
ii

Computational studies of E. coli DHFR: Drug design, dynamics, and method
development

by

Michael G. Lerner

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biophysics)

in The University of Michigan
2008

Doctoral Committee:

Associate Professor Heather A. Carlson, Chair
Professor Daniel M. Burns, Jr.
Professor Gordon M. Crippen
Associate Professor Nils G. Walter
Assistant Professor Ioan Andricioaei

iii

 Michael G. Lerner
2008

ii

Acknowledgements

I would like to thank my advisor Dr. Heather Carlson for her tireless support

throughout my graduate career. I entered the University of Michigan knowing only that I

wanted to think like a physicist, but about biological problems. She has guided me

through the long and twisting path from that desire to the completion of my degree and

the start of my professional career. Not only has she provided me with the opportunity to

spend my working hours focusing on things I love, but she has been an outstanding

mentor, as well as being a great source of both professional and personal support, even in

the hardest of times.

I would like to thank all of the members of the Carlson lab throughout my time at

Michigan. The lab itself is a great community, and one member is always willing to help

out another lab member. In particular, I would like to thank Dr. Kristin Meagher, who

took a large role in bringing me up to speed in the group and provided endless hours of

interesting scientific discussion. I would also like to thank Dr. Kelly Damm, with whom I

discussed all of my projects in great detail. Mark Benson and Richard Smith deserve a

special mention for the time we spent together on the BindingMOAD project. Allen

Bailey was an excellent system administrator, keeping our computers up and running

despite a myriad of hardware and software issues.

I would like to give a special thanks to the members of my dissertation committee

for helping me learn exactly what goes into a thesis. I would especially like to thank Dr.

Nils Walter, with whom I did my first rotation and who has been watching my career

iii

from the beginning of graduate school. I would like to thank Dr. Gordon Crippen for his

detailed theoretical knowledge of computational chemistry and help with MOE and SVL.

I thank Dr. Ioan Andricioaei for his consistent insights into every research topic I have

asked him about. I thank Dr. Dan Burns for his level headedness and help steering me in

the right direction.

Several thanks are also due to people who are not a part of the University of

Michigan, including Dr. Warren DeLano for his help and discussions relating to PyMOL.

Without PyMOL, my time as a graduate student would have been significantly less

productive and enjoyable. Dr. Walter Smith first allowed me to see the excitement of

biophysics as an undergraduate student, and his advice has carried me through to this day.

Ruby Hogue and Lynn Alexander were both fantastic secretaries and sources of

professional support.

Finally, I would like to thank my family and friends. Thank you to my

loving wife, Dr. Heather Lerner, without whom I never would have succeeded. You are

an inspiration to me, both personally and professionally. Thank you to my parents David

and Esther Lerner, who have taught and supported me from the first day that I can

remember. My wife’s parents Neill and Fannie Kiley have also been a great source of

support and encouragement. Thank you to all of my friends. My graduate career has had

more than its fair share of ups and downs, and you made the ups fun and the downs

bearable.

I was fortunate enough to be supported for several years by the Molecular

Biophysics Training Grant (NIGMS grant GM008270), and the extra opportunities

provided by that grant are just as gratefully acknowledged as the funding.

iv

Table of Contents

Acknowledgements ...ii
List of Figures..vi
List of Tables ..vii
List of Appendices ...viii
Abstract...x
Chapter

1. Introduction...1
Static protein-ligand binding interactions...1
Multiple conformations..3
Allostery..5
Protein motions and experimental techniques...8
Computational methods of investigating protein motions...9

Molecular mechanics (MM)...9
Molecular dynamics (MD)...11
Correlated dynamics ..13
Monte Carlo (MC) ...15
Calculating allostery ..16

Structure-based drug design (SBDD)...17
Results from this work...18

Potential impact...23
References...26

2. Incorporating dynamics in E. coli dihydrofolate reductase enhances structure-based
drug discovery...32

Introduction...32
Methods ..35
Results and discussion ...42
Conclusion ..53
References...55

3. Correlated and conformational dynamics of the DHFR•NADPH complex57
Introduction and background ...57
Methods ..60

Molecular dynamics...60
Correlated dynamics ..62
Hydrogen bonds and bridging water...62
Anisotropic thermal diffusion (ATD)...63
Pocket analysis ..63

Results and discussion ...64
Preorganization of the binding site...64

v

Correlated dynamics and the network of coupled residues..................................66
A potential allosteric binding site...73

Conclusion and summary...79
Acknowledgments ...81
References...82

4. PyPAT: a python-based toolset to aid in the analysis of protein structures and
trajectories...85

Introduction...85
Software availability..87
Tools ...87

Graphical display of MD parameters over time ..87
Bridging water analysis..87
Hydrogen bonding ...91
Correlated dynamics ..92

Conclusion ..96
Acknowledgements ...96
References...98

5. Automated clustering of probe molecules from solvent mapping of protein surfaces
..99

Introduction...99
Clustering techniques...99
Flooding and minimization .. 102
Test systems .. 103

Methods .. 104
Protein-protein interface selection and structure preparation 104
Probe selection .. 106
Probe flooding ... 106
Probe minimization.. 108
The distance between two probes... 108
Clustering the probes ... 108

Results and discussion ... 109
Flooding .. 109
Clustering .. 110
Applications to structure-based drug design ... 116
A final note on the parameters ... 119

Conclusions ... 119
Acknowledgments ... 120
References... 121

Appendices.. 124

vi

List of Figures

Figure 1. The crystal structures of 1RX1 in blue with the closed M20 loop conformation
and 1RA1 in red in the open M20 loop conformation...36

Figure 2. Plots reflecting the RMSD between the equilibration structure of (a) M20
closed-loop and (b) M20 open-loop ecDHFR and respective trajectory snapshots
versus time ..37

Figure 3. Average backbone structure for four X-ray crystallographic structures of
ecDHFR ..38

Figure 4. Pharmacophore models are given based on snapshots from (a) 1 ns, (b) 2 ns,
and (c) 4 ns of sampling dynamics of the M20 closed-loop conformation of E. coli
DHFR·NADPH (based on 1RX1) ..43

Figure 5. ROC curves for the closed-loop and open-loop pharmacophore models..........47
Figure 6. Pharmacophore model resulting from an ensemble of ecDHFR crystal structures

and associated ROC curves for the X-ray pharmacophore model51
Figure 7. Static pharmacophore model for the equilibrated 1RX1 (M20 closed-loop)

structure ..52
Figure 8. The catalytic cycle and the M20 loop of DHFR ..58
Figure 9. Preorganization of the binding site observed during the two MD simulations..65
Figure 10. Pre-existing dynamics...68
Figure 11. Representative period of strong correlations between loops, helices, and the

cofactor ...69
Figure 12. A potential allosteric site ..75
Figure 13. Pathway for communication between the new site and the folate-binding site

..79
Figure 14. Correlated dynamics plots ..95
Figure 15. Improved flooding procedures .. 110
Figure 16. gRMSD clustering vs. JP clustering of ethane molecules 112
Figure 17. A comparison of JP and gRMSD clustering .. 114
Figure 18. Previously impossible, all-in-one clustering.. 118

vii

List of Tables

Table 1. Optimal clustering parameters for ethane, benzene, methanol, acetate, and
methylammonium.. 113

Table 2. Comparison of JP and gRMSD clustering across seven protein recognition
systems.. 116

viii

List of Appendices

Appendix 1. Supplemental information ... 124

Supplemental information from Chapter 2 ... 124
Coordinates and RMSD for the pharmacophore models (radii of the elements are
determined from the RMSD). .. 124
E. coli DHFR inhibitors... 127

Supplemental information from Chapter 3 ... 130
Correlated dynamics, the loops, and the network ... 130
Hydrogen bonds and bridging water .. 131
Comparisons to the traditional network known for DHFR.................................... 131
In support of the new site... 132

Supplemental information from Chapter 5 ... 133
References... 134

Appendix 2. Source code... 135
Directory listing 1.. 135
Files 1 ... 135

Readme.txt .. 135
drivers/collect_water_bridges.py ... 137
drivers/convert_to_numpy_format.py .. 138

 drivers/display_bridging_interactions.py ... 139
drivers/do_correlated_md_analysis.py ... 141
drivers/make_correlated_dynamics_plots.py.. 142
drivers/make_movies.py .. 144
drivers/parse_sander_output.py.. 146
drivers/run_ptraj.py ... 151
drivers/write_ptraj_input_files.py .. 151
pypat/__init__.py... 153
pypat/md_analysis_utils.py.. 153
pypat/plotting.py.. 164
pypat/sentinel_map.py ... 176
pypat/tool_utils.py... 179
pypat/hbond/__init__.py.. 184
pypat/hbond/hbond_analysis.py... 184
pypat/hbond/hbond_definitions.py... 189
pypat/hbond/pymol_hbond_analysis.py ... 194

Directory listing 2.. 212
Files 2 ... 213

combine_hbonds.py... 213
residue_lists... 214
tool_utils.py... 215

ix

compare_hbonds.py... 217
md_analysis_utils.py ... 218
setup_hbond_ptraj.py .. 221
hbond_analysis_utils.py... 226
subset_hbonds.py .. 239

x

Abstract

Computational studies of E. coli DHFR: Drug design, dynamics, and method

development

by

Michael G. Lerner

Chair: Heather A. Carlson

Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of

dihydrofolate to tetrahydrofolate. As the only source of tetrahydrofolate (an important

precursor in the biosynthesis of purines, thymidylate, and several amino acids), it has

been a long-standing anti-cancer target and a classic system for structure-based drug

design (SBDD). Escherichia coli DHFR (ecDHFR) is a canonical system for studying

enzyme structure, dynamics, and catalysis. Protein flexibility and dynamics are of utmost

importance in understanding the structure and mechanism of DHFR. This has been well

investigated computationally and experimentally. The conformation of the M20 loop is

particularly important to the catalytic cycle, as its three major conformations (open,

closed, and occluded) are known to regulate ligand affinity and turnover. In addition to

these static conformational differences, correlated dynamics are known to be of primary

importance, showing distinct changes during different stages of the catalytic cycle. The

dynamics have been used to explain the effects of distal mutations.

xi

We have performed two 10-ns molecular dynamics simulations of the ecDHFR•NADPH

complex. We discovered transient, sub-nanosecond, correlated dynamics that correspond

to correlations found in the catalytically active state. These dynamics involve both the

protein and the cofactor. We found conformational changes that clearly indicate

preorganization of the binding site related to folate binding. We have also discovered a

potential new allosteric site, supported by extensive computational work as well as by

crystallographic and mutagenesis results in the literature.

Traditional SBDD techniques focus on static structures. In 1999, Carlson and coworkers

introduced the MPS (multiple protein structure) method as a way of incorporating protein

flexibility into SBDD. The extreme importance of flexibility for DHFR makes the MPS

method particularly appropriate. To improve the method, we developed new techniques

for flooding and automatically clustering the solvent-mapping probes used in the

procedure. We generated models from simulations starting with the M20 loop in both

open and closed conformations. The MPS models preferentially identified high-affinity

inhibitors over drug-like non-inhibitors.

 1

Chapter 1

Introduction

Static protein-ligand binding interactions
An understanding of protein recognition is the basis for our investigations into

drug design, dynamics, and methods development. Emil Fischer set the stage for

investigations in this area with his seminal “lock-and-key” hypothesis in 1894.1 He

proposed that the 3D surfaces of binding partners must be complementary with the

substrate fitting into the enzyme like a key into a lock. Although this analogy does not

provide the full story of protein binding events, it has greatly shaped our understanding.

A large amount of current data indicates several common features across protein-ligand

systems, summarized recently by Böhm2 in three main points: (1) Emil Fischer’s lock-

and-key binding theory is generally important, as the shapes of ligands and their binding

cavities are often complementary; (2) direct, complementary interactions between ligands

and their binding cavities (hydrogen bonds, ionic interactions, hydrobophic interactions,

etc.) are important and repulsive interactions (e.g. close contact between two positively-

charged side chains) are rare; and, (3) while the conformation of a bound ligand is not

required to be an energetic minimum, it is typically energetically favorable.

Most protein-ligand binding events involve non-bonded interactions.2,3 The forces

involved in direct protein-ligand (and protein-protein) interactions span several orders of

magnitude and extend from close-range (r-12
 for repulsive van der Waals) to long-range

 2

(r-1 for charge-charge) interactions. The longer-range forces can be particularly important

in bringing proteins and ligands close to each other, a prerequisite for binding, whereas

all of these forces are important for the actual binding. The binding affinity of a protein-

ligand complex is determined by the change in free energy associated with their

interaction.4 The main forces involved are direct forces such as Coulombic interactions,

hydrogen bonding, van der Waals, as well as entropic and hydrophobic forces.1-3,5-8 A

recent review summarizes the magnitudes of these forces,9 and a typical computational

force field used to model these interactions may be seen below in the Molecular

mechanics section.

Computational investigations of binding free energies are complicated by the fact

that they rely on determining the difference between two large numbers, the interaction

energy of the protein and the ligand and the interaction energy of both with water.7,10,11

Since those two numbers are both much greater than their difference, it is particularly

important to reduce errors in the calculation of either.12 Protein-ligand interactions are

frequently modeled with force fields as mentioned above, and physics-based free-energy

calculations are often used to calculate protein-ligand binding affinities.13

An extremely interesting, but less popular method, involves grand canonical

Monte Carlo simulation, a technique demonstrated on thermolysin and T4 lysozyme.14 In

this method, a series of grand canonical ensembles is generated, each containing many

ligands interacting with a protein. For each system, a quantity related to both the

chemical potential and the concentration of particles in the system is annealed. Unlike

other standard statistical mechanical ensembles, the grand canonical ensemble allows the

number of particles to vary. During the annealing, Monte Carlo sampling (see section

 3

below) is used to both move ligands and to cause them to appear or disappear. The

annealing process is preformed at decreasing free energies, and the sampling allows

binding free energies to be calculated across the entire protein surface.

With respect to interactions with water, the details of the hydrophobic effect have

been heavily studied, and three reviews provide an excellent summary of the current

understanding of the topic.15-17 The hydrophobic effect is of key importance in protein

folding, structural stability, binding, and protein-membrane interactions. The highly

cooperative entropic changes involved are still not fully understood, and a range of

theoretical models, some extremely complex and some quite simple, is being developed

to provide insight. There are many strategies presently used to model hydration in

molecular simulations, ranging from scoring functions to detailed free energy

calculations. A review by Mancera summarizes several of these methods, pointing out

recent advances that have led to efficient algorithms and faster calculations.10

Multiple conformations
Having considered the forces involved in protein-ligand interactions, it is worth

considering the conformation of the protein. Emil Fischer’s lock-and-key binding theory

does hold in some cases. For example, a conserved hydrophobic lock-and-key interaction

is responsible for anchoring two glutathione transferase A1-1 subunits,18 and rigid lock-

and-key models were shown to be surprisingly effective in classic protein-ligand docking

studies.19 In 1930, Haldane improved on the lock-and-key theory by suggesting that

enzyme-binding sites might be used to bring substrates together or to exert forces directly

upon them.1,20,21 Pauling refined this concept in 1946 stating that, in contrast to the case

of antibodies and antigens where one can expect the two molecules to be completely

 4

complementary in their native states, an enzyme should actually be complementary to a

ligand’s transition state.22 However, more recent work has shown that, even in the case

of antibody-antigen interactions, this model may not quite be sufficient.23,24

The preceding theories generally consider the protein to be in a single, static

conformation. There have been two major modern improvements to this theory that

account for protein movement: the induced fit hypothesis and the conformational

selection hypothesis.25 In 1958, Koshland proposed the “induced fit” model in which an

enzyme undergoes conformational changes as a result of ligand binding.26,27 Although

several different types of molecules may be able to bind in an active site, only the

appropriate ligand can induce the particular conformational changes required for

catalysis. The induced fit model was originally proposed as an explanation for enzyme-

substrate systems, but the central idea of a flexible protein has been applied to our

understanding of many types of interactions including protein specificity, regulation and

cooperativity.27 The conformational selection hypothesis (also called the pre-existing

equilibrium hypothesis) suggests that the native state of a protein is actually made up of

an ensemble of accessible conformations, all of which co-exist with some probability

distribution.23,28-30 The equilibrium ensemble is generally considered to be comprised of

states that, while exhibiting conformational diversity, are close in free energy. A ligand

interacts with this ensemble by binding to the conformation that it best complements, thus

shifting the equilibrium of states. In this manner, a productive ligand may bias the entire

ensemble towards active conformations, while an inhibitor can lock a protein into an

unproductive state. In this view, ligands actually “see” several binding sites of different

shapes and sizes, helping to explain how a single protein can show high affinity for

 5

binding multiple ligands.29 In the following section on allostery, we will see how binding

outside of the active site can affect the ensemble. It is also worth noting that proteins in

different stages of a catalytic cycle may be described by different conformational

ensembles.

Allostery
On the other hand, sites other than the active site may be involved in protein

regulation. For instance, allosteric regulation involves a molecule (called an effector or a

modulator) binding reversibly and non-covalently to a site on the protein, other than the

active site.1 This interaction can regulate the activity of the protein. At its heart, allosteric

regulation is simply the transmission of information across a protein, initiated by the

binding of an effector molecule. In homotropic regulation, the effector is the same type of

molecule as the substrate. In heterotropic regulation, they are different. The MWC model,

one of the first successful explanations of allosteric regulation, was proposed by Monod,

Wyman, and Changeux in 1965.31 The model was proposed for hemoglobin, which is

comprised of four identical subunits. Each subunit could be in two conformational states,

R (relaxed) and T (tense), both of which have a different ligand affinity. The MWC

model is strictly symmetric, and all subunits are in the same conformation, either all-R or

all-T. The binding of successive effectors increases the probability of an overall transition

to the high-affinity state.

The KNF model, proposed shortly thereafter by Koshland, Nemethy, and Filmer

in 1966, allows for individual subunits to undergo conformational change separately.32

Substrate binding increases the likelihood of conformational change in that subunit, and

thus, in neighboring subunits. Therefore, the MWC model can be viewed as the limiting

 6

case of the KNF model. Although the topic has been examined extensively in subsequent

years, the precise details of the mechanisms of allosteric regulation are still not fully

understood.1,9,33-35 However, it is understood that ligand binding at one site can induce

conformational changes at another site and along a pathway connecting the two sites.36

These changes can occur over very large distances. In the case of the aspartate receptor, a

ligand-induced change of approximately 1 Å is propagated via a piston-like response over

a distance of around 100 Å, leading to a dramatic signaling-cascade response.37

While there were only 24 allosteric proteins to investigate in the original MWC

study,31 more recent studies indicate that there are at least hundreds of allosteric proteins,

encompassing several different protein classes and providing numerous new drug

targets.33,38 Our understanding has even grown to the point where allostery can be

engineered. For instance, while Pyruvate kinase M1 is a non-allosteric enzyme, a single-

residue mutatation, Ala398Arg, transforms Pyruvate kinase M1 into an allosteric

protein.39 Another group, starting from a non-allosteric phosphofructokinase, was able to

engineer an allosteric enzyme via a series of C-terminal deletions and mutations.40

Throughout the intervening decades since the MWC model, our definition of

allostery has changed. Historically, the term “allosteric” was reserved for symmetric,

oligomeric proteins.41 More recently, it has been applied in general to systems where one

ligand’s binding affinity is affected by the binding of another molecule, even in the case

of monomeric proteins.33,35,42

Moreover, the fundamental assumption that allosteric proteins shift discretely

between two distinct states has been challenged. In 1972, Webber demonstrated that a

simple two-state model was not sufficient to explain observed behavior. He proposed that

 7

allosteric proteins exist in a dynamic equilibrium of states and that the binding of an

effector induces a shift in the conformational ensemble occupied by the protein.43 The

current mainstream understanding of allostery is, indeed, that of a ligand-induced change

in the makeup of a protein’s conformational ensemble 35. Nussinov and co-workers have

taken this argument one step further. Since all proteins exist in such a conformational

ensemble, and allostery is simply a shift in this ensemble, they suggest that all proteins

may contain the potential for allostery.33 More specifically, they make the distinction

between dynamic, stiff, and fibrous proteins, arguing that all dynamic proteins have the

potential to be allosteric. They argue that dynamic proteins thus provide potential novel

drug targets, as a shift in the protein’s overall conformational ensemble has the potential

to alter the binding site’s conformational ensemble. In this view, allosteric effects are not

so fundamentally different from those seen in systems where distal motions and

mutations modulate active-site motions and activity. This is seen in systems such as β-

1,4-galactosyltransferase, where mutations in one small loop are known to affect the

flexibility of the larger functional loop,44 or dihydrofolate reductase (DHFR), where

several distal mutations have been shown to have strong effects on catalysis.45-61

Some studies propose an even more drastic departure from the MWC model: the

dynamic motions of the proteins may, in and of themselves, be responsible for allosteric

regulation. As early as 1984, Cooper and Dryden proposed a model by which effector

binding could induce allosteric effects purely by altering the frequencies and amplitudes

of protein fluctuations.62 This process is primarily related to entropy and does not require

conformational change at all. In 2006, the cAMP/CAP system was used as the first

demonstration of the existence of this purely dynamics-driven allostery.63 They note that

 8

experiments have shown that proteins contain a significant amount of residual entropy64-

66 and that this entropy is quite important for biological activity, indicating that dynamics-

driven allostery could actually be quite prevalent in nature.

A careful study in which 32 10-ns molecular dynamics (MD) simulations were

used to study allostery in the chemotaxis Y (CheY) protein provides some resolution on

the topic: they show that no single definition of allostery (MWC, conformational shift,

dynamical shift, etc.) is sufficient, and results must be explained via a combination of all

of these allosteric mechanisms.34 They conclude that one should study collective protein

motions, and they do so via normal mode analysis.

In Chapter 3, we study the collective motions of DHFR via correlated dynamics,

and we discover a new potential allosteric site. In Chapter 4, we present PyPAT, a suite

of tools that assist in the computational examination of these characteristics.

Protein motions and experimental techniques
Of course, this ensemble of conformations is brought about by an ensemble of

protein motions. Protein motions have been studied on scales ranging from femtoseconds

(bond vibrations), through pico- and nanoseconds (side-chain reorientation, loop

movements), up to seconds (breathing motions, subdomain interactions).64,67,68 NMR

experiments provide a powerful approach for studying protein flexibility, covering a wide

range of time scales.69 Hydrogen/deuterium exchange experiments have been used to

demonstrate directly that native protein states consist of ensembles, rather than single

static conformations.70 These effects may be seen to a surprisingly large degree, even for

thermophilic enzymes.71 Small-angle scattering also provides a means to study an entire

conformational ensemble and to study changes in that ensemble.72 X-ray crystallography

 9

can also be used to study protein conformations in different static states and conditions73

and can provide particularly important insight under time-resolved conditions with

nanosecond-level74 or picosecond-level75 resolution. Experiments at all of these levels, as

well as computational investigations, are necessary to build up a complete picture of

protein conformation, function, and dynamics.

Several studies show that the motions themselves are of direct importance. A

recent normal-mode analysis of the globin family of proteins has found that the entire

family shares common dynamics and that these collective motions are of critical

importance to the biological function of the globins.76 NMR experiments on CypA have

demonstrated the importance of dynamics for catalysis, indicating a strong connection

between the rates of conformational dynamics and those of turnover.77 NMR studies on

DHFR have shown that dynamical flexibility is key to catalysis.57,78 Subsequent work on

CypA has shown that pre-catalytic conformational ensembles include states that are

directly relevant to catalysis.79 These studies highlight our overarching theme: proteins

must be understood in terms of conformational and dynamical ensembles, rather than as

static systems. This modern, integrated view of flexibility and dynamics can help to

explain not just binding and allostery, but also protein folding and enzyme

pathways.67,68,80-82

Computational methods of investigating protein motions

Molecular mechanics (MM)
Many computational techniques are available for the study of biological systems.

The most accurate of these is quantum mechanics. A full quantum mechanical model

captures the true physics of the system, but such models are too computationally

 10

intensive for medium to large biological systems.11 Thus, various levels of

approximations must be made, and so molecular mechanics (MM) force field techniques

were developed. MM techniques use Newtonian mechanics to approximate the forces

involved in a system, and a typical model includes terms for bond stretching, bond-angle

bending, dihedrals, and non-bonded terms (electrostatic and Van der Waals). The Born-

Oppenheimer approximation is made, and electronic structure is ignored. Polarizability is

also usually ignored, and electrostatics are modeled via point charges. Simple harmonic

oscillator models of bond stretching and angle bending are used, and dihedrals are treated

via a cosine expansion. The current AMBER force field,83 a fairly typical example, is

shown below:

!

U(R) = Kr (r " req)
2

bonds

+ K$ ($ "$eq)
2

+
Vn

2
(1+ cos[n% " &])

dihedrals

#
angles

!

+
Aij

Rij

12
"
Bij

Rij

6

$
% %

&

'
((+

qiq j

)Rij

$
% %

&

'
((

i< j

atoms

*

Kr are bond-stretching constants, r are bond distances, req are the equilibrium bond

distances, Kθ are the angle-bending constants, θ are bond angles, and θeq are the

equilibrium bond angles. Vn are dihedral force constants, φ are the dihedral angles, and γ

are the dihedral phase angles. Non-bonded interactions are modeled with a 6-12 Lennard-

Jones potential and simple point-charge interactions. The Lennard-Jones potential is an

approximate model for several short-range forces including attraction due to induced

dipole-dipole interactions and repulsion due to electrostatics and the Pauli exclusion

principle. In the 6-12 potential, the longer-range attractive force constants are Bij, the

 11

shorter-range repulsive force constants are Aij, and the interatomic distances are Rij. For

interactions between point charges, and a simple Coulombic potential is assumed where

!

"

is the dielectric constant (1 in the case of explicit solvent) and qi is the charge on atom i.

Given the high degree of approximation used in such a force field, great care must

be taken in determining appropriate parameters for a system. Individual terms are

compared against many experimental properties as well as high-level quantum-

mechanical calculations.11,84 Many MM models enjoy widespread use, some of the most

popular including AMBER,83 CHARMM,85 and OPLS86.

Molecular dynamics (MD)
MD techniques use the force field provided by an MM model and Newton’s

second law (F = ma) to provide a trajectory for the systems of interest.11 Current MD

techniques are typically used to examine systems on the order of tens to hundreds of

nanoseconds,11,87 although some MD trajectories have been calculated at the microsecond

scale88,89 and the newest algorithms and hardware87,90 are capable of millisecond-scale

runs. It is worth noting, however, that the accuracy of an MD simulation is directly

limited by the accuracy of the underlying MM force field. MD simulations performed

with AMBER83 were used to generate the data analyzed in Chapters 3 and 4.

There is not a single, standard, generic approach to analyzing MD trajectories.

The details of the individual simulation and the questions of interest to the simulator must

be taken into account in each case. First, one must verify that the system has been

properly equilibrated. MD simulations require an initial set of coordinates and velocities.

Structures are almost always taken from X-ray or NMR data and velocities are taken

from a Maxwellian distribution. While these may represent a favorable structure under

 12

the experimental conditions, MD simulations use a different potential than those

conditions. This means that the structure must be equilibrated under the MD potential. In

particular, crystal-packing forces can push side chains into unfavorable conformations. In

the case of DHFR, crystal-packing forces completely control the conformation of a key

loop.91 MD codes output information including temperature, total energy, potential

energy, and other individual energetic contributions from the force field at user-defined

intervals throughout a simulation. These parameters should be examined to ensure

convergence and stability. In order to verify that the structure itself is stable, one typically

calculates the root mean square deviation (RMSD) between trajectory snapshots and a

reference set of coordinates (typically a crystal structure, a snapshot from within the MD

trajectory, or an average structure from the trajectory). Convergence of these RMSDs

indicates structural stability. Although many systems are fully equilibrated after several

hundred picoseconds of simulation (e.g. HIV-1 protease92), systems such as DHFR may

take more than 1 ns.45,93 The data generated after the system has been equilibrated is

called production data, and the term “trajectory” typically refers only to production data.

After verifying that the system has been equilibrated, there are several ways in

which one may continue to examine the trajectory. The type of analysis performed is

guided by the specific questions in which the researcher is interested. Fluctuations of

individual residues may be studied via RMSDs, bond and dihedral angles, etc. Secondary

structure can be evaluated throughout the simulation to show, for example, the

lengthening and shortening of loops and helices, the creation and destruction of hydrogen

bonds, or the fraction of total native contacts. A classic study by Duan and Kollman88

used a native-contact and secondary-structure analysis to examine the fundamental nature

 13

of protein folding. As the full sets of coordinates are available throughout the entire

simulation, the user has great flexibility in this area. Specific quantities are often defined

to address particular questions (e.g. various combinations of distance and angle

measurements may be used to obtain a more precise measurement of hinge-bending94).

The intrinsic motions of the system may also be studied via an array of techniques such

as normal mode analysis,95,96 essential dynamics,97-99 and correlated dynamics (see

section below entitled “Correlated dynamics”). With such a wide variety of analysis

techniques available, and with the ability to code new methods when necessary, a

creative approach can allow the researcher to examine an extremely wide range of

questions via MD.

Correlated dynamics
Covariance and cross-correlation techniques are frequently used to examine the

relative motions of different atoms throughout a protein, and can be applied to the study

of normal modes as well as MD trajectories.

Given a vector X whose components are random variables (x1, … , xn) with

means (µ1, … , µj) and standard deviations (σI, … , σj), the covariance of two entries, xi

and xj is defined as the expectation value

Cov(xi,xj) = < (xi - µi)(xj - µj) >.

The resulting covariance matrix, whose (i,j)th entry is cov(xi,xj) is thus a

symmetric, positive definite matrix. The magnitude of the covariance depends on the

standard deviations, and is therefore often scaled to obtain the correlation:

 14

Corr(xi,xj) = cov(xi,xj) / (σiσj).

The correlation matrix is formed in the same way as the covariance matrix, and is

symmetric and positive definite. The Cauchy-Schwarz inequality100,101 can be used to

show102 that the correlation ranges from -1 to 1. Two elements that vary in sync with one

another will have a correlation of 1, while two perfectly anti-correlated elements will

have a correlation of -1, and two independent variables will have a correlation of 0.

These methods were originally applied to BPTI, where they were shown to

provide insights that were relatively independent of simulation methodology (MD, etc.)

and environment (implicit and explicit solvent).103 More recently, correlated dynamics

have been used to investigate DHFR, where it was found that strong coupled motions are

present in the reactive complex (DHFR•DHF•NADPH), but are absent in complexes

from other stages of the catalytic cycle.45 As might be expected,103 strong positive

correlations between pieces of secondary structure are found throughout all of their

simulations. Though these positive correlations do change throughout the complexes, it is

the differences in anti-correlated motions that are particularly striking. Several

catalytically important mutations are investigated, and those not directly involved in

catalysis are found to occur in these anti-correlated regions. A follow-up study on four of

these mutations shows that they disrupt the strong coupled motions.104 These data

strongly suggest that correlated dynamics may be coupled to catalysis itself. Correlated

dynamics have also been used to examine binding effects in systems such as cAMP/CAP,

where it has been shown that cAMP binding to one CAP monomer can affect the

 15

dynamics of the other (unbound) monomer.105 In Chapter 3, correlated dynamics are

applied to the study of collective motions in DHFR•NADPH.

Monte Carlo (MC)
In MD, an initial velocity distribution is assigned and a force field is used to

calculate subsequent conformations. Instead of providing a time-varying trajectory of

states, MC (credited to Ulam and von Neumann106,107 and named in honor of a famous

casino in Monaco) works by using random sampling to produce a collection of

configurations. Metropolis MC108 generates these states as a series of “moves.” Given an

initial system configuration, a random process is used to generate a potential new

configuration. If the potential energy of this state is lower than that of the preceding

configuration, the move is accepted. If it is higher, a random number ξ is chosen between

0 and 1. If ξ is less than the Boltzmann factor (e(-∆E/kT), where E is the potential energy of

the system, k is Boltzmann’s constant, and T is the temperature), the move is accepted. If

it is greater, the move is rejected and the old configuration is used as the next state. This

series of moves, which technically forms a Markov chain,11 can be an efficient way of

exploring conformational space. While MD requires the calculation of forces, MC only

requires potential energy to be calculated.

It is worthwhile to note the effect of temperature on this process. The system

temperature directly controls the probability of accepting a higher-energy move. Thus, a

high-temperature simulation will sample more high-energy states, but a low-temperature

Metropolis MC run will tend to steer the system towards a local minimum. This

technique, implemented with OPLS86 force field and a modified109 version of BOSS,110 is

used to minimize small-molecule probes in our drug design work (see Chapter 2, Chapter

 16

5, and the sections below entitled drug design and our results). MC methods have been

broadly applied to the study of proteins including the investigation of protein folding via

global MC minimization,111 the calculation of generic thermodynamic properties, and

simulated annealing.11

Calculating allostery
General techniques used to study protein motions and conformations can be

applied to the study of allostery, as highlighted by the correlated dynamics studies on

DHFR mentioned above. In addition to these, two fascinating techniques have recently

been developed specifically for the study of allostery. Ming and Wall112 have developed a

theoretical technique for the quantification of allosteric effects in proteins, taking the new

ensemble-based definition of allostery into account. P(x) is defined as the equilibrium

probability distribution of apo-protein conformations x, and P’(x) is defined as the

ligand-bound distribution. They then use the Kullback-Leibler113 divergence, Dx, as a

measure of the difference between the probability distributions and argue that it is a

reasonable metric for quantifying allosteric effects. The harmonic approximation is used

in their derivation of Dx, and normal mode analysis is then used to examine lysozyme

binding, verifying their claims that large values of Dx correspond to known allosteric

interactions.

Anisotropic thermal diffusion (ATD) was developed by Ota and Agard to study

intramolecular signaling in general.114 ATD is a computational molecular dynamics

technique in which the protein is initially minimized and subjected to an extremely low-

temperature (10 K) equilibration. A specific subset of residues is then heated to 300 K. In

the absence of any sort of signaling pathways, the heat from these residues is expected to

 17

propagate isotropically. Evidence of mechanical pathways for allosteric communication

is found when the heat propagation is anisotropic. This technique has yielded consistent

results when probing both ends of an allosteric path in the PDZ protein PSD-95.114 In

Chapter 3, ATD is used to examine a possible allosteric pathway in DHFR.

Structure-based drug design (SBDD)
Structure-based drug design refers to the process of using three-dimensional

information about protein and ligand structure to aid in the drug-design process. These

structures typically come from X-ray crystallography or NMR experiments. Although the

most widely used SBDD techniques have used static structures, it is becoming

increasingly well understood115 that proper incorporation of conformational flexibility is

of prime importance to structure-based drug design and discovery. SBDD techniques can

be broadly classified as ligand-based or receptor-based.116 Ligand-based methods

generally start with a known set of inhibitors and search for other similar molecules,

often using pharmacophores or 3D shape matching to screen databases of drug-like

molecules.116,117 Receptor-based methods focus instead on the shape and chemical

features of the receptor in the attempt to find new binding partners. The SBDD efforts of

this dissertation use receptor-based methods.

Although many computational techniques are available to incorporate ligand

flexibility, programs that incorporate protein flexibility are few and far between. This is a

very active field of research.115,118,119 The main focus of the SBDD work in this

dissertation is the multiple protein structures (MPS)109 method. In order to understand

protein function, specificity, and inhibition, researchers will often create a reciprocal map

 18

of a protein surface. Rather than asking questions directly about the protein, such a map

answers the question “what features would a binding partner contain?” Multiple-copy

methods (MCMs) use small-molecule probes to generate these maps. A protein’s surface

is flooded with hundreds of these probes. The probes are then independently minimized

to the surface. Different types of probes map out different types of chemical functionality

(hydrophobic, hydrogen bonding, ionic, etc.), and clusters of minimized probes reveal the

most important and biologically accessible interaction sites. The MPS method is a

particular type of MCM in which protein flexibility is incorporated by repeating this

process on an ensemble of structures, looking for consensus across the ensemble (i.e.,

clusters of probes in the same location in many of the protein’s conformational states).

Ensemble structures may be taken from NMR, X-ray, or MD studies.120 The technique

has enjoyed considerable recent success on HIV-1 protease,92,120,121 DHFR,93,122 and

p53/HDM2.123 It has been shown to predict new chemical scaffolds for drugs, as well as

to predict binding partners from apo structures. We apply the MPS method to the study of

DHFR in Chapter 2.

Results from this work
The original goal in this dissertation was to apply the MPS method to the study of

dihydrofolate reductase. DHFR catalyzes the NADPH-dependent reduction of

dihydrofolate (DHF) to tetrahydrofolate (THF).124 DHFR is the only biological source of

tetrahydrofolate, an important precursor in the biosynthesis of purines, thymidylate, and

several amino acids.125,126 Thus, it has been a long-standing anti-cancer target127 and a

classic system for SBDD.126,128 DHFR inhibitors have been used to treat human diseases

including psoriasis, autoimmune diseases, and neoplastic diseases, and the potential to

 19

target species-specific DHFR has also made it an important antibiotic and anti-microbial

target.126,128

The structure, dynamics, and function of DHFR have been studied extensively, as

summarized in a recent review.128 Multiple conformational states have been identified

through X-ray crystallography.91 Flexibility and sampling between these conformations

are of paramount importance throughout the catalytic cycle. The role of protein dynamics

in DHFR catalysis has been well studied both with calculations45,81,129 and experiments,

particularly NMR spectroscopy.130-132 DHFR is composed of an eight-stranded β-sheet

(βA - βH) and four α-helices (αB, αC, αE, αF). It has been divided into two rigid-body

subdomains. The first (the adenosine-binding domain) consists of βB, βC, βD, βE, αC,

αE, αF, and the intervening residues. The second (the loop subdomain) consists of the

rest of the structure, and is formed mostly by loops,91 including the CD, FG, GH and M20

loops. All regions of DHFR contribute dynamically to substrate binding and chemical

turnover.133 Correlated dynamics, as discussed above, have been shown to contribute to

catalysis and to change in distinct patterns throughout the catalytic cycle.45 The

conformation of the M20 loop is particularly important to the catalytic cycle, as it is

known to regulate ligand affinity and turnover.58,78,91,128,134-138 Three conformations are

reported in the crystallographic literature: open, closed, and occluded. The Michaelis

complex DHFR•NADPH•DHF is found with the M20 loop closed. The closed form is

also the only conformation seen in DHFR from all species, regardless of the crystal

packing and ligands bound in the substrate and cofactor binding sites.91 When the product

is bound (DHFR•NADP+•THF, DHFR•THF, DHFR•NADPH•THF), the M20 loop is

found in the occluded position. When a cofactor is present, the occluded loop forces its

 20

nicotinamide moiety out of the pocket. The closed loop is a conformational intermediate

between the extremes of the open and occluded loops. The DHFR•NADPH complex is

found in both the open and closed conformations.

Escherichia coli DHFR (ecDHFR) is a canonical system for studying enzyme

structure, dynamics, and catalysis. Fierke et al. determined the full catalytic cycle,139

summarized in the first figure of Chapter 3. In biological systems, DHFR is always found

with at least one binding partner, a cofactor or a ligand in the folate-binding site, and

DHFR•NADPH is the analog of an apo state. This dissertation follows our studies of the

DHFR•NADPH system as well as describing several of the tools developed in those

studies.

Our studies are primarily based on two MD simulations of the DHFR•NADPH

complex, one starting from a closed-loop crystal structure and one starting from an open-

loop crystal structure. Once we had obtained an ensemble of structures from those

simulations, the MPS method requires us to flood the active site with a series of small-

molecule probes. Previous applications of the MPS method had focused on systems such

as HIV-1 protease that have fairly open active sites. DHFR’s active site is much more

closed off, and it is known that important ligand-binding interactions are made at the

bottom of the binding site.91 In Chaper 5, we develop new flooding techniques that allow

us to properly sample both open and closed active sites.

After the probes had been placed and minimized, we were faced with the task of

grouping them into clusters. A vast array of techniques are available for clustering data,

and several excellent books140,141 have been written on the subject. Previous MPS studies

have used “by-hand” visual inspection to group probes into clusters. This method has the

 21

advantage that it has been thoroughly tested, and it works. It has several disadvantages: it

is very time-consuming, taking approximately two to three weeks for a typical system. It

requires training and can be subjective. More troubling is the fact that visual recognition

is limited to a maximum of approximately 10-15 snapshots, after which there is simply

too much data to separate clusters cleanly. In Chapter 5, we develop an automated probe-

clustering method based on Jarvis-Patrick142 clustering. The validity of this method is

investigated via the study of protein-protein interfaces, and it is shown to be fast,

reproducible and robust. Results are then favorably compared to previous MPS results121

on the HIV-1 protease system. The method is generally applicable to the clustering of

small molecules in three-dimensional space, and all of the details are spelled out

explicitly in the hopes that other groups will see its utility.

At this point, we have the tools to apply the MPS method to the study of DHFR,

and so in Chapter 2, we develop receptor-based pharmacophore models of the

DHFR•NADPH complex to examine the implications of flexibility for SBDD on this

classic system. We show that receptor-based pharmacophore models for SBDD generated

from the closed-loop structure perform better than those generated from the open-loop

structure. However, we find that the incorporation of increased flexibility into the open-

loop models greatly improves their performance. Notably, the inclusion of greater

flexibility (in both models) does not result in a loss of specificity, as the optimal models

preferentially identify potent ecDHFR inhibitors over other general DHFR inhibitors.

After obtaining these results, we begin an examination of DHFR’s flexibility and

dynamics in Chapter 3. We investigate both conformational changes and correlated

dynamic motions. Recent NMR studies have shown directly that the conformational

 22

ensemble experienced by DHFR in any given state along the catalytic pathway includes

structures from nearby catalytic states.143 Unfortunately, the NMR experiments are

unable to provide the full structural details comprising these states. Our MD studies of

DHFR•NADPH are able to provide such details, and we find several clear examples of

binding-site pre-organization (including loop conformations and binding-site residue

orientations) even though no ligand is bound in the active site.

Correlated dynamics have been shown to contribute to catalysis and to change in

distinct patterns throughout the catalytic cycle.45 MD simulations of the Michaelis

complex have revealed strongly correlated and anticorrelated motions involving distant

regions of the protein.45 This extensive coupling was only seen in the reactant form, not

in either DHFR•NADP+•THF (product ternary complex) or DHFR•NADPH•THF

(product release complex), implying that these motions may be necessary for catalysis.45

Thus, we examined the correlated dynamics of the DHFR•NADPH complex. We find

that the strong correlated dynamics from DHFR•NADPH•DHF appear transiently

throughout our simulations, existing prior to the binding of DHF. Just as proteins sample

a conformational ensemble of states, only some of which are relevant to ligand binding

and catalysis, our results indicate that they sample a similar ensemble of correlated

dynamics, the makeup of which changes throughout the catalytic cycle.

Finally, we turn our eye toward the bottom of the folate-binding site. We find that

it opens up throughout our simulations, and it leads us to the discovery of a cavity and

new potential binding site on the far side of DHFR. Several computational techniques are

used to show that this new site has a high potential to bind ligands. Mutagenesis results

 23

from the literature indicate the possible allosteric properties of this site, and ATD is used

to determine a putative pathway for allosteric communication with the folate-binding site.

The development of computational tools necessary to implement these studies is

presented in Chapter 4.

Potential impact
The results of this dissertation have had large impacts within the Carlson lab and

will hopefully contribute greatly to the study of protein interactions. One of the major

focuses of the Carlson lab is the development and application of the MPS method. The

results from Chapter 2 serve as further validation of the MPS methodology itself. The

scripts developed throughout Chapters 2-5 automate, refine, and speed up the MPS

method, allowing it to be quickly, objectively, and reliably applied to new classes of

proteins. The time required to cluster probes from individual snapshots has been reduced

from the scale of weeks to that of hours without sacrificing the quality of results. DHFR

was significantly different in many ways from previous systems studied via MPS, (shape

and dynamics of the active site, overall system charge, etc.) and the techniques developed

herein greatly expand the overall applicability of the MPS method. Efforts to more fully

automate the MPS method are currently underway.

Several of the techniques developed here have broad application outside of our

MPS work. There are a wide variety of computational packages such as MCSS,144

MCSS2PTS,153 and LUDI145 that require the clustering of small probe molecules. Some

authors have noted the need for better clustering algorithms in such cases,146,147 and it is

our hope that the methods developed in Chapter 5 will be incorporated throughout the

field, as they are applicable to the wide range of applications in which small molecules

 24

must be clustered in physical space. Fragment-based drug design148-150 and the mapping

of “hot spots”151 in protein-protein interfaces provide natural extensions, and Jarvis-

Patrick clustering (used in our method) is fast, deterministic, and more accurate than the

RMSD-based methods currently in use.

Bridging water molecules are known to be extremely important to the structure,

function and dynamics of proteins and nucleic acids. They affect local properties such as

hydrogen bonds,152-157 hydrophobic contacts,155,156 and electrostatics,152-154,156 they

regulate global properties such as flexibility154,157-159 and stability,153-159 and they can

contribute directly to catalysis.152-154,156,157,159 A wealth of data about bridging water

interactions is inherently available in explicit-water MD simulations, and PyPAT, a suite

of scripts developed as part of this dissertation (Chapter 4 and Appendix 2), provides the

first readily available tool for automatically extracting and analyzing this data. With the

introduction of PyPAT, we hope investigation of the locations, properties, and dynamics

of bridging water molecules will become a standard part of MD studies. In our own work,

analysis of bridging water interactions helped to confirm a potential new small-molecule

binding site on the surface of DHFR as described in Chapter 3.

Chapter 3 provides new insights into the basic biophysics of DHFR. First, it

shows detailed ways in which the folate-binding site pre-organizes to facilitate ligand

binding. This information can be used to better understand DHFR-ligand binding and to

improve drug design. Second, we find that the DHFR•NADPH complex samples an

ensemble of distinct dynamic motions. The makeup and weighting of this ensemble

change throughout the catalytic cycle, in a way that is directly analogous to the shifting

conformational ensembles. Altered ensembles of conformations and motion between

 25

those states are key to the modern understanding of protein binding, enzymatic catalysis,

and allosteric control. This idea of ensembles of dynamics is relevant not just to DHFR

but to binding and allostery in general. We expect the investigations of dynamic

ensembles to take on greater importance wherever protein interactions are studied

throughout the field.

Finally, we have discovered a new potential binding site for DHFR. This is

particularly important as DHFR is extremely well-studied and has been a major anti-

cancer target for over 40 years.160 It is our hope that thorough investigation of this site

could lead to new anti-cancer and anti-microbial drugs. Future research directions include

MPS mapping of this site, virtual screening of databases of drug-like compounds, and

collaborations for experimental testing.

 26

References

(1) Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry; Second
ed.; Worth Publishers: New York, NY, 1993.
(2) Böhm, H.-J. In Protein-Ligand Interactions; Böhm, H.-J., Schneider, G., Eds.
2005, p 3-20.
(3) Sotriffer, C.; Klebe, G. Il Farmaco 2002, 57, 243-251.
(4) Ajay; Murcko, M. A. J. Med. Chem. 1995, 38, 4953-4967.
(5) Jones, S.; Thornton, J. M. Proc. Natl. Acad. Sci. USA 1996, 93, 13-20.
(6) Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096-3102.
(7) Dill, K. A.; Bromberg, S. Molecular driving forces: statistical thermodynamics in
chemistry and biology; Garland Science: New York, NY, 2003.
(8) Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Nat. Rev. Drug Discov.
2004, 3, 935-949.
(9) Schneider, H. J. In Protein-Ligand Interactions; Böhm, H.-J., Schneider, G., Eds.
2005, p 21-50.
(10) Mancera, R. L. Curr. Opin. Drug Discovery Dev. 2007, 10, 275.
(11) Leach, A. R. Molecular Modelling: Principles and Applications; Prentice Hall,
2001.
(12) Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. J. Med. Chem. 2006, 49, 5851-
5855.
(13) Huang, N.; Jacobson, M. P. Curr. Opin. Drug Discovery Dev. 2007, 10, 325.
(14) Clark, M.; Guarnieri, F.; Shkurko, I.; Wiseman, J. J. Chem. Inf. Model. 2006, 46,
231-242.
(15) Efremov, R. G.; Chugunov, A. O.; Pyrkov, T. V.; Priestle, J. P.; Arseniev, A. S.;
Jacoby, E. Curr. Med. Chem. 2007, 14, 393-415.
(16) Pratt, L. R.; Pohorille, A. Chem. Rev. 2002, 102, 2671-2692.
(17) Dill, K. A.; Truskett, T. M.; Vlachy, V.; Hribar-Lee, B. Annu. Rev. Biophys.
Biomol. Struct. 2005, 34, 173-199.
(18) Sayed, Y.; Wallace, L. A.; Dirr, H. W. FEBS Lett. 2000, 465, 169-172.
(19) Gschwend, D. A.; Good, A. C.; Kuntz, I. D. J. Mol. Recognit. 1996, 9, 175-186.
(20) Leatherbarrow, R. J.; Fersht, A. R.; Winter, G. Proc. Natl. Acad. Sci. USA 1985,
82, 7840-7844.
(21) Haldane, J. B. S. Enzymes; Longmans, Green and Co: London, 1930.
(22) Pauling, L. Chem. Eng. News 1946, 24, 1375-1377.
(23) Keskin, O. BMC Struct. Biol. 2007, 7:31.
(24) Lindner, A. B.; Eshhar, Z.; Tawfik, D. S. J. Mol. Biol. 1999, 285, 421-430.
(25) Höfliger, M. M.; Beck-Sickinger, A. G. In Protein-Ligand Interactions; Böhm,
H.-J., Schneider, G., Eds. 2005, p 107-135.
(26) Koshland, D. E. Proc. Natl. Acad. Sci. USA 1958, 44, 98-104.
(27) Koshland, D. E. Angew. Chem. Int. Edit. 1995, 33, 2375-2378.
(28) Kenakin, T. Trends Pharmacol. Sci. 1995, 16, 188-192.
(29) Ma, B.; Shatsky, M.; Wolfson, H. J.; Nussinov, R. Protein Sci. 2002, 11, 184-197.
(30) James, L. C.; Tawfik, D. S. Trends Biochem. Sci. 2003, 28, 361-368.
(31) Monod, J.; Wyman, J.; Changeux, J. P. J. Mol. Biol. 1965, 12, 88-118.

 27

(32) Koshland, D. E.; Nemethy, G.; Filmer, D. Biochemistry 1966, 5, 365-385.
(33) Gunasekaran, K.; Ma, B.; Nussinov, R. Proteins: Struct. Funct. Bioinformatics
2004, 57, 433-443.
(34) Formaneck, M. S.; Ma, L.; Cui, Q. Proteins: Struct. Funct. Bioinformatics 2006,
63, 846-867.
(35) Swain, J. F.; Gierasch, L. M. Curr. Opin. Struct. Biol. 2006, 16, 102-108.
(36) Yu, E. W.; Koshland, D. E., Jr. Proc. Natl. Acad. Sci. USA 2001, 98, 9517-9520.
(37) Ottemann, K. M.; Xiao, W.; Shin, Y.-K.; Koshland, D. E., Jr. Science 1999, 285,
1751-1754.
(38) Hardy, J. A.; Wells, J. A. Curr. Opin. Struct. Biol. 2004, 14, 706-715.
(39) Ikeda, Y.; Taniguchi, N.; Noguchi, T. J. Biol. Chem. 2000, 275, 9150-9156.
(40) Santamaria, B.; Estevez, A. M.; Martinez-Costa, O. H.; Aragon, J. J. J. Biol.
Chem. 2002, 277, 1210-1216.
(41) Goodsell, D. S.; Olson, A. J. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105-
153.
(42) Kern, D.; Zuiderweg, E. R. P. Curr. Opin. Struct. Biol. 2003, 13, 748-757.
(43) Weber, G. Biochemistry 1972, 11, 864-878.
(44) Gunasekaran, K.; Ma, B.; Ramakrishnan, B.; Qasba, P. K.; Nussinov, R.
Biochemistry 2003, 42, 3674-3687.
(45) Radkiewicz, J. L.; Brooks, C. L., III J. Am. Chem. Soc 2000, 122, 225-231.
(46) Adams, J.; Johnson, K.; Matthews, R.; Benkovic, S. J. Biochemistry 1989, 28,
6611-6618.
(47) Adams, J. A.; Fierke, C. A.; Benkovic, S. J. Biochemistry 1991, 30, 11046-11054.
(48) Ahrweiler, P. M.; Frieden, C. Biochemistry 1991, 30, 7801-7809.
(49) Cameron, C. E.; Benkovic, S. J. Biochemistry 1997, 36, 15792-15800.
(50) Chen, J. T.; Taira, K.; Tu, C. P. D.; Benkovic, S. J. Biochemistry 1987, 26, 4093-
4100.
(51) Dion, A.; Linn, C. E.; Bradrick, T. D.; Georghiou, S.; Howell, E. E. Biochemistry
1993, 32, 3479-3487.
(52) Dion-Schultz, A.; Howell, E. E. Protein Eng. 1997, 10, 263-272.
(53) Farnum, M. F.; Magde, D.; Howell, E. E.; Hirai, J. T.; Warren, M. S.; Grimsley, J.
K.; Kraut, J. Biochemistry 1991, 30, 11567-11579.
(54) Fierke, C. A.; Benkovic, S. J. Biochemistry 1989, 28, 478-486.
(55) Howell, E. E.; Booth, C.; Farnum, M.; Kraut, J.; Warren, M. S. Biochemistry
1990, 29, 8561-8569.
(56) Iwakura, M.; Jones, B. E.; Luo, J.; Matthews, C. R. J. Biochem. (Tokyo) 1995,
117, 480-488.
(57) Miller, G. P.; Benkovic, S. J. Biochemistry 1998, 37, 6327-6335.
(58) Miller, G. P.; Benkovic, S. J. Biochemistry 1998, 37, 6336-6342.
(59) Murphy, D. J.; Benkovic, S. J. Biochemistry 1989, 28, 3025-3031.
(60) Ohmae, E.; Ishimura, K.; Iwakura, M.; Gekko, K. J. Biochem. (Tokyo) 1998, 123,
839-846.
(61) Wagner, C. R.; Thillet, J.; Benkovic, S. J. Biochemistry 1992, 31, 7834-7840.
(62) Cooper, A.; Dryden, D. T. F. Eur. Biophys. J. 1984, 11, 103-109.
(63) Popovych, N.; Sun, S.; Ebright, R. H.; Kalodimos, C. G. Nat. Struct. Mol. Biol.
2006, 13, 831-838.

 28

(64) Wand, A. J. Nat. Struct. Biol. 2001, 8, 926-31.
(65) Homans, S. W. ChemBioChem 2005, 6, 1585-1591.
(66) Lee, A. L.; Wand, A. J. Nature 2001, 411, 501-4.
(67) Agarwal, P. K. Microb. Cell Fact. 2006, 5, 2.
(68) Daniel, R. M.; Dunn, R. V.; Finney, J. L.; Smith, J. C. Annu. Rev. Biophys.
Biomol. Struct. 2003, 32, 69-92.
(69) Palmer, A. G., III Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 129-155.
(70) Kim, K. S.; Woodward, C. Biochemistry 1993, 32, 9609-9613.
(71) Fitter, J.; Heberle, J. Biophys. J. 2000, 79, 1629-1636.
(72) Heller, W. T. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 33-44.
(73) Schramm, V. L.; Shi, W. Curr. Opin. Struct. Biol. 2001, 11, 657-665.
(74) Moffat, K. Chem. Rev. 2001, 101, 1569-1582.
(75) Hummer, G.; Schotte, F.; Anfinrud, P. A. Proc. Natl. Acad. Sci. USA 2004, 101,
15330-15334.
(76) Laberge, M.; Yonetani, T. IUBMB Life 2007, 59, 528 - 534.
(77) Eisenmesser, E. Z.; Bosco, D. A.; Akke, M.; Kern, D. Science 2002, 295, 1520-
1523.
(78) Osborne, M. J.; Schnell, J.; Benkovic, S. J.; Dyson, H. J.; Wright, P. E.
Biochemistry 2001, 40, 9846–9859.
(79) Eisenmesser, E. Z.; Millet, O.; Labeikovsky, W.; Korzhnev, D. M.; Wolf-Watz,
M.; Bosco, D. A.; Skalicky, J. J.; Kay, L. E.; Kern, D.; Contact, N. P. G. Nature 2005,
438, 117-121.
(80) Kumar, S.; Ma, B.; Tsai, C. J.; Sinha, N.; Nussinov, R. Protein Sci. 2000, 9, 10-
19.
(81) Agarwal, P. K.; Billeter, S. R.; Rajagopalan, P. T. R.; Benkovic, S. J.; Hammes-
Schiffer, S. Proc. Natl. Acad. Sci. USA 2002, 99, 2794-2799.
(82) Hammes, G. G. Biochemistry 2002, 41, 8221-8228.
(83) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.;
Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.;
Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.;
Caldwell, J. W.; Ross, W. S.; Kollman, P. A. 2004, University of California, San
Francisco, AMBER 8.
(84) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D.
M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995,
117, 5179-5197.
(85) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;
Karplus, M. J. Comput. Chem 1983, 4, 187-217.
(86) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657-1666.
(87) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon,
J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.;
Grossman, J. P.; Ho, C. R.; Ierardi, D. J.; Kolossvary, I.; Klepeis, J.; Layman, T.;
McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.;
Theobald, M.; Towles, B.; Wang, S. C. Proceedings of the 34th annual international
conference on Computer architecture 2007, 1-12.
(88) Duan, Y.; Kollman, P. A. Science 1998, 282, 740.

 29

(89) Seibert, M. M.; Patriksson, A.; Hess, B.; van der Spoel, D. J. Mol. Biol. 2005,
354, 173-183.
(90) Borrell, B. Nature 2008, 451, 240-243.
(91) Sawaya, M. R.; Kraut, J. Biochemistry 1997, 36, 586-603.
(92) Meagher, K. L.; Carlson, H. A. J. Am. Chem. Soc 2004, 126, 13276-13281.
(93) Lerner, M. G.; Bowman, A. L.; Carlson, H. A. J. Chem. Inf. Model. 2007, 47,
2358-2365.
(94) Mu, Y.; Stock, G. Biophys. J. 2006, 90, 391-399.
(95) Ma, J. Structure 2005, 13, 373-380.
(96) Brooks, B.; Karplus, M. Proc. Natl. Acad. Sci. USA 1983, 80, 6571-6575.
(97) Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C. Proteins: Struct., Funct.,
Genet. 1993, 17, 412–425.
(98) Aalten, D.; Groot, B. L. D.; Findlay, J. B. C.; Berendsen, H. J. C.; Amadei, A.
Journal of Computational Chemistry 1997, 18, 169-181.
(99) Mongan, J. J. Comput-Aided. Mol. Des. 2004, 18, 433-436.
(100) Cauchy, A. L. Cours d'analyse de l'École Royale Polytechnique, 1ère partie:
Analyse algébrique. Paris: p. 373, 1821.
(101) Weisstein, E. W. In MathWorld--A Wolfram Web Resource. 2008.
http://mathworld.wolfram.com/CauchysInequality.html
(102) Weisstein, E. W. In MathWorld--A Wolfram Web Resource. 2008.
http://mathworld.wolfram.com/StatisticalCorrelation.html
(103) Ichiye, T.; Karplus, M. Proteins: Struct., Funct., Genet. 1991, 11, 205-217.
(104) Rod, T. H.; Radkiewicz, J. L.; Brooks, C. L., III Proc. Natl. Acad. Sci. USA 2003,
100, 6980-6985.
(105) Li, L.; Uversky, V. N.; Dunker, A. K.; Meroueh, S. O. J. Am. Chem. Soc. 2007,
129, 15668-15676.
(106) Eckhardt, R. Los Alamos Sci. 1987, 15, 131-143.
(107) Metropolis, N. Los Alamos Sci. 1987, 15, 125-130.
(108) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J.
Chem. Phys. 1953, 21, 1087-1092.
(109) Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman, F. D.; Jorgensen, W. L.;
Lins, R. D.; Briggs, J. M.; McCammon, J. A. J. Med. Chem 2000, 43, 2100-2114.
(110) Jorgensen, W. L. 2000, Yale University, New Haven, CT, BOSS 4.2.
(111) Li, Z.; Scheraga, H. A. Proc. Natl. Acad. Sci. USA 1987, 84, 6611-6615.
(112) Ming, D.; Wall, M. E. Proteins: Struct. Funct. Bioinformatics 2005, 59, 697-707.
(113) Kullback, S.; Leibler, R. A. Ann. Math. Stats. 1951, 22, 79-86.
(114) Ota, N.; Agard, D. A. J. Mol. Biol 2005, 351, 345-354.
(115) Carlson, H. A. Curr. Opin. Chem. Biol. 2002, 6, 447-452.
(116) Lyne, P. D. Drug Discov. Today 2002, 7, 1047-1055.
(117) Pickett, S. In Protein-Ligand Interactions; Böhm, H.-J., Schneider, G., Eds. 2005,
p 73-105.
(118) Teodoro, M. M. L.; Kavraki, L. L. E. Curr. Pharm. Des. 2003, 9, 1635-48.
(119) Subramanian, J.; Sharma, S.; Rao, C. B. ChemMedChem 2007, in press.
(120) Damm, K. L.; Carlson, H. A. J. Am. Chem. Soc. 2007, 129, 8225-8235.
(121) Meagher, K. L.; Lerner, M. G.; Carlson, H. A. J. Med. Chem 2006, 49, 3478-
3484.

