure 5.29 shows 7 packages where there was a significant increase in pressure over 

time.  The packages in Figure 5.29a demonstrated pressure increases ranging from 29 to 

77 mTorr.  These relatively small changes in pressure over a relatively large amount of 

time are likely from outgassing.  The packages in Figure 5.29b showed increases in 

pressure all of the way to atmospheric pressure.  These changes in pressure could have 

been either from outgassing overtime or from a sudden catastrophic physical leak.  Figure 

5.30 shows 5 packages which had an initial increase in pressure and then a subsequent 

pressure reduction.  These packages appeared to experience some outgassing over time 

followed by gettering (or chemisorption of atoms in to the getter).  As will be reported in 

the reliability tests in Section 5.4 (High Temperature Exposure, Thermal Cycling and 

Burn In), similar phenomena was observed with exposure to high temperatures.  
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Figure 5.29:  The estimated pressure over time for 7 packages which had significant changes in pressure 
over time. 

 
Figure 5.30:  The estimated pressure over time for 5 packages which had an initial increase then decrease 

in pressure. 

For each of the packages in bond #71 that had estimated pressures of <100 mTorr, the 

measured pressures either remained stable to within ±5 mTorr over time, or there was a 

29mTorr to 760 Torr increase in pressure overtime.  In estimating the overall yield, 

packages which maintained pressures within ±5 mTorr were determined to have 

“passed,” where as packages with greater than 29 mTorr of pressure increase were 

determined to have “failed.”  These “failed” packages were counted against the yield.  

Since quite a few packages were removed over time for de-capping and for reliability 

tests the yield could not simply be calculated by the total number of “passing” devices 
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divided by the total number of devices tested.  This is because the un-tested devices 

(those which were taken out for de-capping or reliability tests) were packages which 

could have potentially failed over time.  Therefore, to estimate the yield over time the 

following equation was used: 

Tested

Failed
YY
nn

#

#

1
!= !     (5.9) 

where Yn was the current measurement,  Yn-1 was the yield in the previous measurement, 

#Failed was the number of packages which failed in that set of measurements and 

#Tested was the number of devices still available for testing.  In this way, the % failure 

rate was subtracted from the previous yield.  This given, Figure 5.31 shows the yield over 

time for bond #71.  As illustrated, there is initially a sharp drop that leveled off after 

around 7 months. 
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Figure 5.31:  The yield over time for bond #71. 

5.4 HIGH TEMPERATURE EXPOSURE, THERMAL CYCLING AND BURN IN 

This section reports test results on packages exposed to elevated temperatures, reduced 

temperatures and thermal cycling.  The main objective of these experiments was to better 

understand how the vacuum pressure changed under harsh conditions.  Five packages 

from bond #71 were first transported from Ann Arbor, Michigan to Albuquerque, New 
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Mexico in order to conduct tests at Sandia National Laboratories (SNL).  This transport 

included a 40 minute car ride which exposed devices to 40ºC temperatures, low 

frequency vibration and high humidity.  After transport and testing, these devices were 

de-capped and calibrated.  The following sections describe the measured pressure 

variation after transporting the devices to Sandia Nation Laboratories (Section 5.4.1.1), 

after temperature ramping experiments (Section 5.4.1.2) and thermal cycling (Section 

5.4.1.3).  Finally, Section 5.4.1.4 summarizes these results.   

5.4.1.1 Pressures after Transit 
As shown in Figure 5.32, after transit, on days 272 through 288 (in Albuquerque, New 

Mexico), pressures increased from 1.3 to 5.2 Torr on all five packages.  In packages C4-

R10, C6-R6 and C8-R10 this initial pressure increase was followed by a subsequent 

decrease in pressure to near their original values of 16.3 mTorr, 4.4 mTorr and 1.9 mTorr 

respectively.    

 

 

Figure 5.32:  Five packages which were taken out of the controlled environment (after 215 days).  Large 
pressure fluctuations were observed.      

5.4.1.2 Temperature Ramping Experiments 
Next, these 5 devices were put through temperature ramping tests inside of a Tenney 

Temperature Benchtop oven/refrigeration system.  A schematic of the test setup is shown 

Pressure verses Time for Bond #71 
(Before Heat Treatment)

0.001

0.01

0.1

1

10

0 50 100 150 200 250 300 350

Time [days]

P
re

s
s
u
re

 [
T

o
rr

]

C8-R4
C4-R6
C4-R10
C6-R6
C8-R10



 183 

in Figure 5.33.  Individual packages were mounted and wire bonded to dual-in-line 

packages (DIPs).  During testing, these DIPs were plugged into a high temperature PC 

board which sat inside of the oven (shown schematically in Figure 5.33).  Leads from the 

PC board ran to a switch box, which allowed for individual testing of each of the 5 

vacuum packages.  Vacuum pressures were determined using a computer controlled 

program to direct currents across the Pirani gauges while measuring the voltage drop 

across them.  From this data, the thermal impedances were measured. 

 

Oven (-65ºC to 150ºC) Switch Box
PC Board

Multimeter

Current SourceComputer

Oven (-65ºC to 150ºC) Switch Box
PC Board

Multimeter

Current SourceComputer

 

Figure 5.33:  Packaged vacuum sensors were tested inside of an oven using a Labview program, a current 
source, a multimeter and a switch box to test each sensor during and ever ramping cycles.        

 

Table 5.4 shows the temperatures that the 5 packages were held at for the temperature 

ramping experiments.  As shown, in steps #1-#4, temperatures were first raised to 50, 75, 

100 and 125°C and held for 2 hours.  Next, in step #5, they were held at 150°C for 100 

hours and then brought back down to room temperature in step #6.  In steps #7 and #8, 

the packages where held at 0 and -25ºC for 2 hours.  Finally the packages where held at -

65°C for 6 hours.   
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Table 5.4: The times at each temperature at which gauges at which packages were held at for the high/low 
temperature exposure tests. 

Step Temperature Exposure Time 

0 23ºC (Room Temperature) - 
1 50ºC 2 hours 
2 75ºC 2 hours 
3 100ºC 2 hour 
4 125ºC 2 hours 
5 150ºC 100 hours 
6 22ºC (Room Temperature) 1 hours 
7 0ºC 2 hours 
8 -25ºC 2 hours 
9 -65ºC 6 hours 

 

Figure 5.34 shows the results of the temperature ramping experiments for the 5 

packages.  It is important to note that Figure 5.34 shows the thermal impedances at each 

temperature step, not the pressure.  The thermal impedances are graphed because the 

measured thermal impedance has a strong dependence on the ambient temperature—the 

elevated temperatures therefore make the thermal impedance vs. pressure calibration 

curves (from Section 5.3.3.1) inaccurate.   
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Figure 5.34:  Thermal Impedance vs. temperature for the 5 packages taken through high/low temperature 
exposure tests.  a) Shows a plot of each data point in the temperature ramping and b) shows a plot without 

the initial data points for C8-R4 and C4-R6.        

As was shown in Figure 5.32 and discussed above, packages C4-R10, C6-R6 and C8-

R10 returned to near their original packaged pressures before beginning the temperature 

ramping experiments.  This corresponds to thermal impedances in Figure 5.34 of 43347, 
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40344 and 49169 K/W at 23ºC (room temperature).  At the beginning of the temperature 

ramping experiments, packages C8-R4 and C4-R6 had pressures of 1.3 and 5.2 Torr, 

which corresponds to thermal impedances in Figure 5.34a of 10410 and 12835 K/W.  As 

illustrated, in Figure 5.34a, between the 100 and 125ºC temperature steps, package C8-

R4 had a large increase in thermal impedance (and therefore decrease in pressure).  

Package C4-R6 held a relatively low thermal impedance until it was held at 150ºC (step 

5) for 23 hours.  At 23 hours, there was a similar large increase in thermal impedance.  

Figure 5.34b shows this same thermal impedance vs. temperature graphs but without the 

data for the first 4 and first 6 temperature steps for packages C8-R4 and C4-R6.  All of 

the packages in Figure 5.34b show a consistent trend.  As illustrated, a 3rd order 

polynomial is curve fitted to package C8-R10 with a root mean squared (R-squared) 

value of 0.9999.  The other 4 packages also demonstrated 0.9999 R-squared values in 3rd 

order polynomial curve fits. 

The temperature sensitivity of these Pirani gauges could be estimated from the slopes 

of the 3rd order polynomials at room temperature.  Table 5.5 shows the slope of thermal 

impedance vs. temperature (TI/ºC) for each Pirani gauge.  Using the calibration curves 

for each gauge, the slope of pressure vs. temperature (mTorr/ºC) could then be calculated 

as shown in Table 6.4.  This data was used in Section 4.6.3.3 (Error Due to Temperature 

Fluctuation) for the estimation of the temperature sensitivity of the D3s Pirani gauges 

below 50 mTorr.  More detailed calculations and discussion were presented in Section 

4.6.3.3. 

Table 5.5: Slopes of thermal impedance and mTorr vs. the change in temperature. 

Step Thermal Impedance/ºC mTorr/ºC 

C8-R4 102.9 1.33 
C4-R6 122.9 1.93 
C4-R10 109.4 1.64 
C6-R6 113.9 1.93 
C8-R10 101.8 1.33 

Average: 110.6 1.63 
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5.4.1.3 Thermal Cycling Tests 
After the temperature exposure tests the packages where thermal cycled from -65 to 

150°C for 50 thermal cycles.  These tests were done in accordance with MIL-SPEC-883F 

Method 1010.8, test condition C for thermal cycling.  The calculated pressures after 

thermal cycling tests did not change by more than ±2 mTorr.  

5.4.1.4 Summary of Tests Conducted at Sandia National Laboratory 
Figure 5.35 shows a summary of the heat treatment results.  As shown, the pressures 

for all of the packages tested stabilized either before or during the 150ºC 100 hour 

temperature exposure.  Even after exposure to -65ºC for 7.5 hours and 50 thermal cycles 

from -65 to 150°C, the measured packaged pressures remained stable to within ± 2mTorr.  

Though this data is not conclusive, these experiments may indicate the need for a “burn 

in” step where packages are initially exposed to an elevated temperature in order to 

stabilize the pressures inside of the package.   

 

 

Figure 5.35:  A summary of the results through various heat treatment steps.  

5.5 SUMMARY OF VACUUM TESTING RESULTS 

There were several significant results reported in this chapter regarding i) the package 
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burn-in. 

 

Package Pressure 

The minimum pressures achieved depended on whether or not a getter was used and 

whether or not an outgassing step was used.  As summarized in Table 5.6:  i) pressures of 

greater than 1 Torr were observed for bonds conducted without getters, ii) pressures 

between 100mTorr and 2.4 Torr were observed for bonds conducted with getters but 

without the 60 minute outgassing step, and iii) pressures below 25mTorr were observed 

for bonds with getters and with the 60 minute outgassing step.   

Table 5.6:  A summary of the different pressures measured with/without getters and with/without an 
outgassing step. 

Bond Location of Data Getters Outgassing 
Step Pressure Ranges 

#67 Section 5.3.1.1 No No 1.6-11.8 Torr 
#100 Section 5.3.1.2 No Yes 2.4-43.5 Torr 

#103, #105 Section 5.3.2 Yes No 77-2400 mTorr 
#71, #78 Section 5.3.3  Yes Yes <2-23.3 mTorr 

 

Initial Yield  

The yield across each wafer was estimated in order to quantify the bond quality.  The 

initial yield was defined by the package’s ability to hold vacuum and there were different 

standards depending on the pressure ranges which were achieved across the bond.  As a 

metric, packages with pressures greater than 3 standard deviations outside of the mean 

were determined to have “failed.”  These packages were counted against the yield.  Table 

5.7 shows the yields for 5 wafers discussed earlier in this chapter.  As shown, bonds #78 

and #100 had the lowest initial yields at 30.4%, 80.4% and 81%.  In all of these bonds the 

hot plate method was used for device release (Section 3.3.1 of Chapter 3).   

Appendix 4 discusses how this residue seems to reduce bond uniformity depending on 

the amount of residue observed.   

For bonds #105 and #103 on the other hand, initial yields of 84.6% and 94.1% were 

observed.  In all of these bonds, critical point drying (CPD) was used for device release 

(see Section 3.3.2 of Chapter 3).  As discussed  

Appendix 4, a visibly “cleaner” bonding surface resulted using CPD once the process 
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had been refined.  These higher yields were achieved despite the fact that bond ring 

widths of 100 and 150µm were used.  The initial yield in bond #105 in fact could likely 

have been reduced also by issues with the patterning of the bond ring as described in 

Section 5.3.2.2. 

Table 5.7:  A summary of the different pressures measured with/without getters and with/without an 
outgassing step. 

Bond Location of Data Bond Ring 
Width 

Release 
Method Pressure Range Yield 

#78 Section 5.3.3.2 300 µm Hot Plate <2-23.3 mTorr 30.4% 
#100 Section 5.3.1.2 300 µm Hot Plate 2.4-43.5 Torr 80.4% 
#71 Section 5.3.3.1 300 µm Hot Plate 2-16 mTorr 81.0% 
#105 Section 5.3.2.2 100 µm CPD 77-2400 mTorr 84.6% 
#103 Section 5.3.2.1 150 µm CPD 100-500mTorr 94.1% 

 

Pressure Stability over Time 

In each of the three bonds in which pressures were monitored over time, a certain 

number of packages from each wafer had a significant increase in pressure.  These 

increases in pressure ranged from +29 mTorr to +760 Torr in bond #71 and from +1 Torr 

to +760 Torr in bonds #105 and #103.  In each of these bonds, package pressures in some 

cases rose slowly over time (likely caused by outgassing) and in other cases they seemed 

to go straight to atmospheric pressure (which could be the result of outgassing or a 

sudden catastrophic physical leak).  Several packages from bond #71 also demonstrated 

fluctuations in pressure in which there was an initial increase but subsequent decrease in 

pressure.  Such behavior could be caused by outgassing followed by chemisorption of 

molecules into the getter.  As summarized in Table 5.8 the packages which were defined 

as stable did not vary in pressure by more than ±5 or ±25 mTorr respectively.  Table 5.8 

and Figure 5.36 compare how the yield over time for these three bonds decreased. 

As shown, in the first 6 months of testing, bonds #71 and #105 both had a significant 

drop in yield.  As discussed above, these yield losses could likely be due to residue left 

from the release process and patterning of the bond ring respectively for these two bonds.  

In bond #103 on the other hand, there was a small initial yield loss which appeared to 

level off after 4 months of testing. 
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Table 5.8:  A summary of the different pressures measured with/without getters and with/without an 
outgassing step. 

Bond Location of Data 
Measured Pressure 

Fluctuation for 
“Stable Package” 

Yield after 6 months 

#71 Section 5.3.3.3 <±5 mTorr 52.1% 
#105 Section 5.3.2.3 <±25 mTorr 84.6% 
#103 Section 5.3.2.3 <±25 mTorr 86.8% 

 

 

Figure 5.36:  A summary of the yields over time for bonds #103, #105 and #71.     

Heat Treatment and Burn-In 

The reduced yields in Figure 5.36 over time can potentially be a big problem in the 

application of Au-Si eutectic wafer-level packaging to commercial products where such 

yield loss over time would not be acceptable.  In Section 5.4, a number of packages 

experienced pressure increases of 1.3 to 5.2 Torr after a 23 hour car ride.  After heat 

treatment at 150ºC for 23 hours, the pressures in these packages remained stable for the 

remaining 77 hours at 150ºC and through 50 thermal cycles from -65ºC to 150 ºC.  

Although this data was not conclusive, these test results seem to indicate that a “burn-in” 

step could be applied for stabilizing packaged pressures.  Furthermore, such a burn-in 

step could be used to more quickly cause packages to fail—thus avoiding package and 

subsequent device failures in the field.   
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CHAPTER 6 
 

DIFFERENTIAL LOCALIZED HEATING  

Most of the wafer-level encapsulation techniques discussed in Chapter 1 require 

relatively high temperatures for their implementation.  The most widely applicable 

methods for such encapsulation include frit bonding (≥450ºC), Au-Si eutectic bonding 

(~390ºC), and thin film encapsulation (≥600ºC).  Many emerging applications, including 

MEMS biomedical devices and RF micro-switches, incorporate materials such as 

polymers, biological coatings, metals and piezoelectric materials that cannot withstand 

these temperatures.   For this reason, researchers have investigated bonding methods 

using polymers and low temperature solders.  Another option is to use a well established 

high temperature bonding method and use localized heating to heat the bond region to a 

relatively high temperature while maintaining a relatively low temperature where devices 

are located.  Section 1.3.3 of Chapter 1 explained some of these localized heating 

methods.  As explained there, most of these methods are difficult to implement at the 

wafer level and none have directly measured the temperatures of encapsulated devices in 

order to explicitly gauge the effectiveness of their localized heating techniques.   

This chapter presents a new wafer-level localized heating approach called differential 

localized heating.  Figure 6.1 shows the concept for differential localized heating where 

heat is applied on the backside of the cap wafer and then gets pulled through a bond ring 

towards a heat sink and away from the device.  In this way, large bond ring temperatures 

can be achieved while maintaining a relatively low temperatures at the device location. 
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Figure 6.1:  A schematic illustrating the concept behind differential localized heating where heat gets 
pulled through the bond rings towards the heat sink, heating up the bond ring while keeping the device 

relatively cool. 

Figure 6.2 shows the bond experiments that are presented in this chapter which 

include: i) a bonds between a Si and glass wafer (bond experiment #1) and ii) a bond 

between a Si wafer and a Si wafer with a 7µm thick SiO2 layer (bond experiment #2).  

These material sets were chosen specifically so that there was a low thermal conductivity 

near the bond ring on the device wafer—as will be discussed, this was an important 

parameter for achieving good thermal isolation inside of the bond ring.  For bond 

experiment #2, the 7 µm thick SiO2 layer was chosen to roughly mimic the various thin 

films in a CMOS process.  For example, Sandia National Laboratory’s SUMMIT VTM 

process, shown in Figure 3.2 of Chapter 3, has 6.5 µm of SiO2, 0.8 µm of SiNx, and 6.25 

µm of poly-Si. 
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Figure 6.2:  A schematic of the bond experiments conducted in this chapter along with the measured 
temperatures relative to the bond ring temperatures for each of these bond experiments.   

As shown in Figure 6.2, temperature sensors were also fabricated underneath the bond 

ring and at different distances from the bond ring in order to quantify the effectiveness of 

this localized heating technique.  As shown in the tables directly under each schematic in 

Figure 6.2, in each of the bond experiments, a reasonable amount of thermal isolation  

was achieved inside of the bond ring.  In fact, the temperature was observed to be 23% of 

the minimum bond ring temperature at 650 µm from the bond ring in bond experiment 

#1, and to be 41% of the minimum bond ring temperature at 250 µm from the bond ring 

in experiment #2. 

The rest of this chapter provides a more in depth discussion of the test setup, the 

modeling results and the test results.  More specifically, Section 6.1 presents the 

modeling results which helped in choosing the materials and the dimensions used in the 

bonding experiments.  Section 6.2 describes the fabrication process for the wafers used in 

the bond experiments and Section 6.3 presents the bonder setup used for the bond 

experiments.  Section 6.4 explains the bond experiment results and Section 6.5 
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summarizes the modeling and bond experiment results.  Finally, Section 6.6 presents 

some parametric analysis which will aid in the application of this work in the future and 

analysis on residual stress induced from this bonding technique. 

6.1 MODELING & ANALYSIS 

This section presents some key concepts in the thermal design and choice of materials 

for the implementation of differential localized heating.  ANSYS® multiphysics analysis 

software was also used to help determine the materials and geometries used for bond 

experiments.  Section 6.1.1 first explains some key concepts for the choice of the 

materials and geometries used in wafer bonding experiments and Section 6.1.2 presents a 

1-D circuit analogy describing the wafer bonding test setup.  Section 6.1.3 then presents 

the modeling results for several different material combination using the materials and 

geometries of the test setup described which will be described later (in Section 6.3).  

