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NOMENCLATURE

The letter symbols in this article are defined where they

first appear.
ence,

Borhosha, by

E,EqEgsEy

F

H,H,

I,IgI0,1g

MM, My, M,
N,N'

P,P;

L7

ai,8n

Those which appear frequently are listed below for refer-

cross-sectional areas

modulii of elasticity

horizontal force (external)
horizontal components of arch fhrust
moments of inertia

a constant

span length between supports
bending momernts

axial forces

loads {external)

strain energy

unknown forces or moments (internal)
Fourier constants

rise at crown

height of arch at 12 suspension rod

X

L

AgBg /ARy

IgEg/IcEa

ArEr/AcEa

membrane force along the span length

radii of gyration

vii



NOMENCLATURE (CONT 'D)

O, 0G,0p constants
QF constant
BH’SOH horizontal movements of arch at support
L} slope along centerline of arch rib
AW initial horizontal gaps between arch and girder
Aq vertical deflection of arch due to membrane force g
As length along centerline of arch
O&x length along girder or horizontal projection of
Ax.l’ &, relative deflections or rotations at X;, Xy
Subgeripts

& arch rib

c crown,

g tie girder

r suspension rod
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I. INTRODUCTION

The purpose of this study is the analysis of the prestressed
bowstring arch of which the structural system is highly indeterminate.
With the ever-increasing use of prestressed concrete in construction,
such an investigation is important to the structural designer.

Bowstring arches are often used when the abutments are not
reliable for thrust, and when meximum clearance under the structure is
desired.

As used in this study, the term "bowstring arch" denotes a
combingtion of an arch rib with a tie girder., These elements are fastened
to one another at the supports and connected to each other through equally

spaced vertical suspension rods as shown in the diagrem below.

Any loed on the tie girder is resisted Jjointly both by the tie girder
and the arch rib. In addition to its flexural action, the tie girder

also resists the horizontal thrust of the arch.



This type of interaction which involves the flexural resistance
of the girder makes the structure highly indeterminate. The exact redun-
dency will depend on the type of end connections and also on the number
of suspension rods. Because of the extensibility of the suspension rods
and the deflection of the arch rib, the tie girder resembles a continuous
beem on elastic supports to a considerable degree.

The general practice is to simplify the above conditions by
assuming that the suspension rods are inextensible, that the moment of
inertia of the arch rib is small compared to that of the tie girder, i.e.,
the arch provides no bending resistance at all, and that the arch and
the tie girder are pin-connected, although the latter may or may not be
the case. Thus no matter how meny suspension rods are used, the struc-
ture has only one redundent, that is, the horizontal reaction X; of the
arch rib.

When the rigidity of the arch is considered, there is an
additional degree of indetermingey for every suspension rod. Hence,

‘8 bowstring arch with six suspension rods will have seven redundants
for pin-connected ends and nine redundants when the ends are fixed.

The bowstring-arch structure differs from the usual tied
arch in that the moment of inertia of the tie girder is many times
greater than thet of the arch rib. As a result, the total bending
moment teken by the rib and girder together is divided between these
two elements, the major part being resisted by the girder.

1)

According to J M. Garrelts( his design of St. Georges

Tied Arch Span at St. Georges, Delaware, is the first to introduce



the bowstring-arch design to America. In his design, he assumes that
the rib and the girder are hinged at the supports, and that the hangers
are inextensible and resist axial forces only. For his first approxi-
mation he considers the arch rib to resist no bending moment, and sub-
jected only to compression. Hence, the horizontal component H of the
arch rib compression is the only redundant, and using the principle of
virtual work, he determines Its value. He then proceeds with his design
and obtains preliminary sections to be used as a basis for kis more
accurate analysis,

Since the total bending moment (simple beam moment minus
H o y) at a section is actually taken by both the rib and the girder,
Garrelts sets the second derivative of the vertical component of the
arch-rib deflection equal to the second derivative of the girder de-
flection to find the right proportion for each. Thus he obtains the
proper proportion of each and a more accurabte formula for the value
of H. A partial summary of his work is found in the Appendix,

Some seven years later, in 1948, in Budapest, Professor
Viktor Haviar came oubt with his designa(2> Were it not for the intro-
duction of the extensibiiity of *the suspension rods into his derivation,
his work would be identical with Garrelt's., Unfortunately, however, his
model analysis was not suitable for studying this point.,

In 1954 Drs., S. Chandrangsu and S. R, Sparkes described a pro-
cedure called "The Method of Influence Coefficients”(a) to design the
bowstring arch. Here the relative displacemen! of the sides of every

"cut" is expressed in terms of each force or moment applied, and as



many elastic equetions are obtained as there are redundants in the system.
To determine the coefficients in these equations, the principle of virtual
work is ugsed. A "null"-gystem bowstring arch is introduced to avoid
seriously affecting the accuracy of the moment calculations., By trans-
forming the elastic equations and calculating the differences, the bend-
ing moments are obtained directly.

Chendrangsu and Sparkes also describe the membrane-analogy method
for a fixed-end bowstring arch by considering only the flexural strain
energy in the system. However, a more complete and more accurate analysis
must also consider the axial strain energy. This is especielly important
for low values of the slenderness ratio as well as prestressing forces.

By slenderness retio here is meant the span length of the bowstring arch
divided by the radius of gyration of the arch rib at the crown around the
horizontal gxis.

The present study ubilizes the strain-energy method to snalyze
the bowstring arch, and then applies this analysis to a bowstring arch
which is pin-connected at each end and has six suspension rods equally
spaced along its length. Five different tie-girder-to-arch-stiffness
ratios have been used to each of ten different slenderness ratios of
the arch. In addition, the effect of varying the cross-sectional area
of the tie girder to the arch and the change in the suspension rod ares
were studied.

The results of the above calculations have been used to plot
influence line diagrems and graphs with a view to using them in prelimi-
nery design work. Were it not for the electronic computing facilities

of The University of Michigan, it would have been next to impossible to



obtain all these results; there were some 420 sets of seven equations
with seven unknowns to be solved,

To make the analysis sufficiently general so that it may apply
to any desired number of suspension rods and to all rise-to-span ratios,
the membrane-analogy method has also been introduced here, (See Chapter
ITI). This assumes that the arch and the tie girder are connected by
an inextensible membrane, and the vertical force in the membrane is
expressed as a single continuous function, To find the force in any
suspension rod, one has only to integrate this force between the proper
limits along the length, The accuracy of this method will depend on
the number of suspension rods used., However, even with six suspension
rods, the results are so accurate that its use for preliminary design
work is recommended,

To verify the correctness of the various theories used in this
study, an experiment was performed on an aluminum model of 49 in. length
with two different tie girders. The model was properly instrumented with
strain gauges, and gauges to measure the deflection, The experimental
results thus obtained were in good harmony with those of the theories,

In case the reader has been wondering why the word prestressing
has not occurred thus far, it should be emphasized that the analysis is
one of determining redundant forces even when the forces applied are
those of prestressing. This point will be clarified in the detailed
study of the analytical and experimental results presented later. In
this discussion, prestressing is regarded as a condition rather than

the analysis itself,



II. THE STRAIN-ENERGY METHOD

Derivation of the Equation for Bowstring Arch Having Any
Number of Suspension Rods

AT T TN |
AL N P
L :'

_..,.'X'

The above diagram shows a fixed-end bowstring arch with equally
spaced vertical suspension rods. To analyze this bowstring arch, "cuts"
or "hinges", as the case may be, are imagined to be inserted at suitable
places in the structure to make it statically determinate (see diagram below).
Next, moments and forces are applied to both sides of these "cuts" or "hinges"
to restore the structure to its initial condition. The total strain energy
U, which is a function of all the forces and moments acting on the struc-
ture, can now be expressed in terms of all these forces and moments.