 30

(122) Bowman, A. L.; Lerner, M. G.; Carlson, H. A. J. Am. Chem. Soc. 2007, 129,
3634-3640.
(123) Bowman, A. L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H. A. J.
Am. Chem. Soc. 2007, 129, 12809-12814.
(124) Voet, D.; Voet, J. Biochemistry; 2nd ed.; John Wiley & Sons: New York, NY,
1995.
(125) Voet, D.; Voet, J. In Biochemistry; 2nd ed. ed.; John Wiley & Sons, Inc.: New
York, NY, 1995, p 762.
(126) Schweitzer, B. I.; Dicker, A. P.; Bertino, J. R. FASEB J. 1990, 4, 2441-2452.
(127) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry; 5th ed.; W. H. Freeman
and Company: New York, 2002.
(128) Schnell, J. R.; Dyson, H. J.; Wright, P. E. Annu. Rev. Biophys. Biomol. Struct.
2004, 33, 119-140.
(129) Agarwal, P. K.; Billeter, S. R.; Hammes-Schiffer, S. J. Phys. Chem. B 2002, 106,
3283-3293.
(130) Feeney, J. Angew. Chem. Int. Edit. 2000, 39, 290-416.
(131) Osborne, M. J.; Schnell, J.; Benkovic, S. J.; Dyson, H. J.; Wright, P. E.
Biochemistry 2001, 40, 9846-9859.
(132) Boehr, D. D.; McElheny, D.; Dyson, H. J.; Wright, P. E. Science 2006, 313, 1638-
1642.
(133) Hammes-Schiffer, S.; Benkovic, S. J. Annu. Rev. Biochem. 2006, 75, 519-541.
(134) Venkitakrishnan, R. P.; Zaborowski, E.; McElheny, D.; Benkovic, S. J.; Dyson,
H. J.; Wright, P. E. Biochemistry 2004, 43, 16046-16055.
(135) Khavrutskii, I. V.; Price, D. J.; Lee, J.; Brooks, C. L., III Protein Sci. 2007, 16,
1087-1100.
(136) McElheny, D.; Schnell, J. R.; Lansing, J. C.; Dyson, H. J.; Wright, P. E. Proc.
Natl. Acad. Sci. USA 2005, 102, 5032-5037.
(137) Thorpe, I. F.; Brooks, C. L., III Proteins: Struct. Funct. Bioinformatics 2004, 57,
444-457.
(138) Rod, T. H.; Brooks, C. L., III J. Am. Chem. Soc. 2003, 125, 8718-8719.
(139) Fierke, C. A.; Johnson, K. A.; Benkovic, S. J. Biochemistry 1987, 26, 4085-4092.
(140) Duda, R. O.; Hart, P. E.; Stork, D. G. Pattern Classification; Wiley-Interscience,
2000.
(141) Kauffman, L.; Rousseeuw, P. J. Finding Groups in Data: An Introduction to
Cluster Analysis; John Wiley & Sons, Inc.: New York, 1990.
(142) Jarvis, R. A.; Patrick, E. A. IEEE T. Comput. 1973, 22, 1025-1034.
(143) Boehr, D. D.; McElheny, D.; Dyson, H. J.; Wright, P. E. Science 2006, 313, 1638.
(144) Evensen, E.; Joseph-McCarthy, D.; Karplus, M. 1997, Harvard University,
Cambridge, MA, USA, MCSS version 2.1.
(145) Böhm, H. J. J. Comput-Aided. Mol. Des. 1992, 6, 61-78.
(146) Schechner, M.; Sirockin, F.; Stote, R. H.; Dejaegere, A. P. J. Med. Chem. 2004,
47, 4373-4390.
(147) Sirockin, F.; Sich, C.; Improta, S.; Schaefer, M.; Saudek, V.; Froloff, N.; Karplus,
M.; Dejaegere, A. J. Am. Chem. Soc. 2002, 124, 11073-11084.
(148) Carr, R. A. E.; Congreve, M.; Murray, C. W.; Rees, D. C. Drug Discov. Today
2005, 10, 987-992.

 31

(149) Erlanson, D. A.; McDowell, R. S.; O'Brien, T. J. Med. Chem. 2004, 47, 3463-
3482.
(150) Rees, D. C.; Congreve, M.; Murray, C. W.; Carr, R. Nat. Rev. Drug Discov. 2004,
3, 660-672.
(151) Vajda, S.; Guarnieri, F. Curr. Opin. Drug Discovery Dev. 2006, 9, 354.
(152) Bergqvist, S.; Williams, M. A.; O'Brien, R.; Ladbury, J. E. J. Mol. Biol. 2004,
336, 829-842.
(153) Jayaram, B.; Jain, T. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 343-361.
(154) Nakasako, M. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 1191-1206.
(155) Plumridge, T. H.; Waigh, R. D. J. Pharm. Pharmacol. 2002, 54, 1155-1179.
(156) Saenger, W. Annu. Rev. Biophys. Bio. 1987, 16, 93-114.
(157) Westhof, E. Annu. Rev. Biophys. Bio. 1988, 17, 125-144.
(158) Feig, M.; Pettitt, B. M. Structure 1998, 6, 1351-4.
(159) Smith, J. C.; Merzel, F.; Bondar, A. N.; Tournier, A.; Fischer, S. Philosophical
Transactions: Biological Sciences 2004, 359, 1181-1190.
(160) Huennekens, F. M. Protein Sci. 1996, 5, 1201.

 32

Chapter 2

Incorporating dynamics in E. coli dihydrofolate reductase
enhances structure-based drug discovery

Introduction
Dihydrofolate reductase (DHFR; EC. 1.5.1.3) catalyzes the reduction of dihydrofolate

(DHF) to tetrahydrofolate (THF) (and more slowly, folate to dihydrofolate) while

concurrently oxidizing the nicotinamide adenine dinucleotide phosphate (NADPH)

cofactor.1 DHFR is a small enzyme that plays an essential role in various cellular

processes including the biosynthesis of DNA.2 It is the only source of THF, an essential

precursor for purine and thymidylate biosynthesis, and hence, it is a long-standing target

for anticancer drugs and antibacterial agents. Moreover, Escherichia coli DHFR

(ecDHFR) is a canonical system for studying enzyme structure, dynamics, and catalysis.

In fact, ecDHFR was recently the focus of a data-mining and docking competition3 which

highlighted possible improvements needed in the field.4

Protein flexibility and dynamics are of utmost importance in understanding the

structure and mechanism of DHFR. The role of protein dynamics in DHFR catalysis has

been well studied both computationally5-7 and experimentally through NMR

spectroscopy8-10 and multiple X-ray crystallography structures.11 The M20 loop of

ecDHFR (residues 9 – 24) adopts three different conformations: closed, open, and

occluded.11 When the substrate and cofactor are both bound, the closed conformation is

 33

adopted, in which the M20 loop is packed against the nicotinamide ring of the

cofactor11. The closed form presents the only conformation in which the substrate and

cofactor are arranged favorably for reaction, and it is also present in the preceding state of

the catalytic cycle, DHFR·NADPH.6 The closed form is also the only conformation seen

in DHFR from all other species, regardless of the crystal packing and ligands bound in

the substrate and cofactor binding sites.11 The occluded M20 loop is observed in the

product complexes (DHFR·NADP+·THF, DHFR·THF, and DHFR·NADPH·THF). It is an

unproductive conformation where the central part of the M20 loop forms a helix,

blocking access to the binding site for the nicotinamide moiety of the cofactor. This

forces the nicotinamide of the cofactor out into solvent, making it unresolved in the

crystal structures of DHFR·NADP+·THF and DHFR·NADPH·THF.11 The open loop is a

conformational intermediate between the extremes of the closed and occluded loops. The

significance of M20 loop dynamics in ligand binding and catalysis has been an area of

great interest, driven by the persuasive evidence of conformational change in the loop

during the catalytic cycle and its interaction with the substrate and cofactor.11

Furthermore, there is evidence that the degree and pattern of protein flexibility changes

throughout the catalytic cycle.11 All regions of DHFR dynamically contribute to substrate

binding and chemical turnover.12 The M20 loop conformations and sub-domain rotations

are both pivotal during catalysis, implying coupling to the reaction coordinate.11,13 The

M20 loop undergoes fluctuations on the ps – ns timescale, some of which are analogous

to the rate-limiting step of product release.14 During molecular dynamics (MD)

simulations of the DHFR·NADPH·DHF complex, strongly correlated and anticorrelated

motions were observed across distant regions of the protein.5 This extensive coupling was

 34

only seen in the reactant form, not in either the DHFR·NADP+·THF or

DHFR·NADPH·THF complexes, implying that these motions may be necessary for

catalysis.5 NMR relaxation experiments indicate that binding events influence not only

active-site dynamics but also distal motions.9,10

In light of this evidence, it is imperative that protein flexibility be included when

considering inhibitor binding in ecDHFR. Here, we present a computational study of the

influence of conformational behavior of ecDHFR on inhibitor identification. We employ

multiple protein structures (MPS) to incorporate protein flexibility in structure-based

drug discovery. Our technique identifies complementary interactions within the binding

site of an ensemble of conformational states.15,16 Conserved regions, where the same

complementary interactions are consistently made in a majority of the MPS, define the

most essential binding hotspots for different chemical functionalitites. The

conformational states can be taken from MD simulation,16-18 X-ray crystallographic

structures15,19,20 or an NMR ensemble20. The method, initially applied to HIV

integrase,15,16 has been successfully extended to HIV-1 protease,17,18 and other species of

DHFR.19

The dynamic motions of ecDHFR are crucial to ligand binding and subsequent

catalysis. Additionally, incorporating protein flexibility expands the chemical and

conformational space of the predicted ligands. The use of pharmacophore models, rather

than specific, predetermined chemical scaffolds, also greatly increases the available

chemical space for the hit list. The incorporation of greater flexibility through extending

the length of the sampled MD simulation has shown an improvement of the identification

of known HIV-1 protease inhibitors over drug-like non inhibitors with our method.17,18

 35

Our recent work with DHFR showed that the inclusion of protein flexibility did not result

in a loss of specificity across DHFR from different species.19 In this study, we have used

snapshots from an MD simulation to develop models from the unliganded complex

DHFR·NADPH with the M20 loop in both the closed and open conformations. This use

of the DHFR·NADPH complex is analogous to that of using apo structures; the substrate

binding site has no predetermined conformation relating to a specific inhibitor. We also

utilize experimental structures to develop a pharmacophore model, in a similar way to our

previous work based on DHFR from other species.19 The MPS method has already been

shown to be successful when investigating apo HIV-1 protease structures17,18 and the

ecDHFR pharmacophore models developed here are highly selective for known DHFR

inhibitors over drug-like non-inhibitors. We also show that extending the length of the

MD simulation to increase sampling of protein flexibility improves model performance,

especially in the model resulting from the simulation of DHFR with the M20 loop in the

open, unproductive orientation. This study is a further indication of how important the

inclusion of conformational behavior can be in enhancing drug discovery.

Methods
Protein preparation. The starting models for the MD simulations were based on two

crystal structures of the wild-type E. coli DHFR·NADPH complex, representing both the

closed (1RX1) and open (1RA1) M20 loop.11 The 1RA1 structure was altered to include

the entire cofactor, building in the nicotinamide ribose group (Fig. 1) by direct alignment

with the coordinates in the 1RX1 structure. In complexes with the open loop, the

nicotinamide ribose group is mobile and moves in and out of the cofactor binding site.

We chose to represent it in the binding pocket, as electron density indicates that the

 36

pocket is occupied 75% of the time.11 The occupancy is increased to 100% upon binding

of the substrate and closure of the M20 loop.11 This conformation is more suited to

modeling inhibitor binding and hence more appropriate for this study.

Figure 1. The crystal structures of 1RX111 in blue with the closed M20 loop
conformation and 1RA111 in red in the open M20 loop conformation. NADPH is
shown in stick representation; the nicotinamide ribose moiety of the cofactor is not
resolved in the 1RA1 structure and was built in using the appropriate coordinates from
the 1RX1 structure. The M20 loop is to the right of the nicotinamide.

Side-chain orientations and protonation states were checked with a custom script in

PyMOL.21 Hydrogen atoms were placed using the LEaP routine22 and optimized with

conjugate gradient energy minimization (convergence criterion: RMS gradient <0.0001

kcal/mol Å). The force-field parameters for the cofactor were provided by Ryde et al.23

The protein was then solvated in a truncated octahedral box of TIP3P24 water extending

15 Å from the surface of the protein. To give the system a net neutral charge, 15 sodium

counter-ions were added 10 Å from the protein surface. A preliminary minimization of

the entire system was performed with 300 steps of conjugate gradient method to remove

initial bad contacts. The proteins heavy atoms were then held fixed. The water molecules

were heated from 10 K to 310 K over 50 ps, followed by equilibration (310 K) for 50 ps

at constant volume and a subsequent 300 ps with constant pressure. The entire system

 37

then underwent heating from 10 K to 310 K over 50 ps, followed by equilibration (310

K) for 50 ps at constant volume. Finally, 500 ps of all-atom equilibration at constant

pressure was performed, and 5 ns of production phase MD were collected. Analysis of

the MD (Fig. 2) trajectory showed that the system takes an unusually long time to

equilibrate, particularly the more mobile open conformation. This same slow

equilibration was also found in other dynamics studies of ecDHFR.5 For this reason, we

discarded the first nanosecond of production dynamics, leaving four nanoseconds of

sampling dynamics. This was done for both simulations to maintain consistency.

Snapshots were saved from the dynamics trajectory every 100 ps. All simulations were

carried out with AMBER.25

Figure 2. Plots reflecting the RMSD between the equilibration structure of (a) M20
closed-loop and (b) M20 open-loop ecDHFR and respective trajectory snapshots
versus time.

Comparison to pharmacophore models from X-ray crystallographic

structures. In our previous work, we utilized X-ray crystallographic structures of DHFR

from other species which had seven or more complexes in the PDB.19 There are only

Production dynamics

 38

crystal structures of wild-type ecDHFR bound to four unique ligands,11,26 but it is

important to compare models based on MD to those based on experimental structures. X-

ray crystallographic structures of the wild-type ecDHFR with unique ligands bound and

in which the cofactor was fully resolved were downloaded from the PDB.27 If a structure

with an identical ligand existed, the structure with the better resolution was taken. The

four resultant structures (1RA2,11 1RC4,11 1RX3,11 and 2ANQ26) had an average Cα

RMSD of 0.56 Å. Fig. 3 shows that the flexibility comes almost entirely in the M20 loop

region; there is very little conformational variation in the rest of the structure.

Figure 3. Average backbone structure for four X-ray crystallographic structures of
ecDHFR. A red, thicker tube indicates greater RMSD across the ensemble, whereas a
blue, narrow tube shows limited flexibility. Loop regions are labeled in the model. As
expected, greater flexibility is seen in the loops than in the core of the protein. The bound
conformation of methotrexate is superimposed on the model to orient the reader.

Probe flooding, minimization, and clustering. The procedure for the model set-

up was similar to that for our recent work on DHFR from other species.19 The active site

of each snapshot was flooded with 1000 small molecule probes using an 11 Å sphere

 39

centered at the mid-point of Phe31 and the nicotinamide ring of the cofactor, using an in-

house program to randomly pack the probes in their initial locations. The size and shape

of the binding site (in particular, the fact that it is relatively small and deep) required a

denser placement, in order to fully explore relevant interactions, as compared to our

earlier studies on HIV protease. This was achieved by doubling the number of probes

used, while keeping the flooding sphere size similar. Benzene probes were used to

identify aromatic and hydrophobic interactions, ethane probes were used to distinguish

hydrophobic interactions from aromatic, and methanol probes were used to identify

hydrogen-bonding interactions. Low-temperature Monte Carlo minimizations were

performed by the Multi-Unit Search for Interacting Conformers (MUSIC) routine in

BOSS,28 using the OPLS force field.29 In MUSIC, the protein is held fixed while the

probe molecules undergo simultaneous multiple gas-phase minimization. The probes

cluster into local minima which define complementary binding regions. Clusters

containing eight or more probes are identified with an automated procedure, based on

Jarvis-Patrick methodology (See Chapter 5). Each cluster is represented by its “parent”,

the lowest-energy probe in the group.

Each snapshot was overlaid to the final equilibration structure using a Gaussian-

weighted RMSD alignment30 to give a common frame of reference. Parent probes within

8 Å of the center of the binding site (defined by Phe31 Cγ) were combined and clustered

to give “consensus clusters”. A consensus cluster must contain parent probes from ≥ 50

% of the protein conformations. Pharmacophore elements were centered on the average

position of the probes in each consensus cluster, and the radius was given by the RMSD

of the probes in the cluster to the center of the cluster. Protein flexibility is implicitly

 40

included because only probes in conserved (rigid) regions are incorporated into

consensus clusters. In flexible regions, where no consensus clusters were present, no

limitations or requirements are set. This expands the range of chemical and

conformational space that can be explored. Small areas of highly conserved steric

constraints within the substrate binding pocket were represented by the inclusion of four

excluded volume elements. These were each given a radius of 1.5 Å and were centered at

the average position of Ile5 C, Ala 7 Cα, Phe31 Cγ, and Ile50 Cα.

Pharmacophore models were created using snapshots from the first one, two, and the

full four nanoseconds of sampling dynamics. A total of 10 snapshots were used for the

one nanosecond model (taken every 100 ps), and 20 snapshots were used for the two and

four nanosecond models (taken every 100 ps or 200 ps, respectively).

Creation of the ligand databases. MOE31 was used to screen three databases

against the models: one set of 50 high-affinity inhibitors, one set containing 541 general

DHFR inhibitors, and a general set of drug-like non-inhibitors. A total of 107 ecDHFR

inhibitors were taken from the literature, each with an IC50 ≤ 1 µM. The full set of

structures and affinity data are provided with references in the supplemental information

(the dataset is completely compatible with that from our earlier work). These inhibitors

were merged with the database of 493 DHFR inhibitors from our previous work19 to yield

a database of 591 unique inhibitors (there were nine duplicates). From this database, the

top 50 ecDHFR inhibitors were selected for the high-affinity dataset; the IC50 values

ranged from 2 – 28 nM. The remainder of 541 inhibitors was used as the general DHFR

inhibitor set. Our previous set of 2303 drug-like decoy molecules,19 obtained from the

CMC,32 was also used in this work. These decoy molecules had a molecular weight great

 41

than 100 and contained one hydrogen-bond donor and one aromatic atom, the set did not

contain any folate-like molecules.19 Rule-based torsion driving in OMEGA33 was used to

produce multiple conformations of each molecule, using an energy cutoff of 14 kcal/mol

calculated with the MMFF force field and a heavy-atom RMSD criterion of 1 Å. These

pre-generated conformations were compared to the pharmacophore models. A compound

was counted as a hit if one conformation could be aligned to the pharmacophore

coordinates.

Evaluation of pharmacophore models. The predictive performance of each

pharmacophore model was estimated by generating a receiver operator characteristic

(ROC) curve, where the percentage of true inhibitors (true positives) found is plotted

against the percentage of drug-like non-inhibitors (false positives) identified. The optimal

model would lie at the point (0,100) identifying no false positives but finding all true

positives, whereas models lying on a line that passes through the origin with a slope of 1

would be no better than random.

As in our previous studies, the number of elements required was varied, e.g. requiring

n, n – 1 or n – 2 elements from an n-site pharmacophore model.19 A multiplication factor

of 1 to 3 in ⅓ increments was used to increase the radius of each pharmacophore element

(e.g. radii = 1×RMSD, 1.3×RMSD, 1.7×RMSD). This is in keeping with similar studies

on HIV-1 protease.17,18 However, the much smaller RMSD values of the consensus

clusters found in the X-ray model required extension to 6 × RMSD to produce reasonable

models with radii in the range 0.8 – 4.1 Å (in our previous work we found optimal

models had elements with radii in the range 0.6 – 4.1 Å).19

 42

Results and discussion
Comparison of MPS models based on the closed-loop conformations.

Pharmacophore models resulting from the 1 and 2 ns MD simulations of ecDHFR in the

closed-loop conformation have six elements, while the model from the longer 4 ns of

sampling has just five. Fig. 4 shows that there are five common elements between these

three models. An aromatic element (aromatic/hydrophobic in the 1-ns model) makes an

interaction with Phe31 at the bottom of the binding site. Two hydrogen-bond donor

elements make interactions with NADPH O7 and Asp27 Oδ2 deep in the pocket. The

pteridine type moiety of folate and known inhibitors is characteristically mapped by these

three elements.

At a region corresponding to the p-aminobenzoate linker region of the substrate an

aromatic (aromatic/hydrophobic in the 1-ns and 2-ns models) element is present, making

an interaction with the cofactor. A hydrogen-bond acceptor in the mouth of the binding

site makes an interaction with Arg57; this contact can be fulfilled by a moiety such as the

glutamate tail of folate and some known inhibitors such as methotrexate. The 1-ns and 2-

ns models also contain an additional sixth element in this area, an aromatic/hydrophobic

site, which is lost with the greater flexibility incorporated in the 4-ns model. This sixth

element occupies the Cα region of the glutamate tail of folate; however, it is not essential

to high-affinity inhibitors of ecDHFR. It is reasonable that incorporating more flexibility

shows this site to be non-essential for inhibitors.

 43

Figure 4. Pharmacophore models are given based on snapshots from (a) 1 ns, (b) 2
ns, and (c) 4 ns of sampling dynamics of the M20 closed-loop conformation of E. coli
DHFR·NADPH (based on 1RX1). Also given are the models resulting from (d) 1 ns, (e)
2 ns, and (f) 4 ns sampling dynamics of the M20 open-loop conformation of E. coli
DHFR·NADPH (based on 1RA1). Elements are shown with radii = 1×RMSD: green
spheres map aromatic interactions, cyan spheres require aromatic or hydrophobic groups,
blue are hydrogen-bond acceptors, and red are hydrogen-bond donors. The gray spheres
are excluded volumes. The molecular surface, from 1RX1 or 1RA1 appropriately, is
shown in gray; the bound conformation of methotrexate is superimposed on the 1-ns
model to orient readers familiar with the DHFR binding site.

Closed 1
ns

Closed 2
ns

Closed 4
ns

Open 1 ns Open 2 ns Open 4 ns

A B C

D E F

 44

Comparison of MPS models based on the open-loop conformations. The

models from the 1-ns and 2-ns simulations of the open M20 loop both had 5

pharmacophore elements: the aromatic/hydrophobic element at the bottom of the pocket

(aromatic in the 1-ns model); the hydrogen-bond donor to Asp27 Oδ2; the

aromatic/hydrophobic element midway in the active site; a hydrogen-bond acceptor in the

mouth of the binding pocket; and an aromatic/hydrophobic element, also in the mouth of

the pocket. The 4-ns model has two additional hydrogen-bond donor sites, one similar to

that seen in the closed-loop interacting with NADPH O7 and another interacting with

Asp27 Oδ1. The appearance of these sites adds more specificity, which improves the

model by reducing the percentage of false positives identified (see performance

discussion below). In particular, the appearance of hydrogen-bond donor site with

relation to the co-factor is seems to be crucial to the model’s performance. In the closed

loop simulation, the distance between the Cδ of Phe21 and O7 of the cofactor averages

7.8 Å. When the M20 loop is open, NADPH is not packed in close to the substrate

binding site,11 and this same distance is longer. In the open-loop simulations, the distance

between Phe31 Cδ and the co-factor O7 averages 8.3 Å over the first two nanoseconds,

but it is 7.9 Å in the last two nanoseconds. As more dynamics are incorporated into the

pharmacophore model, conformations of the loop more similar to the closed form are

sampled, which is consistent with Wright’s observation that small populations of

alternate conformations are part of the observerable ensemble.9 This may explain why the

pharmacophore element representing an interaction with NADPH O7 is only present in

the 4-ns pharmacophore model based on the open-loop simulation.

 45

Performance of the MPS pharmacophore models. Each model was screened

against three databases: one set of 50 potent ecDHFR inhibitors, one set of 541 general

DHFR inhibitors, and one broad set of 2303 drug-like non-inhibitors. The number of

elements required was set by allowing a partial match in the pharmacophore search. The

radius of each element was manually altered in the pharmacophore query editor in

MOE31 to give the required radii multiplication e.g. 2×RMSD. The best pharmacophore

models hits the maximum of true positives with the least number of false positives being

identified; the optimal model is defined as having the shortest distance from (0,100). The

performance of pharmacophore models generated from 1, 2, and 4 ns of dynamic

sampling of DHFR·NADPH with both the closed (1RX1) and open (1RA1) M20 loop

conformations is given in Fig. 5. Both sets of models identify DHFR inhibitors, both

species-specific and general, over non-inhibitors. The optimal pharmacophore model for

each system preferentially hits potent ecDHFR inhibitors over other general DHFR

inhibitors. It is a concern that incorporating protein flexibility to expand the chemical

space may lead to a more general model with a lack of specificity, but this is not the case

with the MPS method.19

It is encouraging that using structures with cofactor but no folate mimic, analogous to

apo structures and hence not possessing conformational bias towards bound inhibitors,

produced effective pharmacophore models. Our MPS method is one of very few that can

successfully identify inhibitors for unbound, open binding sites. However, it is clear that

the models for the closed-loop, the conformation most similar to that of the bound

complex prior to reaction, are superior to those of the open loop.

 46

The optimal pharmacophore model from the closed-loop 1-ns simulation (6 from 6,

radii = 2.3 × RMSD) identified 86% of the high-affinity ecDHFR inhibitors and 56% of

the general DHFR inhibitors with just 6% of the false positives being hit. The optimal 2-

ns model (also 6 from 6, radii = 2.3 × RMSD) also identified 86% of the high-affinity

inhibitors, a higher percentage (61%) of the less potent DHFR inhibitors were also

identified, and even fewer of the drug-like non-inhibitors were hit (4%). The optimal

closed-loop 4-ns model (4 from 5, radii = 1.7 × RMSD) results in an increase of both the

high-affinity ecDHFR (88%) and general DHFR (84%) inhibitors identified while

maintaining a low false positive hit rate (11%). The bias towards high-affinity ecDHFR

inhibitors over other DHFR inhibitors indicates that specificity has not been lost during

the incorporation of protein flexibility. In fact, more flexibility results in the identification

of more known inhibitors.

 47

Figure 5. ROC curves for the closed-loop and open-loop pharmacophore models.
Series with filled data points are results from screening the high-affinity ecDHFR
database; those with open data points are the screening of general DHFR inhibitors.
Shown in red are results from models requiring n hits from an n-site pharmacophore
model, shown in blue are results from models requiring n – 1 hits from an n-site
pharmacophore model. Points along each series represent an increase in pharmacophore
element radii of 1×RMSD to 3×RMSD. Arrows indicate the optimal model.

 48

Although the optimal pharmacophore model from the open-loop 1-ns simulation (4

from 5, radii = 1.3 × RMSD) identifies 88% of potent ecDHFR inhibitors and 79% of

general DHFR inhibitors, it also hits 20% of the false positives. The optimal model from

the 2-ns simulation (4 from 5, radii = 1.0 × RMSD) is similar in performance, identifying

90% of the high-affinity ecDHFR inhibitors and 77% of the less potent inhibitors;

however, this model also hits 26% of the drug-like non-inhibitors. It is only when the

simulation time is increased to 4 ns that an improvement in open-loop model

performance is observed. The optimal 4-ns model (6 from 7, radii = 2.3 × RMSD) hits a

comparable number of inhibitors from both the high-affinity ecDHFR (86%) and general

DHFR (63%) inhibitor sets, and there is a marked decrease in the percentage of non-

inhibitors being falsely identified (13%).

It is encouraging to see that increased sampling of conformational space, by extending

the simulation time from 2 ns to 4 ns, can improve the relatively poor open-loop model

by reducing the percentage of false positives identified. Recent work by Boehr et al. used

NMR relaxation dispersion to study ecDHFR to develop a dynamic energy landscape of

catalysis.9 They found that each intermediate in the catalytic cycle was comprised of a

dominate conformation of the protein plus one or two additional conformational states

with much lower populations. These higher-energy states resembled the neighboring

intermediate in the cycle. This implies that ligand binding occurs by a conformational

selection.34 A small percentage of pre-existing conformations, resembling the bound

conformation, coexist in conjunction with the unbound state. A ligand can then bind to

the higher-energy conformation, causing an equilibrium shift towards the ligand-bound

conformation, which then becomes predominant. The work also suggested that ligand

 49

release works in a similar fashion, with the protein adopting a higher-energy

conformation resembling the unbound state, before ligand dissociation had occurred.9 It

is possible that extending the dynamic simulations allows more of the “excited states”

resembling the closed M20 loop to be sampled, which improves the models performance.

Improvement with increased dynamic sampling was also seen with HIV-1 protease

where it was shown that extending the simulation length resulted in identifying more true

inhibitors and fewer false positives.17 This also adds substantiation to our earlier finding

with human, P. carinii, and C. albicans DHFR where models based on crystal structures

with the greatest structural variation identified the most high-affinity inhibitors and the

fewest false positives compared to those with reduced flexibility.19 The optimal

pharmacophore models from the closed-loop simulations are similar in performance to

those generated from screening the P. carinii and human DHFR models from our

previous work,19 identifying over 86% of true inhibitors and very few false positives.

However, the models from the open-loop dynamics are less successful, with the models

identifying more false positives. This is not unexpected as the M20 open-loop

conformation does not represent a productive bound complex form.

X-ray pharmacophore model comparison. The pharmacophore model resulting

from the X-ray structures (Fig. 6a) shares five elements with the MD-based models: the

aromatic element at the bottom of the pocket, hydrogen-bond donors to Asp27 Oδ1 and

Oδ2, the aromatic element midway in the active site, and the hydrogen-bond acceptor in

the mouth of the binding pocket. In addition, there are two extra hydrogen-bond elements

and one extra aromatic element. One hydrogen-bond element is a result of a second

cluster of methanol probes interaction with Asp27 Oδ1, and the other reflects an

 50

interaction with the backbone carbonyl of Ile94. The additional aromatic element

corresponds to the p-aminobenzoate linker region of the substrate interacting with Phe31.

The performance of pharmacophore models generated from X-ray crystallographic

structures is given in Fig. 6b. The model does identify general DHFR inhibitors over non-

inhibitors, but the species-specificity is lost, with a higher percentage of general DHFR

inhibitors being identified over high-affinity, species-specific inhibitors. The overall

performance is similar to models we previously derived for C. albicans DHFR,19 which

also showed little conformational flexibility over the collection of crystal structures. In

both cases, although the rate of false positive identification is low, less than 50% of the

high-affinity true inhibitors are identified. Again, we see that limited flexibility in the

active site leads to modest performance. Even though conformational variability is seen

in the M20 loop, it only contributes a small part of the binding site; all other regions of

the binding pocket are nearly identical.

The optimal X-ray model (5 from 8, radii = 4.3 × RMSD) identified 42% of the high-

affinity ecDHFR inhibitors and 65% of the less potent DHFR inhibitors; only 3% of the

false positives were hit. Although this model is able to identify true positives over decoy

molecules, it lacks the species-specificity seen in the MD pharmacophore models. The

low level of conformational variance in the active site may make the pharmacophore

model resemble a static pharmacophore model. The number of extraneous sites and the

small radii (low RMSDs) of the elements is characteristic of models produced from a

single rigid structure. This again highlights the importance of including sufficient protein

flexibility in order to produce selective pharmacophore models for structure-based drug

discovery.

 51

 Figure 6. (a) Pharmacophore model resulting from an ensemble of ecDHFR crystal
structures. Coloring is the same as in Fig. 4. Elements are shown with radii = 2×RMSD.
(b) Associated ROC curves for the X-ray pharmacophore model. Series with filled data
points are results from the screening of a high-affinity ecDHFR database; those with open
data points are results from the screening of general DHFR inhibitors. Shown in red are
results from models requiring 6 hits from an 8-site pharmacophore model, shown in blue
are results from models requiring 5 hits from an 8-site pharmacophore model. Points
along each series represent an increase in pharmacophore element radii from 1×RMSD to
6×RMSD in increments of 1/3.

To our knowledge, the models presented here are the first receptor-based

pharmacophore models of E. coli DHFR. Joseph-McCarthy and Alvarez have made one

based on a single crystal structure of L. casei DHFR with MCSSS2PTS.35,36 MCSS2PTS

uses Multiple Copy Simultaneous Search (MCSS),37 a technique similar to MUSIC, to

generate pharmacophore points. For comparison, we have created a model based on a

single, static structure taken at equilibration of the closed-loop simulation (Fig. 7). In

Crystal Structures A B

 52

direct analogy to our MPS models, the radius of an element is defined as the RMSD of

the probe cluster that it represents, rather than the RMSD of the consensus cluster.

Figure 7. Static pharmacophore model for the equilibrated 1RX1 (M20 closed-loop)
structure. Coloring is the same as in Fig. 6. The radius of an element is defined as the
RMSD of the probe cluster that it represents, analogous to the RMSD of an MPS
consensus cluster. Elements are shown with radii of 1×RMSD. The bound conformation
of methotrexate is superimposed on the model to orient the reader.

Although the two techniques are not exactly the same, we find that our model looks

very similar to the MCSS2PTS model. In both our static model and the one proposed by

Joseph-McCarthy and Alvarez, there are an overwhelming number of pharmacophore

sites, only some of which overlap with the features of known ligands. Joseph-McCarthy

and Alvarez highlighted the elements that overlap with known binding features of

methotrexate. Our use of the MPS naturally highlights these same elements over the

many extraneous sites. This is a clear demonstration of how the addition of protein

flexibility helps us to identify the key features of the binding site.

 53

Conclusion
From MD simulations of E. coli DHFR·NADPH, we have developed receptor-based

pharmacophore models that take advantage of protein flexibility. Models resulting from

ecDHFR with the closed conformation of the M20 loop were highly selective and

identified relevant E. coli specific, high-affinity inhibitors over other general DHFR

inhibitors. A marked improvement was seen in the open-loop dynamics with an increase

in simulation length, indicating that including more flexibility can enhance the

pharmacophore models. It is important to note that this inclusion of greater protein

flexibility does not result in a loss of specificity, as the optimal models preferentially

identify potent ecDHFR inhibitors over other general DHFR inhibitors. These results are

particularly encouraging given that the DHFR·NADPH structure does not bias the folate-

binding site towards a conformation associated with any particular bound ligand. We

have also developed pharmacophore models based on ligand-bound crystal structures.

While these models are very selective for DHFR inhibitors, they lack the preference for

species-specific, high-affinity inhibitors seen in our models from an ensemble of MD

snapshots. Again, this demonstrates the importance of flexibility. The current interest in

ecDHFR dynamics in relation to catalysis can only emphasize the importance of

including protein flexibility in the quest for identifying novel inhibitors.

Acknowledgements. I thank Dr. Anna L. Bowman for her help throughout this

project. This work has been supported by the National Institutes of Health (Grant

GM65372) and the Beckham Young Investigator Program. I thank the University of

Michigan’s Molecular Biophysics Training Program for support (GM008270). For their

 54

generous donation of software I thank OpenEye for OMEGA and CCG for MOE. I also

thank Allen Bailey for maintaining the computers used in this work.

Supporting information available. The E. coli inhibitor data set used in this work and

the coordinates and RMSD of the pharmacophore elements for all models. This material

is available in Appendix 1.

 55

References
(1) Voet, D.; Voet, J. In Biochemistry; 2nd ed. ed.; John Wiley & Sons, Inc.: New
York, NY, 1995, p 762.
(2) Schweitzer, B. I.; Dicker, A. P.; Bertino, J. R. FASEB J 1990, 4, 2441-2452.
(3) Parker, C. N. J Biomol Screen 2005, 10, 647-648.
(4) Lang, P. T.; Kuntz, I. D.; Maggiora, G. M.; Bajorath, J. J Biomol Screen 2005, 10,
649-652.
(5) Radkiewicz, J. L.; Brooks III, C. L. J Am Chem Soc 2000, 122, 225-231.
(6) Agarwal, P. K.; Billeter, S. R.; Rajagopalan, P. T. R.; Benkovic, S. J.; Hammes-
Schiffer, S. Proc Natl Acad Sci USA 2002, 99, 2794-2799.
(7) Agarwal, P. K.; Billeter, S. R.; Hammes-Schiffer, S. J Phys Chem B 2002, 106,
3283-3293.
(8) Feeney, J. Angew Chem, Int Ed 2000, 39, 290-312.
(9) Boehr, D. D.; McElheny, D.; Dyson, H. J.; Wright, P. E. Science 2006, 313, 1638-
1642.
(10) Osborne, M. J.; Schnell, J.; Benkovic, S. J.; Dyson, H. J.; Wright, P. E.
Biochemistry 2001, 40, 9846-9859.
(11) Sawaya, M. R.; Kraut, J. Biochemistry 1997, 36, 586-603.
(12) Hammes-Schiffer, S.; Benkovic, S. J. Annu Rev Biochem 2006, 75, 519-541.
(13) Miller, G. P.; Benkovic, S. J. Chemistry & Biology 1998, 5, R105-R113.
(14) Schnell, J. R.; Dyson, H. J.; Wright, P. E. Annu Rev Biophys Biomol Struct 2004,
33, 119-140.
(15) Carlson, H. A.; Masukawa, K. M.; McCammon, J. A. J Phys Chem A 1999, 103,
10213-10219.
(16) Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman, F. D.; Jorgensen, W. L.;
Lins, R. D.; Briggs, J. M.; McCammon, J. A. J Med Chem 2000, 43, 2100-2114.
(17) Meagher, K. L.; Carlson, H. A. J Am Chem Soc 2004, 126, 13276-13281.
(18) Meagher, K. L.; Lerner, M. G.; Carlson, H. A. J Med Chem 2006, 49, 3478-3484.
(19) Bowman, A. L.; Lerner, M. G.; Carlson, H. A. J Am Chem Soc 2007, 129, 3634-
3640.
(20) Damm, K. L.; Carlson, H. A. J Am Chem Soc 2007, ASAP DOI:
10.1021/ja0709728.
(21) DeLano, W. L. 2002, DeLano Scientific, Palo Alto, CA, The PyMOL Molecular
Graphics System v0.99.
(22) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham III, T. E.;
Debolt, S.; Ferguson, D. M.; Seibel, G. L.; Kollman, P. A. Comput Phys Commun 1995,
91, 1-41.
(23) Holmberg, N.; Ryde, U.; Bulow, L. Protein Eng 1999, 12, 851-856.
(24) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J
Chem Phys 1983, 79, 926-935.
(25) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, I., T E ; Ross, W. S.;
Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J.
J.; Crowley, M.; Tsui, V.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.;
Singh, U. C.; Weiner, P. K.; Kollman, P. A. 1996, University of California, San
Francisco, San Francisco, CA, AMBER 6

 56

(26) Summerfield, R. L.; Daigle, D. M.; Mayer, S.; Mallik, D.; Hughes, D. W.;
Jackson, S. G.; Sulek, M.; Organ, M. G.; Brown, E. D.; Junop, M. S. J Med Chem 2006,
49, 6977-6986.
(27) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res 2000, 28, 235-242.
http://www.rcsb.org/pdb/.
(28) Jorgensen, W. L. 2000, Yale University, New Haven, CT, BOSS Version 4.2.
(29) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J Am Chem Soc 1996, 118,
11225-11236.
(30) Damm, K. L.; Carlson, H. A. Biophys J 2006, 90, 4558-4573.
(31) 2005, Chemical Computing Group, Montreal, Canada, MOE v2005.06.
(32) 2005, MDL Information Systems Inc., San Leandro, CA., Comprehensive
Medicinal Chemistry
(33) 2004, OpenEye Scientific Software, Inc., Santa Fe, NM, OMEGA Version 1.8.b1.
(34) Tsai, C. J.; Kumar, S.; Ma, B. Y.; Nussinov, R. Protein Sci 1999, 8, 1181-1190.
(35) Joseph-McCarthy, D.; Alvarez, J. C. Proteins 2003, 51, 189-202.
(36) Joseph-McCarthy, D.; Thomas, B. E.; Belmarsh, M.; Moustakas, D.; Alvarez, J.
C. Proteins 2003, 51, 172-188.
(37) Miranker, A.; Karplus, M. Proteins 1991, 11, 29-34.

 57

Chapter 3

Correlated and conformational dynamics of the
DHFR•NADPH complex

Introduction and background
Dihydrofolate reductase (DHFR; EC 1.5.1.3) catalyzes the NADPH-dependent

reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). DHFR is the only source of

tetrahydrofolate, an important precursor in the biosynthesis of purines, thymidylate and

several amino acids. Thus, it has been a long-standing anti-cancer target.1 The potential to

target species-specific DHFR has also made it an important antibiotic and anti-microbial

target.2 The full catalytic cycle is summarized in Fig. 8. The structure, dynamics, and

function of DHFR have been studied extensively, as summarized in a recent review,2 and

flexibility has been shown to be of paramount importance throughout the catalytic cycle.

Correlated dynamics have been shown to contribute to catalysis and to change in distinct

patterns throughout the catalytic cycle.3 Most recently, NMR experiments have shown

that each catalytic intermediate samples so-called “excited states,” which are

conformations similar to the adjacent states in the catalytic cycle.4

 DHFR is composed of an eight-stranded β-sheet (βA - βH) and four α-helices

(αB, αC, αE, and αF). It has two rigid-body subdomains, the adenosine-binding domain

and the loop subdomain. The conformation of the M20 loop in the loop subdomain is

particularly important to the catalytic cycle, and it is known to regulate ligand binding,

selectivity, and turnover.2,5-12 Three conformations of the M20 loop are known: open,

 58

closed, and occluded. The Michaelis complex DHFR•NADPH•DHF is found with the

M20 loop closed. When the product is bound (DHFR•NADP+•THF, DHFR•THF, or

DHFR•NADPH•THF), the M20 loop is found in the occluded position, forcing the

nicotinamide moiety of the cofactor out of the pocket. Meanwhile, DHFR•NADPH is

found in both the open and closed conformations. Fluctuations of the M20 loop are on the

same time scale as substrate/cofactor binding and product release, and they are thought to

guide the protein through the catalytic cycle.2 The M20 loop has also been shown

computationally to exhibit a “tightly closed” variation of the closed conformation that

compresses and stabilizes the active site, contributing directly to catalysis.7

Figure 8. The catalytic cycle and the M20 loop of DHFR. (a) DHFR’s catalytic cycle,
indicating M20 loop conformations and representative crystal structures.4,6,13 (b) The
open (grey) and closed (black) conformations of the M20 loop seen in the
DHFR•NADPH structures. Non-hydrogen atoms of NADPH are shown in spheres.

Open

Closed

DHFR•NADPH•DHF
closed
1RX1

DHFR•NADP+•THF
occluded

1RX4

DHFR•THF
occluded

1RX5

DHFR•NADPH•THF
occluded

1RX6

DHFR•NADPH
closed, open
1RX1, 1RA1

(a) (b)

 59

NMR experiments have shown that ligand and cofactor binding changes

flexibility and dynamic motions throughout the protein, both in the active site and

distally.4,10,14 The motional coupling of DHFR has been further studied through both

experiment and theory. Several mutagenesis studies have indicated residues near and far

from the active site that have a significant effect on catalysis, with Ala9, Asp27, Leu28,

Phe31, Arg44, His45, Thr46, Leu54, Tyr100, Thr113, Gly121, and Asp122 affecting the

first three steps of the catalytic cycle by a factor of 6 or more.3,9,15-26 The fact that distal

mutations have nonadditive effects supports the notion that long-range coupling exists

between the residues and enhances catalysis. In particular, hydride transfer is affected by

motions of the FG and M20 loops on the picosecond-nanosecond time scale.27 Mutations

of Gly121 have been shown to alter the ensemble of substates sampled by the protein,

thus increasing the hydride transfer barrier.11

Radkiewicz and Brooks used classical molecular dynamics (MD) to study these

coupled motions via correlated dynamics analysis of DHFR•DHF•NADPH (Michaelis

complex), DHFR•THF•NADP+ (product ternary complex), and DHFR•THF•NADPH

(product release complex).3 While some level of correlated dynamics was found in all

states, the correlations were only significant in the reactant state, DHFR•DHF•NADPH.

The regions of strong anti-correlation were particularly enlarged in this state, and almost

nonexistent in the other states. They examined 11 of the 12 mutations listed above

(Asp27 was ignored, as it is directly involved in the chemical reaction). Four of those

mutations are in the active site and are not involved strongly correlated dynamics. The

remaining seven are all found in regions of strong anti-correlated motion. Catalytically

important mutations have been shown to alter the pattern of correlated dynamics.28 Wong

 60

et al. have also shown that residues in several distal regions (including the M20, FG, and

GH loops and the adenosine-binding domain) affect the network of coupled motions.29

Recently, hybrid quantum/classical molecular dynamics (QM/MM) studies of both E. coli

and Bacillus subtilis DHFR have been compared to the classical MD studies of E. coli

DHFR, and these studies found similar correlated dynamics in the reactant, transition,

and product states.30,31

In this paper, we use classical MD to study the conformational changes and

correlated dynamics of the E. coli DHFR•NADPH complex. We perform these

simulations for two DHFR•NADPH complexes, one with an open M20 loop and one with

a closed-loop starting structure. To our knowledge, these are the first MD simulations of

DHFR•NADPH in the literature. We show that conformational states pre-exist that mimic

the binding of DHF, in good agreement with Boehr et al.4 More importantly, we find that

the dynamics seen in other theoretical studies also pre-exist transiently in our

simulations! The theory of pre-existing conformational states is gaining wide acceptance,

and our findings of pre-existing dynamics further develops these concepts. Detailed

structural analysis is presented to support these findings. This analysis has also revealed a

potential allosteric site in DHFR.

Methods

Molecular dynamics
These studies are an extension of a previous examination of the suitability of

DHFR•NADPH (“apo”) structures for structure-based drug design.32 Those studies used

snapshots from 4 ns of simulations; here, we have extended the simulations to 10 ns to

better examine the dynamic behavior. The closed- and open-loop crystal structures of the

 61

DHFR•NADPH complex (accession codes 1RX16 and 1RA16 respectively) were

obtained from the PDB.33 In the open-loop complex, the NADPH’s nicotinamide is

mobile, moving in and out of the active site. Thus, it is unresolved in the 1RA1 crystal

structure. When the M20 loop is excluded, the root-mean-square deviation (RMSD)

between 1RA1 and 1RX1 is 0.461 Å. Given this high degree of structural similarity, the

rest of the cofactor was modeled into the 1RA1 structure by direct comparison with the

1RX1 coordinates. The electron density indicates that the nicotinamide is found in the

pocket 75% of the time in the open-loop structure, and 100% of the time when the

substrate binds and the M20 loop closes.6 This conformation was chosen because it is

both more suited to modeling substrate binding.

A custom PyMOL34 script was used to check side-chain orientations and

protonation states. The LEaP routine from the AMBER35 suite of programs was used to

place hydrogen atoms, and conjugate gradient energy minimization (convergence

criterion: RMS gradient < 0.0001 kcal/mol Å) was used to optimize their positions.

Parameters for the protein were taken from the AMBER9436 force field, while parameters

for the cofactor were obtained from the literature.37 The DHFR•NADPH complex was

solvated with explicit TIP3P38 waters in a truncated octahedral box extending 15 Å from

the protein surface. MOE39 was used to generate an electrostatic potential surface 10 Å

from the protein surface, and a single sodium ion was placed at the minimum on that

surface. This procedure was repeated until a total of 15 counter-ions had been added, thus

giving the system a net neutral charge. The system was then subjected to 300 steps of

conjugate gradient minimization to remove bad initial contacts. The protein heavy atoms

were held fixed while the water molecules were heated at constant volume from 10 K to

 62

310 K over 50 ps. This was followed by 300 ps of constant-pressure equilibration. The

heavy-atom restraints were then removed and the entire system was heated from 10 K to

310 K over 30 ps and subsequently equilibrated for 50 ps of equilibration at 310 K, all at

constant volume. The final phase of equilibration was 1.5 ns at constant pressure.

Previous studies have found that DHFR requires longer equilibration, ranging from 0.9 ns

to 2.5 ns.3 We also found that a long equilibration was necessary; both the open- and

closed-loop simulation were equilibrated and stable after 1.5 ns.32 For both conformations

of DHFR, a total of 10 ns of NPT sampling was collected for analysis.

Correlated dynamics
The ptraj module of AMBER 840 was used to calculate correlation matrices for

various parts of our trajectories. As our methods are most similar to the original work by

Radkiewicz and Brooks,3 we have emulated their color scheme in which strongly anti-

correlated residues are dark blue, uncorrelated residues are light blue, correlated residues

are yellow and strongly correlated residues are red. We have examined the correlation by

α-carbons, as is the standard in the literature,3 but we also present a more detailed

analysis of all main-chain heavy atoms and the cofactor. The plots presented in this paper

were created by examining windows of size 1 ns at intervals of 100 ps throughout the

trajectory, labeled in the style “1.2-2.2 ns”, “1.3-2.3 ns”, “1.4-2.4 ns”, etc.

Hydrogen bonds and bridging water
The ptraj module of AMBER 840 was used to calculate intraprotein and protein-

cofactor hydrogen bonds throughout the trajectories. Default parameters for distance and

angle cutoffs were used (3.0 Å and 120° respectively).

 63

Anisotropic thermal diffusion (ATD)
The original techniques for studying ATD were developed by Ota and Agard.41

We have implemented a similar protocol using AMBER 8.40 The LES module was used

to selectively heat individual residues. As per the work of Ota and Agard, a super-cool

equilibration of the entire system was performed; harmonic restraints of 5 kcal/mol-Å2

were applied to backbone and exposed atoms, and a distance-dependent dielectric (ε=4r)

was used. With AMBER, the selected residue is coupled to a high-temperature heat bath,

and the rest of the protein is coupled to a low-temperature heat bath. This coupling of the

rest of the protein redistributes energy so, rather than comparing absolute values of the

calculated B-factors, we compared them relative to the B-factor of the excited residue.

Excited residues were placed into groups having B-factors ≥ 1/3 that of the excited

residue, ≥ 2/3 that of the excited residue, etc.

Pocket analysis
Three programs were used in the analysis of the new pocket: CAVER,42 the

fuzzy-oil-drop (FOD) method,43,44 and MOE39 Site Finder.45 Given a starting point in the

interior of a protein, CAVER calculates open pathways to the outside solvent. It is

implemented both as a stand-alone program and as a plug-in for PyMOL34. CAVER uses

a grid-based method. Pathways are reported as a series of grid points, along with the

maximally sized sphere that can be inscribed at each point. The distributed PyMOL plug-

in works only with static structures, and we modified it to report information throughout

a trajectory. We calculated a maximum of 10 pathways through each snapshot. Default

values were used for all other parameters.

The FOD method43,44 uses hydrophobic deficiency – the difference between

empirical hydrophobicity and that predicted by a 3D Gaussian function, also known as a

 64

FOD model – to predict functional sites in a protein. The method has been tested with

several classes of enzymes. The general principle is that functional sites are more

hydrophobic than an idealized FOD model would predict. The method is available for use

via a web-based interface (http://loschmidt.chemi.muni.cz/caver/index.php). Default

values were used for all parameters, including the use of the FOD hydrophobicity scale.

MOE Site Finder45 is an automated tool based on alpha spheres that uses a

combination of geometry and hydrophobicity to detect and rank potential binding sites on

a protein surface. MOE Site Finder is included with MOE,39 and default values were used

for all parameters.

Results and discussion

Preorganization of the binding site
During the MD simulations of DHFR in the absence of folate, pre-organization of

the binding site is observed. Arg 52, Arg57 and the M20 loop adopt conformations that

clearly show conformations related to substrate binding and catalysis, Fig. 9.

To identify conformations similar to other steps in the catalytic cycle, all-atom

RMSD analysis was used to compare conformations from the trajectories to crystal

structures representing states in the catalytic cycle. Arg52 showed clear conformational

changes during both the open- and closed-loop simulations. Its side chain switches

between two stable conformations, one orientation pointing in toward the folate-binding

site. These conformations can be clearly distinguished in various crystal structures that

show the inward conformation makes two important hydrogen bonds with folate.

Additionally, Arg57 contributes significantly to the overall variation within the binding-

site residues. Arg57 makes key hydrogen bonds with folate, and it is pre-organized for

 65

folate binding in the crystal structures. In the MD, Arg57 sampled several states, coming

in and out of the pre-organized state, clearly showing that the “bound conformation” is

one of several available in the unbound state. Wright and coworkers have used NMR

experiments to identify marker residues that, independent of M20 loop conformation,

undergo significant and reliable shifts upon folate binding.4,14 Arg52 and Arg57 are

among those marker residues.

Figure 9. Preorganization of the binding site observed during the two MD
simulations. The M20 loop conformations sampled three conformations: open, closed,
and “tightly closed”. The backbone of Glu17 makes a key hydrogen bond to NADPH in
the tightly-closed conformation. The position of methotrexate is shown in transparent
ball-and-stick to highlight ligand interactions in the bound state (taken from the 1RA3
crystal structure – we emphasize that no folates were present during the simulations).
Arg52 samples conformations suitable for hydrogen bonding with bound ligands, but its
starting position from the 1RX1 crystal structure (black) cannot make these interactions.
Arg57 starts in the pre-organized orientation and samples in and out of this conformation.

Arg52

Arg57

Open Closed Tightly Closed

Glu17

NADPH

MTX

 66

Analysis of the trajectories shows clear differences in the loop conformations.

This is in agreement with previous studies that have also reported transitions between

loop conformations during MD simulations.3,28 During the closed-loop simulation, a new

conformation is observed in which the M20 loop packs even more tightly against the

NADPH. In addition to generally tighter packing, this new conformation (Fig. 9) is also

characterized by the formation of a hydrogen bond between NADPH and the Glu17

backbone. This tighter packing may be relevant to catalysis; recently, Khavrutskii et al.

have reported a “tightly closed” conformation that has been shown to contribute to

catalysis by enhancing the interaction of the substrate and cofactor.7 While they do not

provide explicit details as to the exact conformation of this tightly closed state, we

believe that the tightly closed conformation seen in our simulations may be similar.

During the open-loop simulation, we see the M20 loop adopt a “more open”

conformation. In both simulations, the other loops exhibit significantly less

conformational flexibility, and they are known to have significantly less differentiation

between various stages of the catalytic cycle.

Correlated dynamics and the network of coupled residues
While pre-organized conformational states were recently indicated by

NMR,10,27,46-48 our simulations have revealed for the first time that dynamics unique to

the reactive state also pre-exist the binding of folates. Previous calculations by Brooks

and coworkers3,28 indicated that these dynamics are unique to the reactant state, but it is

possible that the dynamics were not observed because their simulations were analyzed

over 10 ns. FG and M20 loop motions on the picosecond-nanosecond time scale are

known to affect hydride transfer,10,27,46 and QM/MM studies have shown that a network

 67

of coupled motions on the femtosecond-picosecond time scale affect hydride transfer.49

Therefore, it is important to analyze the simulations on time scales that will preserve

information about these motions.

The complex in general. When correlations are calculated over the entire 10 ns of our

MD, no significant regions of strong anti-correlated motion are observed. The results

look similar to Radkiewicz and Brooks’s3 product state (DHFR•NADP+•THF)

simulations. However, when analyzed in 1-ns segments, our simulations clearly show

strong anti-correlated dynamics from the reactant state (DHFR•DHF•NADPH). The

major regions of strong anti-correlated dynamics include the M20 loop (anti-correlated

with αC, the CD loop, αE, and αF), the FG loop (anti-correlated with αC, the CD loop

αE, and αF), and αF (anti-correlated with the M20 loop, the CD loop, αE, and the FG

loop). It is intriguing that these dynamics are present transiently throughout our

simulations, as shown in Fig. 10. In the closed-loop simulation, the motions appear to

become activated quite suddenly around 0.5 ns and then fluctuate throughout the rest of

the simulation. We will refer to this phase of the simulation as “activated dynamics.” In

the open-loop simulation, the strength of the correlated motions fluctuates throughout the

entire simulation. The correlations clearly show that the M20 and FG loops consist of

separate sub-regions. The beginnings and ends of these loops are defined by

crystallographic considerations. However, different subsets of these loops are in contact

with different parts of DHFR’s secondary structure and have different degrees of

exposure to solvent; this results in the sub-regions having different dynamic behavior.

 68

Figure 10. Pre-existing dynamics. (a) Cα correlated dynamics for the entire closed-loop
simulation does not reveal the key motions related to catalysis. (b, c, d) When examined
in 1-ns windows, correlated dynamics of main-chain, heavy atoms show the transient
nature of the strong correlated motions of DHFR (within black box) and NADPH. The
color scheme is detailed in Fig. 11.

The dynamics resemble those previously reported for wild-type

DHFR•DHF•NADPH simulations, rather than those from the DHFR•THF•NADP+ and

DHFR•THF•NADPH3 or the less catalytically active DHFR mutants.28 NMR

experiments on CypA have detected a similar effect, where enzyme motions from the

catalytic step are found in the unbound state; furthermore, they are found with

frequencies corresponding to turnover rates.50 The window from 0.6-1.6 ns shown in Fig.

11 – representative of the activated dynamics in our simulations – includes all strongly

anti-correlated regions seen in Radkiewicz and Brooks’s DHFR•DHF•NADPH

simulation,3 with the exception that we see a diminished anti-correlation in the M20-αE

region. We do see strong anti-correlation in this region later in the simulation (e.g., the

4.2-5.2 ns window). We see all of Radkiewicz and Brooks’s regions of strong positive

correlation, but we observe a stronger positive correlation between aF and Ile5 and Ala6.

(d) Mainchain, 4.5-5.5 ns
(a) Cα , 0-10
ns

(b) Mainchain, 0.0-1.0 ns (c) Mainchain, 0.6-1.6 ns

 69

In fact, the entire section becomes a correlated block on several occasions (e.g., 6.5-7.5

ns).

Figure 11. Representative period of strong correlations between loops, helices, and
the cofactor. The scale ranges from -1 (dark blue, fully anti-correlated) to +1 (dark red,
fully correlated). The regions of strong anti-correlated motions involve primarily the
loops. The correlations clearly show that the M20 and FG loops have separate sub-
regions that have different behavior. The cofactor exhibits regions of strong positively-
and negatively-correlated motion. The motion of the cofactor is shown to be anti-
correlated only with regions of the key M20 and FG loops.

