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Abstract 

 

 

 

Local motion of polymers is extremely important while studying the behavior of 

single strand DNA in DNA unzipping and replication, understanding rheological 

properties of polymers in confined in narrow gaps for head-disk interface design for hard 

disk drives, and designing membrane structure for small molecule permeation through a 

dense polymeric membrane. So, in order to understand the mechanism of energy 

dissipation of dilute polymer solutions at high frequencies, I carry out a Brownian 

dynamics study of a linear bead-spring chain in which the beads represent individual 

backbone atoms, a stiff Fraenkel spring potential maintains the distance between atoms 

near 1.53 A
0

, a bending potential maintains tetrahedral bonding angles, a torsional 

potential imposes realistic barriers to torsional transitions, and white noise represents the 

Brownian force from the solvent. With this model, I find that the end-to-end vector 

autocorrelation function from the simulation is in excellent agreement with the theoretical 

Rouse model predictions. Nevertheless, the autocorrelation function of the bond 

orientation vectors—which delineates the relaxation of the stress tensor—exhibits a much 

slower decay then predicted by the coarse-grain Rouse theory except near the longest 

relaxation time even for chains with as many as 50 bonds. I find that both the bending 

and torsional potentials slow down the contributions of local relaxation modes, bringing 



 xx

the relaxation of short chains (less than 50 bonds) closer to single exponential behavior 

than to the Rouse spectrum, in qualitative agreement with observations of birefringence 

relaxation [Lodge et al. (1982) J. Poly. Sci. 20, 1409]. Also, my normal mode predictions 

using the bead-spring model provides an excellent fit to data for 2400 and 6700 base 

single-strand DNA molecules [Shusterman et al. (2004) Phy. Rev. Lett. 92(4), 048303] 

and the fit yields 12 Kuhn steps per spring and a value of 0.12 for the standard 

hydrodynamic interaction parameter—very close to the values typical of conventional 

polymers such as polystyrene. Thus, my results are generally in agreement with a recent 

notion of a “dynamical Kuhn length” in which torsional barriers to chain motion, can 

suppress high frequency contribution to viscoelasticity [Larson (2004) Macromol. 37, 

5110]. 
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Chapter 1 

 

Introduction 

 

The long chain nature of polymers causes polymer motion to extend over many 

orders of magnitude in time from vibrations at picoseconds, high frequency torsional and 

vibrational behavior, up to the slow reorientation of whole molecules approaching 

macroscopic times [1]. Thus, study of local motion is expected to further the 

understanding of the chemical structure so that mechanical properties and material 

response during processing can be improved. However, in order to account for local 

effects, bending and torsional effects must be taken into account explicitly which has not 

been done in the standard coarse-grained models that have been used for carrying out 

theoretical analysis on polymers. Such a local microscopic analysis is also relevant in 

understanding rheological properties of polymers confined in narrow gaps of the order of 

1 nm for designing head-disk interface of high recording hard disk drives [2]. In such 

small confines, the polymer behavior is significantly different from that in the bulk. 

Another application of this work is in furthering the understanding of solution-diffusion 

concept using which small molecules in the liquid state permeate through a dense 

polymeric membrane. In a process like this, understanding the membrane structure 
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enables researchers to better the membrane design and performance [3]. In processes 

such as DNA unzipping, where the double strand unravels into single strands, while 

extensive experimental and theoretical work has been carried out on double strand DNA, 

much less attention has been devoted to single strand DNA. Once again, similar to other 

polymers, in order to carry out a theoretical analysis on ss-DNA, the local bond motion 

need to taken into account explicitly. 

The slow dynamics of polymers in dilute solution are well described in the linear 

viscoelastic regime by the decades-old Rouse-Zimm theory [4, 5] which coarse-grains a 

polymer chain into a sequence of frictional beads connected by Hookean springs. Such a 

description is not expected to capture fast dynamics dominated by the local motions of 

one or a few backbone bonds since at long time scales such dynamics are expected to be 

subsumed into the effective bead drag coefficient and spring constant of the bead-spring 

chain. The success of this approach has been demonstrated in numerous comparisons of 

the bead-spring model to experimental data for long polymers in dilute solution [6].  

What remains unresolved is the manner in which this coarse-grained bead-spring 

model breaks down at shorter time and distance scales than those for which linear 

‘springs’ capture reasonably well the configurations of the chain. One might expect that 

at short times (or high frequencies) viscoelastic experiments would show indications of 

high-frequency modes that are controlled by motions of small groups of bonds that are 

influenced by bending and torsional potentials. Nevertheless, very surprisingly, 

experiments by Schrag, Lodge, and coworkers [7-9] have shown that the Rouse-Zimm [4, 

5] bead-spring chain model can describe reasonably well the entire frequency range of 

dilute polystyrene or polyisoprene chains—even at frequencies high enough that single 
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springs are expected to be strongly excited. This is true as long as the number of springs 

is chosen so that each spring represents a sub-molecule of molecular weight 4500 + 500 

for the case of polystyrene [6] and 2400 for polyisoprene [9] which in both cases 

corresponds to around 100 backbone bonds. In contrast, both experiments and 

simulations in melts show multiple ‘local’ modes associated with relaxation of individual 

or small groups of bonds which couple to similar relaxations of bonds of neighboring 

chains [9-13]. What is mysterious is why such modes do not appear in the viscoelastic 

measurements of dilute polymer solutions.  

First, in order to test this observation on other polymers, I carry out a study on 

single strand DNA (ss-DNA). ss-DNA can also be thought of as an ordinary polymer as 

long as its tendency to self-base-pair is suppressed by using highly alkaline conditions 

and somewhat elevated temperatures [14]. This work followed the recent development of 

optically visible DNA as a model polymer molecule which was one of the four major 

contributors to the rapid progress in the quantitative prediction of molecular deformation 

and stretching [15].  

ss-DNA’s small persistence length makes it even more similar to ordinary 

synthetic polymers such as polystyrene than is double stranded DNA. Recently, 

Shusterman et al. [14, 16] reported for the first time the stochastic motion of individual 

monomers within isolated single- and double-stranded DNA.  By attaching a fluorescent 

label specifically to a single base at the end of the chain, they used fluorescence 

correlation spectroscopy to monitor the motion of 2400, 6700, and 23100 base ss-DNA 

polymers in dilute solutions (0.03 to 0.3 molecules in an average confocal microscopy 

volume). This yielded data containing essentially the same information as linear 
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viscoelastic rheological measurements. Strand separation was achieved by maintaining an 

extremely alkaline condition (pH = 12.3) and an elevated temperature (370 C). Thereafter, 

the authors measured the end monomer’s mean square displacement (MSD) over five 

decades in time interval, !t, and found two distinct power-law regions. In one regime, 

encompassing intermediate times (!t = 5 - 40 x 10-3 s), the MSD exhibited a slope of 

0.69, which is similar to that predicted by the Zimm model for theta solvents in the non-

draining limit where the slope is 2/3. At long times (!t > 40 x 10-3 s), the mean square 

displacement (MSD) was found to be linear in !t and described the bulk diffusion of the 

coil as a whole. Here, ‘time’ is used as a short-hand for ‘time interval’ between 

measurements of monomer positions. Viscoelastic measurements for ss-DNA can be 

computed using the bead-spring model by invoking a normal mode approximation with 

pre-averaged hydrodynamic interaction. Amelar et al.’s work [6] on polystyrene in 

Aroclor 1248 is an example of a successful demonstration of the use of normal modes to 

predict polymer properties. Hence, I use the normal mode analysis to predict the chain-

end diffusion behavior of ss-DNA. I follow this by comparing the bead-spring model 

parameters for ss-DNA to those for polystyrene and find that ss-DNA’s hydrodynamic 

parameters are similar to those of polystyrene. 

Next, I find suggestions in literature [13, 17] that torsional barriers to bond 

rotation might confer a large ‘dynamic stiffness’ to polymers that slows down modes 

requiring fast bond motion causing their relaxation to overlap with the terminal zone for 

short chains. This might occur only in dilute solutions, and not in the melt, because in the 

melt the diffusive motions of the chain are on length scales larger than that of bond 

rotation. Additionally, the high friction of the medium in melts slows down the bond 
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rotations more than the local bonds. As a result, in the melt (but not in dilute solution), 

the local rotational barriers can be surmounted faster than diffusive relaxation on longer 

length scales can occur. Hence, the relaxation of local modes can be temporally 

distinguished from the longer-range, diffusive modes. 

To test such ideas and to better understand the mechanism of energy dissipation at 

high frequencies in dilute solutions, one must study a polymer chain model that endows 

each short backbone bond with realistic bending and torsional angle restrictions [17]. 

Therefore, I conduct a Brownian dynamics study of a linear polymer chain in which the 

beads represent individual backbone atoms, stiff Fraenkel spring forces maintain the 

distance between atoms at 1.53 A
0

, bending forces maintain tetrahedral bonding with a 

bending angle of 1090 47’, torsional forces maintain realistic barriers to torsional 

transitions. I also add white noise that represents the Brownian force from the solvent. 

Then, I collate my calculations of the end-to-end vector and individual spring vector 

autocorrelation functions predicted by Brownian dynamics simulations using this model 

to that foretold by the theoretical coarse-grained Rouse model. In addition, I reckon the 

relaxation rates and amplitudes for all modes and contrast my estimations to theoretical 

predictions and simulations carried out for the melt state described in literature. Finally, I 

also work out the time dependent scattering function, S q,t( ) , from the model and discuss 

how these results differ from both the Rouse-Zimm theory and experimental data. 
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Chapter 2 

 

Single-strand DNA as a dilute polymer chain 

 

In physics, the equations are deterministic. When systems are too complex to be 

described in detail, or a detailed description is too difficult to handle, a stochastic aspect 

is introduced to model incomplete knowledge. Thus, possible macro states characterized 

by coarse-grained variable(s) are presented in place of a full detailed microstate [18]. The 

Langevin equation, an example of a stochastic differential equation, describes the highly 

irregular motion of a Brownian particle as a result of collisions with the many small 

surrounding molecules. Peters (2000) stated that even if the initial trajectory of the 

Brownian particle is kept identical in all experiments, having the same initial trajectory of 

all the solvent particles would be beyond control [18]. In cases such as this, where the 

deterministic repetition of experiments is not possible, an averaged description is 

preferred. In this chapter, I describe the standard coarse-graining techniques that have 

been used for understanding viscoelasticity of dilute polymer chains and how I adapt 

them to understand the behavior of single-strand DNA. 
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2.1. Coarse graining 

For describing the rheological behavior of polymers, the overall architecture is 

more important than the chemical composition of monomers [19]. The level of coarse-

graining required to simulate a polymer is set by the requirement that the coarse-grained 

model must retain enough fine-scale features to represent the configuration distribution in 

sufficient detail to provide accurate values of forces and stresses. The most commonly 

used coarse-grained models of polymer chains are the bead-rod and the bead-spring 

models. 

