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Abstract

Local motion of polymers is extremely important while studying the behavior of
single strand DNA in DNA unzipping and replication, understanding rheological
properties of polymers in confined in narrow gaps for head-disk interface design for hard
disk drives, and designing membrane structure for small molecule permeation through a
dense polymeric membrane. So, in order to understand the mechanism of energy
dissipation of dilute polymer solutions at high frequencies, I carry out a Brownian
dynamics study of a linear bead-spring chain in which the beads represent individual

backbone atoms, a stiff Fraenkel spring potential maintains the distance between atoms

0
near 1.53 A, a bending potential maintains tetrahedral bonding angles, a torsional

potential imposes realistic barriers to torsional transitions, and white noise represents the
Brownian force from the solvent. With this model, I find that the end-to-end vector
autocorrelation function from the simulation is in excellent agreement with the theoretical
Rouse model predictions. Nevertheless, the autocorrelation function of the bond
orientation vectors—which delineates the relaxation of the stress tensor—exhibits a much
slower decay then predicted by the coarse-grain Rouse theory except near the longest
relaxation time even for chains with as many as 50 bonds. I find that both the bending

and torsional potentials slow down the contributions of local relaxation modes, bringing

XiX



the relaxation of short chains (less than 50 bonds) closer to single exponential behavior
than to the Rouse spectrum, in qualitative agreement with observations of birefringence
relaxation [Lodge et al. (1982) J. Poly. Sci. 20, 1409]. Also, my normal mode predictions
using the bead-spring model provides an excellent fit to data for 2400 and 6700 base
single-strand DNA molecules [Shusterman et al. (2004) Phy. Rev. Lett. 92(4), 048303]
and the fit yields 12 Kuhn steps per spring and a value of 0.12 for the standard
hydrodynamic interaction parameter—very close to the values typical of conventional
polymers such as polystyrene. Thus, my results are generally in agreement with a recent
notion of a “dynamical Kuhn length” in which torsional barriers to chain motion, can
suppress high frequency contribution to viscoelasticity [Larson (2004) Macromol. 37,

5110].
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Chapter 1

Introduction

The long chain nature of polymers causes polymer motion to extend over many
orders of magnitude in time from vibrations at picoseconds, high frequency torsional and
vibrational behavior, up to the slow reorientation of whole molecules approaching
macroscopic times [1]. Thus, study of local motion is expected to further the
understanding of the chemical structure so that mechanical properties and material
response during processing can be improved. However, in order to account for local
effects, bending and torsional effects must be taken into account explicitly which has not
been done in the standard coarse-grained models that have been used for carrying out
theoretical analysis on polymers. Such a local microscopic analysis is also relevant in
understanding rheological properties of polymers confined in narrow gaps of the order of
I nm for designing head-disk interface of high recording hard disk drives [2]. In such
small confines, the polymer behavior is significantly different from that in the bulk.
Another application of this work is in furthering the understanding of solution-diffusion
concept using which small molecules in the liquid state permeate through a dense

polymeric membrane. In a process like this, understanding the membrane structure



enables researchers to better the membrane design and performance [3]. In processes
such as DNA unzipping, where the double strand unravels into single strands, while
extensive experimental and theoretical work has been carried out on double strand DNA,
much less attention has been devoted to single strand DNA. Once again, similar to other
polymers, in order to carry out a theoretical analysis on ss-DNA, the local bond motion
need to taken into account explicitly.

The slow dynamics of polymers in dilute solution are well described in the linear
viscoelastic regime by the decades-old Rouse-Zimm theory [4, 5] which coarse-grains a
polymer chain into a sequence of frictional beads connected by Hookean springs. Such a
description is not expected to capture fast dynamics dominated by the local motions of
one or a few backbone bonds since at long time scales such dynamics are expected to be
subsumed into the effective bead drag coefficient and spring constant of the bead-spring
chain. The success of this approach has been demonstrated in numerous comparisons of
the bead-spring model to experimental data for long polymers in dilute solution [6].

What remains unresolved is the manner in which this coarse-grained bead-spring
model breaks down at shorter time and distance scales than those for which linear
‘springs’ capture reasonably well the configurations of the chain. One might expect that
at short times (or high frequencies) viscoelastic experiments would show indications of
high-frequency modes that are controlled by motions of small groups of bonds that are
influenced by bending and torsional potentials. Nevertheless, very surprisingly,
experiments by Schrag, Lodge, and coworkers [7-9] have shown that the Rouse-Zimm [4,
5] bead-spring chain model can describe reasonably well the entire frequency range of

dilute polystyrene or polyisoprene chains—even at frequencies high enough that single



springs are expected to be strongly excited. This is true as long as the number of springs
is chosen so that each spring represents a sub-molecule of molecular weight 4500 + 500
for the case of polystyrene [6] and 2400 for polyisoprene [9] which in both cases
corresponds to around 100 backbone bonds. In contrast, both experiments and
simulations in melts show multiple ‘local’ modes associated with relaxation of individual
or small groups of bonds which couple to similar relaxations of bonds of neighboring
chains [9-13]. What is mysterious is why such modes do not appear in the viscoelastic
measurements of dilute polymer solutions.

First, in order to test this observation on other polymers, I carry out a study on
single strand DNA (ss-DNA). ss-DNA can also be thought of as an ordinary polymer as
long as its tendency to self-base-pair is suppressed by using highly alkaline conditions
and somewhat elevated temperatures [14]. This work followed the recent development of
optically visible DNA as a model polymer molecule which was one of the four major
contributors to the rapid progress in the quantitative prediction of molecular deformation
and stretching [15].

ss-DNA’s small persistence length makes it even more similar to ordinary
synthetic polymers such as polystyrene than is double stranded DNA. Recently,
Shusterman et al. [14, 16] reported for the first time the stochastic motion of individual
monomers within isolated single- and double-stranded DNA. By attaching a fluorescent
label specifically to a single base at the end of the chain, they used fluorescence
correlation spectroscopy to monitor the motion of 2400, 6700, and 23100 base ss-DNA
polymers in dilute solutions (0.03 to 0.3 molecules in an average confocal microscopy

volume). This yielded data containing essentially the same information as linear



viscoelastic rheological measurements. Strand separation was achieved by maintaining an
extremely alkaline condition (pH = 12.3) and an elevated temperature (37° C). Thereafter,
the authors measured the end monomer’s mean square displacement (MSD) over five
decades in time interval, A¢, and found two distinct power-law regions. In one regime,
encompassing intermediate times (At = 5 - 40 x 107 s), the MSD exhibited a slope of
0.69, which is similar to that predicted by the Zimm model for theta solvents in the non-
draining limit where the slope is 2/3. At long times (At > 40 x 10~ s), the mean square
displacement (MSD) was found to be linear in Ar and described the bulk diffusion of the
coil as a whole. Here, ‘time’ is used as a short-hand for ‘time interval’ between
measurements of monomer positions. Viscoelastic measurements for ss-DNA can be
computed using the bead-spring model by invoking a normal mode approximation with
pre-averaged hydrodynamic interaction. Amelar et al.’s work [6] on polystyrene in
Aroclor 1248 is an example of a successful demonstration of the use of normal modes to
predict polymer properties. Hence, I use the normal mode analysis to predict the chain-
end diffusion behavior of ss-DNA. I follow this by comparing the bead-spring model
parameters for ss-DNA to those for polystyrene and find that ss-DNA’s hydrodynamic
parameters are similar to those of polystyrene.