Finally, Section 6.1.4 presents summarizes these results and presents data which will later 

be used for comparison to the test results.  

6.1.1 MATERIALS AND THERMAL DESIGN 

Figure 6.3 shows the structure of the test setup that will be presented in Section 6.3.  

The models presented in the following sections use the same materials and dimensions as 

those in the test setup.  As shown in Figure 6.3, the test setup and the model consist of the 

following substrates: i) a thermally insulating CogethermTM plate (10.5 mm thick), ii) a 

glass heater substrate with on-chip resistive heaters (550µm thick), iii) a silicon cap wafer 

(550µm), iv) a device wafer (modeled as either silicon or glass, 550µm thick), v) a 

copper plate heat sink substrate on top of the device wafer (3.1 mm thick), and vi) a steel 

weight providing the bond force (modeled as 14 mm thick).  In each of these models, 100 

µm wide bond rings that encompassed 2.3x2.3mm2 areas were used.  (These are the same 

dimensions as some of the bond experiments reported in Chapter 2 and Chapter 5).  

Furthermore, 90 µm cavities inside of the bond rings were also modeled.    
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Figure 6.3:  Shows the layers in the test setup which will be described in Section 6.3. 

Table 6.1 shows the thermal conductivities of the various materials used in modeling 

the test setup.  CogethermTM (i) is a composite that was chosen because of its low thermal 

conductivity in particular in the z-axis (the direction that the heat flows in Figure 6.3).  

Glass (ii) was also chosen for its low thermal conductivity.  These materials have thermal 

conductivities in the vertical to the plane axis of 0.3 W⋅m-1⋅ºC-1 and 1.4 W⋅m-1⋅ºC-1 

respectively.  The single crystal Si (iii), on the other side of the heater, on the other hand 

has a thermal conductivity of around 141 W⋅m-1⋅ºC-1—this relatively high thermal 

conductivity allowed a larger percentage of the heat to go up towards the bond rings 

instead of down towards the glass and CogethermTM plate.  In Figure 6.3, the heat gets 

pulled through the cap and device wafer towards the copper heat sink.  Copper was 

chosen because of its exceptionally high thermal conductivity of 385 W⋅m-1⋅ºC-1 which 

encouraged heat conduction away from the device wafer.  Though the steel weight only 

had a moderately high thermal conductivity of 55 W⋅m-1⋅ºC-1, it provided a very large 

thermal mass.   
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Table 6.1:  The thermal conductivities for the various materials used in the model of the test setup. 

 Materials Thickness Thermal Conductivity 

vi) Steel 14 mm 55 W⋅m-1⋅ºC-1 

v) Copper 3.1 mm 385 W⋅m-1⋅ºC-1 

Glass 550 µm 1.4 W⋅m-1⋅ºC-1 
Single Crystal Si 550 µm 141 W⋅m-1⋅ºC-1 iv) 

SiO2 7 µm 1.4 W⋅m-1⋅ºC-1 
Single Crystal Si 550 µm 141 W⋅m-1⋅ºC-1 iii) 

Air 90 µm 0.0263 W⋅m-1⋅ºC-1 
Au (heater) 0.75 µm 320 W⋅m-1⋅ºC-1 ii) 

Glass 550 µm 1.4 W⋅m-1⋅ºC-1 

i) CogethermTM 10.5 mm 3 W⋅m-1⋅ºC-1 
(0.3 in z direction) 

 

Because of the large thermal mass of the steel block, long heating times and high input 

powers were required to raise the temperature.  To estimate the heating rate of the 50lb 

weight, the lumped capacitance method can be used given the relation between heat flux, 

q, and the thermal heat capacity: 

dt

dT
mcq p=      (6.1) 

where m is the mass of the material and cp is its specific heat capacity.  Assuming that all 

of the heat generated by the heater gets pulled through the bond ring into the heat sink 

and then into the steel block, a heater power of 200 W results in a heat flux, q, into the 

steel weight of 200 J⋅s-1.  Given the mass of the steel block of 50 lb (22.7 kg) and its 

specific heat capacity (419 J⋅kg-1⋅ºC-1), Equation 6.1 predicts a worst case temperature 

increase into the steel weight of 1ºC per 47 seconds.  This was important because all of 

the bond experiments conducted in Section 6.4 use input powers lower than 200W and 

most of them were conducted for less than 1 minute.  This allowed for the assumption of 

a 23°C (room temperature) boundary condition at the far edge of the steel plate in the 

model presented in section 6.1.3. 

6.1.2 A 1-D CIRCUIT ELECTRICAL EQUIVALENT MODEL 

Figure 6.4 shows a simple 1-D circuit electrical equivalent model for how the heat 
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flow, q, goes from the heater, through the bond ring, to the heat sink.  These thermal 

resistances, RT are estimated using the lumped sum approach, where each resistance is 

calculated using: 

Ak

z
R

T

T

!
=       (6.2) 

where Δz is the distance which the heat needs to flow through the material, kT is the 

thermal conductivity of the material and A is the cross sectional area of the material.   

 

 

Figure 6.4:  The 1-D representation of how heat flows from the heater through the bond rings to the heat 
sink. 

In Figure 6.4, the heat flow starts at the heater where the temperature is Theater.  As the 

heat flows through each resistive element, the temperature drops until it gets to the heat 

sink, Theat sink.  Ideally Theat sink is at or near 23ºC (room temperature).  Larger thermal 

resistances result in larger temperature drops.  There is a relatively small temperature 

drop through the cap wafer, RCap, since the thermal conductivity of Si is very high.  Given 

that the thermal conductivity of air (at atmospheric pressure) is roughly 5000 times lower 

than that of Si, almost all of the heat conducts through the bond ring.  This heat flow is 

therefore focused through the bond ring towards the device wafer.  In the models 
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presented in the following section (Section 6.1.3), this device wafer is made of glass, Si 

and Si with a 7 µm thick SiO2 layer.  When this device wafer is glass, the thermal 

conductivity directly above the bond ring, RBond ring,  is  extremely  large as compared  to  

the other thermal resistances.  Considering equation 6.2, this is because of:  i) the 

relatively small cross-sectional area at the bond ring, AB, and ii) the small thermal 

conductivity, kTg, of glass.  This large thermal resistance directly underneath the bond 

ring, Rbond ring, is desirable for two reasons: 1) it causes a relatively large temperature drop 

under the bond ring and laterally towards the device, which is necessary for thermal 

isolate of the device; and 2) a large thermal resistance directly under the bond ring allows 

for better thermal isolation of the heater from the heat sink, which means less input power 

is needed to achieve a given temperature at the bond ring.  As a result, it can be difficult 

to achieve good thermal isolation of a device when bonding directly to a very thermally 

conductive material such as Si.  This will be demonstrated in the models presented in 

Section 6.1.3.  As will also be demonstrated in Section 6.1.3, using a low thermal 

conductivity thin film such as SiO2 on top of a Si wafer can drastically improve the 

thermal isolation inside of the bond ring.  

6.1.3 A 3-D MODEL OF THE TEST SETUP 

As will be described in Section 6.3, in the test setup, 4 bond rings are heated at a time 

during bond experiments.  Figure 6.5 shows the structure of the “test setup model.”  As 

shown in Figure 6.5, in this model, there is symmetry along the planes perpendicular to 

the x and y axes (adiabatic boundary conditions) so that the model represents a quarter of 

the actual assembly.  Because of this quarter symmetry, the model in Figure 6.5 

represents a single heater that heats up 4 bond rings at the same time.  The picture of the 

assembly in Figure 6.5 was made transparent to allow a view of a quarter of the 

0.75×10500×13300µm heater.  Adjacent bond rings are also shown in the figure.  As will 

be described,  these bond rings affected how the heat flowed through the assembly.   

Because of the large number of nodes in this 3-D model, a transient model would have 

been difficult to execute and as a result the model was run assuming steady state 

conditions.  In simulating the model, a steady state solution was found by applying a 

uniform power density across the 0.75 µm thick heater, while the top of the steel weight 
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and the bottom of the insulator plate were held at 23ºC (room temperature).  As explained 

in the Section 6.1.1, this assumption was made because the large thermal mass of the 50 

lb steel weight made for a slow heating rate in that material.  In the following 

subsections, Si to glass (Section 6.1.3.1), Si to Si (Section 6.1.3.2), and Si to Si with a 7 

µm SiO2 layer (Section 6.1.3.3) bonds are analyzed.   

 

 

Figure 6.5:  The structure of the model used for modeling the test setup. 

6.1.3.1 Si to Glass Bonds 
Figure 6.6 shows the case where an input power of 26.8 Watts/bond ring was needed 

to achieve a minimum 400ºC bond ring temperature for the modeling of a Si to glass 

bond.  In Figure 6.6, slices of the model have been taken vertically across the bond ring 

to show a cross-sectional view (Figure 6.6a and Figure 6.6b), laterally across the heater 

(Figure 6.6c) and laterally through the bond ring (Figure 6.6d).  In the cross-sectional 

view shown in Figure 6.6a, the location of the heater substrate, cap wafer, device wafer 

and heat sink are labeled.  Also, the location of the heater is denoted by a dotted line.  As 

illustrated in the cross-sectional view, heat is pulled towards the heat sink, but also 

laterally towards the adjacent bond rings.  This causes a large temperature gradient 
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laterally across the assembly.  Figure 6.6c illustrates the resultant temperature gradient 

across the heater itself.  Since this is a quarter symmetry model, in Figure 6.6c, the hottest 

point at 501ºC is in the center of the heater and the temperature reduces at distances 

farther and farther away from the center.  This results in the temperature profile shown in 

Figure 6.6d across the bond ring where the temperature ranges from 400ºC to 461ºC.  On 

the other hand,  at 500 µm away from the bond ring the temperature was only 134 ºC 

(29% of the minimum bond ring temperature) and at the center of the bond ring the 

temperature was around 75ºC (14% of the minimum bond ring temperature).  Therefore, 

despite the non-uniformity of the heating, there is significant thermal isolation inside of 

the bond ring.  

A more ideal model is presented in Section 6.6 where the heater encompasses all of 

the bond rings across a wafer.  In this case their temperature across the wafer and each 

bond ring is uniform and less power per bond ring is needed since heat is not pulled away 

from adjacent bond rings.  Those modeling results will be discussed in Chapter 7 in the 

context of future work to be done. 

 

 



 200 

 

Figure 6.6:  Results from the “test setup model,”  for a Si to glass bond showing a) a cross-section view 
showing how the heat flows into the heat sink, b) a closer look at the cross-section of the bond ring, c) a 

section of the heater, and d) the heat distribution across the bond ring and inside of the bond ring. 

6.1.3.2 Si to Si Bonds 
Figure 6.7 shows the case where an input power of 463 Watts/bond ring was needed to 

achieve a minimum 400ºC bond ring temperature for the modeling of a Si to Si bond.  In 

Figure 6.7, slices of the model have been taken vertically across the bond ring to show a 

cross-sectional view (Figure 6.7a and Figure 6.7b), laterally across the heater (Figure 

6.7c) and laterally through the bond ring (Figure 6.7d).  Once again, as illustrated in the 

cross-sectional view, heat is pulled towards the heat sink, but also laterally towards the 

adjacent bond rings causing a large temperature gradient laterally across the assembly.  

As illustrated in Figure 6.7c, the hottest temperature again is at the center of the heater 

and is 1652ºC.  It would be difficult to choose a heater material and substrate materials 
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which could handle such high temperatures.  Furthermore, as illustrated in Figure 6.7d 

the minimum temperature inside of the bond ring of 318ºC (81% of the minimum bond 

ring temperature) is not significantly lower than the bond ring temperature.   

As was explained in Section 6.1.2, the high necessary input power and bad thermal 

isolation inside of the bond ring resulted from using a highly thermally conductive device 

substrate. 

 

 

Figure 6.7:  Results from the “test setup model,”  for a Si to Si bond showing a) a cross-section view 
showing how the heat flows into the heat sink, b) a closer look at the cross-section of the bond ring, c) a 

section of the heater, and d) the heat distribution across the bond ring and inside of the bond ring. 

6.1.3.3 Si to Si Bonds with a 7 µm Thick  Surface Oxide 
  Given the analysis in Section 6.1.2, using a less thermally conductive material at the 

bond ring interface should lower the necessary input power and allow for better thermal 
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isolation of the device.  A 7 µm thick SiO2 layer was chosen for this purpose.  As 

explained at the beginning of this chapter, this thickness was chosen to roughly mimic the 

various thin films in a CMOS process.     

Figure 6.8 shows the case where an input power of 166 Watts/bond ring was needed to 

achieve a minimum 400ºC bond ring temperature for the modeling of a Si to Si (with a 7 

µm thick SiO2 layer) bond.  In Figure 6.8, slices of the model have been taken vertically 

across the bond ring to show a cross-sectional view (Figure 6.8a and Figure 6.8b), 

laterally across the heater (Figure 6.8c) and laterally through the bond ring (Figure 6.8d).  

Once again, as illustrated in the cross-sectional view, heat is pulled towards the heat sink, 

but also laterally towards the adjacent bond rings causing a large temperature gradient 

across the assembly.  As shown in Figure 6.8b, the temperature drops significantly 

through the SiO2.  As discussed earlier, this significant temperature drop is necessary for 

achieving good thermal isolation inside of the bond ring.  As illustrated in Figure 6.8c, 

the hottest temperature is at the center of the heater and is 920ºC.  Though this 

temperature is still relatively high, and would make material selection difficult, it is much 

closer to a reasonable value than for the Si to bare Si bond described in the previous 

section (Section 6.1.3.2).  One option for this material set is to lower the necessary bond 

ring temperature by using a lower temperature bonding method.   

Finally, Figure 6.8d shows the temperature profile across the bond ring where the 

temperature ranged from 400ºC to 540ºC.  Despite this large range in temperatures, the 

model predicts a relatively constant temperature inside of the bond ring where 500 µm 

away from the bond ring the temperature was only 146ºC (33% of the minimum bond 

ring temperature). 

 

 



 203 

 

Figure 6.8:  Results from the “test setup model,”  for a Si to Si bond with a 7 µm thick SiO2 layer showing 
a) a cross-section view showing how the heat flows into the heat sink, b) a closer look at the cross-section 
of the bond ring, c) a section of the heater,  and d) the heat distribution across the bond ring and inside of 

the bond ring. 

6.1.4 SUMMARY OF MODELING RESULTS 

The analysis and modeling results presented in this section (Section 6.1)  demonstrated 

the need for a non-thermally conductive device wafer material in order to facilitate 

differential localized heating.  As a result, two material combinations were chosen for 

bond experiments:  Si to glass wafer bonds (bond experiment #1), and Si to Si wafer 

bonds with a 7 µm thick SiO2 layer (bond experiment #2).      

In the models presented in and Section 6.1.3, a large enough power was applied in 

each case so that the minimum bond ring temperature, TBmin, was at least 400ºC.  Because 

all of the temperatures in these models varied linearly with the power input to the heater, 
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all of the temperatures could be represented as ratios of the minimum bond ring 

temperature, RBR.  Table 6.2 summarizes some of the modeling results showing the 

important RBR values.  As illustrated, the model predicts an RBR value of  29% at 500 µm 

away from the bond ring for bonds to glass and 33% at 500 µm away from the bond ring 

for bonds to Si wafers with a 7µm thick SiO2 layer.  These numbers illustrate good 

thermal isolation inside of the bond ring.  On the other hand, for bonds to a bare Si wafer, 

the RBR value was 94% indicating bad thermal isolation.   

Table 6.2:  Summary of the modeling results showing the RBR values (temperature relative to the minimum 
bond ring temperature) on the heater and at 500µm from the bond ring on the device wafer.  All of the 

simulations were done using the “test setup model” with bond ring widths of 100 µm. 

Device wafer material 
RBR  

Bond Ring  

RBR 
Maximum 
at Heater  

RBR  
at 500 µm 

from Heater 

Glass Wafer  
(Bond Experiment #1) 100% 127% 29% 

Si Wafer with 7 µm SiO2 
(Bond Experiment #2)  

100% 239% 33% 

Bare Si Wafer 100% 328% 81% 
 

It is also important to compare the RBR values for the maximum heater temperatures.  

This is important because material selection for the heater becomes difficult at very high 

temperatures.  More specifically, the Au thin film heaters used in the test setup (which 

will be described in Section 6.3) were observed to burn out at around 500ºC.  As 

illustrated in Table 6.2, for bonds to glass, the maximum RBR on the heater was 127%.  

Because of this relatively low RBR value, for Si to glass bonds (bond experiment #1) a 

Au-Si eutectic bond could be applied using this bonding technique. Au-Si eutectic 

bonding was already studied in detail in Chapters 2 through 5 and can potentially be 

achieved at temperature just above 363ºC.   

On the other hand, for bonding a Si wafer to a Si wafer with a 7µm thick SiO2 layer 

(bond experiment #2), the maximum RBR on the heater was 239%.  Therefore, Au-Si 

eutectic bonding could not be applied since temperatures ≥363ºC across the entire bond 

ring would require the heater to withstand a temperature of 835ºC according to the model.  

Therefore, for bond experiment #2, a Sn-Ag solder bond was attempted.  The eutectic 

temperature for Sn-Ag solder at its eutectic composition is only 221ºC.  The model 
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therefore predicts that the heater would have to withstand a temperature of only  496ºC.   

Table 6.3 summarizes some of the modeling results showing the important input 

power parameters for the “test setup model.”  As shown, for bonds between Si and glass 

(bond experiment #1), there was an increase in heater temperature of 3.9°C for every 

Watt of input power while the minimum bond ring temperature increased by 3.5°C/W.  

For bonds between a Si and a Si wafer with a 7 µm SiO2 layer (bond experiment #2), a 

significantly larger amounts of power was needed.  The heater temperature increased by 

0.89°C/W while the minimum bond ring temperature increased by only 0.57°C/W. 

Table 6.3:  Summary of the modeling results showing the average heater temperature per input power and 
the minimum bond ring temperature per input power.  All of the simulations were done using the “test 

setup model” with bond ring widths of 100 µm. 

Device wafer material Average Heater 
Temperature/Input Power 

Minimum Bond Ring 
Temperature/Input Power 

Glass Wafer 
(Bond Experiment #1) 3.9 K/W 3.5 K/W 

Si Wafer with 7 µm SiO2 
(Bond Experiment #2) 0.89 K/W 0.57 K/W 

Bare Si Wafer 0.49 K/W 0.20 K/W 
 

6.2 WAFER FABRICATION FOR BOND EXPERIMENTS 

Two sets of bond experiments were conducted: i) between a Si cap wafer and a glass 

device wafer (bond experiment #1) and ii) between a Si cap wafer and a Si device wafer 

with a ~7 µm SiO2 layer (bond experiment #2).  As was explained in the previous section 

(Section 6.1), these materials were chosen for the device wafer substrates because of their 

low thermal conductivities which helped to provide better thermal isolation inside of the 

bond ring.   

The bond experiment #1 wafers were prepared to facilitate a bond between an Au-Si 

eutectic layer on the Si cap wafer and a Au thin film on the glass device wafer.  This is 

shown schematically in Figure 6.9a.  The Au-Si eutectic bonds reported in Chapters 2 

though 5 were conducted at 390 to 410ºC and could potentially be done at as low as the 

Au-Si eutectic temperature of 363ºC.  At these temperatures, Si diffuses from the cap 

wafer into the Au bond ring allowing for the formation of the Au-Si eutectic.  This 
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material set was chosen since the Au-Si eutectic bonding method was already 

characterized in Chapters 2 through 5.   