Our activated dynamics are also similar to those observed by Hammes-Schiffer

and coworkers30,31 when following the reaction coordinate from reactant to transition

state to product for both E. coli and Bacillus subtilis DHFR. They note that, in general,

dynamics are stronger in the reactant state. The similarity is qualitative, rather than

M20

CD

FG

GH

αC

αF

NADPH

βA βB βC βD βE βF βG βH

αE

αB

 70

quantitative, because the energy surfaces sampled in our MD is different than that of the

reactant state in Hamer-Schiffer’s QM/MM simulations.30,31 They note that the

correlation between residues 117-120 of the FG loop and 87-90 of the hinge region is

positive in the reactant state and negative in the transition state. They also note that

residues 67 and 55 are positively correlated in the reactant state and negatively correlated

in the product state. They note further that the presence of anti-correlations between the

GH and M20 loops may be used to distinguish the reactant and transition states. Finally,

Hammes-Schiffer and coworkers find a significant island of motion between the FG and

GH loop in the reactant state (unseen in studies from the Brooks group3). In our

simulations, the region involving residues 117-120 and 87-90 is intermittently anti-

correlated. We find that residues 67 and 55 are intermittently both positively and

negatively correlated in our simulations. We see a transient region of strongly anti-

correlated dynamics between the GH and M20 loops, similar to the reactant state of

Hammes-Schiffer and coworkers. Finally, we see a significant island of anti-correlated

motion between the FH and GH loop, persistent enough in our simulations that it appears

in correlation plots derived from the entire trajectory as well as the 1 ns windows. Taken

together, our simulations of DHFR•NADPH show strong agreement with the reactive-

state dynamics described by comparable simulations of folate-bound DHFR conducted by

Brooks and coworkers; they also show intermittent agreement with various characteristics

of the reactant, transition and product states described by Hammes-Schiffer and

coworkers using a QM/MM modeling technique.

These correlated dynamics are supported by a network of residues exhibiting

coupled motions (see Appendix 1). Several studies have been done to elucidate the exact

 71

makeup of this network via NMR, MD, and folding experiments.29-31,49,51-55 The network

is theorized to be stabilized by hydrogen bonds28 and electrostatic effects.30 Hammes-

Schiffer and coworkers have conducted several QM/MM studies to identify a network of

coupled residues and promoting motions along the reaction coordinate.31,49,51 Two earlier

papers from Agarwal and coworkers49,51 explicitly list a network of coupled residues

from E. coli DHFR studies. More recently, Watney and Hammes-Schiffer performed a

QM/MM study of E. coli and B. subtilis with substrate and cofactor bound.31 Due to the

large differences in time scale, we cannot make direct comparisons with the work of

Hammes-Schiffer and coworkers.29-31 However, we find a surprisingly strong

correspondence with their results when we look at residues that exhibit significant anti-

correlated motion, as shown in Fig. 11. One difference stands out: although they identify

residues that are anti-correlated with the FG and GH loops, they do not find anti-

correlations between the FG and GH loops, while we do. While the work of Pan et al.52

focuses on correlations involved in folding and unfolding, we can still make some

interesting comparisons. In particular, they find negative correlation between the folate-

binding site and residues 63-68, indicating that folate binding induces destabilization of

the loop. They verify this experimentally by comparing B-factors for folate-bound and -

unbound. With the onset of activated dynamics in our studies, we find that residues 63-68

are anti-correlated to the M20 loop as well as to a large portion of the protein, including

residues in the folate- and NADPH-binding sites. These residues are also positively

correlated to NADPH itself.

For comparison purposes, we have compiled a list of all residues identified in the

literature as being involved in E. coli networks. One plot of our correlated dynamics in

 72

Appendix 1 is highlighted, showing that all of these residues are involved in regions of

correlated or anti-correlated motions, with most involved in regions of strong anti-

correlation. Mutagenesis of residues within the regions of strong anti-correlation have

been shown to greatly effect catalysis.9,15-26,56

The cofactor. Because we have analyzed the simulation by all heavy atoms, and not just

the Cα, particularly interesting correlations can be elucidated with the cofactor (Fig. 11).

We see regions of both strong correlation and anti-correlation with loops and helices, and

there are clear distinctions between the individual chemical moieties of NADPH. The

nicotinamide is always positively correlated to the M20 loop. During the activated

dynamics in the closed-loop simulation, this correlation decreases and the adenine moiety

becomes strongly anti-correlated with the M20 loop. It is reasonable that these two

moieties of NADPH should show differing dynamic relationships to the M20 loop, given

that the occluded conformation only forces the nicotinamide moiety out of the binding

site. The CD loop is strongly positively correlated to the adenosine and phosphate linker,

as are residues 76-78 that comprise a small loop between βD and αE, located near the

adenine. The FG loop (defined crystallographically as residues 116-133) exhibits strong

patterns of both positive and negative correlation with the cofactor at different times

throughout the simulations. During the activated dynamics, it is anti-correlated with the

adenosine and the phosphate linker. Later in the trajectory, residues 120-124 become

strongly positively correlated with nicotinamide and associated ribose. Lastly, we note

the GH loop is strongly anti-correlated to the phosphate linker during the activated

dynamics (this anti-correlation begins just after the snapshot shown in Fig. 11), but

uncorrelated at most other times. As anti-correlations with the loops dominate the

 73

reactant-state dynamics of Radkiewicz and Brooks,3 it is worth noting that the cofactor

exhibits strong anti-correlation with all of the loops at various points in the simulations.

In the closed-loop simulation, strong anti-correlation with both the CD and FG loops

precedes the activated dynamics. This trend is less clear in the open-loop simulation,

which does not display such a distinct onset of strongly correlated dynamics.

The helices also shows significant correlations with NADPH. αC is always

positively correlated with the adenosine and phosphate linker and, to a lesser degree, the

ribose and nicotinamide. αF is positively correlated to all of NADPH throughout the

entire simulation. We are able to identify at least one breathing motion. The phosphate

linker and adenosine ribose are sandwiched between αC and αF, both of which hydrogen

bond to the cofactor. As might be expected, αC, αF, the phosphate linker, and the

adenosine ribose move together as a unit, exhibiting strong positive correlations with

each other. Most of the strong intra-protein, anti-correlated motion involves loops, and

αC and αF are the only non-loop regions involved in large intra-protein anti-correlations;

both are anti-correlated with the M20 loop, as are the ribose and phosphate linker. Thus,

we see a breathing motion with the M20 loop on one side and the αC/αF/phosphate

linker/ribose block on the other. Finally, we note that, aside from the exceptions noted

above, all of these cofactor-protein correlations are greatly strengthened during the

activated dynamics.

A potential allosteric binding site
Examination of folate-bound crystal structures reveals the existence of several

important hydrogen bonds between the protein and folate, located at the bottom of the

active site. However, this part of the binding site is fairly closed off in the folate-free

 74

crystal structures, and there is not enough room for the base of the pterin ring. This may

explain why our MD simulations and others have shown that longer equilibration times

are necessary for this system. During our examination of the relaxation at the base of the

folate-binding site, we discovered an unusual pathway through the protein, extending

from the folate site to a second, smaller site. The residues that line the second site show

unusual physical characteristics and dynamics that lead us to propose this as a potential

allosteric site on ecDHFR. This suggestion is supported by older mutagenesis studies and

the position of crystallographic additives in one X-Ray structure.

We used CAVER42 to characterize the shape of the folate binding site throughout

our trajectories. CAVER allows for easy identification and visualization of pathways

from the interior of a protein to the surrounding solvent. When CAVER is started at the

bottom of the folate-binding site, the predominant pathway passes through the region in

which folate binds. A secondary cavity was discovered which opened gradually over the

equilibration of the closed-loop simulation. Fig. 12 shows how the primary cavity and the

secondary pathway form a tunnel that passes through the protein. While the narrowest

portion of the cavity is often too tight for water to pass through, it opens into a pocket on

the far side that is large enough to bind small molecules. When we examined snapshots

taken every 5 ps throughout our simulations, we found that the cavity persists throughout

almost all of the closed-loop simulation, while it appears in only one snapshot from the

open-loop simulation. This indicates that fluctuations on a larger timescale may be

important in controlling the cavity and associated pocket. Another possibility, suggested

by the fact that it appears primarily in the closed-loop simulation, is that it is correlated to

folate-organized binding sites.

 75

Figure 12. A potential allosteric site. The new site is at the end of the cavity shown in
purple mesh. It is flanked by Phe137, Phe153 and Ile155, shown in sticks. The cavity
containing the folate-binding site is shown in green mesh, and NADPH is shown in ball-
and-stick. The β-bulge is clearly visible above Phe137. The M20 loop and main entrance
to the active site is on the rear face of the figure. The green and purple cavities were
generated by applying CAVER to the equilibrated closed-loop structure, and it clearly
shows the connectivity between the two.

Other codes also identify the new site as a potential binding site. MOE39 Site

Finder45 uses geometry and hydrophobicity to detect and rank potential binding sites on a

protein surface, often breaking a known pocket into several sub-regions. In the

examination of our fully equilibrated closed-loop structure, the two highest-ranked sites

comprise the folate-binding site. The next two highest-ranked sites comprise the new

pocket. The FOD method has previously been used to predict binding sites from PDB

structures.43,44 It uses hydrophobic deficiency to predict functional sites in a protein.

Folate cavity

New cavity and
potential allosteric site

Ile155
Phe137

Phe153

β-bulge

 76

When used to analyze the closed-loop crystal structure 1RX1, FOD revealed that the

residues most probable for binding extended from the folate-binding site through the

cavity and into the new pocket.

A recent study by Soga et al. showed that the amino acid composition of binding

sites is significantly different from that of non-binding concavities on the protein

surface.57 They found that Trp, Phe and Tyr are the first, third and fifth most likely amino

acids to be found in binding sites, respectively. The surface-exposed residues in the new

pocket are Ala26, Ala29, Trp30, Arg33, Tyr111, Phe137, Glu139, His141, Phe153 and

Ile155. Thus, the number of aromatic side chains in the pocket indicates that it has a valid

composition for a binding site.

It is possible that this new site may be utilized for allosteric control. Experimental

evidence indicates that there is clear structural communication between this pocket and

the active site. The far pocket contains a β-bulge that was examined via mutagenesis

experiments in the early 1990s, but has been largely ignored in more recent work.

Double-mutant experiments have shown that Phe137, Phe153, and Ile155 communicate

with the active-site residue Asp27 to mediate catalysis and ligand affinity.20,58 Moreover,

crystallographic experiments comparing the wild-type structure to the D27S/F137S

mutant have shown that it is likely that there is structural communication between these

residues, involving the αB helix and the side chain of Trp30.59 In these experiments, the

Trp30 side chain rotates approximately 180° degrees from the conformation seen in the

wild-type crystal structures in order to facilitate this communication. While we see some

movement of this side chain, we do not see the 180° rotation. It is possible that this

conformation exists only in the mutant structure, or the side chain flips on a timescale

 77

longer than that of our simulation. When we consider the entire pathway from the active

site to the far pocket, we find an additional residue (Thr113) for which mutation has a

very strong affect on catalysis, and several other residues (Trp30, Tyr111, Leu112,

His114) that are adjacent to residues for which mutation has a very strong affect on

catalysis.

Further experimental evidence of this site’s ability to bind small molecules is

provided in the crystallographic literature. A crystal structure from M. tuberculosis

(1DF760) shows DHFR bound to NADPH, MTX, and four glycerol molecules. One of

these glycerols is found next to MTX in the active site, and the authors propose its

location as a way to extend MTX and develop improved drug leads. A second glycerol,

undiscussed by the authors, is found in our proposed allosteric site, and its binding is

stabilized by three hydrogen bonds. The fact that it is found in an MTX-bound structure

lends support to the idea that this binding site may be related to folate binding.

To further investigate the possibility of allosteric control, we have examined the

flow of energy between the far pocket and the active site. Ota and Agard have developed

the ATD method to investigate allostery.41 Select residues are heated, and the diffusion of

thermal energy is observed. A directed (anisotropic) flow of energy indicates coupled,

allosteric regions. In particular, the thermal energy tends to propagate along pathways

used for allosteric control. As shown in Fig. 13, we find a direct pathway of thermal

communication between our new pocket and the folate-binding site; the pathway involves

Phe137, Ile155, Tyr111, and a crystallographically conserved water molecule (found in

1RX1, 1RX4, 1RX5, 1RX6, 1RA1, and 1RA3).

 78

Additionally, we find further support in the MD. Several water molecules exhibit

notable occupancies and lifetimes in interactions within the new site (see Appendix 1).

The correlated dynamics of the closed-loop simulation shows distinct patterns. Ile155,

Phe153, Phe137, and Tyr111 are all positively correlated with one another, and a clear,

positive correlation is seen along the pathway from ATD, including the sites of all three

of the β-bulge mutants. We next turned our attention to communication between the new

site and the folate-binding site. Ile5, Ala6, Asp27, Phe31, Lys32, Arg52, Arg57, Ile94

and Tyr100 are within 3.5 Å of MTX in the 1RA3 crystal structure,6 and several show

correlations with residues in the new site. Ile5 and Ala6 are part of an island of strong

positive correlation that involves Tyr111, part of the ATD pathway. Asp27 is part of a

transient region of strong positively correlated dynamics with Glu139, His141, and

Phe153 which are part of a turn between βG and βH. Ile94 and Tyr111 are positively

correlated throughout the simulation.

 79

Figure 13. Pathway for communication between the new site and the folate-binding
site. After 3ps of ATD, DHFR has been colored by calculated atomic fluctuations, where
blue shows low motion and red shows the accelerated motion of the heated residue,
Ile155. NADPH is shown in ball-and-stick. A clear path can be seen from Phe137 to
Ile155 to Tyr111 to a conserved crystallographic water to the folate-binding site
(indicated here by methotrexate (MTX)). The glycerol molecule from 1DF7 marks the
entrance to the cavity, which runs across the top of the indicated residues from glycerol to
MTX. The positions of the methotrexate seen in the 1RA3 crystal structure and the
glycerol found in the 1DF7 crystal structure are shown in transparent ball-and-stick.
Hydrogen bonds are shown in black dashes.

Conclusion and summary
We have shown that the DHFR•NADPH complex samples conformations relevant

to the folate-bound state and catalysis, but more importantly, we provide new insights

into the basic biophysics of the dynamics of DHFR. Previous MD and QM/MM work has

Phe137

Ile155

Tyr111
H2O

MTX
NADPH

Glycerol

 80

shown that a network of coupled motions facilitates hydride transfer and that the

corresponding correlated dynamics are present primarily in the reactant state. We have

shown that these motions are present in DHFR•NADPH, pre-existing the binding of

DHF. It is intriguing that the motions are present only transiently in DHFR•NADPH, and

many are not seen on a standard multi-nanosecond timescale. Proteins are known to

sample a conformational ensemble of states, only some of which are relevant to ligand

binding and catalysis. Our results indicate that they sample a similar ensemble of

correlated dynamics.

This finding has important implications for any system in which correlated

dynamics affect binding and catalysis. Examining dynamics on an appropriate timescale

is vitally important. The correlated dynamics in this study are transient, present well

before ligand binding, and washed out when examined at timescales of several

nanoseconds. We strongly encourage other researchers to examine dynamics on both long

and short timescales relevant to their particular system.

Lastly, we have used a multitude of techniques to identify and characterize a new

potential binding site, showing consistent patterns with diverse approaches. Taken

together, this provides a good deal of support that the new pocket may be important as a

potential allosteric or regulatory site. If this is true, there are many exciting implications,

the most obvious of which is that small molecules binding in this site could form new

classes of anti-cancer and anti-microbial drugs. This is further supported by the

appearance of a crystallographic additive in the new site of a structure of M. tuberculosis

DHFR.

 81

Acknowledgments
We thank Dr. Warren DeLano for his assistance in writing and speeding up

custom PyMOL scripts and Alex Buck, Dr. Bosco Ho, and Prof. David Agard for their

help with the ATD simulations. Financial support from the National Institutes of Health

(Grant GM65372), the Beckman Young Investigator Program and the University of

Michigan’s Molecular Biophysics Training Program (NIGMS grant GM008270) is

gratefully acknowledged.

Supporting information available. Information about correlated dynamics of the

loops and network of coupled motions is available in Appendix 1, as is information about

the behavior of hydrogen bonds and bridging water molecules throughout the trajectories.

 82

References
(1) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry; 5th ed.; W. H. Freeman
and Company: New York, 2002.
(2) Schnell, J. R.; Dyson, H. J.; Wright, P. E. Annu. Rev. Biophys. Biomol. Struct.
2004, 33, 119-140.
(3) Radkiewicz, J. L.; Brooks, C. L., III J. Am. Chem. Soc 2000, 122, 225-231.
(4) Boehr, D. D.; McElheny, D.; Dyson, H. J.; Wright, P. E. Science 2006, 313, 1638.
(5) Venkitakrishnan, R. P.; Zaborowski, E.; McElheny, D.; Benkovic, S. J.; Dyson,
H. J.; Wright, P. E. Biochemistry 2004, 43, 16046-16055.
(6) Sawaya, M. R.; Kraut, J. Biochemistry 1997, 36, 586-603.
(7) Khavrutskii, I. V.; Price, D. J.; Lee, J.; Brooks, C. L., III Protein Sci. 2007, 16,
1087-1100.
(8) McElheny, D.; Schnell, J. R.; Lansing, J. C.; Dyson, H. J.; Wright, P. E. Proc.
Natl. Acad. Sci. USA 2005, 102, 5032-5037.
(9) Miller, G. P.; Benkovic, S. J. Biochemistry 1998, 37, 6336-6342.
(10) Osborne, M. J.; Schnell, J.; Benkovic, S. J.; Dyson, H. J.; Wright, P. E.
Biochemistry 2001, 40, 9846–9859.
(11) Thorpe, I. F.; Brooks, C. L., III Proteins: Struct. Funct. Bioinformatics 2004, 57,
444-457.
(12) Rod, T. H.; Brooks, C. L., III J. Am. Chem. Soc. 2003, 125, 8718-8719.
(13) Fierke, C. A.; Johnson, K. A.; Benkovic, S. J. Biochemistry 1987, 26, 4085-4092.
(14) Osborne, M. J.; Venkitakrishnan, R. P.; Dyson, H. J.; Wright, P. E. Protein Sci.
2003, 12, 2230-2238.
(15) Adams, J.; Johnson, K.; Matthews, R.; Benkovic, S. J. Biochemistry 1989, 28,
6611-6618.
(16) Adams, J. A.; Fierke, C. A.; Benkovic, S. J. Biochemistry 1991, 30, 11046-11054.
(17) Ahrweiler, P. M.; Frieden, C. Biochemistry 1991, 30, 7801-7809.
(18) Cameron, C. E.; Benkovic, S. J. Biochemistry 1997, 36, 15792-15800.
(19) Chen, J. T.; Taira, K.; Tu, C. P. D.; Benkovic, S. J. Biochemistry 1987, 26, 4093-
4100.
(20) Dion, A.; Linn, C. E.; Bradrick, T. D.; Georghiou, S.; Howell, E. E. Biochemistry
1993, 32, 3479-3487.
(21) Farnum, M. F.; Magde, D.; Howell, E. E.; Hirai, J. T.; Warren, M. S.; Grimsley, J.
K.; Kraut, J. Biochemistry 1991, 30, 11567-11579.
(22) Fierke, C. A.; Benkovic, S. J. Biochemistry 1989, 28, 478-486.
(23) Miller, G. P.; Benkovic, S. J. Biochemistry 1998, 37, 6327-6335.
(24) Murphy, D. J.; Benkovic, S. J. Biochemistry 1989, 28, 3025-3031.
(25) Wagner, C. R.; Thillet, J.; Benkovic, S. J. Biochemistry 1992, 31, 7834-7840.
(26) Ohmae, E.; Ishimura, K.; Iwakura, M.; Gekko, K. J. Biochem. (Tokyo) 1998, 123,
839-846.
(27) Rajagopalan, P. T. R.; Lutz, S.; Benkovic, S. J. Biochemistry 2002, 41, 12618-
12628.
(28) Rod, T. H.; Radkiewicz, J. L.; Brooks, C. L., III Proc. Natl. Acad. Sci. USA 2003,
100, 6980-6985.

 83

(29) Wong, K. F.; Selzer, T.; Benkovic, S. J.; Hammes-Schiffer, S. Proc. Natl. Acad.
Sci. USA 2005, 102, 6807-6812.
(30) Wong, K. F.; Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2004, 108,
12231-12241.
(31) Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2006, 110, 10130-10138.
(32) Lerner, M. G.; Bowman, A. L.; Carlson, H. A. J. Chem. Inf. Model. 2007, 47,
2358-2365.
(33) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235-242.
(34) DeLano, W. L. 2002, Palo Alto, CA, USA, The PyMOL Molecular Graphics
System 0.99rev8.
(35) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham Iii, T. E.; Ross, W. S.;
Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L. 1999,
University of California, San Francisco, AMBER 6.
(36) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D.
M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995,
117, 5179-5197.
(37) Holmberg, N.; Ryde, U.; Bulow, L. Protein Eng. 1999, 12, 851-856.
(38) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J.
Chem. Phys. 1983, 79, 926-935.
(39) MOE 2005, Chemical Computing Group, Montreal, Canada, MOE 2005.06.
(40) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.;
Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.;
Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.;
Caldwell, J. W.; Ross, W. S.; Kollman, P. A. 2004, University of California, San
Francisco, AMBER 8.
(41) Ota, N.; Agard, D. A. J. Mol. Biol 2005, 351, 345-354.
(42) Petřek M., O. M., Banáš P., Košinová P., Koča J. and Damborský J. BMC
Bioinformatics 2006, 7.
(43) Bryliński, M.; Prymula, K.; Jurkowski, W.; Kochańczyk, M.; Stawowczyk, E.;
Konieczny, L.; Roterman, I. PLoS Comput. Biol. 2007, 3, 0909-0923.
(44) Brylinski, M.; Konieczny, L.; Roterman, I. Bioinformation 2006, 1, 127-129.
(45) Edelsbrunner, H.; Facello, M.; Fu, P.; Liang, J. System Sciences, 1995. Vol. V.
Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences
1995, 5.
(46) Epstein, D. M.; Benkovic, S. J.; Wright, P. E. Biochemistry 1995, 34, 11037-
11048.
(47) Falzone, C. J.; Wright, P. E.; Benkovic, S. J. Biochemistry 1994, 33, 439-442.
(48) Li, L.; Wright, P. E.; Benkovic, S. J.; Falzone, C. J. Biochemistry 1992, 31, 7826-
7833.
(49) Agarwal, P. K.; Billeter, S. R.; Rajagopalan, P. T. R.; Benkovic, S. J.; Hammes-
Schiffer, S. Proc. Natl. Acad. Sci. USA 2002, 99, 2794-2799.
(50) Eisenmesser, E. Z.; Millet, O.; Labeikovsky, W.; Korzhnev, D. M.; Wolf-Watz,
M.; Bosco, D. A.; Skalicky, J. J.; Kay, L. E.; Kern, D.; Contact, N. P. G. Nature 2005,
438, 117-121.

 84

(51) Agarwal, P. K.; Billeter, S. R.; Hammes-Schiffer, S. J. Phys. Chem. B 2002, 106,
3283-3293.
(52) Pan, H.; Lee, J. C.; Hilser, V. J. Proc. Natl. Acad. Sci. USA 2000, 97, 12020-
12025.
(53) Benkovic, S. J.; Hammes-Schiffer, S. Science 2003, 301, 1196-1202.
(54) Wang, L.; Tharp, S.; Selzer, T.; Benkovic, S. J.; Kohen, A. Biochemistry 2006,
45, 1383-1392.
(55) Hammes-Schiffer, S.; Benkovic, S. J. Annu. Rev. Biochem. 2006, 75, 519-541.
(56) Dion-Schultz, A.; Howell, E. E. Protein Eng. 1997, 10, 263-272.
(57) Soga, S.; Shirai, H.; Kobori, M.; Hirayama, N. J. Chem. Inf. Model. 2007, 47,
400-406.
(58) Howell, E. E.; Booth, C.; Farnum, M.; Kraut, J.; Warren, M. S. Biochemistry
1990, 29, 8561-8569.
(59) Brown, K. A.; Howell, E. E.; Kraut, J. Proc. Natl. Acad. Sci. U. S. A. 1993, 90,
11753-11756.
(60) Li, R.; Sirawaraporn, R.; Chitnumsub, P.; Sirawaraporn, W.; Wooden, J.;
Athappilly, F.; Turley, S.; Hol, W. G. J. J. Mol. Biol. 2000, 295, 307-323.

 85

Chapter 4

PyPAT: a python-based toolset to aid in the analysis of protein
structures and trajectories

Introduction
While packages such as AMBER,1 CHARMM,2 and GROMACS3 provide

excellent tools for performing molecular dynamics (MD) simulations, there are some

gaps in the tools provided by these packages for the analysis of those simulations. Other

packages, such as MMTSB4 and WHAT IF5 help to fill in this gap. To this end, we have

written PyPAT (Python-based Protein Analysis Tools), a suite of open-source analysis

tools.

A wide variety of programming languages are available for consideration in the

creation of such tools. Tools for the analysis of MD trajectories are, in general,

significantly less computationally intensive than those used in the calculation of those

trajectories. Therefore, the speed of executing the programs is less of a consideration than

the ability to rapidly develop and maintain the code. With this in mind, we have chosen

the scripting language Python, which is very easy to read, write and maintain, rather than

a faster, compiled language (C, C++, FORTRAN, etc.). Python has an additional

advantage: when execution speed is necessary, it is very easy to call code from libraries

written in a faster, compiled language. As an example of this, we have incorporated

numpy6, an efficient, compiled package to perform more complex numerical calculations.

 86

When implementing these tools, we found that several tasks were performed

repeatedly. Whenever possible, these tasks have been abstracted into reusable libraries.

These speed the development further tools by making it possible for end users to easily

access these common functions instead of rewriting their own code to perform common,

repetitive tasks.

MD calculations are typically performed via a command-line interface (CLI).

Since our tools are used in the analysis of such trajectories, all of our tools are accessed

via a CLI. Python provides several modules to aid in the creation of command-line tools.

All of our tools make use of the optparse module, which provides both consistent, easy to

understand documentation as well as reasonable default values whenever possible.

Our tools are primarily meant to interact with the AMBER suite of programs,1 and

have been extensively tested on both OS X and Linux. Many may be installed on

Windows systems, but this is generally unsupported. A full list of dependencies is

provided with the tools, including Python 2.5 (www.python.org), matplotlib 0.9.0

(matplotlib.sourceforge.net), numpy 1.0.1,6 PyMOL 1.0,7 gnuplot (www.gnuplot.info)

and ImageMagick 6.3.2 (www.imagemagick.org). These are all freely available and are,

with the exception of ImageMagick, entirely open-source. We feel that this reliance on

open-source tools is particularly important. Access to source code is important for

understanding and modifying code. We expect that researchers will want to modify and

extend PyPAT to suit their purposes.

 87

Software availability
Software is available free of charge for all users at

http://www.umich.edu/~carlsonh and is released under an open-source license. Many

utilities require input from ptraj, which is covered under the AMBER license.1

Tools

Graphical display of MD parameters over time
AMBER contains sander, a program that performs MD simulations. Analyzing

MD simulations requires assessment of the convergence of dynamic properties, such as

temperature, pressure, total energy, potential energy, kinetic energy and various error

estimates. Sander outputs this information to a text file, and our script

(parse_sander_output.py) was created to aid in visualizing and quickly assessing

convergence. The script creates graphical images of the time-evolution of the properties.

It also creates an html file that shows thumbnails of all these images, nested with links to

larger versions. Our script parses the sander output file and creates individual tab-

delimited files of temperature vs. time, potential energy vs. time, etc. Additionally, the

data of all the dynamic properties is compiled into one large tab-delimited file. The tab-

delimited format was chosen because it is easily read by any spreadsheet code, making it

convenient for further analysis and creating figures.

Bridging water analysis
Bridging water molecules (BWs) are extremely important to the structure,

dynamics and function of proteins and nucleic acids. They perform many roles, including

stabilizing structures,8-14 mediating hydrogen bonds,8-10,12,14,15 regulating flexibility and

motion,8,11-13 altering local electrostatic properties,8,10,14,15 mediating hydrophobic

contacts,9,10 and contributing directly to catalytic reactions.8,10-12,14,15 They have important

 88

implications for drug design9 and are particularly relevant in the study of nucleic

acids12,13 and protein-nucleic acid interactions.14,15 MD simulations performed in explicit

water provide a unique opportunity to examine bridging water interactions. The ptraj

module of AMBER1 calculates hydrogen bonds between a protein atom and water

molecules, but not protein-water-protein bridges. To our knowledge, the analysis of BW

is tedious for all MD packages, not just AMBER. It typically requires the user to search

traditional hydrogen-bonding data to find individual waters that interact with more than

one hydrogen-bonding group within a complex. This is straightforward when the user

already knows to look for a BW (for instance, the DBLWAT command in WHAT IF can

be used5). However, it is difficult to identify previously unknown interactions. This is

unfortunate because insights like these are strength of MD. Our codes

(collect_water_bridges.py and display_bridging_interactions.py) fill

this gap in the currently available toolsets. In the default installation, it can provide

information about water bridges between standard amino acids, nucleic acids, and

NADPH. Users can easily extend it to provide information about other ligands, non-

standard amino acids, etc. For convenience, we will refer to those molecules (proteins,

nucleic acids, and ligands) interacting with BW as “protein” in the following discussion.

The code collect_water_bridges.py is used within PyMOL7 to perform

the first step in processing the trajectory files. For each frame in the trajectory, all water

molecules with a heavy atom-heavy atom distance of ≤4.0 Å to the protein are analyzed

for their interactions with hydrogen-bond donors and acceptors on the protein (the 4.0 Å

default distance can be changed via an argument in the CLI). We chose to calculate the

interactions using an overly generous cutoff in the first stage and display the data with

 89

more stringent cutoffs in the second stage. This allows the user to change criteria and

examine the effects without re-processing the entire trajectory. Distance and angle

information are accumulated in the first code with the final step recording any water

molecule that has more than one interaction with the protein. The second code,

display_bridging_interactions.py, inverts the data from a water-centric

perspective into bridging interaction (BI) data with protein-water-protein triplets.

There are several unusual cases that can arise in BIs that complicate the analysis.

BW can provide multiple BIs on occasion. For example, a BW may donate hydrogen

bonds to two protein atoms while also accepting a hydrogen bond from a third protein

atom (3 BIs). Suppose that after 200 ps, there is a shift, and two water molecules enter so

that the same 3 BIs are made, but each by an individual BW. Before and after the shift,

the same number of interactions is made, regardless of the number of BWs. We report

both events as 3 BIs. Instead, if the shift at 200 ps causes the original BW to lose one of

the interactions and no other water compensate, the number of BIs drops from 3 to 1.

The display_bridging_interactions.py code has several options. The

user can select a second, more stringent cutoff for the heavy atom-heavy atom distances

that define the hydrogen bonds. This can be any value less than or equal to the 4.0-Å

cutoff in the first phase (if the user sets the first-phase cutoff smaller or greater than 4.0

Å, that will change the maximum distance available in this analysis). Output can be

restricted to BIs involving a particular set of residues. It can be sorted by either

occupancy or ALT. It can be filtered by minimum occupancies and ALTs. Users may

specify a minimum required lifetime. For example, one may choose not to include

 90

interactions that last less than three frames of the trajectory. Eliminating these transient

interactions may give a clearer picture of the occupancy and ALT of a particular BI.

We find that it is common to have BIs where the water drifts briefly beyond the

distance cutoff and then comes back into range. In a situation where, for example, a

particular water molecule interacts in one BI for 300 ps, drifts away for 1 ps, and comes

back to the same BI for another 300 ps, it may be more appropriate to record one 601-ps

interaction, rather than two 300-ps interactions. Thus, we allow the user to specify an

additional “looseness” parameter that indicates how long that transient displacement can

be. This is in keeping with analysis of lifetimes of standard hydrogen bonds by ptaj,

except that the user can set the looseness parameter, while ptraj uses a set default of one

frame for solvent interactions and zero for non-solvent interactions.

 When calculating the occupancy of a BI, we must properly account for cases in

which more than one BW occupies a particular BI at the same time. For instance, suppose

that we have a trajectory with 10 snapshots, and a particular BI is occupied by two BWs

in the first five snapshots and one BW in the last five. It is possible to double-count and

report an occupancy of 150%. Although this is easy to interpret when the occupancy is

greater than 100%, it is less clear when the occupancy is less than 100%. For instance, an

occupancy of 80% could mean that one BW was making the interaction for eight

snapshots or that two waters were making the interaction for four snapshots. For this

reason, we do not double-count in these cases. Rather, occupancy is defined as the

percentage of frames in the trajectory for which the BI is occupied, regardless of the

number of BWs involved. If a BI is particularly important for a system, the user will

surely visualize those interactions and determine the role of multiple BWs.

 91

For each BI, display_bridging_interactions.py reports BI using a format

similar to ptraj:

BI 900.0ps Occ:72.9% ALT:29.7ps #H2O:158
 Bridge:(Glu154 OE2) to (Ser135 HG): oxx**.xo*ox*@**@*x

In order, the format provides the following information:

1. The total time the BI is occupied, in picoseconds
2. The occupancy (percentage of the trajectory for which the BI is occupied)
3. The average lifetime (ALT – the average length of time for which a BI is

occupied; longer ALTs may be relevant to the thermodynamic stability of BWs
and BIs)

4. The total number of times the BI is occupied throughout the trajectory
5. The atoms and types of hydrogen-bonding interactions involved (above, the BW

is donating to the side chain of Glu154 and accepting from the side chain of
Ser135)

6. A graph of the occupancy throughout the MD (the trajectory is divided into user-
defined sections – 18 in the example above – and each section is coded in keeping
with ptraj’s notation: “@” for a BI that was occupied during 95-100% of the
section, “*” denotes 80-95%, “o” for 40%-60%, “-“ for 20-40%, “.” for 5-20%,
and a blank space for 0%-5%)

7. Optionally, a list of IDs of all of the BWs that occupy the interaction (not shown
in the example above)

Hydrogen bonding
AMBER’s ptraj module does an excellent job of calculating hydrogen bonds

throughout MD simulations. Unfortunately, in examining our systems, we have found

that we often run out of memory when using ptraj for moderately sized (≥10 ns)

simulations. The solution to this problem is to use ptraj to calculate hydrogen bonds for

subsections of the trajectory that do fit into memory and then use the script

(combine_hbonds.py) to piece together the results to produce data from the trajectory

as a whole. Regardless of the memory issues, a full calculation of all of the hydrogen

bonds in a protein system produces too much information to be easily understood. At the

command line, our script allows the user to sort the results based on several factors

including total occupancy and residue ID, as well as allowing the user to filter the results

based on a list of important residues and minimum required occupancy. The script also

 92

allows for a comparison of two (or more) trajectories. The output from corresponding

hydrogen bonds is displayed together, allowing the user to see how hydrogen-bonding

patterns differ in the trajectories. The combination of features in our script allows the user

to calculate all of the hydrogen bonds first, and then filter it to display smaller, more

understandable amounts of data from one or more trajectories. It is more efficient to

calculate all of the interactions and display subsets than to recalculate for each individual

case of interest.

Correlated dynamics
Correlated dynamics have been used to study relative motion in many protein

systems,16-21 and we use a representative protein with a bound cofactor in our examples

below. Given a vector X whose components are random variables (x1, … , xn) with means

(µ1, … , µj) and standard deviations (σI, … , σj), the covariance of two entries, xi and xj is

defined as the expectation value

Cov(xi,xj) = < (xi - µi)(xj - µj) >.

The magnitude of the covariance depends on the standard deviations, and is therefore

often scaled to obtain the correlation:

Corr(xi,xj) = cov(xi,xj) / (σiσj).

The correlation matrix is formed in the same way as the covariance matrix, with values

normalized to range from -1 to 1. Two completely synchronized elements have a

correlation of 1, two perfectly anti-correlated elements have a correlation of -1, and two

independent variables have a correlation of 0.

 93

We have written scripts that automate the calculation of correlation matrices from

an MD trajectory. These scripts use AMBER’s ptraj module to calculate correlation

matrices, allowing the user to optionally align the trajectory and filter out hydrogens and

other atoms. In our work, we have found that analyzing correlations in long trajectories

requires special treatment. It is important to look at dynamics at various timescales, rather

than simply averaging them over the entire trajectory. Our scripts allow the user to

calculate the correlation matrices in windows of arbitrary length and spacing throughout

the trajectory. For instance, we prefer to calculate these matrices in windows spanning 1

ns; we step this 1-ns window through the entire trajectory at 100 ps increments (e.g., 1.5-

2.5 ns, 1.6-2.6 ns, 1.7-2.7 ns, etc.). Of course, a user can calculate the correlation over the

entire trajectory by simply setting that as the length of the window.

One of the biggest advancements is the collection of scripts we have written to aid

in the visualization of correlated dynamics. First, several different color schemes

(technically known as color maps) are typically used in the literature (e.g., see the

difference between figures in representative publications16,18,21). Matplotlib (our chosen

plotting package) has several standard color maps and allows for the creation of user-

defined color maps. In addition to supporting the standard color schemes via the

command line, we have created a custom color map that mimics that of Radkiewicz and

Brooks.16 In that coloring scheme, strongly anti-correlated regions are dark blue; yellow

and red are used for medium and strong positive correlations, and light blue is used for

uncorrelated regions. In the event that a different coloring scheme is desired, users can

define their own color maps.

 94

Most investigations of correlated dynamics in the literature focus on correlations

between α-carbons. We find that significant information is contained in the correlations

of other atoms in the system. Thus, our scripts provide the option to calculate α-carbon,

main-chain heavy-atom, or all-atom correlations in ptraj and display the information in a

variety of ways. A comparison may be seen in Fig. 14. We typically find that main-chain,

heavy-atom plots are the most informative. It is worth noting that, by default, the main-

chain and all-atom figures include correlations with ligands and cofactors. These are

extremely important, but have typically been ignored, because of the exclusive use of Cα

analysis in the literature. All-atom plots contain the full information, but are often less

useful in practice. Side-chain atoms, even those in regions of rigid structure, tend to be

uncorrelated with other atoms. Furthermore, the common use of SHAKE1,22 will remove

correlation information for hydrogens. Our tools also allow the user to calculate and plot

the following values on a per-residue basis: average, maximum, minimum, and greatest

absolute value. Each of these quantities provides useful information. For example,

looking at the minimum plots allows a researcher to focus specifically on anti-correlated

motion. The greatest-absolute-value plots have the advantage that regions of correlated

and anti-correlated motion stand out more sharply from the background. An example is

shown in Fig. 14c.

 95

Figure 14. Correlated dynamics plots. These plots show the correlated dynamics from
1 ns of an MD simulation performed on a representative protein with a bound cofactor. a)
A standard plot of α-carbon correlations. The numbering on the axes denotes the residue
involved. The color scheme is shown on the right. b) The same data plotted for all main-
chain heavy atoms and the associated cofactor. The correlated and anti-correlated regions
are more detailed, and the important interactions with the cofactor are revealed on the top
and right sides of the figure. c) For each residue, the largest absolute value of its atoms is
plotted. Regions of positive and negative correlations may be more easily detected in this
coloring scheme. d) The main-chain, heavy-atom plot is shown with a user-defined
highlight of specific regions. This can be used to filter out information in other regions.
The reader should be aware that some of these plots contain more information than can
be seen at the resolution printed on this page.

R
es

id
ue

 n
um

be
r

a) Cα correlations b) All heavy-atoms

Protein Cofactor

Pr
ot

ei
n

C

of
ac

to
r

c) Maximum absolute value d) User-defined highlights

 96

These plots can contain a seemingly overwhelming amount of information. Thus,

our scripts provide several options for highlighting areas of interest. This is done by

“fading out” the alternative regions. In Fig. 14d we show correlated dynamics, with user-

defined regions highlighted. Focusing on different regions, like the intersection of a

binding site and a regulatory site, can provide new insight into the structure and dynamics

of system.

Finally, we have found that the correlated dynamics can change throughout the

course of an MD simulation. Our scripts make movies of the correlated dynamics,

allowing the user to visualize their changes with time. This is only possible if the user

chooses to calculate the correlations in windows smaller than the full length of the

trajectory. In order to make this visualization as easy as possible, html pages are

generated that contain small versions of the movies, linking to the full-sized versions.

Conclusion
We have created several scripts to augment the analysis of AMBER trajectories,

building on the existing functionalities of ptraj. These tools are written in Python and

released under an open-source license in the hopes that other researchers will be able to

easily use and extend them. In particular, by changing the input format, one could use the

scripts with different packages such as CHARMM and GROMACS.

Acknowledgements
I thank Dr. Steve Spronk for his help throughout this project. I thank Dr. Warren

DeLano for his assistance in writing and speeding up custom PyMOL scripts. I also thank

Mark Ditzler and Dr. Nils Walter for the definitions of RNA hydrogen-bond donors and

acceptors. Financial support from the National Institutes of Health (Grant GM65372), the

 97

Beckman Young Investigator Program and the University of Michigan’s Molecular

Biophysics Training Program (NIGMS grant GM008270) is gratefully acknowledged.

Supporting information. The source code for PyPAT is available in Appendix 2.

 98

References

(1) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.;
Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.;
Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.;
Caldwell, J. W.; Ross, W. S.; Kollman, P. A. 2004, University of California, San
Francisco, San Francisco, AMBER 8.
(2) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;
Karplus, M. J. Comput. Chem 1983, 4, 187-217.
(3) Spoel, D. V. D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H.
J. C. J. Comput. Chem. 2005, 26, 1701-1718.
(4) Feig, M.; Karanicolas, J.; Brooks, C. L., III J. Mol. Graph. Model 2004, 22, 377-
395.
(5) Vriend, G. J. Mol. Graphics 1990, 8, 52-56.
(6) Oliphant, T. E. Guide to NumPy; Trelgol, 2006.
(7) DeLano, W. L. 2002, Palo Alto, CA, USA, The PyMOL Molecular Graphics
System 0.99rev8.
(8) Nakasako, M. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 1191-1206.
(9) Plumridge, T. H.; Waigh, R. D. J. Pharm. Pharmacol. 2002, 54, 1155-1179.
(10) Saenger, W. Annu. Rev. Bioph. Biom. 1987, 16, 93-114.
(11) Smith, J. C.; Merzel, F.; Bondar, A. N.; Tournier, A.; Fischer, S. Philosophical
Transactions: Biological Sciences 2004, 359, 1181-1190.
(12) Westhof, E. Annu. Rev. Bioph. Biom. 1988, 17, 125-144.
(13) Feig, M.; Pettitt, B. M. Structure 1998, 6, 1351-4.
(14) Jayaram, B.; Jain, T. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 343-361.
(15) Bergqvist, S.; Williams, M. A.; O'Brien, R.; Ladbury, J. E. J. Mol. Biol. 2004,
336, 829-842.
(16) Radkiewicz, J. L.; Brooks, C. L., III J. Am. Chem. Soc 2000, 122, 225-231.
(17) Rod, T. H.; Radkiewicz, J. L.; Brooks, C. L., III Proc. Natl. Acad. Sci. USA 2003,
100, 6980-6985.
(18) Thorpe, I. F.; Brooks, C. L., III Proteins Struct. Funct. Bioinformat. 2004, 57,
444-457.
(19) Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2006, 110, 10130-10138.
(20) Wong, K. F.; Selzer, T.; Benkovic, S. J.; Hammes-Schiffer, S. Proc. Natl. Acad.
Sci. USA 2005, 102, 6807-6812.
(21) Wong, K. F.; Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2004, 108,
12231-12241.
(22) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327-
341.

 99

Chapter 5

Automated clustering of probe molecules from solvent
mapping of protein surfaces

Introduction
In an effort to understand protein binding and function, researchers will often

create a reciprocal map of a protein surface. Multiple-copy methods (MCM) use probe

molecules to define these complementarity maps. These techniques flood the protein

surface with hundreds of small molecule probes. The probes are then simultaneously and

independently minimized to the protein’s potential energy surface. Different probe

molecules map out hydrophobic regions, hydrogen-bonding interactions, ion pairing, etc.

Clusters of probes on the protein surface can define the most important among these

interactions. However, grouping probes into clusters is not always straightforward, and

yet, it is essential to mapping “hot spots”1 and fragment-based drug design.2-4 Despite this

importance, there is little diversity in the methods used for defining clusters.

Clustering techniques
The most widely known MCM is multiple copy simultaneous search (MCSS).5,6

The applications tend to remove probes throughout the minimization process.5 Root-

mean-square difference (RMSD)-based clustering is used at each step, and only the

lowest-energy member of each cluster is retained. Additionally, an energy cutoff is used

so that high-energy probes are removed throughout the minimization. In some

implementations, these clusters are then ranked via energy-based techniques.7

 100

MCSS2PTS automates the procedure of using the MCSS method to generate

pharmacophore models.6 In doing so, it uses standard RMSD methods to cluster the

minimized probes.

Many different methodologies have been used to group molecules into clusters in

chemical space such as RMSD-based methods, K-means clustering8 and Jarvis-Patrick

(JP) clustering,9 but almost all MCSS-style methods have used standard RMSD

techniques to cluster the probes in physical space.5,6,10-13 This technique takes two forms,

which we will refer to as seeded RMSD (sRMSD) and greedy RMSD (gRMSD)

clustering. The sRMSD-clustering technique works as follows:

1. Choose a distance cutoff, Rmax.

2. Choose any element, i, called the seed (typically, one begins with the lowest-

energy element).

3. Assign all elements that are within Rmax of i to a cluster and remove them from

the list of elements.

4. Repeat steps 2-3 until the list is empty.

It is worth noting that mapping techniques that find a minimum energy probe and then

force subsequent probes to remain outside a given RMSD cutoff effectively use a type of

sRMSD clustering.

sRMSD is limited by the need to choose proper seeds. An improved approach,

gRMSD clustering (also known as single-linkage clustering) works similarly but

overcomes errors in poor choices for seeds:

1. Cluster elements as per sRMSD clustering.

 101

2. If any element in one cluster is Rmax of any element in another cluster, combine

the two clusters.

3. Repeat step 2 until no more clusters can be combined.

An alternative, energy-based clustering technique has been implemented with

MCSS.14,15 Although the full details of their algorithm have not been published, a basic

description has been given. Probes are clustered together when they have a similar set of

van der Waals contacts with the protein. Thus, each cluster is identified by a “cluster

signature” listing the amino acids with which that cluster interacts. These cluster

signatures typically contain between three and thirteen residues.

One notable exception to the usage of sRMSD and gRMSD techniques is SitePrint.16

SitePrint floods a structure with small chemical probes, which are then minimized to the

protein surface. The k-mediod algorithm17 is then used to cluster the probes. For k-

mediod clustering, the user pre-determines a desired number of clusters (k). This number

of clusters are then selected, and a representative element is chosen for each cluster. For

each cluster, the sum of the dissimilarities between the individual elements and its

representative element is calculated. The clusters and representative elements are chosen

in a way that minimizes the total of these sums. The representative elements are then used

to define pharmacophore models.

We have chosen not to use k-medioid or k-means clustering in this work because of

their need to pre-define the number of interactions in a cavity, which is not easily

extended across all systems. Instead, we compare gRMSD to a new Jarvis-Patrick (JP)9

 102

method. Based on two user-defined parameters (J and Kmin, both positive integers), JP

clustering is defined as follows:

1. Make a list of each element’s J nearest neighbors.

2. Two elements cluster together if

a. they are in each other’s nearest neighbor lists and

b. they have at least Kmin of their J nearest neighbors in common.

We have also found it useful to add distance constraint to focus the neighbor list. A

colloquial example of JP clustering is defining two people to be in the same social circle

if they are alike enough and have enough similar friends in common. JP clustering is

typically applied to questions of chemical similarity, where it has been shown to be one

of the best-performing algorithms.18 There is one example of symmetry-corrected JP

clustering applied to physical similarity19,20 where the authors used JP clustering to

provide a conformational breakdown of six-membered ring compounds in the Cambridge

Structural Database.21 They found that JP clustering performed excellently. We have

found no previous applications of JP clustering (symmetry-corrected or not) to MCM or

to the study of protein-protein interfaces.

Flooding and minimization
Our previous work using MCM22-25 has used the probe-placement routines from

an older version of BOSS.26 These routines were developed to simulate liquid-phase

environments. Probes are initially placed in a regularly spaced grid such that all have the

same orientation, and none can overlap. In this work, we investigate alternate flooding

procedures, allowing for arbitrary probe density, as well as random initial coordinates and

orientations.

 103

Test systems
The types of interactions involved in protein-protein interfaces are well known

and include hydrophobic, hydrogen-bonding, and ionic interactions as well as disulfide

bridges.27 These interactions are similar to those involved in protein-ligand interactions.

Here, we apply the MUSIC (Multi-Unit Search for Interacting Conformers)13 routine in

BOSS to the study of protein-protein interfaces. We begin with a bound crystal structure.

The two halves of the interface are separated, prepared, and flooded with probes, which

are then minimized while the probe-probe interactions are ignored. The minimized

positions of the probes are then defined as “clusters” using gRMSD and JP. Either

method is considered successful if it defines clusters on one side of the interface that

match chemical features on the opposite binding partner. It is important to note that this is

not an evaluation of the ability of MCM to map protein surfaces; the locations of

minimized probes are the same in both gRMSD and JP clusters.

There has been much interest in the study of protein-protein interfaces,

particularly in the feasibility of drugs targeting protein-protein interfaces.28,29 There have

also been several efforts to classify and catalog different types of protein-protein

interfaces,30-33 as well as a visual survey of 136 homodimeric proteins.34 In general,

protein-protein interfaces have a modular architecture, composed of distinct, mostly

independent clusters of interacting residues.35 The contacts between the two sides of an

interface are, for the most part, very complementary,27 often involving “hot spots”36. It is

sometimes possible to predict the structure of a protein-protein complex from the

structure of the unbound component proteins, especially when the component proteins do

not undergo significant conformational changes upon binding, as evidenced by the

CAPRI competition.37

 104

Our study was performed on seven biologically relevant protein-protein systems:

CheY-CheA,38 Thrombin-BPTI, Barnase-Barstar, hMms2-hUbc13, TRAF6-RANK,

CDK6-p16INK4a, and HDM2-p53. These systems were chosen to represent diverse

biochemical systems and diverse types of protein-protein interfaces. All the systems

studied had available crystal structures, allowing direct comparisons and validation of our

results. By starting with a crystal structure of the bound interface, we reduce the need to

consider protein flexibility, which can play a significant role in the formation of protein-

protein complexes.39

Methods

Protein-protein interface selection and structure preparation
We obtained the complexes from the Protein Data Bank (PDB)40 and used

MolProbity41 to ensure that side chains were properly oriented. MolProbidy also ensured

that histidine residues had the proper protonation state. A PyMOL42 script was employed

to further investigate the hydrogen-bonding and steric interactions for all potential side-

chain alterations suggested by MolProbity. All but one of the side-chain flips recommend

by MolProbity were outside the protein-protein interfaces. All were deemed reasonable

by visual inspection, and all were accepted. Any crystal-structure hydrogens were

removed to ensure equivalent setup across all systems; this was reasonable given that the

resolution ranged from 1.85-3.4 Å for the test systems. Once the residue conformations

and protonation states were verified, the xleap module in AMBER43 was used to add

hydrogens to the protein structure. The sander_classic module in AMBER was used to

minimize the hydrogens (heavy atoms fixed) by conjugate gradient minimization (until

 105

the either energy change of 1.0E-4 kcal/mol or and 10,000 steps were reached). The

structures were split into the two separate halves of the protein-protein interface.

PDB ID 1YCR44 is the human MDM2-p53 system, an important oncoprotein-

tumor suppressor system. The crystal structure contains only two chains, A (HDM2) and

B (p53).

 PDB ID 1EAY45 is the CheY-CheA system. The crystal structure contains two

heterodimers, chains A/C and chains B/D, both of which exhibit slightly different binding

modes. A number of residues were not resolved in the crystal structure. While none of

these residues were directly involved in the protein-protein interface, the unresolved

residues were closer to the interface in the A/C dimer, so we chose to investigate the B/D

complex (chain B is CheY; chain D is CheA).

PDB ID 1BTH46 is the thrombin-BPTI (bovine pancreatic trypsin inhibitor)

system. The crystal structure contains two complexes, chains J/K/Q and chains H/L/P,

each of which correspond to two thrombin chains and one BPTI chain. We have chosen

to study the HL/P structure, since it contained fewer steric clashes identified by

MolProbity.

PDB ID 1B2747 is the Barnase-Barstar system. The crystal structure contains three

dimers, chains A/D, B/E, and C/F. As per the original paper, we focus on the A/D dimer.

PDB ID 1J7D48 is the human ubiquitin conjugating enzyme complex hMms2-

hUbc13 system. The crystal structure contains only one complex, chain A (hMms2) and

chain B (hUbc13).

PDB ID 1LB549 is the TRAF6-RANK system. The crystal structure contains only

two chains, A (TRAF6) and B (RANK).

 106

PDB ID 1BI750 is the cyclin-dependent kinase 6 (CDK6)-tumor suppressor

p16INK4a system. The crystal structure contains only two chains, A (CDK6) and B

(p16INK4a).

Probe selection
We use the following small-molecule probes, but our methods are easily

generalized to other probes. Methanol is used to probe for hydrogen-bonding interactions.

Methylammonium and acetate are used to map salt-bridge interactions and charged

hydrogen-bonding interfaces. Ethane is used to probe for hydrophobic interactions.

Benzene is used to probe for aromatic and hydrophobic interactions. It is worth noting

that the benzene probes often pick out cation-π interactions, which can be particularly

important in protein-protein interfaces.51

Probe flooding
We have developed an easy-to-use PyMOL42 “wizard” that allows the user to

flood the protein with an arbitrary number of probes, each of which is placed with a

random position and orientation near the protein surface. The user places a sphere to

define the active site via the PyMOL graphical user interface. The user selects the type of

probe molecule to use, the number of probes to place in the active site, and the minimum

distance allowed between a probe and the protein (“overlap distance”). The probes are

then placed at random positions and orientations within the active site, subject to the

constraint that they do not fall within the overlap distance of the protein.

We have implemented two methods for placing the probes within the sphere. The

first method is the most straightforward. Cartesian limits are determined for the user-

defined active-site sphere (xmax, xmin, ymax, ymin, zmax, zmin), and each probe is placed at a

 107

random coordinate within these limits. Since the limits are in Cartesian space and

technically describe a cube around the active site, any probe that is placed outside the

active-site sphere is rejected. This ensures a uniform probe distribution within the active

site. Probes are then rotated a random degree around the x, y, and z axes in order to

ensure a uniform sampling of orientations. At this point, probes that fall within the

overlap distance of the protein are rejected. This procedure is simple to implement and

can easily be extended to arbitrary shapes.

There are some systems for which the geometry dictates a need to bias the

placement of probes towards the center of the active site, such as a deep narrow cleft

where probes will become trapped in local minima on the surface and not map essential

interactions at the bottom of the cleft. We have implemented a second method that biases

sampling towards the center of the sphere, while retaining a uniform angular distribution.

This is accomplished by contracting the uniform sampling in the radial direction.

Although both methods are implemented, we have relied on the first one for this work.

The placement procedure is repeated until the desired number of probes has been

placed within the active site. A series of Python scripts are then used to translate the

flooded protein structures into appropriate BOSS26 input and configuration files, at which

point the probes are minimized via BOSS.

The centers and radii of the flooding regions were chosen separately for each

system. In all cases, the flooding region was chosen to be large enough to encompass all

relevant protein residues. For the protein-protein interfaces, the flooding region for one

side was chosen to be large enough to encompass all relevant protein residues on both

sides.

 108

Probe minimization
We minimize the probe molecules onto the protein surface using BOSS 4.226 and

the OPLS all-atom force field.52 The MUSIC routine is implemented in BOSS by

defining the probes as solvent and setting the solvent-solvent interactions to zero.13 A

low-temperature Monte Carlo search is used to perform a simultaneous random-walk

minimization of all the probes. The resulting output is a coordinate file of all the probes,

overlapping within local minima on the protein surface. This output was classified into

clusters using both gRMSD and JP.

The distance between two probes
It is important to take symmetry of the probe molecule into account so that the

arbitrary ordering of the atoms does not affect the comparison (see Appendix 1). For

simplicity, we have tried to exclude hydrogens when possible. For instance, comparisons

of ethanes and benzenes focus solely on the carbon atoms. We were not able to ignore

hydrogens in one specific case, methanol, as the definition of hydrogen-bond donors and

acceptors involved by both hydrogen atoms. The RMSD-based clustering used the

carbons for ethane and benzene, the hydroxyl atoms of methanol, the carbon and nitrogen

for methylammonium, and the carbons and oxygens of acetate.

Clustering the probes
We have implemented the gRMSD and JP techniques described above. As an

enhancement to standard JP clustering, we allow the user to choose a maximum RMSD,

Rmax. Elements that are further than Rmax from a given probe will not be listed in that

probe’s nearest neighbor list. This allows us to restrict the “looseness” of the clustering

so that clusters are only comprised of nearby elements. It is worth noting that Rmax only

affects the elements in any given neighbor list; the clusters themselves may easily span

 109

distances much larger than Rmax. The clustering algorithms are implemented in a series of

object-oriented Python scripts, using PyMOL42 as a front end. For our comparison of

clustering techniques, we have only evaluated the probe clusters within 3.0 Å of the

opposing protein face. For both gRMSD and JP, clusters are required to have a minimum

of eight probes which is in keeping with our previous use of MCM in structure-based

drug design (SBDD).

Results and discussion

Flooding
The advantages of the new flooding procedure can clearly be seen in Fig. 15,

where the active site of HIV-1 protease is chosen as an example system. Fig. 15a shows

the original method with 1253 benzene probes, and Fig. 15b shows the improved method

with only 500 benzene probes. The new flooding procedure samples more of the active

site by focusing the probes into the most important region. With more densely packed

probes, we are more likely to sample partially occluded - but functionally important -

interactions. We gain a significant speed advantage from being able to accurately map

with fewer probes.

 110

Figure 15. Improved flooding procedures. a) the active site of HIV-1 Protease (PDB
ID 1HHP) is flooded with 1253 benzene molecules via the old procedure on the left and
b) with 500 benzene molecules via the new procedure on the right. The new flooding
procedure places more probes directly in the active site (circled in black).

Clustering
We have examined several automated clustering techniques. We find that the

methods currently available in the literature are unsatisfactory for our purposes. Choosing

clusters by hand produces the correct results but is extremely time-consuming. It is also a

subjective process in which two people can easily come to different conclusions about

what exactly constitutes a cluster. sRMSD clustering suffers from the fact that it is order

dependent: choosing different “seeds” will produce different resulting clusters. gRMSD

clustering remedies this defect. Indeed, we find that it can properly define any particular

interaction for any particular system. However, its parameters must be tuned for each

protein system because it is not able to simultaneously recognize loose and tight clusters.

We are thus forced to turn to more complex clustering algorithms. k-medioid

clustering is able to simultaneously identify loose and tight clusters. However, the user is

a) b)

 111

required to specify k, the desired number of clusters, a priori. Without examining the

individual system, there is no way to pre-determine this parameter. Another popular

technique, k-means clustering, suffers from the same defect. There is a large and

significant body of literature on the subject of clustering.17,53 We have examined several

techniques and found that JP clustering is the simplest method that is able to accurately

identify clusters of probes which properly map complementary interactions on a protein

surface. JP clustering is both fast (after generating the list of J nearest neighbors, it can be

completed in linear time) and deterministic. It should be noted that JP clustering with a

reasonable Rmax, a large value of J, and a Kmin value of 1 will mimic RMSD clustering,

but it will be much faster due to the fact that the JP clustering searches through a

truncated neighbor list, rather than through all neighbors.

Fig. 16 shows an example with ethane probes. There are three clusters that we

want to identify, one loose cluster in the upper right and two tighter ones on the left. If we

use gRMSD and set the RMSD cutoff large enough to recognize the looser cluster, it

joins the two tight clusters into one cluster. If we make the cutoff small enough to split

these clusters, the looser cluster is not recognized as a single group. Rather, it is either

recognized as three small clusters, or not at all, depending on the particular RMSD cutoff.

JP clustering allows us to recover both tightly-packed clusters and looser clusters. The

optimal JP parameters may be found in Table 1.

 112

Figure 16. gRMSD clustering vs. JP clustering of ethane molecules. Hydrogens not
shown for clarity. The top image shows three clusters from MCM minimizations, two
closely spaced but densely packed clusters and one larger diffuse cluster that spans
approximately the same dimensions. gRMSD clustering (left) is too coarse, identifying
too few clusters (left-top) or too many (left-bottom) with a minimal change of Rmax. JP
clustering (right) is able to correctly discriminate between the three clusters. Clusters are
identified by color: the purple ethanes in the top image are unclustered. Red, green, blue,
purple, yellow, and teal represent different clusters in the lower images. Note that the JP
method does not designate the few grey molecules in the lower right image as being part
of any cluster.

gRMSD,
Rmax=0.7Å

gRMSD,
Rmax=0.6Å

JP,
Kmin = 3, J = 10,
Rmax= ∞

 113

Table 1. Optimal clustering parameters for ethane, benzene, methanol, acetate, and
methylammonium. Ranges examined are shown.