Next, I find suggestions in literature [13, 17] that torsional barriers to bond
rotation might confer a large ‘dynamic stiffness’ to polymers that slows down modes
requiring fast bond motion causing their relaxation to overlap with the terminal zone for
short chains. This might occur only in dilute solutions, and not in the melt, because in the
melt the diffusive motions of the chain are on length scales larger than that of bond

rotation. Additionally, the high friction of the medium in melts slows down the bond



rotations more than the local bonds. As a result, in the melt (but not in dilute solution),
the local rotational barriers can be surmounted faster than diffusive relaxation on longer
length scales can occur. Hence, the relaxation of local modes can be temporally
distinguished from the longer-range, diffusive modes.

To test such ideas and to better understand the mechanism of energy dissipation at
high frequencies in dilute solutions, one must study a polymer chain model that endows
each short backbone bond with realistic bending and torsional angle restrictions [17].
Therefore, I conduct a Brownian dynamics study of a linear polymer chain in which the

beads represent individual backbone atoms, stiff Fraenkel spring forces maintain the

distance between atoms at 1.53 f\, bending forces maintain tetrahedral bonding with a
bending angle of 109° 47°, torsional forces maintain realistic barriers to torsional
transitions. I also add white noise that represents the Brownian force from the solvent.
Then, I collate my calculations of the end-to-end vector and individual spring vector
autocorrelation functions predicted by Brownian dynamics simulations using this model
to that foretold by the theoretical coarse-grained Rouse model. In addition, I reckon the
relaxation rates and amplitudes for all modes and contrast my estimations to theoretical
predictions and simulations carried out for the melt state described in literature. Finally, I

also work out the time dependent scattering function, § (q,t) , from the model and discuss

how these results differ from both the Rouse-Zimm theory and experimental data.



Chapter 2

Single-strand DNA as a dilute polymer chain

In physics, the equations are deterministic. When systems are too complex to be
described in detail, or a detailed description is too difficult to handle, a stochastic aspect
is introduced to model incomplete knowledge. Thus, possible macro states characterized
by coarse-grained variable(s) are presented in place of a full detailed microstate [18]. The
Langevin equation, an example of a stochastic differential equation, describes the highly
irregular motion of a Brownian particle as a result of collisions with the many small
surrounding molecules. Peters (2000) stated that even if the initial trajectory of the
Brownian particle is kept identical in all experiments, having the same initial trajectory of
all the solvent particles would be beyond control [18]. In cases such as this, where the
deterministic repetition of experiments is not possible, an averaged description is
preferred. In this chapter, I describe the standard coarse-graining techniques that have
been used for understanding viscoelasticity of dilute polymer chains and how I adapt

them to understand the behavior of single-strand DNA.



2.1. Coarse graining

For describing the rheological behavior of polymers, the overall architecture is
more important than the chemical composition of monomers [19]. The level of coarse-
graining required to simulate a polymer is set by the requirement that the coarse-grained
model must retain enough fine-scale features to represent the configuration distribution in
sufficient detail to provide accurate values of forces and stresses. The most commonly
used coarse-grained models of polymer chains are the bead-rod and the bead-spring
models.

A freely jointed bead-rod chain—also called Kramer’s (1946) chain [20] —is a
model for a linear polymer chain. In the model, the beads act as discrete sources of
friction, the joints are fully flexible, and the rods provide rigid constraints on the motion
of the beads. The rods hold up the beads at a constant relative distance and since they
physically correspond to one Kuhn [21-23] step, they act as the smallest rigid length scale
in the model [18]. With statistical mechanics as the basis, the force required to increase
the chain separation has been shown [24-26] to be proportional to the end-to-end
distance, i.e., the entropic force behaves as a Hookean spring for small deformations.
However, on account of the constraint on the rod length, a stochastic simulation of
polymer models with rigid links combined with extremely irregular Brownian motion is
more complex than bead-spring simulations. Of the two correct implementations [18] of
the governing stochastic equations, the first ‘naive’ approach gives the correct
discretization but a more elegant solution was proposed by Ottinger (1994) [27] using the

stochastic differential equations in a rigorous manner.



Real polymers are not freely jointed chains but a freely jointed chain will have the

same equilibrium mean square end-to-end length, <R2>0, and fully extended length, L, as

any real polymer in a theta solvent if the freely jointed step length, by, and the number of

steps, Ny, of the freely jointed chain are chosen appropriately, i.e., by N, =<R2 >0 and

byN, =L [19, 28]. Figure 1 shows the bead-rod and bead-spring model coarse graining a

polymer chain.

In very dilute solutions, the chains in the solvent fluid are separated far enough to
ignore the interaction between the neighboring molecules. Examples of dilute solution
polymer applications include fiber spinning and drag reduction by polymer additives.
However, in dilute solutions, a few complicating non-local internal interactions can be
distinguished [18, 28]:

* Hydrodynamic interaction (HI): This is defined as the motion of one part of a
polymer chain creating disturbances in the solvent velocity field which can affect the
drag exerted by the solvent on other parts of the same chain. The velocity field
generated by the motion of one particle which is transmitted through the medium not
only influences other particle’s motion but also its hydrodynamic force, torque, and
stresslet [29]. Figure 2 shows the manner in which the motion of all beads affects the
motion of a single bead through HI.

In the limit of linear viscoelasticity, the effect of hydrodynamic interactions can

be seen through some parameters characterizing the flow. In a theta solvent, t, scales

as M’ and M'? while [n], scales as M’ and M” [30] when the HI effects are neglected

and account for respectively. The scaling exponents have been found to decrease in

the presence of HI because hydrodynamic coupling ‘shield’ one part of the chain



Figure 1. Illustration showing a real polymer chain with a carbon-carbon backbone
containing bending and torsional angles being coarse grained onto a freely
jointed bead-rod chain and further coarse graining of the bead-rod model onto
a bead-spring chain (Larson, 2004).



Figure 2. Illustration showing the motion of a bead being affected by all the other beads
in the bead-spring chain through hydrodynamic interaction (Teraoka, 2002).
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from another reducing drag on each part. As the molecular weight of the chain
decreases, the ‘shielding’ effect becomes weaker. However, experiments down to
5000 Da—the lowest molecular weights investigated rheologically [6] —showed HI
exerts a pronounced influence on linear viscoelasticity of even short chains.

* Excluded volume interaction: This is a short-range repulsion interaction between the
atoms since they cannot occupy the same volume or space.

* Solvent effect: Depending on the chemical affinities of the solvent and the polymer
thermodynamics might favor a polymer to be surrounded either by solvent molecules
or by other polymer molecules. In case of a good solvent, the polymer coil extends
itself; and in theta solvent, where the solvent and polymer share the same chemical
composition, the balance is satisfied.