For bond experiments #2, wafers were prepared to facilitate a bond between a 

Ni/Sn/Ag layer on the Si cap wafer and a Sn/Ag layer on the device wafer.  This is shown 

schematically in Figure 6.9b.  Sn-Ag solder has a melting temperature of around 221ºC at 

its eutectic composition of 3.5 weight % of Ag in Sn.  This composition was achieved by 

electroplating 6 µm of Sn on the cap and device wafer and evaporating 3000Å of Ag on 

the cap wafer.  For Sn-Ag solder bonding, the temperature is simply raised above the 

melting temperature of the solder, allowing for Sn-Ag inter-diffusion and softening.  The 

Ni layer acted as a diffusion barrier to stop the Sn-Ag solder from inter-diffusing with the 

seed-layer which was made out of Cr/Au.  As explained elsewhere [116], such inter-

diffusion can cause delaminating of the film and therefore bad adhesion.  This material 

set was chosen because of the relatively higher maximum heater temperature of around 

237% of the minimum bond ring temperature predicted from the modeling for this 

material set.  This higher heater temperature would cause the heater to fail at the ≥363ºC 

necessary bond ring temperature in the Au-Si eutectic bond.  

Section 6.2.1 explains the fabrication process for the cap wafers and Section 6.2.2 

explains the fabrication process for the device wafers used in bond experiment #1 and 

bond experiment #2.   

 



 207

a) Device Wafer (glass)

Au

Cap Wafer (Si)

Temp. 
Sensors

b) Device Wafer (Si)

Cap Wafer (Si)

Ni/Sn/Ag

Bond Experiment #1:
Si Glass 

Bond Experiment #2:
Si Si

(with a 7 µm SiO2 layer)

Ni/Sn

a) Device Wafer (glass)

Au

Cap Wafer (Si)

Temp. 
Sensors

b) Device Wafer (Si)

Cap Wafer (Si)

Ni/Sn/Ag

Bond Experiment #1:
Si Glass 

Bond Experiment #2:
Si Si

(with a 7 µm SiO2 layer)

Ni/Sn

 

Figure 6.9:  Schematics of the cap and device wafers fabricated for bond tests for a) the Si to glass bonding 
process and b) the Si to Si wafer with 7 µm of SiO2. 

6.2.1 CAP WAFER FABRICATION 

Figure 6.10 shows the fabrication processes for the bond experiments #1 and #2 cap 

wafers.  Fabrication of each set of cap wafers began with growth of a 1.9 µm thick 

thermal SiO2 layer.  This thermal SiO2 was removed from the front side of the wafer 

using BHF (buffered hydrofluoric acid) and masking the backside with photoresist as 

shown in Figure 6.10a and Figure 6.10d.  This SiO2 layer was used to electrically isolate 

the Au coils on the heater which made direct contact with the backside of the cap wafer 

(See Section 6.3 for a full description of the test setup).  Such a thick SiO2 layer was 

needed because of the up to 300 V applied to this heater in the bond experiments that will 

be presented in Section 6.4 (Results & Discussion). 
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Figure 6.10:  The fabrication process for cap wafers for a-d) Si to glass bonds and e-h) Si to Si bonds with a 
7 µm thick oxide layer. 

Figure 6.10b shows the 4 µm thick Au bond ring layer deposition and patterning step 

used for bond experiment #1.  In defining this layer, directly after the BHF etching step, 

200/5000 Å of Cr/Au was evaporated on top of bulk silicon, acting as the seed layer for 

electroplating.  These metals were deposited in an E-beam Enerjet evaporator at ~2×10-6 

Torr.  As was explained in Section 3.1 of Chapter 3 this BHF dip preceding the 

evaporation step is used in the Au-Si Eutectic bonding process to ensure that the Cr/Au 

layer was directly in contact with the bulk Si and that a thick native oxide would not 

prevent inter-diffusion.  This inter-diffusion is necessary for creation of the liquid Au-Si 

eutectic needed to facilitate the Au-Si eutectic bond.  Next, as in Section 3.1 of Chapter 3, 

10 microns of AZ 9260 photoresist was deposited and patterned, acting as a mold for Au 

electroplating.  Electroplating was done using BDT-510 makeup plating solution with a 
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stainless steal cathode on one side of the bath and the wafer on the other side serving as 

the anode.  A current source was used to supply the source current with the cathode 

attached to the positive side and clips touching the top of the wafer were connected to 

ground.  The wafers were electroplated at 50ºC with a current density of 2mA/cm2 

resulted in a plating rate of around 0.1 µm per minute (these wafers had 96, 100 µm wide 

bond rings and therefore an electroplated surface area of ~0.97 cm2 and a supply current 

of 1.9mA).  The bond ring was electroplated to a thickness of 4 µm.  Finally, the 

photoresist mold was removed and the then the seed layer (the Cr/Au layer) was etched 

away using TFA Au etchant for approximately 3 minutes and then CR-14 Cr etchant for 

30 seconds. 

Figure 6.10e shows the 3µm/7µm/0.3µm Ni/Sn/Sg bond ring layer deposition and 

patterning step used for bond experiment #2.  In defining this layer, 200/5000Å of Cr/Au 

was first evaporated on top of the bulk silicon.  This layer acted as the seed layer for 

electroplating.  (It was not important in this process to go directly from the BHF etch to 

the evaporator since the Au-Sn bond does not use Si diffusion for creation of a eutectic.)  

Next, 20 µm of AZ 9260 photoresist was deposited and patterned, acting as a mold for 

the Ni/Sn electroplating.  Nickel electroplated was done at 50ºC in a sulfate based 

electroplating solution with a current density of 21mA/cm2 for 10 minutes resulting in the 

3 µm thick Ni film.  Directly before tin electroplating, the wafer was next placed in dilute 

(~10%) hydrochloric (HCL) acid in order to remove the nickel oxide to improve 

adhesion.  The Sn layer was electroplated at room temperature in Bright Tin 

Electroplating Solution at 30 mA/cm2 for 10 minutes resulting in the 7 µm thick Sn film.  

Next, the 0.3 µm Sg layer was evaporated on top of this metal stack in an Energet 

Evaporator.  The wafers were then placed in acetone in order to remove photoresist.  

Next 20 µm of AZ 9260 photoresist was patterned over the bond rings in order to protect 

the bond ring materials from the seed layer etch.  The Cr/Au seed layer was then  etched 

away using TFA Au etchant for approximately 3 minutes and then CR-14 Cr etchant for 

30 seconds.  This photoresist layer was left on for the next process step. 

The final process step for each of the cap wafers was the Deep Reactive Ion Etch 

(DRIE) step used to define the cavity.  This step is shown in Figure 6.10c and Figure 

6.10f.  For bond experiment #1, 10 µm of AZ 9260 photoresist was first patterned over 
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the bond rings (as mentioned in the last paragraph, for bond experiment #2 the photoresist 

mask from the previous patterning step was left on.)  For both processes, the wafers were 

next placed in a STS Multiplex ICP DRIE etcher in order to etch the 90 µm deep cavities.  

Finally, the photoresist mask was removed.  Directly before the cap and device wafers 

were aligned for bonding, the cap wafers were solvent cleaned (soaked in acetone, then 

isopropanol and then DI water).    

6.2.2 DEVICE WAFER FABRICATION 

Figure 6.11, shows the fabrication processes for the device wafers for bond 

experiments #1 and #2.  Fabrication of the bond experiment #2 wafers (Figure 6.11e) 

began with the deposition of a 7 µm PECVD SiO2.  Next, for both the bond experiment 

#1 and #2 wafers, the temperature sensor layer was deposited and patterned as shown in 

Figure 6.11a and Figure 6.11e.  Definition of this layer began with the patterning of a 1.5 

µm thick SPR220 photoresist.  A 100Å/1000Å Cr/Pt layer was then evaporated in the E-

beam Enerjet evaporator at ~2×10-6 Torr, over top of the patterned photoresist.  Acetone 

was then used to remove the photoresist in a lift off process leaving the Cr/Pt lines which 

defined the temperature sensors, feed-throughs and bond pads.  Chromium was used 

because it acted as an adhesion layer for the platinum and the platinum was chosen for 

the temperature sensor material because of its chemical inertness and its high TCR.   
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Figure 6.11:  The fabrication processes for the cap and device wafers for a-d) Si to glass bonds and e-h) Si 
to Si bonds with a 7 µm thick oxide layer. 

Next, a 5000Å layer of PECVD SixNy was deposited as shown in Figure 6.11b and 

Figure 6.11f.  This layer served an electrical insulating layer.  Silicon nitride was chosen 

because its thermal conductivity (14 W/m·K) is roughly 10 times that of SiO2 (1.4 

W/m·K).  As a result, given its relatively larger thermal conductivity and the thickness of 

this layer relative to that of the 7 µm SiO2 (in bond experiment #2), according to 

Equation 6.2 there should be approximately 1/140th of the temperature drop through this 



 212 

layer as compared to the SiO2 layer. 

Next, the bond ring layer was deposited as shown in Figure 6.11c and Figure 6.11g.  

On the bond experiment #1 wafers, a 200Å/5000Å Cr/Au layer was sputtered on using an 

Enerjet Sputter Coater.  This layer was patterned and then etched using TFA Au etchant 

for approximately 3 minutes and then CR-14 Cr etchant for 30 seconds.  On the bond 

experiment #2 wafer, the 3µm/7µm Ni/Sn layer was deposited using the same process 

steps outlined in the previous section (Section 6.2.1) using a photoresist mold and 

electroplating both the Ni and Sn layers.  

Finally as shown in Figure 6.11d and Figure 6.11h, on both sets of wafers, using a 1.5 

µm thick SPR220 photoresist mask, the SixNy layer was etched in BHF (buffered 

hydrofluoric acid) for 10 to 15 minutes to open up the bond pads for electrical access.   

6.3 TEST SETUP DESIGN & ASSEMBLY 

Appendix 2 describes the wafer bonders which were used for the bond experiments 

outlined in Chapter 2 and Chapter 5.  These wafer bonders included:  an EVG 510 wafer 

bonding system, an SB6 semi-automated wafer bonding system and an SB6e semi-

automated wafer bonding system.  Unfortunately these wafer bonder systems could not 

be easily adapted for applying the differential localized heating wafer bonding method 

for three reasons.  First, it was desirable to have temperature sensors underneath the bond 

rings and at different distances from the bond ring on the surface of the device wafer 

during bond tests.  These sensors allowed for the temperature profiles inside of the bond 

rings to be monitored during bonding in order to gauge the effectiveness of this bonding 

technique in thermally isolating potential devices.  Adapting the fixturing for the EVG, 

SB6 and SB6e bonders and providing electrical interconnection through the vacuum 

chambers in these bonders would have been difficult.  Second, as was discussed in 

Section 6.1 (Modeling & Analysis), a relatively large amount of power is needed to heat 

bond rings up to 200 to 400ºC when applying differential heating with the dimensions 

and materials used here.  The EVG, SB6 and SB6e bonders were not designed for 

applying such large powers or sinking large amounts of heat.   Third, because of how 

time consuming it was to fabricate the temperature sensors and integrate them into the 

test setup, it was desirable to conduct several bond experiments for each bonded pair of 
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wafers.  This could be done by only heating up small portions of the wafer at a time.  The 

heaters in the EVG, SB6 and SB6e bonders on the other hand were only designed to 

allow for heating of the entire wafer all at once.  As a result, a special wafer bonder setup 

was designed and build for evaluating the differential localized heating method.   

In the rest of this section, the components of this test setup are described in detail.  

Section 6.3.1 describes overall test setup design and Section 6.3.2 explains the general 

layout of the device wafer in relation to the test setup.  Section 6.3.3 then explains how 

the test setup was assembled for testing.  Finally, Section 6.3.4 and Section 6.3.5 describe 

the temperature sensor  and heater designs and how they were calibrated and tested 

during bond experiments.   

6.3.1 TEST SETUP DESIGN 

The bonder setup described in this section included:  1) an array of micro-machined 

heaters which allowed for 200 W or more of power to be applied to a 10.5 x 13.3 mm2 

area on the backside of a cap wafer; 2) as supposed to a pneumatic force or a spring force 

system (as is used in the EVG, SB6 and SB6e bonders)  a 50 lb weight was used for 

apply the bond force, 3) a passive heat sink made of copper and a 50 b steel weight, and 

4) fixturing which allows for access to temperature sensors on the device wafer for 

measurement of temperatures at and near the bond ring during bond tests.  

Figure 6.12 shows schematics of the differential localized heating bonder setup which 

accommodated all of these features.  As illustrated in Figure 6.12, this test setup 

consisted of i) a CogethermTM plate (CogethermTM is a special high temperature 

insulating composite manufactured by Jaco Products) which functioned both as a 

mechanical backing plate and a thermal insulator; ii) the heater substrate made out of 

glass on top of which the Au thin film heater sat atop; iii) the cap wafer substrate which 

made direct physical contact to the heater; iv) the device wafer which made physical 

contact with the bond rings on the cap wafer and on the backside, physical contact with 

the heat sink; v) the copper heat sink; and vi) the 50 lb steel block which provided the 

bond force and provided a large thermal mass which aided in the heat sinking.  
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Figure 6.12:  Schematics showing cross-sections of the test setup. 

6.3.2 LAYOUT OF THE DEVICE WAFERS 

Figure 6.13 shows a schematic of the device wafer.  The fabrication process for these 

device wafers were detailed in Section 6.2 (Wafer Fabrication for Bond Experiments).  

The exploded views in Figure 6.13b and Figure 6.13c show the layout of the bond rings 

and feed-throughs.  These bond rings were made out of Au or Ni/Sn, were 100µm wide 

and encompassed a 2.3×2.3 mm2 area (as was the case for the bond rings used in many of 

the bond experiments conducted in Chapter 2 and Chapter 5).  Temperature sensors were 

fabricated underneath some of these bond rings and at different distances from them on 

the surface of the wafer.  The schematic in Figure 6.13c shows 3 temperature sensors,  

one located directly underneath the bond ring and the other two located at 250 and 750 

µm away from the edge of the bond ring.  As illustrated in Figure 6.13b, there are four 

electrical interconnection lines for each temperature sensors making a 4-point probe.  In 

so, the temperature sensors functioned in a similar manner to the Pirani gauges described 

in Chapter 4.  Details on how these sensors were operated and calibrated are presented in 

Section 6.3.4.  The feed-through interconnection lines ran from the temperature sensors 

themselves out to bond pads at the periphery of the wafer as shown schematically in 

Figure 6.13a. 
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Figure 6.13:  A schematics showing how the temperature sensors were laid out across the wafer. 

6.3.3 ASSEMBLY OF THE TEST SETUP 

As described below, the test setup was assembled in 4 steps: 1) device and cap wafer 

alignment (Section 6.3.3.1), 2) integration of the copper heat sink (Section 6.3.3.2), 3) 

incorporation of the heaters (Section 6.3.3.3), and 4) assembly of the entire setup (Section 

6.3.3.4). 

6.3.3.1 Step 1: Device and Cap Wafers Alignment 
The device wafer was aligned to the cap wafer which had bond rings with same 

dimensions and spacings as the device wafer.  This wafer had 90 µm etched cavities (as 

was shown schematically in Figure 6.12b).  Also, before aligning these two wafers part of 

cap wafer on the left and right sides were diced away to allow access to the bond pads on 

the device wafer.  The relative location of where this cap wafer was diced is shown 

schematically in Figure 6.13a.  Figure 6.14a shows the device and cap wafer after they 

had been aligned and clamped together.  These wafers were aligned in an SUSS 

MicroTec SB6 wafer alignment system.  While still clamped into the SB6 alignment 

chuck the clamps shown in Figure 6.14a were applied on the outside edge of the wafer as 

shown.  The wafers were then taken out of the SB6 alignment chuck.  Figure 6.14b shows 
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an exploded view of the area on left side of these aligned wafers where the top cap wafer 

was diced away.  As shown, the bond pads on the device wafer can be accessed because 

of this diced away region.   
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Figure 6.14:  a) The aligned cap and device wafers which were held together using clamps, b) a closer look 
at the edge of these aligned wafers showing how the diced away portion of the cap wafer allows access to 
bond pads on the device wafer that run to temperature sensors, and c) the aligned wafers that sit on top of 

the copper heat sink.  PCBs on either side of the wafer pair were wire bonded to the bond pads on the 
device wafer in order to access the temperature sensors near the bond ring. 

6.3.3.2 Step 2:  Integration of the Copper Heat Sink 
Figure 6.14c shows the wafer pair after they were placed on top of the copper heat 

sink.  Two PCBs were screwed into the copper heat sink so that wire bond connections 

could be made to the PCBs from the 48 bond pads on either side of the wafer (96 total) 

that ran to temperature sensors at various locations on the wafer.  The copper plate itself 

was finely polished in order to allow for good thermal connection to the backside of the 

device wafer.  As shown in Figure 6.15a there were several other slots and wholes 

machined into the copper plate.  The two large slots at the top and bottom of the plate in 

Figure 6.15a allowed for electrical connection to the heaters—the orientation of the 

copper plate with the heater substrates will be described in more detail in Steps 3 and 4.  

The four slots closer to the center of the plate allow clearance for the clamps (as can also 
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be seen in Figure 6.14c).  Figure 6.14c above showed how this clamped wafer pair fit 

onto the copper plate.  Finally, the four circular holes in Figure 6.15a were used to mate 

the copper plate with the CogethermTM plate in the final assembly. 

 

 

Figure 6.15:  The layout of the a) copper heat sink and b) CogethermTM insulator plate. 

6.3.3.3 Step 3:  Integration of the Heaters Substrate & CogethermTM Plate 
Figure 6.16a shows one of the heater substrates.  One full 4” glass wafer was used for 

the fabrication of each of the heater arrays and then diced to form the 70 x 76 cm 

rectangular heater substrate shown in Figure 6.16a.  Each heater substrate consisted of a 

3×5 array of heaters with two leads running from each heater to bond pads at the 

periphery of the substrate.  During testing, wires were soldered to these bond pads and 

connected to a power supply in order to power the heaters.  More detail on the heater 

design and operation will be given in Section 6.3.5.  Two of these heater substrates where 

need to encompass the bond rings across one full wafer.  Figure 6.16b shows two of these 

heater substrates placed on a CogethermTM insulator plate.  Figure 6.15b above shows the 

layout of the machined CogethermTM plate.  The two large slots at the right and left of the 

plate in Figure 6.15b allowed for clearance for the PCB.  These slots are also oriented to 

allow for clearance of the clamps holding the wafers together.  Finally, the four circular 

holes in Figure 6.15b were used to mate the CogethermTM plate with the copper plate in 
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the final assembly. 

 

 

Figure 6.16:  a) A heater substrate and b) two heater substrates placed on the CogethermTM plate. 

6.3.3.4 Step 4:  The Final Assembly 
Figure 6.17a shows the total assembly where the copper plate and the CogethermTM 

plate sandwiched the heater and the wafer pair.  Three eighths inch diameter bolts were 

put through the circular holes in the copper and CogethermTM plates in order to clamp 

them together.  Figure 6.17a also shows wires that were soldered to bond pads on the 

heater substrate for providing power to the heaters as well as the PCBs which allowed 

interconnection to the temperature sensors on the device wafer.  Figure 6.17b shows this 

total assembly with the 1×4×4” steel block and the 50lb steel weight which sat atop this 

assembly.  The steel block and 50lb steel weight served three functions: i) they provided 

a force so that the heaters made good thermal contact with the cap wafer and so that the 

copper heat sink made good thermal contact with the device wafer; ii) they provided a 

larger thermal mass which aided in heat sinking, and iii) they provided a bond force so 

that the cap wafer bond rings and device wafer bond rings pressed together in order to 

encouraging diffusion between the cap wafer bond rings and the device wafer bond rings.  

For the bond force, the 50 lb weight was distributed across the 96 bond rings on the cap 

and device wafers.  The pressure across each one of these bond rings was 2.5 MPa. (This 

was one of the bond pressures determined in Chapter 2 to result in strong bonds for the 

Au-Si eutectic process. See Section 2.6 for more detail). 
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Figure 6.17:  a) The entire assembly where the copper plate and the CogethermTM sandwiched the heaters 
and the wafer pair and, b) a 1× 4 × 4” steel block and a 50lb weight on top of this assembly. 