The derivative of this energy U with respect to any one force
(or moment) will give the deflection (or the rotation) in the direction
of that force (or moment)., Hence one can get as many elastic continuity
equations from U as there are unknowns in the structure. Since the
relative deflection or rotation between the two faces of a "cut" is zero

or a predetermined quantity, these equations can be solved simultaneously

and the desired results are obtained.

-6-



The above is in accordance with Castigliano's theorem which
states that, when a structure is acted upon by an equilibrated force
system, the derivative of the total strain energy U in the structure
with respect to any force gives the displacement in the direction of
that force.

The unknown forces and the bending moments to restore the
structure to its original condition are X;, Xp, Xz,...X, as seen in
the sbove diagram. Let M and N denote, respectively, the bending

1

moment and the axial force on the "cut" structure produced by the
externally applied loads, say P; and let M' and N' be the bending

moment and the axial force caused by the unknown forces Xl’ X5, X5,

.... X;. The total strain energy (neglecting shear and torsion) is
L L L
1 2 H 2 1 2
_ f(Ma + M) s + f(Na + NJ) f(ME; + ME;_) i
) 2E Iy o 2E Ay o 2EgIg
,:
N f(Ng + N}) x4 \L (X1)hy (2.1)



where subscripts "a", "g" and "r" stand, respectively, for the arch rib,

tie girder, and suspension rod. The relative deflection or rotation at
the i-th "cut" is
U AX

X, M

1

which, by means of Equation (2.1), can be expressed in the form

L aMé L aNé
M, + M) = (N, + N2) <
o [l [l
0] Ea-Ia O EaAa
oM ! ON ! (n-2)
t ——g 1 ——g o
+ f (Mg + M) aXidx+f(Ng+Ng) Ki gy + Z 50 (2.2)
Eglg EgAg ETAT

i=2
If, now the summation is used for the integration, the expression for

AX- becomes:

8M' aN' aMr
L 8 L ¥ a L g
o (Mg M) < (N, + W) M, + M) <75
Z 5X1AS+> a a,axlAs+z g " 8 K p,
N’ (n-2)

Z (Mg + V) 3, +Z L] (2.3)
Q

Equation (2.3) gives "n" independent equations as "i" assumes

values of 1, 2, 3,...n, respectively, i.e., one equation per "ecut".

Thus one gets as many equations as there are unknowns in the system.

If there is no initial lack of fit of members, (&X;)s are equal to zero.
These "n" equations now can be solved simultaneously and the values of
(Xj)s are obtained, Once the unknown forces are determined, finding the
actual bending moment, the axial forces, and the shear at any section in

the structure is a simple matter,



Solution of Hinged-End Bowstring Arch Having Six Suspension Rods

The arch being studied is parabolic in form and has the dimen-

sions shown in the diagram below. For a 1 to 4 rise-to-span ratio,

J
4

|

| |

| \\& ?y L/k

|

£ e e
| T@L/T =L _9!

the equation of the center line of the arch with its origin at mid point

of the tie-girder is
y=—3<—+% (2.4)

Further, the cross-sectional area of the arch Ag and the length along
the center line of arch As, are assumed, respectively, to very according
to equations

Ay, = A, sec o

and (2.5)
Ns, = Ds, sec ¢ =Ox sec @

where the subscript c denotes crown; and taking the width of the arch

to be constant throughout, the moment of inertia of the arch is given
by

Ip = I secd ® (2.6)

To evaluate Equation (2.3), four tables have been prepared.
Teble I is the tabulated result of Equation (2.4) and its derivative.

Tables II, III, and IV show all the forces, acting on the structure,



VALUES OF EQUATION (2.4), (ARCH RIB
CENTERLINE) AND ITS DERIVATIVE

TABLE I

y
w= X
Point cos @
d 0 0.25000 * I 0 0 1
1 - L/14 0.24490 . L 0.14286 8° 08! . 98994
et 2 . L/14 0.22959 - L 0.28571 15° 57¢ .96150
3 . L/14 0.20408 - L 0.42857 23° 12! L9191k
bt 4L o.on/1k 0.16837 * L 0.57143 29° k5t .86820
5 « L/1k 0.12245 - L, 0.71429 35° 32¢ .81378
a! 6 ¢ L/1k 0.06633 ° L 0.8571k ho° 361 75927
7T o L/1k 0 1 45° 00! 70711
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and the bending moments successively produced in the arch and in the tie
girder by all the redundants Xq, Xp,... X7 and the external forces Py, Py,
P5, and P .

With the help of these tables, and making the following substit-

utions, i.e.,, letting

and by recognizing that (L/rc)'2 is identical to IQ/LEAC} and that

AKl, My, ..o AX7 are all equal to zero, a set of seven equations
[Equation (2.7)]* is obtained for solving the values of Xj, Xp,.... X7°
of Equation (2.7) depend

The numerical values of X,, X seo X
ke

2’ 7

no doubt on the external load, L/rq, Mg, My and my. Once these parameters
are known, Xi, Xoy, seess X7 can be defermined, and one can now proceed o
find the bending moments as well as the shearing and the axial forces
along the entire shructure, and thus design the bowstring arch.