A freely jointed bead-rod chain—also called Kramer’s (1946) chain [20] —is a 

model for a linear polymer chain. In the model, the beads act as discrete sources of 

friction, the joints are fully flexible, and the rods provide rigid constraints on the motion 

of the beads. The rods hold up the beads at a constant relative distance and since they 

physically correspond to one Kuhn [21-23] step, they act as the smallest rigid length scale 

in the model [18]. With statistical mechanics as the basis, the force required to increase 

the chain separation has been shown [24-26] to be proportional to the end-to-end 

distance, i.e., the entropic force behaves as a Hookean spring for small deformations. 

However, on account of the constraint on the rod length, a stochastic simulation of 

polymer models with rigid links combined with extremely irregular Brownian motion is 

more complex than bead-spring simulations. Of the two correct implementations [18] of 

the governing stochastic equations, the first ‘naïve’ approach gives the correct 

discretization but a more elegant solution was proposed by Ottinger (1994) [27] using the 

stochastic differential equations in a rigorous manner. 
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Real polymers are not freely jointed chains but a freely jointed chain will have the 

same equilibrium mean square end-to-end length, R
2

0

, and fully extended length, L, as 

any real polymer in a theta solvent if the freely jointed step length, bK, and the number of 

steps, NK, of the freely jointed chain are chosen appropriately, i.e., b
K

2
N

K
= R

2

0

 and 

b
K
N

K
= L  [19, 28]. Figure 1 shows the bead-rod and bead-spring model coarse graining a 

polymer chain. 

In very dilute solutions, the chains in the solvent fluid are separated far enough to 

ignore the interaction between the neighboring molecules. Examples of dilute solution 

polymer applications include fiber spinning and drag reduction by polymer additives. 

However, in dilute solutions, a few complicating non-local internal interactions can be 

distinguished [18, 28]:  

• Hydrodynamic interaction (HI): This is defined as the motion of one part of a 

polymer chain creating disturbances in the solvent velocity field which can affect the 

drag exerted by the solvent on other parts of the same chain. The velocity field 

generated by the motion of one particle which is transmitted through the medium not 

only influences other particle’s motion but also its hydrodynamic force, torque, and 

stresslet [29]. Figure 2 shows the manner in which the motion of all beads affects the 

motion of a single bead through HI.  

In the limit of linear viscoelasticity, the effect of hydrodynamic interactions can 

be seen through some parameters characterizing the flow. In a theta solvent, !1 scales 

as M2 and M1.5 while ![ ]
0
 scales as M1 and M0.5 [30] when the HI effects are neglected 

and account for respectively. The scaling exponents have been found to decrease in 

the presence of HI because hydrodynamic coupling ‘shield’ one part of the chain 



 9 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1. Illustration showing a real polymer chain with a carbon-carbon backbone 

containing bending and torsional angles being coarse grained onto a freely 

jointed bead-rod chain and further coarse graining of the bead-rod model onto 

a bead-spring chain (Larson, 2004). 
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Figure 2.  Illustration showing the motion of a bead being affected by all the other beads 

in the bead-spring chain through hydrodynamic interaction (Teraoka, 2002). 
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from another reducing drag on each part. As the molecular weight of the chain 

decreases, the ‘shielding’ effect becomes weaker. However, experiments down to 

5000 Da—the lowest molecular weights investigated rheologically [6]—showed HI 

exerts a pronounced influence on linear viscoelasticity of even short chains. 

• Excluded volume interaction: This is a short-range repulsion interaction between the 

atoms since they cannot occupy the same volume or space. 

• Solvent effect: Depending on the chemical affinities of the solvent and the polymer 

thermodynamics might favor a polymer to be surrounded either by solvent molecules 

or by other polymer molecules. In case of a good solvent, the polymer coil extends 

itself; and in theta solvent, where the solvent and polymer share the same chemical 

composition, the balance is satisfied. 

• Topological interaction: These interactions state that parts of polymer chain do not 

cross each other. 

 

 

2.2. Bead-spring model 

The bead-spring model replaces a polymer by NS + 1 beads connected by NS 

Hookean springs. These phantom springs are freely jointed and each represent enough 

monomers that the sub-chain end-to-end vectors obey Gaussian statistics [6]. The four 

model parameters are: a, the hydrodynamic radius of each bead, b, the root-mean-square 

length of each spring at equilibrium, NS, the number of springs used to represent the 

chain, and !S, the solvent viscosity. However, !S is known for any particular solvent at a 

specified temperature, so the model parameters are essentially just three: a, b, and NS. 
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From these independent parameters of the bead-spring model, the hydrodynamic 

interaction parameter, h*, can be obtained as [6, 7]: 

h* =
1

12! 3

"

b#
S

=
3

!

a

b
       (1) 

where !, the drag coefficient, is defined as: 

! = 6"#
S
a         (2) 

Thus, I can alternatively specify the model parameters as: b, h*, and NS. 

Accounting for hydrodynamic interactions (HI) in addition to the spring forces for 

all beads leads to a set of coupled integro-differential equations [5, 7]. However, using 

the approximate normal mode analysis with pre-averaged HI, the problem can be 

discretized into NS independent equations—one for each of the NS springs in the model. In 

this way, the predictions of the Rouse and Zimm models for the MSD can be obtained 

[14, 31].  

In the bead-spring model, the characteristic frequency, "i,  and relaxation time, #i, 

for the ith mode for a polymer are related to each other by [7]: 

!
i
"
i
=

# 3

3

$
S
b
3
h *

k
B
T

        (3) 

where kB is the Boltzmann constant and T is the solvent temperature. 

Once the relaxation times are obtained, the following equations emerge for the 

mean square displacement of the pth bead [32]: 

rpp t( )[ ]
2

= 6DGt + 24
kBT

ki
cos2

ip!

NS

" 

# 
$ 

% 

& 
' 

( 

) 
* 

+ 

, 
- 1. exp .

t

/ i

" 

# 
$ 

% 

& 
' 

( 

) 
* 

+ 

, 
- 

i=1

NS0    (4) 

The above equation can be simplified for the end beads (p = 1 or NS+1) to: 
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r11 t( )[ ]
2

= 6D
G
t + 24

k
B
T

k
i

cos2
i!

N
S

" 

# 
$ 

% 

& 
' 

( 

) 
* 

+ 

, 
- 1. exp .

t

/
i

" 

# 
$ 

% 

& 
' 

( 

) 
* 

+ 

, 
- 

i=1

NS0    (5) 

where 

k
i
=
6! 2

k
B
T

N
S
b
2
i
2
         (6) 

and DG represents the center-of-mass diffusion coefficient. For Gaussian chains and theta 

conditions, the center-of-mass diffusion coefficient is estimated through [6]: 

DG =
kBT

!

1

NS +1
+

2
3
h
*

NS +1( )
2

NS +1" j

jj=1

NS#
$ 

% 
& 
& 

' 

( 
) 
) 
    (7) 

While equation 7 (and the equations in this section) might seem to be valid only 

for theta solvents, the above equations have been commonly applied to good-solvent 

cases by adjusting the spring equilibrium length to be larger than theta dimension. This 

method, while not strictly valid for the scaling of coil size or diffusion coefficient with 

molecular weight, has been found to give good predictions for a range of molecular 

weights for common synthetic polymers such as polystyrene in Aroclor [6]. 

 

 

2.2.1. Calculation of relaxation modes 

Based on the work of Lodge and Wu [7], I present a brief description of procedure 

to calculate the characteristic frequencies for an arbitrary number of springs by solving 

for the eigenvalues of an NS x NS symmetric matrix B whose elements are given as: 

Bpq = Hpq + Hp!1,q!1
!Hp!1,q !Hp,q!1

       p,  q =1, 2,...,  NS    (8) 

where 
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Hij =

1                  i = j

h *
2

i ! j
   i " j

# 

$ 
% 

& 
% 

 i, j = 0, 1, 2,...,NS      (9) 

The NS characteristic modes (frequencies) are the NS roots ! (!1, !2, …, !S) of the 

equation: 

det Bpq ! "#pq( ) = 0         (10) 

 

2.2.2. Code validation 

To solve for the eigenvalues, I write a code in Fortran based on Householder’s 

method and the ‘Q-R’ method [33]. I validate my code by showing that the eigenvalues it 

generates are identical to the analytical values [7] for NS = 1 or 2 and are in excellent 

agreement to Lodge and Wu’s [7] tabulated characteristic frequencies for NS = 2 to 300 

with h* varying from 0.05 – 0.2 (Figures 3 and 4). 

Furthermore, in Figure 5, I find full agreement between data published in 

literature [6] to calculations using my model parameters and relaxation times for the 

intrinsic viscosity [6]:  

[ ] ! =
=

SN

k k

S
M

RT

1
"

#
#         (11) 

where M is the molecular weight of the chain and !S is the solvent viscosity. Similarly, I 

present in Figure 6 excellent agreement between published data [6] and my calculations 

for the infinite dilution diffusivity [6]: 
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where ! is the bead friction coefficient, 3.75 x 10-9 kg/s. The reduced storage and loss 

moduli can be computed from the relaxation times as [34, 35]: 

! = +
=" S

N

i

i

i

R
G

1 2

2

1 #$

#$
         (13) 

and 

! = +
="" S

N

i

i

i

R
G

1 2
1 #$

#$
        (14) 

respectively. In these equations, " is the oscillation frequency. When I plot these moduli 

in Figure 7 against the frequency multiplied by the characteristic relaxation time, 

!
0
= !

i
i=1

N
S

" , my results match perfectly to the data and calculations of Johnson et al. [34, 

35] for a polystyrene solution in a theta solvent. 

 

 

2.2.3. Parameter optimization and error analysis 

Now, I have enough information to begin analysis of the experimental data [14, 

16] on single-strand DNA. To obtain the best-fit parameters, I need to carry out an 

optimization over all model parameters (b, NS, and h*). The first parameter—spring 

length—is initialized as the length of a base, l, and incremented in multiples of l. The 

second parameter—number of springs—starts off at unity and incremented in steps of 

one. The third parameter—hydrodynamic interaction strength—is initialized at 0 and 

incremented in steps of 0.01. h* has a maximum value of 0.49 since any greater value 

would be physically unrealistic [19]. I then compute the MSD over the entire time 

domain using the parameter set under consideration. By stepping through parameter  
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values in a nested fashion, a through search of parameter space is carried out to find the 

global smallest difference between the theoretical and experimental MSD.  