Finally, Figure 6.18 shows a schematic of how the heater substrates lined up with the 

bond rings after the entire assembly was put together.  As shown, each heater 

encompassed 4 bond rings so that the two 3×4 heaters encompass a total of 96 bond rings 

across the wafer.  Furthermore, the heater substrates protruded several millimeters from 

the slots in the CogethermTM plate as could be seen in Figure 6.16b.  Because the heater 

substrate was transparent (glass) this allowed for macro scale alignment marks (2×2mm 

crosses) to be aligned to the wafer pair in the alignment of the total assembly.  In this way 

the heater substrates were aligned to the cap and device wafer to within approximately 

±250 µm. 
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Figure 6.18:  A schematic showing how the heaters lined up with the bond rings across the wafer. 

6.3.4 TEMPERATURE SENSOR DESIGN & CALIBRATION 

As explained previously, the temperature sensors functioned in a similar manner to the 

Pirani gauges described in Chapter 4.  As was the case for those Pirani gauges, there were 

four interconnection lines that connected to each sensor in a 4-point probe configuration.  

Two of these interconnection lines on either side of the sensor were used for applying a 

current, IR, and the other two were used for measuring the voltage drop, VR, across the 

resistor.  Since the current is constant from the input to the output, the resistance of the 

resistor, RR, can be determined by VR/IR independent of the resistances of the leads 

running to the resistor.  The resistor itself consisted of a 100/1000Å thick Cr/Pt layer that 

was 10 µm wide and 470 µm long.  Currents of 1 mA were input using a Keithley 2400 

SourceMeter and the voltages were measured using an HP 34401A multimeter.  These 

currents were small enough so that ohmic heating was negligible.  The change in 

temperature, ΔT, across the sensor was determined from:   
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where ξ is the TCR of the of the resistor and RRT is its resistance at room temperature 

(23ºC).  The temperature of the temperature sensor, TS, was therefore:   
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From equation 6.4, in order to calibrate each temperature sensor, ξ and RRT needed to 

be determined.  The RRT value was determined by measuring the resistance of the resistor, 

RR, at 23ºC.  Similar to the method for determining the TCR for the Pirani gauges in 

Chapter 4, RR was next measured at 55ºC and the 75ºC, inside of an Espec Su-240 

temperature chamber, and the slope of (RR-RRT)/RRT vs. temperature was calculated in 

order to determine the TCR.   

6.3.5 HEATER DESIGN & CALIBRATION 

The heaters were fabricated on top of 4” diameter 500mm thick Pyrex glass wafers in 

a single mask process.   A 200Å/7500Å thick Cr/Au layer was first evaporated onto the 

wafer in an Energet Evaporator.  The wafer was then patterned and then etched using 

TFA Au etchant for approximately 3 minutes and then CR-14 Cr etchant for 30 seconds.  

Figure 6.19a shows one of the heaters which consisted of coils with 100 µm wide lines, 

that had 53 winds and encompassed a 10.5 x 13.3 mm2 area.  Each coil had a total length 

of approximately 70 cm.  This geometry was chosen to achieve a heater resistance of 

around ~250Ω at room temperature and ~500 Ω at 427 ºC (these projected resistance 

were calculated using the geometry of the heaters and the book values for the resistivity 

of Au at 23ºC of 2.71×10-8 Ω/m and its resistivity at 427ºC of 6.28×10-8 Ω/m).  These 

heaters were designed to allow for an input power up to 200 W at an average temperature 

of 427ºC.  To achieve this power at 427°C (and therefore with a resistance of ~500 Ω), a 

current of ~0.72 A and a voltage of ~390 V were required.   
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Figure 6.19:  Shown is a) a heater, b) a closer look at some of 100 µm wide coils in one of these heaters and 
the 350 µm wide lead running from the heater, and c) the portion of the leads running to the bond ring 

which were 1000 µm wide. 

The leads that ran to the heaters were an important part of the design.  Two leads per 

heater ran out to bond pads at the periphery.  As shown in Figure 6.19b, these leads were 

350 µm wide near the heating area and as shown in Figure 6.19c, they expanded to 1000 

µm wide near the bond pads.  The amount of power dissipated in the heater and in the 

leads can be determined considering the following equation for the joule heating per unit 

length, δ [209]: 
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where κR is the resistor’s thermal conductivity, ρR is the resistivity of the material and tR, 

wR and lR are the thickness, width and length of the resistor.  The joule heating per unit 

length, δ, is therefore proportional to the inverse square of the width of the lines.  As a 

result, the 350 and 1000 µm segments of the leads should experience 8.1 and 1% of the 

joule heating per unit length, as the 100 µm wide coils.    

Table 6.4 shows the lengths, widths and resistances of the heater coil and the two 
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different segments of the leads.  Given those values Table 6.4 shows that the heater 

resistance accounts for 99.0 to 99.2% of the total resistance.  Also shown are the 

percentage of the total calculated ohmic heating accounted for by the heater and each 

segment of the leads (from Equation 6.5)—as illustrated, the heater resistance should 

account for 99.7 to 99.8% of the total ohmic power generation.      

Table 6.4:  Calculations for the percentage of the total resistance and the power dissipated in the heater and 
in the leads. 

Portion of heater/leads Length Width Resistance  % of total 
Resistance 

% of total 
Power 

Dissipated 

Heater 700 cm 100µm 526Ω* 99.0-99.2% 99.7-99.8% 
350 µm section of leads 3 to 5.2 cm 350µm 2.4-4.1Ω** 0.4-0.8% 0.1-0.2% 

1000 µm section of leads 4.0 to 6.4 cm 1000µm 1.2-1.9Ω** 0.2-0.3%. <0.1% 
*Calculated at 427ºC 

**Calculated at 23ºC (assuming to neglibable ohmic heating or heat spreading in the leads)  
 

Because the resistances and ohmic power generation resulting from these leads were 

so small as compared to that of the heater, a simple two point probe was used for 

simultaneously inputting a power and measuring temperature.  For temperature 

measurement, a voltage, VH, was applied across the heater and the output current, IH, was 

measured.  Since the current is constant from the input to the output, the resistance of the 

heater, RH, could be determined by VH/IH.  The applied voltages and currents were 

measured by two separate HP 34401A multimeters.  The temperature of the heater could 

then be calculated using the following equation: 
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It is important to note that the resistivity of each portion of the heater changes linearly 

with temperature.  Therefore, Ts represents the average temperature across the heater for a 

heater with a non-uniform temperature. 

From equation 6.6, in order to calibrate each heater for temperature measurement, ξ 

and RRT needed to be determining.  The RRT value was determined by measuring the 

resistance of the resistor, RH, at 23ºC.  Similar to the method for determining the TCR for 

the Pirani gauges in Section 4.5 of Chapter 4, RH was next measured at 55ºC and the 
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75ºC, inside of an Espec Su-240 temperature chamber, and the slope of (RH-RRT)/RRT vs. 

temperature was calculated in order to determine the TCR.  These RH values were taken 

with a 1 mA current and were input using a Keithley 2400 SourceMeter and the voltages 

measured using an HP 34401A multimeter.  These currents were small enough not to 

cause significant ohmic power generation. 

6.4 RESULTS & DISCUSSION 

Bond experiments were conducted between a Si cap wafer and a glass device wafer 

(bond experiment #1) and a Si cap wafer and Si device wafer with a 7 um PECVD SiO2 

(bond experiment #2).  The bond experiment #1 wafers were designed to facilitate a Au-

Si eutectic bond at above 363ºC and the bond experiment #2 wafers were designed to 

facilitate a Sn-Ag bond at above 221ºC.  Using the test setup described in detail in 

Section 6.3, power was input into the heaters and the temperatures of the heaters and 

temperature sensors were monitored.  The input power, and temperatures of the heaters 

and sensors were compared with the modeling results described in Section 6.1 (and 

summarized in Section 6.1.4).   

6.4.1 BOND EXPERIMENT #1 (Si TO GLASS) 

6.4.1.1 Heater Characterization 
As was explained in Section 6.3.5 (Heater Design & Calibration), the heaters were 

designed to allow for the average temperature across the heater to be measured.  Figure 

6.20a shows the average measured temperature over time for one of the heaters tested in 

bond experiment #1 for a  number of different input powers.  As illustrated, the 

temperature quickly ramps up and begins to level off.  In Figure 6.20b the temperature vs. 

power is graphed for two different heaters.  For characterizing the temperature vs. input 

power for the heaters, the temperature was measured after holding a specified power 

across the heater for 10 seconds.  As illustrated in Figure 6.20 the temperature vs. power 

behavior for these two heaters are similar and they both demonstrate very linear behavior 

with an average slope of 3.5 K/W.  This is comparable to the temperature vs. power 

behavior predicted by the model in Section 6.1 (and summarized in Table 6.3) of 3.9 
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K/W.  
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Figure 6.20:  a) The average measured temperature across one of the heaters for different powers and b) the 
temperature vs. power (after holding power for 10 seconds) for two different heaters that were tested in 

bond experiment #1. 

Figure 6.21a shows the temperature vs. power behavior of two heaters which failed—

resulting in an open circuit.  In each case, after inspection, a portion of the heater was 

observed to have burnt.  As illustrated, heater #1 failed after holding a power of 112 W 

for 16 seconds and heater #2 failed after holding a power of 109 W for 955 seconds.  The 

measured temperatures across these heaters at failure were 430ºC and 440ºC respectively.  

Considering the modeling for bond experiment #1, there should be a large temperature 

gradient across the heater.  Figure 6.21b shows the modeled temperature profile for the 

case which was presented in Section 6.1.3.1 where there was a heater input power of 107 

W (26.8 W/bond ring), resulting in an average heater temperature of 442ºC and a 

maximum temperature of 501ºC.  Considering the average temperatures across heaters #1 

and #2 at failure (of 430ºC and 440ºC), the model therefore predicts that heaters #1 and 

#2 should have had a maximum temperature near 500ºC. 
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Figure 6.21:  a) The temperature vs. time for two heaters that failed with applied powers of 112 and 109 W 
at temperatures of 430ºC and 440ºC respectively and, b) the case which was modeled in Section 6.1.3.1 

where there was an average temperature of 442ºC for bond experiment #1. 

6.4.1.2 Temperature Sensor Measurement 
As was explained in Section 6.3 (Test Setup Design), temperature sensors were 

fabricated so that they would be located underneath the bond ring and at 250 and 750 µm 

from the edge of the bond ring.  In bond experiment #1 the device and cap wafer were 

misaligned by 100 µm along the vertical axis.  Figure 6.22 shows a view from underneath 

the glass device wafer for one of the bond rings encompassed by heater #2.  As shown in 

Figure 6.22, this resulted in the three sensors being 50µm (S1 sensor), 150µm (S2 sensor) 

and 750µm (S3 sensor) from the bond ring during the bonding experiments.   
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Figure 6.22:  The aligned cap and device wafers as seen through the backside of the glass device wafer in 
bond experiment #1.  As illustrated, these bond rings were misaligned vertically by 100 µm resulting in the 

temperature sensors being 50, 150 and 650 µm from the edge of the bond ring. 

Figure 6.23a shows a plot of the modeled temperature distribution across the bond ring 

which was presented in Section 6.1.3.1.  Instead of showing specific temperatures, the 

temperatures in Figure 6.23 are listed as a percentage of the minimum bond ring 

temperature, RBR.  Figure 6.23a shows the locations of each of the sensors schematically 

and the RBR values modeled at each of these locations.  
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Figure 6.23:  The modeled temperature profile showing the temperatures relative to the minimum bond ring 
temperatures (RBR) at different distances from the bond ring for bond experiment #1.  

Figure 6.24 shows a plot of the average heater temperatures, THave, along with the 

temperatures measured at the S1, S2 and S3 temperature sensors for the misaligned bond 

ring that was shown in Figure 6.22.  In order to compare the modeling results with the 

measured results, the average heater temperature, THave, was assumed to have an RBR of 

111% as was the case in the model (In other words, the average heater temperature, THave, 

was assumed to be 1.11 times the minimum bond ring temperature, TBmin.  This 

assumption was made because TBmin could not be directly measured).  This given, the 

dashed and dotted lines in Figure 6.24 show the modeled data for the minimum bond ring 

temperature, TBmin, and the modeled data at each of the temperature sensor locations.  

Table 6.5 summarizes these results comparing the modeled RBR values with the average 

measured RBR values at each of the temperature sensors.  As illustrated, for a given heater 

temperature the model does a good job of predicting temperatures near the bond ring.  

Furthermore, bond experiment #1 seems to indicate good thermal isolation inside of the 

bond ring with the temperature 650µm from the bond ring measured at 23% of the 

minimum bond ring temperature. 
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Figure 6.24:  A comparison of the measured heater temperature and the temperatures at different distances 
from the bond ring to the modeling results for bond experiment #1. 

Table 6.5:  A comparison of the modeled and measured temperatures relative to the minimum bond ring 
temperatures (RBR) at different distances from the bond ring. 

Location Modeled RBR Measured RBR 

Heater (Average Temp.), THave 111% 111%* 
Bond Ring (Minimum Temperature),TBmin 100% - 

Bond Ring (S1) 48% 53%** 
250 µm Away (S2) 40% 41%** 
750 µm Away (S3) 25% 23%** 

*The average heater temperature was assumed to be at 111% of the minimum bond ring temperature as in 
the model.   

**The average of the RBR values measured at each temperature sensor assuming that THave was 111% of 
TBmin. 

Finally, Figure 6.25 shows the heater temperature overtime along with the temperature 

at each of the temperature sensors.  In Figure 6.25, a 89 W power was held for around 15 

seconds.  The temperatures inside of the bond ring (at 250µm and 750µm from the bond 

ring) seemed to maintain their RBR values (their temperatures relative to the bond ring 

temperature) for the short duration of the temperature ramping tests. 



 230 

Temperatures vs. Time (89 W)

0

100

200

300

400

0 10 20 30 40

Time [sec.]

T
e
m

p
e
ra

tu
re

 [
 C

]

Heater Temp.

50 um away (S1)

150 um away (S2)

650 um away (S3)

º

Temperatures vs. Time (89 W)

0

100

200

300

400

0 10 20 30 40

Time [sec.]

T
e
m

p
e
ra

tu
re

 [
 C

]

Heater Temp.

50 um away (S1)

150 um away (S2)

650 um away (S3)

º

 
Figure 6.25:  The temperature over time for one of the temperature ramping tests from bond experiment #1 

showing the temperatures at each one of the temperature sensors. 

6.4.1.3 Au-Si Eutectic Bonding Using Localized Heating 
As was discussed in the Section 6.2 (Wafer Fabrication for Bond Experiments), for 

bond experiment #1, Au bond rings were fabricated on the cap wafer to facilitate a Au-Si 

Eutectic bond to a Au film on the device wafer.  After the temperature ramping 

experiments described in the previous sections, the cap and device wafer were pulled 

apart and the bond rings were inspected.  As was shown in Figure 6.21a of Section 

6.4.1.1, heater #2 achieved its maximum average temperature of 440ºC when it was held 

at a power of 109 W for around 15 minutes.  Figure 6.26a shows the modeled 

temperature profile across this bond  ring, assuming a heater temperature of 440ºC.  

Figure 6.26b shows a picture of the device wafers substrate after the wafers were pulled 

apart for one of the bond rings encompassed by heater #2.  As shown in Figure 6.26a, for 

an average applied temperature of 440ºC, according to the model, the entire bond ring 

should be above 398ºC—well above the Au-Si eutectic temperature.  As shown in Figure 

6.26b this resulted in a bond where the Au-Si eutectic bond was strong enough to tear Si 

from the cap wafer so that it adhered to the device wafer after the wafers were pulled 

apart. (It is important to remember from Figure 6.22 in Section 6.4.1.2 that the cap and 

device wafers were misaligned along the vertical axis so that the bond rings only made 

contact on the left and right edges of the bond ring).  This seems to indicate that this 
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bonding method could be applied for Au-Si eutectic bonding. 

 

 

Figure 6.26:  a) Modeling results for the case where the average heater temperature is 440°C and b) one of 
the bond rings under heater #2 after the cap and device wafers were pride apart after the bond experiments. 

6.4.2 BOND EXPERIMENT #2 (Si TO Si WITH A 7 µm SiO2 LAYER) 

6.4.2.1 Heater Characterization 
Figure 6.27a shows the average measured temperature over time for one of the heaters 

tested in bond experiment #2 for a number of different input powers.  Similar to the 

experiment #1 bond tests, when power was applied to the heater, the temperature quickly 

ramped up and started to level off.  For applied powers of greater than 100 W in some 

initial heater tests for bond experiment #2 bonds, the heaters appeared to be damaged 

either in the initial heating step or once power was cut and rapid cooling took place.  In 

those experiments, the glass heater substrate was observed to have cracked.  It was 

presumed that rapid heating and/cooling caused large strains in the glass due its 

temperature coefficient of expansion (TCE), causing large stresses.  To avoid damaging 

the heaters in this way, as shown in Figure 6.27a, at powers greater than 100W the power 

was slowly ramped up and slowly ramped down. 

  In Figure 6.27b the temperature vs. power is plotted for four different heaters.  For 

characterizing the temperature vs. input power for the heaters, the temperature was 

measured after holding a specified power across the heater for 10 seconds, as was the 

case in bond experiment #1 tests.    As illustrated, the temperature vs. power behaviors 

for each of the heaters are similar to each other and demonstrate very linear behavior with 
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power behavior predicted by the model in Section 6.1.3.3 (and summarized in Table 6.3).  

The source of this discrepancy is not evident and indicates that more heat his pulled away 

from the heater in the model as compared to the actual test setup.  One possible 

explanation for this is that there was not good thermal contact between the bond rings on 

the cap and device wafers because of the roughness and/or non-uniformity in the 

electroplated Ni/Sn layers.  Such bad thermal contact would make the heater more 

thermally isolated from the heat sink, allowing it to heat up with smaller amounts of 

power.  
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Figure 6.27:  a) The average measured temperature across one of the heaters for different powers and b) the 
temperature vs. power (after holding power for 10 seconds) for four different heaters that were tested for 

bond experiment #2. 

Figure 6.28a shows the temperature vs. power behavior of three heaters which 

failed—resulting in an open circuit.  In each case, after inspection, a portion of the heater 

was observed to have burnt.  As illustrated, heaters #1 and #7 failed after holding powers 

of 181 and 200 W for 15 and 21 seconds with maximum temperatures of 374 and 347 ºC  

respectively.  Heater #5 on the other hand survived an input power of 200W for 207 

seconds and failed at a temperature of 416ºC.  Figure 6.28b shows two other heaters 

which were held at 200W for around 50 seconds each without failure.  Considering the 

modeling for bond experiment #2, there should be a large temperature gradient across the 

heater.  Figure 6.28c shows the modeled temperature profile across the heater for a bond 

between a Si wafer and a Si wafer with a 7 µm SiO2 layer presented Section 6.1.3.3.  In 

the modeled case shown in Figure 6.28c a power was applied so that the average heater 

temperature, THave, was 400ºC.  In this case the maximum heater temperature was 556ºC.  
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temperature, THave, was 400ºC.  In this case the maximum heater temperature was 556ºC.  

Assuming that during testing the heater had a similar temperature profile, the five heaters 

tested in Figure 6.28a and Figure 6.28b would have seen temperatures ranging from 

490ºC to 565ºC. 

 

Figure 6.28:  a) The temperature vs. time for three heaters that failed with applied powers of 181, 200 W  
and 189 W at temperatures of 374, 357 and 416ºC respectively, b) two heaters that did not fail with applied 
powers of 200W and, c) a plot  of the modeled case from Section 6.1.3.3 with an assumed average heater 

temperature was 400ºC. 

6.4.2.2 Temperature Sensor Measurement 
In bond experiment #2, the cap and device wafers were aligned with no observable 

misalignment so that the S1, S2 and S3 sensors were located underneath the bond ring 

and at 250 and 750 µm from the bond ring. 