* Topological interaction: These interactions state that parts of polymer chain do not

cross each other.

2.2. Bead-spring model

The bead-spring model replaces a polymer by Ng + 1 beads connected by N;
Hookean springs. These phantom springs are freely jointed and each represent enough
monomers that the sub-chain end-to-end vectors obey Gaussian statistics [6]. The four
model parameters are: a, the hydrodynamic radius of each bead, b, the root-mean-square
length of each spring at equilibrium, N, the number of springs used to represent the
chain, and 7, the solvent viscosity. However, 7, is known for any particular solvent at a

specified temperature, so the model parameters are essentially just three: a, b, and N,.
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From these independent parameters of the bead-spring model, the hydrodynamic

interaction parameter, 4*, can be obtained as [6, 7]:

h* = 1 3i=\/gﬂ (1)
127 bny \mw b

where g, the drag coefficient, is defined as:

€ =6mn,a (2
Thus, I can alternatively specify the model parameters as: b, h*, and Nj.

Accounting for hydrodynamic interactions (HI) in addition to the spring forces for
all beads leads to a set of coupled integro-differential equations [5, 7]. However, using
the approximate normal mode analysis with pre-averaged HI, the problem can be
discretized into N, independent equations—one for each of the Ny springs in the model. In
this way, the predictions of the Rouse and Zimm models for the MSD can be obtained
[14, 31].

In the bead-spring model, the characteristic frequency, 4;,, and relaxation time, T,

for the i” mode for a polymer are related to each other by [7]:

3 37 %
W L Pl 3)
\3 &, T

where k; is the Boltzmann constant and 7' is the solvent temperature.

Once the relaxation times are obtained, the following equations emerge for the
mean square displacement of the p” bead [32]:

o PN _ |
cos (Ns) 1 exp( Ti)] “4)

The above equation can be simplified for the end beads (p = 1 or Ny+1) to:

r (O] )= 6Dt +24 {Vsﬂ
pp() =1 k.
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2 Ny k., T T t
< r(7) >=6D r+24) =B osz(—)l[l—exp(——) (5)
O RCIEED N B L (R
where
i 61k, T 2 ©)
" ND’

and D, represents the center-of-mass diffusion coefficient. For Gaussian chains and theta

conditions, the center-of-mass diffusion coefficient is estimated through [6]:

k,T| 1 ENSN +1-j

(7
¢ C NS+1 N+1

While equation 7 (and the equations in this section) might seem to be valid only
for theta solvents, the above equations have been commonly applied to good-solvent
cases by adjusting the spring equilibrium length to be larger than theta dimension. This
method, while not strictly valid for the scaling of coil size or diffusion coefficient with
molecular weight, has been found to give good predictions for a range of molecular

weights for common synthetic polymers such as polystyrene in Aroclor [6].

2.2.1. Calculation of relaxation modes

Based on the work of Lodge and Wu [7], I present a brief description of procedure
to calculate the characteristic frequencies for an arbitrary number of springs by solving
for the eigenvalues of an N x Ny symmetric matrix B whose elements are given as:

B,=H,+H

p-lg-1

-H,,,-H,,, D, q=1 2,.., Ng (8)

where
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H, = 2. i,j=0,1,2,...N; )

The Ny characteristic modes (frequencies) are the N, roots A (A, A,, ..., ) of the
equation:

det(B,, - A8,,) =0 (10)

2.2.2. Code validation

To solve for the eigenvalues, I write a code in Fortran based on Householder’s
method and the ‘Q-R’ method [33]. I validate my code by showing that the eigenvalues it
generates are identical to the analytical values [7] for Ny = 1 or 2 and are in excellent
agreement to Lodge and Wu’s [7] tabulated characteristic frequencies for Ny = 2 to 300
with A* varying from 0.05 — 0.2 (Figures 3 and 4).

Furthermore, in Figure 5, I find full agreement between data published in
literature [6] to calculations using my model parameters and relaxation times for the

intrinsic viscosity [6]:

In]-

RT Qg
Mo, N T (11)
where M is the molecular weight of the chain and 7 is the solvent viscosity. Similarly, I

present in Figure 6 excellent agreement between published data [6] and my calculations

for the infinite dilution diffusivity [6]:

k,T
g

2 .
1 + 1 21‘5h*ENS+1Ns+l_'] (12)
Ng+1 | Ng+1 =t g0
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where & is the bead friction coefficient, 3.75 x 10® kg/s. The reduced storage and loss

moduli can be computed from the relaxation times as [34, 35]:

2
' Ny T,
G = E1'='1+wr<2 (13)
and
" Ny T,
G, =E"=11+a)r.2 (14)

respectively. In these equations, w is the oscillation frequency. When I plot these moduli

in Figure 7 against the frequency multiplied by the characteristic relaxation time,
T, = EA: T,, my results match perfectly to the data and calculations of Johnson et al. [34,

35] for a polystyrene solution in a theta solvent.

2.2.3. Parameter optimization and error analysis

Now, I have enough information to begin analysis of the experimental data [14,
16] on single-strand DNA. To obtain the best-fit parameters, I need to carry out an
optimization over all model parameters (b, Ny, and h*). The first parameter—spring
length—is initialized as the length of a base, /, and incremented in multiples of /. The
second parameter—number of springs—starts off at unity and incremented in steps of
one. The third parameter—hydrodynamic interaction strength—is initialized at 0 and
incremented in steps of 0.01. #* has a maximum value of 0.49 since any greater value
would be physically unrealistic [19]. 1 then compute the MSD over the entire time

domain using the parameter set under consideration. By stepping through parameter
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values in a nested fashion, a through search of parameter space is carried out to find the
global smallest difference between the theoretical and experimental MSD.
Specifically, to determine quantitatively the accuracy of the estimated parameters

for a particular strand length, I compute the dimensionless root mean square error as:

€= E ( ]jo /d ) (15)

™ observation

where dNM is the normal-mode-computed mean square displacement at the i
point for the j” strand, dlE ; 1s the mean square displacement measured experimentally for

the /" strand at the i" observation point, and N JQ is the number of observation points for

the j strand under consideration. Here, j refers to the DNA strand sequence number, i.e.,
Jj = 1 refers to 2400, j = 2 to 6700, and j = 3 to 23100 base ss-DNA. Based on fitting the
experimental data supplied by one of the authors of Shusterman et al. [14, 16], I obtain
N? =119, N? =131, and N? = 131.

Similarly, I compute the global optimum error as:

6, = 23 E ( dNM/d) (16)

j=1 3Nj?

and the selectively scaled error for just strands 1 and 2 as:

EZ E ( dNM/d )

j=1 2Nj?

& = (17)
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2.3. Results

2.3.1. Parameter fitting

Measurements of the mean square displacement data of ss-DNA were made by
Shusterman et al. [14, 16] for three different strand lengths —2400, 6700, and 23100 base
ss-DNA —which have been summarized in Figure 8. To predict properties for a given
strand length, the bead-spring model uses the following parameters: 7y, h*, b, and N,. Of
these parameters, 7, the solvent viscosity, has the experimental value 6.9 x 10* Pa-s at
37° C. To obtain the remaining three model parameters, I run an optimization routine to
identify the best-fit values under various constraints. I carry out the analysis in three
parts.