 Ethane Benzene Methanol Acetate Methylammonium

J
(Range examined)

25
(15-25)

25
(15-25)

17
(6-17)

15
(10-20)

25
(15-30)

Kmin

(Range examined)
5
(2-6)

4
(3-6)

2
(1-6)

7
(3-8)

5
(3-6)

Rmax (Å)
(Range examined)

1.6 Å
(0.75-1.75)

1.1
(0.75-1.75)

1.4
(0.5-1. 5)

2.25
(0.75-2.5)

1.25
(0.75-1.5)

The example shown in Fig. 16 is by no means unique. In Fig. 17, we present the

p53-HDM2 complex. Fig. 17a shows solvent mapping with methanol, as clustered by JP

algorithms. This system was chosen because it demonstrates the superiority of JP

clustering and also demonstrates the fact that some mapped sites are appropriate but not

necessarily complemented by a binding partner. For instance, the purple and orange sites

in Fig. 17b represent hydrogen-bonding interactions with backbone carbonyl oxygens

(Val93 and Gln72). These are not complemented by p53, but can be successfully used in

SBDD.54 In Fig. 17b, six of the cluster sites directly map to interactions from p53: the

black and blue clusters represent the interaction from Glu17, the yellow cluster represents

a backbone interaction from Phe19, the pink cluster represents an interaction from Trp23,

the green cluster represents a backbone carbonyl interaction from Leu25, and the cyan

cluster represents an interaction from the C-terminal carboxylate of the peptide used in

the crystal structure. The brown cluster represents an acceptor interaction with the

solvent-exposed Lys51 side chain on the edge of the binding cleft. The cluster falls

 114

between the Lys51 of HDM2 and the Glu28 of the p53 helix, a position appropriate for a

bridging water molecule (no waters were resolved in the original crystal structure).

Figure 17. A comparison of JP and gRMSD clustering. Part a) shows the methanol JP
clusters for HDM2. In part b), p53 has been overlaid to show its overlap with appropriate
clusters. For clarity, only one element from each cluster is shown. Part c) shows the
analogous gRMSD clustering at 1.4 Å where we see the typical results of clusters that are
much too loose and large (circled); appropriate clusters have been joined together (upper
right) and diffuse collections of probes have been marked as either new clusters (bottom
center) or parts of other clusters (upper left). Part d) reducing the gRMSD cutoff to 0.5 Å
eliminates this problem, but also eliminates important clusters (circled) and splits some
clusters (upper right). The p53/HDM2 systems is shown as sticks/surfaces with
hydrogens hidden for clarity. Methanol clusters within 3.0 Å of both protein surfaces and
containing at least 7 elements are shown in colored sticks. Other methanols are shown in
grey lines. For purposes of clarity, some probes outside the binding cleft are not shown,
and aliphatic methanol hydrogens are hidden.

a)
JP

b)
JP with
p53

c)
gRMSD
loose

d)
gRMSD
tight

 115

Fig. 17c-d demonstrate typical problems encountered with gRMSD clustering

(Rmax ranging from 0.5-1.4 Å). It was not possible to choose a set of parameters that

would reproduce the proper clustering captured by JP. Fig. 16 demonstrates the issues

that are encountered when gRMSD parameters are incremented to find parameters that

match JP. A total of 7 systems were examined, all of protein-protein recognition events

(see Table 2). In 3 of the systems, there were important interactions that were improperly

clustered by gRMSD. In 4 systems, results were the same between JP and gRMSD. In

some way, these “easy” cases are appropriate because solvent mapping has been

successfully used in SBDD.5,6,10-14,55 However, to get the correct clustering, each system

required individual parameterization. It was necessary to vary the parameters between

0.75-1.25 Å for each individual system. This emphasizes the system-dependant nature of

gRMSD clustering; it can often work in a particular case, but parameters are not

generalizable. For the other 3 cases, it was not possible to correctly cluster the probes

with gRMSD, regardless of our attempts at parameter variation.

For an even presentation, we should note that there was one case where JP failed,

an interaction with a glutamic acid side chain in TRAF6-RANK. The cluster is a rare case

where the probes are slightly too diffuse to be captured by our JP parameters. However,

we also note that gRMSD clustering failed in this case. We were not able to find cases

where gRMSD clustering performed better than JP clustering.

 116

Table 2. Comparison of JP and gRMSD clustering across seven protein recognition
systems. For each system, we recorded the number of hydrogen-bonding interactions
found in the natural binding partner that were near clusters of probes (column 2). Column
3 reports how many of those clusters were identified with JP clustering, column 4 the
number found with gRMSD clustering, and column 5 gives the optimal gRMSD cutoff
required to identify the most clusters appropriate for each system. The cutoff was
increased from 0.25 Å to 1.5 Å in steps of 0.25 Å in order to determine this optimal
value. When the cutoff is too generous, the reported clusters are too large and diffuse. We
have reported the value that was as large as possible without generating this effect.

Protein System
(PDB ID)

Interactions
identified by
probes

Properly
clustered by
JP

Properly
clustered by
gRMSD

gRMSD cutoff
for this system

Barnase-Barstar
(1B27) 47 6 6 4 0.75 Å

CDK6- p16INK4a
(1BI7) 50 5 5 3 0.75 Å

hMms2-hUbc13
(1J7D) 48 2 2 2 1.25 Å

TRAF6-RANK
(1LB5) 49 2 1 1 1.0 Å

thrombin-BPTI
(1BTH) 46 3 3 3 0.75 Å

CheY-CheA
(1EAY) 45 5 5 5 1.0 Å

HDM2-p53
(1YCR) 44 6 6 5 0.75 Å

Applications to structure-based drug design
Our group has a history of success modeling HIV-1 protease.22,23,56 If we re-

examine those studies using JP clustering, it generates models that are very comparable to

those created by assessing clusters by hand. The structure of the receptor-based

pharmacophore models and their performance in identifying known inhibitors over

chemically similar decoys are nearly identical (data not shown, but the original models

can be found in earlier publications22). However, the process is significantly faster using

 117

JP clustering. While manually assessing the models can take weeks, the JP clustering

takes 15 minutes on a modest 1.0 GHz Intel Pentium II laptop with 256M of memory.

Furthermore, it removes the subjective nature of creating models by hand.

To emphasize the improvement that JP offers, we show in Fig. 18 a case that

would not be possible to assess manually. The multiple protein structure (MPS)

method13,23 for SBDD consists of flooding, minimizing, and clustering probes on the

surfaces of an ensemble of protein structures. Clusters that are common across the

ensemble are identified, and these consensus clusters are used to generate receptor-based

pharmacophore models that can be used for lead-generation and SBDD. In developing

this model, practitioners of the MPS method must assess clusters for each individual

snapshot, choose a representative element from each cluster, and then cluster the

representative elements. In Fig 18a, we see the benzene probes from eleven snapshots of

an MD simulation23 (500 probes per snapshot). In Fig 18b, we see the results of applying

JP clustering to all 5,500 probes at once (an impossible task by hand): JP clustering

results in a model that contains the clusters of the same approximate size and location as

the original MPS work. We had to modify the JP parameters in order to cluster such a

large system, both increasing the size of the neighbor lists and decreasing the RMSD

cutoff. Parameters of (J=250, Kmin=3, Rmax=0.9 Å) were used for ethane and benzene, and

(J=15, Kmin=3, Rmax=0.75 Å) were used for methanol. In line with the original MPS work,

we also required clusters to contain at least one element from the beginning, middle, and

end of the simulation. This all-in-one technique has not been broadly applied, and the

choice of parameters may not be transferable to other systems.

 118

Figure 18. Previously impossible, all-in-one clustering. 5,500 benzene probes are
overlaid in part a), 500 each from 11 snapshots of an MD trajectory.23 All probes from a
given snapshot are shown in sticks of the same color. Hydrogens are hidden for clarity,
and the protein HIV-1 protease is shown in cartoon. Part b) shows the results of
clustering all 5,500 probes at once. Different clusters are shown in different shades of
green, and spheres represent the center and RMSD of each cluster.

a) unclustered b) clustered

 119

A final note on the parameters
It is worth recalling the original work of Allen et al. in applying JP clustering to

the separation of molecules in physical space.19,20 They found great success with JP

clustering and provided a preliminary set of clustering criteria for classifying

conformational states of six-membered ring compounds. They noted that their parameters

were relevant for the particular systems that they had studied, but that further refinement

might be necessary as the technique was applied to more diverse systems. Similarly, our

parameters have been successful for clustering the particular systems that we have

studied, and we feel that they will provide a general starting point for any similar system.

Researchers investigating other systems may find it necessary to modify them slightly,

but we do not expect great changes from these parameters. Our automated technique has

the great advantage that it is orders of magnitude faster than by-hand clustering and less

subjective. Thus, when examining a new system, it is a relatively fast and easy task to

verify that a correct set of clustering parameters has been chosen.

Conclusions
We have developed a fast, easy-to-use set of automated procedures to aid in the

mapping of protein surfaces. In particular, we have developed improved procedures for

placing small-molecule probes near the site of interest. Once those probes have been

minimized to the protein surface, our new techniques for clustering the probes shows

great success. We have investigated both RMSD-based and JP-based clustering methods,

taking the symmetry of the probe molecules into account in all cases. JP-based clustering

is significantly faster than previous methods and more accurate.

 120

For validation purposes, we have applied these methods to protein-protein

interfaces. We also extended it to our MPS method for SBDD. Our automated techniques

produce pharmacophore models that are qualitatively and quantitatively similar to our

previous "by-hand" results. These previous results required significant training and time

to produce, often taking several weeks for a particular system. The automated methods

can perform the same tasks in minutes or hours. Automated methods are also able to

cluster thousands of molecules simultaneously, a task that would be impossible by hand.

These methods are robust and may easily be extended to new classes of small

molecules. Our automated toolset has been developed as a series of Python scripts and

PyMOL plugins and wizards. This makes them easy for other groups to use and extend.

Our technique for symmetry-corrected JP clustering could easily be incorporated into

other clustering packages such as MCSS, MCSS2PTS, LUDI, or BOSS.5-7,26,57 The need

for better clustering algorithms has been noted in the literature.14,15

Acknowledgments
I thank Dr. Kristin L. Meagher for her help throughout this project. I thank Dr.

Kelly L. Damm and Dr. Anna L. Bowman for their help in determining the appropriate JP

parameters, and I am grateful to Mr. Allen Bailey for maintaining the Linux clusters used

extensively in this work. This work was supported by the NIH Molecular Biophysics

Training Grant (administered by the University of Michigan), a Beckman Young

Investigator Award, and National Institutes of Health grant GM65372.

Supporting information. Details on the importance of symmetry in the calculation of

inter-probe distances are given in Appendix 1.

 121

References
(1) Vajda, S.; Guarnieri, F. Curr. Opin. Drug Di. De. 2006, 9, 354.
(2) Carr, R. A. E.; Congreve, M.; Murray, C. W.; Rees, D. C. Drug Discov. Today
2005, 10, 987-992.
(3) Erlanson, D. A.; McDowell, R. S.; O'Brien, T. J. Med. Chem. 2004, 47, 3463-
3482.
(4) Rees, D. C.; Congreve, M.; Murray, C. W.; Carr, R. Nat. Rev. Drug. Discov.
2004, 3, 660-672.
(5) Evensen, E.; Joseph-McCarthy, D.; Karplus, M. 1997, Harvard University,
Cambridge, MA, USA, MCSS version 2.1.
(6) Joseph-McCarthy, D.; Alvarez, J. C. Proteins Struct. Func. Bioinformat. 2003, 51,
189-202.
(7) Schechner, M.; Dejaegere, A. P.; Stote, R. H. Int. J. Quantum. Chem. 2004, 98,
378-387.
(8) Hartigan, J. A.; Wong, M. A. Appl. Stat.-J. Roy. St. C 1979, 28, 100-108.
(9) Jarvis, R. A.; Patrick, E. A. IEEE T. Comput. 1973, 22, 1025-1034.
(10) Laurie, A. T. R.; Jackson, R. M. Bioinformatics 2005, 21, 1908-1916.
(11) Miranker, A.; Karplus, M. Proteins. Struct. Funct. Genet. 1991, 11, 29-34.
(12) Caflisch, A.; Miranker, A.; Karplus, M. J. Med. Chem. 1993, 36, 2142-2167.
(13) Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman, F. D.; Jorgensen, W. L.;
Lins, R. D.; Briggs, J. M.; McCammon, J. A. J. Med. Chem 2000, 43, 2100-2114.
(14) Schechner, M.; Sirockin, F.; Stote, R. H.; Dejaegere, A. P. J. Med. Chem. 2004,
47, 4373-4390.
(15) Sirockin, F.; Sich, C.; Improta, S.; Schaefer, M.; Saudek, V.; Froloff, N.; Karplus,
M.; Dejaegere, A. J. Am. Chem. Soc. 2002, 124, 11073-11084.
(16) Arnold, J. R.; Burdick, K. W.; Pegg, S. C.; Toba, S.; Lamb, M. L.; Kuntz, I. D. J.
Chem. Inf. Comput. Sci 2004, 44, 2190-2198.
(17) Kauffman, L.; Rousseeuw, P. J. Finding Groups in Data: An Introduction to
Cluster Analysis; John Wiley & Sons, Inc.: New York, 1990.
(18) Willett, P. Similarity and Clustering in Chemical Information Systems; John
Wiley & Sons Inc.: New York, 1987.
(19) Allen, F. H.; Doyle, M. J.; Taylor, R. Acta Crystallogr. Sect. B Struct. Sci. 1991,
47, 29-40.
(20) Allen, F. H.; Doyle, M. J.; Taylor, R. Acta Crystallogr. Sect. B Struct. Sci. 1991,
47, 41-49.
(21) Allen, F. H.; Kennard, O.; Taylor, R. Accounts Chem. Res. 1983, 16, 146-153.
(22) Meagher, K. L.; Lerner, M. G.; Carlson, H. A. J. Med. Chem 2006, 49, 3478-
3484.
(23) Meagher, K. L.; Carlson, H. A. J. Am. Chem. Soc 2004, 126, 13276-13281.
(24) Lerner, M. G.; Bowman, A. L.; Carlson, H. A. J. Chem. Inf. Model. 2007, in
press.
(25) Bowman, A. L.; Lerner, M. G.; Carlson, H. A. J. Am. Chem. Soc. 2007, 129,
3634-3640.
(26) Jorgensen, W. L. 2000, Yale University, New Haven, CT, BOSS Version 4.2
(27) Jones, S.; Thornton, J. M. Proc. Natl. Acad. Sci. USA 1996, 93, 13-20.

 122

(28) Pagliaro, L.; Felding, J.; Audouze, K.; Nielsen, S. J.; Terry, R. B.; Krog-Jensen,
C.; Butcher, S. Curr. Opin. Chem. Biol. 2004, 8, 442-449.
(29) Archakov, A. I.; Govorun, V. M.; Dubanov, A. V.; Ivanov, Y. D.; Veselovsky, A.
V.; Lewi, P.; Janssen, P. Proteomics 2003, 3, 380-391.
(30) Keskin, O.; Tsai, C.-J.; Wolfson, H.; Nussinov, R. Protein Sci. 2004, 13, 1043-
1055.
(31) Ofran, Y.; Rost, B. J. Mol. Biol. 2003, 325, 377-387.
(32) Salwinski, L.; Miller, C. S.; Smith, A. J.; Pettit, F. K.; Bowie, J. U.; Eisenberg, D.
Nucl. Acids Res. 2004, 32, D449-451.
(33) Xenarios, I.; Salwinski, L.; Duan, X. J.; Higney, P.; Kim, S.-M.; Eisenberg, D.
Nucl. Acids Res. 2002, 30, 303-305.
(34) Larsen, T. A.; Olson, A. J.; Goodsell, D. S. Structure 1998, 6, 421-7.
(35) Reichmann, D.; Rahat, O.; Albeck, S.; Meged, R.; Dym, O.; Schreiber, G. Proc.
Natl. Acad. Sci. USA 2005, 102, 57-62.
(36) DeLano, W. L. Curr. Opin. Struct. Biol. 2002, 12, 14-20.
(37) Janin, J. Protein Sci. 2005, 14, 278-283.
(38) Parkinson, J. S.; Kofoid, E. C. Annu. Rev. Genet. 1992, 26, 71-112.
(39) Ehrlich, L. P.; Nilges, M.; Wade, R. C. Proteins Struct. Funct. Bioinformat. 2005,
58, 126-133.
(40) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucl. Acids Res. 2000, 28, 235-242.
(41) Lovell, S. C.; Davis, I. W.; III, W. B. A.; Bakker, P. I. W. d.; Word, J. M.; Prisant,
M. G.; Richardson, J. S.; Richardson, D. C. Proteins. Struct. Funct. Genet. 2003, 50, 437-
450.
(42) DeLano, W. L. 2002, Palo Alto, CA, USA, The PyMOL Molecular Graphics
System
(43) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E., III; Ross, W. S.;
Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L. 1999,
University of California, San Francisco, AMBER 6
(44) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.;
Pavletich, N. P. Science 1996, 274, 948-953.
(45) McEvoy, M. M.; Hausrath, A. C.; Randolph, G. B.; Remington, S. J.; Dahlquist,
F. W. Proc. Natl. Acad. Sci. USA 1998, 95, 7333-7338.
(46) Locht, A. v. d.; Bode, W.; Huber, R.; Bonniec, B. F. L.; Stone, S. R.; Esmon, C.
T.; Stubbs, M. T. EMBO J. 1997, 16, 2977-2984.
(47) Buckle, A. M.; Schreiber, G.; Fersht, A. R. Biochemistry 1994, 33, 8878-8889.
(48) Moraes, T. F.; Edwards, R. A.; McKenna, S.; Pastushok, L.; Xiao, W.; Glover, J.
N. M.; Ellison, M. J. Nat. Struct. Mol. Biol. 2001, 8, 669-673.
(49) Ye, H.; Arron, J. R.; Lamothe, B.; Cirilli, M.; Kobayashi, T.; Shevde, N. K.;
Segal, D.; Dzivenu, O. K.; Vologodskaia, M.; Yim, M.; Du, K.; Singh, S.; Pike, J. W.;
Darnay, B. G.; Choi, Y.; Wu, H. Nature 2002, 418, 443-447.
(50) Russo, A. A.; Tong, L.; Lee, J.-O.; Jeffrey, P. D.; Pavletich, N. P. Nature 1998,
395, 237-243.
(51) Crowley, P. B.; Golovin, A. Proteins Struct. Funct. Bioinformat. 2005, 59, 231-
239.
(52) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657-1666.

 123

(53) Duda, R. O.; Hart, P. E.; Stork, D. G. Pattern Classification; Wiley-Interscience,
2000.
(54) Bowman, A. L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H. A. J.
Am. Chem. Soc. 2007, 129, 12809-12814.
(55) Carlson, H. A.; Masukawa, K. M.; McCammon, J. A. J. Phys. Chem. A 1999, 103,
10213-10219.
(56) Damm, K. L.; Carlson, H. A. J. Am. Chem. Soc. 2007, 129, 8225-8235.
(57) Böhm, H. J. J. Comput-Aided. Mol. Des. 1992, 6, 61-78.

 124

Appendix 1

Supplemental information

Supplemental information from Chapter 2

Coordinates and RMSD for the pharmacophore models (radii of the elements
are determined from the RMSD).

Open-loop 1-ns, coordinates provided are relative to 1RA1.

Element Type x y z RMSD (Å)
Excluded Volume 4.5111 2.5786 12.5531 1.5
Excluded Volume 1.8823 3.5392 5.6876 1.5
Excluded Volume 10.3746 -0.749 0.2989 1.5
Excluded Volume 1.4852 -2.7131 11.6940 1.5
Aro|Hyd 7.703 -1.5424 5.6534 1.1844
Aro 3.0593 0.2795 7.5955 1.1750
Aro|Hyd 2.2915 4.5311 -0.2134 1.0608
Don 0.9677 -0.2109 6.0317 0.7321
Acc 1.9332 5.4698 0.4778 0.5106

Open-loop 2-ns, coordinates provided are relative to 1RA1.

Element Type x y z RMSD (Å)
Excluded Volume 4.4668 2.5432 12.5663 1.5
Excluded Volume 1.8582 3.5692 5.6852 1.5
Excluded Volume 10.3973 -0.7739 0.1583 1.5
Excluded Volume 1.4767 -2.7000 11.5401 1.5
Aro|Hyd 7.6449 -1.4136 5.6133 1.6122
Aro|Hyd 3.3476 0.2932 7.8253 1.1818
Aro|Hyd 2.2022 4.5291 -0.1608 1.0746
Don 0.9071 -0.2803 5.7418 0.7415
Acc 2.0309 5.4093 0.4662 0.8543

 125

Open-loop 4-ns, coordinates provided relative to 1RA1

Element Type x y z RMSD (Å)
Excluded Volume 4.3666 2.502 12.6023 1.5
Excluded Volume 1.9072 3.6145 5.7946 1.5
Excluded Volume 10.3774 -0.754 -0.0978 1.5
Excluded Volume 1.5150 -2.8302 11.6647 1.5
Aro|Hyd 2.1599 4.4635 -0.0923 1.0793
Aro|Hyd 3.0418 0.4179 8.2954 0.8730
Aro|Hyd 6.8885 0.2456 5.5951 1.2287
Acc 2.222 5.304 0.6629 0.8435
Don 0.9228 -0.2589 5.7279 0.7106
Don 0.0741 1.2701 8.6283 0.7317
Don 3.7481 -0.3463 8.0185 0.7929

Closed-loop 1-ns, coordinates provided are relative to 1RX1

Element Type x y z RMSD (Å)
Excluded Volume 4.2689 2.9744 12.3521 1.5
Excluded Volume 1.8389 3.7252 5.5529 1.5
Excluded Volume 10.3577 -0.9057 0.1451 1.5
Excluded Volume 1.6675 -2.5312 11.915 1.5
Aro|Hyd 7.4154 -1.4043 4.8614 1.6313
Aro|Hyd 2.6 4.5286 -1.0953 1.3577
Aro|Hyd 3.4466 0.5377 8.052 1.0810
Don 3.8501 0.1714 8.2825 0.5993
Don 0.93 -0.2216 5.3727 0.6030
Acc 2.3978 4.8414 0.8422 0.3366

 126

Closed-loop 2-ns, coordinates provided are relative to 1RX1

Element Type x y z RMSD (Å)
Excluded Volume 4.2366 2.9505 12.2683 1.5
Excluded Volume 1.8048 3.7348 5.6265 1.5
Excluded Volume 10.3898 -0.8004 0.0127 1.5
Excluded Volume 1.5321 -2.5023 11.9865 1.5
Aro|Hyd 2.6953 4.5622 -1.0938 1.3388
Aro 3.7203 0.4451 7.4092 0.6791
Aro|Hyd 6.6335 0.4768 5.3257 0.9976
Acc 2.6019 5.1799 0.1112 0.8899
Don 1.1476 -0.0249 5.8053 0.8837
Don 3.766 0.169 8.3395 0.7854

Closed-loop 4-ns, coordinates provided are relative to 1RX1

Element Type x y z RMSD (Å)
Excluded Volume 4.175 2.9441 12.2428 1.5
Excluded Volume 1.7944 3.77 5.6002 1.5
Excluded Volume 10.2912 -0.8796 0.0704 1.5
Excluded Volume 1.5587 -2.5454 12.0047 1.5
Aro 3.6295 0.4727 7.4659 0.6377
Aro 7.1276 -1.819 4.0098 1.4987
Don 3.7982 0.0126 8.3552 0.7367
Acc 2.7017 5.3018 -0.1119 0.8707
Don 1.2495 -0.2748 5.8424 1.2593
Don -0.247 2.0104 8.7224 0.7831

 127

E. coli DHFR inhibitors

 128

 129

 130

Supplemental information from Chapter 3

Correlated dynamics, the loops, and the network

a) DHFR loops

b) DHFR network

Figure A1: Highlighting loops and networks. Part (a) highlights the m20, CD, FH, and
GH loops, as well as the ligand. We can see that almost the entirety of the anti-correlated
motion is localized to these regions. Part (b) highlights all residues that have been
identified as participating in networks of correlated motions in E. coli DHFR. We can
see that all of these residues are involved in either correlated or anti-correlated motions,
with most of them involved in anti-correlated motions. The network is comprised of
residues 7, 14, 15, 19, 20, 27, 28, 31, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 61,
62, 63, 64, 67, 68, 72, 74, 77, 90, 98, 99, 100, 102, 108, 113, 122, 129, 149, 155, 160.1-9

 M20 CD FG GH NADPH

 131

Hydrogen bonds and bridging water
The default ptraj parameters of 120-degree angle cutoff and a distance cutoff of 3.5Å

were used to define hydrogen bonds between appropriate donor and acceptor atoms. The

same definitions of hydrogen bonds were used for bridging water molecules, and a water

molecule was defined as bridging if it formed hydrogen bonds to two or more protein or

cofactor atoms at the same time.

Comparisons to the traditional network known for DHFR
Hydrogen bonds are known to contribute to the reaction coordinate, the stabilization of

the M20 loop conformations, and correlated dynamics. The Asp122 N-H  Gly15 O

hydrogen bond is quite significant, as the motion of these two residues relative to each

other contributes to the reaction coordinate.3,10 We observe this bond during most (65%)

of both the open-loop and closed-loop simulations. In addition to the hydrogen bond, we

find significant correlated motion between the two residues. They are found in an area of

correlated, rather than anti-correlated motion, which is accentuated during the activated

dynamics, and both residues show significant anti-correlations to NADPH. Similarly,

Thorpe et al. have shown that the hydrogen bond between Ala19 and the NADPH O’N2

correlates with the reaction coordinate.10 We see this interaction approximately 5% of the

time in both of our simulations, while it appears for 28% of their wild-type simulation

and 10-17% of their mutant simulations. Interestingly, we find Ala19 hydrogen-bonding

to the nearby NADPH O’N3 18% of the time in both of our simulations. The closed

conformation is known to be stabilized by hydrogen bonds from the amide backbones of

Gly15 and Glu17 in the M20 loop to Asp122 in the FG loop.3 We see the see Glu17 N-H

 132

 Asp122 OD1/2 hydrogen bond less frequently (33% of the closed-loop simulation and

only very briefly during the open-loop simulation) than the Asp122 N-H  Gly15 O

hydrogen bond, but we find that Asp122, Gly15, and Glu17 are all involved in significant

positively-correlated motions with each other. It is interesting to note that in the closed-

loop simulation, when Glu17 N-H is not hydrogen bonding to Asp122, it is very often

hydrogen bonding to NADPH O’N3. That hydrogen bond is never seen in the open-loop

simulation. The presence of these hydrogen bonds gives further evidence that our

DHFR•NADPH simulations produce motions that can be coordinated with progress

along the reaction coordinate.

In support of the new site
In the closed-loop simulation, a water bridge between the backbone oxygen of Glu154

and the side chain of Trp30 persists for 46% of the simulation with an average lifetime of

157 ps. Trp30 is alternatively seen in a second bridging-water interaction with the side

chain of Thr113 (18% occupancy and an average lifetime of 34 ps).

 133

Supplemental information from Chapter 5

a b
Figure 2: Calculating the distance between probe molecules. a) The carbon atoms in
an ethane molecule are indistinguishable but are labeled C1 and C2. We must examine all
renamings of the carbons so that we calculate the correct (black) distances rather than the
incorrect (grey) ones. b) Benzene exhibits a similar problem. The six carbons can be
relabeled in 12 unique ways via symmetrically equivalent rotations and mirroring. We
account for this in our symmetry-corrected RMSD calculations.

C1
C2

C2 C1

 134

References

(1) Agarwal, P. K.; Billeter, S. R.; Hammes-Schiffer, S. J. Phys. Chem. B 2002, 106,
3283-3293.
(2) Pan, H.; Lee, J. C.; Hilser, V. J. Proc. Natl. Acad. Sci. USA 2000, 97, 12020-
12025.
(3) Agarwal, P. K.; Billeter, S. R.; Rajagopalan, P. T. R.; Benkovic, S. J.; Hammes-
Schiffer, S. Proc. Natl. Acad. Sci. USA 2002, 99, 2794-2799.
(4) Benkovic, S. J.; Hammes-Schiffer, S. Science 2003, 301, 1196-1202.
(5) Wang, L.; Tharp, S.; Selzer, T.; Benkovic, S. J.; Kohen, A. Biochemistry 2006,
45, 1383-1392.
(6) Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2006, 110, 10130-10138.
(7) Wong, K. F.; Selzer, T.; Benkovic, S. J.; Hammes-Schiffer, S. Proc. Natl. Acad.
Sci. USA 2005, 102, 6807-6812.
(8) Wong, K. F.; Watney, J. B.; Hammes-Schiffer, S. J. Phys. Chem. B 2004, 108,
12231-12241.
(9) Hammes-Schiffer, S.; Benkovic, S. J. Annu. Rev. Biochem. 2006, 75, 519-541.
(10) Thorpe, I. F.; Brooks, C. L., III Proteins: Struct. Funct. Bioinformatics 2004, 57,
444-457.

 135

Appendix 2

Source code

Directory listing 1
The PyPAT project is organized as a series of Python scripts. In order for module imports

to work correctly, it is necessary to preserve the directory structure.

phar20-217~/work/PyPAT/code$ ls -R
Readme.txt
pypat
drivers

./drivers:
collect_water_bridges.py
convert_to_numpy_format.py
display_bridging_interactions.py
do_correlated_md_analysis.py
make_correlated_dynamics_plots.py
make_movies.py
parse_sander_output.py
run_ptraj.py
write_ptraj_input_files.py

./pypat:
__init__.py
hbond
md_analysis_utils.py
plotting.py
sentinel_map.py
tool_utils.py

./pypat/hbond:
__init__.py
hbond_analysis.py
hbond_definitions.py
pymol_hbond_analysis.py

Files 1

Readme.txt
Installation

The executable scripts are located in the "drivers" subdirectory, and
the libraries are located in the "pypat" directory. Inside each of the
scripts, you will need to edit the lines containing
"PYPAT_CODE_DIRECTORY" so that they point to the directory in which
the PyPAT package is installed.

Dependencies

Python 2.5 or greater is required.

 136

Your Python installation must have the following installed:

 - matplotlib 0.9.0

 137

 - numpy 1.0.1
 - PyMOL 1.0

And you must have following installed on your system:

 - gnuplot
 - ImageMagick 6.3.2
 - PyMOL 1.0

Running the Tools

The executable scripts are found in the "drivers" subdirectory. You
may wish to place this directory in your PATH. All scripts support the
--help command line option. Documentation for individual tools
follows.

drivers/collect_water_bridges.py
#!/usr/bin/env python

import sys
if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/PyPAT/code/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/PyPAT/code/'
else:
 sys.exit('Unknown system type')

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat.hbond import pymol_hbond_analysis
 from optparse import OptionParser

 usage = """
 Run this like:

 pymol -qcr collect_water_bridges.py -- --name=myprotein --dist-cutoff=3.5

 Do not forget the double dashes after the script name.
 """
 parser = OptionParser(usage=usage)

 parser.add_option("--name",'-n',dest="name",default="nrna",
 help="Trajectory and topology must be named name.trj and name.top
respectively. [default: %default]"
)
 parser.add_option("--chunk-size",'-c',dest="chunksize",default=5,#default=500,
 help="How many MD steps to process at a time. If you do too many at
a time, PyMOL will slow down. Too few, and you're wasting time starting/stopping PyMOL.
[default: %default%]",
 type='int',
)
 parser.add_option("--num-steps",'-s',dest="numsteps",default=10,#default=500,
 help="number of steps in your MD trajectory. [default: %default]",
 type='int',
 ##FIXME: can be extracted from PyMOL
)
 parser.add_option("--dist-cutoff",'-d',dest="distcutoff",default=4.0,
 help="Heavy atom to heavy atom distance cutoff. [default:
%default]",
 type='float',
)
 parser.add_option('--angle-cutoff','-a',dest='anglecutoff',default=0.0,
 help="Angle cutoff. If heavy:hydro:heavy angle must be greater than
this. [default: %default]",
 type='float',
)

 138

 #argv = sys.argv[sys.argv.index('--') + 1:]
 try:
 argv = sys.argv
 except AttributeError:
 argv = pymol_argv
 sys.argv = pymol_argv # this is necessary for optparse to handle the --help
option.
 try:
 argv = argv[argv.index('--') + 1:]
 except IndexError:
 argv = []

 options,args = parser.parse_args(args=argv)

 r = range(1,options.numsteps+1,options.chunksize)
 if r[-1] != options.numsteps:
 r.append(options.numsteps)
 starts_and_stops = zip(r[:-1],r[1:])
 print starts_and_stops
 for (start,stop) in starts_and_stops:
 print
 print 'DOING',start,stop
 print
 pymol_hbond_analysis.find_bridging_waters_in_trajectory(name=options.name,
 start=start,
 stop=stop,

hbond_dist_cutoff=options.distcutoff,

hbond_angle_cutoff=options.anglecutoff,
)

drivers/convert_to_numpy_format.py
#!/usr/bin/env python

import glob,bz2
import scipy
import scipy.io
import os

if __name__ == '__main__':
 from optparse import OptionParser
 usage = """This will convert the .dat or .dat.bz2 files to numpy versions.
 It will not automatically delete the .dat(.bz2) files. If your input
 files are bz2, your output files will be too.

 If you already have a corresponding .numpy or .numpy.bz2 file, we won't
 write out a new file.
 """
 parser = OptionParser(usage=usage)

 parser.add_option('--dir',dest='dir',default='.',
 help="Directory in which the files reside. [default: %default]")
 parser.add_option("--structure-name",dest="structurename",
 default="1rx1",
 help="Name of your structure. E.g. 1RX1 or 1SGZ")
 parser.add_option('--compression',dest='compression',
 default='',
 help="Type of compression currently used on files. Leave blank for
uncompressed, .bz2 if they're .bz2 files. Note that it's '.bz2' not 'bz2'. [default:
%default]")
 parser.add_option('--all-dat-files',dest='justbig',
 default=True,
 action='store_false',
 help="By default, we will only convert the all_atom_correlmat
files. If you use this option, we will convert all dat files. Don't forget, though,
that you'll still have to call this command twice if you have some files that are bzipped
and some that are not.",

 139

)

 options,args = parser.parse_args()
 if options.justbig:
 pattern =
os.path.join(options.dir,options.structurename+'_NS*_all_atom_correlmat*.dat'+options.com
pression)
 else:
 pattern =
os.path.join(options.dir,options.structurename+'_NS*.dat'+options.compression)
 fnames = glob.glob(pattern)
 print "I will convert these files",pattern,":",fnames
 for fname in fnames:
 if fname.endswith('bz2'):
 head = os.path.splitext(fname)[0]
 else:
 head = fname
 numpy_ver = head+'.numpy'
 numpybz_ver = head+'.numpy.bz2'
 if os.path.exists(numpy_ver) or os.path.exists(numpybz_ver):
 print "Skipping",fname
 continue
 if fname.endswith('bz2'):
 print "Doing",fname,numpybz_ver
 data=scipy.io.read_array(bz2.BZ2File(fname))
 data.tofile(numpy_ver)
 os.system('bzip2 %s'%numpy_ver)
 else:
 print "Doing",fname,numpy_ver
 data=scipy.io.read_array(file(fname))
 data.tofile(numpy_ver)
 del data

drivers/display_bridging_interactions.py
#!/usr/bin/env python

import sys,os

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/PyPAT/code/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/PyPAT/code/'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat.hbond import pymol_hbond_analysis
 from pypat import tool_utils

 from optparse import OptionParser

 parser = OptionParser(option_class=tool_utils.MyOption)

 parser.add_option("--name",'-n',dest="name",default="nrna",
 help="Trajectory and topology must be named name.trj and name.top
respectively. [default: %default]"
)
 parser.add_option("--timestep",'-t',dest='timestep',default=5,
 help="trajectory timestep in picoseconds. [default: %default]",
 type='int',
)
 parser.add_option('--min-dwell-time','-m',dest='minrequireddwelltime',default=3,
 help='minimum required dwell time. [default: %default]',
 type='int',
)
 parser.add_option('--looseness','-l',dest='looseness',default=2,
 help='looseness. [default: %default]',
 type='int',

 140

)
 parser.add_option("--dist-cutoff",'-d',dest="distcutoff",default=3.5,
 help="Heavy atom to heavy atom distance cutoff. [default:
%default]",
 type='float',
)
 parser.add_option('--angle-cutoff','-a',dest='anglecutoff',default=0.0,
 help="Angle cutoff. If heavy:hydro:heavy angle must be greater than
this. [default: %default]",
 type='float',
)
 parser.add_option('--min-occ','-o',dest='minocc',default=0.4,
 help="Minimum percentage of the trajectory for which this
interaction must be occupied. [default: %default]",
 type='float',
)
 parser.add_option('--dir','-r',dest='dir',default='.',
 help="Directory in which the name_hbond_*_*.txt files are located.
[default: %default]",
)
 parser.add_option('--resi-criteria','-R',dest='resi_criteria',default=None,
 help="Restrict the output to BWIs where at least one side involves
a residue in this list. [default: %default]",
 type='onebasedintlist',
)

 options,args = parser.parse_args()

 import glob
 #d = '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/BridgingWaterOutput/3.5A_HbridgeFiles/'
 d = options.dir
 struct = options.name
 fnames = glob.glob(os.path.join(d,'%s_hbond_?_?.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_?_??.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_??_??.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_??_???.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_???_???.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_???_????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_????_????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_?????_?????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_??????_??????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_???????_???????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_????????_????????.txt'%struct))
 fnames += glob.glob(os.path.join(d,'%s_hbond_?????????_?????????.txt'%struct))

 a = pymol_hbond_analysis.get_hbond_trajectories(structure=options.name,
 timestep=options.timestep,
 fnames=fnames,
 combination_method='loose',

min_required_dwell_time=options.minrequireddwelltime,
 looseness=options.looseness,
 dist_cutoff=options.distcutoff,
 angle_cutoff=options.anglecutoff,
) # skip the last one because we're
probably writing to it right now
 #a = get_hbond_trajectories('1rx1',5,fnames1[:50]) # skip the last one because we're
probably writing to it right now

 #nap_including_resis = list((160,)) # NAP
 #m20_including_resis = list(range(9,25)) # m20
 #tunnel_including_resis = list((5,7,8,30,33,34,92,111,112,113,114,137,153,155)) #
tunnel
 #tunnel_surface_including_resis = list((30,33,111,137,153,155)) # tunnel surface
 #no_including_resis = None
 #including_resis = tunnel_including_resis + nap_including_resis
 #including_resis = no_including_resis

 141

 print a.get_trajectory_string(#minocc=0.05,
 #minocc=0.60,
 minocc=options.minocc,
 numchunks=50,
 including_resis=options.resi_criteria,
 #sort_by='average_dwell_time',
 sort_by='occ',
)

drivers/do_correlated_md_analysis.py
#!/usr/bin/env python

import sys,os

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/Dynamics-DHFR/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/Dynamics-DHFR/'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat.md_analysis_utils import write_max_min_ca_resi_versions
 from pypat import tool_utils
 from optparse import OptionParser
 #
 # Standard procedure for writing out the specific correlation and covariance
 # matrices that we want.
 #

 parser = OptionParser(option_class=tool_utils.MyOption,usage=tool_utils.usage)

 tool_utils.add_standard_options(parser)
 tool_utils.add_window_options(parser)

 parser.add_option("--non-ca-resis",dest="non_ca_resis",type="zerobasedintlist",
 default=[],
 help="Comma separated list of residues that don't contain alpha
carbons. We need this to make some of our output images. [default: %default], but you
could say 160,161 for example")

 parser.add_option('--single-time',dest='singletime',
 default=None,
 help="If you specify a single time here, we will ignore the
windowing options and perform our calculations on only one file. The time should be
specified in a format similar to NS02.50."
)
 options,args = parser.parse_args()

 if options.singletime is None:
 desired=tool_utils.get_desired(options)
 for times in [i[-1] for i in desired]:
 sys.stdout.write('doing %s %s'%(times,options.structurename))
 sys.stdout.flush()

write_max_min_ca_resi_versions(os.path.join(options.outputdir,options.structurename,'%s_%
s_all_atom_correlmat.dat'%(options.structurename,times)),

os.path.join(options.outputdir,options.structurename+'_ref.pdb.1'),
 non_ca_resis=[i+1 for i in
options.non_ca_resis],
)
 else:

 142

write_max_min_ca_resi_versions(os.path.join(options.outputdir,options.structurename,'%s_%
s_all_atom_correlmat.dat'%(options.structurename,options.singletime)),

os.path.join(options.outputdir,options.structurename+'_ref.pdb.1'),
 non_ca_resis=[i+1 for i in
options.non_ca_resis],
)

drivers/make_correlated_dynamics_plots.py
#!/usr/bin/env python

'''
make all of our correl and covar plots with scipy.
'''

import sys,os

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/PyPAT/code'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/PyPAT/code'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat.plotting import make_correl_plots_for_movie, make_one_correl_plot
 from pypat import tool_utils
 from optparse import OptionParser
 import pylab

 usage = tool_utils.usage + """
This will spit out an html file that will show you your images. If you
need to look at the images on another machine, tar up the html file and
output-dir/images together and move that to the other machine.
"""
 parser = OptionParser(option_class=tool_utils.MyOption,usage=usage)

 tool_utils.add_standard_options(parser)
 tool_utils.add_window_options(parser)

 parser.add_option("--cmap",dest="cmap",default="Normal",
 help="Color map to use when making the plots. Our custom cmaps are
Normal and Scaled. Standard matplotlib cmaps %s are also supported."%[m for m in
pylab.cm.datad.keys() if not m.endswith("_r")] + "[default: %default]",
)

 parser.add_option('--plot-types',dest="plottypes",
 default='ca avg max min abs straight mainheavy allheavy
sidechainhbond hbond'.split(),
 type="strlist",
 help="Comma-separated list of plot types. [default: %default]")

 parser.add_option('--single-time',dest='singletime',
 default=None,
 help="If you specify a single time here, we will ignore the
windowing options and display an interactive plot of the time you specify. The time
should be, e.g., NS0.5",
)
 parser.add_option('--mark-resis',dest='markresis',
 default=[],
 type="zerobasedintlist",
 help="A list of residues to mark on the plots. [default:
%default]")
 parser.add_option('--highlight',dest='highlight',
 default=0.2,
 type='float',
 help="How strongly to highlight the marked residues. Note that --
highlight-mode tells us how exactly we will do the highlighting. 0.1 and 0.2 are decent

 143

values if you want to use this feature for most plots, although you'll need something
stronger for the absolute value plots. [default: %default]")
 parser.add_option('--highlight-mode',dest='highlightmode',
 default='positive',
 help="When highlight-mode is 'negative' we put a white block down
on top of the marked residues, the opacity of which is controled by --highlight. When
it's 'positive', we put that white block down on squares of residues that are *not*
highlighted instead. When it's 'supernegative', we do just like 'negative' except that
the block will be twice as opaque where the highlighted rows and columns intersect.
Positive and supernegative seem to be more useful than negative. [default: %default]")
 parser.add_option('--skip-resis',dest='skipresis',
 default=[],
 #
 # Note to programmers: setup_ca expects this to come in as 1-based.
 #
 type="onebasedintlist",
 help="A list of residues that will be skipped in the plots.
[default: %default]")
 parser.add_option('--no-ticks',dest='ticks',
 default=True,
 action='store_false',
 help="do not include tick marks on the axes",
)
 parser.add_option('--dpi',dest='dpi',
 default=200,
 type='int',
 help='dpi for figures [default: %default]',
)
 parser.add_option('--title',dest='title',
 default=None,
 help='If no title is specified, one will be automatically
generated. Note that the title is part of the filename that we save. [default:
%default]',
)

 options,args = parser.parse_args()
 desired=tool_utils.get_desired(options)

 #
 # If you want to make all of the plots for a given time and you want to
 # write them out to files, use this:
 if options.singletime is None:
 all_times = [i[-1] for i in desired]
 make_correl_plots_for_movie(structures=[options.structurename,],
 all_times=all_times,
 cmaps=[options.cmap,],
 detail_levels=['fine',],
 plot_types=options.plottypes,
 overwrite=True,
 image_dir=os.path.join(options.outputdir,'images'),
 dat_dir=options.outputdir,

ref_pdb_fname=os.path.join(options.outputdir,options.structurename+'_ref.pdb.1'),
 mark_resis=options.markresis,
 highlight=options.highlight,
 highlight_mode=options.highlightmode,
 skip_resis=options.skipresis,
 ticks=options.ticks,
 dpi=options.dpi,
 title=options.title,
)
 #
 # If you just want to make one plot and you want it to show up in a window,
 # use this:
 #
 else:
 if len(options.plottypes) != 1:
 sys.exit("In single-plot mode, you must specify exactly one plot type.")
 print "title",options.title
 make_one_correl_plot(struct=options.structurename,
 times=options.singletime,
 cmap=options.cmap,
 detail_level='fine',

 144

 plot_type=options.plottypes[0],
 save_fig=False,
 overwrite=True,
 dat_dir=options.outputdir,
 out_dir=os.path.join(options.outputdir,'images'),

ref_pdb_fname=os.path.join(options.outputdir,options.structurename+'_ref.pdb.1'),
 mark_resis=options.markresis,
 highlight=options.highlight,
 highlight_mode=options.highlightmode,
 skip_resis=options.skipresis,
 ticks=options.ticks,
 dpi=options.dpi,
 title=options.title,
)

drivers/make_movies.py
#!/usr/bin/env python

import sys,os,glob

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/PyPAT/code/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/PyPAT/code/'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat import tool_utils
 import glob
 from optparse import OptionParser

 usage = tool_utils.usage + """
Please also make sure that the imagemagick utility convert
is installed and in your path.

This will spit out an html file that will show you your images. If you
need to look at the images on another machine, tar up the html file and
output-dir/images together and move that to the other machine.

The html file will be called <struct>BigAnimatedMovies.html.
"""
 parser = OptionParser(option_class=tool_utils.MyOption,usage=tool_utils.usage)

 tool_utils.add_standard_options(parser)
 parser.add_option('--plot-types',dest="plottypes",
 default='ca avg max min abs straight mainheavy allheavy
sidechainhbond hbond'.split(),
 type="strlist",
 help="Comma-separated list of plot types. [default: %default]",
)
 parser.add_option('--no-slow-movies',dest="slowmovies",
 default=True,
 action="store_false",
 help="Set this if you do not want to generate the movies that have
0.5s spacing between the frames.",
)
 parser.add_option('--movie-link',dest="movielink",
 default='fast',
 help="'fast' if you want the thumbnails to link to the fast images,
anything else for the slow ones. [default: %default]",
)
 options,args = parser.parse_args()

 145

 html_txt = '''
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Correlated Dynamics Movies</title>
 </head>

 <body>
 <h1>Correlated Dynamics Movies</h1>

 These are animated gifs of a sliding 1NS window throughout the MD simulation. So,
e.g., %s 2.2NS is the correlated dynamics of the %s structure from 1.7NS to 1.7NS (the
center of the window is 1.2NS).

 straight every atom is shown
 mainheavy mainchain heavy (nonhydrogen) atoms
 allheavy all heavy (nonhydrogen) atoms
 hbond NOSP vs. hydrogen atoms
 sidechainhbond sidechain NOSP vs. sidechain hydrogen atoms
 ca alpha carbons plotted against eachother, one per residue. This is
the standard plot in the literature.
 abs the largest absolute value for each residue-residue pair
 min the minimum value for each residue-residue pair
 max the maximum value for each residue-residue pair

 The full-sized animated gifs, which you can see by clicking on the versions shown
here,
 will play more slowly than the thumbnails. If you wish to see the speeded-up
version,
 remove the "0.5" from the filename. E.g. look at
animated_%s_resi_mainheavy_correl.gif
 instead of animated_0.5_%s_resi_mainheavy_correl.gif.

 <table>
 <tr>
 <td>%s (closed loop starting structure)</td>
 </tr>
 ''' % (options.structurename,
 options.structurename,
 options.structurename,
 options.structurename,
 options.structurename,)

 for plot_type in options.plottypes:
 # New naming conventions mean that these are zero-padded and will be in the
correct order.
 #filenames =
glob.glob(os.path.join(options.outputdir,'images',options.structurename+" NS??? resi
"+plot_type+" correl*",)) +
glob.glob(os.path.join(options.outputdir,'images',options.structurename+" NS???? resi
"+plot_type+" correl*",)) +
glob.glob(os.path.join(options.outputdir,'images',options.structurename+" NS????? resi
"+plot_type+" correl*",)) #does anyone do any 100ns+ simulations??
 filenames =
glob.glob(os.path.join(options.outputdir,'images',options.structurename+" NS* resi
"+plot_type+" correl*",))
 if not filenames:
 print "COULD NOT FIND files for",plot_type
 continue
 prog = 'convert'
 print filenames
 print
[os.path.join(options.outputdir,'images',"animated_"+options.structurename+"_resi_"+plot_
type+"_correl.gif",),]
 args = ['-loop','0',] + filenames +
[os.path.join(options.outputdir,'images',"animated_"+options.structurename+"_resi_"+plot_
type+"_correl.gif",),]
 tool_utils.run(prog,args,verbose=True)

 146

 prog,args = 'convert',('-resize','256x',

os.path.join(options.outputdir,'images',"animated_"+options.structurename+"_resi_"+plot_t
ype+"_correl.gif",),

os.path.join(options.outputdir,'images',"animated_"+options.structurename+"_resi_"+plot_t
ype+"_correl_thumb.gif",),
)
 tool_utils.run(prog,args,verbose=True)
 if options.slowmovies:
 prog,args = 'convert',('-delay','50',

os.path.join(options.outputdir,'images',"animated_"+options.structurename+"_resi_"+plot_t
ype+"_correl.gif",),

os.path.join(options.outputdir,'images',"animated_0.5_"+options.structurename+"_resi_"+pl
ot_type+"_correl.gif",),
)
 tool_utils.run(prog,args,verbose=True)

 if (options.movielink == 'fast') or not options.slowmovies:
 html_txt += ''' <tr>
 <td><img
src="images/animated_%s_resi_%s_correl_thumb.gif/"/></td>
 </tr>\n'''%(
 options.structurename,
 plot_type,

 options.structurename,
 plot_type,
)
 else:
 html_txt += ''' <tr>
 <td><img
src="images/animated_%s_resi_%s_correl_thumb.gif/"/></td>
 </tr>\n'''%(
 options.structurename,
 plot_type,

 options.structurename,
 plot_type,
)

 html_txt += ''' </table>
 <hr>
 </body>
</html>
'''
 f =
file(os.path.join(options.outputdir,options.structurename+'BigAnimatedMovies.html'),'w')
 f.write(html_txt)
 f.close()

drivers/parse_sander_output.py
#!/usr/bin/env python

import sys,os,re

Each section that we care about looks like this:

exampleSection = """
 NSTEP = 0 TIME(PS) = 0.000 TEMP(K) = 457.87 PRESS = 0.00
 Etot = -119068.4556 EKtot = 33623.6366 EPtot = -152692.0922
 BOND = 130.2398 ANGLE = 448.8823 DIHED = 849.5638
 1-4 NB = 515.8140 1-4 EEL = 6193.3324 VDWAALS = 15714.9288
 EELEC = -176544.8532 EHBOND = 0.0000 CONSTRAINT = 0.0000
 Ewald error estimate: 0.6201E-04

 147

 --

===
 NMR restraints for step 0
 Energy (this step): Bond = 0.000 Angle = 0.000 Torsion = 0.000
 Energy (tot. run) : Bond = 0.000 Angle = 0.000 Torsion = 0.000

 DEVIATIONS: Target=(r2+r3)/2 Target = closer of r2/r3
 This step Entire run This step Entire run
 ave. rms ave. rms ave. rms ave. rms
 Bond 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 Angle 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 Torsion 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
===
"""

class StepInfo(dict):
 #
 # see the comments in __getitem__ for info about allKeys.
 # we also use it to cheat .. we know that 'EAMBER (non-constraint)' will
 # show up eventually, but maybe not in the first step, so we'll seed our
 # keys list.
 #
 allKeys = {'EAMBER (non-constraint)':True}
 def __init__(self, inString):
 #
 # The useful lines are all of the form
 # A = B C=D E = F
 #
 # That is, it's always name=value pairs, but
 # - there may or may not be spaces around either
 # side of the =.
 # - the name may be one or more words
 #
 # We assume that we've only been passed useful lines.
 #
 # So, we need to be a little clever. We concatenate the
 # lines into one big string. Then we split it based on
 # equals signs. Everything in between the equals signs
 # then gets split up based on whitespace. So, the name-value
 # pairs are [everything but the first thing in group i-1]-
 # [first thing in group i]. We have to take care to get
 # the first and last groups correct.
 #
 inString = ' '.join(inString.split()) # get rid of spurious whitespace
 parts = inString.split('=')
 names = [parts[0].strip()]
 values = []
 for part in parts[1:-1]:
 try:
 values.append(float(part.split()[0]))
 except ValueError:
 values.append(0.0)
 names.append(' '.join(part.split()[1:]))
 values.append(float(parts[-1]))
 if len(names) != len(values):
 sys.exit('oops')
 for name,value in zip(names,values):
 self[name] = value
 def __setitem__(self,name,value):
 self.allKeys[name] = True
 return super(StepInfo,self).__setitem__(name,value)
 def __getitem__(self,item):
 #
 # If it's a "valid key" (meaning that some StepInfo has seen it before),
 # and we haven't seen it, we'll return the empty string.
 #
 if item in self.allKeys:
 val = ''
 try:
 val = super(StepInfo,self).__getitem__(item)
 except KeyError:

 148

 pass
 else:
 val = super(StepInfo,self).__getitem__(item)
 return val
 def keys(self):
 return self.allKeys.keys()
 def iteritems(self):
 #
 # we need to make sure that this includes the fake keys in self.allKeys
 #
 for k in self.keys():
 yield k,self[k]

def steps(fileobj):
 #
 # When we get to the RMS fluctuations, we're done.
 #
 step = []
 for line in fileobj:
 if line.startswith(' R M S F L U C T U A T I O N S'):
 print "BREAKING"
 break
 if line.startswith(' NSTEP'):
 if step:
 yield ''.join(step)
 step = [line]
 else:
 #
 # Only include lines that we know should be included
 #
 goodStarts = (' NSTEP', ' Etot', ' BOND', ' 1-4 NB', ' EELEC', ' EKCMT','
Density', ' EAMBER (non-constraint)',)
 #goodStarts = (' NSTEP', ' Etot', ' BOND', ' 1-4 NB', ' EELEC', ' EKCMT','
Density',)
 #
 # Only some lines have EAMBER .. StepInfo deals with that.
 #
 for start in goodStarts:
 if line.startswith(start):
 step.append(line)
 if step:
 yield(''.join(step))

def getSteps(filename):
 f = file(filename)
 for step in steps(f):
 yield StepInfo(step)
 f.close()

def getFilename(s,extension = '.txt',dir=''):
 """everything that's not a letter or number turns into an underscore"""
 return os.path.join(dir,re.sub('\W','_',s) + extension)

usage = """
usage:
parseSanderOut.py file.out dirname

will put the data in file.out into nice files in dirname.
The directory called dirname must not exist when this script is run.
Among those files are:

 data/allout.txt tab-delimited text file with all information
 (suitable for gnumeric, koffice or excel)
 data/Etot.txt, etc. individual files with different types of sander
 output (two columns per file, one is time(ps))
 results.html html file showing you lots graphs of your data
 images/* postscript and gif graphs of your data

So, for the most part, you probably just want to point your favorite
webbrowser at dirname/results.html.

 149

NOTE: this script assumes that you have gnuplot and convert installed
and in your path. This is true on the SGIs, for example, but not on garlic.

"""

if __name__ == '__main__':
 if len(sys.argv) != 3:
 print "**"
 print
 print "Not enough arguments on the command line"
 print
 print "**"
 print
 sys.exit(usage)
 datafileName, dir = sys.argv[1:]
 try:
 f = file(datafileName)
 f.close()
 except:
 print "**"
 print
 print "Could not read %s." % datafileName
 print
 print "**"
 print
 sys.exit(usage)
 if os.path.exists(dir):
 print "**"
 print
 print "%s exists. Please (re)move it or specify" % dir
 print "a different destination directory."
 print
 print "**"
 print
 sys.exit(usage)

 os.system('mkdir %s' % dir)
 #
 # We write out alldata.txt, which contains all of the data.
 # We also write out <thing>.txt where <thing> is all of the
 # other types of data, e.g. EELEC.data.
 #
 allout = file(os.path.join(dir,'alldata.txt'),'w')
 # fileMap maps data type (EELEC) to file object and filename.
 # e.g. fileMap = {'EELEC':{'filename':'EELEC.txt','file':<fileobj>},...}
 #
 fileMap = {}
 #
 # We'll set the keys with the first step and reuse them
 # for all subsequent setps. This guarantees that we have a consistent
 # number of columns.
 #
 first = True
 nonTimeKeys = None
 for step in getSteps(datafileName):
 #
 # We want TIME(PS) to be the first column
 #
 if nonTimeKeys is None:
 nonTimeKeys = step.keys()
 try:
 nonTimeKeys.remove('TIME(PS)')
 except:
 sys.exit('Could not find time(ps) in ' + str(nonTimeKeys))
 if first:
 first = False
 #
 # Set up fileMap
 #
 for key in nonTimeKeys:
 filename = getFilename(key)
 fileMap[key] = {'filename':filename,
 'file':file(os.path.join(dir,filename),'w'),}

 150

 #
 # Write the headers
 #
 allout.write('# TIME(PS)\t' + '\t'.join(nonTimeKeys) + '\n')
 for key in fileMap.keys():
 fileMap[key]['file'].write('# TIME(PS)\t' + key + '\n')

 #
 # line keeps track of the line for allout.txt
 #
 line = '%s\t' % step['TIME(PS)']
 for k in nonTimeKeys:
 if k != 'TIME(PS)':
 line += '%s\t' % step[k]
 fileMap[k]['file'].write('%s\t%s\n' % (step['TIME(PS)'],
 step[k]))
 line += '\n'
 allout.write(line)
 #
 # Close all of the files
 #
 allout.close()
 for k in fileMap.keys():
 fileMap[k]['file'].close()

 #
 # Now we use gnuplot to make a bunch of images
 #
 imgDir = os.path.join(dir,'images')
 os.system('mkdir -p ' + imgDir)
 gpltCmd = 'set terminal postscript\n'
 for k in fileMap.keys():
 imgName = getFilename(k,'.ps',imgDir)
 gpltCmd += "set output '%s'\n" % imgName
 gpltCmd += "plot '%s'\n" % os.path.join(dir,fileMap[k]['filename'])
 gpltFilename = os.path.join(dir,'commands.gnuplot')
 gpltFile = file(gpltFilename,'w')
 gpltFile.write(gpltCmd)
 gpltFile.close()
 os.system('/usr/bin/env gnuplot %s' % gpltFilename)
 #
 # gnuplot can't always make gifs, so we make postscript files and convert
 # them into gifs.
 #
 thumbPart = '-size 200x200 -geometry 200x200'
 for k in fileMap.keys():
 ps = getFilename(k,'.ps',imgDir)
 gif = getFilename(k,'.gif',imgDir)
 thumb = getFilename(k,'_thumb.gif',imgDir)
 os.system('/usr/bin/env convert -rotate 90 %s %s' % (ps,gif))
 os.system('/usr/bin/env convert -rotate 90 %s %s %s' % (thumbPart,
 ps,
 thumb))

 #
 # This will be a really simple html file
 #
 numCols = 4
 htmlFile = file(os.path.join(dir,'results.html'),'w')
 htmlFile.write("<html><head></head><body>")
 htmlFile.write('<table><tr><td colspan="%s">These are the thumbnails .. click on them
for the big picture(s)</td>' % numCols)
 count = 0
 for k in fileMap.keys():
 if count % numCols == 0:
 htmlFile.write('</tr><tr>')
 count += 1
 bigName = getFilename(k,'.gif','images')
 thumbName = getFilename(k,'_thumb.gif','images')
 htmlFile.write('<td>%s
'%(k))
 htmlFile.write(''%(k,thumbName))
 htmlFile.write('</td>\n')
 htmlFile.write('</tr></table>\n')

 151

 for k in fileMap.keys():
 bigName = getFilename(k,'.gif','images')
 htmlFile.write('
')
 htmlFile.write('\n' %
(k,getFilename(k,'.txt'), bigName))
 htmlFile.write("</body></html>\n")
 htmlFile.close()

drivers/run_ptraj.py
#!/usr/bin/env python

import sys,os

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/Dynamics-DHFR/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/Dynamics-DHFR/'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat import tool_utils
 import glob
 from optparse import OptionParser

 usage = tool_utils.usage + """
Please also make sure that ptraj is installed and in your path.