Figure 6.29a shows a plot of the modeled temperature distribution across the bond ring 

which was presented in Section 6.1.3.1.  Instead of showing specific temperatures, the 

temperatures in Figure 6.29 are listed as a percentage of the minimum bond ring 

temperature, RBR.  Figure 6.29a shows the locations of each of the sensors schematically 

and the RBR values modeled at each of these locations.  
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Figure 6.29:  The modeled temperature profile showing the temperatures relative to the minimum bond ring 
temperatures (RBR) at different distances from the bond ring for bond experiment #2. 

Figure 6.30 shows a plot of the average heater temperatures, THave, along with the 

temperatures measured at the S1, S2 and S3 temperature sensors for one of the bond rings 

encompassed by heater #6.  In this plot, in order to compare the modeling results with the 

measured results, the average heater temperature, THave, was assumed to have an RBR of 

157% as was the case in the model.  (In other words, the average heater temperature, 

THave, was assumed to be 1.57 times the minimum bond ring temperature, TBmin.  This 

assumption was made because TBmin could not be directly measured).  This given, the 

dashed and shaded lines in Figure 6.24 show the modeled data for each of the 

temperature sensors.   
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Figure 6.30:  A comparison of the measured heater temperature and the temperatures at different distances 
from the bond ring to the modeling results for the experiment #2 bond tests. 

As illustrated in Figure 6.30, for a given heater temperature, the model does not 

accurately predict the temperature at the bond ring where the S1 sensor is located.  Once 

again, a possible explanation for this, is that there may not have been good thermal 

contact between the Ni/Sn/Ag on cap wafer and the Ni/Sn on the device wafer because of 

a high surface roughness (as was also mentioned in regards to the discrepancy between 

the measured and modeled heater temperatures in the previous section).  This bad thermal 

contact could cause a larger than expected temperature drop at the bond ring interface 

resulting in a lower temperature just under the bond ring where that temperature sensor 

was located.  Regardless, it is evident that the measured heater temperature was not a 

good indicator of the minimum bond ring temperature, TBRM, since it did not accurately 

predict the temperature at S1.  In order to better gauge the amount of thermal isolation 

inside of the bond ring, in Table 6.6, RBR is estimated assuming that the temperature at 

S1, is 131% of the minimum bond ring temperature, as is the case in the model.  In other 

words, instead of using the heater temperature for comparing the bond results to the 

model, the temperature at S1 is used to compare the measured results to the modeled 

results.  As shown in Table 6.6, assuming that the temperature at S1 accurately predicts 

the minimum bond ring temperature, the measured RBR values of 42% and 39% at 250µm 
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and 750µm from the bond ring are higher than those predicted by the model.  Even so, 

this does represent a reasonable amount of thermal isolation inside of the bond ring.  

Table 6.6:  A comparison of the modeled and measured temperatures relative to the minimum bond ring 
temperatures (RBR) at different distances from the bond ring. 

Location Modeled RBR Measured RBR 

Bond Ring (Minimum Temp.) 100% - 
Bond Ring (S1) 131% 131%* 

250 µm Away (S2) 33% 42%** 
750 µm Away (S3) 33% 39%** 

*The measured bond ring temperature at S1 was assumed to be at 131% of the minimum bond ring 
temperature as in the model.  

** The average of the RBR values measured at each temperature sensor assuming that TS1 was 131% of 
TBmin. 

Finally, Figure 6.31 shows the heater temperature overtime along with the temperature 

at each of the temperature sensors.  In Figure 6.31 a 165 W power was held for around 60 

seconds.  As in bond experiment #1, the temperatures inside of the bond ring (at 250µm 

and 750µm from the bond ring) seemed to maintain their RBR values (their temperatures 

relative to the bond ring temperature) for the short duration of the temperature ramping 

tests.     
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Figure 6.31:  The temperature over time for one of the temperature ramping tests from bond experiment #2 
showing the temperatures at each one of the temperature sensors. 
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6.4.2.3    Sn-Ag Solder Bonding Using Localized Heating 
As was discussed in Section 6.2 (Wafer Fabrication for Bond Experiments), for bond 

experiment #2, Ni/Sn/Ag bond rings were fabricated on the cap wafer to facilitate a Sn-

Ag solder bond to a Ni/Sn film on the device wafer.  After the temperature ramping 

experiments described in the previous sections, the cap and device wafers were pulled 

apart and the bond rings were inspected.  Unlike bond experiment #1, strong enough 

bonds were not achieved to observe tearing of the Si from the cap wafer and subsequent 

adhesion to the device wafer.  On the other hand, Sn-Ag intermixing was observed.  

Figure 6.32a shows one of the Ni/Ag bond rings on the device wafer which was not 

heated up and Figure 6.32b shows one of the bond rings from heater #3  which was.  As 

illustrated the film in Figure 6.32b has become darker seeming to indicate Sn-Ag 

intermixing.  Furthermore, the rounded bubbles give some indication that a liquid eutectic 

was formed. 

 

Figure 6.32:  a) A Ni/Sn film on the device wafer which was not heated up, showing no evidence of Sn-Ag 
intermixing, and b) another bond ring which has darkened and flowed seeming to indicate Sn-Ag 

intermixing and viscous flow. 

Figure 6.33 shows the modeled temperature profile across a bond ring which was 

encompassed by heater #6 and one encompassed by heater #3 (for the highest heater 

temperature that was applied) and pictures of the device wafer substrates after the wafers 

were pulled apart for these bond rings.  For heater #6, a power of 180 W was applied for 

around 1 minute with a maximum heater temperature of  348ºC.  For heater #3 a power of 
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200 W was applied for 1 minute with a maximum heater temperature of 404ºC (as was 

shown in Figure 6.26a).  For heater #6, the maximum temperature measured at the bond 

ring, TS1, was 198ºC.  Given the RBR values that were shown in Figure 6.29, this TS1 

temperature was used to estimate the temperature profile across the bond ring as shown in 

Figure 6.33a.  As illustrated, the model predicts that none of the bond ring should be over 

the melting temperature of Sn-Ag solder of 221ºC.  Even so, in Figure 6.33b, there does 

appear to be Ag-Sn intermixing.  The darker areas in the lower right hand side of the 

bond ring seem to indicate more intermixing where the model predicts higher 

temperatures.   

 

 

Figure 6.33:  a) The modeled temperature profile for the bond rings under heater #6 for the maximum 
applied temperature, b) a bond which was encompassed by heater #6 after the bond tests, c) the modeled 

temperature profile for the bond rings under heater #3 for the maximum applied temperature and d) a bond 
which was encompassed by heater #3 after the bond tests. 

For heater #3, the maximum temperature measured at the bond ring was 188ºC and as 
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supposed to the heater #6, this sensor was located at the top of the bond ring—on the 

edge farthest from the center of the heater.  Once again, the sensor temperature, TS1, was 

used as a reference for determining the temperature profile shown in Figure 6.33c.  As 

illustrated, the model predicts that the lower right hand corner should have gone above 

the melting point of Sn-Ag solder which is 221ºC.  Figure 6.33d shows a bond ring which 

was encompassed by heater #3 where some flow seems to have occurred—Figure 6.32b 

in fact showed a close up view of the lower right hand corner.  This evidence of viscous 

flow may indicate that eutectic solder did in fact form at above its melting temperature.   

6.5 CONCLUSION 

A new method for localized heating of a bond region has been developed and tested 

for bonding two wafers, while maintaining a low temperature where sensitive devices are 

located.  Using a 3D ANSYS thermal model, the needed input power and temperature 

distributions were predicted for silicon to glass and silicon to silicon bonds.  Integrated 

temperature sensors were used in this study to measure temperatures at different distances 

from the bond region in order verify the model and the bonding technique.   

Figure 6.34 summarizes some of the modeling and test results for the two sets of 

experiments that were conducted: i) a bond between a Si and glass substrate (bond 

experiment #1) and ii) a bond between a Si wafer and a Si wafer with a 7µm thick SiO2 

layer (bond experiment #2).  These models and bond experiments were conducted in 

order to gauge the effectiveness of the differential localized heating technique.  Figure 

6.34a and Figure 6.34b show plots for the modeled temperature profiles for bonds 

conducted in bond experiment #1 and #2.  Each of these plots demonstrate a reasonable 

amount of temperature drop inside of the bond ring.  The tables underneath each plot 

compare the modeling results with the test results.  For bonds to glass, in bond 

experiment #1, very good agreement is shown between the modeling and test results with 

differences in the temperature relative to the minimum bond ring temperature of less than 

3%.  On the other hand, for bonds to a Si wafer with a 7 µm SiO2 layer, in bond 

experiment #2, a 6-9% higher temperature relative to the minimum bond ring temperature 

was measured as compared to the modeling results.  Even so, good thermal isolation 

inside of the bond ring was observed.  In fact, the temperature was observed to be 23% of 
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the bond ring temperature at 650 µm from the bond ring in bond experiment #1, and to be 

41% of the bond ring temperature at 250 µm from the bond ring in bond experiment #2.  

Furthermore, a Au-Si eutectic bond was successfully implemented using differential 

localized heating for a Si to glass bond in bond experiment #1. 
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Figure 6.34:  a plot of the temperature profile modeled for a) bond experiment #1 and b) bond experiment 
#2.  Underneath each plot is a comparison of the modeled and measured relative temperatures at different 

distances from the bond ring.  

6.6 CONSIDERATIONS FOR APPLICATION OF DIFFERENTIAL LOCALIZED 
HEATING 

This section provides parametric analysis to determine the effects of bond ring width 

and the device wafer thickness on differential localized heating. An analysis on the stress 

that results from differential localized heating is also presented. The ANSYS model 

presented in Section 6.1.3 was made specifically to predict the temperature distribution 
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across bonded wafers in the bond tests presented in Section 6.4.  In these bond tests, bond 

rings were heated up 4 at a time instead of heating all of the bond rings across the wafer 

at once.  For simplicity, in the final application of differential localized heating it would 

be advantageous to apply this bonding method on a full wafer of bond rings all at once.  

Therefore, for analysis of the application of differential localized heating, a “full wafer 

bond model” is presented in order to conduct parametric analysis. 

Section 6.6.1 first presents the structure of the “full wafer bond model”.  Section 6.6.2 

then presents parametric analysis for the Si to glass bond and for the Si to Si bond with a 

7 µm thick SiO2 layer.  Finally, Section 6.6.3 presents analysis on the stresses induced 

from backside localized heating. 

6.6.1 THE FULL WAFER MODEL    

In the “full wafer bond model,” shown in Figure 6.35, a single bond ring was modeled 

with a heater that encompassed the span of the model.  This heater area, 5.4 × 8.1 mm2, 

was the same area as a single die from the test setup.  All 4 lateral sides of this model had 

adiabatic (symmetric) boundary conditions—thus assuming that bond rings in all 

directions are being heated with the same amount of input power.  As a result, the heat 

flowed in the z-axis, through the bond ring and did not flow laterally in the x or y 

directions.   
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Figure 6.35:  The structure of the model used for “full wafer model.” 

In simulating the model, a steady state solution was found by applying a uniform 

power density across the 0.75 µm thick heater, while the top of the steel plate and the 

bottom of the insulator plate were held at 23ºC.  As was explained in Section 6.1.1, this 

boundary condition was chosen assuming that their was a large enough thermal mass that 

far a way from the bond ring the temperature remains at 23 ºC.   The material used for the 

device substrate in this model was glass. 

Figure 6.36 shows the case where an input power of 6 Watts is applied.  In Figure 6.36 

slices of the model have been taken vertically across the bond ring to show a cross-

sectional view (Figure 6.36a and Figure 6.36b) and laterally through the bond ring 

(Figure 6.36c).  In the cross-sectional view, the location of the heater substrate, cap 

wafer, device wafer and heat sink are labeled.  Also, the location of the heater is denoted 

by a dotted line.  A zoomed in view of the cross-section in Figure 6.36b shows a dramatic 

temperature drop in the device wafer, just above the bond ring.  Furthermore, Figure 

6.36c shows that a uniform temperature of 400ºC was achieved at the bond ring.  On the 

other hand, inside of the bond ring the temperature drops significantly.  In fact, at 500 µm 
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away from the bond ring the temperature was only 134ºC and at the center of the bond 

ring the temperature was around 98ºC. 

 

 

Figure 6.36:  Results from the “full wafer bond model,” showing a) a cross-section view showing how the 
heat flows into the heat sink and b) a closer look at the cross-section of the bond ring and c) the heat 
distribution across the bond ring and inside of the bond ring. 

6.6.2 PARAMETRIC ANALYSIS 

Two parameters were analyzed to determine their effects on the effectiveness of 

localized heating: 1) the width of the bond ring and 2) the thickness of the device wafer 

substrate.  In the nominal case described in Section 6.6.1 a 100 µm wide bond ring (on 
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the cap wafer) and a standard 550µm thick device wafer were used.  In this section, 50, 

200 and 300 µm wide bond rings and 100, 250 and 1000 µm thick bond rings are also 

modeled and analyzed. 

6.6.2.1 The Si to Glass Bond 
Figure 6.37 shows the results of parametric analysis for a Si to glass bond where the 

temperature at different distances from the center of the bond ring are graphed for 

changes in the bond ring width and the device wafer thickness.  In each case enough 

power was input so that the bond ring heated up to 400ºC.  As illustrated in Figure 6.37a, 

increasing the bond ring width causes an increase in the temperature inside of the bond 

ring.  The dotted line shows where the temperature was at 60% of the bond ring 

temperature (which is around 250ºC).  Assuming that the device being packaged requires 

a temperature under 250ºC, Table 6.7 lists the required distance from the bond ring and 

the resultant increase in package size in both dimensions (along the x and y planar axis).  

As illustrated, the over all increase in package size due to packaging increases from 501 

µm with a 100 µm bond width to 686 and 895 µm going to 200 or 300 µm (it should be 

noted that a significant part of this increase is due the increased area that the bond ring 

itself takes up).  As also shown, there is a slight increase in the necessary input power as 

well when increasing the bond ring width. 
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Figure 6.37:  Results from the parametric analysis for a Si to glass bond showing a) changes in bond ring 
width and b) changes in the device wafer thickness. (*Indicates the nominal case.) 
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Table 6.7:  The distance from the center of the bond ring where the temperature drops to 60% of the bond 
ring temperature, the resultant increased die size due to packaging and the necisary input power for a bond 

ring width of 50, 100, 200 and 300 µm. 

Bond Ring Width 

Distance from 
bond ring 
needed for 

250ºC 
temperature 

Increased 
Die Size in 

Each 
Dimension 

Due to 
Packaging 

Necissary 
Input 

Power per 
Bond Ring 

50 µm 190 µm 430 µm 5.5 W 
100 µm 

(nominal case) 201 µm 502 µm 6 W 

200 µm 256 µm 712 µm 6.75 W 
300 µm 330 µm 960 µm 7.5 W 

 

As illustrated in Figure 6.37b, decreasing the device wafer thickness decreases the 

temperature inside of the bond ring by a small amount.  The dotted line shows where the 

temperature was at 60% of the bond ring temperature (which is around 250ºC).  

Assuming that the device being packaged requires a temperature under 250ºC, Table 6.8 

lists these required distances from the bond ring and the overall increase in package size 

in both dimensions (along the x and y planar axis).  As illustrated, the over all decrease in 

package size due to packaging decreased only from 502 µm with a 550 µm thick device 

wafer to 424 µm going down to a 100 µm thick device wafer.  As also shown, the 

necessary input power doubles going from a 550 µm thick device wafer down to a 100 

µm device wafer. 

Table 6.8:  The distance from the center of the bond ring where the temperature drops to 60% of the bond 
ring temperature, the resultant increased die size due to packaging and the necisary input power for a 

device wafer thickness of 50, 100, 200 and 300 µm for a Si to glass bond. 

Bond Ring Width 

Distance From 
Bond Ring 
Needed for 

250ºC 
Temperature 

Increased 
Die Size in 

Each 
Dimension 

Due to 
Packaging 

Necissary 
Input 

Power per 
Bond Ring 

1000 µm 289 µm 678 µm 5 W 
550 µm 

(nominal case) 201 µm 502 µm 6 W 

250 µm 181 µm 462 µm 8.5 W 
100 µm 162 µm 424 µm 12 W 

6.6.2.2 The Si to Si Bond with a 7 µm thick SiO2 Layer 
For the Si to Si bond with a 7 µm thick SiO2 layer significantly larger input powers 
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where needed to achieve a 400ºC bond ring temperature.  As a result, when applying this 

technique to a full wafer, an extremely large power needs to be applied. Initial modeling 

results with only a passive heat sink in the “full wafer bond model” therefore did not 

result in very low bond ring temperatures inside of the bond ring because the heat was not 

efficiently sunk from the backside of the device wafer. The model presented in Section 

6.6.1 was therefore slightly modified to simulate an active heat sink.  For the active heat 

sink model, the steel plate was replaced with water at a temperature of 23°C with a 

convection coefficient of 5000 W/m2·K. This convection coefficient is well in the range 

of those that can be achieved using forced liquid cooling [217]. 

Figure 6.38 shows the results of parametric analysis where the temperature at different 

distances from the center of the bond ring are graphed for changes in the bond ring width 

and the device wafer thickness.  In each case enough power was input so that the bond 

ring heated up to 400ºC.  As illustrated in Figure 6.38a, increasing the bond ring width 

causes an increase in the temperature inside of the bond ring.  The dotted line shows 

where the temperature was at 60% of the bond ring temperature (which is around 250ºC).  

Assuming that the device being packaged requires a temperature under 250ºC, Table 6.9 

lists these required distances from the bond ring and the overall increase in package size 

in both dimensions (along the x and y planar axis).  As illustrated, the over all increase in 

package size due to packaging increases from 460 µm with a 100 µm bond width to 992 

and 1224 µm going to 200 or 300 µm.  As also shown, there is a slight increase in the 

necessary input power as well when increasing the bond ring width.  As expected these 

necessary powers are significantly higher than those for the Si to glass bond case because 

of the presence of an active heat sink. 
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Figure 6.38:  Results from the parametric analysis for a Si to Si bond with a 7 µm SiO2 layer showing a) 
changes in bond ring width and b) changes in the device wafer thickness. (*Indicates the nominal case.) 

Table 6.9:  The distance from the center of the bond ring where the temperature drops to 60% of the bond 
ring temperature, the resultant increased die size due to packaging and the necisary input power for a bond 

ring width of 50, 100, 200 and 300 µm for a Si to Si bond with a 7 µm SiO2 layer. 

Bond Ring Width 

Distance from 
bond ring 
needed for 
250ºC 

temperature 

Increased 
Die Size in 
Each 

Dimension 
Due to 

Packaging 

Necissary 
Input 

Power per 
Bond Ring 

50 µm 95 µm 240 µm 47 W 
100 µm 

(nominal case) 
180 µm 460 µm 59 W 

200 µm 396 µm 992 µm 74 W 
300 µm 462 µm 1224 µm 84 W 

 

As illustrated in Figure 6.38b, decreasing the device wafer thickness has almost no 

effect on the temperature seen inside of the bond ring. Once again, the dotted line shows 

where the temperature was at 60% of the bond ring temperature (which is around 250ºC).  

Table 6.8 lists these required distances from the bond ring and the overall increase in 

package size in both dimensions (along the x and y planar axis).   
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Table 6.10:  The distance from the center of the bond ring where the temperature drops to 60% of the bond 
ring temperature, the resultant increased die size due to packaging and the necisary input power for a 

device wafer thickness of 50, 100, 200 and 300 µm for a Si to Si bond with a 7 µm bond ring. 

Bond Ring Width 

Distance from 
bond ring 
needed for 

250ºC 
temperature 

Increased 
Die Size in 

Each 
Dimension 

Due to 
Packaging 

Necissary 
Input 

Power per 
Bond Ring 

1000 µm 180 µm 460 µm 58 W 
550 µm 

(nominal case) 180 µm 460 µm 59 W 

250 µm 180 µm 460 µm 60 W 
100 µm 180 µm 460 µm 60 W 

6.6.2.3 Summary of Parametric Analysis 
Overall, for the Si to glass bond, changing the bond ring width and the device wafer 

thickness only marginally affected the necessary die area needed for packaging. On the 

other hand, for the Si to Si bond with a 7 µm SiO2 layer, the necessary die area was a 

strong function of the bond ring width.  In fact, the necessary die area increased from 460 

µm on a side to 1224 µm going from a 100 µm wide to a 300 µm wide bond ring.  This 

represents a 7 times increase in necessary die area. The device wafer thickness on the 

other hand had virtually no effect on necessary die area.   