First, I identify the global best-fit parameters for all the strands (2400, 6700, and
23100) and obtain A* = 0.14, b = 4.94 x 10® m, and Ng =6, 17, and 58 for the 2400, 6700,
and 23100 base ss-DNA strands respectively. In this fit, the values of A* and b are
constrained to be identical for all molecules and Ny is proportional to number of bases in
the DNA strand. I plot the resulting predictions in Figure 9. The experimental MSD of
the 23100 base strand is almost identical to that of the MSD of the 6700 base strand at
long times. Moreover, the MSD of the 23100 base strand follows a different slope—
compared to the other shorter strands—at intermediate times. These observations lead me
to believe that the experimental data of the longest chain are unreliable. One author [36]
of the experimental work suggests insufficient denaturing conditions could have led to
incomplete separation of the ss-DNA strands leading to intermittent formation of ds-

DNA stretches. This phenomenon is most likely the cause of the anomalous
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behavior of the 23100 base ss-DNA. Thus, in the selective best-fit analysis, I ignore the
23100 base strand altogether, although, like the global best-fit, in selective best-fit, I
constrain the values of #* and b to be identical for all molecules and N to be proportional
to number of bases.

Second, as described in Section 2.2.3, I identify the best-fit parameters based on
the 2400 and 6700 ss-DNA strands alone. In this fit, the values obtained for #* and b are
0.12 and 5.415 x 10® m respectively. Similar to the global best-fit parameters, the number
of springs in this fit is scaled proportionally to the number of bases in each strand. This
gives the number of springs, Ny, as 6 and 17 for the 2400 and 6700 strands, respectively,
and the number of Kuhn steps per spring, Ny, as 12. As becomes clear from Figure 10,
these parameters allow prediction of the long time behavior of the experimental data. At
times less than 10~ s, I note that the predictions deviate slightly from the experimental
data.

The deviation might arise either because the bead-spring model is inherently
unable to predict the MSD at intermediate times or because of error in the experimental
data. To investigate further the ability of the bead-spring model to predict accurately
trends at intermediate times, I best-fit the parameters h*, Ng, and b to each strand
individually. Figures 11 — 13 show that the individual best fits coincide with the

experimental data nearly perfectly in each case.
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2.3.2. Hydrodynamic interaction behavior

Having demonstrated that the bead-spring model can, within the limits discussed
above, predict ss-DNA behavior, in this section I examine whether the ss-DNA
parameters are similar to those expected for synthetic polymers. I do so in two steps:

First, I compute the slopes of the MSD curves. I begin by dividing the time
domain into three parts: short (time < ~10 s), intermediate (time ~ 10 - 107 s), and long
(time > ~107 s). At the smallest times, the individual beads are relatively unaffected by
the motion of the coil. This produces a power-law slope of unity in the log-log plot of
mean square displacement versus time. At intermediate times I expect the chain to exhibit
the influence of hydrodynamic interaction. Consequently, according to Zimm theory for a
theta solvent at infinite dilution, the slope should be 2/3. At long times, with the coil
expected to diffuse as a whole, the power-law slope should be unity again. These short-,
intermediate-, and long-time behaviors are shown by lines of slopes m = 1, 2/3, and 1 on
Figures 11 — 13. Shusterman et al. (2004) [14] reported slopes of 0.69 and 1 at
intermediate and long times. For short times, because of scatter in the experimental data,
they did not report any slope. My observations compare well with the experimentally
observed slopes and are additionally able to predict the behavior at short times within the
experimental error.

Second, at intermediate times, for the MSD power-law slope of 2/3 to be in
accordance with Zimm theory for a modest number of beads, #* should theoretically be
0.25 under theta conditions. However, viscoelastic predictions for polystyrene can be
predicted very well with A* as 0.15 [6]. My analysis, using global best-fit parameters,

selective best-fit parameters, and individual best-fit parameters gives h* that varies
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between 0.11 and 0.14 indicating that hydrodynamic interaction in ss-DNA is similar to

that in polystyrene.

2.3.3. Solvent condition

Since h* = 0.15 is likely to indicate a good—rather than a theta—solvent
condition, I carry out supplemental analysis to check the preliminary indication. I do so in
two steps:

First, I plot the long-time diffusion coefficient against the molecular weight of the
chains in Figure 14 and carry out a best-fit analysis. The molecular weight of each ss-
DNA base is taken as 330 Daltons. If I consider all three strands, I obtain a slope of -0.45
and when I drop the suspect 23100 base strand chain, I get a slope of -0.56. For theta
conditions, I expect a slope of -0.5 [30] which has been observed in measurements of ss-
DNA center-of-mass diffusion [37]. If the system exhibited good-solvent behavior, a
slope of -0.6 would be expected.

Second, since the present slope of diffusion coefficient versus number of bases for
the 2400 and 6700 base strands does not give a very decisive answer, I check the
‘universal ratios’ [28]. While these scaling laws are strictly valid at high molecular
weights, since experimental data has been shown to follow the theta-condition scaling for
as low as 300 base ss-DNA strand [37], I believe this analysis can be carried out under
the present conditions as well. One such ‘universal ratio’, the ratio of the radius of
gyration, R,, to the hydrodynamic radius, Ry, represents Uy, [28]:

6D R,

% (18)

R
U —_— _g —_—
RD R,

31



‘SpueI}s aseq
00L‘9 PUB 007 U3 A[uo 3ursn 31J-1s9q Jeaul] 9y} s3uasaIdal oul] pIjos dY) pue Spuess 1Y) [[B WOIJ vlep Juisn
11J-159q Jeaur] dy) sjuasaxdar aull paysep Y, ‘BIep [BIUAWLIAAXS U} WOIJ PJORIX ST JUAIDIJJOOD UOISNIFI(]

‘puRnS YNC-SS o) JO ““py ‘WyStom Iemnosjow oy Jo Sof sureSe panoqd O ULIONIFe00 uoISniIp ) Jo S0 p 2anSig
(suoyre@) (MIN) 30
0L L9 9 1'9 8¢S
— ﬁ ﬁ L01-
860 =
O~L§'L- XS0 = A J
> N
N | s01-8
N 00T =4 o
SN #89-x950-= £ | &
EX
1 €01-Z
101~

32



where, assuming a random walk polymer and a freely jointed polymer, R, and <R2>0 can

be defined as [28]:

R, = @ (19)
<R2>0 = N b2 (20)

Another such parameter, U

NS
S
U =%~i="

nt
T

is defined as [28]:

ne’

1)

For theta and good solvent conditions, Uy, is expected to be 1.33 and 1.56
respectively for asymptotically long chains [28]. Using the global best-fit, selective best-
fit, and individual best-fit parameters, I summarize the Uy, values in Table 1. Since all
these values are greater than 1.56, the computed Uy, values in Figure 15 indicate that the

asymptotically large chain condition (i.e., large N conditions for bead-spring chains) is
not reached. Since R, x /N, and, at very large Ny, I expect D, l/ ANy [30], so that
Ugp 1s expected to be independent of Ny. In Figure 16 I show U, computed using
R, =b|N;/6 and D, from equation 7. I note that while Uy, decreases as N rises and

therefore chain length increases, even for Ny = 500 and therefore ss-DNA with 200,000
bases (assuming 400 bases/spring based on selective best-fit parameters fitting), the

asymptote is not reached. Similarly, U, is expected to be 1.645 for theta conditions and
2.39 for dominant HI without excluded volume effect [28]. My values for U,.—

summarized in Table 1—show the parameters consistent with solvent conditions to be

between theta and good.
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Table 1. Universal ratios, Uy, and U, , computed using the global best-fit (G),

selective best-fit (S), and individual best-fit (I) parameters for the 2400,
6700, and 23100 base strands.

