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CHAPTER I 

INTRODUCTION 

 

Because of the increasing incidence of obesity worldwide, the molecular 

mechanisms controlling adipogenesis have become a critical area of research (1).  Studies 

related to adipogenesis have led to the identification of genes involved sequentially in the 

differentiation of fat cells, such as C/EBPβ, C/EBPδ, C/EBPα, and PPARγ (2, 3).  This 

thesis focuses on the regulation of the activity of CCAAT/Enhancer Binding Protein 

(C/EBP) β, an early inducer of adipogenesis, which mediates the transcriptional 

activation of C/EBPα and PPARγ.  Because C/EBPβ associates with the nuclear 

coactivator p300, which contains acetyltransferase activity (4), we hypothesized that 

C/EBPβ is acetylated and that acetylation of C/EBPβ may contribute to its role in 

adipogenesis.  This thesis investigates a model in which dynamic regulation of the 

acetylation of C/EBPβ contributes to its ability to mediate transcriptional activation of 

target genes associated with adipogenesis.  Our findings suggest that acetylation of 

C/EBPβ at lysine 39 contributes to adipogenesis and adipocyte function, thereby adding 

to our understanding of cellular mechanisms relating to obesity, and revealing potential 

therapeutic approaches for obesity and related health problems.  
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Adipocytes and Adipogenesis 

 

Adipocytes, or fat cells, are derived from mesenchymal precursors and expand 

extensively after birth (2).  Collectively, fat is a tissue that has long been known to serve 

as an energy depot by storing triglycerides.  Recent observations demonstrate that 

adipose tissue is not just a passive storage organ.  Adipose tissue has the capacity not 

only for lipid transport and synthesis, but also for immune function and secretion of 

hormones such as leptin, which regulates appetite and metabolism, adiponectin, which 

increases sensitivity of target cells to insulin, and resistin, which increases resistance to 

insulin (1).  Cell culture models have been developed to study the molecular basis of 

adipogenesis, or adipose cell differentiation.  Two widely used cell lines are 3T3-L1 and 

3T3-F442A preadipocytes, which were derived from mouse embryo fibroblasts that 

accumulated triacylglycerol lipid droplets (5, 6). 

A variety of inducers can initiate the process of adipogenesis in confluent 

monolayers of preadipocyte fibroblasts.  The inducers include agents which increase 

cAMP levels, glucocorticoids and IGF-1.  In cultured cell models, an adipogenic 

“cocktail” that includes isobutylmethylxanthine (MIX), dexamethasone, and insulin, in 

the presence of fetal bovine serum (FBS), referred to here as “MDI Medium”, is often 

used to induce adipose conversion (3, 7).  MIX is a cAMP phosphodiesterase inhibitor 

which increases cellular cAMP (8, 9).  It was originally postulated that MIX is capable of 

inducing CCAAT/Enhancer Binding Protein (C/EBP) β expression, while dexamethasone 

activates C/EBPδ (8); the two C/EBP family members are important early inducers of 

adipogenesis (discussed in detail below) (3, 10).  It has also been reported that 
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dexamethasone, a potent synthetic glucocorticoid (3), increases C/EBPβ expression and 

potentiates transcriptional activation by C/EBPβ (11).  Since the C/EBPβ promoter 

contains C/EBP binding sites, the increase attributed to C/EBPβ may be at least partially 

due to indirect activation of C/EBPβ by C/EBPδ.  Insulin also increases C/EBPβ and 

C/EBPδ expression (12).  Fetal bovine serum likely provides other factors that favor 

adipogenesis, including growth hormone (GH).  GH has been found to be a necessary 

component in the adipose conversion of 3T3-F442A cells (13); when GH was immuno-

depleted from FBS, differentiation could not be induced in these cells (14).   

 

Transcription Factors Involved in Adipose Differentiation 

 

Transcriptional activation involves the regulation of genes by transcription factors 

that bind to the regulatory sequences of target genes.  Transcription via transcription 

factors is regulated on several levels, including:  the binding of transcription factors to 

target sites, post-translational modifications of transcription factors themselves, binding 

of coactivators and corepressors, and the location and post-translational modification 

state of histones (15).  This thesis will focus on one post-translational modification, 

acetylation, of the transcription factor C/EBPβ. 

Adipose differentiation involves the sequential activation of transcription factors.  