6.6.3 EFFECTS OF CTE MISMATCH 

Using differential localized heating, the cap and device wafers are heated to different 

temperatures and then after bonding occurs, they are cooled down to room temperature.  

After bonding these two wafers are adhered together and the difference in the amount that 

each wafer contracts because their different temperatures and coefficients of thermal 

expansion (CRE) can cause a residual stresses.  In uniaxial expansion the stress on the 

device wafer, σDevice, can be determined from: 

( )
DeviceDeviceDeviceCapCapCapDevice TETEE !!"# $%$==     (6.7) 

where E and ε are the Young’s Modulus and strain; ECap and EDevice are the Young’s 

Modulus for the cap and device wafer; αCap and αDevice are the coefficients of thermal 

expansion for the cap and device wafer; and ΔTCap and ΔTDevice are the changes in 
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temperature during cooling (after the bond) for the cap and device wafers.  Given 

Hooke’s Law for biaxial strain (in the plane of the wafer) the term E/(1 –v) can be 

substituted for the Young’s Modulus [210] and the above equation therefore becomes:  
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where vCap and vDevice are Poisson’s ratios for the cap and device wafer.   

For estimating the changes in temperature on each wafer, the “full wafer bond model,” 

from Section 6.6.1 was used.  Figure 6.39 shows the results from this model when 

heating up the bond ring to 400ºC for a Si to glass and a Si to Si bond with a 7 µm thick 

SiO2 layer.  As a result, as summarized in Table 6.11, after bonding, the cap wafer will 

cool by 385ºC and 470ºC, and the device wafer will cool by 83ºC and 176ºC for the Si to 

glass and Si to Si bond respectively.  Table 6.11 also shows Poisson’s ratio, Young’s 

Modulus and the CTE values used for both the cap (Si) and device (Si or glass) wafers.  

As shown, the glass wafer was assumed to have a CTE of 3.25×10-6 K-1 which is the 

value given by Corning Corporation, the manufacturer of the Pyrex® borosilicate glass 

wafers used in these bond experiments. The Si value for the cap wafer on the other hand 

was the average of the CTE values measured elsewhere [218] in the 23-400ºC 

temperature range for the cap wafer in the Si to glass bond; in the 23-500ºC temperature 

range for the cap wafer in the Si to Si bond; and 23-200ºC temperature range for the 

device wafer in the Si to Si bond.    
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Figure 6.39:  The modeling results using the “full wafer bond model” where enough power was input to 
heat up the bond ring to 400ºC in a) a Si to glass bond and b) a Si to Si bond with 7 µm thick SiO2 layer.  

Table 6.11:  The variables used in Equation 6.8 for calculating the stress from bonding. 

Variables Cap Wafer Device Wafer 

Youngʼs Modulus 161 GPa (Si) 64 GPa (glass) 
165 GPa (Si) 

Poisonʼs Ratio 0.22 (Si) 0.2 (glass) 
0.22 (Si) 

Average CTE 3.30×10-6 K-1 (Si to glass bond) 
3.35×10-6 K-1 (Si to Si bond) 

3.25×10-6 K-1 (Si to glass bond) 
3.05×10-6 K-1 (Si to Si bond) 

Temperature 
Change 

-385ºC (Si to glass bond) 
-470ºC (Si to Si bond) 

-83ºC (Si to glass bond) 
-176ºC (Si to Si bond) 

 

Entering the values from Table 6.11 into Equation 6.8 results in a residuaul stress of 

247 MPa and 222 MPa for the Si to glass and Si to Si bonds respectively.  The Si 

substrates should be able to handle a fracture stress as high as 7 GPa [219], so the Si 

substrates in both cases should be more than strong enough to hold up to such stresses.  A 

fracture stress of 270 MPa [220] on the other hand has been measured for Pyrex glass 

which is problematic since it is on the same order of magnatidute as the residual stress 

predicted from the model.  Furthermore, many thin films such as SiO2 and Si3N4 used in 

MEMS fabrication have similar fracture stresses.  In application of differential localized 

heating it is therefore important to design the bond so that the residual stress is 

minimized.  This can be done in three major ways: 1) using a lower temperature bonding 

material such as solder that will melt and bond at 200-300ºC, thus allowing for a lower 

temperature on the cap wafer and therefore a smaller ΔT in the cap wafer; using a 

material on the device wafer with a higher CTE so that it shrinks more after cooling; and 

choosing a material on the cap wafer other than Si that has a lower CTE so that it shrinks 
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less after cooling. 
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CHAPTER 7 
 

CONLUSION 

An Au-Si eutectic wafer-level vacuum packaging process and a localized heating 

process called differential backside heating were developed for the packaging of MEMS 

devices.  A summary of this work is presented in Section  and the   

7.1 DISSERTATION SUMMARY 

Chapters 2 and 3 outlined and summarized the Au-Si eutectic bonding process for the 

encapsulation of MEMS devices.  A detailed bond recipe and list of guidelines were 

presented for achieving strong bonds to substrates with poly-Si or Au surfaces at  

temperatures of 390 °C or potentially lower.  The requirements for achieving uniform and 

strong bonds were separated into 3 categories: a) the material requirements (Section 2.3), 

b) the bond recipe (Section 2.4), and c) considerations for the Au-Si eutectic viscous flow 

(Section 2.5).  The material requirements mainly depended on which materials were 

selected on the device wafer.  The materials used in the device wafer included: un-doped 

poly-Si; heavily phosphorous doped poly-Si; and sputtered or evaporated Cr/Au.  The 

bond recipe involved first pulling vacuum inside of the bond chamber, then conducting 

an outgassing step, applying the bond force and finally, applying the bond temperature.  

The amount of bond force and timing of the bond force turned out to be one of the more 

critical factors in the bond recipe.  The way in which the Au-Si eutectic flowed during 

bonding played an important role in the bond quality and in whether or not devices or 

other features (such as the getter) would survive the bonding process.  Two different 

types of flow were observed: compressive flow and lateral diffusion.  As well, the etched 

cavity had an effect on the Au-Si eutectic later flow and in some cases the Au-Si eutectic 
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flowed inside of this cavity, interacting with the getter. 

Chapter 4 presented the design for a Pirani (vacuum) sensor which was specifically 

design for characterizing pressures in the Au-Si eutectic bonding process.  This micro-

Pirani gauge employed a ladder shaped structure with two parallel bridges and cross-links 

in between.  This design enhanced the physical performance of the gauge by increasing 

structural rigidity, thus allowing for longer beams and a wider selection of materials and 

by allowing for better heat distribution across the sensor—therefore improving the full 

scale range of sensor response.  Two poly-Si Pirani gauge designs in particular were 

characterized specifically for characterizing the Au-Si eutectic bonding process.  The D1 

design was used for measuring pressures between 50 and 2 Torr with an estimated 

measurement error of ±0.033 to ±0.82 Torr respectively, and the D3s design was used for 

characterizing pressures between 0.005 and 4 Torr with a measurement error between 

±0.0037 to ±0.065 Torr.  Furthermore, order of magnitude estimations of pressure were 

made using the D1 and D3s gauges in the 50 to 760 Torr and 4 to 760 Torr ranges 

respectively.  

In Chapter 5, data for the packaged Pirani gauges was presented.  Depending on 

whether or not getters were used and whether or not a 1 hour 345 ºC outgassing step was 

used, three different pressure regimes were achieved:  i) pressures of greater than 1 Torr 

were observed for bonds conducted without getters, ii) pressures greater than 100 mTorr 

where observed for bonds conducted with getters but without an outgassing step, and iii) 

pressures below 25mTorr were observed for bonds with getters and with the outgassing 

step.   

The yield across each wafer was also estimated in order to quantify the bond quality.  

In estimating the yield, as a metric, packages with pressures greater than 3 standard 

deviations outside of the mean were determined to have “failed.”  These packages were 

counted against the yield.  Initial yields of  30.4%, 80.4%, 81%, 84.6% and 94.1% were 

observed.  The 84.6% and 94.1% yield results were achieved in bonds with bond ring 

widths of 100 and 150µm respectively.  In three of the above mentioned wafers, the 

pressures were also measured over time and in each case, a certain number of packages 

from each wafer had a significant increase in pressure.  These increases in pressure 

ranged from +29 mTorr +760.  In each of these packages, pressures in some cases rose 
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slowly over time (likely caused by outgassing) and in other cases they seemed to go 

straight to atmospheric pressure (which could be the result of outgassing or a sudden 

catastrophic physical leak).  The yield drop across these wafers ranged from 10 to 29% 

after 6 months of testing.  Furthermore, in one series of experiments, a number of 

packages experienced pressure increases of 1.3 to 5.2 Torr after a 23 hour car ride.  After 

heat treatment at 150ºC for 23 hours, the pressures in all of these packages remained 

stable for the remaining 77 hours at 150ºC and through 50 thermal cycles from -65ºC to 

150 ºC.  Although this data was not conclusive, these test results seem to indicate that a 

“burn-in” step could be applied for stabilizing packaged pressures. 

In Chapter 6, a new wafer-level localized heating approach called differential 

localized heating was introduced where heat is applied on the backside of the cap wafer 

and then gets pulled through a bond ring towards a heat sink and away from the device.  

In this way, large bond ring temperatures can be achieved while maintaining a relatively 

low temperature at the device location.  A localized differential heating bonder test setup 

was built in order to conduct bond experiments to test the viability of this technique.  

Bond experiments were conducted between: i) a Si and glass wafer (bond experiment #1) 

and ii) a Si wafer and a Si wafer with a 7µm thick SiO2 layer (bond experiment #2).  

These material sets were chosen specifically so that there was a low thermal conductivity 

near the bond ring on the device wafer—as determined from the modeling and analysis, 

this was an important parameter for achieving good thermal isolation inside of the bond 

ring.  For bond experiment #2, the 7 µm thick SiO2 layer was chosen to roughly mimic 

the various thin films in a CMOS process.  For example, Sandia National Laboratory’s 

SUMMIT VTM process, shown in Figure 3.2 of Chapter 3, has 6.5 µm of SiO2, 0.8 µm of 

SiNx, and 6.25 µm of poly-Si.  In both of these bond experiments, temperature sensors 

were fabricated underneath the bond ring and at different distances from the bond ring in 

order to quantify the effectiveness of this localized heating technique. The temperature 

was observed to be 23% of the minimum bond ring temperature at 650 µm from the bond 

ring in bond experiment #1, and to be 41% of the minimum bond ring temperature at 250 

µm from the bond ring in experiment #2. 
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7.2 SUGGESTIONS FOR FUTURE WORK 

7.2.1 THE AU-SI EUTECTIC BONDING PROCESS 

The bond experiments in Chapter 2 and the vacuum encapsulation data in Chapter 5 

demonstrated a highly uniform, high strength and high yielding process for encapsulating 

MEMS sensors.  The next step for this work is its application for wafer-level 

hermetic/vacuum packaging of commercial sensors.  As was explained in Chapter 1, 

there are several MEMS devices which are good candidates for packaging using Au-Si 

eutectic bonding including: RF MEMS resonators, MEMS accelerometers, MEMS 

gyroscopes and IR MEMS (including micro-bolometers and thermopiles).  Nearly all of 

these devices can be completely sealed from the environment and only need electrical 

connection which can be accomplished either through lateral or vertical feed-throughs.  

Many of these devices as well can benefit from or need vacuum levels <10 mTorr. 

In Chapter 5 yield data was presented for one wafer where an initial yield of 94.1% 

was achieved, and after 6 months it dropped and seemed to level off at 86.8%.  This is 

encouraging data, in particular from an academic laboratory, and the next step is to 

convert this process into one compatible with large scale production facilities in which 

repeatable yields can be achieved on hundred or thousands of wafers per year.  One of the 

goals in this process development might be to push the bond ring dimensions as small as 

possible in order to take up as little die area as possible.  This reduces the overall package 

size and the unit cost of manufacturing.  This would allow Au-Si eutectic bonding to 

potentially replace glass frit bonding (which Motorola and Analog Devices have used for 

the packaging of many of their inertial sensors  [35-38]) in many applications since bond 

ring dimensions of less than 150µm are generally not attainable using frit glass bonding.     

7.2.2 VACUUM PACKAGING AND MEASUREMENT 

In this work, using NanogettersTM and a 60 minute, 345 ºC outgassing step, pressures 

from <3.7 mTorr to 23.3 mTorr were achieved.  As is generally the case for the Au-Si 

eutectic process, making sure that vacuum pressures all remain stable below a certain 

value is mostly a mater of process development.  In many applications, pressures below 

<10 mTorr or potentially <1 mTorr may be desirable.  As was demonstrated in Chapter 5, 
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the use of an outgassing step at an elevated temperature reduced the pressures inside of 

cavities from the 100 mTorr range down below 25 mTorr and in some cases <3.7 mTorr.  

Therefore one of the main methods for continued reduction in pressure is increasing the 

time of the outgassing step.  Another important factor is improving the process so that 

each wafer is cleaned well so no residues coats any part of the wafer.  Organic residues in 

particular are know to have high outgassing rates. 

An important part of characterizing a process with a low vacuum pressures is the 

design of the vacuum sensor which can measure pressures in that range with a reasonable 

resolution.  One of the limitations in this work was the inability to measure pressures 

below <3.7 mTorr.  This will become more and more important as the pressure in the 

cavities are reduced.  One of the sensors, the D3 Pirani gauge from Chapter 3 had a 5 

times lower pressure range than either of the pressure sensors used for package 

characterization.  In addition, Shie et al. [186] reported pressure measurements between 1 

Torr and 1×10-7 Torr using a different Pirani gauge design with constant temperature 

circuitry and thermo-electric temperature stabilization. 

7.2.3 DIFFERENTIAL LOCALIZED HEATING 

One of the main challenges in implementing differential localized heating is figuring 

out how to conduct bonds on a full wafer at a time.  In Section 6.6 a full wafer model was 

presented in which it is assumed that all of the bond rings across a wafer are heated 

uniformly.  In this model, using the same bond ring dimensions and wafer thicknesses as 

were used in the modeling and testing in Chapter 6, it takes a 6 Watts/bond ring to 

achieve a bond ring temperature of 400ºC for a Si to glass bond.  This means for instance 

that to heat up 200 bond ring across a wafer, 1200 Watts of power would be needed.  

Heat sinking  this much power is the main technical challenge.  As in the discussion 

presented in Section 6.1.1 (Materials and Thermal Design), the model presented in 

Section 6.1.3 as well as the model presented in Section 6.6 assumes a 23ºC (room 

temperature) boundary condition in the massive steel block connected the heat sink.  This 

assumption can only be met if the steel block is very massive.  Given the calculation 

presented in Section 6.1.1, a 50 lb steel block with a 1200 Watts input power would heat 

up a 50 lb steel block at a rate of  1ºC per 7 seconds.  There are several possible 
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approached in order to address this technical challenge.  One is too make a larger thermal 

mass and or active cooling in order to pull heat out of the system.  Another is to pulse 

heat so that the bond rings have time to heat up but so that there is not enough time for 

the large thermal mass to heat up significantly.  Finally, heater arrays could be used, as 

were used in this work, so that different parts of the wafer are heated at once.  
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APPENDIX 1  
 

BOND CHARACTERIZATION 

Bond characterization was done predominantly using two test methods: the razor blade 

test and the shear test.  Section A1.1 presents the various methods available for 

characterization bond quality and provides a justification for the use of the razor blade 

test.  Similarly, Section A1.2 describes the shear test used for the characterization of bond 

strength.  Next, Section A1.3 describes the use of the scanning electron microscope 

(SEM) and energy dispersive X-ray (EDX) analysis for analysis of bond metallurgy and 

failure mechanisms.  Finally, Section A1.4 provides an overall summary of the bond test 

methodology. 

A1.1  CHARACTERIZATION OF BOND QUALITY 

Two non-destructive inspection techniques were considered for wafer bond inspection: 

infrared inspection (IR) and ultrasonic imaging.  A destructive inspection technique 

called the razor blade test was also evaluated for wafer bond inspection.  As will be 

described in this section, the razor blade test was the most desirable out of these bond 

evaluation techniques because more information could be gathered on the actual failure 

bond mechanism.  Section A1.1.1 and A1.1.2 describe each of these evaluation 

techniques, motivating the use of the razor blade test. 

A1.1.1  NON-DESTRUCTIVE INSPECTION TECHNIQUES 

Figure A1.1a and Figure A1.1b show a bond which was determined to be strong and 

one which was determined to have failed by IR inspection.  A Research Devices Inc. 

Infrared Microscope was used for taking the infrared pictures shown in the Figure A1.1. 
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Using this technique, infrared radiation passes through silicon and dielectric layers but 

reflects off of metals such as gold.  Using the infrared microscope, images could either be 

taken observing the IR light that passes through the wafer stack using a camera 

underneath the microscope or the light reflected back up to a camera above the sample.  

The image in Figure A1.1a shows a bond ring where the Au-Si eutectic was formed and 

had clearly spread.  In Figure A1.1b on the other hand, one of the bond rings either did 

not form a Au-Si eutectic or did not make good contact with the device wafer and spread 

laterally.  In this way, it could be determined if the Au-Si alloy had formed and flowed.  

The main drawback of this technique was that voids or other indications of bad adhesion 

could not be determined from the images gathered.  This is because IR does not transmit 

through the Au-Si alloy and the Au-Si alloy is present all of the way around the bond ring 

regardless of whether or not a void exists.  As a result, not much information was yielded 

from most of the IR imaging. 

  

 

Figure A1.1: IR images of a) a bond ring in which a Au-Si eutectic has formed and spread, and b) where 
one of the bond rings either did not form a Au-Si eutectic or did not make good contact with the device 

wafer and spread laterally. 

Ultrasonic images were taken using Sonix UHR-2001 scanning acoustic microscope.  

Using ultrasonic imaging, wafers were placed in a bath of water in which high frequency 

ultrasonic waves were pulsed through one side of the wafer pair and a detector on the 

other side measured the ultrasonic waves that got transmitted through.  Since a very small 
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percentage of the ultrasonic waves pass through air, voids can be easily detected.  

Depending on the wavelength of the ultrasonic signal and the scan speed, spatial 

resolutions as small as 2 µm could be resolved.  Figure A1.2a shows an image of a void 

free bond ring and Figure A1.2b shows one where multiple voids were detected (these 

voids could be caused by any number of parameters such as a residue or bad 

planarization across the wafer during the bond due to an insufficient bond force causing 

air gaps at the interface of the bond).  Voids can provide a path for leaks and reduce the 

bond strength.  Although useful for void detection, the main drawback of this method is 

that it does not allow for the determination of the source of the voids or failure 

mechanisms. 

 

 

  Figure A1.2: Ultrasonic images of a) a bond ring in which no voids seem to exist, and b) one where 
multiple voids are detected. 

A1.1.2  THE RAZOR BLADE TEST 

The razor blade test is a destructive means for tearing the two substrates apart after 

bonding in order to analyze the bond interface.  Using the razor blade test, the bonded 

wafers were first prepared by partially dicing away the cap wafer (in the same way in 

which the device wafers were diced as described in Chapter 3) so that packages were 

arrayed across the wafer as shown in Figure A1.3a.  A razor blade was then used to 

wedge caps off across the wafer.  Bond quality was determined by inspecting the bond 
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interface.  Figure A1.3a shows a SEM of a bond where Si was torn from the cap wafer, 

adhering to the device wafer for the entire circumference of the bond ring.  This indicates 

that the Au-Si eutectic bond is very strong.  Figure A1.3b shows a microscope 

photograph of a bond ring where part of the cap wafer tore off, but in other parts of the 

bond ring, either the bond ring delaminated from the device wafer or it tore in the oxide 

layer.  As a result, a lot of information was gathered from this particular razor blade test 

allowing for more successful future bonds.  A number of different types of failure modes 

were in fact determined as is discussed in Chapter 2. 