For additional prestressing of the tie girder, whenever desirébleﬂ
a specified initial (vertically restrained) horizontal gap A is provided
between the ends of the arch and the tie girder. A horizontal force X1,
Just large enough to close this gap completely, is applied next. Since
there is a relative motlon now between the ends of the arch and the tie
girder; a different set of equations must be obtained. This is done by

satisfying the new geometric boundary conditions and by setting all the

* The detailed calculation of AXl as a sample may be found in Appendix B.
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&y =0 —-T

L2 1 L,\-2 L -2 L.~-2
(1) [498.8567 + 13228.3095 (;;) + 16807 x & x (;;) 1% + [165.7657 - 1186.334 (!‘_E) JXp + [303.2085 - 2220.6849 (;g) 13
+ [38.4850 - 2855.2692 ()21, + [382.4850 - 2855.2692 () 21ks + [303.2085 - 2220.6849 () P16 + [165.7657 - 1186330 ()21
P Ly2
+ 36007 2 @7 -0
Mg =0

(1) (1657656 - 1186390 ()21 + (66,5788 + 1992929 ()2 + B0.50 & + 2058.8575 L (1) T pny + [m1z.s9uk + 777 (2 4 13125 L
@) (657656 - 8833 ()T ¢ (66,5780 + 7592909 () ¢ 60,50 g+ 2058575 L (E) Mg + (asghe + ST () + 23125 oy

1

2 2 2
+ [129.5393 - 5hk.5468 (13.‘;) + 147.00 ‘%f]xu + [119.6737 + 472.2767 (ric) + 134,75 Z-]%s + [89.4689 + 3740758 (f,‘—c) +101.50 i—llxe

o L MT.75 + 2175506 ()72 4 sh.25 Aixg - [80.50 T2 4 131,25 23 + 147.00 L¥] = ©
¥c B & i i

2 2 2
(111)  [303.2085 - 2220.6849 (—rl';) 1% + [112.5044 + 6k2. 7477 (f—c) + 13125 1% + [200.3580 + 9812887 (%) + 227.50 & + 3430.3067 n}—r(—l%)ﬁ)g
+ [239.2140 + 845.8723 (;z:)*"’ +266.00 -1, + [224.4488 + T62.3175 (II“_O)'2 + 248,50 185 + [169.0053 + 626.6610 (r%)_z +189.00 2%
- ) ® P
+ [ 89.4689 + 374.0758 (;L;) 2 4 10050 an;]"T - [sLes 2 + 227,50 2 + 266.00 %} =0

&, =0

(1) (382.2850 - 2655.2692 ()74 + [129.5395 + 5ik. 5468 (-:‘:)'2 + 147,00 ,,%I]xe + (239.21k0 + B45.8723 (f"—u)‘2 + 266.00 %TI]XB o
2.7

+ [300.7027 + 912.8602 ()72 + 329.00 & + bna6.0343 & G721, + [295.0846 + B76.3650 (f;—c)'g + 320,25 E=l%s

+ [224.4488 + 762.3175 (%)'2 + 248.50 It + [119.2637 + 472.2767 (f;—c)'a + 134,75 20 - (147,00 ;% + 266.00 ;Ii +329.00 1;—’;1 =0

(V) [38e.4850 - 2855.26%2 (Z)™2ny + [119.6737 + ¥72.2767 (272 + 23475 L1 + [22h.W408 + T62.3175 (E92 + 2850 2w
+ (293,046 + 876.3650 ()2 4 320.25 21x, + [300.7027 + 912.8602 (272 4 329.00 L + u126.0343 = (272 )x5
Te mr Te o oy Te

+ [259.2180 + B45.8723 (272 4+ 266.00 So]X6 + [129.5593 + 5hb.5468 () + 147.00 E1x [1l+7533+ 248,50 .3 + 320.25 14 = 0
. 8125 (& 0 L1 .53 . = 7.00 2157 - (13h.75 50 g2 + 320,25 o

&g =0

(V1) [303.2085 - 2220.689 (2)2Ixy + [89.4689 + 374.0758 ()™ + 10150 e + [169.0053 + 626.6610 (272 + 189.00 3123

1,L

- -2 -
)2 4 266.00 s Txs + [200.3580 + 9812687 ()72 + 227.50 - + 3430.3087 () F 1

+ [22h W88 4 T6R.3LT5 (E)F 4 20850 21K + [239.2140 + B45.8723 (i
Ly-2 1 P2 B Py, _
+ [L12.59% + 62 W77 ()77 + 13125 1k7 - (10050 52 + 189.00 2+ 2850 A =0
&ty =0
Ly-2 Ly-? 1 Ly® 1
(vit)  [165.7656 - 1186.3341 (3;) 1% + [47.2175 + 217.5306 (E) + 5h.25 E-I-]Xg + [89.4689 + 374.0758 ()" + 101.50 E])@
c

v [119.6757 + 4722767 (12 + 134,75 L1, + [129.5%93 + shh.5468 (22 4+ 167,00 21xs + (112,598 + 6h2. 7477 (297 + 131,25 Lxg
X, mp e my T, m[

L,-2 1 1 ,L.-2 Pp P Py
+ [ 66.5788 + 7992929 ;)7 + 80.50 o + 20588575 £ (5™ Iy - [54.25 52 + 201.50 af +1TS ] =0 ]
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external forces Py, Pp, P5, and P) equal to zero.

Thus for the case with a gap, Equation (2.7) becomes Eguation
(2.8).

Influence Line Diagrams and Graphs

Bending-moment and axial-force diagrams have been prepared from
Equations (2.7) and (2.8) for various parameters and are shown in Appendix
C. (See Figure 3 through 26). These will facilitate the preliminary design
because the graphs can be read directly and bending moments and axial
forces can be obtained at a glance, In all these diagrams the parameters
Mg and my were held constant at 2.0 and 0.1, respectively, while L/r,

varied from 25 to 300 and m. from 2.5 to 20. Thus they cover a wide

I
range of values.

The bending moments and the axial forces, for the vertical loads,
are drawn as influence lines. For the horizontal loads the bending moments

and the axial forces are drawn as a function of m. for different values of

I
L/r, or vice versa.

To use Figures 21 through 26, one must first find the particular
value of A for which the graphs are prepared and then by direct proportion
obtain the values wanted. To find the particular gap A, set

A =KL
where K = EOOO/EaAc . Thus, once EgA. is known, A can easily be determined.

The effects of varying the parameters Mg and my, Qn the bending

moments are shown in Figures 3 and 4,
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X =4
1
-2 -2 e R
(1) [498.8567 + 13228.3095 (I;—c) 1%y + [165.7657 - 1186.3341 (i‘—c) 1% + [303.2085 - 2220.6849 (I;—c) 2]X5 + [382.4850 - 2855.2692 (';—C) 2]xl;

-2 - -2
+ [382.4850 - 2855.2692 (%;) 15 + [303.2085 - 2220.6849 (’;—c) 2}x6 + [165.7657 - 1186.3341 (I;'-c-) 1%, = ATE—;I‘:
&z =0
L -2 -2 1 -2 -2
(41) 1657656 - 18633 () Iy + [ 66.5788 + 7199.2929 ()™ + 80.50 g + 20586575 i () C g + (r1z59kh + srerr ()78 4 15125 i

L2 2 .
+ 11295393 + SUb.5468 (1) + 10700 1M + [119.6757 + 472.2767 (B)™° + 13475 3=1¥s + [89.4689 + 374.0758 (i‘—c) %+ 20150 &%
L2 1-
+ [ 47.2175 +.217,5306 (;) + 5k.25 EJX7 =0