Two of these transcription factors, C/EBPβ and C/EBPδ, are induced early in 

preadipocyte conversion to adipocytes.  C/EBPβ and C/EBPδ initiate a cascade of 

transcription factors that includes C/EBPα and Peroxisome Proliferator-Activated Protein 

(PPAR) γ (16), two master regulators of adipogenesis (3).  Although these transcription 
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factors have functions outside of adipose differentiation, this thesis will focus on their 

roles in adipogenesis.   

 

PPARγ2 

PPARγ2, a nuclear hormone receptor that heterodimerizes with Retinoic acid-X-Receptor 

(RXR) α, binds and activates genes involved in adipogenesis, such as adipocyte Protein 2 

(aP2/) and PhosphoEnolPyruvate CarboxyKinase (PEPCK) (17, 18).  aP2 is a cytosolic 

fatty acid binding protein that is induced by fatty acids, and PEPCK is an enzyme 

involved in gluconeogenesis (3).  PPARγ2 is a splice variant of PPARγ1 that includes a 

different 5’ untranslated sequence in the gene and 30 more amino acids on its N-terminus 

(17).  The inducible inactivation of the PPARγ gene in mouse adipose tissue leads to 

progressive lipodystrophy in fat tissue, supporting a role for PPARγ in adipocyte 

maintenance (19).  PPARγ2 is expressed exclusively in adipose tissue, and ectopic 

PPARγ2 expression in NIH-3T3 and Swiss-3T3 cells promotes their differentiation to 

adipocytes (18, 20).   

 

C/ EBPα   

C/EBPα, the founding member of the C/EBP family of transcription factors, is expressed 

in liver, intestine and lung, as well as adipose tissue (3).  C/EBPα is involved in 

termination of mitotic clonal expansion, when cells synchronously reenter the cell cycle 

and undergo several rounds of mitosis, during adipose differentiation.  C/EBPα also 

mediates activation of adipocyte genes that encode aP2, glucose transporter (GLUT) 4, 

and Stearoyl-CoA Desaturase (SCD) 1, as well as autoactivation of C/EBPα (3).  GLUT4 
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encodes an insulin-responsive glucose transporter (21, 22), and SCD1 is involved in 

lipogenesis and the desaturation of saturated fatty acids (23).  Expression of antisense 

C/EBPα RNA in cells blocked expression of these genes, and also blocked accumulation 

of cytoplasmic triacylglycerol.  Rescue could be induced by expressing a complementary 

sense RNA (24).  When C/EBPα is overexpressed, it induces adipose differentiation, 

even in the absence of differentiation medium (25, 26).  C/EBPα knockout mice die 

shortly after birth due to severe hypoglycemia, which is most likely a consequence of 

reduced glycogen synthesis in the liver.  Moreover, hepatocytes and adipocytes also fail 

to accumulate lipids (27).  Interestingly, C/EBPα does not promote adipogenesis in 

PPARγ-deficient cells, but PPARγ does promote adipogenesis in C/EBPα-deficient cells, 

suggesting that, even though there is cross-regulation, PPARγ is both necessary and 

sufficient for adipogenesis (28-30).  It is interesting to note that C/EBPα -/- cells that 

have been induced to differentiate with PPARγ are extensively insulin resistant (28).  

This indicates that, although C/EBPα may not be necessary for adipose conversion in cell 

culture, it is still necessary for other functions such as insulin sensitivity.    

  

C/EBPδ 

C/EBPδ is expressed in adipose tissue, lung and intestine (29, 31, 32), as well as in 

osteoblasts (33), mammary cells (34), and hepatocytes (35, 36).  C/EBPδ (-/-) mice have 

normal white adipose tissue, but have reduced lipids in their brown adipose tissue, as well 

as reduced expression of Uncoupling Protein-1 (UPC1), important in thermoregulation 

(37).  Although C/EBPδ plays a role in adipose differentiation, C/EBPβ is reported to 

play a more prominent role, especially in the activation of PPARγ (38). 
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Inhibitory transcription factors  

Several key transcription factors can inhibit adipose differentiation.  On the C/EBPα 

promoter, it is thought that the C/EBP binding site is unavailable as a docking site until 

C/EBP Undifferentiated Protein (CUP) dislodges from the nearby CUP regulatory 

element (39).  C/EBP homologous Protein (CHOP), or C/EBPζ, heterodimerizes with 

C/EBP family members, but because it contains an altered DNA binding region, it can act 

as a dominant negative protein in adipocyte differentiation by interfering with C/EBPβ 

function (40, 41).  GATA2, which normally promotes haematopoiesis and urogenital 

development, binds to C/EBPs.  Forced expression of GATA2 inhibits the ability of 

C/EBPs to transactivate PPARγ, thus inhibiting adipogenesis (42).  The nuclear protein 

Eight Twenty-One (ETO), whose expression decreases during adipose differentiation, 

can inhibit C/EBPβ function through a direct interaction with C/EBPβ (43). 