 

 
  Figure A1.3: a) A wafer after dicing that is ready for the razor blade test, b) An SEM of a bond where Si 
was torn from the cap wafer adhering to the device wafer and c) one where in some places Si tore from the 

cap wafer and in others either the bond ring delaminated from the device surface or SiO2 tore from the 
device wafer.  
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A1.2 CHARACTERIZATION OF BOND STRENGTH:  THE SHEAR TEST 

In the Military Specifications Titled: Department of Defense Test Method Standard for 

Microcircuits (Mil-Spec-883F method 1014.11), pull strength tests (Method 2011.7) and 

shear strength tests (Method 2019.7) are defined for determining the strength of bonds 

between die substrates to other substrates such as PCBs [185].  Although our application 

is different than that of die attached chips, the concepts are similar in that a solder or 

eutectic can be used for adhering two substrates together.  These bond evaluation 

techniques were therefore considered for our application. 

Figure A1.4 shows how force is applied using the pull test and the shear test on die 

attached chips and on a cap bonded to a device wafer.  In application of the pull test to 

die attached chips, an axial Force, FA, is applied to the chip by pulling it perpendicularly 

away from the substrate.  The axial stress, σA, seen on the bonded area, Ad, is:  

 

σA  =  FA  / Ad     (A1.1) 

 

By Mohr’s theory [210], the maximum shear stress due to this axial force is at 45º from 

the direction which the force is being applied and is: 

 

  τA  = σA  / 2     (A1.2) 

 



 264

FA

FA

FA

FS FS

FS
FS

Pull test Shear test

Die on
PCB

Cap on
Device Wafer

c)    d)    

a) b)

FA

FA

FA

FS FS

FS
FS

Pull test Shear test

Die on
PCB

Cap on
Device Wafer

c)    d)    

a) b)

 

Figure A1.4: The a) pull test and b) shear test for a die on a PCB, and c) the pull test and b) shear test for a 
cap on a device wafer. 

 

In application of the shear test a transverse force, FS, is applied on the chip by 

applying a force parallel to the substrate.  Figure A1.5 shows a schematic from MIL-

SPEC-883 showing how the force is applied perpendicular to the edge of the die using a 

wedge to apply the force.  The resultant shear stress, τS, seen on the bonded area, Ad, is:  

 

τS  =  FS  / Ad     (A1.3) 

 

By Mohr’s theory, the maximum axial force due to this shear force is at a 45º from the 

direction in which the shear force is being applied and is: 

 

  σS  = ± τS      (A1.4) 
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Figure A1.5:  A schematic from MIL-SPEC-88F, Method 2019.7 illustrating the application of force to a 

die 90º to the edge of the sample [185]. 

Brittle failures generally occur due to axial stresses whereas ductile failures generally 

occur due to shear stresses.  Therefore failures which are initiated in the bulk Si (which 

are brittle failures) would likely be due to axial stresses, where as failures in the Au-Si 

eutectic (which could be brittle or ductile) may happen due to either shear or axial 

stresses.  As illustrated in Equations A1.1 through A1.4, both the pull test and the shear 

test impart axial and shear stresses. 

Although the pull test is briefly mentioned in Method 2011.7 of MIL-STD-883F for 

testing solder or eutectic die attach bonds, it is mostly directed towards wire bond 

strength evaluation.  Shear testing of solder or eutectic die attach bonds on the other hand 

is covered in detail in MIL-SPEC-883F, Method 2019.7 and has been used extensively in 

the literature for evaluating polymer and epoxy bonds [211-214], solder bonds [163, 215] 

and Au-Si eutectic bonds [163].   

 

Table A1.1 summarizes some of the shear strengths measured using a number of 

different bonding materials.  Because the shear test is detailed in the military 

specifications and because of its extensive use in prior studies, it was chosen for 

evaluating bond strength in this work. 
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Table A1.1:  Shear strength data from the literature taken using the Mil-specifications using a number of 
different adhesive materials. 

Shear Strength for Die Attached Chips 
 

Material Shear Strength  Comments 

Polymide [211] 4.2 to 8.9 MPa Varied depending on material 
bonded too. 

Epoxy [211] 2.9 to 46< MPa Varied depending on composition 
and material bonded too. 

Silver/Resin Mixture 
[212] 0.6 to 1.1 MPa Varied depending on composition 

In-Au Solder [216] 2.5±2 17.5±3 MPa Varied depending on the bond recipe 

Au-Si Eutectic [163] 12.5 to 15 MPa Depending on bond recipe at bond 
temperature. 

 
 

The failure criteria specified in MIL-SPEC-883F were used for evaluation of our 

packages.  As shown in Figure A1.6, three different standards are defined for determining 

if a chip passed the shear test.  In the first case, when silicon from the die breaks, 

adhering and covering more than 50% of the other substrate, the pass/fail criteria is 

determined as 1.0x the minimum bond strength defined in the figure.  When less than 

50% of the die substrate broke and adhered to the other substrate, 1.25x the minimum 

strength was used and when 10% of the die substrate broke and adhered to the other 

substrate 2.0x the minimum strength was used.   

To be conservative, in this work the 2.0x minimum strength criteria was used.  

Considering the slope of the line for the 2.0x, the minimum strength the bond needs is a 

~12.3 MPa.  For our application, with 300, 150 and 100 µm wide bond rings with bonded 

areas of approximately 0.03, 0.15 and 0.01 cm2 resulted in minimum applied shear forces 

of 37.2 N (3.8 kg), 18.6 N (1.9 kg) and 12.4 N (1.3 kg) respectively.        
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Figure A1.6:  A schematic from MIL-SPEC-883F showing the pass/failure criteria for 3 different classes of 

failed die bonds[185]. 

A1.2.1  THE SHEAR TEST SETUP 

Figure A1.7 shows a schematic of the shear test setup that was built for characterizing 

the shear strengths of bonded/diced chips.  As shown in the side and top views, an 

aluminum slider plate sits on top of a larger aluminum base plate.  A bolt is screwed 

through a slot in the slider plate to keep the slider plate from going out of plane and to 

make sure that it moves perpendicular to the chip.  As also shown in the figure, a 1 kg 

weight is placed on top of the slider plate to further prevent out of plane movement.  

Using thin polymer coated stainless steal wire (fishing wire), weights were placed in a 

bucket which hung off of the edge of the base plate in order to apply a specified force 

onto the slider plate.  As shown in the zoomed in portion of the side view, the chip sits 

inside of a 24 mil (~560µm) deep square slot.  As also shown, the slider plate applies 

force perpendicular to the edge of the cap in order to shear it off.  The edge of the base 

plate was also beveled in order to reduce the friction of the wire that slides over the edge 

of the base plate.  Figure A1.8 shows a photograph of a chip sitting in the test setup.          
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Figure A1.7:  A schematic of the shear test setup. 

 

 

Figure A1.8:  Photograph of the shear test setup. 
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A1.2.2 CALIBRATION OF THE SHEAR TEST SETUP 

In the shear test setup, there were two sources of friction.   As a result, the amount of 

weight applied, Fappied, at the end of the wire was not the same force seen at the slider 

plate, Facting.  Both of these friction forces are static friction forces since the plate does not 

move until the package actually fails.  The first source of friction was from the 1 kg 

weight which sits atop the slider plate in Figure A1.7.  This friction force, F1, is: 

 

     F1= µ1·(1 kg)    (A1.5)   

 

where µ1 is the static friction coefficient between the slider plate and the base plate.  This 

friction force is constant because the 1 kg weight is the only force which acts to press the 

slider plate into the base plate.  To measure the magnitude of F1, the 1 kg weight was 

placed on top of the slider plate without placing a chip into slot 1 in Figure A1.7.  Water 

was then poured into the bucket until the slider moved (water was used for this 

measurement because water could be applied in small increments and measuring the 

volume of the water allowed for very precise weight measurement).  The friction force 

was determined to be 0.5±0.05 kg.   

The second source of friction was from the wire which slid over the beveled edge of 

the base plate.  This friction force, F2, is:    

 

    F2= µ2 · (Fappied)   (A1.6) 

 

where µ2 is the static friction coefficient between the wire and the beveled edge.  This 

force was linear as shown in Equation A1.6 because the force pressing the wire into the 

base plate increases linearly as Fappied increases.  This force was determined using an  

Accu-weight Model T50 force gauge.  One end of the force gauge was hooked around the 

wire loop tied through the slider plate (shown in Figure A1.7) and the other side was 

hooked to the base of a table.  Weights were then place into the bucket.  Figure A1.9 

shows a graph of the results from this experiment.  The friction coefficient, µ2, was 

determined from the slope of the line in Figure A1.9.  This slope was determined to be 

0.734 with an error of approximately ±0.025.  Subtracting the friction forces from the 
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force applied at the end of the wire gives the approximate force actually seen by the chip: 

 

Factual  =  (0.734±0.025) · (Fappied) - 0.5±0.05    (A1.7) 

 

 

Figure A1.9:  A graph of the calibration plot for the shear test setup. 

A1.2.3  SHEAR TEST METHODOLOGY 

Using the test setup shown in Figure A1.7, 0.66 lb weights were placed in the bucket 

one at a time until package failure.  For the final 0.66 lb weight placed in the bucket, it 

was not evident whether or not the entire 0.66 lb weight was needed for failure or if some 

fraction of that weight would have been sufficient.  Therefore, for estimating the actual 

amount of weight needed for failure, the final weight was counted as 0.33 lbs with a 

±0.33lb error bar.  Incorporating this into Equation A1.7, the weight that the chips saw 

during fracture was determined as: 

 

 Factual = (0.734±0.025) · (0.66· (Wn-1) + 0.33±0.33) - 0.5±0.05   (A1.8) 

 

where Wn was the number of weights needed for either the cap to shear off or for the 

package to break in the substrate or cap (but not in the bond ring).  The sources of error 
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shown in Equation A1.8 were from the error in the applied force discussed above and 

from the calibration setup (discussed in Section A1.2.2).  Considering Equation A1.8 this 

error sums too: 

 

Shear Force Measurement Error = ± 0.0183·Factual ± 0.335 kg (A1.9) 

 

Generally, for the characterization of each bond, five or more caps were used for shear 

tests from the top, bottom, center, right and left quadrants of the wafer.  Table A1.2 

shows sample shear tests results.  Shown in the table are: i) the position of the chip tested 

(columns and rows), ii) the calculated shear strength (calculated using Equation A1.8), 

iii) the mode of failure, iv) whether or not each package passes the military specification 

(>12.3 MPa shear strength), and v) the average and standard deviation of the shear 

strengths.  Figure A1.10 shows the positions for each of the packages from the sample 

data in Table A1.2. 

Because of the limits of the capacity of the test setup, the maximum force that could 

be applied was 12.3 kg and therefore, according to Equation A1.7, A1.8 and A1.9, the 

maximum force that could be applied to the actual chip, Factual, was 8.5±0.53 kg.  For 

chips with 300 µm bond rings (which had a 0.03 cm2 bonded area), this resulted in a 

27.8±1.8 MPa maximum applied shear stress that could be applied to each package.  As 

shown in the sample table, Table A1.2, for packages that were stronger than this and 

could not be broken, the type of failure they is listed as “Not enough force applied for 

failure” and the shear strength is listed as >27.8 MPa.  In some samples as well, the 

failure did not occur near the bond ring itself, but in the package or cap.  In these cases 

the type of failure was listed as “Sheared in cap or device substrate.” This could result 

from a slight misalignment in mounting the specimens or in the geometry of the specimen 

causing the substrate to break before enough shear force was applied to shear the bond 

ring interface.  Regardless, because enough force is not applied in these cases for the 

bond ring to shear off, the failure mechanism of the bond can not be determined.  Lastly, 

in the case where the sample broke in the bond ring itself, the type of failure was listed as 

“Sheared in bond ring.”  In these cases the bond ring could be inspected after shearing to 

see the failure mechanism.  For each bond in which the shear test was conducted in 
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Chapter 2, a table similar to Table A1.2 is presented along with a discussion on the 

implications of those shear test results.  

Table A1.2:  Example shear test results. 

Sample bond Results 
(*This is not real data) 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C5-R8 15.8 Sheared in bond ring Pass 
C6-R2 >27.8 Not enough force applied for failure Pass 
C2-R8 17.4 Sheared in bond ring Pass 
C9-R8 5.5 Sheared in bond ring Fail 
C5-R13 15.8 Sheared in cap or device substrate Pass 

Average Strength: 16.5 MPa     
Standard Deviation:  7.9 MPa  
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Figure A1.10:  The rows and columns of packages in the wafer and the packages selected for shear tests 
from the sample data shown in Table A1.2. 

A1.3 SEMS PHOTOGRAPH AND EDX SPECTROSCOPY ANALYSIS 

Scanning electron microscope (SEM) photographs were taken from cross-sections of 

many of the bonds in order to better understand the bond quality and mechanisms for 

failure.  Two different tools were used for taking SEMs:  the XL30 FEG SEM Philips and 

the Quanta 200 3D.  For each of these tools a high energy electron beam is focused and 

rastered across the sample.  The SEM image is compiled from data collected at a detector 
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which measures electrons that reflect off of the sample.  The resolution of the images 

collected depends on a number of factors including sample preparation, the materials 

used, the settings of the SEM software, and user expertise.  

For preparation of samples for SEM photographs of cross sections, most of the 

samples were cleaved.  Cleaving allowed for a minimal amount of change to the cross-

section.  Dicing the sample in order to look at the cross section on the other hand 

generally caused smearing of Au-Si eutectic layer.   

Energy dispersive X-ray (EDX) spectroscopy was used for compositional analysis of 

bond joints and was conducted in the XL30 FEG SEM Philips and the Quanta 200 3D.  In 

EDX analysis, an SEM scan was first taken to get an image of the specimen to be 

analyzed.  The electron beam used for making SEM images was then either focused at a 

particular area or rastered across the sample to get a map of the composition across the 

entire area of the image.  Energy from the electrons in this beam hit various atoms in the 

cross-section and the incident electrons then loose a certain amount of energy.  As a 

result, these atoms are ionized by the excitation of the electrons to higher energy states 

and an inner shell vacancy is created.  These ionized atoms can then loose energy in a 

number of ways, one of which is for an outer shell electron to jump into the vacant inner 

shell.  This loss of energy can result in X-ray photons which are measured using an X-

Ray detector mounted inside of the vacuum chamber of the SEM tool. The spatial 

resolution of the measurement is dependant on the electron beam spot size and the 

amount of scattering of the incident electrons through the material.  

A1.4  SUMMARY OF THE METHODOLOGY FOR BOND CHARACTERIZATION 

Although nice images could be acquired using infrared microscopy and ultrasonic 

imaging (Section A1.1.1), more useful information on bond integrity and failure 

mechanisms were determined using the destructive razor blade test (Section A1.1.2).    

Furthermore, as supposed to the shear test, the razor blade test could be applied quickly 

on bonded chips across the wafer.  As a result, the razor blade test was the primary 

method for determining bond quality.  Using the razor blade test, it could be inferred 

whether or not a bond would result in a hermetic seal by whether or not either silicon 

transferred from the cap wafer to the device wafer or some of the thin films or the bulk 
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silicon from the device wafer transferred to the cap substrate for the entire circumference 

of the bond.   

In several cases the criteria for quality bonds via the razor blade test were passed, but 

the bond strength was very weak because of reduced adhesion in one of the underlying 

films on the device substrate.  In these cases the shear test was useful for determining 

whether or not the cap wafer had adequate adhesion to the device substrates.  

Furthermore, the shear test is more quantitative.  Because shear tests were more time 

consuming it was only conducted on select bonds.   

SEM and EDX analysis, on the other hand, were used strictly for failure analysis and 

helped diagnose issues with the materials used and in the bond recipe. 

Table A1.3 summarizes the bond characterization techniques and the criterion used for 

determining bond quality and bond strength.  As explained in Chapter 1, these tests were 

only used for initial determination of bond quality—final determination of hermeticity of 

bonds will be determined in Chapter 5 by their ability to hold vacuum.  

Table A1.3:  Summary of the test techniques and criterion used for determining hermetic/strong bonds. 

Test  
Result 

Test 
Method Pass Criterion 

General Quality Razor Blade 
Test 

Silicon transferred from cap to device wafer or thin film or 
silicon transferred from device to cap wafer for entire 

circumference of the bond 
Strength Shear Test Shear strength  of >12.3 MPa 

Failure Analysis SEMS & EDX - 

CHAPTER 8 
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APPENDIX 2  
 

WAFER BONDERS & BOND RECIPE 

In the course of experiments, 3 different bond chambers were used: an EVG 510 wafer 

bonding system, an SB6 semi-automated wafer bonding system and an SB6e semi-

automated wafer bonding system.  Before bonding, the wafers were aligned using 

alignment marks on the front side of one of the wafers (generally the cap wafer) to align 

to alignment marks on the backside of the other wafer (generally the device wafer).  

When conducting bonds in the EVG 510, an EVG 620 bond aligner was used for the 

wafer alignment and in conducting bonds in the SB6 and SB6e, a SUSS microTec MA6 

bond alignment system was used.   

After alignment with either the EVG 620 or the SUSS microTec MA6, the wafers 

were clamped into a special fixture and transported to the bond chamber.  Figure A2.1 

shows the configuration inside of the bond chamber, where the two wafers sit on top of 

the bottom heater.  As illustrated, these two wafers are separated by three 100µm spacers 

which were initially used to hold the wafers apart.   
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Figure A2.1: A schematic of the vacuum bond chamber where initially the wafer position is maintained 

using clamps and held apart with spacers. 

Figure A2.2 shows a schematic of the bonding process where:  i) the bond chamber 

was pumped down to a pressure of around 10×10-6 Torr; ii) both the bottom heater and 

top heater were raised to an intermediate temperature of 345ºC and held for 1 hour; iii) 

physical contact was made between the wafers by removing the spacers, the bond force 

was appied, and the clamps holding the wafers together were; iv) the temperature was 

raised to the bond temperature which ranges from 390 to 410ºC and the temperature was 

held for a specified amount of time, generallt 40 minutes.  After running the bond 

sequence, the wafers were then cooled to below 200ºC at which point they were pulled 

out of the wafer bonder. 
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Figure A2.2: The generic bond recipe. 

In Timothy Harpster’s PhD Dissertation [26], the temperature was calibrated for both 

the EV501 and the SB6 bonders.  Both of these bonders use thermocouples embedded in 

the bottom and top chucks (the bottom and top chucks were shown schematically in 

Figure A2.1) for temperature feedback control.  Figure A2.3, right and left, shows 

experiments Harpster ran where the set temperatures were ramped and the wafer 

temperatures were measured for the EVG and SB6 respectively.  An integrated thermistor 

fabricated on a Si wafer was used in the EVG501 and a thermocouple embedded near the 

wafer in the bottom chuck of the SB6 bonder was used for measuring the wafer 

temperatures.  Figure A2.3 shows the difference between the temperature measured by 

the bonder and that measured near the wafer, ∆T (the rise temperature), and time which it 

took for these to temperatures to equal out, ∆t (the rise time).  (The end of the rise 

temperature and rise time was defined by when the temperature of the integrated 

thermistor or thermocouple came within 1% of steady state).  Table A2.1 shows the rise 

temperature to rise time ratio (∆T/∆t) and the temperature offset for both of these 

bonders.  As illustrated, the EVG and SB6 bonder both had large ∆T/∆t ratios (which 
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means that it took a long time for wafer temperature to equal the temperature measured 

by the bonder for feed-back and control) of 7.9 and 7.0 ºC/minute respectively.  In 

addition, the EVG bond had an approximate 12% overall temperature offset, where as the 

SB6 bonder had less than a 0.5% temperature offset.   