Xz =0
3
-2 -2 - R
(111)  [303.2085 - 2220.6849 (’;—C) 1% + [112.59%k + 642, 7h77 (i‘—c) +131.25 %]xz + [200,3580 + 9B1.2887 (’;_c) 2 4 227.50 ;_I. + 3430.3087 mir_(i_'c_) 2]x5

)-2

L |- 1 -
+ [239.2140 + 845.8723 (g 2, 266.00 E]m + [224,4488 + 762.3175 (i;a.) 2 + 248,50 %]x5 + [169.0053 + 626.6610 (f,‘—é + 189.00 i_I]XG

+ 1 89.4689 + 37,0758 ()% + 10050 %y = 0

(sv) (3624850 - 2855.26% (£)1xy + (129,539 + Wh.5468 (1) + 147.00 L1 + [239.20060 + 8156723 ()2 + 26€.00 Fixs

)2 Lk

+ [300.7027 + 912.8602 (i e

+ 329.00 %f + 4116,0343 1210, + [293.0846 + 676.3650 (2)2 + 300.25 j;—l]xs
[}

+ [224.4488 + T762.3175 (%)_2 + 248.50 :;—I]XG + [119.6737 + k72,2767 (i:T)'2 + 134,75 %]x7 -0

&g =0
(v) [382.4850 - 2855.2692 (i:—c)'a]xl + [119.6737 + 472.2767 (f—:;)"2 + 13475 %I-]xg + [224, 4488 + 762.3176 (%)'2 + 248.50 Elf]x5
L2 i Ly L 1L ye2
+ [293.0846 + 876.3650 (1'2) + 320.25 mI]m + [300.7037 + 912.8602 (Tc) + 329.00 i 4116.0343 ﬁ(fc) IXs

L \-2 1 L (-2 1
+ [239.2140 + 845.8723 (;) + 266.00 E]XG + [129.5393 + 544.5468 (E) + 147,00 E]X7 =0

(vi)  [303.2085 - 2220.6849 (5_)'21)51 + 189.4689 + 374.0758 ()72 + 101,50 L%, + [169.0053 + 626.6610 (22 + 189.00 L
) g mr Ty 54

L -2 1 L -2 1 L \-2 1 1Ly -2
+ [224.4488 + 762.3175 (K) + 248,50 if]xh + [239.2140 + 845.8723 (f) + 266.00 Hf]x5 + [200.3580 + 981.2887 (E) + 227.50 s 3430.3087 Tr(ﬁ) 1%

+ (2.5 + su2,7877 ()2 + 13125 Ly - 0
Te oL

A7 =0
(vit)  [165.7656 - 1167.3341 (Ifc—)'z]xl + [N7.2175 + 217.5306 (i‘—e)"" + 5h.25 i—I]Xg + [89.4689 + 374.0758 (f;—c)‘2 +101.50 il;—I]Xj
+ [119.6737 + L72.2767 (T;T)-2 + 134,75 ml_I]x,. + {129.5393 + 54k, 5468 (’;T)'? + 147.00 ;_les + [112.594h + 62, 7h77 (’;*;)'2 +131.25 i—ﬂ’%

+ [ 66.5788 + 799.2929 (T;_c)"" + 80.50 j;_l + 2058.8575 mi,(%)'elx'/ =0

> (2.8)




=18~

Sign Convention

Bending-moments producing compression on the upper fibers of
the arch rib and the tie girder are considered positive throughout the

text,



III. THE MEMBRANE-ANALOGY METHOD

For a Concentrated Vertical Force on the Girder

To simplify the analysis of the hinged-end bowstring arch by
the membrane theory, the membrane has been assumed to be inextensible
s0 that the deflections of the arch rib and the tie girder are the same.

The arch is assumed to be of parabolic form

X X
y = lh [(z) - (3)2} (3.1)
Moments of inertia and the cross-sectional area of the arch

vary, respectively, as

I

a I, sec o

(3.2)
Aa = Ac sec @

Now separate the arch from the girder as shown below,

P above is any vertical load applied on the girder. The membrane

connecting the arch and the girder is assumed to function in the same

-19-



way as an infinite number of suspension rods, and carries a vertical
force q of varying intensity along the span length.
The vertical deflection of the arch due to membrane force g,

in the preceding diagram may be obtained from the equation:

N
q = EI; cos ¢ 9;%& (3.3)
dx
q a2
Ma = EI, cos ¢ E;ég (3.4)

where Aq denotes the vertical deflection and Mg the bending moment due
to the membrane force only.

This deflection can be represented by the Fourier series;

o0 00
8o &y nllx \ by nllx
= — —t— -
% =g 7 2 gr, Tt AEIC 08 T (3.5)
n=l n=

where a , a,, and b, denote constants to be determined.

n?’

Considering the end conditions of the arch, Aq =0atx =0

and x = L; also dEAq/dx2 =0 at x =0 and x = L; it is convenient

to use the simplified form:

00

Aq = _a'_ll_sjn .Il_n.?{_ (3‘6)
LB, L

By successive differentiation of Aq and replacing Ig by I. sec o,

the membrane force g and the bending moment M2 are found:

(-]

Mq=.z a, (E—H)‘2 sin % (3.7)
n=1
and
. = Z o (A opn 2 (3.8)

i
’_!



Equation (3.8) indicates that the membrane force can be
regarded as being composed of an infinite number of distributed vertical
loads whose magnitudes vary sinusoldally along the span length. It can
‘be expressed to any desired degree of accuracy depending wupon the number
of terms considered.

The vertical deflection of any point on the arch is equal to
that of the point on the girder immediately below it, and in the arch it

is the sum of the deflections produced by the horizontal force Hy, and

the membrane force g, that is:

A = oyt by, (3.9)

The deflection due to Ho is given by:

420y _Hoy  Mgh {x X
L

==
dx® El, EI.

[

x = L
- N -
B RLE x. ; %
by - B e O &)
BEJ_,LL L L Ao (5&0)
Hence from Equations (3.6} and (3.10)
2 0
A = - Dol (5)4_ 2 (£)5 + (3] o+ . gyn BE (3.11)
3EI, L L L EI. L e
Tael
and when x = kL, the deflection /yp under the load F is:
2 o0
Hth 4 3 T‘ 8
= - = (k- 2k’ +k =L gin  nlk
A? 3T, (k ke k) + 14 gro Sio nllk (3.12)

Ho.and the constants 87 ¢ooaby remain to be determined,
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Since the relstive horizontal movement on each side of the cut

section at Hy, is zero,

8H = 60H+HOBHH = 0 (5.13)
from which
Hy = - o (3.14)
OxH

80H and SHH denote, respectively, the horizontal movement of the arch at

Hy due to the membrane load force g and to the load H, teken as unity.