 

C/EBPβ is an Early Inducer of Adipogenesis 

 

C/EBPβ is a transcription factor that is present in cells in three forms:  Full length 

Liver-enriched Activating Protein 1 (LAP1, residues 1-296) (44), LAP2 (residues 22-

296), and Liver Inhibitory Protein (LIP, residues 151-296).  LIP is a shorter form that 

lacks the N-terminal transactivation sequence and is inhibitory (45, 46).  

The N-terminal transcriptional activation domain of C/EBPβ, specifically amino 

acids 85-95, is thought to interact with the basal transcriptional machinery (47).  The N-

terminus is also known to interact with important coactivators, including p300 (4) and 
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CREB-Binding Protein (CBP) (48).  Further, unspecified residues in the N-terminal 

transcriptional activation domain interact with Silencing Mediator for Retinoid and 

Thyroid hormone receptors (SMRT), a corepressor complex with deacetylase properties 

(49), and residues 1-22 in C/EBPβ interact with the Swi/Snf complex, an ATP-dependent 

helicase complex responsible for chromatin remodeling (50).  The N-terminus is critical 

for transcriptional activation (51), perhaps because of its ability to interact with key 

coactivators or corepressors. 

As a basic-leucine zipper (B-Zip) protein, C/EBPβ also contains a C-terminal 

basic DNA-binding domain and a leucine zipper which mediates dimerization (3) (Fig. 

1.1).  The DNA-binding domain binds to the DNA sequence ATTGCGCAAT, or a 

variation of this consensus C/EBP sequence (31).  The leucine zipper is composed of five 

heptad repeats that assemble into a dimeric coiled-coiled structure.  This interaction is 

responsible for homodimerization as well as heterodimerization with other B-Zip 

transcription factors, particularly with other members of the C/EBP family.  The dimer 

interacts with DNA via the basic region, forming a “scissors-grip” arrangement (52).  

Dimerization is a prerequisite for binding of C/EBPβ to DNA (29, 52, 53).  Recent 

reports also indicate that phosphorylation of C/EBPβ (at T179/T188 or S184/T188) leads 

to a three-dimensional change in C/EBPβ that can regulate its dimerization (54).  When 

phosphorylation increases at these sites, both glutaraldehyde-induced crosslinking of 

dimers, as well as binding to DNA are also increased.  C/EBPβ also contains negative 

regulatory domains that are thought to mask its transcriptional activation domain (51, 55).  

It is postulated that inactive C/EBPβ is folded in such a way that the N- and C-termini are 

in close proximity.  This folding inhibits C/EBPβ activity by making the transcriptional 
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Fig 1.1.  Domains and phosphorylation sites within C/EBPβ. Diagram indicates the 
different domains of C/EBPβ.  Also indicated are phosphorylation sites within mouse 
C/EBPβ, and their respective kinases, as well as a SUMO site. (*) =indicate 
phosphorylation sites have been found to be phosphorylated in rat, and that are conserved 
in mouse. 
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activation domain inaccessible to regulatory elements because of its binding to negative 

regulatory domains.  When C/EBPβ is phosphorylated, it modulates the three-dimensional 

structure of C/EBPβ molecule so that the transcriptional activation domain is available for 

interaction with regulatory proteins. 

 

The role of C/EBPβ in adipose differentiation 

C/EBPβ is expressed in adipose, hepatic, and a variety of other tissues (31, 46, 56-60).  In 

hepatocytes, C/EBPβ promotes proliferation in response to Transforming Growth Factor 

(TGF) α (61, 62); hepatocytes in C/EBPβ (-/-) mice exhibit a reduced regenerative response 

(63).  C/EBPβ (-/-) mice also exhibit defects in the gluconeogenic pathway attributed to 

reduced PEPCK levels (64).  Keratinocytes from C/EBPβ (-/-) mice are resistant to 

carcinogen-induced skin tumor development (60), indicating a role for C/EBPβ in promoting 

their proliferation.  C/EBPβ (-/-) mice also have an increased susceptibility to infection, 

which is thought to be due to impairments in bacteria killing and cytotoxicity, although the 

mechanism is obscure (65).  Further, C/EBPβ plays an important role in the hematopoietic 

system (66) and female reproduction (67).  Although C/EBPβ plays many roles in a variety 

of cellular functions, this thesis will focus on the role of C/EBPβ in adipogenesis. 