This mimics the following shell script:

 export PTRAJ_INPUT_DIR=/users/mlerner/tmp/spronk/ptraj_files/
 export PRMTOP=/users/spronk/temp/1sgz/1sgz.nowat.prmtop
 for f in $PTRAJ_INPUT_DIR/*.ptraj; do ptraj $PRMTOP <$f > $f.out; done
"""
 parser = OptionParser(usage=tool_utils.usage)

 tool_utils.add_standard_options(parser)

 parser.add_option("--input-dir",dest="inputdir",
 default="./",
 help="Directory that contains our input files. It should contain
the prmtop file and the mdcrd file. [default: %default]")
 parser.add_option("--prmtop",dest="prmtop",
 default="1sgz.nowat.prmtop",
 help="Name of prmtop file")

 options,args = parser.parse_args()

 filenames =
glob.glob(os.path.join(options.outputdir,'calculate_%s*_correl_and_covar.ptraj'%options.s
tructurename))
 filenames +=
glob.glob(os.path.join(options.outputdir,'write_%s_ref_pdb.ptraj'%options.structurename))
 print "I found these ptraj files to run:",filenames
 for f in filenames:
 prog,args = 'ptraj',(os.path.join(options.inputdir,options.prmtop), f)
 retcode,progout = tool_utils.run(prog,args)
 outf = file(f+'.out','w')
 outf.write(progout)
 outf.close()
 print "Ran",prog,args,"with result",retcode

drivers/write_ptraj_input_files.py
#!/usr/bin/env python
import os,sys

 152

import sys,os

if sys.platform == 'darwin':
 PYPAT_CODE_DIR = '/Users/mglerner/work/Dynamics-DHFR/'
elif sys.platform == 'linux2':
 PYPAT_CODE_DIR = '/users/mlerner/work/src/Dynamics-DHFR/'

sys.path.append(PYPAT_CODE_DIR)

if __name__ == '__main__':
 from pypat.runningptraj.write_ptraj_input_files import write_ptraj_input_files
 from pypat import tool_utils
 from optparse import OptionParser

 usage = tool_utils.usage + """
This script will emit the PDB file that you will use as a
reference structure later on. It will live in <outputdir>/<structure>_ref.pdb.1
"""

 parser = OptionParser(option_class=tool_utils.MyOption,usage=usage)

 tool_utils.add_standard_options(parser)
 tool_utils.add_window_options(parser)

 parser.add_option("--input-dir",dest="inputdir",
 default="./",
 help="Directory that contains our input files. It should contain
the prmtop file and the mdcrd file. [default: %default]")

 parser.add_option("--mdcrd",dest="mdcrd",
 type="strlist",
 default=["1sgz.nowat.0-6.mdcrd",],
 help="Comma-separated list of mdcrd files")

 parser.add_option("--ps",dest="ps",
 default=5,
 type="int",
 help="Number of ps per frame. [default: %default]")

 parser.add_option("--align",dest="align",
 default="all",
 help="How to align. 'all' means 'rms first *'. 'none' means no
alignment. Any other string will be treated as the alignment string. For example, if
you say ':1-428@CA' the ptraj file will say 'rms first :1-428@CA'. [default: %default]",
)
 parser.add_option("--strip-hydros",dest="strip_hydros",
 default=False,
 action="store_true",
 help="Strip the hydrogens out during the ptraj runs.",
)
 parser.add_option("--strip-waters",dest="strip_waters",
 default=False,
 action="store_true",
 help="Strip the waters out during the ptraj runs. This assumes
they're named WAT.",
)
 parser.add_option("--write-covar",dest="write_covar",
 default=False,
 action="store_true",
 help="Write out the covariance matrix [default: %default]",
)
 parser.add_option("--other-ptraj-strips",dest="other_ptraj_strips",
 default=[],
 type="strlist",
 help="Comma-separated list of other things that ptraj should strip.
For example, could be :WAT,:BOB and we would add two lines, one saying strip :WAT and one
saying strip :BOB."
)

 options,args = parser.parse_args()

 desired=tool_utils.get_desired(options)

 153

 #
 # Build up the ptraj header.
 # 1) read in the mdcrd files
 # 2) strip things
 # 3) rms vs. first one
 #
 # VERY IMPORTANT NOTE: do the rms *after* you've done everything
 # else. Otherwise, it tries to align things with the waters, etc.
 # and all of your correlations will be totally wrong.
 #
 ptraj_header = ''
 pdb_ptraj_header = ''
 pdb_ptraj_header += 'trajin %s 1 1
1\n\n'%os.path.join(options.inputdir,options.mdcrd[0])

 for mdcrd in options.mdcrd:
 ptraj_header += 'trajin %s\n'%os.path.join(options.inputdir,mdcrd)
 ptraj_header += '\n'

 if options.strip_hydros:
 ptraj_header += 'strip @H*\n'
 pdb_ptraj_header += 'strip @H*\n'
 if options.strip_waters:
 ptraj_header += 'strip :WAT\n'
 pdb_ptraj_header += 'strip :WAT\n'
 for strip in options.other_ptraj_strips:
 ptraj_header += 'strip %s\n'%strip
 pdb_ptraj_header += 'strip %s\n'%strip

 if options.align in 'none None NONE no NO No'.split():
 pass
 elif options.align == 'all':
 ptraj_header += 'rms first *\n'
 pdb_ptraj_header += 'rms first *\n'
 else:
 ptraj_header += 'rms first %s\n'%options.align
 pdb_ptraj_header += 'rms first %s\n'%options.align

 write_ptraj_input_files(dir_containing_ptraj_files=options.outputdir,

ptraj_output_dir=os.path.join(options.outputdir,options.structurename),
 filename_prefix=options.structurename,
 desired=desired,
 ps_per_frame=options.ps,
 ptraj_header=ptraj_header,

fname_template='calculate_'+options.structurename+'_%s_correl_and_covar.ptraj',

write_out_pdb_file=os.path.join(options.outputdir,options.structurename+'_ref.pdb'),
 write_covar=options.write_covar,
 pdb_ptraj_header=pdb_ptraj_header,
)

pypat/__init__.py
#!/usr/bin/env python
#blank

pypat/md_analysis_utils.py
#!/usr/bin/env python2.4

"""
This is not really meant to be generalizable.
But, hey, knock yourself out.
"""

 154

from scipy import *

import sys,glob,os,bz2
from tool_utils import read_data

def setup_ca(reference_fname,indexing=1,skip_resis=[]):
 """
 most of the code in my_md_analysis assumes 1-based indexing
 for this, but make_plot wants 0-based indexing. in the end,
 i should switch everything over to 0-based, but i'll leave
 this in as a hack for now.
 """
 master_residue_list = []
 reference_coords = []
 ca_atom_id_list = []
 skip_atom_id_list = []
 #
 # We have a few naming conventions to deal with, like
 # 1HD2 vs. HD12. One thing that seems consistent is that
 # the first non-numeric character in the atom name tells
 # us the element.
 #
 # No need for speed here.
 #
 def is_hydro(atom_name):
 c = atom_name[0]
 if c in '1234567890':
 c = atom_name[1]
 return c in 'H'
 def is_nosp(atom_name):
 c = atom_name[0]
 if c in '1234567890':
 c = atom_name[1]
 return c in 'NOSP'
 def is_mainchain(atom_name,resn):
 return (resn in 'NAP'.split()) or (atom_name in 'CA C N O H HA'.split())

 hydro_atom_id_list = []
 nonhydro_atom_id_list = []
 nosp_atom_id_list = []
 nonnosp_atom_id_list = []
 mainchain_atom_id_list = []
 sidechain_atom_id_list = []
 mainchain_nonhydro_atom_id_list = []
 sidechain_hydro_atom_id_list = []
 sidechain_nonhydro_atom_id_list = []
 f = file(reference_fname)
 generated_atom_id = 1
 for line in f:
 parts = line.split()
 if parts[0] not in ['ATOM','HETATM']:
 continue
 #atom,atom_id,atom_name,resn,chain,resi,x,y,z,occupancy,b,elem_name = parts
 atom,atom_id,atom_name,resn,chain,resi,x,y,z = parts[:9]
 #
 # One little hack to deal with missing chain info. If it's a number,
 # it's not really the chain.
 #
 try:
 junk = float(chain)
 atom,atom_id,atom_name,resn,resi,x,y,z = parts[:8]
 except ValueError:
 pass

 x,y,z = map(float,(x,y,z))
 try:
 resi,atom_id = map(int,(resi,atom_id))
 except ValueError:
 print "Trouble getting resi,atom_id from",resi,atom_id,line.strip()
 raise
 if resi in skip_resis:
 skip_atom_id_list.append(atom_id)

 155

 if is_hydro(atom_name):
 hydro_atom_id_list.append(atom_id)
 else:
 nonhydro_atom_id_list.append(atom_id)

 if is_nosp(atom_name):
 nosp_atom_id_list.append(atom_id)
 else:
 nonnosp_atom_id_list.append(atom_id)

 if is_mainchain(atom_name,resn):
 mainchain_atom_id_list.append(atom_id)
 if not is_hydro(atom_name):
 mainchain_nonhydro_atom_id_list.append(atom_id)
 else:
 sidechain_atom_id_list.append(atom_id)
 if is_hydro(atom_name):
 sidechain_hydro_atom_id_list.append(atom_id)
 else:
 sidechain_nonhydro_atom_id_list.append(atom_id)

 if atom_name != 'CA':
 continue
 #
 # 1RX2 claims to model two conformations for ASP 116. I only see one
 # in the PDB file, and it's conformation A.
 #
 if resn == 'AASP' and resi == 116 and '1RX2' in reference_fname: resn = 'ASP'
 elif resn == 'AASP': print "Unrecognized residue: AASP"
 master_residue_list.append((resi,resn))
 reference_coords.append((x,y,z))
 ca_atom_id_list.append(atom_id)
 f.close()
 results =
master_residue_list,reference_coords,ca_atom_id_list,hydro_atom_id_list,nonhydro_atom_id_
list,nosp_atom_id_list,nonnosp_atom_id_list,mainchain_atom_id_list,sidechain_atom_id_list
,mainchain_nonhydro_atom_id_list,sidechain_hydro_atom_id_list,sidechain_nonhydro_atom_id_
list,skip_atom_id_list

 #
 # Now skip the things in the skip list
 #
 _results = []
 for (_i,thing) in enumerate(results):
 if not thing:
 # empty lists
 _results.append(thing)
 continue
 if type(thing[0]) == type(()):
 # master_residue_list has (1,'MET'), etc.
 thing = [i for i in thing if i[0] not in skip_atom_id_list]
 elif type(thing[0]) == type(1):
 thing = [i for i in thing if i not in skip_atom_id_list]
 else:
 print "wha?",thing
 a = 1/0
 _results.append(thing)
 results = _results

 #
 # And now take care of the indexing (0 or 1) problem
 #
 if indexing == 0:
 for thing in results:
 for i in range(len(thing)):
 if type(thing[0]) == type(()):
 # master_residue_list has (1,'MET'), etc.
 thing[i] = (thing[i][0] - 1,thing[i][1])
 elif type(thing[0]) == type(1):
 thing[i] = thing[i] - 1
 else:
 print "wha?",thing

 156

 a = 1/0
 return results

_parse_count = 0
def parse_ca(fname,master_residue_list):
 global _parse_count
 _parse_count += 1
 if divmod(_parse_count,100)[-1] == 0:
 sys.stdout.write('.')
 sys.stdout.flush()
 residue_list = []
 coords = []
 f = file(fname)
 for line in f:
 parts = line.split()
 if parts[0] not in ['ATOM','HETATM']:
 continue
 atom,atom_id,atom_name,resn,chain,resi,x,y,z,occupancy,b = parts
 if atom_name != 'CA':
 continue
 x,y,z = map(float,(x,y,z))
 resi,atom_id = map(int,(resi,atom_id))
 #
 # In order to compare different structures, we cheat a little bit.
 # Here, we say that all Histidine residues will be called HIS
 #
 if resn in ('HIE','HID','HIP'): resn = 'HIS'
 residue_list.append((resi,resn))
 coords.append((x,y,z))
 f.close()
 if residue_list != master_residue_list:
 #print master_residue_list
 #print residue_list
 print "broken",[(i,residue_list[i],master_residue_list[i]) for i in
range(len(residue_list)) if residue_list[i] != master_residue_list[i]]
 sys.exit()
 return coords

def parse_all(fname,master_residue_list):
 global _parse_count
 _parse_count += 1
 if divmod(_parse_count,100)[-1] == 0:
 sys.stdout.write(',')
 sys.stdout.flush()
 coords = []
 residue_list = []
 f = file(fname)
 for line in f:
 parts = line.split()
 if parts[0] not in ['ATOM','HETATM']:
 continue
 atom,atom_id,atom_name,resn,chain,resi,x,y,z,occupancy,b = parts
 x,y,z = map(float,(x,y,z))
 resi,atom_id = map(int,(resi,atom_id))
 #
 # In order to compare different structures, we cheat a little bit.
 # Here, we say that all Histidine residues will be called HIS
 #
 if resn in ('HIE','HID','HIP'): resn = 'HIS'
 if atom_name == 'CA':
 residue_list.append((resi,resn))
 coords.append((x,y,z))
 f.close()
 if residue_list != master_residue_list:
 #print master_residue_list
 #print residue_list
 print "broken",[(i,residue_list[i],master_residue_list[i]) for i in
range(len(residue_list)) if residue_list[i] != master_residue_list[i]]
 sys.exit()
 return coords

vds_radii = {'H':1.20,

 157

 'C':1.7,
 'N':1.55,
 'O':1.52,
 'F':1.35,
 'P':1.9,
 'S':1.85,
 'Cl':1.8,
 }
def nap16O7phe31min_dist(s,include_hydro):
 '''
 nap 160 O7N is
ATOM 2499 O7N NAP A 160 31.906 43.045 14.292 0.00 0.00
 phe31 is these:
ATOM 464 N PHE A 31 29.869 36.434 7.846 0.00 0.00
ATOM 465 H PHE A 31 30.728 36.378 8.374 0.00 0.00
ATOM 466 CA PHE A 31 29.490 37.827 7.596 0.00 0.00
ATOM 467 HA PHE A 31 28.684 38.052 8.295 0.00 0.00
ATOM 468 CB PHE A 31 30.654 38.827 7.849 0.00 0.00
ATOM 469 HB2 PHE A 31 31.411 38.440 7.165 0.00 0.00
ATOM 470 HB3 PHE A 31 31.011 38.747 8.876 0.00 0.00
ATOM 471 CG PHE A 31 30.331 40.229 7.525 0.00 0.00
ATOM 472 CD1 PHE A 31 29.332 40.919 8.262 0.00 0.00
ATOM 473 HD1 PHE A 31 28.856 40.455 9.113 0.00 0.00
ATOM 474 CE1 PHE A 31 28.974 42.223 7.928 0.00 0.00
ATOM 475 HE1 PHE A 31 28.310 42.806 8.549 0.00 0.00
ATOM 476 CZ PHE A 31 29.667 42.830 6.822 0.00 0.00
ATOM 477 HZ PHE A 31 29.388 43.825 6.505 0.00 0.00
ATOM 478 CE2 PHE A 31 30.522 42.121 5.987 0.00 0.00
ATOM 479 HE2 PHE A 31 31.146 42.680 5.304 0.00 0.00
ATOM 480 CD2 PHE A 31 30.872 40.855 6.386 0.00 0.00
ATOM 481 HD2 PHE A 31 31.673 40.345 5.873 0.00 0.00
ATOM 482 C PHE A 31 28.903 37.987 6.204 0.00 0.00
ATOM 483 O PHE A 31 27.702 38.399 6.116 0.00 0.00
 '''
 phe_nonhydro_ids = [i - 1 for i in [464,466,468,471,472,474,476,478,480,482,483]]
 phe_hydro_ids = [i - 1 for i in [465,467,469,470,473,475,477,479,481]]
 nap_id = 2499 - 1
 if include_hydro:
 phes = phe_nonhydro_ids + phe_hydro_ids
 else:
 phes = phe_nonhydro_ids

 dists = []
 for phe in phes:
 dists.append(((s[phe][0] - s[nap_id][0])**2 + (s[phe][1] - s[nap_id][1])**2 +
(s[phe][2] - s[nap_id][2])**2)**0.5)
 return min(dists)

def ile50leu28min_dist(s,include_hydro,vdw):
 '''
 ile is residue 50, which corresponds to these:
ATOM 789 N ILE A 50 36.039 51.305 7.008 0.00 0.00
ATOM 790 H ILE A 50 35.197 51.604 7.478 0.00 0.00
ATOM 791 CA ILE A 50 35.920 50.306 5.913 0.00 0.00
ATOM 792 HA ILE A 50 36.626 49.526 6.197 0.00 0.00
ATOM 793 CB ILE A 50 34.548 49.572 5.812 0.00 0.00
ATOM 794 HB ILE A 50 34.634 48.734 5.122 0.00 0.00
ATOM 795 CG2 ILE A 50 34.338 48.759 7.152 0.00 0.00
ATOM 796 1HG2 ILE A 50 33.464 48.123 7.010 0.00 0.00
ATOM 797 2HG2 ILE A 50 35.292 48.296 7.399 0.00 0.00
ATOM 798 3HG2 ILE A 50 33.946 49.490 7.859 0.00 0.00
ATOM 799 CG1 ILE A 50 33.333 50.451 5.455 0.00 0.00
ATOM 800 2HG1 ILE A 50 33.017 51.019 6.330 0.00 0.00
ATOM 801 3HG1 ILE A 50 33.693 51.294 4.863 0.00 0.00
ATOM 802 CD1 ILE A 50 32.267 49.782 4.626 0.00 0.00
ATOM 803 1HD1 ILE A 50 31.563 50.542 4.285 0.00 0.00
ATOM 804 2HD1 ILE A 50 31.713 49.138 5.308 0.00 0.00
ATOM 805 3HD1 ILE A 50 32.795 49.237 3.843 0.00 0.00
ATOM 806 C ILE A 50 36.481 50.726 4.555 0.00 0.00
ATOM 807 O ILE A 50 36.965 49.871 3.850 0.00 0.00
 leu28 is these:
ATOM 411 N LEU A 28 34.634 36.196 7.999 0.00 0.00
ATOM 412 H LEU A 28 35.557 35.797 8.082 0.00 0.00

 158

ATOM 413 CA LEU A 28 34.258 36.995 6.836 0.00 0.00
ATOM 414 HA LEU A 28 33.750 37.861 7.263 0.00 0.00
ATOM 415 CB LEU A 28 35.554 37.350 6.057 0.00 0.00
ATOM 416 HB2 LEU A 28 35.988 36.377 5.826 0.00 0.00
ATOM 417 HB3 LEU A 28 35.319 37.721 5.059 0.00 0.00
ATOM 418 CG LEU A 28 36.585 38.145 6.693 0.00 0.00
ATOM 419 HG LEU A 28 36.899 37.709 7.641 0.00 0.00
ATOM 420 CD1 LEU A 28 37.845 38.434 5.827 0.00 0.00
ATOM 421 1HD1 LEU A 28 38.434 39.296 6.138 0.00 0.00
ATOM 422 2HD1 LEU A 28 38.500 37.569 5.925 0.00 0.00
ATOM 423 3HD1 LEU A 28 37.485 38.637 4.819 0.00 0.00
ATOM 424 CD2 LEU A 28 36.097 39.603 6.905 0.00 0.00
ATOM 425 1HD2 LEU A 28 35.930 40.049 5.925 0.00 0.00
ATOM 426 2HD2 LEU A 28 36.688 40.264 7.539 0.00 0.00
ATOM 427 3HD2 LEU A 28 35.166 39.533 7.469 0.00 0.00
ATOM 428 C LEU A 28 33.324 36.222 5.961 0.00 0.00
ATOM 429 O LEU A 28 32.443 36.867 5.383 0.00 0.00
 '''
 ile_nonhydro_ids = [i - 1 for i in [789,791,793,795,799,802,806,807]]
 ile_hydro_ids = [i - 1 for i in [790,792,794,796,797,798,800,801,803,804,805]]
 leu_nonhydro_ids = [i - 1 for i in [411,413,415,418,420,424,428,429]]
 leu_hydro_ids = [i - 1 for i in [412,414,416,417,419,421,422,423,425,426,427]]
 if include_hydro:
 iles = ile_nonhydro_ids + ile_hydro_ids
 leus = leu_nonhydro_ids + leu_hydro_ids
 else:
 iles = ile_nonhydro_ids
 leus = leu_nonhydro_ids

 dists = []
 for ile in iles:
 for leu in leus:
 dists.append(((s[ile][0] - s[leu][0])**2 + (s[ile][1] - s[leu][1])**2 +
(s[ile][2] - s[leu][2])**2)**0.5)
 return min(dists)

def ile50leu28ca_dist(s):
 return ((s[49][0] - s[27][0])**2 + (s[49][1] - s[27][1])**2 + (s[49][2] -
s[27][2])**2)**0.5

def ile50asp27ca_dist(s):
 return ((s[49][0] - s[26][0])**2 + (s[49][1] - s[26][1])**2 + (s[49][2] -
s[26][2])**2)**0.5

def bynumber_dist(s,n1,n2):
 return ((s[n1][0] - s[n2][0])**2 + (s[n1][1] - s[n2][1])**2 + (s[n1][2] -
s[n2][2])**2)**0.5

def simple_rmsd(s1,s2):
 """
 rmsd = sqrt((1/N)*sum((x_n - y_n)^2))
 """
 N = len(s1)
 _range = range(N)
 deviations = [(s1[i][0] - s2[i][0])**2 +
 (s1[i][1] - s2[i][1])**2 +
 (s1[i][2] - s2[i][2])**2 for i in _range]
 return ((1/float(N))*sum(deviations))**0.5

def write_rmsds_and_ile50leu28ca_dists(ref_fname,
 target_pattern,
 rmsd_out_fname,
 ileleu_out_fname,
 ileleu_min_out_fname,
 ileleu_min_hydro_out_fname,
 ileleu_min_vdw_out_fname,
 ileleu_min_vdw_hydro_out_fname,
 nap160phe31_out_fname,
 nap160phe31_min_out_fname,
 nap160phe31_min_hydro_out_fname,
 ileasp_out_fname,
 out_dir):

 159

 '''
 Wrapper function to write out all of the RMSDS and distances I care about

 target_pattern: we glob this together to get the target files
 '''
 structure_fnames = glob.glob(target_pattern)
 if not structure_fnames:
 print "I found zero files matching this pattern:",target_pattern

master_residue_list,reference_coords,ca_atom_id_list,hydro_atom_id_list,nonhydro_atom_id_
list,nosp_atom_id_list,nonnosp_atom_id_list,mainchain_atom_id_list,sidechain_atom_id_list
,mainchain_nonhydro_atom_id_list,sidechain_hydro_atom_id_list,sidechain_nonhydro_atom_id_
list,skip_atom_id_list = setup_ca(ref_fname)
 every_atom_coords = [parse_all(fname,master_residue_list) for fname in
structure_fnames]
 all_coords = [parse_ca(fname,master_residue_list) for fname in structure_fnames]
 if 1:
 # individual distances
 #
 # ILE50 LEU20 CA dists don't care about the loops, so do them first
 #

 ile50leu28min_dists = [ile50leu28min_dist(coords,include_hydro=False,vdw=False)
for coords in every_atom_coords]
 f = file(os.path.join(out_dir,ileleu_min_out_fname),'w')
 for ileleud in ile50leu28min_dists: f.write('%s\n'%ileleud)
 f.close()

 ile50leu28min_dists = [ile50leu28min_dist(coords,include_hydro=True,vdw=False)
for coords in every_atom_coords]
 f = file(os.path.join(out_dir,ileleu_min_hydro_out_fname),'w')
 for ileleud in ile50leu28min_dists: f.write('%s\n'%ileleud)
 f.close()

 ile50leu28min_dists = [ile50leu28min_dist(coords,include_hydro=False,vdw=True)
for coords in every_atom_coords]
 f = file(os.path.join(out_dir,ileleu_min_vdw_out_fname),'w')
 for ileleud in ile50leu28min_dists: f.write('%s\n'%ileleud)
 f.close()

 ile50leu28min_dists = [ile50leu28min_dist(coords,include_hydro=True,vdw=True) for
coords in every_atom_coords]
 f = file(os.path.join(out_dir,ileleu_min_vdw_hydro_out_fname),'w')
 for ileleud in ile50leu28min_dists: f.write('%s\n'%ileleud)
 f.close()

 nap160O7phe31cg_dists = [bynumber_dist(coords,2499-1,471-1) for coords in
every_atom_coords]
 f = file(os.path.join(out_dir,nap160phe31_out_fname),'w')
 for npd in nap160O7phe31cg_dists: f.write('%s\n'%npd)
 f.close()

 nap160O7phe31_min_dists = [nap16O7phe31min_dist(coords,include_hydro=False) for
coords in every_atom_coords]
 f = file(os.path.join(out_dir,nap160phe31_min_out_fname),'w')
 for npd in nap160O7phe31_min_dists: f.write('%s\n'%npd)
 f.close()

 nap160O7phe31_min_hydro_dists = [nap16O7phe31min_dist(coords,include_hydro=True)
for coords in every_atom_coords]
 f = file(os.path.join(out_dir,nap160phe31_min_hydro_out_fname),'w')
 for npd in nap160O7phe31_min_hydro_dists: f.write('%s\n'%npd)
 f.close()

 if 0:

 ile50leu28ca_dists = [ile50leu28ca_dist(coords) for coords in all_coords]
 f = file(os.path.join(out_dir,ileleu_out_fname),'w')
 for ileleud in ile50leu28ca_dists: f.write('%s\n'%ileleud)
 f.close()

 160

 ile50asp27ca_dists = [ile50asp27ca_dist(coords) for coords in all_coords]
 f = file(os.path.join(out_dir,ileasp_out_fname),'w')
 for ileaspd in ile50asp27ca_dists: f.write('%s\n'%ileaspd)
 f.close()

 if 0:

 #
 # Now do the loops
 #
 standard_parts = 'm20 all FG CD GH noloops subdomain1 subdomain2
substrate_binding substrate_binding2'.split()
 residue_chunks = '0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160'.split()
 anti_correlated_parts = 'm20 40-50 59-68 71-74 95-97'.split() + '116-124 142-
149'.split() # 116-124 is correlated with 40-50 and 59-68, 142-149 is correlated with 40-
50
 correlated_parts = '110-114 134-141 107-113 149-156 132-142 144-157'.split() +
'115-125 1-10 58-62 43-49 38-63 42-51'.split()
 #for structure_parts in correlated_parts + anti_correlated_parts + standard_parts
+ residue_chunks:
 for structure_parts in 'substrate_binding2'.split():
 this_fname = os.path.join(out_dir,os.path.splitext(rmsd_out_fname)[0] + '_' +
structure_parts + os.path.splitext(rmsd_out_fname)[1])
 print "Doing",this_fname
 structure_parts_map = {# standard parts
 'all':(0,162),
 'm20':(8,24),
 'FG' :(115,132),
 'CD' :(63,71),
 'GH' :(141,150),
 'subdomain2':(37,106),
 #Subdomain 2 38-106 (Sawaya/Kraut, Fig 9B)
 # residue chunks
 '0-20':(0,20),
 '20-40':(20,40),
 '40-60':(40,60),
 '60-80':(60,80),
 '80-100':(80,100),
 '100-120':(100,120),
 '120-140':(120,140),
 '140-160':(140,160),
 # Anti-correlated parts
 '40-50':(39,50),
 '59-68':(58,68),
 '71-74':(70,74),
 '95-97':(94,97),
 '116-124':(115,124),
 '142-149':(141,149),
 # Correlated parts
 '110-114':(109,114),
 '134-141':(133,141),
 '107-113':(106,113),
 '149-156':(148,156),
 '132-142':(131,142),
 '144-157':(143,157),
 '115-125':(114,125),
 '1-10':(0,10),
 '58-62':(57,62),
 '43-49':(42,49),
 '38-63':(37,63),
 '42-51':(41,51),
 }
 if structure_parts == 'noloops':
 bad_idxs = range(*structure_parts_map['m20']) +
range(*structure_parts_map['FG']) + range(*structure_parts_map['CD']) +
range(*structure_parts_map['GH'])
 good_idxs = [i for i in range(*structure_parts_map['all']) if i not in
bad_idxs]
 print "structure_parts",structure_parts,"residues",good_idxs
 rmsds = [simple_rmsd([reference_coords[i] for i in good_idxs if i <
len(reference_coords)],[coords[i] for i in good_idxs if i < len(coords)]) for coords in
all_coords]
 elif structure_parts == 'subdomain1':

 161

 #Subdomain 1 1-37, 107-159 (Sawaya/Kraut, Fig 9B)
 rmsds =
[simple_rmsd(reference_coords[0:37]+reference_coords[106:159],coords[0:37]+coords[106:159
]) for coords in all_coords]
 elif structure_parts == 'substrate_binding':
 # my best guess at reproducing fig. 1 from Boehr is 27-40,50-59,6-7,112-
113
 rmsds =
[simple_rmsd(reference_coords[26:40]+reference_coords[49:59]+reference_coords[5:7]+refere
nce_coords[111:113],

coords[26:40]+coords[49:59]+coords[5:7]+coords[111:113]) for coords in all_coords]
 elif structure_parts == 'substrate_binding2':
 # From Osborne2003, 27+36+37+54+96+5+6+26+27+28+29+36+37+50+51+52+54+57
 good_idxs = [i - 1 for i in (5,6,26,27,28,29,36,37,50,51,52,54,57,96)]
 rmsds = [simple_rmsd([reference_coords[i] for i in good_idxs],[coords[i]
for i in good_idxs]) for coords in all_coords]
 else:
 print
"structure_parts",structure_parts,"residues",structure_parts_map[structure_parts]
 start,stop = structure_parts_map[structure_parts]
 rmsds = [simple_rmsd(reference_coords[start:stop],coords[start:stop]) for
coords in all_coords]
 f = file(this_fname,'w')
 for rmsd in rmsds: f.write('%s\n'%rmsd)
 f.close()

def get_resi_to_atom_id_map(pdb_fname,indexing=1):
 """
 most of the code in my_md_analysis assumes 1-based indexing
 for this, but make_plot wants 0-based indexing. in the end,
 i should switch everything over to 0-based, but i'll leave
 this in as a hack for now.
 """
 atom_id_map = {}
 f = file(pdb_fname)
 generated_atom_id = 1
 for line in f:
 parts = line.split()
 if parts[0] not in ['ATOM','HETATM']:
 continue
 #atom,atom_id,atom_name,resn,chain,resi,x,y,z,occupancy,b,elem_name = parts
 atom,atom_id,atom_name,resn,chain,resi,x,y,z = parts[:9]

 #
 # One little hack to deal with missing chain info. If it's a number,
 # it's not really the chain.
 #
 try:
 junk = float(chain)
 atom,atom_id,atom_name,resn,resi,x,y,z = parts[:8]
 except ValueError:
 pass
 try:
 resi,atom_id = map(int,(resi,atom_id))
 except ValueError:
 print "trouble with resi",resi,"atom_id",atom_id,line.strip()
 raise
 atom_id_map.setdefault(resi,[]).append(atom_id)
 f.close()
 if indexing == 0:
 aim = {}
 for k,v in atom_id_map.iteritems():
 aim[k-1] = [i - 1 for i in v]
 atom_id_map = aim
 return atom_id_map

def
get_max_min_ca_resi_data(all_atom_data,atom_id_map,ca_atom_id_list,non_ca_resis=[160,]):
 """
 non_ca_resis is a list of resis that do not contain alpha carbons.

 returns everything as a dict. you may run out of memory here.

 162

 """
 abs_result = zeros((len(atom_id_map),len(atom_id_map)))
 max_result = zeros((len(atom_id_map),len(atom_id_map)))
 min_result = zeros((len(atom_id_map),len(atom_id_map)))
 ca_result = zeros((len(atom_id_map),len(atom_id_map)))
 #nonhydro_result = zeros((len(nonhydro_atom_id_list),len(nonhydro_atom_id_list)))
 #
 # remember that atom_id and resi are 1-based, whie the array is 0-based.
 # practically, that means that we use 1-based indices when looking things
 # up in atom_id_map and 0-based indices when looking things up in
 # all_atom_data and XXX_results.
 #
 for r1 in atom_id_map:
 for r2 in atom_id_map:
 atom_ids1 = atom_id_map[r1]
 atom_ids2 = atom_id_map[r2]
 try:
 all_vals = [all_atom_data[i1-1][i2-1] for i1 in atom_ids1 for i2 in
atom_ids2]
 except IndexError:
 print "i1",i1,"i2",i2
 print "all_atom_data.keys",all_atom_data.shape
 print "all_atom_data[i1-1].keys",all_atom_data[i1-1].shape
 print "r1,r2",r1,r2
 print "atom_ids1",atom_ids1
 print "atom_ids2",atom_ids2
 raise

 if (r1 in non_ca_resis) or (r2 in non_ca_resis):
 #
 # Special case for NAP. That's resi 160 and has no CA.
 # In general, we can probably do r1-1 < len(ca_atom_list), etc.
 #
 continue
 else:
 ca1 = ca_atom_id_list[r1-1]
 ca2 = ca_atom_id_list[r2-1]
 ca_result[r1-1][r2-1] = all_atom_data[ca1-1][ca2-1]

 ma = max(all_vals)
 mi = min(all_vals)
 max_result[r1-1][r2-1] = ma
 min_result[r1-1][r2-1] = mi
 if abs(ma) > abs(mi):
 abs_result[r1-1][r2-1] = ma
 else:
 abs_result[r1-1][r2-1] = mi
 return {'abs':abs_result,
 'max':max_result,
 'min':min_result,
 'ca': ca_result,
 }
def
write_max_min_ca_resi_versions(fname,ref_pdb_fname,non_ca_resis=[160,],overwrite=False):
 '''
 fname is the .dat file, a simple matrix file output by ptraj.
 ref_pdb_fname is used to get atom names and resi names, so that we can
 properly select the max,min,abs,ca atoms from each resi.
 overwrite tells us whether or not to overwrite existing files.
 non_ca_resis is a list of resis that do not contain alpha carbons.
 '''
 fnames = {'max':'_resi_max'.join(os.path.splitext(fname))+'.bz2',
 'min':'_resi_min'.join(os.path.splitext(fname))+'.bz2',
 'abs':'_resi_abs'.join(os.path.splitext(fname))+'.bz2',
 'ca' :'_resi_ca'.join(os.path.splitext(fname))+'.bz2',
 }
 pre_existing_files = False
 for fn in fnames.values():
 if os.path.isfile(fn):
 if overwrite:
 print fn,"already exists, will overwrite"
 else:
 print fn,"already exists, will not overwrite"

 163

 pre_existing_files = True
 if pre_existing_files and not overwrite:
 return
 atom_id_map = get_resi_to_atom_id_map(ref_pdb_fname)

master_residue_list,reference_coords,ca_atom_id_list,hydro_atom_id_list,nonhydro_atom_id_
list,nosp_atom_id_list,nonnosp_atom_id_list,mainchain_atom_id_list,sidechain_atom_id_list
,mainchain_nonhydro_atom_id_list,sidechain_hydro_atom_id_list,sidechain_nonhydro_atom_id_
list,skip_atom_id_list = setup_ca(ref_pdb_fname)
 sys.stdout.write(' reading in data\n')
 sys.stdout.flush()
 all_atom_data = read_data(fname)

 sys.stdout.write(' ready to calculate\n')
 sys.stdout.flush()
 data =
get_max_min_ca_resi_data(all_atom_data,atom_id_map,ca_atom_id_list,non_ca_resis=non_ca_re
sis)
 for d in data:
 if fnames[d].endswith('.bz2'):
 f = bz2.BZ2File(fnames[d],'w')
 else:
 f = file(fnames[d],'w')

 print "writing",fnames[d]
 io.write_array(f,data[d])
 f.close()

if __name__ == '__main__':
 #test_fname = '/Users/mglerner/tmp/Aligned/1rx1_trajectory_A_snap_0001_trans.pdb'
 #coords = parse_ca(test_fname,master_residue_list)
 if 0:
 #
 # Standard procedure for writing out the specific correlation and covariance
 # matricies that we want.
 #

 #for times in 'equil NS1 NS10 NS1-5 NS2-6 NS6-10 NS2-10'.split():
 #for times in 'NS2 NS3 NS4 NS5 NS6 NS7 NS8 NS9'.split():
 starts = range(500,9501,100)
 stops = range(1500,10501,100)
 names = [1 + i/10.0 for i in range(len(starts))]
 desired = [('%sps'%i,'%sps'%j,'NS%3.1f'%k) for (i,j,k) in
zip(starts,stops,names)]
 for times in [i[-1] for i in desired]:
 if 0:
 sys.stdout.write('doing %s 1RX1'%times)
 sys.stdout.flush()
 #dir = '/Users/mglerner/work/Dynamics-DHFR/MD_Files/1RX1/'
 dir = '/Users/mglerner/work/Dynamics-DHFR/BigDynamicsMoviePtrajFiles'

write_max_min_ca_resi_versions(os.path.join(dir,'1rx1_%s_all_atom_correlmat.dat'%times),
 '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RX1/ChainAPDBFilesFromTrajectory/AlignedVs1RX1/1rx1_trajectory_A_snap_0001
_trans.pdb',
)
 if 1:
 sys.stdout.write('doing %s 1RA1'%times)
 sys.stdout.flush()
 #dir = '/Users/mglerner/work/Dynamics-DHFR/MD_Files/1RA1/'
 dir = '/Users/mglerner/work/Dynamics-DHFR/BigDynamicsMoviePtrajFiles'

write_max_min_ca_resi_versions(os.path.join(dir,'1ra1_%s_all_atom_correlmat.dat'%times),
 '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RA1/ChainAPDBFilesFromTrajectory/AlignedVs1RA1/1ra1_trajectory_A_snap_0001
_trans.pdb',
)
 elif 1:
 #
 # Standard procedure for writing out the specific RMSD files that we want.
 #
 #for source_struct in '1RX1 1RA1'.split():
 for source_struct in '1RA1 1RX1'.split():

 164

 print "SOURCE STRUCT",source_struct
 #for target_struct in '1RA1 1RX1 1RX2 1RX4 1RX5 1RX6'.split():
 for target_struct in '1RX1 1RA1'.split():
 if target_struct != source_struct:
 continue
 print "TARGET STRUCT",target_struct
 data = {'ref_fname':'/Users/mglerner/work/Dynamics-
DHFR/CrystalStructureFiles/%sh_justatoms_A.pdb'%target_struct,
 'target_pattern':'/Users/mglerner/work/Dynamics-
DHFR/MD_Files/%s/ChainAPDBFilesFromTrajectory/AlignedVs%s/%s_trajectory_A_snap_????_trans
.pdb'%(source_struct.upper(),target_struct,source_struct.lower()),

'rmsd_out_fname':'rmsd_ca_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct
),

'ileleu_out_fname':'ile50leu28_ca_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),targe
t_struct),
 'ileleu_min_out_fname':
'ile50leu28_min_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct),
 'ileleu_min_hydro_out_fname':
'ile50leu28_min_hydro_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct),
 'ileleu_min_vdw_out_fname':
'ile50leu28_min_vdw_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct),
 'ileleu_min_vdw_hydro_out_fname':
'ile50leu28_min_vdw_hydro_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct
),
 'nap160phe31_out_fname':
'nap160phe31_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct),
 'nap160phe31_min_out_fname':
'nap160phe31_min_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),target_struct),

'nap160phe31_min_hydro_out_fname':'nap160phe31_min_hydro_kellyaligned_%s_vs_%s.txt'%(sour
ce_struct.lower(),target_struct),

'ileasp_out_fname':'ile50asp27_ca_kellyaligned_%s_vs_%s.txt'%(source_struct.lower(),targe
t_struct),
 'out_dir':'/Users/mglerner/work/Dynamics-DHFR/RMSD_Txt_Files/',
 }
 write_rmsds_and_ile50leu28ca_dists(**data)

pypat/plotting.py
#!/usr/bin/env python
"""

TODO:

1) Get rid of unused functions
2) Possibly move the cmap lookup to tool_utils.

"""
from __future__ import division
from sentinel_map import SentinelMap,SentinelNorm
import glob
import matplotlib.numerix.ma as ma
import md_analysis_utils
import sys
import pylab,matplotlib,os
from matplotlib import mlab
import numpy as N
import scipy.io
import pprint
import bz2
import copy
from tool_utils import read_data
cdict = {'red': (((-1.0+1)/2,32/255, 32/255),
 ((-0.6+1)/2,32/255, 32/255),
 ((-0.3+1)/2,32/255, 32/255),
 ((-0.2+1)/2, 0/255, 0/255),
 ((-0.1+1)/2, 0/255, 0/255),

 165

 ((0.0+1)/2, 0/255, 0/255),
 ((0.1+1)/2, 0/255, 0/255),
 ((0.2+1)/2, 76/255, 76/255),
 ((0.3+1)/2,255/255,255/255),
 ((0.4+1)/2,255/255,255/255),
 ((0.5+1)/2,255/255,255/255),
 ((0.6+1)/2,242/255,242/255),
 ((0.7+1)/2,236/255,236/255),
 ((0.8+1)/2,236/255,236/255),
 ((0.9+1)/2,213/255,213/255),
 ((1.0+1)/2,108/255,108/255)),
 'green':(((-1.0+1)/2, 31/255, 31/255),
 ((-0.6+1)/2, 31/255, 31/255),
 ((-0.3+1)/2, 31/255, 31/255),
 ((-0.2+1)/2, 86/255, 86/255),
 ((-0.1+1)/2,131/255,131/255),
 ((0.0+1)/2,128/255,128/255),
 ((0.1+1)/2,137/255,137/255),
 ((0.2+1)/2,184/255,184/255),
 ((0.3+1)/2,244/255,244/255),
 ((0.4+1)/2,244/255,244/255),
 ((0.5+1)/2,172/255,172/255),
 ((0.6+1)/2, 52/255, 52/255),
 ((0.7+1)/2, 1/255, 1/255),
 ((0.8+1)/2, 0/255, 0/255),
 ((0.9+1)/2, 0/255, 0/255),
 ((1.0+1)/2, 24/255, 24/255)),
 'blue': (((-1.0+1)/2,109/255,109/255),
 ((-0.6+1)/2,109/255,109/255),
 ((-0.3+1)/2,109/255,109/255),
 ((-0.2+1)/2,160/255,160/255),
 ((-0.1+1)/2,202/255,202/255),
 ((0.0+1)/2,200/255,200/255),
 ((0.1+1)/2,144/255,144/255),
 ((0.2+1)/2, 45/255, 45/255),
 ((0.3+1)/2, 0/255, 0/255),
 ((0.4+1)/2, 0/255, 0/255),
 ((0.5+1)/2, 0/255, 0/255),
 ((0.6+1)/2, 0/255, 0/255),
 ((0.7+1)/2, 20/255, 20/255),
 ((0.8+1)/2, 22/255, 22/255),
 ((0.9+1)/2, 27/255, 27/255),
 ((1.0+1)/2, 33/255, 33/255)),
 }
scaled_by_half_cdict = {}
for color in cdict:
 bottom = cdict[color][0]
 top = cdict[color][-1]
 scaled_by_half_cdict[color] = [bottom,]
 for value in cdict[color]:
 scaled_by_half_cdict[color].append([0.25+value[0]/2,value[1],value[2]])
 scaled_by_half_cdict[color].append(top)
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
my_scaled_cmap =
matplotlib.colors.LinearSegmentedColormap('my_scaled_colormap',scaled_by_half_cdict,256)
##pprint.pprint(cdict['red'])
##pprint.pprint(scaled_by_half_cdict['red'])

sentinel1 = -10
sentinel2 = -20
rgb1 = (0.,0.,0.)
rgb2 = (1.,1.,1.)
#my_sentinelcmap = SentinelMap(my_cmap,sentinels={sentinel:rgb})
#my_sentinelnorm = SentinelNorm(ignore=[sentinel,],vmin=-1.0,vmax=1.0)
sentinel_maps_and_norms =
{'Normal':(SentinelMap(my_cmap,sentinels={sentinel1:rgb1,sentinel2:rgb2}),
 SentinelNorm(ignore=[sentinel1,sentinel2,],vmin=-
1.0,vmax=1.0)
),

'Scaled':(SentinelMap(my_scaled_cmap,sentinels={sentinel1:rgb1,sentinel2:rgb2}),

 166

 SentinelNorm(ignore=[sentinel1,sentinel2,],vmin=-
1.0,vmax=1.0)
),
 }

'jet'
:(SentinelMap(pylab.cm.jet,sentinels={sentinel1:rgb1,sentinel2:rgb2}),
SentinelNorm(ignore=[sentinel1,sentinel2,],vmin=-
1.0,vmax=1.0)
),
}
for map in [m for m in pylab.cm.datad.keys() if not m.endswith("_r")]:
 sentinel_maps_and_norms[map] =
(SentinelMap(pylab.cm.get_cmap(map),sentinels={sentinel1:rgb1,sentinel2:rgb2}),
 SentinelNorm(ignore=[sentinel1,sentinel2,],vmin=-
1.0,vmax=1.0)
)

def plotcontours_in_several_ways(fname='/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RX1/1rx1_byres_correlmat.dat'):
 data = scipy.io.read_array(file(fname))
 contourset = pylab.contourf(data)
 pylab.colorbar()
 pylab.show()
 pylab.pcolor(data)
 pylab.colorbar()
 pylab.show()
 pylab.pcolormesh(data)
 pylab.colorbar()
 pylab.show()
 del data

def plot_colormesh(fname,step=0.01,cmap=my_scaled_cmap):
 data = scipy.io.read_array(file(fname))
 #a = pylab.contourf(data,(-0.7,-0.2,0,0.2,0.6,1.0))
 a = pylab.contourf(data,pylab.arange(-1,1+step,step),cmap=cmap) # fine
 pylab.colorbar()
 pylab.show()
 del data
def plot_diff_colormesh(fn1,fn2):
 d1 = scipy.io.read_array(file(fn1))
 d2 = scipy.io.read_array(file(fn2))
 a = pylab.contourf(d1-d2,pylab.arange(-1,1,0.05),cmap=my_cmap) #coarse
 pylab.colorbar()
 pylab.show()

def plot_as_pcolor(fname):
 data = scipy.io.read_array(file(fname))
 a = pylab.pcolor(data,cmap=my_cmap)
 pylab.colorbar()
 pylab.show()
 del data

def plotrms(filenames):
 num_plots = len(filenames)
 pylab.figure(1)
 for i,fn in enumerate(filenames):
 pylab.subplot(num_plots,1,i+1)
 data = scipy.io.read_array(fn)
 pylab.plot([d[0] for d in data],[d[1] for d in data])
 pylab.title(fn[:-4])
 del data
 pylab.show()

def plotrms2(struct='1rx1'):
 md_data = scipy.io.read_array('%s_rms_vs_md.txt'%struct)

 167

 ra1_data = scipy.io.read_array('%s_rms_vs_1RA1.txt'%struct)
 rx1_data = scipy.io.read_array('%s_rms_vs_1RX1.txt'%struct)
 rx2_data = scipy.io.read_array('%s_rms_vs_1RX2.txt'%struct)
 rx4_data = scipy.io.read_array('%s_rms_vs_1RX4.txt'%struct)
 rx5_data = scipy.io.read_array('%s_rms_vs_1RX5.txt'%struct)
 rx6_data = scipy.io.read_array('%s_rms_vs_1RX6.txt'%struct)
 #pylab.plot([d[0] for d in md_data],[d[1] for d in md_data],label='%s vs MD'%struct,)
 pylab.plot([d[0] for d in ra1_data],[d[1] for d in ra1_data],label='%s vs
1RA1'%struct,)
 pylab.plot([d[0] for d in rx1_data],[d[1] for d in rx1_data],label='%s vs
1RX1'%struct,)
 pylab.plot([d[0] for d in rx2_data],[d[1] for d in rx2_data],label='%s vs
1RX2'%struct,)
 #pylab.plot([d[0] for d in rx4_data],[d[1] for d in rx4_data],label='%s vs
1RX4'%struct,)
 pylab.plot([d[0] for d in rx5_data],[d[1] for d in rx5_data],label='%s vs
1RX5'%struct,)
 pylab.plot([d[0] for d in rx6_data],[d[1] for d in rx6_data],label='%s vs
1RX6'%struct,)
 pylab.legend()
 pylab.show()

def
plot_aligned_rms(struct='1rx1',structure_part='m20',in_dir='/Users/mglerner/work/Dynamics
-DHFR/RMSD_Txt_Files/',out_dir =
'',include_averages=False,prefix='rmsd_ca',title_mode='long',save_fig=True):
 if 'pymol' in prefix:
 file_title = 'pymol %s vs other structures (aligned, ca,
%s)'%(struct,structure_part)
 else:
 file_title = '%s vs other structures (aligned, ca, %s)'%(struct,structure_part)
 if include_averages: file_title = file_title + ' ' + 'ave'
 for s in '1RA1 1RX1 1RX2 1RX4 1RX5 1RX6'.split():
 fname =
os.path.join(in_dir,prefix+'_kellyaligned_%s_vs_%s_%s.txt'%(struct,s,structure_part))
 print "Trying to load",fname
 data = scipy.io.read_array(fname)
 if title_mode == 'long':
 title = '%s vs %s (aligned, ca, %s)'%(struct,s,structure_part)
 elif title_mode == 'short':
 title = 'vs. %s'%(s,)
 if include_averages:
 if len(data[0]) == 1:
 ave = sum(data)/len(data)
 title = title + ' Ave. %s'%ave
 elif len(data[0]) == 2:
 ave = sum([i[1] for i in data])/len([i[1] for i in data])
 title = title + ' Ave. %s'%ave
 if len(data.shape) == 1:
 pylab.plot([i*5/1000.0 for i in range(len(data))],data,label=title)
 elif len(data[0]) == 2:
 pylab.plot([i*5/1000.0 for i in range(len(data))],[i[1] for i in
data],label=title)
 else:
 sys.exit('what?')
 del data
 pylab.figlegend()
 a = pylab.axis()
 pylab.xticks([i/2.0 for i in range(24)])
 pylab.xticks([0,1,2,3,4,5,6,7,8,9,10],size='larger')
 pylab.yticks(size='larger')
 # the legend goes from 4.5 to 6 on a scale of 0-6, so about 25%
 pylab.axis((0,10.505,a[2],a[3]+0.25*(a[3]-a[2]))) # add one on the y axis so there's
room for the legend.
 pylab.grid(b=True)
 pylab.xlabel('Time (ns)',size='larger')
 pylab.rc('text',usetex=True)
 pylab.ylabel(r'RMSD ($\AA{}$)',size='larger')
 if save_fig:
 pylab.savefig(os.path.join('RMSDImages',out_dir,file_title+'.png'))
 pylab.show()
 pylab.clf()

 168

def plot_ileleu(struct='1rx1'):
 for s in '1RA1 1RX1 1RX2 1RX4 1RX5 1RX6'.split():
 data =
scipy.io.read_array(file('ile50leu20_ca_kellyaligned_%s_vs_%s.txt'%(struct,s)))
 pylab.plot(range(len(data)),data,label='ILE LEU %s vs %s (aligned,
ca)'%(struct,s))
 del data
 pylab.legend()
 pylab.show()

def plotrms3():
 ra1_data = scipy.io.read_array('rms_vs_1RA1.txt')
 ra1_ca_data = scipy.io.read_array('rms_vs_1RA1_CA.txt')
 rx2_data = scipy.io.read_array('rms_vs_1RX2.txt')
 rx2_ca_data = scipy.io.read_array('rms_vs_1RX2_CA.txt')
 #pylab.plot([d[0] for d in ra1_data],[d[1] for d in ra1_data],label='vs 1RA1')
 pylab.plot([d[0] for d in ra1_ca_data],[d[1] for d in ra1_ca_data],label='vs 1RA1
CA')
 #pylab.plot([d[0] for d in rx2_data],[d[1] for d in rx2_data],label='vs 1RX2')
 pylab.plot([d[0] for d in rx2_ca_data],[d[1] for d in rx2_ca_data],label='vs 1RX2
CA')
 pylab.legend()
 pylab.show()

def OLDplot_ile_leu_dist():
 ra_ave_data = scipy.io.read_array('1ra1ile50leu28ave.dat')
 ra_ca_data = scipy.io.read_array('1ra1ile50leu28ca.dat')
 rx_ave_data = scipy.io.read_array('1rx1ile50leu28ave.dat')
 rx_ca_data = scipy.io.read_array('1rx1ile50leu28ca.dat')
 #pylab.plot([d[0] for d in ra_ave_data],[d[1] for d in ra_ave_data],label='1RA1
Average',)
 #pylab.plot([d[0] for d in ra_ca_data],[d[1] for d in ra_ca_data],label='1RA1 CA',)
 pylab.plot([d[0] for d in rx_ave_data],[d[1] for d in rx_ave_data],label='1RX1
Average',)
 pylab.plot([d[0] for d in rx_ca_data],[d[1] for d in rx_ca_data],label='1RX1 CA',)
 pylab.legend()
 pylab.show()

def
make_several_correl_plots(struct,times,cmap,detail_level,save_fig,out_dir='CorrelAndCovar
Images/',overwrite=True,
 dat_dir='/Users/mglerner/work/Dynamics-
DHFR/BigDynamicsMoviePtrajFiles/',
 ref_pdb_fname = '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RX1/ChainAPDBFilesFromTrajectory/AlignedVs1RX1/1rx1_trajectory_A_snap_0001
_trans.pdb',
 plot_types='ca avg max min abs straight mainheavy allheavy
sidechainhbond hbond'.split(),
 mark_resis=[],
 highlight=0.0,
 highlight_mode='positive',
 skip_resis=[],
 ticks=True,
 dpi=200,
 title=None,
):
 for plot_type in [i for i in 'abs max min avg ca'.split() if i in plot_types]:
 if plot_type == 'avg': fname =
os.path.join(dat_dir,'%s/%s_%s_byres_correlmat.dat'%(struct,struct,times))
 else: fname =
os.path.join(dat_dir,'%s/%s_%s_all_atom_correlmat_resi_%s.dat'%(struct,struct,times,plot_
type))
 data = read_data(fname)
 if data is None:
 continue

_make_one_correl_plot(data,struct,times,cmap,detail_level,plot_type,save_fig,dat_dir,out_
dir,overwrite,ref_pdb_fname,mark_resis,highlight,highlight_mode,skip_resis,ticks,dpi,titl
e)
 del data

 169

 longer_plot_types = [i for i in 'straight mainheavy allheavy sidechainhbond
hbond'.split() if i in plot_types]
 if longer_plot_types:
 fname =
os.path.join(dat_dir,'%s/%s_%s_all_atom_correlmat.dat'%(struct,struct,times))
 data = read_data(fname)
 if data is None:
 return
 for plot_type in longer_plot_types:
 _data = copy.copy(data)

_make_one_correl_plot(data,struct,times,cmap,detail_level,plot_type,save_fig,dat_dir,out_
dir,overwrite,ref_pdb_fname,mark_resis,highlight,highlight_mode,skip_resis,ticks,dpi,titl
e)
 del _data
 del data

def
make_one_correl_plot(struct,times,cmap,detail_level,plot_type,save_fig,dat_dir,out_dir,ov
erwrite,ref_pdb_fname,mark_resis=[],highlight=0.0,highlight_mode='positive',skip_resis=[]
,ticks=True,dpi=200,title=None):
 if plot_type in 'straight mainheavy allheavy sidechainhbond hbond'.split(): fname =
os.path.join(dat_dir,'%s/%s_%s_all_atom_correlmat.dat'%(struct,struct,times))
 elif plot_type == 'avg': fname =
os.path.join(dat_dir,'%s/%s_%s_byres_correlmat.dat'%(struct,struct,times))
 else: fname =
os.path.join(dat_dir,'%s/%s_%s_all_atom_correlmat_resi_%s.dat'%(struct,struct,times,plot_
type))
 data = read_data(fname)
 if data is None: return

_make_one_correl_plot(data,struct,times,cmap,detail_level,plot_type,save_fig,dat_dir,out_
dir,overwrite,ref_pdb_fname,mark_resis,highlight,highlight_mode,skip_resis,ticks,dpi,titl
e)

def
_make_one_correl_plot(data,struct,times,cmap,detail_level,plot_type,save_fig,dat_dir,out_
dir,overwrite,ref_pdb_fname,mark_resis,highlight,highlight_mode,skip_resis,ticks,dpi,titl
e=None):
 if title is None:
 title = struct+' '+times+' resi '+plot_type+' correl ('+detail_level+',
'+cmap+')'
 figname = os.path.join(out_dir,title+'.png')
 if os.path.exists(figname) and not overwrite:
 sys.stdout.write("Skipping "+figname+'\n')
 step = {'fine':0.01,'coarse':0.05}[detail_level]
 #
 # Now we split up the mark_resis. If it's just a list of resis,
 # we deal with it as such. If it's two lists, we'll use the
 # first list on the left axis and the second on the bottom one.
 #
 if mark_resis and type(mark_resis[0]) in (type(()),type([])) and len(mark_resis) ==
2:
 mark_left_resis,mark_bottom_resis = mark_resis
 mark_resis = sorted(mark_left_resis + mark_bottom_resis)
 else:
 mark_left_resis,mark_bottom_resis = mark_resis,mark_resis
 if plot_type in 'straight mainheavy allheavy sidechainhbond hbond'.split():
 #
 # These are the per-atom ones
 #

master_residue_list,reference_coords,ca_atom_id_list,hydro_atom_id_list,nonhydro_atom_id_
list,nosp_atom_id_list,nonnosp_atom_id_list,mainchain_atom_id_list,sidechain_atom_id_list
,mainchain_nonhydro_atom_id_list,sidechain_hydro_atom_id_list,sidechain_nonhydro_atom_id_
list,skip_atom_id_list =
md_analysis_utils.setup_ca(ref_pdb_fname,indexing=0,skip_resis=skip_resis)
 # We cannot to mark the before we yank stuff out.
 # If we do, we change the size of the array, and end up# taking the wrong
 # stuff out. So, we set things up here and mark later.
 # That's also why left_bar must be padded later on.