Specifically, to determine quantitatively the accuracy of the estimated parameters 

for a particular strand length, I compute the dimensionless root mean square error as: 

!I , j =
1" di, j

NM
di, j
E( )

2

i=1

N j
O

#
N j

O
        (15) 

where di, j
NM  is the normal-mode-computed mean square displacement at the ith observation 

point for the jth strand, di, j
E  is the mean square displacement measured experimentally for 

the jth strand at the ith observation point, and N j

O  is the number of observation points for 

the jth strand under consideration. Here, j refers to the DNA strand sequence number, i.e., 

j = 1 refers to 2400, j = 2 to 6700, and j = 3 to 23100 base ss-DNA. Based on fitting the 

experimental data supplied by one of the authors of Shusterman et al. [14, 16], I obtain 

N
1

O  = 119, N
2

O  = 131, and N
3

O  = 131. 

Similarly, I compute the global optimum error as: 

!G =
1" di, j

NM
di, j
E( )

2

i=1

N j
O

#
3N j

0j=1

3

#       (16) 

and the selectively scaled error for just strands 1 and 2 as: 

!S =
1" di, j

NM
di, j
E( )

2

i=1

N j
O

#
2N j

0j=1

2

#       (17) 
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2.3. Results 

 

2.3.1. Parameter fitting 

Measurements of the mean square displacement data of ss-DNA were made by 

Shusterman et al. [14, 16] for three different strand lengths—2400, 6700, and 23100 base 

ss-DNA—which have been summarized in Figure 8. To predict properties for a given 

strand length, the bead-spring model uses the following parameters: !S, h*, b, and NS. Of 

these parameters, !S, the solvent viscosity, has the experimental value 6.9 x 10-4 Pa-s at 

370 C. To obtain the remaining three model parameters, I run an optimization routine to 

identify the best-fit values under various constraints. I carry out the analysis in three 

parts. 

First, I identify the global best-fit parameters for all the strands (2400, 6700, and 

23100) and obtain h* = 0.14, b = 4.94 x 10-8 m, and NS = 6, 17, and 58 for the 2400, 6700, 

and 23100 base ss-DNA strands respectively.  In this fit, the values of h* and b are 

constrained to be identical for all molecules and NS is proportional to number of bases in 

the DNA strand. I plot the resulting predictions in Figure 9. The experimental MSD of 

the 23100 base strand is almost identical to that of the MSD of the 6700 base strand at 

long times. Moreover, the MSD of the 23100 base strand follows a different slope—

compared to the other shorter strands—at intermediate times. These observations lead me 

to believe that the experimental data of the longest chain are unreliable. One author [36] 

of the experimental work suggests insufficient denaturing conditions could have led to 

incomplete separation of the ss-DNA strands leading to intermittent formation of ds-

DNA stretches. This phenomenon is most likely the cause of the anomalous  
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behavior of the 23100 base ss-DNA. Thus, in the selective best-fit analysis, I ignore the 

23100 base strand altogether, although, like the global best-fit, in selective best-fit, I 

constrain the values of h* and b to be identical for all molecules and NS to be proportional 

to number of bases.  

Second, as described in Section 2.2.3, I identify the best-fit parameters based on 

the 2400 and 6700 ss-DNA strands alone. In this fit, the values obtained for h* and b are 

0.12 and 5.415 x 10-8 m respectively. Similar to the global best-fit parameters, the number 

of springs in this fit is scaled proportionally to the number of bases in each strand. This 

gives the number of springs, NS, as 6 and 17 for the 2400 and 6700 strands, respectively, 

and the number of Kuhn steps per spring, NK,S, as 12. As becomes clear from Figure 10, 

these parameters allow prediction of the long time behavior of the experimental data. At 

times less than 10-3 s, I note that the predictions deviate slightly from the experimental 

data.  

The deviation might arise either because the bead-spring model is inherently 

unable to predict the MSD at intermediate times or because of error in the experimental 

data. To investigate further the ability of the bead-spring model to predict accurately 

trends at intermediate times, I best-fit the parameters h*, NS, and b to each strand 

individually. Figures 11 – 13 show that the individual best fits coincide with the 

experimental data nearly perfectly in each case.  
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2.3.2. Hydrodynamic interaction behavior 

Having demonstrated that the bead-spring model can, within the limits discussed 

above, predict ss-DNA behavior, in this section I examine whether the ss-DNA 

parameters are similar to those expected for synthetic polymers. I do so in two steps: 

First, I compute the slopes of the MSD curves. I begin by dividing the time 

domain into three parts: short (time < ~10-4 s), intermediate (time ~ 10-4 - 10-2 s), and long 

(time > ~10-2 s). At the smallest times, the individual beads are relatively unaffected by 

the motion of the coil. This produces a power-law slope of unity in the log-log plot of 

mean square displacement versus time. At intermediate times I expect the chain to exhibit 

the influence of hydrodynamic interaction. Consequently, according to Zimm theory for a 

theta solvent at infinite dilution, the slope should be 2/3. At long times, with the coil 

expected to diffuse as a whole, the power-law slope should be unity again. These short-, 

intermediate-, and long-time behaviors are shown by lines of slopes m = 1, 2/3, and 1 on 

Figures 11 – 13. Shusterman et al. (2004) [14] reported slopes of 0.69 and 1 at 

intermediate and long times. For short times, because of scatter in the experimental data, 

they did not report any slope. My observations compare well with the experimentally 

observed slopes and are additionally able to predict the behavior at short times within the 

experimental error. 

Second, at intermediate times, for the MSD power-law slope of 2/3 to be in 

accordance with Zimm theory for a modest number of beads, h* should theoretically be 

0.25 under theta conditions. However, viscoelastic predictions for polystyrene can be 

predicted very well with h* as 0.15 [6]. My analysis, using global best-fit parameters, 

selective best-fit parameters, and individual best-fit parameters gives h* that varies 
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between 0.11 and 0.14 indicating that hydrodynamic interaction in ss-DNA is similar to 

that in polystyrene.  

 

 

2.3.3. Solvent condition 

Since h* = 0.15 is likely to indicate a good—rather than a theta—solvent 

condition, I carry out supplemental analysis to check the preliminary indication. I do so in 

two steps: 

First, I plot the long-time diffusion coefficient against the molecular weight of the 

chains in Figure 14 and carry out a best-fit analysis. The molecular weight of each ss- 

DNA base is taken as 330 Daltons. If I consider all three strands, I obtain a slope of -0.45 

and when I drop the suspect 23100 base strand chain, I get a slope of -0.56. For theta 

conditions, I expect a slope of -0.5 [30] which has been observed in measurements of ss-

DNA center-of-mass diffusion [37]. If the system exhibited good-solvent behavior, a 

slope of -0.6 would be expected.  

Second, since the present slope of diffusion coefficient versus number of bases for 

the 2400 and 6700 base strands does not give a very decisive answer, I check the 

‘universal ratios’ [28]. While these scaling laws are strictly valid at high molecular 

weights, since experimental data has been shown to follow the theta-condition scaling for 

as low as 300 base ss-DNA strand [37], I believe this analysis can be carried out under 

the present conditions as well. One such ‘universal ratio’, the ratio of the radius of 

gyration, Rg, to the hydrodynamic radius, RH, represents URD [28]: 

URD =
Rg

RH

=
6!"SDGRg

kBT
       (18)
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where, assuming a random walk polymer and a freely jointed polymer, Rg and R
2

0

 can 

be defined as [28]: 

 Rg =
R
2

0

6
         (19) 

R
2

0

= N
K
b
K

2
         (20) 

Another such parameter, U!" , is defined as [28]: 

U!" =
"
i

i=1

N
S

#
"
1

         (21) 

For theta and good solvent conditions, URD is expected to be 1.33 and 1.56 

respectively for asymptotically long chains [28]. Using the global best-fit, selective best-

fit, and individual best-fit parameters, I summarize the URD values in Table 1. Since all 

these values are greater than 1.56, the computed URD values in Figure 15 indicate that the 

asymptotically large chain condition (i.e., large NS conditions for bead-spring chains) is 

not reached. Since Rg ! NK  and, at very large NK, I expect D
G
!1 N

K
 [30], so that 

URD is expected to be independent of NK. In Figure 16 I show URD computed using 

Rg = b NS 6  and DG from equation 7. I note that while URD decreases as NS rises and 

therefore chain length increases, even for NS = 500 and therefore ss-DNA with 200,000 

bases (assuming 400 bases/spring based on selective best-fit parameters fitting), the 

asymptote is not reached. Similarly, U!"  is expected to be 1.645 for theta conditions and 

2.39 for dominant HI without excluded volume effect [28]. My values for U!" —

summarized in Table 1—show the parameters consistent with solvent conditions to be 

between theta and good. 
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Table 1.  Universal ratios, U
RD , and U!" , computed using the global best-fit (G), 

selective best-fit (S), and individual best-fit (I) parameters for the 2400, 

6700, and 23100 base strands. 

 

 

  

Condition Strand N
K

 b
K

 (m)  Rg  m( )   D
G

 m
2

s( )  U
RD

 U!"  

        

Global 2400 89 1.284E-08 4.940E-08 1.216E-11 1.82 1.72 

Global 6700 244 1.304E-08 8.315E-08 6.892E-12 1.74 1.88 

Global 23100 851 1.290E-08 1.536E-07 3.532E-12 1.65 2.00 

       

Selective 2400 74 1.543E-08 5.415E-08 1.210E-11 1.99 1.70 

Selective 6700 203 1.566E-08 9.115E-08 6.680E-12 1.85 1.84 

Selective 23100 708 1.550E-08 1.684E-07 3.342E-12 1.71 1.95 

        

Individual 2400 43 2.672E-08 7.125E-08 8.428E-12 1.82 1.72 

Individual 6700 169 1.888E-08 1.001E-07 6.672E-12 2.03 1.75 

Individual 23100 1203 9.121E-09 1.292E-07 1.723E-12 0.68 1.82 
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2.3.4. Interpretation of spring length and number of springs 

After demonstrating similarities between the hydrodynamic interaction for ss-

DNA and polystyrene, I examine the significance of the spring length and the number of 

springs estimated from the fits of the model to ss-DNA data. These two parameters, taken 

together, largely control the coil size. In turn, the coil size affects the diffusion of the 

whole coil at large times. 

The spring length in the bead-spring model represents the equilibrated end-to-end 

length of a chain segment, R
2

0

N
S

. Each spring, in turn, can be expressed in terms of 

the number of Kuhn steps per spring and Kuhn length as b = R
2

0
N

S
= b

K
N

K ,S
. The 

fully extended length of the polymer chain, L, can be expressed in terms of the number of 

springs, the number of Kuhn steps per spring, and Kuhn length as L = b
K
N

K ,S
N

S
. With 

the Kuhn length unknown, I can use the expression for the overall chain length in terms 

of the number of bases, n, and the length of each base, l, to obtain L = n  l = N
S
 N

K ,S
 b

K
. 