00
= h \ 1
SoH = EICSOH = = 1.6 -i Z &n (Eﬁ
1+3-5
- B _ 8 2
6HH = EICBHH = I§ h™=L

Substituting the above in Equation (3.14) and reducing, we obtain:

H = 30% }:ng L (3.15)

Thus, H, can be determined when the Fourier constants are known, and
these in turn can be calculated by consideration of the energy in the
system. If a small increment dey 1s given to a Fourier coefficient a4,
there will be a small change in the internal stresses and also a small
consequent deformation of the whole system including the load point.
To satisfy equilibrium, the change in potential energy in the system
must equal the change in work done by the external load.

Thus Y gs, —P(a A/d (3.16)
aai



oL

The total petential energy in the system 1s:

L L o L
M H.cos o) -EE
—i-— dx + [ —&— dx +L/@—Qi32n2Lw ax +\/@ o/ 4y (3.17)
281 EEgIg 2EAL QEgA
I O o O i b
0
\ vll.2 . nllx
My = Foy -Z a, (%L—) sin =5~ (3.18)
ne=sg

o0

\ nll, 2 nllx -

My = P{1-kK)x = > a,, (Ef)f gin =5— for 0 <x < kL
nEL
&1

(3.19)
- Pi({L-x) - a (M2 gin 8 sor gkl <x <L
=l ]
From Equation (1) L
2 2 o 2 . -
2 16h 6hhe x,  6Un® x. 2]
® [ 2 " e
and for L/h =
L
Jfoosgm dx = % L (3.20)

[s)
Substituting these values in Equation (3,17), ard integrating it and

reducing gives

[ee] oG
1 8 22 3pHoh i 1 \'.2, b 1.2
o= —Hh L - Ee o=\ g (nll) + 7 H
U ZEI, [ 15 Hob L T | ay i 3 I ZJahﬁrH} + o
Le5e5 nl
~ 2 o3
R ) s e 0 o op ) k)
iil-k) - a, sin {r
emIEIc L > Z;
n=l
(o]
— 2
7 " a 2 2
. Z e ] (3.21)
"



Substituting for Hy in the above equation and differentiating with respect

to a;, we obtain:
o S | b1 - 18008 (582
| 3.22

1 ) , 1800  rgl
+ ST { 2P sin (ilk) + L5 (111) (111)2 ( h)]}

The change in potential energy in the bowstring arch due to the increment

day is:
ou 1 a 4 I ,Te\2
a1 %~ ZEI, <f% {(m) i (m) [960 - 2800 3 (37) ]}

1 . 1800 35 2.1 ,
+ HI-{- 2P sin (ilk) i- -3 [(111) + (in)g(h) ]}> day (3.23)

Substituting for 158 in Equation (3.12) and differentiating, we obtain:

d _ P 10 b
bp = = | in(k

< - DkD
aai P ET. 2k” + k) + sin (1Ik)]

(3.24)

and the work done by P is:

9 = P 10 b L3 a '
P (aai Ap) day B - 3 (k* - 23 + k) + sin (iIk)]de;  (3.25)

The change in work done by P is equal to the change in the
potential energy of the system, so equating Equations (3.23) and (3.25)

and simplifying gives:

+1
= sin (iIK) - %% (% - 23 + k)
8, = PL° — (3.26)
mp + 1 y 120
o TR %

where

op =8 - 15 |I (Ze)% + L (Zg) (3.27)

g mr °h
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ne tt

1

Note that even values of have no effect on Hj.
The Fourier constants from Equation (3.26) can now be substituted

in Equation (3.15) to give Hy; Equations (3.7) and (3.8) can be used to give

Mq and q, and the bending moments in the arch and tie girder are then given

by:
\ 2
M, = Hy - Z oy ()" sin 2 (3.28)
n=1
M, = M, - }; a (-I}—E)2 sin B (3.29)
P n ‘i, L

The suspension-rod forces are given by integrating Equation (3.8) between

the proper limits.
For a Prestressing Force F as Shown in the Diagram Below

Since all assumptions for this case are the same as before, Equa-
The difference is in

tions (3.1) through (3.8) are valid here as well.

the application of the external load.




Likewise, the relative horizontal movement on each side

of the cut section at H, is zero:

g = o *+ Ho by + (F - Ho) &gy =0 (3.30)
from which
o) + Fd
Ho - QH " - -GH (3.31)
Sag - Omm

denotes the horizontal movement of the arch at Hy due to a unit load on
the tie girder. Sog and dyp denofe the same as before and
L
o) = -
GH EA g

Substituting the values of and 8. into Equation (3.31) and

QH{’ gﬁH GH

reducing, we obtain:

T2 T .
Pl (C8) 4168 2: %%u -
.o 1:3.5
o
where F (3.32)
8 bR, 1 (T2

Thus H, can be determined when the Fourier constants are known; and
with the same reasoning as before:
ou o)
— da; = F{=— &) da .
= ay = (S 2yp) day (3.33)
i

where AF is the horizontal movement of force ¥. The total potential

energy in the system is:

L, L, L 5
M o ]
U =k/p a - Mg . dx 4 L/‘(Ho cos o) i

2EI, J BT, 2F A

L

(F - o)™
+ dx (3-31*)
2EgAg



e

where
M = H N ’Eﬂja sin B see Equation (3.18)
. = 2y - 8, QIJ N 5 o3t Js o
n=i.
s (3.35)
nll,2 . nlx . \
Mé :=_}: an (T7) sin /T~ , see Equation (5073
n=l
and
L

o/P cos” pdx = % L s see Equation (3.20)
Substituting these in Equation (3.34), ard integrating and reducing gives:

© ©0
1 8 .22 32Hoh \ 1 1\ 2 \l;]
= - - == = : all
Y {[ 15 Mot BT T Z n oitE3 [/, % (0
.105“5 p:,l

(3.36)

Replacing the value of H_ from Equation (3.32) in (3.36) and differentiating

with respect to a3 , we obtain:

2 2 .2
X . < o [k BT el T
daq 2E1 -’2 (iM% lop 15 12 mp 12 y 12

8 s n 1 Foel 32 B

- L= W, .2 .2, = ., [__ 2= B

1024) + —_— }+ 2L D aplay 15T

2
L r re
- .22 I, ¢y ._ .37)
el DL SRS 8]} (3.37)

The change in potential energy in the bowstring arch due to the ircrement

dai is:
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' 2 , 2 2 2
dag 981 2B, <f§ {Ez (1) Zoy [dxp ( 5 127 mny I8 M- )

- | mr + l | u §..-. - ra * E—-— A -—-—---—l h¢ E"" ‘]':’"" 32 ¢ ’13"2'
:Loah] + —;-—-——mI (1m) } + ny i% L (1m) OF [ & 5
2 2 o
+ = é*”ﬂ’iﬁ)"a] day