Condition Strand NK bK (m) Rg (m) DG (m2/S) URD Un‘r

Global 2400 89 1.284E-08 4.940E-08 1.216E-11 1.82 1.72
Global 6700 244 1.304E-08 8.315E-08 6.892E-12 1.74 1.88
Global 23100 851 1.290E-08 1.536E-07 3.532E-12 1.65 2.00
Selective 2400 74 1.543E-08 5.415E-08 1.210E-11 1.99 1.70
Selective 6700 203 1.566E-08 9.115E-08 6.680E-12 1.85 1.84
Selective 23100 708 1.550E-08 1.684E-07 3.342E-12 1.71 1.95
Individual 2400 43 2.672E-08 7.125E-08 8.428E-12 1.82 1.72
Individual 6700 169 1.888E-08 1.001E-07 6.672E-12 2.03 1.75
Individual 23100 1203 9.121E-09 1.292E-07 1.723E-12 0.68 1.82
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2.3.4. Interpretation of spring length and number of springs

After demonstrating similarities between the hydrodynamic interaction for ss-
DNA and polystyrene, I examine the significance of the spring length and the number of
springs estimated from the fits of the model to ss-DNA data. These two parameters, taken
together, largely control the coil size. In turn, the coil size affects the diffusion of the
whole coil at large times.

The spring length in the bead-spring model represents the equilibrated end-to-end

length of a chain segment, <R2>0 / N . Each spring, in turn, can be expressed in terms of

the number of Kuhn steps per spring and Kuhn length as b = 1[<R2>0 / Ng =bg+/Ny s . The

fully extended length of the polymer chain, L, can be expressed in terms of the number of
springs, the number of Kuhn steps per spring, and Kuhn length as L =b,N, (N;. With
the Kuhn length unknown, I can use the expression for the overall chain length in terms
of the number of bases, n, and the length of each base, /, to obtainL=n [=Ng N, b;.
For ss-DNA, [ is known to be 4.75 x 10" m [38]. With b and N obtained from parameter
optimization, I can derive an expression for the number of Kuhn steps per spring as
Ny s =nl/byN and the Kuhn length as b, = Nb* [nl. Estimations of N, and b, based
on the different parameter fits are shown in Table 2. In order to get a representative value
of the Kuhn length for the globally optimized parameters, I average the values shown in
Table 1 to get b, (global best-fit) = 1.293 x 10® m. A similar calculation for the selective
best-fit parameters gives us by (selective best-fit) = 1.553 x 10® m. The persistence
length, A,, corresponding to each of these two conditions is 6.465 x 10° m (global best-

fit) and 7.765 x 10° m (selective best-fit)—not too far from the persistence
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length measured as ~4 x 10 m using a 10 M Tris borate EDTA buffer [37]. The values
of by and R, = N+/N, /6 are tabulated in Table 2, along with the value of the long-time

diffusion coefficient, D, from the experimental data. From these values, the value of the

‘universal ratio” Uy, = 6asD;R, [k, T is obtained and given in Table 1. These values are

well above the asymptotic Zimm value of 1.479, which my simulations show in Figure 16
is are not yet reached even for the number of springs, N, as large as 500.

The ratio of the Kuhn length to the length of a backbone bond gives an estimate of
the characteristic ratio, C,, [24]. Since each ss-DNA base contains four backbone bonds
[39], therefore, I can take the averaged length of a backbone bond to be ~4.75 x 10"/ 4 =
1.19 x 10" m. Using this information, C,, (global best-fit) = 109 and C, (selective best-
fit) = 131. While these values are large compared to C,, values of 10 or less for flexible
uncharged synthetic polymers, ss-DNA is a polyelectrolyte whose Kuhn length for ss-
DNA varies widely depending on the salt concentration. Additionally, large C, values
indicate swollen coils which is consistent with the rheological analysis.

The number of Kuhn steps per spring is computed to be Ny ¢ (global best-fit) = 15
and N ¢ (selective best-fit) = 12. Polystyrene has been successfully modeled with a spring
corresponding to 5000 Daltons [6] with each Kuhn length corresponding to 742 Daltons
[17] resulting in Ny ¢~ 7. Thus, my calculations for Kuhn steps per spring for ss-DNA are
close to the value obtained for polystyrene.

A small number of springs for the global best-fit and selective best-fit
parameters—even for strands with thousands of bases—indicates that there are relatively
few relaxation modes present in ss-DNA. This observation is similar to what has been

found for dilute polystyrene solutions [6].
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Finally, I note that the experimental data for both the 2400 and 6700 base strands
are very close to each other at intermediate times, and not in perfect agreement with the
bead-spring model predictions. At short times, scatter in experimental data is clearly
evident. This indicates the difficulty in obtaining high-precision experimental
measurements at such short times and is perhaps one reason for the deviation between

bead-spring model predictions and experimental observations.
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Chapter 3
High frequency viscoelasticity

3.1. Microscopic polymer model

In order to study the local bond relaxation, I model the polymer chain as a series

th

of beads connected by stiff springs. If the position vector of the i bead is denoted by 7/,

" beads is:

then the bond vector, I_€;, connecting the i and (i+1)
Ry=r""-r' (22)

with the instantaneous bond length

o =lR =3 (5 -n) e3)

and
kf ==5 (24)

The i” bending angle formed made by the two adjacent bonds defined by beads i,
i+1, and i+2 can be estimated by taking the vector products of the bonds connecting the

beads:

(’:i+2 _ Zi+1) N (Zi _ Ki+1) (25)

cost, = ——
A
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The torsional angle, ¢, formed by the two next-nearest neighbor bonds defined by

the four adjacent beads i, j, k, and [ is computed using [40]:

¢ = sign(¢)cos™ (m * n) (26)
where

== ”

poxr (28)

T

sign(¢) = sign of [;_f” (s xzkl)] (29)

In the TUPAC notation [41], in the cis conformation, ¢ = 0 and all beads lie in a
single plane with beads i and / on the same side of the line that passes through beads j and
k. If one looks along the line connecting bead k towards bead j, if the bond connecting
beads k£ and / must be rotated counterclockwise about the bond connecting k and j to
reach the cis conformation via the smallest rotation angle, then, the sign of ¢ is negative.
This definition can be translated into notation more commonly used for polymers, where
¢ = 0 corresponds to the trans conformation [40] using:

¢(polymer) = p(IUPAC) + 7 (30)

The notation used in computing the spring vectors, bending angles, and the

IUPAC notation of computing torsional angles is illustrated in Figure 17.
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Figure 17. Illustration of beads (i, j, k, and 0), spring vectors (r;,r ;,r,), bending angle,

0, and torsional angle, ¢, all of which make up the microscopic polymer
model. Adapted and reproduced with permission from Bekker et al. (1995).