For ss-DNA, l is known to be 4.75 x 10-10 m [38]. With b and NS obtained from parameter 

optimization, I can derive an expression for the number of Kuhn steps per spring as 

N
K ,S

= nl b
K
N

S
 and the Kuhn length as b

K
= N

S
b
2
nl . Estimations of NK,S and bK based 

on the different parameter fits are shown in Table 2.  In order to get a representative value 

of the Kuhn length for the globally optimized parameters, I average the values shown in 

Table 1 to get bK (global best-fit) = 1.293 x 10-8 m. A similar calculation for the selective 

best-fit parameters gives us bK (selective best-fit) = 1.553 x 10-8 m. The persistence 

length, !P, corresponding to each of these two conditions is 6.465 x 10-9 m (global best-

fit) and 7.765 x 10-9 m (selective best-fit)—not too far from the persistence
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length measured as ~4 x 10-9 m using a 10-2 M Tris borate EDTA buffer [37]. The values 

of bK and Rg = NK NK 6  are tabulated in Table 2, along with the value of the long-time 

diffusion coefficient, DG, from the experimental data. From these values, the value of the 

‘universal ratio’ URD = 6!"SDGRg kBT  is obtained and given in Table 1. These values are 

well above the asymptotic Zimm value of 1.479, which my simulations show in Figure 16 

is are not yet reached even for the number of springs, NS, as large as 500. 

The ratio of the Kuhn length to the length of a backbone bond gives an estimate of 

the characteristic ratio, C! [24]. Since each ss-DNA base contains four backbone bonds 

[39], therefore, I can take the averaged length of a backbone bond to be ~4.75 x 10-10 / 4 = 

1.19 x 10-10 m. Using this information, C! (global best-fit) = 109 and C! (selective best-

fit) = 131. While these values are large compared to C! values of 10 or less for flexible 

uncharged synthetic polymers, ss-DNA is a polyelectrolyte whose Kuhn length for ss-

DNA varies widely depending on the salt concentration. Additionally, large C! values 

indicate swollen coils which is consistent with the rheological analysis. 

The number of Kuhn steps per spring is computed to be NK,S (global best-fit) = 15 

and NK,S (selective best-fit) = 12. Polystyrene has been successfully modeled with a spring 

corresponding to 5000 Daltons [6] with each Kuhn length corresponding to 742 Daltons 

[17] resulting in NK,S ~ 7. Thus, my calculations for Kuhn steps per spring for ss-DNA are 

close to the value obtained for polystyrene. 

A small number of springs for the global best-fit and selective best-fit 

parameters—even for strands with thousands of bases—indicates that there are relatively 

few relaxation modes present in ss-DNA. This observation is similar to what has been 

found for dilute polystyrene solutions [6].  
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Finally, I note that the experimental data for both the 2400 and 6700 base strands 

are very close to each other at intermediate times, and not in perfect agreement with the 

bead-spring model predictions. At short times, scatter in experimental data is clearly 

evident. This indicates the difficulty in obtaining high-precision experimental 

measurements at such short times and is perhaps one reason for the deviation between 

bead-spring model predictions and experimental observations.  
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Chapter 3 

 

High frequency viscoelasticity 

 

3.1. Microscopic polymer model 

In order to study the local bond relaxation, I model the polymer chain as a series 

of beads connected by stiff springs. If the position vector of the ith bead is denoted by ri, 

then the bond vector, R
S

i

, connecting the ith and (i+1)th beads is: 

R
S

i

= r
i+1
! r

i

         (22) 

with the instantaneous bond length 

  
l
i = R

S

i
= r

k

i+1 ! r
k

i( )
2

k=1

3

"        (23)  

and 

  
u
i
=
R
S

i

l
i

         (24) 

The ith bending angle formed made by the two adjacent bonds defined by beads i, 

i+1, and i+2 can be estimated by taking the vector products of the bonds connecting the 

beads: 

  

cos!
i
=
r
i+2

" r
i+1( ) • r

i

" r
i+1( )

l
i+1

 l
i

      (25) 
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The torsional angle, !, formed by the two next-nearest neighbor bonds defined by 

the four adjacent beads i, j, k, and l is computed using [40]: 

! = sign !( )cos"1 m • n( )       (26) 

where 

m =
r
ij
! r

kj

r
ij

 r
kj

         (27) 

n =
r
kj
! r

kl

r
kj

 r
kl

         (28) 

sign !( ) = sign  of  r
ij
• r

kj
" r

kl( )[ ]       (29) 

In the IUPAC notation [41], in the cis conformation, ! = 0 and all beads lie in a 

single plane with beads i and l on the same side of the line that passes through beads j and 

k. If one looks along the line connecting bead k towards bead j, if the bond connecting 

beads k and l must be rotated counterclockwise about the bond connecting k and j to 

reach the cis conformation via the smallest rotation angle, then, the sign of ! is negative. 

This definition can be translated into notation more commonly used for polymers, where 

! = 0 corresponds to the trans conformation [40] using: 

! polymer( ) = ! IUPAC( )  +  "       (30) 

The notation used in computing the spring vectors, bending angles, and the 

IUPAC notation of computing torsional angles is illustrated in Figure 17. 
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Figure 17. Illustration of beads (i, j, k, and l), spring vectors ( rij , r jk , rkl ), bending angle, 

! , and torsional angle, ! , all of which make up the microscopic polymer 

model. Adapted and reproduced with permission from Bekker et al. (1995). 
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3.1.1. Potential energies 

 Since n-Butane is the smallest chain that exhibits all bending and torsional 

conformations of a polymer chain, I use the Rychaert-Bellemans potential [42, 43], which 

was originally developed for n-Butane to describe the torsional potential energy of my 

model chain. The distance between adjacent C-C bonds is maintained near 1.53 A
0

 by 

using a stiff Fraenkel stretching potential: 

  

V
S

i
l
i( ) =

!
S

2
l
i " l

0( )
2

        (31) 

where !S is the stretching constant,   l
i is the bond length of the ith bond, and   l 0  is the 

equilibrium bond length. Similarly, the angles between adjacent bonds are maintained 

near 1090 47’ by use of the bending potential: 

V
B

i !
i( ) =

"!
2
cos!

i
# cos!

0( )
2

 (32) 

where !" is the bending constant, "i is the angle formed by the ith  and (i+1)th bonds, and 

"0 is the equilibrium bond angle which is 1090 47’. To control the bond rotation about a 

central bond, I use the torsional potential [42-44]: 

V
T

i !
i( ) = "! a

n
cos

n !
i

n= 0

5

#  (33) 

where !# is the torsional constant, #i is the torsional angle formed by the ith, (i+1)th, and 

(i+2)th bonds, and the an’s are constants. This torsional potential yields four energy states: 

trans, gauche+, gauche-, and cis. The barrier to rotation between trans and gauche+ states 

peaks at # = +600. The potentials at various rotational angles are designated as VT (# = 00) 

for the trans state—the lowest energy state, VGT (# = +600) for the local maxima between 

trans and gauche, VG (# = +1200) for the gauche+ states—local energy minima, and VC (# 
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= + 1800) for the cis state—the maximum energy state. From the shape of the rotational 

potential, I can extract two additional relationships: !V
T

i "
i( ) !"i "= +600 = 0  and 

!V
T

i "
i( ) !"i "= +1200 = 0. These six conditions enable me to relate the six rotational 

parameters to the known state potentials:  

a0 =
V
C

+ 8(V
GT

+V
G

)

18!"
         

a1 =
14 V

GT
#V

G( )
9!"

#
V
C

14!"

a2 = #
4 V

C
# (V

GT
+V

G
)[ ]

9!"

a3 =
8V

C
# 99 V

GT
#V

G( )[ ]
18!"

a4 = #2a2

a5 =
8 #V

C
+ V

GT
#V

G( )[ ]
9!"

$ 

% 

& 
& 
& 
& 
& 
& 
& & 

' 

& 
& 
& 
& 
& 
& 
& 
& 

       (34) 

In my simulations, the polymer is modeled as a phantom chain with no excluded 

volume interactions between atoms and with hydrodynamic interactions neglected. All 

friction is assumed to be concentrated at the atoms which are represented by beads that 

act as drag centers. Unlike Helfand et al. [44] who simulated cyclic chains (rings) to 

make all bonds equivalent, in my simulations of linear polymers, the ends of the polymer 

chain are not connected. I use Helfand et al.’s [44] stretching, !
S
m= 2.5 x 1027 s-2, and 

bending, !" m= 1.3 x 107 J/kg, constants, which are softened relative to physically 

realistic values to enable larger time steps to be taken during explicit numerical 

integration. The value of the torsional parameter remains unchanged at !" m  = 6.6344 x 

105 J/kg. All parameter values are summarized in Table 3.  
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Table 3. List of parameters used with the microscopic polymer model (Helfand et. 

al, 1980).  

 

 

 

S. No. Property Symbol Value Unit 

 

1. Frictional coefficient / mass b 1014 s-1 

2. Bead mass m 0.014 kg/mol 

3. Bead frictional coefficient !  1.4 x 1012 kg/mol-s 

4. Equilibrium spring length   l 0  1.53 x 10-10 m 

5. Equilibrium bending angle !
0
 1090 47’ degrees 

6. Torsional angle for trans-state !
T

 00 degrees 

7. Torsional angle for energy barrier !
GT

 + 600 degrees 

8. Torsional angle for gauche-state !
G

 + 1200 degrees 

9. Torsional angle for cis-state !
C

 + 1800 degrees 

10. Stretching force coefficient / mass !
S
m  2.5 x 1027 s-2 

11. Bending force coefficient / mass !" m  1.3 x 107 J/kg 

12. Rotational force coefficient / mass !" m  6.634 x 105 J/kg 

13. Rotational force parameter * a0   1 

14. Rotational force parameter * a1   1.3108 

15. Rotational force parameter * a2 - 1.4135 

16. Rotational force parameter * a3 - 0.3358 

17. Rotational force parameter * a4   2.8271 

18. Rotational force parameter * a5 - 3.3885 

19. Temperature T 372 K 

20. Torsional potential for trans-state ET 0 =   0.000 kBT J/mol 

21. Torsional potential for gauche-state EG 2,933 =   0.948 kBT J/mol 

22. Torsional potential for barrier EGT 12,360 =   3.996 kBT J/mol 

23. Torsional potential for cis-state EC 44,833 = 14.495 kBT J/mol 

 

* Values of the rotational force parameters (a0, a1, …, a5) correspond to the 

gauche/trans barrier height being 100% of its base value. 
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3.1.2. Force calculations 

With the polymer chain immersed in solvent, the random motion of solvent 

molecules leads to Brownian forces acting on the chain, which can be represented by the 

form [44, 45]: 

F
R

i

=
6!k

B
T

"t
u         (35) 

where !  is the bead frictional constant, kB is the Boltzmann constant, T is the absolute 

temperature, !t  is the time step, and u is a vector each component of which has a 

uniform random distribution between -1 and 1. The temperature is set at 372 K for all the 

simulations in this work. 