The horizontal movement of force F is

. o FL ,
A C i (3.39)

where C is a constant, Differentiating Equation (3.39) with respect to

8y gilves
3 0 (3.50
'6'9—‘{ % @ 5! )
and the work done by F igm:
aai Ap) day =0 (3.41)

The change in work done by F ie equal to the change in the
potential energy of the system, Thus, equating Equetions (3,38) and (3.41)

and reducing gives:

8  (Tg\*h
| (>8) 2
8, = FL - ey % (3.42)
mI+l 1T - 128 &2
e ( ) O zz;sﬁ (L) Pr
where
8 bR, L (Tg?
and L r 2
B = b= @) - G
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As before, even values of "i" do not effect Hj.
From Equation (3.42) Fourier constants can now be substituted in
Equation (3.32) to give H_; Equations (3.7) and (3.8) can be used to give

M2 and d, and the bending moments in the arch and tie girder are then given

by:
v 2
M, = Hgy - ZJ an (%E) sin E%E (3.54)
n=1
M= —ia (A2 g4y Dl (3.k5)
g oL L .

n=1

The suspension-rod forces are given by integrating Equation (3.8) between

the proper limits as before.

For an Initial Predetermined Gap A, as Shown inthe Diagram Below

A1l assumptions and Equations (3.1) through (3.8) apply for this

condition also.




The relative horizontal movement on each slde of the cut section

at the origin "0" is Ag:

AG

from which

By

Substituting the values of

= 8oy * Hoduy (3.46)
-3
= Ay - Bo (3.47)
-

8o and Bgy in Equation (3.47) and reducing we

obtain

=
o

By

12
8 (3.48)

L Tt
"“&l:”

“mi

nH

45,3

As before, H, can be determined once the Fourier constants are known. With

the same reasoning as in previous cases,

U OH
da (£29) da (3.49)
The total potential energy in the gystem is:
L 2
U = \/p 8 §x +L/P SEQ“SEE_Ei_ ax (3.50)
o o) o 2EAc
where
2
I\ @ X
My = Hyy - 24 8in, (%E) sin.E%E s [see Equation (3.18)]
n=l
(o +]
2
My = E: an'(ig) sin E%£ [see Equation (3.7)
and L n=l
Jpcosg¢ dx = % L [see Equation (3.20)]
0

Substituting these in Equation (BQSO), and integrating and reducing gives:



. 1 8 42,2 _32Hoh 1,1 2 L
U = 5T, {[15 Hh'L - === Zan —=+ 553 Z a, (nl) "]
1.5'5 n=

(3.51)

Eaexﬁz (am)* 400}

Substituting Hj from Equation (3.48) in Equation (3.51) and differentiating

]

with respect to aj gives:

[mI + 1 (iH)ll‘ _ 302 (52 - 60
my (i10)

pp5 [ re
* u(in)'ﬂ'ﬂ')’i? 2g

The change in potentisl energy in the bowstring arch due to the increment

e
+=iH
ko

da. ORI
! c (3.52)

dai is:e

fell) da; = 1 . 2.% [I_nl_i_:l; (iﬂ)h _,__?.Q.é (32 _60%&1)]

day +  |2BI, L (3.53)

+ 225 I

Bam ¥ ‘5&2%}

From Equation (3.48) the horizontal force iss
_15 , EI \
B B k) 5

Differentiating Hy with respect t a? ives:

M, %20 1

day (M) ~ nr2 (5.54)

and the work done due this change in Ho 1ss

B, (=2 aay = O L aa (3.55)
(aai) 1 = % um e %

The work done by the change in Hj, is equal to the change in
the potential energy of the system; thus equating Equations (3.53) and

(3.55) and reducing gives:
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30 o . Ay Elg
ai = L5 (4m) i8§2 (3.56)
my + 1 L
(i) (1m)?2 %

where "i" is odd for Ho
and aG- = 2 - %‘;?_ . (E) . (Eg.)2 (5057)

From Equation (3.56) the Fourier constants can now be substituted in
Equation (3.48) to give H,; Equations (3.7), (3.8), (3.44), and (3.45)
can be used to give, respectively, Mq, q, the bending moments M, in the

arch, and Mg

are given by integrating Equation (3.8) between the proper limits.

in the tie girder. The suspension rod forces, as before,



IV. EXPERIMENTAL STUDY

Preliminary Work

To determine the load-deflection relationship in the bowstring
arch, prior to any analytical‘work, a preliminary experiment was carried
out on a 2l-inch-length double-plane Plexiglas model, shown in Figure 27.
The model was loaded in several increments elther by a vertical load at a
panel point or by a horizontal force at the ends (produced by tightening
the bolts on the prestressing rod) and the corresponding deflections on
the tie girder were measured at all the panel points, The results of the
tests, when plotted load vs. deflection, indicated the existence of a

linear behavior between the applied load and the deflection produced by it.

Main Experiment

The main experimental work was carried out on an aluminum model
of 49 in, c. to c, span, and the results were compared with exact and

approximate theoretical study,

Dimensions

The arch rib, cut from l-inch-thick aluminum (6061-T6) plate,
was 1 in. wide at the crown, msking L/r, = 169.T4, and varied according
to Ag = Ap sec ¢ and Iy = I, sed3¢ toward the abutments., The interchange-
able tie girders were made of extruded aluminum (6063-T5) rectangular tubing.
There were two different sizes, 1 1/2 x 1 1/2 x 1/8 inches for two, and
11/2 x 2 x 1/8 inches for one tie girder. One of the former was for the

case with an initial gap. This had horizontally slotted holes at each end

=33~
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to permit relative horizontal motlon between the ends of the arch and the

tie girder, The suspension-rods were made of 7/32—inch—diameter brass rods.
To find the moduli of elasticity for aluminum and brass, samples

prepared from the same stock as the model were tested from which the follow-

ing ratios were obtained:

mp = 2,6208 for 1 1/2 x 1 1/2 x 1/8 inch,
mp = 5.3004 for 1 1/2 x 2 x 1/8 inch,
and m. = 0.,0637 throughout,

Loading and Measurements

The model, in vertical position, was loaded in two increments of
100 1b at each panel point, and strains of a total of 25 points (the distri-
bution and location of which are shown in the diagram below) were measured
by SR-4 electric strain gages after the application of each increment of
load, To minimize the errors in strain measurements, two gages in series
were used per point. These were glued one on each side of the point in
question,

The horizontel prestressing load was applied in increments of
1000 1b to a maximum of 4000 lb. This was done with the help of a hy-
draulic jack, a calibrated B/h-inch—diameter load rod, prestressing wire
that ran concentrically inside the tie girder and anchor plates., See
Figures 28 through 30. As with the panel point loading, strain measure-
ments were taken after every increment of load,

For the case with the initial gap, the relative horizontal
deflection were varled in different decrements to a maximum of 181.7 x .1,0”3

in. and the correspapding horizontal force and strain measurements were
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taken for every decrement of the relative deflection.