C/EBPβ, which induces expression of C/EBPα and PPARγ, is an early component of 

the transcriptional cascade of adipogenesis (3).  In C/EBPβ (-/-) C/EBPδ (-/-) mice, a 

significant decrease in adipose tissue mass was observed, despite normal expression of 

C/EBPα and PPARγ (37).  Cells from C/EBPβ (-/-) mice exhibited a significant  

reduction in adipose differentiation (37), supporting a prominent role for  
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C/EBPβ in adipose differentiation, especially in the activation of PPARγ (38).  C/EBPβ (-

/-) neonates show no other gross physical changes.  However, about 35% die by about 24 

hrs after birth and females are infertile.  C/EBPβ (-/-) mice are also refractory to diet-

induced obesity, reflected in lower levels of blood triglycerides, free fatty acids, 

cholesterol, and hepatic triglyceride accumulation (68).   

Early studies indicate that overexpression of C/EBPβ in NIH-3T3 cells is not 

sufficient to induce adipogenesis, whereas expression of C/EBPα is sufficient (26).  

Ectopic expression of C/EBPβ in NIH-3T3 cells, along with MDI medium, can induce 

adipose differentiation (8, 38).  Further, adenoviral expression of C/EBPβ in C/EBPβ(-/-) 

murine embryonic fibroblasts (MEFs), coupled with the addition of MDI medium, 

promoted expression of adipocyte markers in these cells (69).  In 3T3-L1 cells, Yeh et al. 

observed that overexpression of C/EBPβ led to adipocyte differentiation, even in the 

absence of hormonal stimulation (8). 

After addition of MDI medium, preadipocytes undergo several rounds of mitotic 

clonal expansion, which are thought to be necessary for differentiation to progress (69), 

although this is controversial (70).  Tang et al. (69) found that, following MDI induction 

of differentiation of 3T3-L1 cells, mitosis is induced, based on activation of 

cdk2/cyclinE/A, turnover of p27, hyperphosphorylation of Rb, and incorporation of 

radiolabeled thymidine into DNA.  Further, when cdk was inhibited with roscovitine, not 

only mitotsis, but also adipogenesis was blocked.  During mitotic clonal expansion, 

C/EBPβ undergoes phosphorylation changes necessary for its ability to bind DNA (see 

below) (69, 71).  After a lag period (~10hrs), C/EBPβ acquires the ability to bind to the 

promoters of C/EBPα and PPARγ genes.  Since mitotic clonal expansion is necessary for 
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differentiation, the lag time in the expression of C/EBPα and PPARγ is thought to be 

necessary because C/EBPα and PPARγ are both antimitotic (72, 73).   

 

Posttranslational Modifications Modulate Transcriptional Activation 

by C/EBPβ 

Phosphorylation of C/EBPβ is one mechanism to regulate its function.  

Phosphorylation occurs at multiple sites on C/EBPβ, and is mediated by different kinases 

(Fig 1.1).  In NIH-3T3 cells, expressed human C/EBPβ is phosphorylated at T235 (which 

corresponds to T188 in mouse) in the presence of Ras, and increases transcription of the 

Interleukin-6 (IL-6) promoter, a C/EBPβ target gene (74).  Lipopolysaccharide (LPS) 

increases Ras-induced phosphorylation of rat C/EBPβ at S64 (conserved in mouse).  This 

modification increases both IL-6 mRNA and protein in murine B lymphoblasts (75).  

Phosphorylation of rat C/EBPβ at S276 (conserved in mouse) mediated by Ca2+-

calmodulin-dependent protein kinase II (CaMKII) increases transactivation of a promoter 

that contains sites for C/EBPβ binding sites in pituitary cells (76).  Phosphorylation of rat 

C/EBPβ at S105 or of mouse C/EBPβ at T217 by p90 ribosomal S6 kinase stimulates 

proliferation in differentiated hepatocytes treated with TGFα (62).   