To convert the stretching potential to a stretching force acting on the ith bead, I use 

the gradient of the stretching potential: 

  

F S

i
= !

"

"r
i

# S
2

l
p ! l

0( )
2

p=1

NS

$  (36) 

Next, I describe the derivation of the forces acting on the beads from the bending 

and torsional potentials. While some of the needed equations are available in literature 

[40, 46], I briefly summarize them below for ease of reference and consistency in 

notation. 

The bending force is computed by taking the derivative of the bending potential 

with respect to the position of the bead on which the force is computed: 

FB

i
= !

"VB

"ri
= !

"

"ri
#$
2
cos$p ! cos$0( )

2

p=1

p=NS !1%
& 

' ( 
) 

* + 
    (37) 
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Since each bending angle is enclosed between two adjacent bonds, the 

contribution to the jth component of the bending force on the ith bead, rj
i, can have up to 

three contributions: 

!VB

!rj
i
= "# cos#p $ cos#0( )

!cos#p

!rj
ip= i$2

i

%  (38) 

where 

  

!cos"i
!rj

i+2
= #

1

l
i+1

rj
i+1 # rj

i( )
l
i

+
rj
i+2 # rj

i+1( )
l
i+1

cos"i

$ 

% 
& 
& 

' 

( 
) 
) 
 (39) 

  

!cos"i
!rj

i
=
1

l
i

rj
i+2 # rj

i+1( )
l
i+1

+
rj
i+1 # rj

i( )
l
i

cos"i

$ 

% 
& 
& 

' 

( 
) 
) 
 (40) 

!cos"i
!rj

i+1
= #

!cos"i
!rj

i
+
!cos"i
!rj

i+2

$ 

% 
& 

' 

( 
)  (41) 

For bead number 1, only !cos"
1
!rj

1  is relevant. For bead number 2, !cos"
1
!rj

2  and 

!cos"
2
!rj

2  are required. For bead number NS, !cos"NS#2
!rj

NS  and !cos"NS#1
!rj

NS are 

needed, and finally, for bead number NS + 1, only!cos"NS#1
!rj

NS+1 needs to be computed. 

For all other beads, three derivatives are needed. 

Similarly, the corresponding relationships for the jth component of the force on the 

ith bead from the torsional potential is: 

F i

T
= !

"VT
"ri

= !
"

"ri
#$ an cos

n $p
n= 0

5

%
p=1

p=NS !2%& ' ( 
) 
* + 
    (42) 

For a set of four beads, p, q, r, s (in order) that form a torsional angle, the derivative of 

the angle with respect to each bead’s coordinates is as follows [40]: 

!cos"

!rj
p

= apqr cos"
!#pqr

!rj
r
$
!#qrs
!rj

q

% 

& 
' ' 

( 

) 
* *       (43) 
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!cos"

!rj
s

= asrq cos"
!#qrs
!rj

q
$
!#pqr

!rj
r

% 

& 
' ' 

( 

) 
* *       (44) 

!cos"

!rj
q

= cpqr
!cos"

!rj
p

# bsrq
!cos"

!rj
s

      (45) 

!cos"

!rj
r

= csrq
!cos"

!rj
s

# bpqr
!cos"

!rj
p

      (46) 

with 

 
!"pqr

!rj
r
= #

1

sin"pqr

!cos"pqr

!rj
r

$ #
1

sin"i

!cos"i

!rj
i+2

     (47) 

where apqr = rqr rpq sin!pqr , bpqr = rpq cos!pqr rqr , cpqr = bpqr !1, and !pqr denotes the 

bending angle formed by beads p, q, and r. 

Neglecting inertial forces, to conserve momentum the frictional force must be set 

equal to the sum of all the potential forces and the Brownian random force yielding [44]: 

!
dr

i

dt
= F

S

i
+F

B

i
+F

T

i
+F

R

i
       (48) 

 

 

3.1.3. Code validation 

To validate the code, I compute the change in the total potential energy of the 

system over a small time step and compare it to the work done on the system in this time: 

V
S t+!t

"V
S t
= F

S

i

•!r
i

i=1

i=N
S
+1

#        (49) 

V
B t+!t

"V
B t
= F

B

i

•!r
i

i=1

i=N
S
+1

#       (50) 

V
T t+!t

"V
T t
= F

T

i

•!r
i

i=1

i=N
S
+1

#       (51) 
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where !t  is the time step and !r  is the distance moved by the ith bead in time !t . That 

is, I use the formulas for the forces derived analytically from the potentials to evaluate the 

right side of each of the above equations and compare this with the change in potential 

over a single time step calculated directly from the expression for each potential. This 

procedure validates not only that the formulas for the forces are correctly derived and 

written into the computer code but also determines the time step that is small enough to 

accurately calculate the change in potential. To ensure that the model is able to replicate 

the system accurately, I require that the spring length and bending angle remain close to 

the ideal values. In order to do so, I use ‘realistic’ values of the parameters [44], i.e., 

!
S
m  = 1.8 x 1028 s-2 and !" m  = 4.2 x 107 J/kg where I take the mass of the polymer 

bead, m, to be 0.014 kg/mol. Since I are using an explicit integration scheme, I am forced 

in the above check to use very small time steps (!t ~ 10-21 s) to keep the changes in the 

potential small over a single time step.  

 

 

3.1.4. Time step determination 

Ideally, I would like to select a value of time step that is small enough to ensure 

the force calculations match the change in potentials. However, to do so, I are forced to 

use a very small time step as noted above. Even with current computing power, 

simulating for as long as a nanosecond with a time step of 10-21 s would take an enormous 

amount of computational time. Since I am only concerned with tracking the relaxation of 

chain configurations and only need to pick a time step small enough for these properties 

to be accurate—even if the forces and potentials are not exact for individual atoms. Using 
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the time step of !t  = 5 x 10-15 s chosen by Helfand and coworkers [44] as an upper limit 

using the softened potentials, as shown in Figure 18, I find no change in autocorrelation 

functions from the results obtained using a much smaller value !t  = 10-16 s. Hence, to 

compute the autocorrelation functions, I use a time step of 5 x 10-15 s in my simulations. 

 

 

3.2. Theory 

 

3.2.1. Coil expansion 

A freely jointed chain (or bead-rod) model can be used to represent the coarse-

grained equilibrium distribution of configurations of a realistic chain with bending and 

torsional potentials if the freely jointed chain has the same mean square end-to-end 

distance, R
2

0

, as the realistic chain, i.e., R
2

0

= N
K
b
K

2
 where NK is the number of 

effective “Kuhn” steps and bK is the Kuhn step length of the freely jointed chain [19, 30]. 

The ‘characteristic ratio’ of a polymer is defined as the ratio of R
2

0

 of the actual 

polymer to that of an ideal chain in which each bond is freely jointed to neighboring 

bonds, for which R
2

0

= N
S
l
0

2
, where NS is the number of rod-like bonds and l0 is the 

average bond length [19]. Thus, the characteristic ratio can be used a measure of the coil 

expansion that results from the bending and torsional forces. 

The contribution of the bending potential to the characteristic ratio is [25]: 

C!

B
=
1+ cos"

C

1# cos"
C

        (52) 
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where !
C
" # $!  is the complement of the mean bending angle as defined in Section 3.1. 

Thus, the mean square end-to-end distance of a chain with a bending potential becomes 

R
2

0

= C!

B
N

S
l
0

2
. For tetrahedral bonding, cos!

C
= cos!

C
=1 3, yielding C!

B
= 2 . 

Similarly, the contribution of the torsional force to the characteristic ratio is [25]: 

C!

T
=
1+ cos"

1# cos"
        (53) 

where cos!  is the average of the cosine of the torsional angle. Thus, the mean square 

end-to-end distance with bending and rotational forces becomes R
2

0

= C!

T
C!

B
N

S
l
0

2
.  

 

 

3.2.2. Probability distribution functions 

While the ideal length between two carbon bonds is 1.53 A
0

, if I use a realistic 

spring constant to keep the length fixed, the time step would have to be exceedingly 

small. As is clear from the distribution shown in Figure 19, using a spring constant 

softened by a factor of 10, the bond length, l, is still within +10% of the ideal length, l0, 

about 80% of the time and is within +20% of the ideal length almost 100% of the time.  

Similarly, even with my bending potential’s coefficient, !" m , reduced to one-

fourth of its realistic value, Figure 20 shows the bending angles being within +100 of their 

ideal value at 1090 47’ about 70% of the time and within +200 of the ideal value almost 

100% of the time. This distribution is created with simulations carried out using a 40-

spring chain for 109 time steps and data being recorded at 30,000 equally spaced points in 

time.  
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The theoretical probability distribution for the torsional angle can be computed 

from the Boltzmann distribution as: 

p !( ) =

exp "
V !( )
RT

# 

$ 
% 

& 

' 
( 

exp "
V !( )
RT

# 

$ 
% 

& 

' 
( d!

!=")

!= )

*
       (54) 

where V(!) is the torsional potential function. Figure 21 compares the theoretical 

torsional angle probability distributions for the barrier heights VGT = 0, 12.36, and 24.72 

kJ/mol for NS = 40. Since the barrier height for butane is 12.36 kJ/mol [42-44], these 

values correspond to 0%, 100%, and 200% of the “base” barrier height for butane. The 

corresponding characteristic ratios areC!

T
= 2.9355, C!

T
= 2.4101, and C!

T
= 2.1461 when 

the barrier heights are 0%, 100%, and 200% of the “base” height. The probability of 

finding an angle in each of the energy states gauche-, trans, and gauche+ can be defined 

as: p
G
! = p "( )d"

"=!#

"=!# 3

$ , pT = p !( )d!
!="# 3

!= # 3

$ , and p
G
+ = p !( )d!

!= " 3

!= "

# . My simulations 

of a linear chain with NS = 25 yields pT = 0.601, which is within 1% of the reported value 

[44], showing that my simulation exhibits correct statistical behavior. 

 

 

3.3. Results 

The results presented in this section are obtained from simulations that are run for 

1010 time steps with bead coordinates recorded 100% of the time for the first 104 steps, 

10% of the time at regular intervals for time steps between 104 – 105, 1% of the time for 

time steps between 105 – 106 and so on, to conserve data storage while covering a very 

large dynamic range. The bead coordinates are then used to compute autocorrelation
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functions. 