3.1.1. Potential energies
Since n-Butane is the smallest chain that exhibits all bending and torsional
conformations of a polymer chain, I use the Rychaert-Bellemans potential [42, 43], which

was originally developed for n-Butane to describe the torsional potential energy of my

0
model chain. The distance between adjacent C-C bonds is maintained near 1.53 A by

using a stiff Fraenkel stretching potential:

-

s (0= 1,) 31)

vi(e) =3

where y; is the stretching constant, ¢’ is the bond length of the i bond, and /, is the

equilibrium bond length. Similarly, the angles between adjacent bonds are maintained

near 109°47 by use of the bending potential:

Vi(6,) = 22 (cosH, - cos8,)’ (32)

N |

where y, is the bending constant, 6, is the angle formed by the i and (i+1)" bonds, and
0, is the equilibrium bond angle which is 109° 47°. To control the bond rotation about a

central bond, I use the torsional potential [42-44]:

Vi(9)=7,Y a,cos", (33)
where y, is the torsional constant, ¢, is the torsional angle formed by the i", (i+1)", and
(i+2)" bonds, and the a,’s are constants. This torsional potential yields four energy states:
trans, gauche®, gauche’, and cis. The barrier to rotation between trans and gauche® states
peaks at ¢ = +60°. The potentials at various rotational angles are designated as V; (¢ = 0°)
for the trans state—the lowest energy state, V,;; (¢ = +60°) for the local maxima between

trans and gauche, V,; (¢ = +120°) for the gauche* states—local energy minima, and V. (¢
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= + 180°) for the cis state—the maximum energy state. From the shape of the rotational

potential, I can extract two additional relationships: dV;(¢,)/d9,

, =0 and
0

¢=+6

&Vi(¢.) / o7¢.‘ =0. These six conditions enable me to relate the six rotational
T i i ¢=11200

parameters to the known state potentials:

0= Ve +8(Vg + V)
’ 18y,

a = 14(VGT - VG) _ Ve
: 9, 14y,

o 4V, - Vgr +V,)]
’ 9, > (34)

_ [8v,. - 99(v,,, - V)]

: 18y,

a, =-2a,

. -V +(Ver - V)]
5 9V¢

In my simulations, the polymer is modeled as a phantom chain with no excluded
volume interactions between atoms and with hydrodynamic interactions neglected. All
friction is assumed to be concentrated at the atoms which are represented by beads that
act as drag centers. Unlike Helfand et al. [44] who simulated cyclic chains (rings) to
make all bonds equivalent, in my simulations of linear polymers, the ends of the polymer
chain are not connected. I use Helfand et al.’s [44] stretching, y, /m= 2.5 x 107 s2, and
bending, y,/m= 1.3 x 107 J/kg, constants, which are softened relative to physically
realistic values to enable larger time steps to be taken during explicit numerical

integration. The value of the torsional parameter remains unchanged at y, / m = 6.6344 x

10° J/kg. All parameter values are summarized in Table 3.
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Table 3. List of parameters used with the microscopic polymer model (Helfand et.
al, 1980).

S. No.| Property Symbol| Value Unit

1. Frictional coefficient / mass b 10" s

2. Bead mass m 0.014 kg/mol

3. Bead frictional coefficient g 1.4 x 10" kg/mol-s

4. Equilibrium spring length l, 1.53x 10" m

5. Equilibrium bending angle 0, 109° 47° degrees

6. Torsional angle for trans-state o, 0° degrees

7. Torsional angle for energy barrier | ¢, + 60° degrees

8. Torsional angle for gauche-state o + 120° degrees

9. Torsional angle for cis-state oo + 180° degrees

10. Stretching force coefficient / mass | y,/m 2.5 x 107 s?

11. | Bending force coefficient / mass Yo /m 1.3x 10’ J/kg

12. | Rotational force coefficient / mass | y,/m 6.634 x 10° J/kg

13. Rotational force parameter * a, 1

14.  |Rotational force parameter * a, 1.3108

15. Rotational force parameter * a, - 1.4135

16.  |Rotational force parameter * a; - 0.3358

17. Rotational force parameter * a, 2.8271

18.  |Rotational force parameter * as - 3.3885

19. Temperature T 372 K

20. Torsional potential for trans-state | E; 0 = 0.000 k;T| J/mol

21. Torsional potential for gauche-statg E 2,933 = 0.948 kzT| J/mol

22. | Torsional potential for barrier E;r 12,360 = 3.996 k;T| J/mol

23. Torsional potential for cis-state E 44,833 =14.495 kT | J/mol

* Values of the rotational force parameters (a, a,,

gauche/trans barrier height being 100% of its base value.
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3.1.2. Force calculations

With the polymer chain immersed in solvent, the random motion of solvent
molecules leads to Brownian forces acting on the chain, which can be represented by the
form [44, 45]:

Fly =0T, (35)
At

where £ is the bead frictional constant, k; is the Boltzmann constant, 7 is the absolute
temperature, At is the time step, and u is a vector each component of which has a
uniform random distribution between -1 and 1. The temperature is set at 372 K for all the
simulations in this work.

«th

To convert the stretching potential to a stretching force acting on the i bead, I use

the gradient of the stretching potential:

i J Ns Vs (yp 2
ES__O’?_Ei p=1?(€ —fo) (36)

Next, I describe the derivation of the forces acting on the beads from the bending
and torsional potentials. While some of the needed equations are available in literature
[40, 46], I briefly summarize them below for ease of reference and consistency in
notation.

The bending force is computed by taking the derivative of the bending potential

with respect to the position of the bead on which the force is computed:

F,= o = &Ki[EFI 2(cost9p cosﬂo)} 37
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Since each bending angle is enclosed between two adjacent bonds, the

«th

contribution to the j”’ component of the bending force on the i bead, r} , can have up to

three contributions:

v, i dcost,
ar,; yﬂzp=i-z(°039p costh) ar .
where
A it - AR
L e B ) @)
or; 1 1 4
A Pt it rit =l
800391 =l; ( i )+( i ’)cos@ (40)
or; 14 l 1

dcosb,; _ _[o"cos@i o”cos@i] @1

ari+l ari + &ri+2
J J J

For bead number 1, only dcos6, / 07}’]]. is relevant. For bead number 2, dcos0, / 0rf and
dcos,/dr; are required. For bead number Ny, dcosf, /oY and dcos6,  [or'" are
needed, and finally, for bead number N + 1, only dcos BNS_I / ﬁr]].\'“' needs to be computed.