 170

 atom_id_map = md_analysis_utils.get_resi_to_atom_id_map(ref_pdb_fname,indexing=0)
 mark_left_atoms = []
 mark_bottom_atoms = []
 for resi in mark_left_resis:
 mark_left_atoms += atom_id_map[resi]
 for resi in mark_bottom_resis:
 mark_bottom_atoms += atom_id_map[resi]
 orig_size = data.shape[0]
 bottom_bar = N.array([[(sentinel1 if i in mark_bottom_atoms else sentinel2) for i
in range(orig_size)]])
 left_bar = N.array([(sentinel1 if i in mark_left_atoms else sentinel2) for i in
range(orig_size)])
 left_bar.shape = (len(left_bar),1)

 if plot_type == 'mainheavy':
 data = scipy.take(data, mainchain_nonhydro_atom_id_list, axis = 0)
 left_bar = scipy.take(left_bar, mainchain_nonhydro_atom_id_list, axis = 0)
 data = scipy.take(data, mainchain_nonhydro_atom_id_list, axis = 1)
 bottom_bar = scipy.take(bottom_bar,mainchain_nonhydro_atom_id_list, axis = 1)
 elif plot_type == 'allheavy':
 totake = mainchain_nonhydro_atom_id_list+sidechain_nonhydro_atom_id_list
 totake.sort()
 data = scipy.take(data, totake, axis = 0)
 left_bar = scipy.take(left_bar, totake, axis = 0)
 data = scipy.take(data, totake, axis = 1)
 bottom_bar = scipy.take(bottom_bar,totake, axis = 1)

 elif plot_type == 'sidechainhbond':
 data = scipy.take(data,sidechain_hydro_atom_id_list, axis = 0)
 left_bar = scipy.take(left_bar,sidechain_hydro_atom_id_list, axis = 0)
 data = scipy.take(data,[i for i in nosp_atom_id_list if i not in
mainchain_nonhydro_atom_id_list], axis = 1)
 bottom_bar = scipy.take(bottom_bar,[i for i in nosp_atom_id_list if i not in
mainchain_nonhydro_atom_id_list], axis = 1)
 if 0 in data.shape:
 print "COULD NOT CALCULATE sidechainhbond"
 return
 #data = scipy.take(data,nosp_atom_id_list, axis = 1)
 elif plot_type == 'hbond':
 # We could also consider a masked array.
 # We could use for i in atom_id_list:data[...,i] = sentinel
 # or a real mask.
 data = scipy.take(data, hydro_atom_id_list, axis = 0)
 left_bar = scipy.take(left_bar, hydro_atom_id_list, axis = 0)
 data = scipy.take(data, nosp_atom_id_list , axis = 1)
 bottom_bar = scipy.take(bottom_bar, nosp_atom_id_list , axis = 1)
 if 0 in data.shape:
 print "COULD NOT CALCULATE hbond"
 return
 else:
 #
 # These are the per-residue ones
 #
 data = scipy.take(data,[i for i in range(data.shape[0]) if i not in
skip_resis],axis=0)
 data = scipy.take(data,[i for i in range(data.shape[1]) if i not in
skip_resis],axis=1)
 orig_size = data.shape[0]
 bottom_bar = N.array([[(sentinel1 if i in mark_bottom_resis else sentinel2) for i
in range(orig_size)]])
 left_bar = [(sentinel1 if i in mark_left_resis else sentinel2) for i in
range(orig_size)]
 new_shape = (len(left_bar),1)
 left_bar = N.array(left_bar)
 left_bar.shape = new_shape

 if mark_resis:
 #
 # When we mark the matrix, we make the bottom bar the size of the original
 # data and we pad the left_bar with enough slack to take care of the bottom-
 # left corner. After we're done marking, we will use the bottom bar and the
 # left bar for highlighting. So, we'll need to go ahead and pad the bottom

 171

 # bar at that point.
 #
 num_blocks = int(0.01*max(data.shape))+1
 for i in range(num_blocks): data = N.concatenate((bottom_bar,data))
 padding = N.array([sentinel2,]*num_blocks)
 padding.shape = (num_blocks,1)
 new_shape = (len(left_bar)+len(padding),1)
 left_bar = N.concatenate((padding,left_bar))
 for i in range(num_blocks): data = N.concatenate((left_bar,data),axis=1)
 padding.shape = 1,num_blocks
 bottom_bar = N.concatenate((padding,bottom_bar),axis=1)

 _cmap,_norm = sentinel_maps_and_norms[cmap]
 #plotter = pylab.pcolormesh
 plotter = pylab.imshow
 plotterargs = {pylab.imshow:{'interpolation':'nearest','origin':'lower'},
 pylab.pcolormesh:{'shading':'flat'}}

 a = plotter(data,cmap=_cmap,norm=_norm,
 vmin=-1.0,vmax=1.0,**plotterargs[plotter])
 # For some reason, it draws the axes a little too long.
 if plot_type not in 'sidechainhbond hbond'.split():
 pylab.axis((0,data.shape[0],0,data.shape[1]))
 pylab.colorbar()
 pylab.title(title)
 if mark_resis and highlight:
 # Highlight the selected parts
 if highlight_mode in ('positive','negative'):
 mask = N.zeros(data.shape)
 for i in range(data.shape[0]):
 if left_bar[i] == sentinel1:
 mask[i,] = True
 for j in range(data.shape[1]):
 if bottom_bar[0,j] == sentinel1:
 mask[:,j] = True
 if highlight_mode == 'positive':
 data = N.ma.masked_where(N.logical_not(mask),data)
 elif highlight_mode == 'negative':
 data = N.ma.masked_where(mask,data)
 _cmap.set_bad('white',alpha=highlight)
 plotter(data,cmap=_cmap,norm=_norm,
 vmin=-1.0,vmax=1.0,**plotterargs[plotter])

 elif highlight_mode == 'supernegative':
 last_val = left_bar[0]
 changes = []
 for i,val in enumerate(left_bar):
 if i == 0: continue
 if val != last_val:
 changes.append(i)
 last_val = val
 for start,stop in zip(changes[:-1:2],changes[1::2]):
 facecolor='white'
 edgecolor='white'
 linewidth=0.0

pylab.axvspan(start,stop,0.01,1,fc=facecolor,ec=edgecolor,lw=linewidth,alpha=highlight)

pylab.axhspan(start,stop,0.01,1,fc=facecolor,ec=edgecolor,lw=linewidth,alpha=highlight)
 for i in changes:
 # I don't actually like the way this looks
 continue
 pylab.axhline(y=i,color='black')
 pylab.axvline(x=i,color='black')
 if ticks:
 from matplotlib.ticker import MultipleLocator, FormatStrFormatter, Formatter,
FixedLocator, LinearLocator, Locator

 class OffsetFormatStrFormatter(Formatter):
 def __init__(self,fmt,offset):

 172

 self.fmt = fmt
 self.offset = offset
 def __call__(self,x,pos=None):
 return self.fmt % (x-self.offset)

 class ExplicitLinearLocator(Locator):
 def __init__(self,vmin,vmax,numticks):
 self.vmin = vmin
 self.vmax = vmax
 self.numticks=numticks
 def __call__(self):
 'Return the location of the ticks'
 ticklocs = mlab.linspace(self.vmin,self.vmax,self.numticks)
 return ticklocs

 offset = (num_blocks if mark_resis else 0)
 ymajorFormatter = OffsetFormatStrFormatter('%d',offset)
 xmajorFormatter = OffsetFormatStrFormatter('%d',offset)
 yminorLocator = ExplicitLinearLocator(offset,data.shape[0],81)
 xminorLocator = ExplicitLinearLocator(offset,data.shape[1],81)

 ax = pylab.gca()
 ax.yaxis.set_major_formatter(ymajorFormatter)
 ax.yaxis.set_minor_locator(yminorLocator)
 pylab.yticks(mlab.linspace(offset,data.shape[0],9))

 ax.xaxis.set_major_formatter(xmajorFormatter)
 ax.xaxis.set_minor_locator(xminorLocator)
 pylab.xticks(mlab.linspace(offset,data.shape[1],9))
 else:
 pylab.xticks([])
 pylab.yticks([])

 if save_fig:
 sys.stdout.write("Saving "+title+'\n')
 sys.stdout.flush()
 pylab.savefig(figname,dpi=dpi)
 pylab.clf()
 else:
 pylab.show()
 del data

def make_correl_plots_for_movie(structures=['1ra1','1rx1'],
 all_times=['NS1.0,'],
 cmaps=['Normal',],
 detail_levels=['fine',],
 plot_types='abs max min avg straight mainheavy allheavy
sidechainhbond hbond ca'.split(),
 overwrite=True,
 image_dir='BigMovieImages/',
 dat_dir='/Users/mglerner/work/Dynamics-
DHFR/BigDynamicsMoviePtrajFiles/',
 ref_pdb_fname = '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RX1/ChainAPDBFilesFromTrajectory/AlignedVs1RX1/1rx1_trajectory_A_snap_0001
_trans.pdb',
 mark_resis=[],
 highlight=0.0,
 highlight_mode='positive',
 skip_resis=[],
 ticks=True,
 dpi=200,
 title=None,
):
 '''
 This will generate all of the .png images that you need to make your
 movies. It will also spit out an html file called
 BigMovieImages<something>.html for you to look at.

 Empirical data: Setting width="86%" on all of the tags will make it so that
you can
 nicely fit the title and four rows of pictures on one page.
 '''
 for cmap in cmaps:

 173

 for detail_level in detail_levels:
 fname = 'BigMovieImages'+cmap+detail_level+'.html'
 fout = file(fname,'w')
 fout.write('<html><head><title>Big Movie Images</title></head><body>')
 fout.write('<h1>'+cmap+' '+detail_level+'</h1><table>')
 made_plots_already = False
 for plot_type in plot_types:
 for times in all_times:
 fout.write('<tr>')
 for struct in structures:
 title = struct+' '+times+' resi '+plot_type+' correl
('+detail_level+', '+cmap+')'
 image_name = os.path.join(image_dir,title+'.png')
 if os.path.exists(image_name) and not made_plots_already:
 if overwrite:
 print "Overwriting",title
 if not made_plots_already:

make_several_correl_plots(struct,times,cmap,detail_level,save_fig=True,out_dir=image_dir,
overwrite=overwrite,
 dat_dir=dat_dir,
 ref_pdb_fname = ref_pdb_fname,
 plot_types=plot_types,
 mark_resis=mark_resis,
 highlight=highlight,
 highlight_mode=highlight_mode,
 skip_resis=skip_resis,
 ticks=ticks,
 dpi=dpi,
 title=title,
)

 fout.write('<td></td>')
 fout.write('</tr>')
 fout.flush()
 fout.write('</tr>')
 fout.flush()

 made_plots_already=True
 fout.write('</table>')
 fout.write('</body></html>')
 fout.close()

def plot_rmsds_for_DHFR_paper():
 #start_time = 0.505 # in NS
 start_time = 0 # in NS
 stop_time = 10.505 # in NS
 for time in 'xtal 505ps 1505ps 3005ps'.split():
 pylab.clf()
 data = {}
 data_dir = '/Users/mglerner/work/Dynamics-DHFR/MD_Files/RMSDAnalysis'
 data['rx_all'] =
scipy.io.read_array(os.path.join(data_dir,'1rx1_%s_all_atom_rmsds.txt'%time))
 data['rx_ca'] =
scipy.io.read_array(os.path.join(data_dir,'1rx1_%s_ca_rmsds.txt'%time))
 data['ra_all'] =
scipy.io.read_array(os.path.join(data_dir,'1ra1_%s_all_atom_rmsds.txt'%time))
 data['ra_ca'] =
scipy.io.read_array(os.path.join(data_dir,'1ra1_%s_ca_rmsds.txt'%time))
 #for struct in 'ra_all rx_all ra_ca rx_ca'.split():
 for struct in 'ra_all rx_all'.split():
 #for struct in 'ra_ca rx_ca'.split():
 labels = {#'ra_all':'1RA1 heavy atom RMSD vs %s (Avg. after = %s)',
 'ra_all':'Open loop (Avg. = %s)',
 'ra_ca' :'1RA1 ca RMSD vs %s (Avg. after = %s)',
 #'rx_all':'1RX1 heavy atom RMSD vs %s (Avg. after = %s)',
 'rx_all':'Closed loop (Avg. = %s)',
 'rx_ca' :'1RX1 ca RMSD vs %s (Avg. after = %s)',
 }
 this_data = [(i[0]*5/1000.0,i[1]) for i in data[struct] if ((i[0]*5/1000.0)
<= stop_time) and ((i[0]*5/1000.0) >= start_time)]
 data_after = [i[1] for i in this_data if (i[0] >=
{'xtal':0,'505ps':0.505,'1505ps':1.505,'3005ps':3.005}[time])]

 174

 avg_after = sum(data_after)/len(data_after)
 print struct,avg_after,len(data_after)
 #pylab.plot([i[0]for i in this_data],[i[1] for i in
this_data],label=labels[struct]%(time,avg_after))
 pylab.plot([i[0]for i in this_data],[i[1] for i in
this_data],label=labels[struct]%(avg_after))
 #pylab.plot([i[0]for i in this_data],[avg_after for i in
this_data],color="black")
 f = file('/Users/mglerner/tmp/%s_MD_RMSDs_vs_%s.csv'%(struct,time),'w')
 f.write('Time,RMSD,Average %s RMSD after %s = %s\n'%(struct,time,avg_after))
 for i in this_data:
 f.write('%s,%s\n'%i)
 f.close()
 close_ticks = False
 if close_ticks:
 pylab.xticks([i/2.0 for i in range(24)])
 pylab.yticks([i/10.0 for i in range(30)])
 pylab.axis((start_time,stop_time,0,3))
 pylab.legend()
 pylab.grid(b=True)

pylab.savefig(os.path.join(data_dir,'1RA1and1RX1_MD_RMSDs_vs_%s_just_ca.png'%time))
 else:
 pylab.xticks([i/2.0 for i in range(24)])
 pylab.yticks([i/2.0 for i in range(30)])
 pylab.axis((start_time,stop_time,0,3))
 pylab.legend()
 pylab.grid(b=True)
 pylab.title('Closed- and Open-loop RMSDs vs. %s
structure'%{'xtal':'crystal'}.get(time,time))
 a = input()

pylab.savefig(os.path.join(data_dir,'1RA1and1RX1_MD_RMSDs_vs_%s_just_ca_fewer_ticks.png'%
time))

def plot_Sander_Data_for_DHFR_paper():
 pylab.clf()
 all_types = '1_4_EEL EELEC TEMP_K_ 1_4_NB EHBOND VDWAALS ANGLE EKCMT VIRIAL BOND
EKtot VOLUME CONSTRAINT EPtot DIHED Etot Density NSTEP EAMBER__non_constraint_
PRESS'.split()
 pos_energy_types = 'EKtot VDWAALS VIRIAL EKCMT 1_4_EEL ANGLE DIHED 1_4_NB
BOND'.split()
 neg_energy_types = 'Etot EPtot EELEC'.split()
 energy_types = pos_energy_types + neg_energy_types
 non_energies = 'VOLUME Density PRESS TEMP_K_'.split()
 for struct in '1rx1'.split():
 #for struct in '1ra1 1rx1'.split():
 start_dir = '/Users/mglerner/work/Dynamics-
DHFR/MD_Files/AllSanderOutFiles/Combined/%sfiles/'%struct
 if 0:
 # one-at-a-time
 for et in energy_types:
 data = scipy.io.read_array(os.path.join(start_dir,et+'.txt'))
 pylab.plot([(i[0]-500)/1000.0 for i in data],[i[1] for i in
data],color='gray',label=struct +' '+et.replace('_',' '))
 last_part_of_data = [i[1] for i in data if ((i[0]-500)/1000.0) >= 1.5]
 avg = sum(last_part_of_data)/float(len(last_part_of_data))
 pylab.plot([(i[0]-500)/1000.0 for i in data],[avg for i in
data],color='black',label='Average after 1.5ns (%.3g)'%avg)
 print et,'\t %.3g'%avg
 pylab.xticks([i/2.0 for i in range(24)])
 pylab.grid(b=True)
 a = pylab.axis()
 pylab.axis((0,5.5,a[2],a[3]))
 pylab.legend(loc=0)

pylab.savefig(os.path.join('/Users/mglerner/work/DHFR/MD_Analysis',struct+'_'+et+'.png'))
 pylab.clf()
 if 1:
 # all at once
 for et in pos_energy_types:
 data = scipy.io.read_array(os.path.join(start_dir,et+'.txt'))

 175

 avg = sum([i[1] for i in data])/float(len(data))
 pylab.plot([(i[0]-500)/1000.0 for i in data],[i[1] for i in
data],label=et+'(%.3g)'%avg)
 print et,'\t %.3g'%avg
 pylab.legend()
 pylab.xticks([i/2.0 for i in range(24)])
 pylab.grid(b=True)
 pylab.legend(loc=0)
 pylab.show()

def make_animated_gif():
 thumbPart = '-size 200x200 -geometry 200x200'
 for k in fileMap.keys():
 ps = getFilename(k,'.ps',imgDir)
 gif = getFilename(k,'.gif',imgDir)
 thumb = getFilename(k,'_thumb.gif',imgDir)
 os.system('/usr/bin/env convert -rotate 90 %s %s' % (ps,gif))
 os.system('/usr/bin/env convert -rotate 90 %s %s %s' % (thumbPart,
 ps,
 thumb))

if __name__ == '__main__':
 #plotrms(glob.glob('rms*.txt'))
 #plotrms2()
 #plot_ile_leu_dist()
 #plotcontours()

 #plotrms3()
 #plotcontours_in_several_ways()
 #plot_aligned_rms()
 #plot_ileleu()

 #plot_diff_colormesh('/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RX1/1rx1_byres_correlmat.dat','/Users/mglerner/work/Dynamics-
DHFR/MD_Files/1RA1/1ra1_byres_correlmat.dat')

 if 0:
 plot_rmsds_for_DHFR_paper()
 elif 0:
 #
 # Current correl/covar plotting mechanisms
 #
 #make_all_correl_plots()
 make_correl_plots_for_movie()
 elif 0:
 #
 # Current RMS plotting mechanisms for pymol-generated
 #
 pymol_generated_structure_parts = 'all_atom_substrate_binding_full
all_atom_substrate_binding_min n_substrate_binding_full n_substrate_binding_min
ca_substrate_binding_full ca_substrate_binding_min all_atom_substrate_binding_min_noR52
n_substrate_binding_min_noR52 ca_substrate_binding_min_noR52'.split()
 for (out_dir,structure_parts) in (('Standard',[i for i in
pymol_generated_structure_parts if 'R52' in i]),
):
 for structure_part in structure_parts:
 for struct in '1rx1 1ra1'.split():
 for include_averages in (True,):#,False):
 plot_aligned_rms(struct=struct,
 structure_part=structure_part,
 out_dir = out_dir,
 include_averages=include_averages,
 prefix='pymol_rmsd',
)
 elif 0:
 #
 # Current RMS plotting mechanisms
 #
 #for structure_part in 'm20 FG CD GH all'.split():

 176

 standard_parts = 'm20 all FG CD GH noloops subdomain1 subdomain2
substrate_binding substrate_binding2'.split()
 residue_chunks = '0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160'.split()
 anti_correlated_parts = 'm20 40-50 59-68 71-74 95-97'.split() + '116-124 142-
149'.split() # 116-124 is correlated with 40-50 and 59-68, 142-149 is correlated with 40-
50
 correlated_parts = '110-114 134-141 107-113 149-156 132-142 144-157'.split() +
'115-125 1-10 58-62 43-49 38-63 42-51'.split()
 for (out_dir,structure_parts) in (#('Standard',standard_parts),
 #('ResidueChunks',residue_chunks),
 #('AntiCorrelated',anti_correlated_parts),
 #('Correlated',correlated_parts),
 ('Standard',[i for i in standard_parts if
i.startswith('substrate_binding')]),
):
 for structure_part in structure_parts:
 for struct in '1ra1 1rx1'.split():
 for include_averages in (True,):#,False):
 plot_aligned_rms(struct=struct,
 structure_part=structure_part,
 out_dir = out_dir,
 include_averages=include_averages,
 prefix='rmsd_ca',
)

pypat/sentinel_map.py
#!/usr/bin/env python2.4
#!/usr/bin/env python2.4
from __future__ import division
#from pylab import *
import pylab
from matplotlib.colors import Colormap, LinearSegmentedColormap, normalize
from matplotlib import numerix as nx
import matplotlib.numerix.ma as ma
from matplotlib.numerix import array, arange, alltrue
from types import IntType, FloatType, ListType

class SentinelMap(Colormap):
 def __init__(self, cmap=pylab.cm.jet, sentinels={}):
 # boilerplate stuff
 self.N = cmap.N
 self.name = 'SentinelMap'
 self.cmap = cmap
 self.sentinels = sentinels

 for rgb in sentinels.values():
 if len(rgb)!=3:
 raise ValueError('sentinel color must be RGB')
 self.is_gray = cmap.is_gray
 self.set_bad = cmap.set_bad

 def __call__(self, scaledImageData, alpha=1):
 # assumes the data is already normalized (ignoring sentinels)
 # clip to be on the safe side
 rgbaValues = self.cmap(nx.clip(scaledImageData, 0.,1.))
 for sentinel,rgb in self.sentinels.items():
 r,g,b = rgb
 if (scaledImageData==sentinel).max():
 rgbaValues[...,0] = nx.where(scaledImageData==sentinel, r,
rgbaValues[...,0])
 rgbaValues[...,1] = nx.where(scaledImageData==sentinel, g,
rgbaValues[...,1])
 rgbaValues[...,2] = nx.where(scaledImageData==sentinel, b,
rgbaValues[...,2])
 rgbaValues[...,3] = nx.where(scaledImageData==sentinel, alpha,
rgbaValues[...,3])
 return rgbaValues

 177

class SentinelNorm(normalize):
 """
 Leave the sentinel unchanged
 """
 def __init__(self, ignore=[], vmin=None, vmax=None, clip = True):
 self.vmin=vmin
 self.vmax=vmax
 self.clip = clip

 if type(ignore) in [IntType, FloatType]:
 self.ignore = [ignore]
 else:
 self.ignore = list(ignore)
 self.ignore_mask=None

 def __call__(self, value, clip=None):

 if clip is None:
 clip = self.clip

 # ensure that we have a masked array val to work with
 if isinstance(value, (int, float)):
 vtype = 'scalar'
 val = ma.array([value])
 else:
 vtype = 'array'
 if ma.isMA(value):
 val = value
 else:
 val = ma.asarray(value)

 # create ignore_mask, val=sentinel1 | val= sentinel2..
 if self.ignore is not None:
 self.get_ignore_mask(val)

 # find min and max over points not masked by ignore_mask or by original mask of
val
 self.autoscale(val)

 # now do scaling
 vmin, vmax = self.vmin, self.vmax
 if vmin > vmax:
 if False in val.mask:
 raise ValueError("minvalue must be less than or equal to maxvalue")
 else:
 # array is completely masked. doesn't matter what values are for plot
 return 0.*value
 elif vmin==vmax:
 return 0.*value
 else:
 # scale points not masked by ignore_mask or by original mask of val
 scale = 1./(vmax-vmin)
 result = (val-vmin)*scale
 if clip:
 result = nx.clip(result,0.,1.)
 # set result over sentinel points to sentinel values
 if self.ignore is not None:
 result[self.ignore_mask]=val.data[self.ignore_mask]

 if vtype == 'scalar':
 result = result[0]
 return result

 def get_ignore_mask(self, A):
 if ma.isMA(A):
 A=A.data
 if self.ignore is not None:
 self.ignore_mask = False
 for ignore in self.ignore:
 self.ignore_mask |= A==ignore

 178

 def autoscale(self, A):
 # self.scaled is method in base class Normalize [colors.py], is True if
self.vmin,vmax already defined
 if not self.scaled():
 if self.ignore is not None:
 if self.ignore_mask is None:
 self.get_ignore_mask(A)
 A = ma.masked_where(self.ignore_mask,A)

 if self.vmin is None: self.vmin = A.min()
 if self.vmax is None: self.vmax = A.max()

 def inverse(self, value):
 if not self.scaled():
 raise ValueError("Not invertible until scaled")
 vmin, vmax = self.vmin, self.vmax

 if isinstance(value, (int, float)):
 return vmin + value * (vmax - vmin)
 else:
 val = ma.asarray(value)
 result = vmin + val * (vmax - vmin)
 if self.ignore is not None:
 if self.ignore_mask is None:
 self.get_ignore_mask(value)
 result[self.ignore_mask]=val.data[self.ignore_mask]
 return result

cdict = {'red': ((0.0, 0.0, 0.0),
 # This means that, at 0.5, Red starts at 1.0 and goes down
 # to zero at 0.0. It starts at 0.7 and goes up to 1.0 at 1.0.
 (0.5, 1.0, 0.7),
 (1.0, 0.0, 0.0)
),
 'green': (#(0.0, 0.0, 0.0),
 #(0.5, 1.0, 0.0),
 #(1.0, 1.0, 0.0)
 (0.0,0.0,0.0),
 (0.5,0.0,0.0),
 (1.0,0.0,0.0)
),
 'blue': (#(0.0, 0.0, 0.0),
 #(0.5, 1.0, 0.0),
 #(1.0, 0.5, 0.0)
 (0.0,0.0,0.0),
 (1.0,0.0,0.0)
)
 }
cdict = {'red': (((-1.0+1)/2,32/255, 32/255),
 ((-0.6+1)/2,32/255, 32/255),
 ((-0.3+1)/2,32/255, 32/255),
 ((-0.2+1)/2,0,0),
 ((-0.1+1)/2,0,0),
 ((0.0+1)/2,0,0),
 ((0.1+1)/2,0,0),
 ((0.2+1)/2, 76/255, 76/255),
 ((0.3+1)/2,255/255,255/255),
 ((0.4+1)/2,255/255,255/255),
 ((0.5+1)/2,255/255,255/255),
 ((0.6+1)/2,242/255,242/255),
 ((0.7+1)/2,236/255,236/255),
 ((0.8+1)/2,236/255,236/255),
 ((0.9+1)/2,213/255,213/255),
 ((1.0+1)/2,108/255,108/255)),
 'green':(((-1.0+1)/2, 31/255, 31/255),
 ((-0.6+1)/2, 31/255, 31/255),
 ((-0.3+1)/2, 31/255, 31/255),
 ((-0.2+1)/2, 86/255, 86/255),
 ((-0.1+1)/2,131/255,131/255),
 ((0.0+1)/2,128/255,128/255),

 179

 ((0.1+1)/2,137/255,137/255),
 ((0.2+1)/2,184/255,184/255),
 ((0.3+1)/2,244/255,244/255),
 ((0.4+1)/2,244/255,244/255),
 ((0.5+1)/2,172/255,172/255),
 ((0.6+1)/2, 52/255, 52/255),
 ((0.7+1)/2, 1/255, 1/255),
 ((0.8+1)/2, 0/255, 0/255),
 ((0.9+1)/2, 0/255, 0/255),
 ((1.0+1)/2, 24/255, 24/255)),
 'blue': (((-1.0+1)/2,109/255,109/255),
 ((-0.6+1)/2,109/255,109/255),
 ((-0.3+1)/2,109/255,109/255),
 ((-0.2+1)/2,160/255,160/255),
 ((-0.1+1)/2,202/255,202/255),
 ((0.0+1)/2,200/255,200/255),
 ((0.1+1)/2,144/255,144/255),
 ((0.2+1)/2, 45/255, 45/255),
 ((0.3+1)/2, 0/255, 0/255),
 ((0.4+1)/2, 0/255, 0/255),
 ((0.5+1)/2, 0/255, 0/255),
 ((0.6+1)/2, 0/255, 0/255),
 ((0.7+1)/2, 20/255, 20/255),
 ((0.8+1)/2, 22/255, 22/255),
 ((0.9+1)/2, 27/255, 27/255),
 ((1.0+1)/2, 33/255, 33/255)),
 }
if __name__ == '__main__':
 # define the sentinels
 sentinel1 = 10
 sentinel2 = -10
 # define the colormap and norm
 rgb1 = (0.,0.,0.)
 rgb2 = (1.,1.,1.)

 #my_cmap =
SentinelLinearSegmentedColormap('my_colormap',cdict,256,sentinels={sentinel1:rgb1,sentine
l2:rgb2})
 my_cmap = LinearSegmentedColormap('my_colormap',cdict,256)
 norm = SentinelNorm(ignore=[sentinel1,sentinel2,sentinel_zero,sentinel_zero2])
 my_sentinelcmap = SentinelMap(my_cmap,sentinels={sentinel1:rgb1,
 sentinel2:rgb2,
 })

 #pcolor(rand(10,10),cmap=my_cmap)
 n = 100
 X = array(pylab.outerproduct(arange(-1,1,0.01),ones(100)))
 # replace some data with sentinels
 X[int(.1*n):int(.2*n), int(.5*n):int(.7*n)] = sentinel1
 X[int(.6*n):int(.9*n), int(.2*n):int(.5*n)] = sentinel2

 # make mask
 mask = nx.mlab.rand(n*2,n) >0.5
 print 'mask\n ',mask
 print mask.shape
 print X.shape

 # now mask X
 X= ma.masked_where(mask,X)

 #pylab.pcolormesh(X,cmap=my_cmap,shading='flat')
 pylab.pcolormesh(X,cmap=my_sentinelcmap,shading='flat',norm=norm)
 pylab.colorbar()
 pylab.show()

pypat/tool_utils.py
#!/usr/bin/env python

 180

"""

Various utility code that gets used throughout the command-line tools.

Recent changes

 - Moved scipy and numpy imports into relevant functions so that
 other python builds (e.g. PyMOL) can easily use this.

"""

from __future__ import division
import os,sys,bz2
from copy import copy
from optparse import Option, OptionValueError

usage = """usage: %prog [options]

Please make sure that you have created the following directories:

 output-dir
 output-dir/structure-name
 output-dir/images
"""

############################

New Optparse option types

############################

Define a new option type, a comma-separated list of integers.
def check_zerobasedintlist(option,opt,value):
 """
 This automatically converts one-based indices to zero-based
 indices. If you don't want that, make sure to convert back
 yourself!!

 It also knows about all of our lists of residues.
 """
 #
 # NOTE: if you want residues 9-24, give
 # range(8,24) because we're zero-indexed.
 #
 standard_residue_lists = {
 # Loops
 'dhfr_fg':range(115,132),
 'dhfr_cd':range(63,71),
 'dhfr_m20':range(8,24),
 'dhfr_gh':range(141,150),
 'dhfr_subdomain1':range(37) + range(106,159),
 'dhfr_subdomain2':range(38,106),
 # Beta strands
 'dhfr_BA':[i-1 for i in range(2, 5+1)],
 'dhfr_BB':[i-1 for i in range(39, 43+1)], #
 'dhfr_BC':[i-1 for i in range(58, 62+1)], #
 'dhfr_BD':[i-1 for i in range(73, 75+1)], #
 'dhfr_BE':[i-1 for i in range(91, 95+1)],
 'dhfr_BF':[i-1 for i in range(107,115+1)],
 'dhfr_BG':[i-1 for i in range(133,135+1)],
 'dhfr_BH':[i-1 for i in range(151,158+1)],
 # Alpha helices
 'dhfr_AB':[i-1 for i in range(25, 35+1)],
 'dhfr_AC':[i-1 for i in range(44, 50+1)], #
 'dhfr_AE':[i-1 for i in range(78, 85+1)], #
 'dhfr_AF':[i-1 for i in range(97,106+1)],

 # Networks
 'dhfr_AgarwalJPhysChemBNetwork':[i-1 for i in
(7,14,15,27,28,31,40,41,43,44,46,47,54,61,62,63,100,113,122)],
 'dhfr_WatneyHammes-SchifferJPhysChemBNetwork_shared':[i-1 for i in
(28,42,44,50,51,52,53,64,77,90)],

 181

 'dhfr_WatneyHammes-SchifferJPhysChemBNetwork_ecolionly':[i-1 for i in
(19,20,45,47,61,62,63,67,68,72,74,98,99,102,108,129,149,155)],
 # Mutants
 'dhfr_rb_catcorr_mutants':[i-1 for i in (9,44,45,46,54,121,122)],
 'dhfr_rb_catnoncorr_mutants':[i-1 for i in (28,31,100,113)],
 'dhfr_rb_noncatnoncorr_mutants':[i-1 for i in (85,88,137,145,152,153,155)],
 'dhfr_rb_noncatcorr_mutants':[i-1 for i in (49,67,14,22)],
 # Other DHFR
 'dhfr_allosteric_site':[i-1 for i in (26, 29,30, 33, 111,
137,139,141,153, 155)],
 'dhfr_moe_allosteric_exposed':[i-1 for i in (26, 29,30, 33,
137,139,141,153, 155)],
 'dhfr_moe_allosteric_tunnel': [i-1 for i in (5,6,7, 27, 30,31,
34,111,112,113, 153,154)],
 'dhfr_allosteric_everything': [i-1 for i in
(5,6,7,26,27,29,30,31,33,34,111,112,113,137,139,141,153,154,155)],

 'dhfr_allosteric_nonexposed': [i-1 for i in (5,6,7, 27, 31, 34,
112,113, 154)],

 'dhfr_mtx_contact':[i-1 for i in (5,6,27,31,32,52,57,94,100,160)],
 'dhfr_bulge_mutants':[i-1 for i in (137,153,155)],
 # BACE
 'bace_ticks':[i-1 for i in range(4,389,10)],
 }
 standard_residue_lists['dhfr_watney_network'] =
standard_residue_lists['dhfr_WatneyHammes-SchifferJPhysChemBNetwork_shared'] +
standard_residue_lists['dhfr_WatneyHammes-SchifferJPhysChemBNetwork_ecolionly'] + [159,]
 standard_residue_lists['dhfr_networks'] =
standard_residue_lists['dhfr_AgarwalJPhysChemBNetwork'] +
standard_residue_lists['dhfr_watney_network']
 standard_residue_lists['dhfr_loops'] = standard_residue_lists['dhfr_m20'] +
standard_residue_lists['dhfr_gh'] + standard_residue_lists['dhfr_fg'] +
standard_residue_lists['dhfr_cd']
 standard_residue_lists['dhfr_helices'] = []
 for i in 'AB AC AE AF'.split():
standard_residue_lists['dhfr_helices'].extend(standard_residue_lists['dhfr_'+i])
 standard_residue_lists['dhfr_rigid_d1'] = []
 for i in 'BB BC BD BE AC AE AF'.split():
standard_residue_lists['dhfr_rigid_d1'].extend(standard_residue_lists['dhfr_'+i])

 def parse_one_list(value):
 result = []
 for k in value.strip().split(','):
 if k in standard_residue_lists:
 result += standard_residue_lists[k]
 else:
 if '-' in k:
 start,stop = k.split('-')
 result.extend(range(int(start)-1,int(stop)))
 else:
 result.append(int(k)-1)
 result = sorted(list(set(result)))
 print "Caring about",len(result),"residues",[i+1 for i in result]
 return result
 try:
 if ':' in value:
 left,right = value.split(':')
 return [parse_one_list(left),parse_one_list(right)]
 else:
 return parse_one_list(value)
 except ValueError:
 raise OptionValueError(
 "option %s is neither a known range of residues or a valid list of integers:
%s"%(opt,value))

Define a new option type, a 1-based list of integers. Just use
the guts of the zero-based stuff and add one.

def check_onebasedintlist(option,opt,value):
 result = check_zerobasedintlist(option,opt,value)
 return [i+1 for i in result]

 182

Define a new option type, a comma-separated list of strings.
def check_strlist(option,opt,value):
 try:
 return [i for i in value.strip().split(',')]
 except ValueError:
 raise OptionValueError(
 "option %s: invalid list of strings: %s"%(opt,value))

class MyOption(Option):
 TYPES=Option.TYPES + ("zerobasedintlist","onebasedintlist","strlist",)
 TYPE_CHECKER=copy(Option.TYPE_CHECKER)
 TYPE_CHECKER["zerobasedintlist"] = check_zerobasedintlist
 TYPE_CHECKER["onebasedintlist"] = check_onebasedintlist
 TYPE_CHECKER["strlist"] = check_strlist

#######################################

Adding options to the Optparse parser

#######################################

def add_window_options(parser):
 parser.add_option("--start",dest="start",default=500,type="int",
 help="Time, in ps, to start the windows. [default: %default]")
 parser.add_option("--stop",dest="stop",default=10500,type="int",
 help="Time, in ps, to stop the windows. [default: %default]")
 parser.add_option("--window-size",dest="windowsize",default=1000,type="int",
 help="Length, in ps, of window size. [default: %default]")
 parser.add_option("--window-spacing",dest="windowspacing",default=100,type="int",
 help="Spacing between windows, in ps. [default: %default]")

def add_standard_options(parser):
 parser.add_option("--structure-name",dest="structurename",
 default="1rx1",
 help="Name of your structure. E.g. 1RX1 or 1SGZ. [default:
%default]")
 parser.add_option("--output-dir",dest="outputdir",
 default="ptraj_files/",
 help="Directory where we will put our results. This should be the
same as the directory where we put our ptraj files before, and it should contain the .dat
files that ptraj outputs. [default: %default] The images will go to <outputdir>/images
and the html file will be in <outputdir>")

#######################################

Parsing standard options

#######################################

def get_desired(options):
 starts = range(options.start,options.stop-options.windowsize+1,options.windowspacing)
 stops = range(options.start+options.windowsize,options.stop+1,options.windowspacing)
 names = [(starts[i] + options.windowsize/2.0)/1000.0 for i in range(len(starts))]
 # names is the centers of the windows. start + windowsize/2 converted to NS.

 desired = [('%sps'%i,'%sps'%j,'NS%05.2f'%k) for (i,j,k) in zip(starts,stops,names)]
 return desired

#######################################

Running external programs

#######################################

def run(prog,args,verbose=True):
 '''
 wrapper to handle spaces on windows.
 prog is the full path to the program.
 args is a string that we will split up for you.
 or a tuple. or a list. your call.

 return value is (retval,prog_out)

 183

 e.g.

 (retval,prog_out) = run("/bin/ls","-al /tmp/myusername")
 '''
 try:
 import subprocess,tempfile

 if type(args) == type(''):
 args = tuple(args.split())
 elif type(args) in (type([]),type(())):
 args = tuple(args)
 if os.name in 'nt dos'.split():
 # turns out not to be necessary with subprocess
 #prog = r'"%s"'%prog
 pass
 args = (prog,) + args
 output_file = tempfile.TemporaryFile(mode="w+")
 if verbose:
 print "Running",args
 retcode =
subprocess.call(args,stdout=output_file.fileno(),stderr=subprocess.STDOUT)
 output_file.seek(0)
 prog_out = output_file.read()
 output_file.close() #windows doesn't do this automatically
 if verbose:
 print "Results were:"
 print "Return value:",retcode
 print "Output:"
 print prog_out
 return (retcode,prog_out)
 except ImportError:
 # probably python <= 2.4
 if type(args) != type(''):
 args = ' '.join(args)
 cmd = prog + ' ' + args
 if verbose:
 print "Running",cmd
 retcode = os.system(cmd)
 # cannot return prog_out via os.system
 if verbose:
 print "Results were:"
 print "Return value:",retcode
 print "Output:"
 print "\tcould not find subprocess module, so no output reported"
 return (retcode,'')

def read_data(fname):
 """
 Given a filename, try to read in data, paying attention to whatever format it's in.

 We'll try the following in order

 - .numpy
 We assume this is a square numpy array, made with array.tofile()
 - .dat
 A .dat file from ptraj. This can be read in with scipy.io.read_array()
 """
 from scipy.io import read_array
 import numpy as N
 data = None
 sys.stdout.write("reading "+fname+" ")
 sys.stdout.flush()
 if os.path.isfile(fname+'.numpy'):
 sys.stdout.write("as numpy\n")
 sys.stdout.flush()
 f = file(fname+'.numpy')
 data = N.fromstring(f.read())
 f.close()
 one_side = int(N.sqrt(len(data)))
 if abs(len(data) - one_side*one_side) >= 0.1:
 message = "Only square matrices are supported. %s has len
%s."%(fname,one_side)

 184

 sys.stdout.write(message)
 return None
 data.shape = one_side,one_side
 elif os.path.isfile(fname+'.numpy.bz2'):
 sys.stdout.write("as numpy.bz2\n")
 sys.stdout.flush()
 bf = bz2.BZ2File(fname+'.numpy.bz2')
 data = N.fromstring(bf.read())
 bf.close()
 one_side = int(N.sqrt(len(data)))
 if abs(len(data) - one_side*one_side) >= 0.1:
 message = "Only square matrices are supported. %s has len
%s."%(fname,one_side)
 sys.stdout.write(message)
 return None
 data.shape = one_side,one_side

 elif os.path.isfile(fname):
 sys.stdout.write("as dat\n")
 sys.stdout.flush()
 data = read_array(file(fname))
 elif os.path.isfile(fname+'.bz2'):
 sys.stdout.write("as dat.bz2\n")
 sys.stdout.flush()
 data = read_array(bz2.BZ2File(fname+'.bz2'))
 else:
 sys.stdout.write("COULD NOT FIND (1)%s\n"%fname)
 return data

pypat/hbond/__init__.py
#!/usr/bin/env python
#blank

pypat/hbond/hbond_analysis.py
#!/usr/bin/env python

"""
Michael Lerner's hbond analysis

Right now, just handles pasting together ptraj output.
"""

import copy,pprint,os,sys

class Atom:
 def __init__(self,atom_number=None,resi=None,atom_name=None):
 """
 If we are involved in a solvent hydrogen bond, we expect
 that atom_number, resi and atom_name will all be 'solv'
 """
 self.atom_number = atom_number
 self.resi = resi
 self.atom_name = atom_name
 def __str__(self):
 if len(str(self.atom_number)) > 4:
 raise Exception ('Atom Number Too Long: %s'%self.atom_number)
 spaces = (4-len(str(self.atom_number))) * ' '
 number_str = spaces + '(%s)' % self.atom_number
 return "%3s %4s %s" %(self.resi,
 self.atom_name,
 number_str)
 __repr__ = __str__
 def __eq__(self,other):
 #print "Comparing atoms"
 #print "resi", (self.resi == other.resi)
 #print "name", (self.atom_name == other.atom_name)
 #print "number", (self.atom_number == other.atom_number)

 185

 return (self.resi == other.resi) and (self.atom_name == other.atom_name) and
(self.atom_number == other.atom_number)
 def __ne__(self,other):
 return not (self == other)

class HBond:

 def init_from_str(self,s):
 '''
 str looks like what is returned by self._atom_str:
 41 O (659) --> 94 H (1455) - 94 N (1454)
 '''

d_resi,d_name,d_number,arrow,ah_resi,ah_name,ah_number,dash,a_resi,a_name,a_number =
s.split()
 d_number,ah_number,a_number = [int(i.replace('(','').replace(')','')) for i in
d_number,ah_number,a_number]
 d_resi,a_resi,ah_resi = [int(i) for i in d_resi,a_resi,ah_resi]
 self.donor = Atom(d_number,d_resi,d_name)
 self.acceptorh = Atom(ah_number,ah_resi,ah_name)
 self.acceptor = Atom(a_number,a_resi,a_name)
 def __init__(self,line):
 '''
 Initialize ourself from a line that looks like this:
 DONOR ACCEPTORH ACCEPTOR
 atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance
angle lifetime maxocc
 | 2546 :160@OA23| 1018 :63@HG 1017 :63@OG | 99.50 2.641 (0.10) 20.89
(9.75) 100.0 (47.0) 147 |@@@@@@@@@@@@@*@@@@@|
 | 2545 :160@OA22| 705 :44@HH22 703 :44@NH2 | 98.51 2.756 (10.09) 17.97
(19.79) 99.0 (127.0) 126 |*@@@@@@@@@@*@@@@@@@|

 The numbers in parens are standard deviations.

 maxocc is the maximum number of consecutive frames where the H-bond exists.

 Here is a note from cheetham (http://amber.scripps.edu/Questions/mail/322.html)::

 The maxocc is the maximum number of consecutive frames that the
 interaction is found in the trajectory (i.e. 39 consecutive frames).

 The lifetime is the average time an interaction occurred...

 For example, assume that each space below represents 1ps and a star

 means it is occupied:

 10 20 30 40 50
 ***** ***** ********** *****|

 The occupancy would be 5 + 5 + 10 + 5 / 50 or 50%
 The maxocc would be 10
 The lifetime would be 5 + 5 + 10 + 5 / 4 = 6.25 ps (assuming 1 ps between
 frames; the time per frame can be specified on the hbond command line)

 So, we will need to adjust the lifetimes. We have 5ps per frame, so our lifetime
 will need to be multiplied by 5.

 Adding things is not finished yet, but it works for
 - occ
 - distance
 - angle
 - graph
 '''

 # count tells us how many frames have been added together.
 self.count = 1
 if line is None:
 self.donor = Atom()
 self.acceptorh = Atom()
 self.acceptor = Atom()
 self.occ = self.dist = self.dist_stdev = self.angle = self.angle_stdev = 0.0

 186

 self.lifetime = self.lifetime_stdev = 0.0
 self.maxocc = 0
 self.graph = 'XXXXXXXXXXXXXXXXXXX'
 self.graph = ' '
 self.graph = ' '
 return

 line = line.strip()
 try:
 leading_junk,donor,acceptor,stats,graph,trailing_junk = line.split('|')
 except ValueError:
 print "Could not hbond",line
 raise
 self.donor = self._ptraj_hbond_chunk_to_atom(donor)
 self.acceptorh = self._ptraj_hbond_chunk_to_atom(' '.join(acceptor.split()[:2]))
 self.acceptor = self._ptraj_hbond_chunk_to_atom(' '.join(acceptor.split()[2:]))
 occ,dist = stats.split('(')[0].strip().split()
 dist_stdev = stats.split('(')[1].split(')')[0].strip()
 angle = stats.split(')')[1].split('(')[0].strip()
 angle_stdev = stats.split('(')[2].split(')')[0].strip()
 lifetime = stats.split('(')[-2].split()[-1].strip()
 lifetime_stdev = stats.split('(')[-1].split(')')[0].strip()
 maxocc = stats.split()[-1]
 self.occ,self.dist,self.dist_stdev,self.angle,self.angle_stdev = [float(i) for i
in occ,dist,dist_stdev,angle,angle_stdev]
 self.lifetime,self.lifetime_stdev = [float(i)*5 for i in lifetime,lifetime_stdev]
 self.maxocc = int(maxocc)*5
 #print
self.occ,self.dist,self.dist_stdev,self.angle,self.angle_stdev,self.lifetime,self.lifetim
e_stdev,self.maxocc
 #print graph,'->',graph.strip().strip('|')
 #self.graph = graph.strip().strip('|')
 self.graph = graph
 def _ptraj_hbond_chunk_to_atom(self,chunk):
 ''' chunk is something like " 2546 :160@OA23 " '''
 if chunk.strip() in ('solvent acceptor',
 'solvent donor',
 '',):
 if 'acceptor' in chunk:
 resn = 'acc'
 elif 'donor' in chunk:
 resn = 'don'
 else:
 resn = ''
 return Atom('solv','slv',resn)
 else:
 return Atom(int(chunk.split(':')[0].strip()),
 int(chunk.split(':')[1].split('@')[0].strip()),
 chunk.split(':')[1].split('@')[1].strip(),
)

 def __str__(self):
 return self._atom_str() + ' ' + self._occ_graph_str()
 def _atom_str(self):
 return "%s --> %s - %s"%(self.donor,
 self.acceptorh,
 self.acceptor,
)
 def _occ_graph_str(self):
 return "occ:%6.2f(%2s) |%s|"%(self.occ,
 self.count,
 self.graph,)
 __repr__ = __str__
 def __add__(self,other):
 '''
 bleh. i used to do things like
 result = copy.deepcopy(self)
 result.occ = (self.occ + other.occ)/2.0
 result.dist = (self.dist + other.dist)/2.0
 result.angle = (self.angle + other.angle)/2.0
 result.graph = self.graph + other.graph

 but, really, i need to add an attribute that

 187

 tells me how long each hbond is for, so that when
 i add the fifth one in, it does not divide by two.

 for now, i will zero out all of the things just to
 make sure people understand that they are not to be
 believed.
 '''
 if type(self) != type(other):
 raise Exception('no can do, hombre')
 sep = '|'
 if other.acceptor.atom_number is None:
 result = copy.deepcopy(self)
 result.dist = result.angle = 0.0
 result.graph = self.graph + sep + other.graph
 result.count = self.count + other.count
 elif self.acceptor.atom_number is None or (self._atom_str() ==
other._atom_str()):
 result = copy.deepcopy(other)
 result.dist = result.angle = 0.0
 result.graph = self.graph + sep + other.graph
 result.count = self.count + other.count
 else:
 raise Exception('Can only add hbonds with the same donors and acceptors\n%s
!= %s'%(self._atom_str(),other._atom_str()))
 #
 # Add various parts now
 #
 result.occ = (self.count * self.occ + other.count * other.occ)/(self.count +
other.count)
 return result

def hbond_lines(lines):
 reading = False
 for line in lines:
 if line.strip() == ' atom# :res@atom atom# :res@atom atom# :res@atom %occupied
distance angle lifetime maxocc'.strip():
 reading = True
 if not reading or line.strip().startswith('atom') or not line.replace('-
','').strip():
 continue
 yield line
def hbonds(f):
 return [HBond(line) for line in hbond_lines(f)]

def test_file_parsing():
 pprint.pprint(hbonds(file('/Users/mglerner/work/Dynamics-
DHFR/MD_Files/ptrajtestfiles/hbond_1rx1_ns2.out')))

def is_relevant(hbond,criteria):
 """
 Tells us if a hbond is relevant
 """
 if 'm20' in criteria:
 if ((9 <= hbond.donor.resi <= 24) or (9 <= hbond.acceptor.resi <= 24) or (9 <=
hbond.acceptorh.resi <= 24)):
 #print 'm20',hbond.donor.resi,hbond.acceptor.resi,hbond.acceptorh.resi
 return True
 if 'nap' in criteria:
 if (hbond.donor.resi == 160) or (hbond.acceptor.resi == 160) or
(hbond.acceptorh.resi == 160):
 #print "nap",hbond.donor.resi,hbond.acceptor.resi,hbond.acceptorh.resi
 return True
 if 'newpocket' in criteria:
 resis = 137,153,155,30,33,111
 if (hbond.donor.resi in resis) or (hbond.acceptor.resi in resis):
 return True
 if 'other' in criteria:
 return not (is_relevant(hbond,'m20') or is_relevant(hbond,'nap'))
 return False
 #return (9 <= hbond.donor.resi <= 24) or (9 <= hbond.acceptor.resi <= 24) or (9 <=
hbond.acceptorh.resi <= 24) or (hbond.donor.resi == 160) or (hbond.acceptor.resi == 160)
or (hbond.acceptorh.resi == 160)

 188

def print_relevant_hbonds(fname,criterias):
 """
 Reads in one file and prints out the relevant stuff.
 This doesn't do any adding up of hbonds, etc. It's
 mostly designed to work with my solvent hbonds.
 """
 hbonds = [HBond(line) for line in hbond_lines(file(fname))]

 for criteria in criterias:
 output = []
 for hbond in hbonds:
 if is_relevant(hbond,criteria):
 output.append((hbond.occ,hbond._atom_str()+' '+hbond._occ_graph_str()))
 output.sort()
 output.reverse()
 output = [o[1] for o in output]
 print '\n'.join(output)

def sum_hbonds(struct,criteria):
 print struct,criteria

 def add_hbonds(all_hbond_names,hbonds):
 """
 for every name in all_hbond_names that is not found in
 hbonds, add a blank hbond.
 """
 for hbond_name in all_hbond_names:
 found = False
 for hbond in hbonds:
 if hbond._atom_str() == hbond_name:
 found = True
 break
 if not found:
 hbond = HBond(None)
 hbond.init_from_str(hbond_name)
 hbonds.append(hbond)

 hbond_output_dir = '/Users/mglerner/work/Dynamics-DHFR/MD_Files/HBontOutputFiles'
 all_hbonds = {}
 all_hbond_names = {}
 for i in range(1,11):
 all_hbonds[i] = [HBond(line) for line in
hbond_lines(file(os.path.join(hbond_output_dir,'hbond_%s_NS%s.0.out'%(struct,i))))]
 for j in all_hbonds[i]:
 all_hbond_names[j._atom_str()] = None
 for i in all_hbonds:
 add_hbonds(all_hbond_names,all_hbonds[i])

 combined_hbonds = {}
 for hbond in all_hbonds[1]:
 combined_hbonds[hbond._atom_str()] = hbond
 for i in range(2,11):
 for hbond in all_hbonds[i]:
 combined_hbonds[hbond._atom_str()] = combined_hbonds[hbond._atom_str()] +
hbond
 output = []
 for k,v in combined_hbonds.iteritems():
 if is_relevant(v,criteria):
 #print k,v._occ_graph_str()
 output.append((v.occ,k+' '+v._occ_graph_str()))
 output.sort()
 output.reverse()
 output = [o[1] for o in output]
 print '\n'.join(output)

def test_hbond_constructors_and_overrides():
 hb1 = HBond('| 2546 :160@OA23| 1018 :63@HG 1017 :63@OG | 99.50 2.641 (
0.10) 20.89 (9.75) 100.0 (47.0) 147 |@@@@@@@@@@@@@*@@@@@|')
 print hb1

 189

 hb2 = HBond('| 2545 :160@OA22| 705 :44@HH22 703 :44@NH2 | 98.51 2.756
(10.09) 17.97 (19.79) 99.0 (127.0) 126 |*@@@@@@@@@@*@@@@@@@|')
 print hb2

 #print hb1+hb2

 hb3 = HBond('| 2546 :160@OA23| 1018 :63@HG 1017 :63@OG | 20.50 2.641 (
0.10) 20.89 (9.75) 20.0 (17.0) 47 |------ooo--ooo@@@@@|')
 print hb3

 print hb1+hb3

pypat/hbond/hbond_definitions.py
#!/usr/bin/env python

############################

A note to users:
Feel free to edit this file to add your own
hbond definitions. Python allows you to use single-
and double-quotes pretty much interchangeably. In this
file, however, you should use only double-quotes to quote
things. Otherwise, it's too easy to mess things up because
nucleic acids often use single-quotes as part of the atom names
and we use those in our selections. In particular, I may run an
automated procedure that adds in the "*" convention as well as the
"'" convention, and those will break if you use "'" for anything else.