Phosphorylation of C/EBPβ can also be inhibitory.  Protein Kinase C-mediated 

phosphorylation at S240 of rat C/EBPβ is reported to attenuate DNA binding in 

hepatocytes (77).  PKC did not directly phosphorylate C/EBPβ in vitro, so it most likely 

induces a downstream kinase to directly phosphorylate C/EBPβ.  In resting osteoblasts, 

Glycogen Synthase Kinase (GSK)-3β mediates constitutive phosphorylation of rat 
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C/EBPβ at T189, S185, S181, and S177, which is inhibitory to C/EBPβ binding to DNA 

(78). 

 C/EBPβ is found exclusively in the nucleus of 3T3-L1 preadipocytes and 

adipocytes (71) and in 3T3-F442A preadipocytes (79).  In 3T3-F442A preadipocytes, 

C/EBPβ phosphorylated at T188 is induced to translocate to heterochromatin in response 

to GH (79).  In other cell lines, C/EBPβ can shuttle between the cytoplasm and the 

nucleus.  In PC12 cells, C/EBPβ was reported to translocate to the nucleus in a 

cAMP/PKA-dependent manner (80).  In DKO-1 colorectal cancer cells, the antioxidant 

pyrrolidinedithiocarbamate (PDTC) induces phosphorylation of C/EBPβ at S299, which 

is suggested to mediate translocation to the nucleus in a PKA-dependent manner (81).  In 

mouse hepatocytes, Tumor Necrosis Factor (TNF) α induces C/EBPβ phosphorylation at 

S239, which then facilitates CRM1-mediated nuclear export (82).  S239 lies in “motif A” 

(residues 226-246), which has been reported to function as a nuclear localization signal 

(83).  

 

C/EBPβ contributes to GH-mediated activation of c-fos   

The adipogenic conversion of 3T3-F442A preadipocytes is dependent on growth 

hormone (GH) (14).  C/EBPβ protein levels increase in response to GH in 3T3-F442A 

preadipocytes (84).  C/EBPβ is also a critical mediator of the activation by GH of c-fos, a 

proto-oncogene target of C/EBPβ (85-88).  When C/EBPβ is decreased by siRNA 

directed against C/EBPβ in either 3T3-F442A preadipocytes or Chinese Hamster Ovary 

(CHO) cells, GH can no longer mediate activation of c-fos (89).  Thus, C/EBPβ 

contributes to GH-mediated activation of c-fos.   
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The importance of the phosphorylation of C/EBPβ in GH-stimulated transcription 

is suggested by reports of multiple changes in the phosphorylation state of C/EBPβ in 

response to GH (Fig. 1.1).  Isoelectric focusing identified at least six distinct 

phosphorylated forms of C/EBPβ that are regulated by GH in 3T3-F442A cells (90).  A 

Mitogen-Activated Protein Kinase (MAPK) substrate site at T235 in human C/EBPβ 

(74), which corresponds to T188 in murine C/EBPβ, is rapidly and transiently 

phosphorylated in response to GH in an Extracellular signal Regulated Kinase (ERK) 

1/2-dependent manner; such phosphorylation alters its ability to activate transcription of 

target genes such as c-fos (90).  Mutation at that MAPK phosphorylation site of C/EBPβ 

almost completely abrogates the stimulation of the c-fos promoter in response to GH, 

indicating that phosphorylation at the MAPK substrate site is required for GH to activate 

c-fos.  

It is notable that while phosphorylation of C/EBPβ at T188 is rapid and transient, 

dephosphorylation of C/EBPβ at aGSK-3 substrate site (91) may occur only after 60 

minutes of GH treatment.  The delayed dephosphorylation may mediate attenuation of c-

fos transcription; it is dependent on activation by GH of phosphatidylinositol 3-Kinase 

(PI3K) and downstream AKT, which leads to inhibition of GSK-3 activity.  Thus, 

regulation by GH of the phosphorylation state of C/EBPβ, mediated by MAPK and PI3K-

AKT signaling cascades, is an important component of the mechanisms of GH-stimulated 

transcription of c-fos.  

SUMOylation of C/EBPβ may also contribute to GH-mediated activation of c-fos.  