For all other beads, three derivatives are needed.
Similarly, the corresponding relationships for the j* component of the force on the

i" bead from the torsional potential is:

£ 2[5 o)

ar' dr' L&p=1
For a set of four beads, p, g, r, s (in order) that form a torsional angle, the derivative of

the angle with respect to each bead’s coordinates is as follows [40]:

00 00
705 _ a,, | cosg rir - Lo 3)
ar! or' or?

J J
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a0, . d0
9¢08P _ ; cospZars - Lo (44)
oy T\ T o
dcos¢ —c,, dcos ¢ “b,, &cosgb (45)
or! orf or;
dcos¢ dcos¢ dcos¢ (46)
7 srq s pgr
ar;] ar; or}
with
a0, __ 1 dcos0,,, ___ 1 dcoso, @7
or; sinf,,,  dr; sin6, or;*?
where a,. =r,/r, sin6, ., b, =r, cosO, /1, -1, and 6,, denotes the

bending angle formed by beads p, ¢, and r.
Neglecting inertial forces, to conserve momentum the frictional force must be set

equal to the sum of all the potential forces and the Brownian random force yielding [44]:

i

C%=E§+E2+E9+E2 (48)

3.1.3. Code validation
To validate the code, I compute the change in the total potential energy of the

system over a small time step and compare it to the work done on the system in this time:

Vilou Vsl = S Ey e s (49)
AT A S L Ve (50)
o = Vel =S e Ay 51)
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where At is the time step and Ar is the distance moved by the i” bead in time At. That
is, I use the formulas for the forces derived analytically from the potentials to evaluate the
right side of each of the above equations and compare this with the change in potential
over a single time step calculated directly from the expression for each potential. This
procedure validates not only that the formulas for the forces are correctly derived and
written into the computer code but also determines the time step that is small enough to
accurately calculate the change in potential. To ensure that the model is able to replicate
the system accurately, I require that the spring length and bending angle remain close to
the ideal values. In order to do so, I use ‘realistic’ values of the parameters [44], i.e.,
ys/m = 1.8 x 10°* s? and y,/m = 4.2 x 107 J/kg where I take the mass of the polymer
bead, m, to be 0.014 kg/mol. Since I are using an explicit integration scheme, I am forced
in the above check to use very small time steps (At ~ 107" s) to keep the changes in the

potential small over a single time step.

3.1.4. Time step determination

Ideally, I would like to select a value of time step that is small enough to ensure
the force calculations match the change in potentials. However, to do so, I are forced to
use a very small time step as noted above. Even with current computing power,
simulating for as long as a nanosecond with a time step of 10> s would take an enormous
amount of computational time. Since I am only concerned with tracking the relaxation of
chain configurations and only need to pick a time step small enough for these properties

to be accurate—even if the forces and potentials are not exact for individual atoms. Using
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the time step of Az =5 x 10" s chosen by Helfand and coworkers [44] as an upper limit
using the softened potentials, as shown in Figure 18, I find no change in autocorrelation
functions from the results obtained using a much smaller value Az = 10™'° s. Hence, to

compute the autocorrelation functions, I use a time step of 5 x 10 s in my simulations.

3.2. Theory

3.2.1. Coil expansion
A freely jointed chain (or bead-rod) model can be used to represent the coarse-
grained equilibrium distribution of configurations of a realistic chain with bending and

torsional potentials if the freely jointed chain has the same mean square end-to-end

distance, <R2>0, as the realistic chain, i.e., <R2>0 =N be( where Ny is the number of

effective “Kuhn” steps and b, is the Kuhn step length of the freely jointed chain [19, 30].

The ‘characteristic ratio’ of a polymer is defined as the ratio of <R2>0 of the actual

polymer to that of an ideal chain in which each bond is freely jointed to neighboring

bonds, for which <R2>0 =N Slé, where N; is the number of rod-like bonds and /, is the

average bond length [19]. Thus, the characteristic ratio can be used a measure of the coil
expansion that results from the bending and torsional forces.
The contribution of the bending potential to the characteristic ratio is [25]:

cr 1t (cosB.)
1-(cosB,.)

o0

(52)
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where 0. = — 0 is the complement of the mean bending angle as defined in Section 3.1.
Thus, the mean square end-to-end distance of a chain with a bending potential becomes

<R2>0 =C?N,l;. For tetrahedral bonding, <cos0c> =cosf. =1/3, yielding CZ=2.

Similarly, the contribution of the torsional force to the characteristic ratio is [25]:

o 1+ (cos¢) (53)

“ 1-(cos¢)

where <cos ¢> is the average of the cosine of the torsional angle. Thus, the mean square

end-to-end distance with bending and rotational forces becomes <R2>0 =CICEN,L.

3.2.2. Probability distribution functions

While the ideal length between two carbon bonds is 1.53 f\, if I use a realistic
spring constant to keep the length fixed, the time step would have to be exceedingly
small. As is clear from the distribution shown in Figure 19, using a spring constant
softened by a factor of 10, the bond length, /, is still within +10% of the ideal length, /,,
about 80% of the time and is within +20% of the ideal length almost 100% of the time.

Similarly, even with my bending potential’s coefficient, y,/m, reduced to one-
fourth of its realistic value, Figure 20 shows the bending angles being within +10° of their
ideal value at 109° 47" about 70% of the time and within +20° of the ideal value almost
100% of the time. This distribution is created with simulations carried out using a 40-
spring chain for 10° time steps and data being recorded at 30,000 equally spaced points in

time.
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The theoretical probability distribution for the torsional angle can be computed

from the Boltzmann distribution as:

o 48

RT
Jienf "0

where V(¢) is the torsional potential function. Figure 21 compares the theoretical

p(¢) =

(54)

torsional angle probability distributions for the barrier heights V= 0, 12.36, and 24.72
kJ/mol for Ny = 40. Since the barrier height for butane is 12.36 kJ/mol [42-44], these
values correspond to 0%, 100%, and 200% of the “base” barrier height for butane. The
corresponding characteristic ratios are C. =2.9355, C. =2.4101, and C! =2.1461 when
the barrier heights are 0%, 100%, and 200% of the “base” height. The probability of

finding an angle in each of the energy states gauche’, trans, and gauche” can be defined

=-7/3 =m/ =7 . .
as: p.. = fi_n 3p(q))d¢, P = fdi_n;p(q))dqb, and p_. = f:=n/3p(¢)d¢. My simulations

of a linear chain with Ny = 25 yields p, = 0.601, which is within 1% of the reported value

[44], showing that my simulation exhibits correct statistical behavior.