############################

from pymol import cmd

RNA Defs from Mark Ditzler

def select_rna_acceptors():
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name O6)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name O6)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG3 and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name O6)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RG5 and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O2')")

 190

 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC3 and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RC5 and name N3)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name N3)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA and name N1)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name N3)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA3 and name N1)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name N7)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name N3)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RA5 and name N1)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU and name O4)")

 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU3 and name O4)")

 191

 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O2')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O3')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O4')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O5')")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O1P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O2P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn RU5 and name O4)")
def select_rna_donors():
 """
 We only care about the hydrogen here, but we include the attached
 heavy atom in a comment for completeness.
 """
 #acceptor mask :RG@N1 :RG@H1
 cmd.select("prot_donors","prot_donors or (resn RG and name H1)")
 #acceptor mask :RG@N2 :RG@H21
 cmd.select("prot_donors","prot_donors or (resn RG and name H21)")
 #acceptor mask :RG@N2 :RG@H22
 cmd.select("prot_donors","prot_donors or (resn RG and name H22)")
 #acceptor mask :RG@O2' :RG@HO'2
 cmd.select("prot_donors","prot_donors or (resn RG and name HO'2)")

 #acceptor mask :RG3@N1 :RG3@H1
 cmd.select("prot_donors","prot_donors or (resn RG3 and name H1)")
 #acceptor mask :RG3@N2 :RG3@H21
 cmd.select("prot_donors","prot_donors or (resn RG3 and name H21)")
 #acceptor mask :RG3@N2 :RG3@H22
 cmd.select("prot_donors","prot_donors or (resn RG3 and name H22)")
 #acceptor mask :RG3@O2' :RG3@HO'2
 cmd.select("prot_donors","prot_donors or (resn RG3 and name HO'2)")
 #acceptor mask :RG3@O3' :RG3@H3T
 cmd.select("prot_donors","prot_donors or (resn RG3 and name H3T)")

 #acceptor mask :RG5@N1 :RG5@H1
 cmd.select("prot_donors","prot_donors or (resn RG5 and name H1)")
 #acceptor mask :RG5@N2 :RG5@H21
 cmd.select("prot_donors","prot_donors or (resn RG5 and name H21)")
 #acceptor mask :RG5@N2 :RG5@H22
 cmd.select("prot_donors","prot_donors or (resn RG5 and name H22)")
 #acceptor mask :RG5@O2' :RG5@HO'2
 cmd.select("prot_donors","prot_donors or (resn RG5 and name HO'2)")
 #acceptor mask :RG5@O5' :RG5@H5T
 cmd.select("prot_donors","prot_donors or (resn RG5 and name H5T)")

 #acceptor mask :RC@N4 :RC@H41
 cmd.select("prot_donors","prot_donors or (resn RC and name H41)")
 #acceptor mask :RC@N4 :RC@H42
 cmd.select("prot_donors","prot_donors or (resn RC and name H42)")
 #acceptor mask :RC@O2' :RC@HO'2
 cmd.select("prot_donors","prot_donors or (resn RC and name HO'2)")

 #acceptor mask :RC3@N4 :RC3@H41
 cmd.select("prot_donors","prot_donors or (resn RC3 and name H41)")
 #acceptor mask :RC3@N4 :RC3@H42
 cmd.select("prot_donors","prot_donors or (resn RC3 and name H42)")
 #acceptor mask :RC3@O2' :RC3@HO'2
 cmd.select("prot_donors","prot_donors or (resn RC3 and name HO'2)")
 #acceptor mask :RC3@O3' :RC3@H3T
 cmd.select("prot_donors","prot_donors or (resn RC3 and name H3T)")

 #acceptor mask :RC5@N4 :RC5@H41
 cmd.select("prot_donors","prot_donors or (resn RC5 and name H41)")
 #acceptor mask :RC5@N4 :RC5@H42
 cmd.select("prot_donors","prot_donors or (resn RC5 and name H42)")
 #acceptor mask :RC5@O2' :RC5@HO'2
 cmd.select("prot_donors","prot_donors or (resn RC5 and name HO'2)")
 #acceptor mask :RC5@O5' :RC5@H5T
 cmd.select("prot_donors","prot_donors or (resn RC5 and name H5T)")

 #acceptor mask :RA@N6 :RA@H61
 cmd.select("prot_donors","prot_donors or (resn RA and name H61)")
 #acceptor mask :RA@N6 :RA@H62

 192

 cmd.select("prot_donors","prot_donors or (resn RA and name H62)")
 #acceptor mask :RA@O2' :RA@HO'2
 cmd.select("prot_donors","prot_donors or (resn RA and name HO'2)")

 #acceptor mask :RA3@N6 :RA3@H61
 cmd.select("prot_donors","prot_donors or (resn RA3 and name H61)")
 #acceptor mask :RA3@N6 :RA3@H62
 cmd.select("prot_donors","prot_donors or (resn RA3 and name H62)")
 #acceptor mask :RA3@O2' :RA3@HO'2
 cmd.select("prot_donors","prot_donors or (resn RA and name HO'2)")
 #acceptor mask :RA3@O3' :RA3@H3T
 cmd.select("prot_donors","prot_donors or (resn RA3 and name H3T)")

 #acceptor mask :RA5@N6 :RA5@H61
 cmd.select("prot_donors","prot_donors or (resn RA5 and name H61)")
 #acceptor mask :RA5@N6 :RA5@H62
 cmd.select("prot_donors","prot_donors or (resn RA5 and name H62)")
 #acceptor mask :RA5@O2' :RA5@HO'2
 cmd.select("prot_donors","prot_donors or (resn RA and name HO'2)")
 #acceptor mask :RA5@O5' :RA5@H5T
 cmd.select("prot_donors","prot_donors or (resn RA5 and name H5T)")

 #acceptor mask :RU@N3 :RU@H3
 cmd.select("prot_donors","prot_donors or (resn RU and name H3)")
 #acceptor mask :RU@O2' :RU@HO'2
 cmd.select("prot_donors","prot_donors or (resn RU and name HO'2)")

 #acceptor mask :RU3@N3 :RU3@H3
 cmd.select("prot_donors","prot_donors or (resn RU3 and name H3)")
 #acceptor mask :RU3@O2' :RU3@HO'2
 cmd.select("prot_donors","prot_donors or (resn RU3 and name HO'2)")
 #acceptor mask :RU3@O3' :RU3@H3T
 cmd.select("prot_donors","prot_donors or (resn RU3 and name H3T)")

 #acceptor mask :RU5@N3 :RU5@H3
 cmd.select("prot_donors","prot_donors or (resn RU5 and name H3)")
 #acceptor mask :RU5@O2' :RU5@HO'2
 cmd.select("prot_donors","prot_donors or (resn RU5 and name HO'2)")
 #acceptor mask :RU5@O5' :RU5@H5T
 cmd.select("prot_donors","prot_donors or (resn RU5 and name H5T)")

def select_standard_prot_donors_and_acceptors():
 """
 This is not standard because
 1) it knows about our terminal residues
 2) it includes our ligands
 """
 cmd.select("prot_acceptors","resn GLN and name OE1")
 cmd.select("prot_acceptors","prot_acceptors or (resn GLN and name OE1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn GLN and name NE2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn ASN and name OD1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn ASN and name ND2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn TYR and name OH)")
 cmd.select("prot_acceptors","prot_acceptors or (resn ASP and name OD1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn ASP and name OD2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn GLU and name OE1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn GLU and name OE2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn SER and name OG)")
 cmd.select("prot_acceptors","prot_acceptors or (resn THR and name OG1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn HIS and name ND1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn HIE and name ND1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn HID and name NE2)")

 cmd.select("prot_donors","resn ASN and name HD21")
 cmd.select("prot_donors","prot_donors or (resn ASN and name 1HD2)")
 #acceptor mask :ASN@ND2 :ASN@HD21
 cmd.select("prot_donors","prot_donors or (resn ASN and name HD21)")
 cmd.select("prot_donors","prot_donors or (resn ASN and name 1HD2)")
 #acceptor mask :ASN@ND2 :ASN@HD22
 cmd.select("prot_donors","prot_donors or (resn ASN and name HD22)")
 cmd.select("prot_donors","prot_donors or (resn ASN and name 2HD2)")
 #acceptor mask :TYR@OH :TYR@HH
 cmd.select("prot_donors","prot_donors or (resn TYR and name HH)")

 193

 #acceptor mask :GLN@NE2 :GLN@HE21
 cmd.select("prot_donors","prot_donors or (resn GLN and name HE21)")
 cmd.select("prot_donors","prot_donors or (resn GLN and name 1HE2)")
 #acceptor mask :GLN@NE2 :GLN@HE22
 cmd.select("prot_donors","prot_donors or (resn GLN and name HE22)")
 cmd.select("prot_donors","prot_donors or (resn GLN and name 2HE2)")
 #acceptor mask :TRP@NE1 :TRP@HE1
 cmd.select("prot_donors","prot_donors or (resn TRP and name HE1)")
 #acceptor mask :LYS@NZ :LYS@HZ1
 cmd.select("prot_donors","prot_donors or (resn LYS and name HZ1)")
 #acceptor mask :LYS@NZ :LYS@HZ2
 cmd.select("prot_donors","prot_donors or (resn LYS and name HZ2)")
 #acceptor mask :LYS@NZ :LYS@HZ3
 cmd.select("prot_donors","prot_donors or (resn LYS and name HZ3)")
 #acceptor mask :SER@OG :SER@HG
 cmd.select("prot_donors","prot_donors or (resn SER and name HG)")
 #acceptor mask :THR@OG1 :THR@HG1
 cmd.select("prot_donors","prot_donors or (resn THR and name HG1)")
 #acceptor mask :ARG@NH2 :ARG@HH21
 cmd.select("prot_donors","prot_donors or (resn ARG and name HH21)")
 cmd.select("prot_donors","prot_donors or (resn ARG and name 1HH2)")
 #acceptor mask :ARG@NH2 :ARG@HH22
 cmd.select("prot_donors","prot_donors or (resn ARG and name HH22)")
 cmd.select("prot_donors","prot_donors or (resn ARG and name 2HH2)")
 #acceptor mask :ARG@NH1 :ARG@HH11
 cmd.select("prot_donors","prot_donors or (resn ARG and name HH11)")
 #acceptor mask :ARG@NH1 :ARG@HH12
 cmd.select("prot_donors","prot_donors or (resn ARG and name HH12)")
 #acceptor mask :ARG@NE :ARG@HE
 cmd.select("prot_donors","prot_donors or (resn ARG and name HE)")
 #acceptor mask :HIS@NE2 :HIS@HE2
 cmd.select("prot_donors","prot_donors or (resn HIS and name HE2)")
 #acceptor mask :HIE@NE2 :HIE@HE2
 cmd.select("prot_donors","prot_donors or (resn HIE and name HE2)")
 #acceptor mask :HID@ND1 :HID@HD1
 cmd.select("prot_donors","prot_donors or (resn HID and name HD1)")
 #acceptor mask :HIP@ND1,NE2 :HIP@HE2,HD1
 cmd.select("prot_donors","prot_donors or (resn HIP and name HIP@HE2,HD1)")
 #-- Backbone donors and acceptors for this particular molecule
 # N-H for prolines do not exist so are not in the mask.
 #

 #donor mask @O
 cmd.select("prot_acceptors","prot_acceptors or (name o and not resn WAT+HOH)")
 # In our case, prolines are residues 21, 25, 39, 53, 55,
 # 66, 89, 105, 126, 130. We would say 1-159, but we exclude
 # prolines and terminii.
 #
 #acceptor mask :2-20,22-24,26-38,40-52,54,56-65,67-88,90-104,106-125,127-129,131-
158@N :1-158@H
 cmd.select("prot_donors","prot_donors or (name H and resi 2-158)")
 #Terminal residues have different atom names
 #donor mask @OXT
 cmd.select("prot_acceptors","prot_acceptors or name OXT")
 #acceptor mask :1@N :1@H1
 #acceptor mask :1@N :1@H2
 #acceptor mask :1@N :1@H3
 cmd.select("prot_donors","prot_donors or (resi 1 and name H1+H2+H3)")

def select_nap_donors_and_acceptors():
 """
 Ligand specific selections for NADPH (NAP)
 """
 #-- NADPH
 #acceptor mask :NAP@N6A :NAP@H61
 cmd.select("prot_donors","prot_donors or (resn NAP and name H61)")
 #acceptor mask :NAP@N6A :NAP@H62
 cmd.select("prot_donors","prot_donors or (resn NAP and name H62)")
 #acceptor mask :NAP@O'A3 :NAP@HOA3
 cmd.select("prot_donors","prot_donors or (resn NAP and name HOA3)")
 #acceptor mask :NAP@O'N3 :NAP@HON3

 194

 cmd.select("prot_donors","prot_donors or (resn NAP and name HON3)")
 #acceptor mask :NAP@O'N2 :NAP@HON2
 cmd.select("prot_donors","prot_donors or (resn NAP and name HON2)")
 #acceptor mask :NAP@N7N :NAP@H72
 cmd.select("prot_donors","prot_donors or (resn NAP and name H72)")
 #acceptor mask :NAP@N7N :NAP@H71
 cmd.select("prot_donors","prot_donors or (resn NAP and name H71)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name N1A)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name N3A)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name N7A)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OA23)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OA22)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OA24)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'A2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'A3)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'A4)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'A5)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OPA1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OPA2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OPN1)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O3P)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name OPN2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'N5)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'N4)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'N3)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O'N2)")
 cmd.select("prot_acceptors","prot_acceptors or (resn NAP and name O7N)")

################################

def do_standard_selections():
 select_standard_prot_donors_and_acceptors()
 select_rna_donors()
 select_rna_acceptors()

cmd.extend("do_standard_selections",do_standard_selections)

pypat/hbond/pymol_hbond_analysis.py
#!/usr/bin/env python

"""

This version uses get_distance, etc. and takes around 10 hours per nanosecond.
That means that it'll take around 100 hours for my 10ns simulation. If I split
it up onto 8 processors, that'll finish in about 12 or 13 hours. So, about a
day to do the full hbond analysis.

TODO

Decide what to do for a default min_required_dwell_time. The average
dwell time might be a more useful number if we exclude things that
are only there for e.g. 1 timestep.

Figure out what default for 'looseness' should be.

Perhaps build in a PyMOL interface that will highlight bridging waters
in a trajectory that you're currently viewing.

 - One way of doing this would be to just write out a new trajectory
 that included the appropriate waters in the appropriate states and
 then have the user load that in (or possibly load them in ourselves).

 - Another way would be to hide all of the waters that never make
 hydrogen bonds and then use dist mode=2.

REAL DOCUMENTATION

 195

There are two main parts to this.

1) Use PyMOL to figure out what the bridging interactions are
 at each snapshot and spit them out to files. That's typically
 done via a driver script like this::

 #!/usr/bin/env python
 import sys
 if sys.platform == 'darwin':
 print 'darwin'
 PYPAT_CODE_DIR = '/Users/mglerner/work/Dynamics-DHFR/'
 elif sys.platform == 'linux2':
 print 'linux2'
 PYPAT_CODE_DIR = '/users/mlerner/work/src/Dynamics-DHFR/'

 sys.path.append(PYPAT_CODE_DIR)
 from pypat.hbond import pymol_hbond_analysis
 r = range(2501,3001,500)
 starts_and_stops = zip(r[:-1],r[1:])
 for (start,stop) in starts_and_stops:
 print
 print 'DOING',start,stop
 print
 pymol_hbond_analysis.find_bridging_waters_in_trajectory('1ra1',start,stop)

2) Parse those results, invert them so they're in terms of bridging
 interactions rather than individual waters, spit out the results.
 That's typically done like this (and is done in the __main__
 loop here)::

 import glob
 d = '/Users/mglerner/work/Dynamics-DHFR/MD_Files/BridgingWaterOutput/'
 fnames = glob.glob(os.path.join(d,'1rx1_hbonds_*_*.txt'))
 a = get_hbond_trajectories('1rx1',
 timestep=5,
 fnames=fnames,
 combination_method='loose',
 min_required_dwell_time=3,
 looseness=2,
 dist_cutoff=3.5,
)
 including_resis = 137,153,155,30,33,111
 including_resis = None
 print a.get_trajectory_string(minocc=0.20,
 numchunks=50,
 including_resis=including_resis,
)

"""
from __future__ import division

try:
 enumerate
except NameError:
 def enumerate(thing):
 result = []
 idx = 0
 for t in thing:
 result.append((idx,t))
 idx += 1
 return result

try:
 sum
except NameError:
 def sum(thing):
 result = 0

 196

 for t in thing:
 result += t
 return result

import sys,os

class TrajectoryFormatter:
 '''
 From ptraj action.c
 if (m > 0.95 * pt)
 fprintf(fpout, "@");
 else if (m > 0.80 * pt)
 fprintf(fpout, "*");
 else if (m > 0.60 * pt)
 fprintf(fpout, "x");
 else if (m > 0.40 * pt)
 fprintf(fpout, "o");
 else if (m > 0.20 * pt)
 fprintf(fpout, "-");
 else if (m > 0.05 * pt)
 fprintf(fpout, ".");
 else
 fprintf(fpout, " ");
 '''
 def __init__(self):
 pass
 def equal_split(self,L,N):
 """
 Split L into N parts, returning a list containing those parts. The last part may
be smaller than the others.
 """
 part = int((len(L) + N - 1)/ N)
 _L = []
 for i in range(0,N):
 _L.append(L[part*i : part*i + part])
 return [i for i in _L if i]

 def format(self,mintime,maxtime,timestep,numchunks,trajectory):
 time_chunks =
self.equal_split(range(mintime,maxtime+timestep,timestep),numchunks)
 result = ''
 for r in time_chunks:
 occ = 0.
 for t in r:
 if trajectory[t]: occ += 1
 occ = occ/len(r)

 if occ > 0.95:
 result += "@"
 elif occ > 0.80:
 result += "*"
 elif occ > 0.60:
 result += "x"
 elif occ > 0.40:
 result += "o"
 elif occ > 0.20:
 result += "-"
 elif occ > 0.05:
 result += "."
 else:
 result += " "
 return result
 def get_description_string(self):

 return """
Trajectory formatting codes:
1.0-0.95 0.95-0.80 0.80-0.60 0.60-0.40 0.40-0.20 0.20-0.05 0.05-0.0
@@@@@@@@ ********* xxxxxxxxx ooooooooo ---------
"""

 197

default_trajectory_formatter = TrajectoryFormatter()

class BridgingWaterTrajectoryAnalyzer:
 """

 """
 def __init__(self,structure,timestep=5):
 """

 You are expected to run code like this:

 a = BridgingWaterTrajectoryAnalyzer(structure,timestep)
 for fname in fnames:
 a.read_in_file(fname)
 a.finalize()
 return a

 If you don't call finalize, we will still be able to output some
 statistics, but our trajectories will just be lists of
 SingleSnapshotBridgingWater instances, so you'll miss out on a
 lot of the output power.

 Parameters

 structure: protein structure, e.g. 1RX1

 timestep: the number of picoseconds each frame represents.
 """
 self.struct = structure
 self.timestep = timestep
 self.mintime = 1000000000
 self.maxtime = 0
 #
 # self.trajectories is a dictionary that maps SingleSnapshotBridgingWater objects
 # to a series of times. We'll set it up as a defaultdict so that you can ask
 # for trajectories[SSBW][time] and it'll return True or False. True if we've
 # explicitly added things and false if we haven't.
 #
 """
 I think this might actually work better if self.trajectories[x] returned
 a trajectory, where x is the hash of a SSBW. we then call
 self.trajectories[x][time] = x.wat_resi.

 so, that means that a trajectory has to have a __getitem__ and __setitem__.
 """
 self.trajectories = {}
 def __str__(self):
 results = []
 for bwt in self.trajectories:
 result = '%-103s'%bwt + ': ' + bwt.get_trajectory_string()

 results.append(result)
 return '\n'.join(results)

 def get_trajectory_string(self,minocc,numchunks,including_resis,sort_by):
 """
 Parameters

 minocc: the minimum occupancy time required to return a string

 numchunks: the number of chunks into which we will divide the output.
 If this is 10, you'll get 10 points in the output string, etc.
 If this is None, you'll get the whole thing.

 including_resis: we will print out all trajectories that have at least one
 leg involving at least one of these residues.

 sort_by: The attribute by which the trajectories will be sorted. Usual
 attributes are occ and average_dwell_time. This should be a

 198

 string, as we will use it in a getattr() call.

 """
 global default_trajectory_formatter
 bwts = [(getattr(bwt,sort_by),bwt) for bwt in self.trajectories]
 print "BWTA getting %s trajectory strings with minocc %s, numchunks %s,
including_resis %s"%(len(bwts),

minocc,

numchunks,

including_resis,

)
 print default_trajectory_formatter.get_description_string()
 bwts.sort()
 bwts.reverse()
 bwts = [thing[1] for thing in bwts]
 return '\n'.join(['%-103s :: '%bwt + bwt.get_trajectory_string(numchunks) for bwt
in bwts if bwt.occ >= minocc and bwt.contains_resi(including_resis)])

 def
as_edges(self,bridging_water_info,edge_length=2,is_valid=None,dist_cutoff=9999999.0,angle
_cutoff=0.0):
 """
 Returns a bridging_water_info object as one SingleSnapshotBridgingWater per edge.

 e.g. ['7464', ('53', 'PRO', 'O', 'donatingto',2.2,'angle',160.0),
 ('52', 'ARG', 'HE', 'acceptingfrom',2.4,'angle',165.0),
 ('52', 'ARG', 'HH22', 'acceptingfrom',3.5,'angle',164.0)]

 will be returned as
 [SSBW(7464,('53', 'PRO', 'O', 'donatingto', 2.2,'angle',160.0),('52',
'ARG', 'HE', 'acceptingfrom',2.4,'angle',165.0),),
 SSBW(7464,('53', 'PRO', 'O', 'donatingto', 2.2,'angle',160.0),('52',
'ARG', 'HH22', 'acceptingfrom',3.5,'angle',164.0)),
 SSBW(7464,('52', 'ARG', 'HE', 'acceptingfrom',2.4,'angle',165.0),('52',
'ARG', 'HH22', 'acceptingfrom',3.5,'angle',164.0))]

 This is all subject to the is_valid function. For instance, an is_valid function
 that says that you can't be bridging between two hydrogens on the same residue
would
 reject the last entry.

 Parameters

 is_valid: a function to tell us if a bridging water is valid. For example, we
might
 want to reject bridges between two hydrogens on the same residue. If
this
 is None, we will use our default is_valid function, defined below.

 dist_cutoff: if you're using our is_valid function, it will reject edges where
either
 bond is longer than dist_cutoff.

 angle_cutoff: if you're using our is_valid function, it will reject edges where
either
 angle is less than angle_cutoff

 edge_length: length of the edges that we care about. Default is two. I suppose
it's
 not really an 'edge' if it's bigger than two, but you know what I
mean.
 It's the list of things that are connected to this water.
 """
 if edge_length != 2:
 raise NotImplementedError('Only edge lengths of two are supported')
 results = []
 if is_valid is None:
 """

 199

 Anything with None in it is invalid, and is just a default arg to the
 Hbond constructor

 We do not allow bridges between two hydrogens that are part of the same
 residue.
 """
 def is_valid(atom1,atom2,dist_cutoff=dist_cutoff,angle_cutoff=angle_cutoff):
 """

 an atom looks like ('111', 'TYR', 'O', 'donatingto',3.2, 'angle',160.0)
 """
 #
 # Reject default args (None)
 #
 if None in atom1:
 return False
 if None in atom2:
 return False
 #
 # Reject bridges between two hydros that are part of the same residue
 #
 if atom1[0] == atom2[0]: # same residue
 if 0: print "same residue hydros",atom1,atom2
 if atom1[2].startswith('H') and atom2[2].startswith('H'):
 #print "rejecting",atom1,atom2
 return False
 #
 # Bridges must be between two different residues
 #
 if atom1[0] == atom2[0]:
 if 0: print "same residue",atom1,atom2
 return False

 #
 # All edges must be <= the distance cutoff
 #
 if (atom1[4] > dist_cutoff) or (atom2[4] > dist_cutoff):
 if 0:
 print "bad dist",atom1,atom2
 return False
 #
 # All angles must be >= the angle cutoff
 #
 if (atom1[6] < angle_cutoff) or (atom2[6] < angle_cutoff):
 if 0:
 print "bad angle",atom1,atom2
 return False
 return True
 wat_resi,atoms = bridging_water_info[0],bridging_water_info[1:]
 for i,atom1 in enumerate(atoms):
 for atom2 in atoms[i+1:]:
 if is_valid(atom1,atom2):
 results.append(SingleSnapshotBridgingWater(wat_resi,atom1,atom2))
 return results

 def finalize(self,combination_method,min_required_dwell_time,looseness):
 """
 Turn our trajectories into proper trajectories so that we can print out nicely.

 It also calculates a lot of statistics.

 Please look at BridgingWaterTrajectory.finalize() for more documentation.
 """
 sys.stdout.write("Now finalizing %s trajectories\n"%len(self.trajectories))
 sys.stdout.flush()
 for bwt in self.trajectories:
 bwt.mintime = self.mintime
 bwt.maxtime = self.maxtime
 bwt.timestep = self.timestep
 bwt.finalize(combination_method=combination_method,
 min_required_dwell_time=min_required_dwell_time,
 looseness=looseness)

 200

 def read_in_file(self,fname,times=None,dist_cutoff=999999.,angle_cutoff=0):
 """

 Parameters

 fname: The name of the file we should read in.
 The contents of this file will be eval()'d, and we expect
 to be able to turn the result of that into a dictionary.
 The keys in that dictionary are PyMOL object names and the
 values are lists of bridging waters found in those objects.

 times: A dictionary mapping the PyMOL object names to times.
 If times is None, we will determine the times from the
 filename as follows:

 1rx1_hbonds_635_640.txt means that times is range(635,640)
 with the special exception that, due to how PyMOL treats
 trajectories, there's never a time == 0, so 0_x will be
 range(1,x).

 In that case, we'll map the times to the lexigraphical
 ordering of the keys in fname.

 Times will be in picoseconds, and will be multiplied by
 self.timestep in order to convert from snapshot number
 to picoseconds.

 This function takes care of some bookkeeping as well by
 ensuring that self.mintime and self.maxtime are correct.
 Any other functions that touch self.trajectories should
 make sure to do this!

 dist_cutoff: if you're using our is_valid function, it will
 reject edges where either bond is longer than
 dist_cutoff.

 angle_cutoff: if you're using our is_valid function, it will
 reject edges where either angle is smaller than
 angle_cutoff.

 """
 f = file(fname)
 try:
 x = eval(f.read())
 except SyntaxError:
 print "Could not read file %s .. possibly still being written to?"%fname
 return
 f.close()
 if times is None:
 just_fname = os.path.splitext(os.path.split(fname)[-1])[0]
 parts = just_fname.split('_')
 start,stop = int(parts[-2]),int(parts[-1])
 if start == 0:
 start = 1
 times = {}
 for (o,t) in zip(sorted(x.keys()),range(start,stop)):
 times[o] = t*self.timestep
 if 0:
 print "Time mapping",times
 for obj_name,bridging_water_infos in x.iteritems():
 t = times[obj_name]
 if t < self.mintime:
 self.mintime = t
 if t > self.maxtime:
 self.maxtime = t
 for bridging_water_info in bridging_water_infos:
 wat_resi = int(bridging_water_info[0])
 for bw in
self.as_edges(bridging_water_info,dist_cutoff=dist_cutoff,angle_cutoff=angle_cutoff):
 self.add_to_trajectory(bw,wat_resi,t)
 def add_to_trajectory(self,bw,wat_resi,t):

 201

 if bw not in self.trajectories:
 il = bw.get_nonempty_interaction_list(include_distances=True)
 if 0:
 print il
 if len(il) != 2:
 raise NotImplementedError('We only support bridges with two edges at this
time %s'%il)
 if 0:
 print il[0]
 resi1,resn1,atomname1,interaction1,dist1 = il[0]
 resi2,resn2,atomname2,interaction2,dist2 = il[1]
 #
 # TODO: FIXME: we should pay more attention to the distance.
 # We should store it with the time in self.trajectories.
 #
 if 0:
 print "interaction1",interaction1
 print "interaction2",interaction2
 bwt = BridgingWaterTrajectory((resi1,resn1,atomname1,interaction1,dist1,),
 (resi2,resn2,atomname2,interaction2,dist2,),
)

 self.trajectories[bwt] = bwt
 if 0:
 print
"added",(resi1,resn1,atomname1,interaction1,dist1,),(resi2,resn2,atomname2,interaction2,d
ist2,)

 # It's worth knowing that I've overloaded __setitem__ so that it will
 # actually just append wat_resi to the list of times.x
 try:
 self.trajectories[bw][t] = wat_resi
 except KeyError:
 print "trouble adding",bw
 raise

class BridgingWaterTrajectory:
 """
 I think this might actually work better if self.trajectories[x] returned
 a trajectory, where x is the hash of a SSBW. we then call
 self.trajectories[x][time] = x.wat_resi.

 so, that means that a trajectory has to have a __getitem__ and __setitem__.

 """

 def __init__(self,
 (resi1,resn1,atomname1,interaction1,dist1),
 (resi2,resn2,atomname2,interaction2,dist2),
):
 #
 # If we every use more trajectory formatters,
 # we'll make it an argument to __init__.
 #
 global default_trajectory_formatter
 from collections import defaultdict

 self.resi1 = int(resi1)
 self.resn1 = resn1
 self.atomname1 = atomname1
 self.interaction1 = interaction1
 self.resi2 = int(resi2)
 self.resn2 = resn2
 self.atomname2 = atomname2
 self.interaction2 = interaction2

 self._times = defaultdict(list)

 self.mintime = None
 self.maxtime = None
 self.timestep = None
 self.occ = None

 202

 self.tf = default_trajectory_formatter

 def get_nonempty_interaction_list(self,include_distances=False):
 #
 # We never include the wat_resi, because we're just saying
 # what the interactions are.
 #
 # This is necessary for comparing to SSBTs
 # so, in the general case, we will not include distances.
 # However, it's also useful for building up other lists of
 # info, so we will allow the possibility of including
 # distances.
 #
 if include_distances:
 return [(self.resi1,self.resn1,self.atomname1,self.interaction1,dist1),
 (self.resi2,self.resn2,self.atomname2,self.interaction2,dist2),
]
 else:
 return [(self.resi1,self.resn1,self.atomname1,self.interaction1,),
 (self.resi2,self.resn2,self.atomname2,self.interaction2,),
]

 def __getitem__(self,time):
 return self._times[time]
 def __setitem__(self,time,wat_resi):
 if 0:
 print "setting",time,wat_resi
 self._times[time].append(wat_resi)
 return self._times[time]
 def __hash__(self):
 """
 SUPER IMPORTANT NOTE:
 It is very important to make sure that this hash function
 is the same as the hash function used for an SSBW. Otherwise,
 the indexing into .trajectories won't work at all.

 We don't include distance for the same reason that we don't include
 wat_resi.
 """
 inter = [(self.resi1,self.resn1,self.atomname1,self.interaction1,),
 (self.resi2,self.resn2,self.atomname2,self.interaction2,),
]
 inter.sort()
 if 0:
 print "Will hash..",tuple(inter),"to",hash(tuple(inter)),"in bwt"
 return hash(tuple(inter))
 def __repr__(self):
 try:
 verbose = False
 if verbose:
 result = '<BI %7.1fps occ: %5.1f adt: %5.1fps %3i [%s] (%3s %3s %-
4s):%13s, (%3s %3s %-4s):%13s,>'%(self.maxtime - self.mintime + self.timestep,

self.occ * 100,

self.average_dwell_time,

self.num_waters_seen,

self.__wat_resis,

self.resn1,self.resi1,self.atomname1,

self.interaction1,

self.resn2,self.resi2,self.atomname2,

self.interaction2,

)
 else:

 203

 result = '<BI %7.1fps occ: %5.1f adt: %5.1fps %3i (%3s %3s %-4s):%13s,
(%3s %3s %-4s):%13s,>'%(self.maxtime - self.mintime + self.timestep,

self.occ * 100,

self.average_dwell_time,

self.num_waters_seen,

self.__wat_resis,

self.resn1,self.resi1,self.atomname1,

self.interaction1,

self.resn2,self.resi2,self.atomname2,

self.interaction2,

)

 except TypeError:
 print "Args"
 print (self.maxtime, self.mintime, self.timestep,
 self.occ,100,
 self.average_dwell_time,
 self.num_waters_seen,
 self.resn1,self.resi1,self.atomname1,
 self.interaction1,
 self.resn2,self.resi2,self.atomname2,
 self.interaction2,)
 raise
 return result
 def contains_resi(self,resis):
 """
 Returns true of anything in resis is contained in any of our legs.

 Parameters

 resis: a single resi, a list of resis, or None. If None, we will
 return True for everything.
 """
 if resis is None:
 return True
 if type(resis) == type(''):
 resis = [int(i) for i in resis.split()]
 elif type(resis) == type(1):
 resis = [resis,]
 if len(self.get_nonempty_interaction_list()) != 2:
 raise NotImplementedError("Only bwts of length two are supported")
 for resi in resis:
 if resi == self.resi1:
 return True
 if resi == self.resi2:
 return True
 return False
 def get_trajectory_string(self,numchunks):
 """
 TODO: FIXME: verify that this is correct

 """
 if numchunks is None:
 result = ''
 for t in range(self.mintime,self.maxtime+self.timestep,self.timestep):
 if self[t]:
 #result += '.'
 result += '%s,'%self[t]
 else:
 result += ' '
 else:
 result = self.tf.format(self.mintime,
 self.maxtime,

 204

 self.timestep,
 numchunks,
 self,
)

 return result
 def finalize(self,combination_method,min_required_dwell_time,looseness):
 """
 Calculate occupancy, dwell times.

 Parameters

 combination_method: We see several trajectories where the occupancy by a given
 water molecule will look like
 If you choose method 'strict' you'll see that as the same
 water molecule occupying the bridge 4 different times.
 The average dwell time there would be 4+1+1+4/4.

 If you choose method 'combine' we will simply keep track
 of how much time a given water molecule spends in the
 bridge for the entire simulation. That fixes up the
 above case, but has some trouble. For instance, of
 water molecule 3254 occupies the bridge for 4ps, then
 leaves for 1ns, then comes back for 8ps, we'll record
 a dwell time of 12ps.

 The difference between these methods is very significant.
 In one particular case, for instance, I see it change
 the dwell time from 465ps to 37.4ps.

 If you choose method 'loose' we will try to be a little
 smarter about combining the small trajectories. We will
 allow a skip of one between them. That is,..
 will be turned into which is, I think,
 a little better.

 looseness: If we're using method 'loose', this tells us how many
 snapshots can be missing and still let us combine the
 trajectory.

 min_required_dwell_time: measured in timesteps, not picoseconds.

 """
 from collections import defaultdict
 #
 # Occupancy
 #
 occ = 0.
 r = range(self.mintime,self.maxtime+self.timestep,self.timestep)
 for t in r:
 if self._times[t]:
 occ += 1
 self.occ = occ/len(r)

 #
 # Dwell times
 #
 #combination_method = 'strict'
 if combination_method == 'strict':
 raise NotImplementedError("'strict' method is no longer supported. Please
look through the source and re-enable it if you want.")
 counts = []
 last_wat = None
 count = 1
 for t in r:
 if self._times[t] == last_wat:
 count += 1
 else:
 if last_wat not in (False,None,[]):
 counts.append(count)
 count = 1
 last_wat = self._times[t]

 205

 if last_wat != None:
 counts.append(count)
 self.dwell_times = [c * self.timestep for c in counts]
 elif combination_method == 'combine':
 raise NotImplementedError("'combine' method is no longer supported. Please
look through the source and re-enable it if you want.")
 counts = defaultdict(int)
 for t in r:
 wat_resi = self._times[t]
 if wat_resi not in (False,None,[]):
 counts[wat_resi] += 1
 self.dwell_times = [i * self.timestep for i in counts.values()]
 elif combination_method == 'loose':
 """
 Writing this algorithm myself is actually a little tricky. Instead,
 I'm just going to use strings. For each water that we see, I'll
 make a trajectory string that contains 'x' when the water is there and
 ' ' when it's not. Then, I can use string.replace('x x', 'xxx').
 """
 self.dwell_times = []
 #
 # I used to say this:
 #wat_resis = [i for i in set(self._times.values()) if i not in
(None,False,[])]
 # but that doesn't work anymore. We've made self._times
 # a list that contains all of the wat_resis satisfying this
 # particular bridge at a given time.
 #
 wat_resis = set()
 for i in self._times.values():
 for j in i:
 wat_resis.add(j)
 for wat_resi in wat_resis:
 traj_str = ''
 for t in r:
 if wat_resi in self._times[t]:
 traj_str += 'x'
 else:
 traj_str += ' '
 #print wat_resi,traj_str
 """
 A Note About Regular Expressions:

 This is not good enough:

 for i in range(1,looseness+1):
 traj_str = traj_str.replace('x'+' '*i+'x','x'+'x'*i+'x')
 print wat_resi,traj_str,'replacing',i

 because the regular expression engine returns only non-overlapping
 matches. That means that we'll see something like this:

 In [71]: 'x x xx x'.replace('x x','xxx')
 Out[71]: 'xxx xx x'

 In order to take care of overlapping matches, we have to apply the
 pattern multiple times. Question: how many times? I think that
 two is enough, because the pattern and replacement is simple enough
 that we really only care about its edges.

 Who really cares about that, though? I'll just keep replacing until
 I stop finding what I'm looking for.
 """
 for i in range(1,looseness+1):
 pattern = 'x'+' '*i+'x'
 replacement = 'x'+'x'*i+'x'
 while traj_str.find(pattern) >= 0:
 traj_str = traj_str.replace(pattern,replacement)
 #print wat_resi,traj_str,'replacing',i
 for traj in traj_str.split():
 self.dwell_times.append(len(traj) * self.timestep)
 self.dwell_times = [i for i in self.dwell_times if i >=
self.timestep*min_required_dwell_time]

 206

 self.num_waters_seen = len(self.dwell_times)
 self.average_dwell_time = 0
 if self.dwell_times:
 self.average_dwell_time = sum(self.dwell_times)/len(self.dwell_times)
 self.__wat_resis=wat_resis #TODO: FIXME: make sure this actually works
 #
 # TODO: clarify this: there's a question about exactly what I mean by
"num_waters_seen"
 # as is, it's the number of .. well, make sure it makes sense later, with 2
molecules at once, etc.
 #

 #
 # This is a little flakey .. if we're there for 10 steps, gone for one
 # and back for 10, that will show up as seen twice.
 #

class SingleSnapshotBridgingWater:

 def __init__(self,
 wat_resi,
 (resi1,resn1,atomname1,interaction1,dist1,_angle1,angle1),
 (resi2,resn2,atomname2,interaction2,dist2,_angle2,angle2),

(resi3,resn3,atomname3,interaction3,dist3,_angle3,angle3)=(None,None,None,None,None,None,
None,),

(resi4,resn4,atomname4,interaction4,dist4,_angle4,angle4)=(None,None,None,None,None,None,
None,),

(resi5,resn5,atomname5,interaction5,dist5,_angle5,angle5)=(None,None,None,None,None,None,
None,),

(resi6,resn6,atomname6,interaction6,dist6,_angle6,angle6)=(None,None,None,None,None,None,
None,),

(resi7,resn7,atomname7,interaction7,dist7,_angle7,angle7)=(None,None,None,None,None,None,
None,),

(resi8,resn8,atomname8,interaction8,dist8,_angle8,angle8)=(None,None,None,None,None,None,
None,),
):
 """

 Parameters

 resi1,atomname1,interaction1,dist1: one of the residues, and in interaction
 in {donatingto,acceptingfrom}.
 153,donatingto would mean that the water is
 donating an hbond to residue 153 with
distance dist1.

 At the moment, there's no reason to record the angles, so we won't.

 """
 self.wat_resi = wat_resi
 if resi1 is not None: resi1 = int(resi1)
 if resi2 is not None: resi2 = int(resi2)
 if resi3 is not None: resi3 = int(resi3)
 if resi4 is not None: resi4 = int(resi4)
 if resi5 is not None: resi5 = int(resi5)
 if resi6 is not None: resi6 = int(resi6)
 if resi7 is not None: resi7 = int(resi7)
 if resi8 is not None: resi8 = int(resi8)
 self.interactions = {(resi1,resn1,atomname1,dist1):interaction1,
 (resi2,resn2,atomname2,dist2):interaction2,
 (resi3,resn3,atomname3,dist3):interaction3,
 (resi4,resn4,atomname4,dist4):interaction4,
 (resi5,resn5,atomname5,dist5):interaction5,
 (resi6,resn6,atomname6,dist6):interaction6,

 207

 (resi7,resn7,atomname7,dist7):interaction7,
 (resi8,resn8,atomname8,dist8):interaction8,
 }
 def get_nonempty_interaction_list(self,include_distances=False):
 #
 # We never include the wat_resi, because we're just saying
 # what the interactions are.
 #
 # This is necessary for comparing to BWTs
 # so, in the general case, we will not include distances.
 # However, it's also useful for building up other lists of
 # info, so we will allow the possibility of including
 # distances.
 #
 result = []
 for k,v in self.interactions.iteritems():
 if None in k:
 continue
 if v is None:
 continue
 if include_distances:
 result.append((k[0],k[1],k[2],v,k[3]))
 else:
 result.append((k[0],k[1],k[2],v))
 return result

 def __repr__(self):
 """

 string representation. For purposes of principal, we will not include
 the bridging water here.
 """
 #result = '(%s,{'%self.wat_resi
 result = '<SSBW %s '%self.wat_resi
 for k,v in self.interactions.iteritems():
 if None in k:
 continue
 if v is None:
 continue
 result += "%s:'%s',"%(k,v)
 #result +='})'
 result +='>'
 return result
 #return str((self.wat_resi,self.interactions))
 def __hash__(self):
 """
 """
 #
 # if we get rid of self.wat_resi, we may not be able to
 # correctly keep track of dwell times for particular waters.
 #
 inter = self.get_nonempty_interaction_list()
 inter.sort()
 #return hash((self.wat_resi,tuple(inter)
 #))
 if 0:
 print "Will hash",inter
 return hash(tuple(inter))

 def __eq__(self,other):
 if 0:
 print "Comparing",self,other,sorted(self.get_nonempty_interaction_list()) ==
sorted(other.get_nonempty_interaction_list())
 return sorted(self.get_nonempty_interaction_list()) ==
sorted(other.get_nonempty_interaction_list())
 #return self.interactions == other.interactions
 def __ne__(self,other):
 return sorted(self.get_nonempty_interaction_list) !=
sorted(other.get_nonempt_interaction_list)
 #return self.interactions != other.interactions

class SingleSnapshotHbondEmitter:

 208

 def __init__(self,states,hbond_dist_cutoff=3.5,hbond_angle_cutoff=None):
 '''

 Parmeters

 states: the number of states we will analyze.

 hbond_dist_cutoff: HeavyAtom-Hydro distance, so we default to a generous 3.5.

 hbond_angle_cutoff: At the moment, we will mimic ptraj and not have an angle
cutoff.

 Our lists of donors and acceptors are taken from
http://amber.scripps.edu/tutorials/basic/tutorial3/files/analyse_hbond.ptraj
 '''
 self.states = states
 self.hbond_dist_cutoff = hbond_dist_cutoff
 #if hbond_angle_cutoff is not None:
 # raise NotImplementedError('hbond_angle_cutoff not implemented yet (we are
like ptraj default here).')
 self.hbond_angle_cutoff = hbond_angle_cutoff

 self.logfilename = 'HbondEmitterLogFile.txt'
 def log(self,message):
 f = file(self.logfilename,'a')
 f.write(message)
 f.close()
 sys.stdout.write(message)
 sys.stdout.flush()

 def create_selections(self):

 from pymol import cmd,stored
 import hbond_definitions
 hbond_definitions.do_standard_selections()

 if 0:
 #Once we do the per-state selections, we may be able
 # to resurrect this.
 cmd.select('prot_acceptors','prot_acceptors and %s'%sel)
 cmd.select('prot_donors','prot_donors and %s'%sel)
 def analyze_and_emit(self,outf):
 #
 # Note, I think it's a little clearer this way. OTOH, we could
 # quite easily change the format so that analyze() takes in a
 # file handle and writes each bridge out to it on one line,
 # something like (state,bridge)
 #
 results = self.analyze()
 outf.write(str(results))

 def analyze(self):
 """
 go through the whole thing at once

 You might be wondering why I have all of these safety checks in here.
 It turns out that they've all been necessary at one time or another.

 In particular, I often find that the last water in a trajectory will
 trigger the PROBLEM WITH errors, and I'll often see things like
 FAILED H2DIST 3 1, neither of which should ever happen.
 """
 from pymol import cmd,stored
 self.create_selections()
 bridges = {}
 for state in range(1,self.states+1):
 bridges[state] = {}
 stored.wat_list = []
 #
 # Here, we have a question about how to make this as fast as
 # possible. After talking to Warren, it looks like the best thing

 209

 # to do is to make a new object (tmp_wat_papd .. temporary waters +
 # protein acceptors + protein donors) that contains only the atoms
 # from a particular state that we are interested in. This sort of
 # object creation should be faster than passing the "state" argument
 # to get_distance and get_angle.
 #
 # We'll be a little bit generous in creating that object: we'll grab
 # everything within dist_cutoff of any relevant atoms, rather than
 # just searching for the heavy-heavy distances.
 #
 cmd.create('tmp_wat_papd','(prot_donors or prot_acceptors or neighbor
prot_donors) or (byres (resn WAT+HOH) within %s of (prot_donors or prot_acceptors or
neighbor prot_donors))'%(self.hbond_dist_cutoff),state,1)
 cmd.select('tmp_wat_near','byres (tmp_wat_papd and (resn WAT+HOH)) within %s
of (tmp_wat_papd in (prot_donors or prot_acceptors or neighbor
prot_donors))'%(self.hbond_dist_cutoff+0.1))
 cmd.iterate('tmp_wat_near and elem o','stored.wat_list.append(resi)')
 num_wat_resis = len(stored.wat_list)
 self.log('\nI will loop over %s nearby waters for state
%s\n'%(num_wat_resis,state))
 for (wat_idx,w_resi) in enumerate(stored.wat_list):
 pct_done = int(100*(wat_idx+1)/num_wat_resis)
 if divmod(pct_done,10)[-1] == 0: self.log('X')
 else: self.log('.')

 bridges[state][w_resi] = []
 stored.pa_list = []
 cmd.iterate('(tmp_wat_papd in prot_acceptors) within %s of (tmp_wat_papd
and resi %s and elem
h)'%(self.hbond_dist_cutoff,w_resi),'stored.pa_list.append((resi,resn,name))')
 for (resi,resn,name) in stored.pa_list:
 # Here, we're looking for distances to the water hydrogens,
 # which is why we use resi <w_resi> and name H1|H2.
 #
 # Also, the select(left, (not left) and (neighbor left))
 # business is because our hbond definition file lists
 # the hydrogens, but we want heavy-atom distances.

 # Calculate the distance/angle w.r.t the water's H1
 left_hydro = cmd.select('left_hydro',"resi %s and name H1 and
tmp_wat_papd"%w_resi)
 if left_hydro != 1: self.log("PROBLEM WITH resi %s and name H1 and
tmp_wat_papd in state %s"%(w_resi,state))

 left_heavy = cmd.select('left_heavy','(not left_hydro) and (neighbor
left_hydro) and tmp_wat_papd')
 if left_heavy != 1: self.log("PROBLEM WITH new left sele resi %s and
name H1 and tmp_wat_papd in state %s"%(w_resi,state))

 right = cmd.select('right',"resi %s and name %s and
tmp_wat_papd"%(resi,name))
 if right != 1: self.log("PROBLEM WITH resi %s and name %s and
tmp_wat_papd in state %s"%(resi,name,state))

 try:
 h1dist = cmd.get_distance('left_heavy','right') # state not
included because we're in tmp_wat_papd
 except:
 self.log("FAILED H1DIST %s %s"%(left_heavy,right))
 cmd.delete('adist')
 h1dist = cmd.distance('adist','left_heavy','right')
 self.log("DIST SAYS %s"%h1dist)
 try:
 h1angle = cmd.get_angle('left_heavy','left_hydro','right')
 except:
 self.log('FAILED H1ANGLE %s %s %s'%(left_heavy,left_hydro,right))
 cmd.delete('anangle')
 h1angle = cmd.angle('anangle','left_heavy','left_hydro','right')

 # Calculate the distance/angle w.r.t the water's H2
 left_hydro = cmd.select('left_hydro',"resi %s and name H2 and
tmp_wat_papd"%w_resi)

 210

 if left_hydro != 1: self.log("PROBLEM WITH resi %s and name H2 and
tmp_wat_papd in state %s(%s)"%(w_resi,state,left))

 left_heavy = cmd.select('left_heavy','(not left_hydro) and (neighbor
left_hydro) and tmp_wat_papd')
 if left_heavy != 1: self.log("PROBLEM WITH new left sele resi %s and
name H2 and tmp_wat_papd in state %s"%(w_resi,state))

 right = cmd.select('right',"resi %s and name %s and
tmp_wat_papd"%(resi,name))
 if right != 1: self.log("PROBLEM WITH resi %s and name %s and
tmp_wat_papd in state %s(%s)"%(resi,name,state,right))

 try:
 h2dist = cmd.get_distance('left_heavy','right') # state not
included because we're in tmp_wat_papd
 except:
 self.log("FAILED H2DIST %s %s"%(left,right))
 cmd.delete('adist')
 h2dist = cmd.distance('adist','left_heavy','right')
 self.log("DIST SAYS %s"%h2dist)
 try:
 h2angle = cmd.get_angle('left_heavy','left_hydro','right')
 except:
 self.log('FAILED H2ANGLE %s %s %s'%(left_heavy,left_hydro,right))
 cmd.delete('anangle')
 h2angle = cmd.angle('anangle','left_heavy','left_hydro','right')

 # Given the choice, we chose the one with the smallest distance.
 if h1dist <= h2dist:
 if (h1dist <= self.hbond_dist_cutoff) and (h1angle >=
self.hbond_angle_cutoff):

bridges[state][w_resi].append((resi,resn,name,'donatingto',h1dist,'angle',h1angle))
 elif (h2dist <= self.hbond_dist_cutoff) and (h2angle >=
self.hbond_dist_cutoff):

bridges[state][w_resi].append((resi,resn,name,'donatingto',h2dist,'angle',h2angle))
 else:
 if (h2dist <= self.hbond_dist_cutoff) and (h2angle >=
self.hbond_dist_cutoff):

bridges[state][w_resi].append((resi,resn,name,'donatingto',h2dist,'angle',h2angle))
 elif (h1dist <= self.hbond_dist_cutoff) and (h1angle >=
self.hbond_angle_cutoff):

bridges[state][w_resi].append((resi,resn,name,'donatingto',h1dist,'angle',h1angle))
 # old dist-only code:
 #if (h2dist <= self.hbond_dist_cutoff) and (h2angle >=
self.hbond_dist_cutoff):
 #
bridges[state][w_resi].append((resi,resn,name,'donatingto',min(h1dist,h2dist)))
 stored.pd_list = []
 cmd.iterate('(tmp_wat_papd in prot_donors) within %s of (tmp_wat_papd and
resi %s and elem
o)'%(self.hbond_dist_cutoff,w_resi),'stored.pd_list.append((resi,resn,name))')
 for (resi,resn,name) in stored.pd_list:
 left = cmd.select('left',"resi %s and name o and
tmp_wat_papd"%w_resi)
 if left != 1: self.log("PROBLEM WITH resi %s and name o and
tmp_wat_papd in state %s(%s)"%(w_resi,state,left))

 right_hydro = cmd.select('right_hydro',"resi %s and name %s and
tmp_wat_papd"%(resi,name))
 if right_hydro != 1: self.log("PROBLEM WITH resi %s and name %s and
tmp_wat_papd in state %s(%s)"%(resi,name,state,right))

 right_heavy = cmd.select('right_heavy','(not right_hydro) and
(neighbor right_hydro) and tmp_wat_papd')
 if right_heavy != 1: self.log("PROBLEM WITH new right sele resi %s
and name %s and tmp_wat_papd in state %s(%s)"%(resi,name,state,right))

 try:

 211

 hdist = cmd.get_distance('left','right_heavy') # state not
included because we're in tmp_wat_papd
 except:
 self.log("FAILED HDIST %s %s"%(left,right))
 cmd.delete('adist')
 hdist = cmd.distance('adist','left','right_heavy')
 self.log("DIST SAYS %s"%hdist)
 try:
 hangle = cmd.get_angle('left','right_hydro','right_heavy')
 except:
 self.log('FAILED HANGLE %s %s %s'%(left,right_hydro,right_heavy))
 cmd.delete('anangle')
 hangle = cmd.angle('anangle','left','right_hydro','right_heavy')
 if (hdist <= self.hbond_dist_cutoff) and (hangle >=
self.hbond_angle_cutoff):

bridges[state][w_resi].append((resi,resn,name,'acceptingfrom',hdist,'angle',hangle))
 real_bridges = {}
 for state in bridges:
 for wat_resi,bridge in bridges[state].iteritems():
 if len(bridge) >= 2:
 if state not in real_bridges: real_bridges[state] = []
 real_bridges[state].append([wat_resi,] + bridge)
 return real_bridges

def
find_bridging_waters_in_trajectory(name,start,stop,hbond_dist_cutoff,hbond_angle_cutoff,o
verwrite=False):
 """
 Read in a trajectory file and find bridging hbonds.

 Parameters

 name: We will read in <name>.trj and <name>.top from the
 current working directory.

 start,stop: The states of the trajectory are like indices in
 a list. We will process list[start:stop]. You
 should know that there is no state 0.

 overwrite: If this is False, we will not overwrite existing files.
 Rather, we will print a message and do nothing.

 Output

 The results will be written to <name>_hbonds_<start>_<stop>.txt.
 If that file exists, it will be overwritten. That file will
 contain a Python dictionary of all of the bridging waters. The
 keys in that dictionary will be state numbers, relative to the
 start:stop range. That is, if it's the first state we actually
 read in after all of the skipping, it'll be called state 1.
 That's why the emitter doesn't have to know what the absolute
 starts and stops are.
 """
 fname = '%s_hbond_%s_%s.txt'%(name,start,stop)
 if os.path.exists(fname) and not overwrite:
 print fname,"already exists. Skipping."
 return
 print "Opening",fname,"for writing"
 f = file(fname,'w')

 from pymol import cmd,stored
 cmd.delete('all')
 print "ready to load top"
 cmd.load(name+'.top')
 print "ready to load trj"
 cmd.load_traj(name+'.trj',start=start,stop=stop)
 #
 # Yeah, tell me about it. But, PyMOL will often load up water molecules from
 # an AMBER trajectory so that the hydrogens are bonded to each other.

 212

 #
 cmd.unbond('hydro','hydro')
 states = cmd.count_states(name)
 e =
SingleSnapshotHbondEmitter(states=states,hbond_dist_cutoff=hbond_dist_cutoff,hbond_angle_
cutoff=hbond_angle_cutoff)
 e.analyze_and_emit(f)
 print "Closing",fname
 f.close()

if __name__ == '__pymol__':
 pymol.cmd.extend('fbwt',find_bridging_waters_in_trajectory)

def
get_hbond_trajectories(structure,timestep,fnames,combination_method,min_required_dwell_ti
me,looseness,dist_cutoff,angle_cutoff):
 """
 Takes in structure,timestep,fnames, returns a BridgingWaterTrajectoryAnalyzer.

 This assumes that times can be automatically determined from
 filenames.
 """
 print "Bridging Water Trajectory calculated with combination_method %s, looseness %s,
min_required_dwell_time %s, dist_cutoff %s, angle_cutoff %s"%(combination_method,

looseness,

min_required_dwell_time,

dist_cutoff,

angle_cutoff,

)
 a = BridgingWaterTrajectoryAnalyzer(structure,timestep)
 #
 # There are two places where we filter things out.
 # 1) When we're reading in the files, we filter by static information
 # like dist_cutoff and angle_cutoff
 # 2) When we're finalizing, we filter by trajectory information
 # like min_required_dwell_time.
 #
 for fname in fnames:
 a.read_in_file(fname,dist_cutoff=dist_cutoff,angle_cutoff=angle_cutoff)
 a.finalize(combination_method=combination_method,
 min_required_dwell_time=min_required_dwell_time,
 looseness=looseness)
 return a

if __name__ == '__main__':
 #
 # Main code moved to script in example directory.
 # Put some test functions here.
 #
 pass

Directory listing 2
A separate PyPAT installation provides the advanced features for combining hydrogen-

bond output files.

phar20-187~/work/PyPAT_hbonding/$ ls
combine_hbonds.py
residue_lists
tool_utils.py
compare_hbonds.py

 213

md_analysis_utils.py
setup_hbond_ptraj.py
hbond_analysis_utils.py
subset_hbonds.py

Files 2

combine_hbonds.py
#!/usr/bin/env python

'''
Combine hbond output from a series of ptraj runs into one data set.
'''

import sys, os
from optparse import OptionParser
from md_analysis_utils import get_resinum_to_resi_map
from tool_utils import parse_residue_list, parse_atom_list
from hbond_analysis_utils import combine_hbonds

if __name__ == '__main__':

 usage = """%prog FILE1 [FILE2 [...]] [options]
FILE1 and additional optional FILEs are files containing hbond data that
were produced by the ptraj hbond command. At least one such file is
required. The data in the files are spliced together to created a
unified data set.

Important notes:
* An AMBER prmtop or a PDB file may be input with the -p option. The
 file will be used to determine the residue name associated with each
 residue number in the system. If the file name does not end with
 '.pdb', the file will be assumed to be an AMBER prmtop file. The
 offset and amino acid code are also used in the residue name
 generation.
* The resi_criteria option takes a comma-separated string containing any
 or all of the following:
 - individual residue numbers
 - a range of numbers, separated by a '-'
 - strings associated with valid residue lists in the
 standard file 'residue_lists'
* The atom_criteria option takes a comma-separated string containing
 the atom names to report. In addition, the string can contain any
 of these strings:
 - 'bb_only': only H-bonds between two backbone atoms
 - 'not_bb': no H-bonds between two backbone atoms
 - 'protein_only': no H-bonds involving water"""

 # Parse command line options

 parser = OptionParser(usage = usage)

 parser.add_option('-o', '--output-file',
 dest = 'output_file',
 help = 'The name of the output file. If None, the results will be written to
stdout. Supplying a name is recommended. [default: %default]')
 parser.add_option('-B', '--hbond-data-dir',
 dest = 'hbond_data_dir',
 help = 'The directory that contains the H-bond data files. If None, the file
names will be used without modification, and output will be written to the current
directory. [default: %default]')
 parser.add_option('-g', '--segment-size', type = 'int',
 dest = 'segment_size', default = 1000,
 help = 'The number of frames included in each segment of the trajectory.
[default: %default]')
 parser.add_option('-p', '--prmtop-file',
 dest = 'prmtop_file',
 help = 'Amber parameter/topology file or PDB file for the system. [default:
%default]')

 214

 parser.add_option('-D', '--prmtop-dir',
 dest = 'prmtop_dir', default = None,
 help = 'The directory that contains the prmtop (or PDB) file. If None, the
name of the file will be used without modification. [default: %default]')
 parser.add_option('-r', '--resi-offset', type = 'int',
 dest = 'resi_offset', default = 0,
 help = 'The offset between the residue numbers in the prmtop (or PDB) file and
the actual residue numbers. [default: %default]')
 parser.add_option('-a', '--aa-code', type = 'int',
 dest = 'aa_code', default = 3,
 help = 'Must be 1 or 3. Indicates the use of 1- or 3-letter amino acid codes
in residue names. [default: %default]')
 parser.add_option('-y', '--occ-graph-only', action = 'store_true',
 dest = 'occ_graph_only', default = False,
 help = 'Flag to report only the occupancy and graph data (no distance or angle
data). [default: %default]')
 parser.add_option('-R', '--resi-criteria',
 dest = 'resi_criteria', default = 'all',
 help = 'A comma- and dash-separated list of residue numbers to include in the
analysis. [default: %default]')
 parser.add_option('-A', '--atom-criteria',
 dest = 'atom_criteria', default = 'all',
 help = 'A comma-separated list of atom names to include in the analysis.
[default: %default]')
 parser.add_option('-O', '--occ-thresh', type = 'float',
 dest = 'occ_thresh', default = 0.0,
 help = 'The minimum occupancy threshold that the H-bonds must have to be
reported. [default: %default]')

 options, hbond_files = parser.parse_args()

 # Process options

 if options.aa_code != 1 and options.aa_code != 3:
 print 'Warning: Illegal amino acid code. Must be 1 or 3.\n' + \
 ' Will use the default of 3.'
 options.aa_code = 3

 if options.prmtop_dir != None:
 options.prmtop_file = os.path.join(options.prmtop_dir, options.prmtop_file)
 resi_map = get_resinum_to_resi_map(options.prmtop_file,
 offset = options.resi_offset, aa_code = options.aa_code)

 resi_criteria = parse_residue_list(options.resi_criteria)
 if not resi_criteria:
 sys.exit('ERROR: No residues selected in residue string.\n')
 atom_criteria = parse_atom_list(options.atom_criteria)

 # Perform function

 combine_hbonds(hbond_files = hbond_files,
 segment_size = options.segment_size,
 resi_map = resi_map,
 output_file = options.output_file,
 resi_criteria = resi_criteria,
 atom_criteria = atom_criteria,
 occ_thresh = options.occ_thresh,
 occ_graph_only = options.occ_graph_only,
 hbond_data_dir = options.hbond_data_dir)

residue_lists
Lists for DHFR

Lists for BACE1
flap: 67-75
10s: 9-14
BACE1-loops: flap,10s

 215

tool_utils.py
#!/usr/bin/env python

import sys, os

def parse_residue_list_file(filename = None):
 '''
 Receives a file name and parses that file to create a dictionary
 of residue lists associated with the lists' names, which can then
 be used in function parse_residue_list().

 Although it looks like 'None' is the default for the filename
 keyword, the function will look for a file named 'residue_lists'
 as the default. The reason for the None is that the warning
 message output by this function if the file was not found is
 suppressed if no name was actually passed to the function.

 The 'residue_lists' file should contain lines with the following
 pattern:
 NAME : RESIDUE_STRING
 where NAME is the name to be associated with the residue list
 and RESIDUE_STRING is a comma-separated string that can be
 parsed to create a list of residue names. The residue string
 may contain any or all of the following:
 * individual residue numbers
 * sequences of numbers, with the first and last numbers
 separated by a '-'
 * strings associated with residue lists that have
 already been defined in the file
 '''
 if not filename:
 filename = 'residue_lists'
 warning_str = ''
 else:
 warning_str = 'Warning: Could not open file ' + filename + \
 '.\n No standard residue lists are available.'

 try:
 f = file(filename)
 except:
 print warning_str
 return {}

 standard_residue_lists = {}

 for line in f:
 if not line.strip() or line.strip().startswith('#'):
 continue
 try:
 resi_list = []
 key, string_to_parse = line.split(':')
 key = key.strip()
 for piece in string_to_parse.strip().split(','):
 if standard_residue_lists.has_key(piece):
 resi_list.extend(standard_residue_lists[piece])
 elif '-' in piece:
 first, last = piece.split('-')
 resi_list.extend(range(int(first), int(last) + 1))
 else:
 resi_list.append(int(piece))
 except:
 print 'Warning: Ignoring line in file ' + filename + '\n' + \
 ' because of improper syntax:\n' + line
 resi_list = sorted(list(set(resi_list)))
 standard_residue_lists[key] = resi_list

 return standard_residue_lists

 216

def parse_residue_string(string_to_parse, offset = 0, filename = None):
 '''
 Receives a comma-separated string and returns a list of residues.
 The string may contain any or all of the following:
 * individual residue numbers
 * a range of numbers, separated by a '-'
 * strings associated with valid residue lists in the
 standard file 'residue_lists' (a different file name
 can be passed to this function using the filename keyword)
 A list of individual residue numbers will be printed out.

 Option offset can be used to create, e.g., a zero-based list
 for indexing.
 '''
 standard_residue_lists = parse_residue_list_file(filename)

 piece_list = string_to_parse.strip().split(',')
 if 'all' in piece_list:
 return ['all']

 try:
 resi_list = []
 for piece in piece_list:
 if standard_residue_lists.has_key(piece):
 for resi in standard_residue_lists[piece]:
 resi_list.append(resi - offset)
 elif '-' in piece:
 first, last = piece.split('-')
 resi_list.extend(range(int(first) - offset, int(last) + 1 - offset))
 else:
 resi_list.append(int(piece) - offset)
 except:
 print 'Warning: Residue list string ' + string_to_parse + \
 ' has improper syntax.'
 return []

 resi_list = sorted(list(set(resi_list)))

 output_str = 'Residue list ' + string_to_parse + ' represents ' + \
 str(len(resi_list)) + ' residues:\n'
 for resi in resi_list:
 output_str += str(resi) + ','
 output_str = output_str[:-1] + '\n'
 print output_str

 return resi_list

def parse_residue_list(string_to_parse, offset = 0, filename = None):
 '''
 Receives a string and returns one or two lists of residues. If
 the string contains a ':', the strings on both sides of the colon
 are parsed by parse_residue_string and the two lists are returned.
 If no colon is present, the string itself is parsed and a single
 list is returned.
 '''
 string_pieces = string_to_parse.strip().split(':')

 if len(string_pieces) == 1:
 return parse_residue_string(string_pieces[0], offset, filename)
 elif len(string_pieces) == 2:
 return parse_residue_string(string_pieces[0], offset, filename), \
 parse_residue_string(string_pieces[1], offset, filename)
 else:
 print 'Warning: Residue list string ' + string_to_parse + \
 ' has improper syntax.'
 return []

def parse_atom_list(string_to_parse):
 '''
 Receives a string and splits by commas. Used to parse the list of
 atoms given to various hbond programs.

 217

 '''
 piece_list = string_to_parse.strip().split(',')
 return piece_list

compare_hbonds.py
#!/usr/bin/env python

'''
Set up ptraj input files to run a series of H-bond calculations.
'''

import sys, os
from optparse import OptionParser
from tool_utils import parse_residue_list, parse_atom_list
from hbond_analysis_utils import compare_hbonds

if __name__ == '__main__':

 usage = """%prog FILE1 [FILE2 [...]] [options]
FILE1 and additional optional files are files created by
combine_hbonds.py that contain datasets of H-bonds from different
trajectories of the same system. The particular subset of the H-bonds
and the metric for sorting can be specified by the user.