In order to study the behavior of the coil as a whole, I compute the end-to-end 

vector autocorrelation: 

RR s( )
Sim

!
R t + s( ) •R t( )  dt

t= 0

t=D"s

#
R t( ) •R t( )  dt

t= 0

t=D"s

#
      (55) 

where R t( ) = r
N
S
+1
t( )! r

1

t( ) , D is total simulation duration, and s is the autocorrelation 

time interval. 

To analyze behavior at the level of individual Fraenkel springs, I compute the unit 

spring vector autocorrelation: 

uu s( )
Sim

!
u
i
t + s( ) • ui t( )

i=1

NS"  dt
t=0

t=D#s

$
u
i
t( ) • ui t( )

i=1

NS"  dt
t=0

t=D#s

$
     (56) 

I note that the spring (or bond) orientational autocorrelation function closely 

mimics the behavior of the mechanical stress relaxation function, since bond orientational 

order is typically proportional to stress via the well-known stress-optic law. 

To test the accuracy of my code, I compare the autocorrelation functions with 

only the stretching force acting on Hookean chains to theoretical predictions. The spring 

force acting on the infinitely extensible Hookean springs in the Rouse model is described 

by [28]: 

F
S

i

= HR
S

i

         (57) 

where 

 H = 2k
B
T!

S

2         (58)  

!
S

2
=
3N

S

2 R
2

0

=
3

2 R
2

0,S

=
3

2C"
T
C"
B
l0
2

      (59) 
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using which I can calculate the autocorrelation function for the individual Hookean 

springs as: 

R
S
R
S
s( )

Sim

!
R
S

i
t + s( ) •RS

i
t( )

i=1

NS"  dt
t= 0

t=D#s

$
R
S

i
t( ) •RS

i
t( )

i=1

NS"  dt
t= 0

t=D#s

$
    (60) 

 

3.3.1. Theoretical autocorrelation functions (Rouse model) 

For the Rouse model (with Hookean springs and no bending or torsional barriers), 

the dynamics can be resolved into independent modes. The end-to-end vector, R, 

autocorrelation of the whole chain can be compared to the predictions of the Rouse 

model, yielding [19, 31, 47]: 

RR s( )
Th
!
1

"

1

p
2
exp #

s

$ p

% 

& 
' ' 

( 

) 
* * p=1,3,5...

NS+       (61) 

where  

! p =
"

8kBT#S

2
sin

2
p$ 2 NS +1( )[ ]

      (62) 

with ! = 1 p
2

p=1,3,5...

NS

"  and I set the mean square end-to-end distance of each spring equal 

to 3 2!
S

2
= R

2

0,S
= C"

T
C"

B
l
0

2  so that it matches that of a chain with stretching, bending, 

and torsional potentials.  

Similarly, autocorrelation functions of the unit Frankel spring vectors and 

Hookean spring vectors can be compared to theoretical predictions using [23, 31, 47]: 

 uu s( )
Th
!
1

NS

exp "
s

# p

$ 

% 
& & 

' 

( 
) ) p=1,2,3...

NS*        (63) 

and 
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RSRS s( )
Th

=
1

NS

exp !
s

" p

# 

$ 
% % 

& 

' 
( ( p=1,2,3...

NS)       (64) 

respectively with equation 63 being an approximation valid at large s. 

I observe in Figure 22 that for Rouse chains (i.e., Hookean springs and no 

bending and torsional potentials) my simulation autocorrelation functions – RR s( )  and 

R
S
R
S
s( )  – are in perfect agreement with the theoretical predictions for chains with forty 

springs, NS = 40, and I also observe the -0.5 power-law region clearly appearing in the 

decay of R
S
R
S
s( )  which establishes the accuracy of my simulation code. 

 

 

3.3.2. Stiff spring potential 

Now, moving towards locally more resolved models, I first introduce the bond 

stretching force using the stiff Fraenkel spring potential. As is the case for Hookean 

springs, I observe excellent agreement of the predicted end-to-end vector autocorrelation 

function with that of the Rouse theory as can be seen in Figure 23. 

While for Hookean springs there is nearly perfect agreement between simulations 

and theory for both the end-to-end vector and the spring vector autocorrelation functions, 

I observe modest differences between simulations and Rouse predictions of the spring 

vector autocorrelation function at times in the neighborhood of 10-12 to 10-11 s in Figure 

24 on introducing Fraenkel springs. The modest discrepancy at short times is expected 

since this range of times corresponds to the rotational times of just one or a few bonds—

too few to act as an effective Hookean spring. At longer times, t > 10-11 s, the response is 

dominated by the collective motion of five to ten or more bonds, which is a
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sufficient number to act collectively as an effective Hookean spring. Hence, for t > 10-11 

s, there is good agreement between Rouse theory and simulations of chains with Fraenkel 

springs and no bending or torsional potentials. 

 

 

3.3.3. Bending angle potential 

Second, I add the bending force. Theoretically, the tetrahedral bonding angle is 

1090 47’ (!C = 700 13’) implying that cos!
C

 = 0.3333. Since I am using a softened 

coefficient for the bending potential, the distribution of bending angles is broadened in 

Figure 20 relative to the “true” distribution. If I take into account this distribution in 

bending angles, from the simulation results, I obtain cos!
C

 = 0.3539 which is within 

~6% of the theoretical value for a fixed bending angle of 1090 47’. As is the case with 

stretching force only, when stretching and bending forces are both included, the 

simulated end-to-end vector autocorrelation function agrees increasingly well with the 

Rouse theory as the number of springs increases until nearly perfect agreement is 

obtained when NS reaches 60 springs as can be seen in Figure 25. Note that the relaxation 

of the end-to-end vector is dominated by the terminal relaxation process which can be 

deduced from the 1 p2  weighting of the modes in equation 61. 

Figure 26 shows the bond vector autocorrelation function for NS = 10, 20, 60, and 

100 springs. At short and intermediate times, the bond vector decays more slowly  than in 

the Rouse predictions, although agreement is recovered in the terminal region which is 

expected since the simulated end-to-end vector relaxation RR s( )  matches the Rouse 

predictions quite well as can be seen in Figure 25. Thus, unlike the effect of the fixed 
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bond length which only influences the short time relaxation, the bending angle potential 

influences the relaxation—even for chains of 100 bonds—out nearly to the terminal time. 

What is particularly interesting is that when NS > 60, uu s( )  recovers the power-law 

time regime with slope similar to that of the Rouse theory, but displaced to longer times. 

Eventually, at long times, the dynamics of the coil as a whole overshadow such local 

effects and hence the coil relaxation matches the Rouse prediction. 

 

 

3.3.4. Torsional potential 

I now examine the effect of the torsional potential by running the simulations at 

0%, 100%, and 200% of the “base” barrier height of 12.36 kJ/kg between the trans and 

gauche states. When the barrier height is 0%, so that only the cis barrier exists, small 

deviations between the theoretical and simulated function RR s( )  are apparent even for 

NS = 60 in Figure 27. Thus, the torsional forces, even with no trans-gauche barrier, 

increase the coil stiffness which affects relaxation of the chain even on long length scales. 

This difference between theory and simulation increases with the rise in gauche/trans 

barrier height as is seen in Figure 28 with at a barrier height of 100%. While the effects 

are evident only for chains up to 60 springs in length for smaller barrier heights, I see in 

Figure 29 deviations creep in for even 100 springs at a barrier height of 200%. 

Additionally, as the barrier height increases, the average value of the cosine of the 

torsional angle, cos! , decreases from 0.4918 (for 0% barrier height) to 0.3643 (for 

200% barrier height) as is clear from the probability distribution function in Figure 21. 

This reduces the torsional characteristic ratio, C!

T , from 2.94 to 2.15 showing that the coil 
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shrinks slightly leading to faster terminal relaxations. Figure 30 shows this more clearly 

when NS = 60 with trends from simulations and the Rouse theory, since I include C!

T  in 

my calculation of the Rouse relaxation time spectrum as shown in equations 61 and 62. 

Next, I identify the effect of changing the torsional barrier height on the unit 

spring vector autocorrelation function. As is seen from Figure 31, as soon as the cis 

barrier is introduced (with trans/gauche barrier absent), the power law region completely 

disappears from the unit spring vector autocorrelation functions, even for NS = 60. The 

polymer relaxes much slower than predicted by the Rouse model at both short and 

intermediate times and there is a rapid decay at long times. Thus, relaxation resembles 

that of a single spring (i.e., a single exponential decay) more closely than that of a Rouse 

bead-spring chain. When the trans/gauche barrier is introduced at 100% of the base 

height in Figure 32, I observe emergence of the power law region as the number of 

springs increases to 60 or higher but greatly shifted to longer times relative to the Rouse 

predictions. Still, for short chains (NS < 40), the short and intermediate time behavior 

deviates noticeably from Rouse behavior. When the trans/gauche barrier is increased to 

200% of the base height, Figure 33 shows that even when a chain has 100 springs, the 

power law region is not recovered. As is observed for the autocorrelation function for the 

end-to-end vector for NS = 60, Figure 34 shows the Rouse theoretical unit spring vector 

autocorrelation function relaxes marginally faster with increasing barrier height because 

of the slight coil size contraction discussed above. All the same, simulations show that as 

the barrier height increases, relaxation is increasingly suppressed at short and 

intermediate times. 
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3.4. Discussion 

I have found that the inclusion of bending and torsional potentials into a polymer 

chain model drastically alters the modes of polymer relaxation relative to the Rouse 

model. Even rather slow modes that involve coordinated motions of tens of bonds are 

affected, while the terminal relaxation time is left nearly unchanged. I also find that the 

suppression of internal modes becomes more severe as the torsional barrier separating 

trans and gauche states increases. 

The suppression of internal modes is evidently a consequence both of the loss of 

configurational states produced by addition of bond angle constraints and of the slowing 

down of torsional transitions. This shifts the time scale of local modes towards the 

terminal time scale governing the relaxation of the molecule as a whole. The terminal 

mode is unshifted because it is governed mostly by pure rotational diffusion of the 

molecule as a whole. Even if internal degrees of freedom were to be completely rigidified 

by imposing very high barriers to bond rotation, the chain as a whole could still rotate as 

a rigid object in the solvent and so relax its end-to-end vector in a time comparable to that 

of a completely limp coil of the same radius. 