3.3. Results

The results presented in this section are obtained from simulations that are run for
10" time steps with bead coordinates recorded 100% of the time for the first 10* steps,
10% of the time at regular intervals for time steps between 10* — 10°, 1% of the time for
time steps between 10° — 10° and so on, to conserve data storage while covering a very

large dynamic range. The bead coordinates are then used to compute autocorrelation
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functions.
In order to study the behavior of the coil as a whole, I compute the end-to-end
vector autocorrelation:

_J R+ s)* R()
S [TUUR(r)*R(r) dr

=0

(RR(s))

(55)

where R(t)=r"""'(¢)-r'(t), D is total simulation duration, and s is the autocorrelation

time interval.
To analyze behavior at the level of individual Fraenkel springs, I compute the unit

spring vector autocorrelation:

t=D-s

‘(¢ dt
(as)),, = Lo 2ot o ,H < (56)
fto Et 1_ t dt

I note that the spring (or bond) orientational autocorrelation function closely

mimics the behavior of the mechanical stress relaxation function, since bond orientational
order is typically proportional to stress via the well-known stress-optic law.

To test the accuracy of my code, I compare the autocorrelation functions with
only the stretching force acting on Hookean chains to theoretical predictions. The spring

force acting on the infinitely extensible Hookean springs in the Rouse model is described

by [28]:
Fy=HR; (57)
where
H =2k,TB: (58)
o 3N 3 3 (59)

G RECEEC
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using which I can calculate the autocorrelation function for the individual Hookean

springs as:

Jj . sjg §(r+5)* Ry(1) dr
Sim fll D- SEi=]_S ._S dl—

(60)

(RRs(s)), =

3.3.1. Theoretical autocorrelation functions (Rouse model)

For the Rouse model (with Hookean springs and no bending or torsional barriers),
the dynamics can be resolved into independent modes. The end-to-end vector, R,
autocorrelation of the whole chain can be compared to the predictions of the Rouse

model, yielding [19, 31, 47]:

A3 ef

where

_ £
= 8k, TP sin’[ pr/2(N +1)]

(62)

with a = ENSI is 1/ p° and I set the mean square end-to-end distance of each spring equal
p=13,5..

to 3/ 2B: = <R2> = CILCPI? so that it matches that of a chain with stretching, bending,

and torsional potentials.
Similarly, autocorrelation functions of the unit Frankel spring vectors and

Hookean spring vectors can be compared to theoretical predictions using [23, 31, 47]:

o), =30 o2 o

and
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O o

4
respectively with equation 63 being an approximation valid at large s.
I observe in Figure 22 that for Rouse chains (i.e., Hookean springs and no

bending and torsional potentials) my simulation autocorrelation functions — <RR(s)> and
<RSRS(S)> — are in perfect agreement with the theoretical predictions for chains with forty

springs, Ny = 40, and I also observe the -0.5 power-law region clearly appearing in the

decay of <RSRS(S)> which establishes the accuracy of my simulation code.

3.3.2. Stiff spring potential

Now, moving towards locally more resolved models, I first introduce the bond
stretching force using the stiff Fraenkel spring potential. As is the case for Hookean
springs, I observe excellent agreement of the predicted end-to-end vector autocorrelation
function with that of the Rouse theory as can be seen in Figure 23.

While for Hookean springs there is nearly perfect agreement between simulations
and theory for both the end-to-end vector and the spring vector autocorrelation functions,
I observe modest differences between simulations and Rouse predictions of the spring
vector autocorrelation function at times in the neighborhood of 10"* to 10" s in Figure
24 on introducing Fraenkel springs. The modest discrepancy at short times is expected
since this range of times corresponds to the rotational times of just one or a few bonds—
too few to act as an effective Hookean spring. At longer times, ¢ > 10" s, the response is

dominated by the collective motion of five to ten or more bonds, which is a
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sufficient number to act collectively as an effective Hookean spring. Hence, for ¢ > 10"
s, there is good agreement between Rouse theory and simulations of chains with Fraenkel

springs and no bending or torsional potentials.

3.3.3. Bending angle potential

Second, I add the bending force. Theoretically, the tetrahedral bonding angle is
109° 47° (6. = 70° 13°) implying that cosf,. = 0.3333. Since I am using a softened
coefficient for the bending potential, the distribution of bending angles is broadened in
Figure 20 relative to the “true” distribution. If I take into account this distribution in
bending angles, from the simulation results, I obtain <cos0C> = 0.3539 which is within
~6% of the theoretical value for a fixed bending angle of 109° 47°. As is the case with
stretching force only, when stretching and bending forces are both included, the
simulated end-to-end vector autocorrelation function agrees increasingly well with the
Rouse theory as the number of springs increases until nearly perfect agreement is
obtained when N reaches 60 springs as can be seen in Figure 25. Note that the relaxation
of the end-to-end vector is dominated by the terminal relaxation process which can be
deduced from the 1/ p° weighting of the modes in equation 61.

Figure 26 shows the bond vector autocorrelation function for Ny = 10, 20, 60, and
100 springs. At short and intermediate times, the bond vector decays more slowly than in
the Rouse predictions, although agreement is recovered in the terminal region which is

expected since the simulated end-to-end vector relaxation <RR(s)> matches the Rouse

predictions quite well as can be seen in Figure 25. Thus, unlike the effect of the fixed
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bond length which only influences the short time relaxation, the bending angle potential
influences the relaxation—even for chains of 100 bonds—out nearly to the terminal time.

What is particularly interesting is that when Ny > 60, <uu(s)> recovers the power-law

time regime with slope similar to that of the Rouse theory, but displaced to longer times.
Eventually, at long times, the dynamics of the coil as a whole overshadow such local

effects and hence the coil relaxation matches the Rouse prediction.

3.3.4. Torsional potential

I now examine the effect of the torsional potential by running the simulations at
0%, 100%, and 200% of the “base” barrier height of 12.36 kJ/kg between the trans and
gauche states. When the barrier height is 0%, so that only the cis barrier exists, small

deviations between the theoretical and simulated function <RR(s)> are apparent even for

Ny = 60 in Figure 27. Thus, the torsional forces, even with no trans-gauche barrier,
increase the coil stiffness which affects relaxation of the chain even on long length scales.
This difference between theory and simulation increases with the rise in gauche/trans
barrier height as is seen in Figure 28 with at a barrier height of 100%. While the effects
are evident only for chains up to 60 springs in length for smaller barrier heights, I see in
Figure 29 deviations creep in for even 100 springs at a barrier height of 200%.
Additionally, as the barrier height increases, the average value of the cosine of the
torsional angle, <cos¢>, decreases from 0.4918 (for 0% barrier height) to 0.3643 (for
200% barrier height) as is clear from the probability distribution function in Figure 21.

This reduces the torsional characteristic ratio, C_, from 2.94 to 2.15 showing that the coil
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shrinks slightly leading to faster terminal relaxations. Figure 30 shows this more clearly
when N, = 60 with trends from simulations and the Rouse theory, since I include C. in
my calculation of the Rouse relaxation time spectrum as shown in equations 61 and 62.
Next, I identify the effect of changing the torsional barrier height on the unit
spring vector autocorrelation function. As is seen from Figure 31, as soon as the cis
barrier is introduced (with trans/gauche barrier absent), the power law region completely
disappears from the unit spring vector autocorrelation functions, even for Ny = 60. The
polymer relaxes much slower than predicted by the Rouse model at both 