Important notes:
* Use the -i option to provide meaningful identifiers for the different
 trajectories.
* The resi_criteria option takes a comma-separated string containing any
 or all of the following:
 - individual residue numbers
 - a range of numbers, separated by a '-'
 - strings associated with valid residue lists in the
 standard file 'residue_lists'
* The atom_criteria option takes a comma-separated string containing
 the atom names to report. In addition, the string can contain any
 of these strings:
 - 'bb_only': only H-bonds between two backbone atoms
 - 'not_bb': no H-bonds between two backbone atoms
 - 'protein_only': no H-bonds involving water
* If the H-bonds are sorted by occ_pct (the occupancy percentage), any
 H-bond that has an occupancy greater than the occ_thresh value will
 be retained. If the H-bonds are sorted by occ_diff (the difference
 between the largest and smallest occupancy percentages for the
 systems), donor, or acceptor, only those H-bonds with occ_diff
 greater than the occ_thresh value will be retained.
* Note that ptraj uses a definition of H-bond donor and acceptor that is
 opposite of the normal convention. This program follows the
 definitions of ptraj, in which the acceptor is the atom covalently
 bonded to the hydrogen atom."""

 # Parse command line options

 parser = OptionParser(usage = usage)

 parser.add_option('-o', '--output-file',
 dest = 'output_file',
 help = 'The name of the output file. If None, the results will be written to
stdout. [default: %default]')
 parser.add_option('-B', '--hbond-data-dir',
 dest = 'hbond_data_dir',
 help = 'The directory that contains the H-bond data files. If None, the file
names will be used without modification, and output will be written to the current
directory. [default: %default]')
 parser.add_option('-i', '--identifiers',
 dest = 'identifiers',
 help = 'Comma-separated list of identifying strings for the trajectories to be
compared. If None, the trajectories will simply be numbered. [default: %default]')
 parser.add_option('-s', '--sort',
 dest = 'sort', default = 'occ_diff',

 218

 choices = ['occ_diff', 'occ_pct', 'donor', 'acceptor'],
 help = 'The quantity used to sort the results. Must be one of "occ_diff"
(occupancy difference), "occ_pct" (occupancy percentage), "donor", or "acceptor". The
occupancy difference is the difference between the highest and lowest occupancy
percentages for a particular H-bond in the different trajectories. [default: %default]')
 parser.add_option('-c', '--compress', action = 'store_true',
 dest = 'compress', default = False,
 help = 'Flag to compress the H-bond graph. [default: %default]')
 parser.add_option('-y', '--occ-graph-only', action = 'store_true',
 dest = 'occ_graph_only', default = False,
 help = 'Flag to report only the occupancy and graph data (no distance or angle
data). [default: %default]')
 parser.add_option('-R', '--resi-criteria',
 dest = 'resi_criteria', default = 'all',
 help = 'A comma- and dash-separated list of residue numbers to include in the
analysis. [default: %default]')
 parser.add_option('-A', '--atom-criteria',
 dest = 'atom_criteria', default = 'all',
 help = 'A comma-separated list of atom names to include in the analysis.
[default: %default]')
 parser.add_option('-O', '--occ-thresh', type = 'float',
 dest = 'occ_thresh', default = 0.0,
 help = 'The minimum occupancy threshold that the H-bonds must have to be
reported. [default: %default]')

 options, hbond_files = parser.parse_args()

 # Process options

 identifiers = options.identifiers.split(',')

 resi_criteria = parse_residue_list(options.resi_criteria)
 if not resi_criteria:
 sys.exit('ERROR: No residues selected in residue string.\n')
 atom_criteria = parse_atom_list(options.atom_criteria)

 # Perform function

 compare_hbonds(hbond_files = hbond_files,
 identifiers = identifiers,
 output_file = options.output_file,
 resi_criteria = resi_criteria,
 atom_criteria = atom_criteria,
 occ_thresh = options.occ_thresh,
 occ_graph_only = options.occ_graph_only,
 sort = options.sort,
 compress = options.compress,
 hbond_data_dir = options.hbond_data_dir)

md_analysis_utils.py
#!/usr/bin/env python

"""
Contains tools for analyzing MD trajectories
"""

from string import upper, capitalize

def ThrLett_to_OneLett(resi, suppress_alert = True):
 """
 Usage: ThrLett_to_OneLett(resi, suppress_alert = True)

 This function receives resi, the three-letter code
 for an amino acid and returns its one-letter code.
 If the three-letter code is not recognized, it is
 simply returned. If suppress_alert is False,
 a message will be printed alerting the user that

 219

 the residue was not recognized
 """

 resiu = upper(resi)
 if resiu == 'ALA':
 return 'A'
 elif resiu == 'ARG' or resiu == 'ARN':
 return 'R'
 elif resiu == 'ASN':
 return 'N'
 elif resiu == 'ASP' or resiu == 'ASH':
 return 'D'
 elif resiu == 'CYS' or resiu == 'CYX' or \
 resiu == 'CYM':
 return 'C'
 elif resiu == 'GLN':
 return 'Q'
 elif resiu == 'GLU' or resiu == 'GLH':
 return 'E'
 elif resiu == 'GLY':
 return 'G'
 elif resiu == 'HIS' or resiu == 'HIE' or \
 resiu == 'HID' or resiu == 'HIP':
 return 'H'
 elif resiu == 'ILE':
 return 'I'
 elif resiu == 'LEU':
 return 'L'
 elif resiu == 'LYS' or resiu == 'LYN':
 return 'K'
 elif resiu == 'MET':
 return 'M'
 elif resiu == 'PHE':
 return 'F'
 elif resiu == 'PRO':
 return 'P'
 elif resiu == 'SER':
 return 'S'
 elif resiu == 'THR':
 return 'T'
 elif resiu == 'TRP':
 return 'W'
 elif resiu == 'TYR':
 return 'Y'
 elif resiu == 'VAL':
 return 'V'
 else:
 if not suppress_alert:
 print resi, "not recognized as residue. Returning", resi
 return resi

def OneLett_to_ThrLett(resi, cap = 'standard', suppress_alert = True):
 """
 Usage: OneLett_to_ThrLett(resi, cap = 'standard',
 suppress_alert = True)

 This function receives resi, a one-letter amino acid
 code, and returns the three letter amino acid code.
 If cap(italization) is standard, then only the first
 letter will be capitalized. If cap is all, then all
 letters will be capitalized (as in a PDB file). If
 the one-letter amino acid is not recognized, it is
 simply returned. If option suppress_error is False,
 a message will also be printed to alert to user that
 the code was not recognized.
 """
 if resi == 'A':
 res3 = 'Ala'
 elif resi == 'C':
 res3 = 'Cyx'
 elif resi == 'D':
 res3 = 'Asp'

 220

 elif resi == 'E':
 res3 = 'Glu'
 elif resi == 'F':
 res3 = 'Phe'
 elif resi == 'G':
 res3 = 'Gly'
 elif resi == 'H':
 res3 = 'His'
 elif resi == 'I':
 res3 = 'Ile'
 elif resi == 'K':
 res3 = 'Lys'
 elif resi == 'L':
 res3 = 'Leu'
 elif resi == 'M':
 res3 = 'Met'
 elif resi == 'N':
 res3 = 'Asn'
 elif resi == 'P':
 res3 = 'Pro'
 elif resi == 'Q':
 res3 = 'Gln'
 elif resi == 'R':
 res3 = 'Arg'
 elif resi == 'S':
 res3 = 'Ser'
 elif resi == 'T':
 res3 = 'Thr'
 elif resi == 'V':
 res3 = 'Val'
 elif resi == 'W':
 res3 = 'Trp'
 elif resi == 'Y':
 res3 = 'Tyr'
 else:
 if not suppress_alert:
 print resi, "not recognized as residue. Returning", resi
 res3 = resi

 if cap == 'all':
 res3 = upper(res3)
 elif cap != 'standard':
 print 'Ignoring invalid option for cap:', cap

 return res3

def get_resinum_to_resi_map(resiname_file, offset = 0, indexing = 1, aa_code = 3):
 """
 This function returns a dictionary that relates the residue
 number for a given system to a residue name. A PDB or prmtop file
 for the system of interest is required. The string that comprises
 the residue name (the values of the dictionary) is the amino
 acid code (in three-letter or one-letter format; default three-
 letter) followed by the residue number (e.g., Thr72 or T72).

 An optional offset can be passed to the function. This
 changes the residue number in the string, which is useful if
 the numbering in the PDB file is not the preferred numbering
 for the system.

 For most indexed applications, the first residue is
 numbered as 0 instead of 1. A zero-based dictionary can be
 set by passing indexing = 0 to the function. The default
 is 1.

 If the PDB file input to the function is not
 found, a message will alert the user. In this case, the
 values in the dictionary are simply the numbers from 1 to
 9999 (the maximum residue number of a PDB file).
 """
 resi_map = {}

 221

 if resiname_file == None:
 print 'Warning: No prmtop or PDB file given.\n' + \
 ' No residue number information will be presented.'
 for i in range(10000):
 resi_map[i] = str(i)
 return resi_map

 try:
 f = file(resiname_file)
 except IOError:
 print 'Warning: Could not open ' + resiname_file + '.\n' + \
 ' No residue number information will be presented.'
 for i in range(10000):
 resi_map[i] = str(i)
 return resi_map

 # If the file is a prmtop file...

 if not resiname_file.endswith('.pdb'):
 resi_num = 1
 residue_section = False
 for line in f:
 if line.startswith('%FLAG RESIDUE_POINTER'):
 break
 if line.startswith('%FLAG RESIDUE_LABEL'):
 residue_section = True
 if not residue_section or line.startswith('%F'):
 continue
 else:
 residue_names = line.split()
 for resi_name in residue_names:
 if aa_code == 1:
 resi_name = ThrLett_to_OneLett(resi_name)
 resi_name = capitalize(resi_name) + str(resi_num + offset)
 resi_map[resi_num + indexing - 1] = resi_name
 resi_num += 1

 # If the file is a PDB file...

 else:
 for line in f:
 if not (line.startswith('ATOM') or line.startswith('HETATM')):
 continue
 resi_name = line[17:21].strip()
 resi_num = int(line[22:26].strip())
 if aa_code == 1:
 resi_name = ThrLett_to_OneLett(resi_name)
 resi_name = capitalize(resi_name) + str(resi_num + offset)
 resi_map[resi_num + indexing - 1] = resi_name

 f.close()
 return resi_map

setup_hbond_ptraj.py
#!/usr/bin/env python

'''
Set up ptraj input files to run a series of H-bond calculations.
'''

import sys, os
from optparse import OptionParser

if __name__ == '__main__':

 usage = """%prog [options]
This program sets up ptraj input files to perform a series of H-bond
analyses on a trajectory. The trajectory is broken into segments of a
specified size. Files written out include a ptraj input file for each

 222

segment and a file "run_hbond_ptraj" that will sequentially execute
ptraj with each one.

The only required option is --mdcrd-file (-x), which specifies the
coordinate file.

Important notes:
* A file called "mask" can be created to include hydrogen-bonding
 residues other than the standard amino acids and water. The lines in
 mask will be copied "as is" into each ptraj input file, so follow the
 format for specifying hydrogen bond donors and acceptors in the ptraj
 documentation."""

 # Parse command line options

 parser = OptionParser(usage = usage)

 parser.add_option('-x', '--mdcrd-file',
 dest = 'mdcrd_file',
 help = 'Coordinate file to use for H-bond analysis (REQUIRED). [default:
%default]')
 parser.add_option('-p', '--prmtop-file',
 dest = 'prmtop_file',
 help = 'Amber parameter/topology file to use for H-bond analysis. If None,
the name will be guessed by replacing the extension of the coordinate file name with
".prmtop" [default: %default]')
 parser.add_option('-D', '--mdcrd-prmtop-dir',
 dest = 'mdcrd_prmtop_dir',
 help = 'The directory that contains the coordinate and prmtop file. If None,
the names of the files will be used without modification. [default: %default]')
 parser.add_option('-o', '--output-file-base',
 dest = 'output_file_base', default = 'segment',
 help = 'The first part of the name of the ptraj input files that will be
created. The files will be named OUTPUT_FILE_BASEnn.in, where nn is the two-digit
segment number. Once ptraj is run (with run_hbond_ptraj), the output files containing
the H-bond data will be named OUTPUT_FILE_BASEnn.out. [default: %default]')
 parser.add_option('-B', '--hbond-data-dir',
 dest = 'hbond_data_dir', default = '.',
 help = 'The directory where the ptraj input files will be placed. [default:
%default]')
 parser.add_option('-b', '--begin-frame', type = 'int',
 dest = 'begin_frame', default = 1,
 help = 'The number of the first frame to use in the H-bond analysis.
[default: %default]')
 parser.add_option('-e', '--end-frame', type = 'int',
 dest = 'end_frame', default = 10000,
 help = 'The number of the last frame to use in the H-bond analysis. [default:
%default]')
 parser.add_option('-g', '--segment-size', type = 'int',
 dest = 'segment_size', default = 1000,
 help = 'The number of frames included in each segment of the trajectory.
[default: %default]')
 parser.add_option('-n', '--num-resi', type = 'int',
 dest = 'num_resi',
 help = 'The number of residues in the protein. [default: 10000]')
 parser.add_option('-d', '--dist-cutoff', type = 'float',
 dest = 'dist_cutoff', default = 3.0,
 help = 'The distance cutoff that defines whether or not an interaction is an
H-bond. [default: %default]')
 parser.add_option('-a', '--angle-cutoff', type = 'float',
 dest = 'angle_cutoff', default = 120.0,
 help = 'The angle cutoff that defines whether or not an interaction is an H-
bond. [default: %default]')
 parser.add_option('-s', '--no-self', action = 'store_false',
 dest = 'self', default = True,
 help = 'Flag to turn off the inclusion of H-bonds between atoms within the
same residue. [default: %default]')
 parser.add_option('-S', '--solvent', action = 'store_true',
 dest = 'solvent', default = False,
 help = 'Flag to include solvent-protein interactions in the analysis.
[default: %default]')
 parser.add_option('-m', '--mask-file',
 dest = 'mask_file', default = None,

 223

 help = 'File that contains extra lines to include in the ptraj input files,
primarily to include masks for ligands. [default: mask]')

 options, args = parser.parse_args()

 mdcrd_file = options.mdcrd_file
 prmtop_file = options.prmtop_file
 mdcrd_prmtop_dir = options.mdcrd_prmtop_dir
 output_file_base = options.output_file_base
 begin_frame = options.begin_frame
 end_frame = options.end_frame
 segment_size = options.segment_size
 num_resi = options.num_resi
 dist_cutoff = options.dist_cutoff
 angle_cutoff = options.angle_cutoff
 self = options.self
 solvent = options.solvent
 mask_file = options.mask_file
 hbond_data_dir = options.hbond_data_dir

 # Do error check for file names

 if not mdcrd_file:
 sys.exit('ERROR: No coordinate file given (-x, --mdcrd-file option). For help,
\n' + \
 ' use the -h option.\n')
 if not prmtop_file:
 prmtop_file = os.path.splitext(options.mdcrd_file)[0] + '.prmtop'
 print 'Warning: No prmtop file specified. Will use ' + prmtop_file + '.'
 if mdcrd_prmtop_dir:
 mdcrd_file = os.path.join(mdcrd_prmtop_dir, mdcrd_file)
 prmtop_file = os.path.join(mdcrd_prmtop_dir, prmtop_file)

 if not os.path.exists(mdcrd_file):
 sys.exit('ERROR: Coordinate file ' + mdcrd_file + '\n' + \
 ' does not exist.')
 if not os.path.exists(prmtop_file):
 sys.exit('ERROR: prmtop file ' + prmtop_file + '\n' + \
 ' does not exist.')

 # Read through prmtop file to determine which residue types
 # are present and also get the residue numbers of the prolines

 prmtop_f = file(prmtop_file)

 prolines = [] # list of proline residue numbers
 resi_num = 1
 is_present = {} # dict of residue types present in the file
 residue_section = False
 for line in prmtop_f:
 if line.startswith('%FLAG RESIDUE_POINTER'):
 break
 if line.startswith('%FLAG RESIDUE_LABEL'):
 residue_section = True
 if not residue_section or line.startswith('%F'):
 continue
 else:
 residue_names = line.split()
 for resi_name in residue_names:
 is_present[resi_name] = True
 if resi_name == 'PRO' and resi_num > 1:
 prolines.append(resi_num)
 resi_num += 1

 resi_types = '''ALA ARG ASH ASN ASP CYM CYS CYX GLH GLN GLU GLY
 HID HIE HIP ILE LEU LYN LYS MET PHE PRO SER THR
 TRP TYR VAL'''.split()

 for resi_type in is_present:
 if resi_type not in resi_types:
 print 'Warning: Unrecognized residue type ' + resi_type + ' is present in
system. Atoms in\n' + \

 224

 ' this residue will not be included in H-bond analysis unless its\n' +
\
 ' acceptors are specified in the mask file.'

 # Set non-None defaults for the options that need them

 if mask_file == None:
 mask_file = 'mask'
 mask_warning = ''
 else:
 mask_warning = 'Warning: Could not open ' + mask_file + '. Ignoring -m option.'
 extra_masks = ''
 try:
 mask_f = file(mask_file)
 except IOError:
 if mask_warning:
 print mask_warning
 else:
 for line in mask_f:
 extra_masks += line

 if num_resi == None:
 print 'Warning: No num_resi option (-n, --num-resi) option specified. Will
use\n' + \
 ' default value of 10000. If your protein has fewer than 1000 residues\n'
+ \
 ' and there is solvent in the system, some of the solvent oxygen atoms\n'
+ \
 ' will be treated explicitly as donors.'
 num_resi = 10000

 # Create string of nonproline residues (- and , separated
 # like in normal ptraj input) based on proline list

 for resinum in range(2, num_resi + 1):
 if resinum in prolines:
 prolines = prolines[1:]
 else:
 prolines = [resinum - 1] + prolines + [num_resi + 1]
 break
 nonpro_str = ''
 for i in range(len(prolines) - 1):
 diff = prolines[i + 1] - prolines[i]
 if diff > 1:
 nonpro_str += str(prolines[i] + 1)
 if diff > 2:
 nonpro_str += '-' + str(prolines[i + 1] - 1)
 if i != len(prolines) - 2:
 nonpro_str += ','

 # Set strings of H-bond donor and acceptor atoms

 donor_mask = {}
 donor_mask['ASH'] = 'donor mask :ASH@OD1\n' + \
 'donor mask :ASH@OD2'
 donor_mask['ASN'] = 'donor mask :ASN@OD1'
 donor_mask['ASP'] = 'donor mask :ASP@OD1\n' + \
 'donor mask :ASP@OD2'
 donor_mask['CYM'] = 'donor mask :CYM@SG'
 donor_mask['GLH'] = 'donor mask :GLH@OE1\n' + \
 'donor mask :GLH@OE2'
 donor_mask['GLN'] = 'donor mask :GLN@OE1'
 donor_mask['GLU'] = 'donor mask :GLU@OE1\n' + \
 'donor mask :GLU@OE2'
 donor_mask['HID'] = 'donor mask :HID@NE2'
 donor_mask['HIE'] = 'donor mask :HIE@ND1'
 donor_mask['LYN'] = 'donor mask :LYN@NZ'
 donor_mask['SER'] = 'donor mask :SER@OG'
 donor_mask['THR'] = 'donor mask :THR@OG1'
 donor_mask['TYR'] = 'donor mask :TYR@OH'

 acceptor_mask = {}
 acceptor_mask['ARG'] = 'acceptor mask :ARG@NH2 :ARG@HH21\n' + \

 225

 'acceptor mask :ARG@NH2 :ARG@HH22\n' + \
 'acceptor mask :ARG@NH1 :ARG@HH11\n' + \
 'acceptor mask :ARG@NH1 :ARG@HH12\n' + \
 'acceptor mask :ARG@NE :ARG@HE'
 acceptor_mask['ASH'] = 'acceptor mask :ASH@OD2 :ASH@HD2'
 acceptor_mask['ASN'] = 'acceptor mask :ASN@ND2 :ASN@HD21\n' + \
 'acceptor mask :ASN@ND2 :ASN@HD22'
 acceptor_mask['GLH'] = 'acceptor mask :GLH@OE2 :GLH@HE2'
 acceptor_mask['GLN'] = 'acceptor mask :GLN@NE2 :GLN@HE21\n' + \
 'acceptor mask :GLN@NE2 :GLN@HE22'
 acceptor_mask['HID'] = 'acceptor mask :HID@ND1 :HID@HD1'
 acceptor_mask['HIE'] = 'acceptor mask :HIE@NE2 :HIE@HE2'
 acceptor_mask['HIP'] = 'acceptor mask :HIP@ND1 :HIP@HD1\n' + \
 'acceptor mask :HIP@NE2 :HIP@HE2'
 acceptor_mask['LYN'] = 'acceptor mask :LYN@NZ :LYN@HZ2\n' + \
 'acceptor mask :LYN@NZ :LYN@HZ3'
 acceptor_mask['LYS'] = 'acceptor mask :LYS@NZ :LYS@HZ1\n' + \
 'acceptor mask :LYS@NZ :LYS@HZ2\n' + \
 'acceptor mask :LYS@NZ :LYS@HZ3'
 acceptor_mask['SER'] = 'acceptor mask :SER@OG :SER@HG'
 acceptor_mask['THR'] = 'acceptor mask :THR@OG1 :THR@HG1'
 acceptor_mask['TRP'] = 'acceptor mask :TRP@NE1 :TRP@HE1'
 acceptor_mask['TYR'] = 'acceptor mask :TYR@OH :TYR@HH'

 # Create the ptraj input files and run_all file

 try:
 run_file = os.path.join(hbond_data_dir, 'run_hbond_ptraj')
 run_f = file(run_file, 'w')
 except IOError:
 sys.exit('ERROR: Could not open ' + run_file + '.\n')

 num_segments = (end_frame - begin_frame + 1) / segment_size
 remainder = (end_frame - begin_frame + 1) % segment_size
 if remainder:
 print 'Warning: The number of frames is not a multiple of the segment size.\n' +
\
 ' Ignoring final ' + str(remainder) + ' frames.'
 end_frame -= remainder

 for segment_index in range(num_segments):

 # Write ptraj input file

 filename_base = output_file_base
 if segment_index < 9:
 filename_base += '0'
 filename_base += str(segment_index + 1)
 output = ''

 # Trajectory to read in

 output += 'trajin ' + mdcrd_file + ' ' + \
 str(begin_frame + segment_index*segment_size) + ' ' + \
 str(begin_frame + (segment_index+1)*segment_size - 1) + '\n'

 # List the donor atoms of sidechains

 output += '\n# List of potential H-bond donors\n'
 for resi_type in is_present:
 if donor_mask.has_key(resi_type):
 output += donor_mask[resi_type] + '\n'

 # List the acceptor atoms of sidechains

 output += '\n# List of potential H-bond acceptors\n'
 for resi_type in is_present:
 if acceptor_mask.has_key(resi_type):
 output += acceptor_mask[resi_type] + '\n'

 # List the backbone atoms

 output += '\n#-- Backbone donors and acceptors for ' + \

 226

 'this particular molecule\n' + \
 '# N-H for prolines do not exist so ' + \
 'are not in the mask\n'
 output += 'donor mask :1-' + str(num_resi) + '@O\n' + \
 'acceptor mask :' + \
 nonpro_str + \
 '@N :2-' + str(num_resi) + '@H'

 output += '\n#-- Terminal residues have different atom names\n' + \
 'donor mask @OXT\n' + \
 'acceptor mask :1@N :1@H1\n' + \
 'acceptor mask :1@N :1@H2\n' + \
 'acceptor mask :1@N :1@H3\n'

 # List the extra lines from mask file

 output += '\n#-- Masks supplied by user\n' + extra_masks
 if not extra_masks:
 output += '# None given\n'

 # hbond process line

 output += '\nhbond distance ' + str(dist_cutoff) + \
 ' angle ' + str(angle_cutoff)
 if solvent:
 output += ' solventneighbor 6 solventdonor WAT O' + \
 ' solventacceptor WAT O H1 solventacceptor WAT O H2'
 output += ' series hb_all out ' + filename_base + '.out'
 if self:
 output += ' includeself\n'
 else:
 output += '\n'

 # Output the ptraj file for the segment

 try:
 output_file = filename_base + '.in'
 output_file = os.path.join(hbond_data_dir, output_file)
 output_f = file(output_file, 'w')
 except IOError:
 print 'ERROR: Could not open ' + output_file + '.\n'
 sys.exit(' Writing out ptraj input file to stdout:\n' + output)
 else:
 output_f.write(output + '\n')
 output_f.close()

 # Update runfile

 run_file_output = 'ptraj ' + prmtop_file + \
 ' ' + output_file + '\n'
 run_f.write(run_file_output)

 run_f.close()
 os.system('chmod +x ' + run_file)

hbond_analysis_utils.py
#!/usr/bin/env python

"""
Michael Lerner's hbond analysis, modified by Steve Spronk

Right now, just handles pasting together ptraj output.
"""

import copy,pprint,os,sys
from scipy import sqrt
from string import ascii_letters
from tool_utils import *

 227

class Atom:
 def __init__(self, atom_name = None, resi_name = None, resi_num = None):
 """
 Solvent atoms will have atom OW or HW and resi WAT.
 """
 self.atom_name = atom_name
 self.resi_name = resi_name
 self.resi_num = resi_num
 def __eq__(self, other):
 return self.atom_name == other.atom_name and \
 self.resi_name == other.resi_name and \
 self.resi_num == other.resi_num
 def __ne__(self, other):
 return not (self == other)

class HBond:
 """
 Class to provide a mechanism for handing data contained in the output
 from ptraj
 """

 # ---------------
 # Initializations
 # ---------------

 def __init__(self, line = None, segment_size = 1000, resi_map = None):
 '''
 Initialize ourself from a line that looks like this:
 DONOR ACCEPTORH ACCEPTOR
 atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance
angle lifetime maxocc
 | 2546 :160@OA23| 1018 :63@HG 1017 :63@OG | 99.50 2.641 (0.10) 20.89
(9.75) 100.0 (47.0) 147 |@@@*@@@@@|
 | 2545 :160@OA22| 705 :44@HH22 703 :44@NH2 | 98.51 2.756 (10.09) 17.97
(19.79) 99.0 (127.0) 126 |*@@@*@@@@|
 | solvent donor | 127 :9@HD21 126 :9@ND2 | 2.00 3.193 (0.00) 46.59
(0.01) 2.0 (0.0) 1 | . |
 | 5612 :361@OG | solvent acceptor | 2.00 2.915 (0.00) 11.31
(0.00) 2.0 (0.0) 1 | . |

 The numbers in parentheses are standard deviations.

 Here is a note from cheatham (http://amber.scripps.edu/Questions/mail/322.html)::

 The maxocc is the maximum number of consecutive frames that the
 interaction is found in the trajectory (i.e. 39 consecutive frames).

 The lifetime is the average time an interaction occurred...

 For example, assume that each space below represents 1ps and a star

 means it is occupied:

 10 20 30 40 50
 ***** ***** ********** *****|

 The occupancy would be 5 + 5 + 10 + 5 / 50 or 50%
 The maxocc would be 10
 The lifetime would be 5 + 5 + 10 + 5 / 4 = 6.25 ps (assuming 1 ps between
 frames; the time per frame can be specified on the hbond command line)

 Adding hbonds only works for some attributes (occupancy, distance, distance
 standard deviation, angle, angle standard deviation, and graph).

 But because we have split the trajectory into segments, the lifetime and maxocc
 are not truly a reflection of the H-bonds across the whole trajectory.
 Therefore the manipulation of lifetime and maxocc data are not implemented
 in the current version of hbond_analysis.
 '''

 # num_frames tells us how many frames have been added together.
 self.num_frames = segment_size

 228

 if line is None:
 self.donor = Atom()
 self.acceptorh = Atom()
 self.acceptor = Atom()
 self.occ_pct = self.occ_num = self.dist = self.dist_stdev = self.angle =
self.angle_stdev = 0.0
 self.graph = ' '
 return

 line = line.strip()
 try:
 leading_junk, donor, acceptor, stats, graph, trailing_junk = line.split('|')
 except ValueError:
 print "Could not hbond", line
 raise

 # Parse line:

 self.donor = self._ptraj_hbond_chunk_to_atom(donor, resi_map)
 self.acceptorh = self._ptraj_hbond_chunk_to_atom(' '.join(acceptor.split()[:2]),
resi_map)
 self.acceptor = self._ptraj_hbond_chunk_to_atom(' '.join(acceptor.split()[2:]),
resi_map)

 occ_pct,dist = stats.split('(')[0].strip().split()
 dist_stdev = stats.split('(')[1].split(')')[0].strip()
 angle = stats.split(')')[1].split('(')[0].strip()
 angle_stdev = stats.split('(')[2].split(')')[0].strip()

 # Make necessary type adjustments and calculations

 self.occ_pct,self.dist,self.dist_stdev,self.angle,self.angle_stdev = [float(i)
for i in occ_pct,dist,dist_stdev,angle,angle_stdev]
 self.graph = graph
 self.occ_num = int(round(self.occ_pct / 100.0 * self.num_frames))
 if self.occ_num < 2:
 self.dist_stdev = self.angle_stdev = 0.0
 self.straight_from_ptraj = True

 def _ptraj_hbond_chunk_to_atom(self, chunk, resi_map = None):
 ''' chunk is something like " 2546 :160@OA23 " '''
 if chunk.strip() in ('solvent donor', ''):
 return Atom(atom_name = 'OW', resi_name = 'Wat', resi_num = 999999)
 elif chunk.strip() == 'solvent acceptor':
 return Atom(atom_name = 'HW', resi_name = 'Wat', resi_num = 999999)
 else:
 resi_name = chunk.split(':')[1].split('@')[0].strip()
 if resi_map != None:
 resi_name = resi_map[int(resi_name)]
 try:
 resi_num = int(resi_name) # no aa code
 except ValueError:
 if resi_name[1] in ascii_letters: # 3-letter aa code
 resi_num = int(resi_name[3:])
 else: # 1-letter aa code
 resi_num = int(resi_name[1:])
 else:
 resi_num = int(resi_name)
 atom_name = chunk.split(':')[1].split('@')[1].strip()
 return Atom(atom_name, resi_name, resi_num)

 def init_from_atomstr(self, s, segment_size = 1000):
 '''
 atomstr looks like what is returned by self._atom_str:
 102 NH1--HH11 ... O 88
 Tyr71 OH--HH ... OG1 Asp228
 '''
 a_resi, a_atom, ah_atom, dots, d_atom, d_resi = s.replace('--',' ').split()

 if a_resi == 'Wat':
 a_resi_num = 999999
 else:
 try:

 229

 a_resi_num = int(a_resi) # no aa code
 except ValueError:
 if a_resi[1] in ascii_letters: # 3-letter aa code
 a_resi_num = int(a_resi[3:])
 else: # 1-letter aa code
 a_resi_num = int(a_resi[1:])

 if d_resi == 'Wat': # Same for donor atom
 d_resi_num = 999999
 else:
 try:
 d_resi_num = int(d_resi)
 except ValueError:
 if d_resi[1] in ascii_letters:
 d_resi_num = int(d_resi[3:])
 else:
 d_resi_num = int(d_resi[1:])

 self.donor = Atom(d_atom, d_resi, d_resi_num)
 self.acceptor = Atom(a_atom, a_resi, a_resi_num)
 self.acceptorh = Atom(ah_atom, a_resi, a_resi_num) # H is always in same residue
as heavy atom it's bonded to

 self.num_frames = segment_size
 self.occ_num = 0
 self.occ_pct = self.dist = self.dist_stdev = self.angle = self.angle_stdev = 0.0
 self.graph = ' '
 self.straight_from_ptraj = True

 def init_from_str(self, s):
 """
 str looks like what is output by __str__ :
 Lys142 NZ--HZ3 ... OE1 Glu134 27.80(2500) |--... .*-.|oo---x- - |
 or what is output by _attr_str:
 Lys142 NZ--HZ3 ... OE1 Glu134 27.80(2500) 2.850(0.17) 29.14(15.66) |--...
.*-.|oo---x- - |
 """
 atom_str_len = 34
 hbond_name = s[:atom_str_len].strip()
 hbond_attr = s[atom_str_len:].strip()

 # Take care of Atoms first

 self.init_from_atomstr(hbond_name)

 # Then take care of attributes

 try:
 attr_list = hbond_attr.split(')')

 # Attributes from __str__
 self.occ_pct = float(attr_list[0].split('(')[0])
 self.num_frames = int(attr_list[0].split('(')[1])
 self.graph = attr_list[-1].strip()[1:-1] # The [1:-1] takes care of leading
and trailing '|'

 # If present, attributes from _attr_str
 attr_list = attr_list[1:-1]
 if attr_list != []:
 self.dist = float(attr_list[0].split('(')[0])
 self.dist_stdev = float(attr_list[0].split('(')[1])
 self.angle = float(attr_list[1].split('(')[0])
 self.angle_stdev = float(attr_list[1].split('(')[1])
 except:
 print "String could not be converted to hbond:", s
 raise

 self.occ_num = int(round(self.occ_pct / 100.0 * self.num_frames))
 self.straight_from_ptraj = False

 # ---------------
 # Representations
 # ---------------

 230

 def __str__(self):
 return self._atom_str() + ' ' + self._occ_graph_str()

 def _atom_str(self):
 """
 Returns the atoms identifying the Hbond as a formatted string.
 Examples:
 102 NH1--HH11 ... O 88
 Tyr71 OH--HH ... OG1 Asp228
 """
 spaces = (7 - len(self.acceptor.resi_name)) * ' '
 bond_string = spaces + self.acceptor.resi_name
 acceptor_str = "%s--%s"%(self.acceptor.atom_name,
 self.acceptorh.atom_name)
 spaces = (10 - len(acceptor_str)) * ' '
 bond_string += spaces + acceptor_str + " ... "
 spaces = (5 - len(self.donor.atom_name)) * ' '
 bond_string += self.donor.atom_name + spaces
 spaces = (7 - len(self.donor.resi_name)) * ' '
 return bond_string + self.donor.resi_name + spaces

 def _attr_str(self):
 """
 Returns the attributes in a formatted string.
 """
 return "%6.2f(%5s)%6.3f(%4.2f)%6.2f(%5.2f) |%s|"\
 %(self.occ_pct, self.num_frames, self.dist, self.dist_stdev,
 self.angle, self.angle_stdev, self.graph,)

 def _occ_graph_str(self):
 """
 Returns the occupancy, count, and graph in a formatted string.
 """
 return "%6.2f(%5s) |%s|"%(self.occ_pct, self.num_frames, self.graph)

 __repr__ = __str__

 # ----------
 # Operations
 # ----------

 def __add__(self,other):
 """
 Combines the statistics of two hbonds. The new number of frames, number of
 occupied frames, occupancy percentage, distance, angle, distance standard
 deviation, angle standard devation, and graph are all accurately calculated.

 A note on the standard deviation calculations: ptraj calculates sigma as the
 standard deviation (which has N in the denominator). This is not strictly
 correct, as this formula only holds true if we know all of the data. However,
 we know that our data only contains a sampling from the actual ensemble, so
 it we should use the estimated population standard deviation (S) of the
 statistics, which has N-1 in the denominator of the calculation.
 """
 if type(self) != type(other):
 raise Exception('Cannot add hbond to non-hbond %s object:
%s'%(type(other),other))

 if self._atom_str() != other._atom_str():
 raise Exception('Can only add hbonds with the same donors and acceptors\n' \
 '%s != %s'%(self._atom_str(),other._atom_str()))

 result = HBond()

 result.donor = Atom(self.donor.atom_name, self.donor.resi_name,
self.donor.resi_num)
 result.acceptor = Atom(self.acceptor.atom_name, self.acceptor.resi_name,
self.acceptor.resi_num)
 result.acceptorh = Atom(self.acceptorh.atom_name, self.acceptor.resi_name,
self.acceptor.resi_num)

 result.num_frames = self.num_frames + other.num_frames

 231

 sep = '|'
 result.graph = self.graph + sep + other.graph
 result.occ_num = self.occ_num + other.occ_num
 result.occ_pct = result.occ_num * 100.0 / result.num_frames
 result.straight_from_ptraj = False

 if result.occ_num > 0:

 result.dist = (self.occ_num * self.dist + other.occ_num * other.dist) /
result.occ_num
 result.angle = (self.occ_num * self.angle + other.occ_num * other.angle) /
result.occ_num

 # It's relatively complicated to calculate the new standard deviation. See
my Notebook 3,
 # pp. 72-4 for the derivation. We must make a distinction on whether or not
the data is
 # straight from the ptraj files, because when we are looking at the data from
ptraj
 # (straight_from_ptraj = True) the std. dev. is actually sigma as opposed to
S, the estimated
 # standard deviation of the population. In practice, these values are close
(for relatively
 # large N), but I want to be precise with my statistics.

 if result.occ_num == 1:
 result.dist_stdev = result.angle_stdev = 0.0

 else:
 dist_sumsq = angle_sumsq = 0.0
 if self.straight_from_ptraj:
 dist_sumsq += self.dist_stdev * self.dist_stdev *
self.occ_num + \
 self.dist * self.dist *
self.occ_num
 angle_sumsq += self.angle_stdev * self.angle_stdev *
self.occ_num + \
 self.angle * self.angle *
self.occ_num
 else:
 dist_sumsq += self.dist_stdev * self.dist_stdev *
(self.occ_num - 1) + \
 self.dist * self.dist *
self.occ_num
 angle_sumsq += self.angle_stdev * self.angle_stdev *
(self.occ_num - 1) + \
 self.angle * self.angle *
self.occ_num
 if other.straight_from_ptraj:
 dist_sumsq += other.dist_stdev * other.dist_stdev *
other.occ_num + \
 other.dist * other.dist *
other.occ_num
 angle_sumsq += other.angle_stdev * other.angle_stdev *
other.occ_num + \
 other.angle * other.angle *
other.occ_num
 else:
 dist_sumsq += other.dist_stdev * other.dist_stdev *
(other.occ_num - 1) + \
 other.dist * other.dist *
other.occ_num
 angle_sumsq += other.angle_stdev * other.angle_stdev *
(other.occ_num - 1) + \
 other.angle * other.angle *
other.occ_num

 result.dist_stdev = sqrt((dist_sumsq - result.occ_num*result.dist
*result.dist) / (result.occ_num - 1))
 result.angle_stdev = sqrt((angle_sumsq - result.occ_num*result.angle
*result.angle) / (result.occ_num - 1))

 #else:

 232

 # result.dist = result.dist_stdev = result.angle = result.angle_stdev = 0.0

 return result

 def compress_graph(self):
 """
 Compresses the graph of a trajectory into one half the size.
 Each pair of characters is replaced by a single character
 that is representative of the percentage of occupancy for
 the union of the two segments. Unfortunately, the actual
 occupancy percentage of the union can not be absolutely
 determined from the two symbols of the graph, so the new
 graph may not be precise. See my Notebook 3, pp. 78-79
 for a detailed analysis of how I determined how two
 symbols should be combined.
 """
 graph_sections = self.graph.split('|')
 new_graph = ''
 for graph_num in range(len(graph_sections)):
 for i in range(0, 10, 2):
 pair = graph_sections[graph_num][i:i+2]
 if pair[0] == pair[1]:
 new_graph += pair[0]

 elif pair == ' .' or pair == '. ':
 new_graph += '.'
 elif pair == ' -' or pair == '- ':
 new_graph += '.'
 elif pair == ' o' or pair == 'o ':
 new_graph += '-'
 elif pair == ' x' or pair == 'x ':
 new_graph += '-'
 elif pair == ' *' or pair == '* ':
 new_graph += 'o'
 elif pair == ' @' or pair == '@ ':
 new_graph += 'o'
 elif pair == '.-' or pair == '-.':
 new_graph += '-'
 elif pair == '.o' or pair == 'o.':
 new_graph += '-'
 elif pair == '.x' or pair == 'x.':
 new_graph += 'o'
 elif pair == '.*' or pair == '*.':
 new_graph += 'o'
 elif pair == '.@' or pair == '@.':
 new_graph += 'o'
 elif pair == '-o' or pair == 'o-':
 new_graph += 'o'
 elif pair == '-x' or pair == 'x-':
 new_graph += 'o'
 elif pair == '-*' or pair == '*-':
 new_graph += 'o'
 elif pair == '-@' or pair == '@-':
 new_graph += 'x'
 elif pair == 'ox' or pair == 'xo':
 new_graph += 'o'
 elif pair == 'o*' or pair == '*o':
 new_graph += 'x'
 elif pair == 'o@' or pair == '@o':
 new_graph += 'x'
 elif pair == 'x*' or pair == '*x':
 new_graph += 'x'
 elif pair == 'x@' or pair == '@x':
 new_graph += '*'
 elif pair == '*@' or pair == '@*':
 new_graph += '*'

 if graph_num % 2 == 1:
 new_graph += '|'

 if new_graph[-1] == '|':
 self.graph = new_graph[:-1]
 else:

 233

 self.graph = new_graph

 # ------ End class HBond ----

def hbond_lines(lines):
 reading = False
 for line in lines:
 if line.strip() == ' atom# :res@atom atom# :res@atom atom# :res@atom %occupied
distance angle lifetime maxocc'.strip():
 reading = True
 if not reading or line.strip().startswith('atom') or not line.replace('-
','').strip():
 continue
 yield line
def hbonds_from_ptraj(f, segment_size = 1000, resi_map = None):
 return [HBond(line, segment_size, resi_map) for line in hbond_lines(f)]

def is_resinum_of_interest(hbond, criteria = ['all']):
 """
 Tells us if a hbond has a residue number among those we want to view
 """
 if 'all' in criteria:
 return True
 if hbond.donor.resi_num in criteria or hbond.acceptor.resi_num in criteria:
 return True
 else:
 return False

def is_atom_of_interest(hbond, criteria = ['all']):
 """
 Tells us if an hbond has an atom type among those we want to view
 """
 if 'all' in criteria:
 return True
 if 'protein_only' in criteria:
 if hbond.donor.atom_name == 'OW' or hbond.acceptor.atom_name == 'OW':
 return False
 else:
 return True
 if 'bb_only' in criteria:
 if hbond.donor.atom_name == 'O' and hbond.acceptor.atom_name == 'N':
 return True
 if 'not_bb' in criteria:
 if hbond.donor.atom_name != 'O' or hbond.acceptor.atom_name != 'N':
 return True
 if hbond.donor.atom_name in criteria or \
 hbond.acceptor.atom_name in criteria or \
 hbond.acceptorh.atom_name in criteria:
 return True
 else:
 return False

def combine_hbonds(hbond_files, segment_size = 1000,
 resi_map = None, output_file = None,
 resi_criteria = ['all'], atom_criteria = ['all'],
 occ_thresh = 0.0, occ_graph_only = False,
 hbond_data_dir = None):
 """
 Reads through a set of files that have been output by ptraj and compiles
 all the data.

 hbond_files: the hbond_files output from ptraj to be combined.
 segment_size: the number of frames included in each segment of the
 trajectory. (default: 1000)
 resi_map: a dictionary mapping the name of each residue onto the residue
 number. If 'None,' the residue name will simply be the number.
 (default: None)
 output_file: the name of the output file. If None, the results will be
 written to stdout. (default: None)
 resi_criteria: a list containing residue number criteria to include in the
 output. (default: ['all'])
 atom_criteria: a list containing atom name criteria to include in the
 output. (default: ['all'])

 234

 occ_thresh: the minimum occupancy threshold that the hbonds must have
 to be reported. (default: 0.0)
 occ_graph_only: if True, only the atom string, occupancy, and graph of
 each hbond will be written to output. (default: False)
 hbond_data_dir: the directory that contains the hbond data files. If
 'None,' the file names will be used without modification, and the
 output will be written to the current directory. (default: None)
 """

 # Do error checking of file names

 files_to_remove = []
 for each_file in hbond_files:
 if hbond_data_dir != None:
 full_file = os.path.join(hbond_data_dir, each_file)
 else:
 full_file = each_file
 if not os.path.exists(full_file):
 print 'Warning: File ' + full_file + ' does not exist.\n' + \
 ' Will be ignored.'
 files_to_remove.append(each_file)
 for each_file in files_to_remove:
 hbond_files.remove(each_file)
 if len(hbond_files) == 0:
 sys.exit('ERROR: No input files provided.\n')

 # Create list of hbonds in each file, and a master hbond dict

 hbonds_from_file = {} # {filename: list of hbond objects}
 combined_hbonds = {} # {hbond string: hbond object}

 for each_file in hbond_files:
 if hbond_data_dir != None:
 hbond_file = os.path.join(hbond_data_dir, each_file)
 else:
 hbond_file = each_file
 try:
 hbond_f = file(hbond_file)
 except:
 sys.exit('ERROR: Could not open ' + hbond_file + '.\n')
 hbonds_from_file[each_file] = hbonds_from_ptraj(hbond_f, segment_size, resi_map)
 for hbond in hbonds_from_file[each_file]:
 combined_hbonds[hbond._atom_str()] = None

 # Run through the master hbond dict, and find out the missing hbonds
 # in each file. If any are missing, create an hbond with no occupancy.

 for each_file in hbond_files:
 for hbond_str in combined_hbonds:
 found = False
 for hbond in hbonds_from_file[each_file]:
 if hbond._atom_str() == hbond_str:
 found = True
 break
 if not found:
 hbond = HBond()
 hbond.init_from_atomstr(hbond_str, segment_size)
 hbonds_from_file[each_file].append(hbond)

 # Do the addition of the hbonds from each file to create the
 # final combined hbond object.

 for hbond in hbonds_from_file[hbond_files[0]]:
 combined_hbonds[hbond._atom_str()] = hbond
 for each_file in hbond_files[1:]:
 for hbond in hbonds_from_file[each_file]:
 combined_hbonds[hbond._atom_str()] = combined_hbonds[hbond._atom_str()] +
hbond

 # Write output to file or stdout

 output = []
 for hbond in combined_hbonds.values():

 235

 if is_resinum_of_interest(hbond, resi_criteria) and \
 is_atom_of_interest(hbond, atom_criteria) and \
 hbond.occ_pct > occ_thresh:
 if not occ_graph_only:
 output.append((hbond.occ_pct, hbond._atom_str() + ' ' +
hbond._attr_str()))
 else:
 output.append((hbond.occ_pct, str(hbond)))
 output.sort()
 output.reverse()
 output = [o[1] for o in output]
 output_str = '\n'.join(output)

 if hbond_data_dir == None:
 output_dir = '.'
 else:
 output_dir = hbond_data_dir

 if output_file == None:
 print output_str
 else:
 try:
 output_file = os.path.join(output_dir, output_file)
 output_f = file(output_file, 'w')
 except IOError:
 print 'Warning: Could not open ' + output_file + '.\n'
 print output_str
 else:
 output_f.write(output_str + '\n')
 output_f.close()

def subset_hbonds(hbond_file, output_file = None,
 resi_criteria = ['all'], atom_criteria = ['all'],
 occ_thresh = 0.0, occ_graph_only = False,
 sort = 'occ_pct', compress = False,
 hbond_data_dir = None):
 """
 Following combination of hbonds by combine_hbond(), this function can be
 used to write to stdout or a file only a subset of all the data present.

 hbond_file: the hbond file with data to be analyzed.
 output_file: the name of the output file. If None, the results will be
 written to stdout. (default: None)
 resi_criteria: a list containing residue number criteria to include in the
 output. (default: ['all'])
 atom_criteria: a list containing atom name criteria to include in the
 output. (default: ['all'])
 occ_thresh: the minimum occupancy threshold that the hbonds must have
 to be reported. (default: 0.0)
 occ_graph_only: if True, only the atom string, occupancy, and graph of
 each hbond will be written to output. (default: False)
 sort: one of 'occ_pct', 'donor', 'acceptor', 'dist', or 'angle' that
 indicates how to sort the output. (default: occ_pct)
 compress: if True, the graphs will be compressed by compress_graph().
 (default: False)
 hbond_data_dir: the directory that contains the hbond data files. If
 'None,' the file names will be used without modification, and the
 output will be written to the current directory. (default: None)
 """
 # Do error checking of file names.

 if not hbond_file:
 sys.exit('ERROR: No input file provided.\n')
 if type(hbond_file) is type([]):
 if len(hbond_file) > 1:
 print 'Warning: More than 1 input file provided.\n' + \
 ' Will only use first one: ' + hbond_file[0]
 hbond_file = hbond_file[0]
 if hbond_data_dir != None:
 full_file = os.path.join(hbond_data_dir, hbond_file)
 else:
 full_file = hbond_file
 try:

 236

 hbond_f = file(full_file)
 except IOError:
 sys.exit('ERROR: Could not open ' + full_file + '.\n')

 # Create list of hbonds in the input file, check to see if they
 # satisfy the necessary criteria for output.

 hbond_list = []
 for line in hbond_f:
 hbond = HBond()
 hbond.init_from_str(line)
 hbond_list.append(hbond)

 output = []
 for hbond in hbond_list:
 if is_resinum_of_interest(hbond, resi_criteria) and \
 is_atom_of_interest(hbond, atom_criteria) and \
 hbond.occ_pct > occ_thresh:
 if compress:
 hbond.compress_graph()

 if occ_graph_only:
 hbond_str = str(hbond)
 else:
 hbond_str = hbond._atom_str() + ' ' + hbond._attr_str()

 if sort not in 'occ_pct acceptor donor dist angle'.split():
 print 'Warning: Unknown sorting method: ' + sort + '.\n' + \
 ' Will sort by occupancy percentage.'
 sort = 'occ_pct'

 if sort == 'occ_pct':
 output.append((hbond.occ_pct,
 hbond.acceptor.resi_num,
 hbond_str))
 elif sort == 'acceptor':
 output.append((hbond.acceptor.resi_num,
 hbond.acceptor.atom_name,
 hbond.donor.resi_num,
 hbond.donor.atom_name,
 hbond_str))
 elif sort == 'donor':
 output.append((hbond.donor.resi_num,
 hbond.donor.atom_name,
 hbond.acceptor.resi_num,
 hbond.acceptor.atom_name,
 hbond_str))
 elif sort == 'dist':
 output.append((hbond.dist, hbond_str))
 else: # sort must be 'angle'
 output.append((hbond.angle, hbond_str))

 # Write output

 output.sort()
 if sort == 'occ_pct':
 output.reverse()
 output = [o[-1] for o in output]
 output_str = '\n'.join(output)

 if hbond_data_dir == None:
 output_dir = '.'
 else:
 output_dir = hbond_data_dir

 if output_file == None:
 print output_str
 else:
 try:
 output_file = os.path.join(output_dir, output_file)
 output_f = file(output_file, 'w')
 except IOError:
 print 'Warning: Could not open ' + output_file + '.\n'

 237

 print output_str
 else:
 output_f.write(output_str + '\n')
 output_f.close()

def compare_hbonds(hbond_files, identifiers = [], output_file = None,
 resi_criteria = ['all'], atom_criteria = ['all'],
 occ_thresh = 0.0, occ_graph_only = False,
 sort = 'occ_diff', compress = False,
 hbond_data_dir = None):
 """
 Following combination of hbonds by combine_hbond() for distinct
 trajectories, this function can be used to present the data as a
 side-by-side comparison of hbond occupancies.

 hbond_files: the hbond files with data to be analyzed.
 identifiers: the list of names associated with each hbond_file. If
 the list is empty, each file will simply be assigned a number.
 (default: [])
 output_file: the name of the output file. If None, the results will be
 written to stdout. (default: None)
 resi_criteria: a list containing residue number criteria to include in the
 output. (default: ['all'])
 atom_criteria: a list containing atom name criteria to include in the
 output. (default: ['all'])
 occ_thresh: the minimum occupancy threshold that the hbonds must have
 to be reported. (default: 0.0)
 occ_graph_only: if True, only the atom string, occupancy, and graph of
 each hbond will be written to output. (default: False)
 sort: one of 'occ_diff', 'occ_pct', 'donor', or 'acceptor' that
 indicates how to sort the output. (default: occ_diff)
 compress: if True, the graphs will be compressed by compress_graph().
 (default: False)
 hbond_data_dir: the directory that contains the hbond data files. If
 'None,' the file names will be used without modification, and the
 output will be written to the current directory. (default: None)
 """
 # Set up identifier strings

 for i in range(len(hbond_files)):
 if i >= len(identifiers):
 identifiers.append(str(i + 1))
 max_id_length = max(len(id) for id in identifiers)
 for i in range(len(identifiers)):
 num_spaces = max_id_length - len(identifiers[i])
 identifiers[i] = num_spaces * ' ' + identifiers[i]

 # Do error checking on file names

 files_to_remove = []
 for each_file in hbond_files:
 if hbond_data_dir != None:
 full_file = os.path.join(hbond_data_dir, each_file)
 else:
 full_file = each_file
 if not os.path.exists(full_file):
 print 'Warning: File ' + full_file + ' does not exist.\n' + \
 ' Will be ignored.'
 files_to_remove.append(each_file)
 for each_file in files_to_remove:
 i = hbond_files.index(each_file)
 identifiers.remove(identifiers[i])
 hbond_files.remove(each_file)
 if len(hbond_files) == 0:
 sys.exit('ERROR: No input files provided.\n')

 if hbond_data_dir != None:
 for i in range(len(hbond_files)):
 hbond_files[i] = os.path.join(hbond_data_dir, hbond_files[i])

 # Create dictionaries for each file indicating their hbonds

 hb_dict_list = [] # One dictionary per hbond input file

 238

 combined_hbonds = {} # {hbond_string: None} just keeps cumulative track
 for each_file in hbond_files:
 hb_dict = {} # {hbond_string: hbond object}
 for line in file(each_file):
 hbond = HBond()
 hbond.init_from_str(line)
 if is_resinum_of_interest(hbond, resi_criteria) and \
 is_atom_of_interest(hbond, atom_criteria):
 if compress:
 hbond.compress_graph()
 hb_dict[hbond._atom_str()] = hbond
 combined_hbonds[hbond._atom_str()] = None
 hb_dict_list.append(hb_dict)

 # Run through the master list of all hbonds. If a given
 # dictionary doesn't have an entry for one, create one with
 # zero occupancy.

 for hb_dict in hb_dict_list:
 for hbond_str in combined_hbonds:
 found = False
 for hbond_str_dict in hb_dict:
 if hbond_str_dict == hbond_str:
 found = True
 break
 if not found:
 hbond = HBond()
 hbond.init_from_atomstr(hbond_str)
 hb_dict[hbond_str] = hbond

 # Compile and sort relevant data

 if sort not in 'occ_diff occ_pct donor acceptor'.split():
 print 'Warning: Unknown sorting method: ' + sort + '.\n' + \
 ' Will use occ_diff to sort.'
 sort = 'occ_diff'

 output = []
 for hbond_str in combined_hbonds:
 hb_list = [hb_dict[hbond_str] for hb_dict in hb_dict_list]

 max_occ = max(hbond.occ_pct for hbond in hb_list)
 min_occ = min(hbond.occ_pct for hbond in hb_list)
 occ_diff = max_occ - min_occ

 if sort == 'occ_diff' and occ_diff > occ_thresh:
 output.append((occ_diff,
 hb_list[0].acceptor.resi_num,
 hb_list))
 elif sort == 'occ_pct' and max_occ > occ_thresh:
 output.append((max_occ,
 hb_list[0].acceptor.resi_num,
 hb_list))
 elif sort == 'donor' and occ_diff > occ_thresh:
 output.append((hb_list[0].donor.resi_num,
 hb_list[0].donor.atom_name,
 hb_list[0].acceptor.resi_num,
 hb_list[0].acceptor.atom_name,
 hb_list))
 elif sort == 'acceptor' and occ_diff > occ_thresh:
 output.append((hb_list[0].acceptor.resi_num,
 hb_list[0].acceptor.atom_name,
 hb_list[0].donor.resi_num,
 hb_list[0].donor.atom_name,
 hb_list))

 output.sort()
 if sort == 'occ_diff' or sort == 'occ_pct':
 output.reverse()
 output = [o[-1] for o in output]

 # Write output

 239

 output_str = ''
 for each_hbond in output:
 for i in range(len(each_hbond)):
 hbond = each_hbond[i]
 if occ_graph_only:
 output_str += identifiers[i] + ': ' + str(hbond) + '\n'
 else:
 output_str += identifiers[i] + ': ' + \
 hbond._atom_str() + ' ' + hbond._attr_str() + '\n'
 output_str += '\n'

 if hbond_data_dir == None:
 output_dir = '.'
 else:
 output_dir = hbond_data_dir

 if output_file == None:
 print output_str[:-2] # Removes the last 2 newlines
 else:
 try:
 output_file = os.path.join(output_dir, output_file)
 output_f = file(output_file, 'w')
 except IOError:
 print 'Warning: Could not open ' + output_file + '.\n'
 print output_str
 else:
 output_f.write(output_str[:-1])
 output_f.close()

subset_hbonds.py
#!/usr/bin/env python

'''
Set up ptraj input files to run a series of H-bond calculations.
'''

import sys, os
from optparse import OptionParser
from tool_utils import parse_residue_list, parse_atom_list
from hbond_analysis_utils import subset_hbonds

if __name__ == '__main__':

 usage = """%prog FILE1 [options]
FILE1 is a file created by combine_hbonds.py that contains a dataset of
H-bonds. Only a subset of all the data is presented according to the
criteria presented by the user. The data will also be sorted according
to the metric specified by the user.

Important notes:
* The resi_criteria option takes a comma-separated string containing any
 or all of the following:
 - individual residue numbers
 - a range of numbers, separated by a '-'
 - strings associated with valid residue lists in the
 standard file 'residue_lists'
* The atom_criteria option takes a comma-separated string containing
 the atom names to report. In addition, the string can contain any
 of these strings:
 - 'bb_only': only H-bonds between two backbone atoms
 - 'not_bb': no H-bonds between two backbone atoms
 - 'protein_only': no H-bonds involving water
* Note that ptraj uses a definition of H-bond donor and acceptor that is
 opposite of the normal convention. This program follows the
 definitions of ptraj, in which the acceptor is the atom covalently
 bonded to the hydrogen atom."""

 240

 # Parse command line options

 parser = OptionParser(usage = usage)

 parser.add_option('-o', '--output-file',
 dest = 'output_file',
 help = 'The name of the output file. If None, the results will be written to
stdout. [default: %default]')
 parser.add_option('-B', '--hbond-data-dir',
 dest = 'hbond_data_dir',
 help = 'The directory that contains the H-bond data files. If None, the file
names will be used without modification, and output will be written to the current
directory. [default: %default]')
 parser.add_option('-s', '--sort',
 dest = 'sort', default = 'occ_pct',
 choices = ['occ_pct', 'donor', 'acceptor', 'dist', 'angle'],
 help = 'The quantity used to sort the results. Must be one of "occ_pct"
(occupancy percentage), "donor", "acceptor", "dist", or "angle". [default: %default]')
 parser.add_option('-c', '--compress', action = 'store_true',
 dest = 'compress', default = False,
 help = 'Flag to compress the H-bond graph. [default: %default]')
 parser.add_option('-y', '--occ-graph-only', action = 'store_true',
 dest = 'occ_graph_only', default = False,
 help = 'Flag to report only the occupancy and graph data (no distance or angle
data). [default: %default]')
 parser.add_option('-R', '--resi-criteria',
 dest = 'resi_criteria', default = 'all',
 help = 'A comma- and dash-separated list of residue numbers to include in the
analysis. [default: %default]')
 parser.add_option('-A', '--atom-criteria',
 dest = 'atom_criteria', default = 'all',
 help = 'A comma-separated list of atom names to include in the analysis.
[default: %default]')
 parser.add_option('-O', '--occ-thresh', type = 'float',
 dest = 'occ_thresh', default = 0.0,
 help = 'The minimum occupancy threshold that the H-bonds must have to be
reported. [default: %default]')

 options, hbond_file = parser.parse_args()

 # Process options

 resi_criteria = parse_residue_list(options.resi_criteria)
 if not resi_criteria:
 sys.exit('ERROR: No residues selected in residue string.\n')
 atom_criteria = parse_atom_list(options.atom_criteria)

 # Perform function

 subset_hbonds(hbond_file = hbond_file,
 output_file = options.output_file,
 resi_criteria = resi_criteria,
 atom_criteria = atom_criteria,
 occ_thresh = options.occ_thresh,
 occ_graph_only = options.occ_graph_only,
 sort = options.sort,
 compress = options.compress,
 hbond_data_dir = options.hbond_data_dir)

	LernerDissertation.pdf
	LernerDissertation.2.pdf
	LernerDissertation.3.pdf
	LernerDissertation.4.pdf
	LernerDissertation.5.pdf