Changing the bond stretching potential from Hookean to a stiff Fraenkel spring 

has little effect on the relaxation spectrum except at short times. However, incorporation 

of a bending potential significantly slows the bond relaxation on both short and 

intermediate time scales. Presumably, the imposition of a strongly preferred bending 

angle makes complete relaxation, i.e., complete exploration of orientation space, of a 

given bond much more dependent on motion of other more-distant bonds than is the case 

in the absence of a bending potential. Inclusion of a cis-torsional barrier further limits 
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bond reorientation, and additional imposition of a trans-gauche barrier not only shrinks 

the available conformational space but also slows even local sampling of that space. 

 

 

3.4.1. Effect of coarse graining  

Now, I examine the extent to which the behavior described above can be 

understood through standard coarse-graining approximations. Starting from a “realistic” 

polymer model with bending and torsional potentials, one can construct an “equivalent” 

coarse-grained (CG) freely jointed chain model that possesses the same mean square end-

to-end vector, R
2

0

, as the realistic chain and the same fully extended length, L, via the 

relationships: 

R
2

0

=C!nl
2
         (65) 

L = 0.82nl = N
K
b
K

        (66) 

where NK is the number of bonds (“Kuhn steps”) and bK  (the “Kuhn length”) is the length 

of a bond in the “equivalent” freely jointed chain model which has the same mean square 

end-to-end vector and same contour length as the realistic chain. The factor of 0.82 arises 

from the zig-zag configuration of the “fully extended length” of the chain, which results 

from the tetrahedral bending angle. The above formulas allow us to obtain 

N
K
= 0.82

2
n C!  and b

K
=C!l 0.82 . 

When bending and torsional potentials are absent, C! =1, while imposition of a 

bending potential yields C! =C!

B
= 2, and bending plus torsional potentials produces 

C! =C!

B
C!

T  = 5.8710, 4.8200, and 4.2923 for 0%, 100%, and 200% trans-gauche barrier 

heights. So, I can construct an “equivalent” freely jointed chain model for a chain with NS 
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springs and a bending potential and torsional potential by using a model with only a stiff 

spring Fraenkel spring potential and no bending potential, whose contour length and 

mean-square end-to-end length match those of the chain with bending and torsional 

potential. This requires that the “equivalent” freely jointed chain model must have a 

reduced number of bonds, namely N
K
= 0.82

2
n C!  and a longer bond length, namely 

b
K
=C!l 0.82 , i.e., longer but fewer “CG” bonds. In addition, since the “equivalent” 

freely jointed chain has fewer beads than the original “realistic” chain, to reproduce the 

same total frictional drag, !
T 0

, the drag coefficient on each bead in the CG chain needs 

to be increased so that the product of the number of beads and the bead drag coefficient 

remains the same as in the original chain, i.e., 

!
T CG

= !
T 0

"!
CG
= !

0
N

S
+1( )

0
N

S
+1( )

CG
. Equivalently, I can simply multiply the 

time axis of the CG simulation by the ratio N
S
+1( )

0
N

S
+1( )

CG
 where N

S
+1( )

CG
 is the 

number of beads in the CG chain and N
S
+1( )

0
 is the number of beads in the original 

chain. 

In Figure 35, I compare the autocorrelation functions using a 60-bond chain with 

bending potential to those for an equivalent coarse-grained chain using only stiff Fraenkel 

springs, i.e., 20 CG bonds N
K
= 0.822n C! = 0.336NS

= 20( ) with each bond being 

3.7317 A
0

 long. For reference, I also show the theoretical Rouse predictions. Figure 35 

shows that RR s( ) of the coarse-grained simulation with 20 freely jointed bonds 

perfectly matches that of the fine-grained simulations of chains with 60 bonds that have a 

bending potential. This implies that a coarse-grained model that uses only stiff springs is  
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able to capture the end-to-end vector relaxation of a “fine-grained” chain with a bending 

potential. However, for the autocorrelation function of individual springs, uu s( ) , the 

CG model shows a slower relaxation on intermediate time scales than does the 

simulations using 60 realistic bonds. Thus, except in the terminal region, the coarse-

grained model is unable to capture the intermediate-scale dynamics of chains with a 

bending potential.  

Similarly, a coarse-grained chain “equivalent” to a 60-bond chain with both 

bending and torsional potentials has NK = 6 or 7 bonds of length bK = 10.9544 A
0

 when 

the trans-gauche barrier height is 0%, NK = 8 or 9 and bK = 8.9934 A
0

 when the trans-

gauche barrier height is 100%, and NK = 9 or 10 and bK = 8.0088 A
0

 when the trans-

gauche barrier height is 200%.  Figures 36 – 38 show that with increasing barrier height 

(0%, 100%, and 200%), the difference between simulation results and CG predictions 

narrows significantly. Introduction of just the ‘cis’ torsional barrier (0% trans/gauche 

barrier, seen in Figure 36) further reduces the available degrees of freedom relative to the 

chain with only bending potential. Figures 37 and 38 show the available degrees of 

freedom are further reduced as the trans/gauche barrier is added at 100% and then 

increased to 200%. I find that the CG predictions match the “fine simulations” better with 

increasing barrier height. 

 

 

3.4.2. Torsional bond relaxation rate 

Fixman [13] carried out a simulation of a simplified polymer model with 900 

bending angle and three torsional barriers which showed suppression of fast and  



 82

F
ig

u
re

 3
6
. 
 

C
o
m

p
ar

is
o

n
 o

f 
si

m
u

la
te

d
 (

S
im

) 
an

d
 t

h
eo

re
ti

ca
l 

R
o

u
se

 (
T

h
) 

au
to

co
rr

el
at

io
n
 f

u
n
ct

io
n
s 

<
R

R
(s

)>
 a

n
d
 <

u
u
(s

)>
 

u
si

n
g
 F

ra
en

k
el

 s
p
ri

n
g
s 

w
it

h
 s

tr
et

ch
in

g
, 

b
en

d
in

g
, 

an
d
 t

o
rs

io
n
al

 p
o
te

n
ti

al
s 

w
it

h
 0

%
 g

au
ch

e/
tr

an
s 

b
ar

ri
er

 h
ei

g
h
t 

w
it

h
 N

S
 =

 6
0
. 

T
h
es

e 
re

su
lt

s 
h
av

e
 b

ee
n
 c

o
m

p
ar

ed
 w

it
h
 N

S
 =

 7
 a

n
d

 b
 =

 1
0
.9

5
4
4
 x

 1
0

-1
0
 m

, 
i.

e.
, 

co
ar

se
-g

ra
in

ed
 

(C
G

) 
b
o
n
d
s 

w
it

h
 o

n
ly

 s
tr

et
ch

in
g
 p

o
te

n
ti

al
 a

ct
in

g
 o

n
 t

h
em

. 



 83

F
ig

u
re

 3
7
. 
 

S
am

e 
as

 
F

ig
u
re

 
3
6

 
ex

ce
p
t 

fo
r 

1
0
0
%

 
g
au

ch
e/

tr
an

s 
b
ar

ri
er

 
h
ei

g
h
t 

w
it

h
 
N
S
 
=

 
6
0
. 

T
h
es

e 
re

su
lt

s 
h
av

e 
b
ee

n
 

co
m

p
ar

ed
 w

it
h
 N

S
 =

 8
 a

n
d
 b

 =
 8

.9
9
3
4
 x

 1
0

-1
0
 m

, 
i.

e.
, 

co
ar

se
-g

ra
in

ed
 (

C
G

) 
b
o
n
d
s 

w
it

h
 o

n
ly

 s
tr

et
ch

in
g
 p

o
te

n
ti

al
 

ac
ti

n
g
 o

n
 t

h
em

. 



 84

F
ig

u
re

 3
8
. 
 

S
am

e 
as

 
F

ig
u
re

 
3
6

 
ex

ce
p
t 

fo
r 

2
0
0
%

 
g
au

ch
e/

tr
an

s 
b
ar

ri
er

 
h
ei

g
h
t 

w
it

h
 
N
S
 
=

 
6
0
. 

T
h
es

e 
re

su
lt

s 
h
av

e 
b
ee

n
 

co
m

p
ar

ed
 w

it
h
 N

S
 =

 9
 a

n
d
 b

 =
 8

.0
0
8
8
 x

 1
0

-1
0
 m

, 
i.

e.
, 

co
ar

se
-g

ra
in

ed
 (

C
G

) 
b
o
n
d
s 

w
it

h
 o

n
ly

 s
tr

et
ch

in
g
 p

o
te

n
ti

al
 

ac
ti

n
g
 o

n
 t

h
em

. 



 85

intermediate time scale relaxation processes. I apply his approach to my more realistic 

simulations by fitting the normal mode relaxation rates for different models—stretching 

force only, stretching and bending forces, and stretching, bending, and torsional forces 

with different trans/gauche barrier heights—to a single exponential having a pre-factor 

c
F

k  and relaxation rate !
F

k  for each mode k. I find, as expected, that a single exponential 

provides a very good fit to each of the normal mode relaxation functions. The normal 

mode relations are computed as follows: 

qkqk s( ) !
q
k
t( ) •q

k
t + s( )  dt

t= 0

t=D"s

#
q
k
t( ) •q

k
t( )  dt

t= 0

t=D"s

#
= cF

k
 exp "$F

k
s( )    (67) 

where 

 q
k
= Qki RS

i

i=1

i=NS

!         (68) 

 Qki =
2

NS +1
sin

!  k  i

NS +1

" 

# 
$ 

% 

& 
'        (69) 

The modal relaxation rates are given in Figure 39 which also show a pattern similar to 

Fixman’s [13] observations who simulated a polymer chain with 900 bending angle. 

Next, I compare in Figure 40 the amplitude of the above modes computed for a 

chain in dilute solution with the mode amplitudes for chains in the melt state [48] using: 

X
k
X
k
s( ) ! X

k
t( ) • Xk

t + s( )  dt
t= 0

t=D"s

# = c
K

k
 exp "$

K

k
s( )    (70) 

where 

X
k
t( ) =

1

N
S

+1
cos

!  k  i " 0.5( )
N

S
+1

# 

$ 
% 

& 

' 
( 

i=1

i=NS +1

)  r
i
t( )     (71) 
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To check my calculations, I compare my results of X
1
0( )( )

2

 to the theoretical 

[48] scaling X
1
0( )( )

2

! R
2

0

2" 2 , where R is the end-to-end vector of the chain, and 

find my results are in good agreement. My calculations indicate that the amplitude of 

relaxation decays in the range of k-1 to k-2—close to k-2 expected from the Rouse theory 

[48, 49]—but in contrast to melts where decay rate changes from k-2 for slower relaxation 

modes to k-3 for faster modes [48].  