The theoretical and experimental values of the axial force and

the hending moments in the arch and the tie girder are shown compared in

Table V and Figures 1 and 2.
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TABLE V

ANALYTICAL AND EXPERIMENTAL VALUES
OF HORIZONTAL FORCE X; COMPARED

LOAD CASES

A Y Po=l

B ’ P3=l

¢ 'P4=l

D Plil 1;l=1

Ho Ho
Jkae yed
A =KL &K = 2200
Ea Ac
Horizontal Force
Load Case my By Energy Method By Membrane Analogy By Experiment

A 2.62 0.3329 0.3296 0.3300
B 0.5999 0.6064 0.5892
c 0.7482 0.7662 0.7161
D 0.005615 0.005422
E 19.41 18.74 20.1k4
A 5.30 0.3304 0.3190 0.3304
B 0.5938 0.6000 0.5648
o 0.7390 0.7682 0.711k
D 0.008061 .007915
E 33.01 22 41




LOAD CASE
(SEE TABLE V)

>
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Full Lines show bending moments calculated by the energy method with
extensible suspension rods.

® —— Indicates Experimentel Vaues

A —— Indicates Membrane Analogy Values

Bending Moments are in units of in-1b x 49

mp = 2,62
BENDING MOMENT ALONG BENDING MOMENT ALONG
THE GIRDER THE ARCH
.08 .03
5 (a) L (b)
.04} .o2f
.02~‘ oikc¢
(o] 1 "y 0 R Q 3 -
.ozt 5 | 6 :1.06 il O 1
—.03 -
. Kl
0 o]
] . -0l
i J-.03 : -
.04} .02 J.o2
Kot 44 Ol
-02[ -0l
-.02L
0 0
-.0004
-.0008 -.0002 |
-.0004
| 14 @3 /2" 498" TYPICAL |
I v

Figure 1. Analytical and Experimental Values of Bending
Moments Compared for my = 2.62



LOAD CASE
(SEE TABLE Y)
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Full lines show bending moments calculasted by the energy method
with extensible suspension rods.

®—Indicates Experimental Values

A__Indicates Membrane Analogy Values
Bending Moments are in Units of in-lb = 49

.02

m. =5,30
BENDING MOMENT ALONG THE I BENDING MOMENT ALONG THE ARCH
- GIRDER
08¢
s (a) .02 (b)
0 , , r 0
L Q ol k 0 O
4.06 O o
" e - -0l
-.03-
-4.04
-.02
0
4-02
d-04
i .\W
o o] '
0 i AN
-03k ol
14 @ 31/2" = 49" TYPICAL |
—
o 0
-0008 | -.0002
-0016} —0004
0 0
-4 -1
-8 -2

Figure 2. Analytical and Experimental Values of Bending
Moments Compared for mp = 5.30.



Figure 28. End Detall for Aluminum Model with Gap.
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V. SUMMARY AND CONCLUSIONS

In the foregoing chapters, different methods of solving the
prestressed bowstring arch for various types of loadings and thelr exper-
imental verification have been described.

In Chepter I, the problem was described and a brief history of
previous work on bowstring-arch design was given.

In Chapter II, a general expression for solving bowstring arches
with extensible suspension rods was obtained from the strain energy of the
structure. Then speclfic equations were derived for a hinged-end bowstring
arch with six suspension rods. Lastly, from these equations (with the help
of a high-speed digital computer), influence line and other diagrams were
prepared for the bending moments and the axlal forces to be used in design,

In Chapter III, the membrane-analogy method .of solving the bow-
string arch was introduced. This method is of special value since it
covers a wider range of parameters (i.e., all rise-to-span ratlos, as
many suspension rods as desired, and even different curveé for the arch
rib) with almost no additional work.

In Chapter IV, the experimental work carried on L49-inch-span
aluminum models was described briefly and the results obtalned were com-
pared with theose given in Chapters II and III.

From the results of the work discussed in this study, the follow-

ing conclusions can be drawn,

=Loo
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(1) The assumption that the total moment at a section (simple
bending moment minus H- y) is distributed between the rib and the girder
according to their respectiye moment of inertia is quite justified., For
horizontal loading the error in the maximum moment is within 2% (Figures
1 and 2) and for vertical loading the error is around 10% at the load point
at best, but away from the load there is a much larger error (Figures 1 and 2.)

(2) A good correspondence between the results of straine-energy
and membrane-analogy methods (Table V and Figures 1 and 2) seems to suggest
that the assumption of inextensible suspension rods in simplified design is
not unreasonablef Suspension rods were assumed to be extensible in the
former and inextensible in the latter.

(3) The manner in which I, varied along the arch rib did not
affect the results appreciably. (Iavwas assumed to be I, sec) ¢ in the
strain-energy method and I, sec ¢ in the membrane-analogy method., )

(4) Omitting the axial energy in the arch rib caused by the
suspension-rod force components produced only a maximum error of 0.3%
anywhere in the bowstring arch. This item can safely be left out from
the design.

(5) For horizontal loading an inverselinear variation ms noticed

to exist between m

g,and the bending moment in both the girder and the

arch (Figure 3). The maximum error in this assumption, as mg varied

from 0.5 to 10, was 1.0%. For vertical loads the same variation in Mg
changes the bending momént by only -3.3% in the arch and by -5,6% in the
girder (Figure 4) (i.e., the effect of varying m, on vertical loads can
be totally neglected),

* This cen also be due in part to (3)
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(6) Varying m, from 0.05 t0 » produced a maximum bending
moment change of -2,4% in the arch and 2.7% in the girder for %he
horizontal loads, and 26.7% in the arch and -9.8% in the girder for
the vertical loads (Figures 3 and 4). This same variation in m, camsed
in the largest of the suspersion rod forces an increase of about Ql%o
In practice the percentages mentioned above can be considerably less, for

m,. may take values a few times larger than 0.05,

(7) For vertical loads: The horizontal force in the arch and

the bending moment along the girder were found o be very sensitive to
variations in m: when L/r . was small {Figures 5, 12-14), but for large
I C \ < 3 7

values of L/rcj changing my had very little affect on the bending moment
and practically none on *the horizeontal force.

Suspension-rod ard horizontal forces were directly proportional
to L/r, and inversely to my. They never changed sign (Figures 5-8).