SUMOylation is a posttranslational modification which is often associated with negative 

regulation of transcription (92, 93).  SUMOylation involves the conjugation of members 
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of the Small Ubiquitin-Like MOdifier (SUMO) family to acceptor lysine residues in 

target proteins (94).  Lysine 133 in murine C/EBPβ is SUMOylated (95-97).  Previous 

data indicate that mutation of C/EBPβ at K133 elevates basal c-fos transcription to a level 

where it cannot be further stimulated by GH (97), opening the possibility that 

deSUMOylation, and consequent relief of an inhibitory effect of SUMO, may contribute 

to the ability of C/EBPβ to activate transcription in response to GH. 

 

Phosphorylation of C/EBPβ and adipogenesis  

Phosphorylation of C/EBPβ at the MAPK/ERK substrate site T188 increases during 

adipogenesis in 3T3-L1 cells (98, 99).  Phosphorylation at this site is detected within 4 

hours after adipose differentiation commences in response to MDI medium, which is 

when MAPK is present and active (phosphorylated) within the nucleus of 3T3-L1 cells 

(99).   It has also recently been found that although T188 is initially phosphorylated by 

MAPK, phosphorylation at this site is maintained by cdk2 (100).  It is not until ~10 hrs 

after differentiation commences that C/EBPβ is phosphorylated at the GSK-3 sites T179 

and S184, concurrent with the timing of translocation of GSK3 to the nucleus.  This 

GSK3-mediated phosphorylation of C/EBPβ, which is dependent on prior 

phosphorylation at T188, then promotes maximal DNA-binding by C/EBPβ on promoters 

of adipocyte genes such as C/EBPα and aP2 (99).  In agreement with these studies, Park 

et al. observed that phosphorylation of C/EBPβ at T188 is required to induce expression 

of C/EBPα and adiponectin (98).  Thus, phosphorylation of C/EBPβ appears to 

contribute to the role of C/EBPβ in adipogenesis. 
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Fig 1.2.  Acetylation of a lysine residue.  Shown are both a nonacetylated and acetylaed 

lysine residue.  Adapted from Li et al. (104). 
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Acetylation of Nuclear Proteins 

 

In addition to phosphorylation and sumoylation, a growing list of modifications, 

including acetylation, methylation, and ubiquitination, regulate the transcriptional 

regulatory potential of multiple nuclear proteins (101).  In the case of histone acetylation, 

acetyltransferases add an acetyl group to the ε-amino group of multiple lysine side chains 

in the N-terminal tail region (Fig 1.2).  Acetylation is associated with chromatin 

remodeling which makes DNA more accessible to the transcriptional regulatory 

machinery (102).   Histone methylation on arginines is usually involved in gene 

activation, while histone methylation on lysines is usually repressive (101).  Histone 

ubiquitination on lysines may also be involved in modulating gene activity.  

Combinations of such modifications, now considered to serve as a “histone code,” further 

modulate chromatin structure (103). 

The acetylation state of nuclear proteins is highly susceptible to regulation by 

histone acetyltransferases (HATs) and/or histone deacetylases (HDACs).  Although the 

original terminology referred to these as “histone” enzymes, they are now recognized to 

modulate the addition of acetyl groups to lysines of a wide array of non-histone substrates 

as well.  Unlike phosphorylating kinases, there is no reported evidence of “acetylation 

cascades”, or the consecutive procession of acetylase activity, to modify a biological 

signal (105).   
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Acetyltransferases   

Several families of protein acetylasetransferases are exemplified by CBP/p300, 

P300/CBP Associated Factor / General Control Nonderepressible-5 (PCAF/GCN5), 

TATA box binding protein Associated Factor (TAF) II 250 (TAFII250), Steroid Receptor 

Coactivator (SRC) 1, and MOZ (Monocytic leukemia Zinc finger protein (105).  Two 

well-studied examples of acetyltransferases are CBP and the highly homologous p300 

(106, 107).  CBP and p300 were initially identified through their respective associations 

with transcription factor CREB and the viral protein E1A (108-110).  In humans, 

Rubenstein-Taybi Syndrome is associated with CBP heterozygosity (111-113).  

Rubenstein-Taybi Syndrome is a developmental disorder characterized by mental 

retardation, unusual facial appearance and broad digits.  p300 heterozygosity has also 

been reported in tumor tissue from several carcinoma patients (111, 113).  In mice, CBP 

or p300 homozygosity is embryonic lethal (112, 114).  Because of the diversity of defects 

and the many binding partners of these coactivators, it has been difficult to pinpoint any 

one reason for the lethality.  