 
Figure A2.3: Comparison of control temperature and actual wafer temperature of wafers (in vacuum) in the 

SB-6 bonder (left) and EV-501 bonder (right) 

Table A2.1:  Measured rise time and steady state temperature offset for the SB-6 and EV-501 

 EV bonder SB-6 bonder  SB-6e bonder  
Temp Offset 12% <0.5% ~ 0%* 

ΔT/Δt ~7.9ºC/min. ~7.0ºC/min. ~ 0* 
*The temperature offset and ΔT/Δt were near 0 because the thermo-couple used for feed-back and control 
was positioned very close to the wafer.  Therefore the difference between the temperature measured during 

bond and that seen by the wafer was  very small.  

To offset the effects of the large offset in temperature seen in the EVG bonder, much 

higher set temperatures were used.  In the presentation of the bond results (Chapter 2) the 

temperature offsets shown in Table A2.1 are factored in.  For all of the bonds conducted 

in the EVG bonder, set temperatures of 450ºC were used which corresponded to actual 

temperatures of 395ºC at the wafer according to the calibration curves presented above.    

For both the EVG and the SB6 bonders, the initial temperature step in combination with a 

long hold time at the bond temperature were used in order to compensate the large ΔT/Δt. 

In the SB6e on the other hand, a thermocouple a few millimeters away from the wafer 

was used for feedback and control.  Because of this feedback, the temperature sensed was 

essentially the temperature on the wafer.  Figure A2.4 shows a typical run using the 
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feedback from this thermocouple.  In addition to having more accurate temperature 

feedback, as illustrated in Figure A2.4, the heating times were much faster than in the 

EVG or SB6 bonders.  As a result, there was no need for a longer lead time for bonding.  

It should be noted, that because of an error in transferring the recipe from the SB6, in 

several of the bonds conducted in the SB6e in Chapter 2 the bond temperature was set at 

410ºC instead of 390ºC.  As will be discussed, this did not appear to affect bond quality.   

 
Figure A2.4: The temperature profile for the bottom chuck for the SB6e which was controlled and 

measured by a thermocouple near the surface of the wafer. 

CHAPTER 9 
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APPENDIX 3  
 

AU-SI EUTECTIC BOND METALLURGY  

Most of the research in Au/Si reactions described in Section 2.1 (Background & 

Previous Work) of Chapter 2 was conducted for applications of Au-Si eutectic bonding 

applied to chip-level die attach.  In this section some of those reports are put into the 

context of Au-Si eutectic bonding for wafer-level packaging.  Furthermore, the 

metallurgy of some of the Au-Si eutectic bonds conducted here are investigated.  

A3.1  BOND UNIFORMITY 

In Au-Si eutectic bonds applied for die attach a non-uniform bond is acceptable if a 

large enough percentage of the surfaces bond.  For instance, consider a 5×5mm chip in 

which only 50% of the back surface makes a strong bond to metal on a PCB.  If the 

bonded area of the backside of this chip has an ultimate strength of 120MPa (the ultimate 

strength of Au), it would take an approximately 2880 N (269 kg) axial force or a 1440 N 

(134kg) shear force to tear the chip off the board.  Such a bond would easily pass the 

shear test military specifications described in Appendix 1.  On the other hand, for wafer-

level vacuum/hermetic packaging, one small 100 to 300µm diameter void in any of the 

100s of bond rings across a wafer will ruin that bond ring’s hermeticity and ability to 

hold vacuum.  Furthermore, as supposed to bonding two relatively flat surfaces, in wafer 

bonding application there are generally topologies such as feed-throughs to bond over.  It 

is therefore more important that the soft eutectic should be formed so that it can conform 

over this topology.  Therefore, in wafer bonding applications, it is much more important 

that the soft Au-Si eutectic is formed around the entire bond ring and in bond rings across 

the entire wafer.  
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 The phase diagram shown in Figure A3.1 shows a simplified representation of the 

composition of a gold thin film deposited onto a silicon substrate at above 390ºC over 

time.  The dotted line in Figure A3.1a shows the percentage of Si in Au as Si diffuses into 

the bond ring.  As the Si content increases, a larger percentage of this mixture becomes 

Au-Si eutectic.  As shown in Figure A3.1b, according to the phase diagram, at above 

~18.32% the film becomes 100% Au-Si eutectic.  At above ~18.47%, the phase diagram 

predicts that the film should be partially Au-Si eutectic and partially Si precipitate.  As 

the percentage of Si increases, a larger percentage of the film becomes Si precipitate.   In 

the next subsection (Section A3.2) the composition of the Au-Si eutectic bonded film 

from this work are analyzed and discussed.  
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Figure A3.1:  a)   The dashed arrow shows how the composition of the Au film changes as Si diffuses in 
and b) a zoomed in view near the eutectic point.  [152]. 

A3.2  BOND COMPOSITION 

To better understand what happens in the bond ring during a bond, SEM images of the 

cross sections of several bonds were taken as well as EDX spectroscopy for 

compositional analysis.  Table A3.1 shows some of the bond parameters for the bond 

rings that were analyzed (more details on the bond recipe and material parameters for 

each of these bonds are presented in Sections 2.3.3 and 2.5.2).  Figure A3.2a shows and 
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SEM photograph of the cleaved edge of bond #56 (one of the bonds shown in Table 

A3.1).  Figure A3.2b and Figure A3.2c show EDAX scans of the cross-section in Figure 

A3.2a that graphically illustrate the relatively densities of Si and Au atoms in the cleaved 

cross-section.  Comparing Figure A3.2b and Figure A3.2c, there are pockets in the bond 

region in which there are relatively high densities of Si and relatively low densities of Au.  

As shown in Figure A3.2a, a more focused EDAX scans in one of these pockets showed 

91 atomic % Si.  Though these EDX measurements did not show this area to be 100% 

silicon, considering the phase diagram, it is likely that this area is silicon precipitate.  As 

also shown in Figure A3.2 outside of this Si pocket, in a wider area scan, 45 atomic % Si 

was measured.  Similarly EDX analysis was conducted on bonds #36 and #71.  In those 

EDX scans small silicon rich areas were also observed and as shown in Table A3.1, in 

wider area scans 42 and 55 atomic % Si in Au was measured respectively.  

Table A3.1:  Bond experiments from which SEM cross-sections and EDX analysis were taken.  More 
details on the recipes of these bonds are presented in Sections 2.3.3 and 2.5.2. 

Bond # 
Intermediate 
Temperature 

Step 

Bond 
Temperature 

Step 
Bond 
Force Comments 

Discussion 
of Bond 

Experiment 
Composition 

51 345ºC, 
10min. 

390ºC, 
20min. 

1.0MPa 
(390N) 

Good bond in 
some areas 

Section 
2.3.3 

42 atomic% 
Si 

56 345ºC, 
10min. 

390ºC, 
35min. 

1.0MPa 
(390N) 

Good bond in 
some areas 

Section 
2.3.3 

45 atomic% 
Si 

71 
(Device) 

345ºC, 
60min. 

390ºC  40 
min. 

3.5MPa 
(1300N) 

High yield 
device bond 

Section 
2.5.2 

54 atomic% 
Si 
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Figure A3.2:  a) A cross-section of bond #56 showing the concentrations of Au and Si in different parts of 
the bond.  A map showing the relative concentrations of b) Si and c) Au in throughout this cross-section.    

In each of the cross-sections that were analyzed, a composition of around 50% atomic 

Si in Au was observed.  At around 50 atomic %Si (12.5 weight %), using the lever rule 

[159] on the phase diagram in Figure A3.1, the bond ring should be approximately 59 

atomic % (90.4 weight %) of the Au-Si eutectic composition and 41 atomic % (9.6 weight 

%) pure Si.  Given this calculation of the amount of Au-Si eutectic and pure Si (Si 

precipitate) in the bond ring after the bond, the increase in volume can then be calculated.  

Table A3.2 shows the values needed to make this calculation.  The values for the molar 

mass and molar volume of the Si and Au are the book values and those for the Au-Si 

eutectic were calculated using the rule of mixtures.  Table A3.3 shows the calculations 

for determining the overall increase in volume of the bond ring assuming 50 atomic % Si 
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in Au for a bond ring that is originally 4µm thick, 300µm wide and encompasses a 

2.3×2.3 mm area (the typical dimensions used in our bond experiments).  As summarized 

in Table A3.3, the bond joints volume increases by 2.22 times where 61.5% of the bond 

joint is composed of Au-Si alloy and 45.5% is composed of Si precipitate by volume.  As 

explained in section 2.1.1.3, there is in fact an increase in volume of the Au-Si eutectic 

portion of 1 to 2% [179] so that our total estimated volume increase is actually around 

2.24 times.  This volume increase is an important consideration and can potentially 

contribute to lateral flowing of the Au-Si alloy which can compromise the bond and/or 

the device being packaged.  Such flowing of the Au-Si alloy is discussed in more detail in 

Section 2.5 (Au-Si Eutectic Lateral Flow).     

Table A3.2:  Constants need for calculation of the increase in volume of the bond ring during bonding. 

Constants Au Si 
Au-Si 

Eutectic 
Molar Mass(kg/mole) 0.19697 0.02808 0.161 

Molar Volume (m3/mole) 1.02E-05 1.21E-05 1.06E-05 

Table A3.3:  Calculations for the volume increase of the bond joint. 

Mass Moles Volume Constituents of the  
Bond Ring (Kg) % of 

initial (unitless) % of 
initial (m3) % of 

initial 
Au Bond Ring  

(before bonding) 1.20E-11 100% 6.09E-11 100% 6.22E-16 100% 
Au-Si Eutectic (after bonding) 1.24E-11 103% 7.70E-11 126% 8.16E-16 131% 
Si Precipitate (after bonding) 1.32E-12 11% 4.70E-11 77% 5.66E-16 91% 

Total After (after bonding) 1.37E-11 114% 1.24E-10 203% 1.38E-15 222% 

CHAPTER 10 
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APPENDIX 4  
 

THE EFFECTS OF THE RELEASE PROCESS ON BOND 
QUALITY  

Table A4.1 shows three bonds to device wafers.  These bonds were between cap 

wafers with 300 µm bond rings and device wafers with 0.3 µm thick poly-Si.  Besides the 

added process steps for the feed-through interconnects and the Pirani gauges, the main 

differences in the processing of these wafers were:  the cap wafers were anisotropically 

KOH etched and the device wafers were processed using a methanol hot plate release.  

The effects of having an anisotropically etched cap wafer are mostly in how the Au-Si 

alloy flows laterally from the bond joint because of this difference in geometry.  This is 

described in more detail in Sections 2.5.2 (Effects of an Anisotropic Etched Cavity).  On 

the other hand, as discussed in Section 3.3.1 (Hot Plate Release), hotplate release left a 

residue after evaporating away the methanol in some parts of the wafer and not in others.  

It was presumed that this residue could affect bond quality.  Table A4.1 summarizes the 

bond parameters and Table A4.2 and  detail the shear test results for bonds #71 and #78.  

As shown, for bond #71, 5 out of 6 of the samples passed the shear test with shear 

strengths ranging from 5.5 to 26.1.  In this wafer, only a marginal amount of methanol 

residue was observed on the periphery of the wafer in pre-bond inspections.  It is 

important to note that C10-R10, the package which did not pass was at the lower right 

edge of the wafer (see Figure A1.10 in Appendix 1 for a map of the packages across the 

wafer).  For bond #78 on the other hand, only 2 out of 6 of the packages passed the shear 

test with shear strengths ranging from 0 to 22.9 MPa.  As compared to bond #71, after 

pre-bond inspections on this wafer, a large amount of residue was observed across many 

parts of the wafer.  The results from bonds #71 and #78 correlate well with vacuum data 

from these wafers which is presented in Section 5.3.3 of Chapter 5.  
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Table A4.1: Summary of bonds between cap wafers with 300µm wide bond rings to 0.3 µm thick poly-Si 
thin films.  All of these were device wafer bonds which were conducted after a hot plate methanol release. 

Au-Si to poly-Si (0.3 µm) bonds 

Bond # 
Cap Bond 

ring 
Thickness 

Bonder 
Intermediate 
Temperature 

Step 

Bond 
Temperature 

Step 

Bond 
Force 

Cavity Pass the 
Shear 
Test? 

67 
(Device) 4µm SB6 345ºC, 60min. 390ºC  40 min. 3.5MPa 

(1300N) KOH - 

71 
(Device) 4µm SB6 345ºC, 60min. 390ºC  40 min. 3.5MPa 

(1300N) KOH 5/6 (5.5-
26.1MPa) 

78 
(Device) 4µm SB6 345ºC, 60min. 390ºC  40 min. 3.5MPa 

(1300N) KOH 2/6 (0-
22.9MPa) 

Table A4.2:  Shear test results for bond #71. 

Shear Test Results (Bond #71) 
 

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C8-R14 26.1 Sheared in bond ring Pass 
C8-R13 14.9 Sheared in bond ring Pass 
C2-R4 22.9 Sheared in bond ring Pass 
C2-R3 26.1 Sheared in bond ring Pass 
C10-R10 5.5 Sheared in bond ring Fail 
C10-R9 15.0 Sheared in bond ring Pass 
Average Strength: 18.4 MPa     
Standard Deviation:  8.1 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table A4.3:  Shear test results for bond #78. 

Shear Test Results (Bond #78) 
  

Position 
Calculated Shear 
Strength (MPA) Type of Failure Pass/Fail 

C7-R11 22.9 Sheared in bond ring Pass 
C9-R9 19.6 Sheared in bond ring Pass 
C4-R1 11.8 Sheared in bond ring Fail 
C4-R2 11.8 Sheared in bond ring Fail 
C3-R5 3.9 Sheared in bond ring Fail 
C3-R4 0.0 Sheared in bond ring Fail 
Average Strength: 11.7 MPa     
Standard Deviation:  8.8 MPa  

*Details on the interpretation of this data are given in Section 2.2 and Appendix 1. 

Table A4.4 and Table A4.5 show the parameters for several more device wafer bonds 
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to both 2.2 µm thick heavily phosphorous doped poly-Si and 0.5 thick Au thin films 

respectively.  For each of these bonds, the cap wafers were also anisotropically KOH 

etched.  The main difference in the processing of the wafers is that a CPD release 

(detailed in 3.3.2, Critical Point Dryer (CPD) Release) was used as supposed to a hot 

plate release.  For all of these bonds, this resulted in no observable residue in pre-bond 

inspections.  As summarized in Table A4.4 and Table A4.5 nearly all of the packages 

tested from these wafer passed the shear test (except for one from bond #101 which failed 

by only a small margin with a shear strength of 11.9 MPa).     

Overall, from inspection, using the CPD process detailed in Section 3.3.2 seemed 

allow for a more consistently residue free device wafer surface.  This appeared increase 

the uniformity of bond quality as compared to using hot plate release. 

Table A4.4:  Summary of bonds between cap wafers with 300µm wide bond rings to 2.2 µm thick heavily 
phosphorous doped  poly-Si thin films.  All of these were device wafer bonds which were conducted after 

CPD.   

Au-Si to poly-Si ( 2.2 µm)  bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Poly-Si 
Thick-
ness 

Device 
Bond 
Ring 
Width 

Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force Cavity Bond 

Strength 

101 
(Device) 4.5µm 2.2µm 

n-doped 300 SB6e 345ºC, 
60min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH 5/6 (11.9-

25MPa) 
102 

(Device) 4µm 2.2µm 
n-doped 300 SB6e 345ºC, 

60min. 
410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

104 
(Device) 4µm 2.2µm 

n-doped 300 SB6e 345ºC, 
5min. 

410ºC, 
40min. 

9.9MPa 
(3700N) KOH - 

Table A4.5: Summary of bonds between  cap wafers with 300µm wide bond rings to 0.5 µm thick Au thin 
films.  All of these were device wafer bonds which were conducted after CPD. 

Au-Si to Au (0.5 µm) bonds 

Bond # 

Cap 
Bond 
Ring 

Thick-
ness 

Mat- 
erial 

Under 
Bond 
Ring 

Pre-
Bake 
for 
Au 

Depo-
sition 

Bond 
Ring 

Width 
Bonder 

Inter-
mediate 
Temp. 
Step 

Bond 
Temp.  
Step 

Bond 
Force 

Cav-
ity Strength 

100 
(Device) 4 µm Ox/SiN Yes 300 SB6e - 410ºC,  

40min. 
9.9MPa 
(3700N) KOH 5/5 (18-

21MPa) 
103 

(Device) 4 µm Ox/SiN Yes 150 SB6e - 410ºC,  
40min. 

9.9MPa 
(1850N) KOH - 

105 
(Device) 4 µm Ox/SiN Yes 100 SB6e - 410ºC,  

40min. 
9.9MPa 
(1230N) KOH 5/5 (30-

54MPa) 
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CHAPTER 11 

APPENDIX 5  
 

LOW YEILD VACUUM RESULTS  

In this section the yield was defined as the percentage of packages which held 

vacuum.  Table A5.1 summarizes various bonds in which yields of less than 50% were 

achieved.  All of these bonding results were made using processes which were 

determined in Chapter 2  to result in low quality bonds.  Table A5.1 shows several of the 

important bond parameters, the approximate pressure ranges for successfully sealed 

devices, and the calculated yields.   

Table A5.1:  Bond Results where the Au-Si eutectic layer reacted with the getter.  

Bond 
# Device Bond Ring material Bond 

Temperature Getter Release 
Approximate 

Pressure 
Range 

Yield 

101 300 µm 
wide 

2.2µm doped 
Poly-Si 

345ºC 0min. 
410ºC 40min. Yes CPD ~100-500mT* 24/55 

(43.6%) 
102 300 µm 

wide 
2.2µm, doped 

Poly-Si 
345ºC 0min. 

410ºC 40min. Yes CPD ~50-4000mT* 11/39 
(28.2%) 

104 300 µm 
wide 

2.2µm, doped 
Poly-Si 

345ºC 0min. 
410ºC 40min. Yes CPD - 

 
0/52 
(0%) 

*Calibrated using devices from other wafers in the same lot. 

 

In bonds #101, #102 and #104, getters were used.  In these bonds, there were issues 

with Au-Si eutectic spreading laterally onto the getters.  This problem is described in 

Section 2.5.3 of Chapter 2.  Because pressures were in the 100s of mTorr, the D3s gauges 

were used for pressure measurement.  Figure A5.1 shows the calibration curves from 

bond #105 which were used for estimating the pressures across these wafers (these 

calibration curves are also shown and used in Figure 5.14 of Section 5.3.2 for the 

calibration of devices across bond #105).  The plots in Figure A5.1 were taken from 

devices from the top, center and bottom of the bond #105 wafer.  Bond #105 was 
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processed in the same lot as bonds #101, #102 and #104 and had similar R0 (low current 

resistance) values.   

Figure A5.2 shows the measured thermal impedances across bond #101 (left) and the 

estimated pressures calculated from those thermal impedances (right).  The pressures 

listed were calculated using the average of the calculated pressure predicted from the two 

fit lines in Figure A5.1.  Assuming that the thermal impedance vs. pressure curve of each 

device fits somewhere between the two fit lines in Figure A5.1, each of the estimated 

pressures were within ±50 mTorr of their actual value.  As illustrated in Figure A5.2, the 

pressure range for successfully sealed devices was between 120 and 448 mTorr.  Most of 

the devices though were at around atmospheric pressure.  In all of the packages at 

atmospheric pressure which were later torn apart, it was observed that Au-Si alloy had 

spread laterally onto the getter.  Similar results were observed for bonds #102 and #104. 

As shown in Table A5.1, these bonds demonstrated even lower yields.   

 

 

Figure A5.1:  Calibration curves for Pirani gauges from D3s gauges from bond #105.  The devices used for 
calibration were taken from the top, bottom and center of the wafer and are highlighted in Figure 5.15. 
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Thermal Impedances (K/W) Pressures ( Torr)

Bond #101

Thermal Impedances (K/W) Pressures ( Torr)Thermal Impedances (K/W) Pressures ( Torr)

Bond #101
 

Figure A5.2:  The thermal impedance measured on gauges across bond #101 (left) and the estimated 
pressures corresponding to these measurements (right). 
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