The bending moment varied with mg, directly in the girder and
inversely in the arch (Figures 9-14). As L/r, irncreased, along the glrder,
the (-) bending moment increased and *“he (+; moment decreased,

For horizontal loads: Suspension-rod and bhorilzontal forces as

well as the bending moments bhoth in the arch and in the girder were all
found to vary inversely with L/"rC ard except for the bending moment in
the arch, directly with my. They were very sensitive %o changes in L/rc

when the latter had low values end became insensitive as L/r, took on

large values (Figures 15~26),



(8) As a whale the results of the experimental work showed
very good agreement with those of the analytical methods. The maximum
error in the horizontal force, using the strain-energy method as the
standard for comparison, was 5,4% for the membrane-analogy method and
4.9% for the experimental work. (See Table V.) For the vertical losding
the bending-moment curve of the experimental work showed a small shift
upwards along the girder, and downwards along the arch (Figures 1 and 2).

The bending moment along the arch (Figures 1b and 2b) was not
a smooth curve, while upper and lower-envelop curves, if drawn, tend to be
smooth, Figure 3 shows upper-envelope curves only.

(9) The membrane-analogy methed yilelded very satisfactory
results. The maximum error in the bending moments for horizontal
loading did not exceed 2,6% along the girder and 6.6% along the arch
(Figures 1 and 2) compared with the results of the strain-energy method.
It was further observed thet, as my increased, the error in the bending
moment increased in the arch and decreased in the girder in a linear
fashion, This can be atrributed to the assumption that the suspension
rods were inextensible,

In some cases the results from the membrane-analogy method
can be obtained by using only the first term of the series, This is
especlally true for finding the horizontel force for all types of loading
and the bending moment along the glrder and the arch for horizontal loads.
In other cases, say to find the bending mement for a vertical load, since
here the series does not converge so rapidly, one must use a few more

terms of the series, The latter will no doubt depend on the accuracy
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desired. One can assume (Ia = I, sec ¢)variation without introducing any
error which is significant for preliminary design. In conclusion, the
use of the Membrane Analogy method for design is highly recommended.

(10) When a uniform load is spplied over the entire length of
the bowstring arch, the bending moment along the arch is found to be
positive (Figures 9-11). On the other hand, prestressing the bowstring
erch, with or without gap, by & horizontal force always produces a negative
bending moment in the arch rib (Figures 3, 16, and 22). Thus prestressing
the bowstring arch to counteract the dead-load bending moment is very ad-
vantageous for the arch rib.

In the tie girder for low L/r'c values the bending moment is also
positive when m; is around 10 or larger (Figures 12-1L4). Here again there
is an advantage to prestressing for the dead-load bending moment. When L/rc
has large velues (Figures 12-14), the girder part of the structure does not
profit from this combined prestressing; it may even suffer. In this case,
the gap prestressing system may be followed and the suspension rods re-
leased when the gap is being closed., After prestressing, the suspension
rods are fastened back. This will allow one to get the benefit of pre-
stressing without its harmful effect. If the tie girder is to be made
of prestressed concrete, the two prestressing operations can be performed
in one. Thus, within the limits described above, there are definite ad-

vantages to prestressing the bowstring arch.

NOTE: It may be of interest also to mention here that for short spans,
the roadway floor mey be designed as part of the tie girder itself,



APPENDIX A
RELATION BETWEEN THE VERTICAL COMPONENTS OF THE DEFLECTION
OF THE ARCH RIB AND THE TIE GIRDER 1)
Let v represent the component of deflectlon along a normal to -

the arch-rib curve at point Q in the diagram below,

-

7
/

a—

—_—

et c—

From the differential equation for the deflection of a curved beam:

R - (A.la)
s p2 EIg

in which ds is an element of length of the arch rib and p is the radius
of curvature of the rib at point Q.
The second term of Equation (A.la) can be neglected without

appreciable error, and the equation reduces to

2
v

o)
a

==t (A.1b)

&
w
=

1g

Neglecting the tangential component of deflection at Q, the vertical
component n of v is:

n = Vv cos g (A.2)

_47_



The first term of Equetion (A.lb)

involving n, x, and @ as follows:

and

Neglecting the last three terms o

Using dx =

or

*

For the girder (see

*

The total

change in lengbths of the

3 R A L
=g 9% @ - Vg sin o

= ds cos @, Equation

ﬁ:c@s@&_‘ QX
ds2 d32 ds

dsv
=Co08 Q—— = 2 —
ds ds

f
dey dgg
——'zﬁse@
ds ¢ ds~

.2 2
a%y o d%y
—_— = 208\

ds® T

El, dx?

M 2
S o
EL, Ax®

hangers,

moment Mp is equal &

_9 gin o - v mnp sin @ - Vv < cos o
1 v 4g v
=gin @+ —5 — sin @ ~ —,c08 @

Q

{approx.,

2 s,
& = cos g &0 (approx.)

preceding diagram),

we ohtains

a2

(A.4) reduces to

Q M + Mg

ds

s and reglecting

from Egquation (A.2)

o

Equation (A.3), we obtain:

A.5a)

(A.5Db)

(A6}

the

can be replaced by an expression

(A.3)
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snd from Equations (A.5b) and (A.6), letting m = Ig/Ia,

. _
Mg = Mp {1+ cos @ > (2.7a)
and
- __Cos @
My = MT m + cos @.> (A.b)

Professor Havidr and Drs. Chandrangsu and Sparkes in thelr

respective designs replace cos ¢ of Equations (A.Ta, b) by one.



APPENDIX B

SAMPLE CALCULATION

Calculation for AXj:

To find AXy, from Table II, IIT, and IV evaluate all five

terms of Equation

(3) and add them up together. Thus,

am
L (M + M) 5
2 As = (498.856TXy + 165.7656Xp + 303.2085%3
0 Ey I
+ 382.L4850%y + 382.4850%X5 + 303.2085%g
+ 165.7656%7) o
7 By I

(See page 52 for

detailed calculations of this first term).
g,

3 —
mg) Xy

(See page 53 for

A, Bs = (5.5095%; - .49k1Xp - .9249Xz - 1.1892%)

L
- 1.1892X5 - . 92h9X, - .49u1x7) TR

details of this second term).

Mg
t
1 (Mg + Mg Eiz
% Ax =0, see Table III
0 Eglg
N,
g
s
L (Ng + Ng) .Bfl- (Pl + X:L) L
Z Ax = 5 A , see Table III
0 Eg Ag g g
(n-2>Xi hi
- = 0, see Table IV

-50~
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and after adding and simplifying,

-2 -2
axy = { [498.8567 + 13228.5095 (1) + 16607 - al; NCRE
I, \ -2
+ [165.7657 - 1186.33k1 (;—) 1%
c
=2
+ [303.2085 - 2220.6849 (;Z) 1%
I, -2
+ [382.4850 - 2855.2692 (&) Ix,
L -2
+ [382.4850 - 2855.2692 (=) 1%
C
1, -2
+ [305.2085 - 2220.6849 () 1%
T, =2
+ [165.7657 - 1186.3341 (=) 1%

c

+

Py ,L.- L
o 3 6
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APPENDIX C

Influence Line Diagrams and Graphs for
Preliminary Design Work
Figures 3 - 26
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