 

 

3.4.3. Structure function 

The dynamics of polymers in dilute solution can be probed not only by linear 

viscoelastic measurements but also by measurements of dynamic scattering functions 

such as those obtained by neutron spin echo experiments [50]. These experiments have 

shown that in dilute solution the dynamic structure factor closely follows the standard 

dilute solution theory of Zimm [5]. The Zimm theory, while being based on a coarse-

grained bead-spring chain just like the Rouse theory, differs from the Rouse theory by its 

additional inclusion of hydrodynamic interactions. Hence, based on my simulations, one 

might have expected to see in the experiments large deviations from the Zimm theory in 

the dynamic structure factor at large values of the scattering wave number, q. However, 

such deviations were not seen [50]. To investigate further, I calculate the scattering 

function in the dilute region using [51]: 

S q, s( ) =
1

NS

exp iq• Ri

S
t + s( )! Ri

S
t( ){ }[ ]

i, j=1

i, j=NS

"     (72) 

which can be simplified for the case of a single chain in dilute solution as [52]: 
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S q,s( ) =

1+ 4! r
2
g r,s( )

sin qr( )
qr

dr
r= 0

r="

# $1+ 4! r
2
g r,s( )

sin qr( )
qr

%r,  s = 0
r= 0

"

&

    4! r
2
g r,s( )

sin qr( )
qr

dr
r= 0

r="

# $     4! r
2
g r,s( )

sin qr( )
qr

%r
r= 0

"

& ,  s ' 0

( 

) 

* 
* 

+ 

* 
* 

(73) 

Here, g(r, s) is the radial distribution function of the spring length which is computed as 

[52, 53]: 

g r,s( ) =

! r + ri t( ) " r j t( )[ ]
j=1,i# j

j=NS$
i=1

i=NS$
t= 0

t=D

$
4%r2

NSDdr
,        s = 0

! r + ri t + s( ) " r j t( )[ ]
j=1

j=NS$
i=1

i=NS$
t= 0

t=D"s

$
4%r2

NS D" s( )dr
,  s # 0

& 

' 

( 
( ( 

) 

( 
( 
( 

   (74) 

where 

 ! x[ ] =
1  if  x " r, r +#r[ )

0   otherwise

$ 
% 
& 

       (75) 

! is a probability distribution function that measures if a pair of beads is present in the 

spherical shell contained between radii r and r + !r  where "r is an infinitesimal 

increment in the spherical radius. Theoretically, !r" 0  but for simulation one needs a 

finite value, so, I have taken a very small value !r = 0.02b  where b is the ideal spring 

length, 1.53 A
0

.  

The scattering function, S q,t( ) , is plotted against time made dimensionless using 

the wave number, q, and center-of-mass diffusivity D
G
= k

B
T !

T
 where !

T
= N

S
+1( )!  is 

the drag coefficient of the whole chain. Figure 41 has my analysis on experimental data 

of melts [48] and Figure 42 has data for 60-spring chain with and without the bending 

and torsional potentials at a small and large value of q—which is related to the inverse of 

the chain’s radius of gyration. In dimensionless form, when q is increased from 5x108 m-1 
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to 3 x 109 m-1 with only the stretching force present, the data for all values of q collapses 

nearly perfectly on the same curve that is close to a single exponential decay. When 

bending and torsional forces are added, I observe that the relaxation of the scattering 

function at the smallest q value in this analysis, i.e., 5 x 108 m-1, is the same as the 

relaxation with only stretching force present. However, at larger q values, I do see some 

speed-up in relaxation when bending and torsional forces are present. The similarity of 

these results plotted on this dimensionless time scale and the near-exponential decay 

imply that the scattering function is reflecting primarily the center-of-mass diffusion 

whose rate scales as q2. This is precisely the behavior recorded by Ewen and Richter [50] 

in Figure 43 in neuton spin echo experiments for short chains in dilute solutions which 

are comparable to the chain lengths simulated here. For longer chains, at larger q, the 

scattering function decays more rapidly which reflects sub-diffusive motion of portions 

of the polymer coil and is in agreement with the Zimm theory. This is what is seen in 

Figure 41 when analysis is carried out for melts showing a nearly perfect collapse on a 

single exponential curve when dimensionless time scales as ~q3. However, for shorter 

chains, this sub-diffusive behavior is not observable and only scaling similar to that 

shown in Figure 42 is seen which indicates that the scattering function is not sensitive to 

the rotational restrictions on bond orientation that show up in the bond vector 

autocorrelation function and the mechanical stress. This is not surprising since the 

scattering function tracks only relative motion of mass centers which are able to diffuse 

collectively in space even if the bonds connecting them suffer significant restrictions on 

their orientational rearrangements. Hence, there is no contradiction between the dramatic 
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changes that bending and torsional potentials induce in orientational dynamics and the 

rather minor effect that they have on the decay of the scattering function.  
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Chapter 4 

 

Conclusions 

 

To explain the absence of high frequency relaxation modes in linear 

viscoelasticity of dilute solutions observed in conventional polymers such as polystyrene, 

I first test if this is also applicable on another stiff polymer which is expected to behave 

like an ordinary polymer—single-strand DNA. Then, I use a locally realistic 

“microscopic” model to analyze the local relaxation of small number of bonds. 

To study single-strand DNA, I use the normal mode analysis using the bead-

spring model and compare my results using global best-fit, selective best-fit, and 

individual best-fit parameters to linear viscoelastic measurements of chain end diffusivity 

for ss-DNA molecules of three different lengths. I find the hydrodynamic behavior of ss-

DNA exhibits behavior similar to that of polystyrene in a good solvent in that the 

experimental MSD versus time has slopes of 0.69 and 1 at the intermediate and longest 

times, respectively, which are in agreement with the predictions of the Zimm theory. The 

root mean square error between predictions and experimental data is minimized for h* ~ 

0.14 (global best-fit) or h* ~ 0.12 (selective best-fit) while h* is optimized for individual 

strands when h* is between 0.11 and 0.14. These values are close to the value h* = 0.15 
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observed for viscoelastic properties of polystyrene, indicating that ss-DNA exhibits good 

solvent hydrodynamic behavior similar to that of polystyrene in Aroclor. This 

observation is supported by C! values indicating a swollen coil and the diffusion 

coefficient follow the good solvent scaling laws. Since the optimum number of springs 

for the strands containing 2400, 6700, and 23100 bases are 6, 17, and 58 respectively, 

relatively few viscoelastic modes exist in ss-DNA molecules even for strands having 

thousands of bases. Finally, difficulty in performing high-precision measurements at 

intermediate and short times may have led to some inaccuracies in experimental data. The 

smallest coils diffuse fastest at long times for both experimental and simulated results. At 

intermediate times, this trend reverses for the simulated results. But for the experimental 

results, this reversal is absent and instead the data seems to merge onto a common curve. 

This deviation could possibly be a limitation of the model although the model is able to 

accurately predict the entire MSD trend for all chains when fits are made to each chain 

independently. On the other hand, experimental data is uncertain for the longest 23100-

bases strand and there is significant scatter at short times.  

Thus, my proposed method of using the bead-spring model combined with a normal-

mode analysis to predict the viscoelastic properties of ss-DNA predicts similarities in the 

best-fit model parameters of ss-DNA and polystyrene. Although the effective Kuhn 

length of ss-DNA is much longer than that of polystyrene, these two flexible molecules 

have similar hydrodynamic behavior in some respects. What is remarkable is how the 

linear viscoelasticity of ss-DNA can be predicted very accurately for the entire frequency 

domain with very few springs indicating an absence of high frequency modes in dilute 

solutions—very similar to observations made on ordinary flexibible polymers. 
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Next, using a locally realistic “microscopic” bead-spring model with stretching, 

bending, and realistic torsional potentials, I show that local relaxations of small numbers 

of bonds—corresponding to normal modes with large mode number—are slowed greatly 

by the bending and torsional potentials, pushing the relaxation times for local modes 

towards the terminal region for short chains. This effect is more pronounced when the 

gauche/trans torsional barrier height is increased with large deviations from Rouse model 

predictions being observed for all but the slowest mode for chains containing up to 60 

bonds. 

I tested a standard coarse-graining method that replaces the locally realistic chain 

constrained by bending and torsional potentials by a coarse-grained freely-jointed chain. 

The length of each coarse-grained bond and the number of fine-grained bonds replaced 

by each CG bond are chosen to achieve a match of the CG model to the fine-grained 

model in the equilibrium coil size and in the fully stretched length of the chain. I find that 

the CG model is typically not able to capture accurately the dynamics of the fine-grained 

model except at long times. Thus, coarse-graining a polymer to a freely-jointed (bead-

rod) chain might not always be a very successful strategy for reducing polymer degrees 

of freedom while preserving accuracy. In fact, data for polystyrene and polyisoprene in 

dilute solution show that the simple bead-spring model, with around 100 bonds subsumed 

into a single spring, might be a more successful coarse-grained model for describing 

linear viscoelasticity than is the bead-rod model. 

My results help explain why the viscoelasticity of dilute polymer solutions shows 

less evidence of local motion in dilute solutions than is observed in melts of the same 

polymers. The reason apparently lies in the greater slowdown, in dilute solutions relative 



 97

to the melt, of local motions caused by bending and torsional barriers to bond motion. In 

both dilute solutions and melts, slow small-k modes involving collective motion of many 

bonds are controlled entirely by diffusive resistance to motion which is proportional to 

solvent viscosity and not influenced by bending and torsional barrier heights. These slow 

modes therefore follow Rouse theory, which includes only viscous diffusional resistance 

to bead motion and ignores rotational barriers. However, in dilute solutions, local, large-k 

modes, which according to the Rouse theory should be very fast, are slowed down so 

much by bending and torsional barriers that their relaxation rates are similar to those of 

collective small-k modes, and hence are not distinguishable from the low-k modes in the 

viscoelastic spectrum. Thus, the viscoelastic spectrum resembles that of a bead-spring 

model with a limited number of springs. 

For a melt, there is no solvent to set the diffusive time scale of the slow modes, 

and so this time scale must be set self-consistently by the collective motions of the chains 

in a “micro-environment.” This effective viscosity of the micro-environment (which sets 

the monomeric friction coefficient used in the Rouse theory for melts) is typically high 

enough that the relaxation rate of small-k collective modes is slower than that of the local, 

high-k modes, and so these high-k modes are distinguished from the low-k modes in the 

viscoelastic spectrum for melts. In effect, the “viscosity” governing local bond rotations 

is smaller than that of the micro-environment controlling larger scale motions so that 

even when slowed by rotational barriers, the local motions remain faster than the longer-

range relaxations in the melt. Thus, local dynamics are readily distinguished for melts at 

short times in the viscoelastic spectrum. For dilute solutions, these dynamics occur nearly 
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simultaneously with more global motions and hence are not readily discernable in the 

viscoelastic spectrum. 
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