In cultured cells, CBP and p300 are localized only in the nucleus (110, 112).  

However, in tissue, CBP and p300 can be found in both the nucleus and the cytoplasm.  

For example, in murine notochord cells, p300 translocates from the cytoplasm to the 

nucleus during embryonic development (112).  In primordial ovarian follicles, CBP and 

p300 are initially found in the cytoplasm of oocytes, but p300 and CBP move to the 

nucleus during later growth stages (115).  Cytoplasmic localization is not surprising 

considering that these acetyltransferases have been found to acetylate both cytoplasmic 

and nuclear substrates.   
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Interestingly, during adipose conversion of 3T3-L1 and 3T3-F442A cells, p300 

levels increase (116) and p300/CBP knockdown suppresses differentiation of 3T3-L1 

cells (117).  Further, p300 has been found to enhance C/EBPα- (118) and PPARγ-

mediated (117, 119) transcription of adipogenic target genes.  These data indicate that 

p300 contributes to adipose differentiation. 

 

Deacetylases   

In contrast to acetylases, HDACs catalyze removal of acetyl groups from substrates.  

HDACs are divided into three classes (120, 121):  Class I HDACs, which include 

HDACs 1, 2, 3, 8, and most likely 11, resemble yeast deacetylase RPD3 in terms of 

sequence similarity, and are localized primarily in the nucleus.  HDAC1 and HDAC2 are 

part of high-molecular-weight corepressor complexes, Sin3 and NuRD-Mi-2.  HDAC3 is 

a component of N-CoR and SMRT corepressor complexes.  Class II HDACs, 4, 7, 9, and 

10, resemble yeast deacetylase HDA1, and exhibit tissue-specific expression.  Class III 

HDACs are NAD+-dependent, and are the least characterized of the HDACs.  There are 

several classes of HDAC inhibitors.  Trichostatin A (TSA) inhibits class I and II HDACs 

by directly binding to their catalytic domain, and nicotinamide inhibits class III HDACs 

by promoting a base-exchange reaction with NAD+ so that it can no longer act as a 

cofactor in HDAC III-mediated deacetylation (122).  Use of HDAC inhibitors has 

become an emerging approach to treating proliferative disorders such as cancers (120, 

123).  

During adipose conversion of 3T3-L1 and 3T3-F442A cells, HDAC levels 

decrease (116).  Further, HDAC1 overexpression decreases adipocyte conversion in 3T3-
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L1 cells (116, 124).  Recently, knockdown by siRNA of Sirt2, a class III HDAC, was 

reported to promote 3T3-L1 adipose differentiation, while overexpression of Sirt2 

impaired it (125).  Sirt2, which is cytoplasmic, increases acetylation of Foxo1, which in 

turn increases Foxo1 phosphorylation, and excludes it from the nucleus.  This is 

postulated to contribute to the observed increase in adipose differentiation since Foxo1 is 

known to bind and repress the PPARγ promoter (126).  These studies suggest that overall 

HDAC levels decrease during adipose conversion, which is consistent with the increase 

observed in overall acetyltransferase levels.      

As reported in the literature, the consequences of inhibiting HDACs during 

adipose differentiation have been inconsistent.  Lagace and Nachtigal (127) reported that 

when 3T3-L1 cells are treated with TSA (1-10nM) or valproic acid (1mM, an HDAC 

inhibitor in the same family as sodium butyrate), there is an impairment in adipose 

differentiation, as well as a decrease in the expression of PPARγ and C/EBPα.  This 

decrease in differentiation was not surprising in light of data that mitotic clonal expansion 

is an early step in adipose differentiation (128), and that TSA blocks both cell cycle 

progression in HeLa cells (129) and proliferation in hepatocellular carcinoma cells (130). 

In contrast, others report an increase in adipose differentiation with HDAC 

inhibition (116, 124, 131).  TSA (400nM) or valproic acid (10mM) increased adipose 

differentiation in 3T3-L1 cells, but only in the absence of dexamethasone; no 

enhancement was observed for adipose differentiation in the presence of dexamethasone 

(124).  With 1.5mM valproic acid treatment, Fajas et al. (131) demonstrated an increase 

in adipocyte differentiation in 3T3-L1 cells.  Yoo et al. (116) observed an increase in 

3T3-L1 differentiation with sodium butyrate (500μM).  These studies suggest that 
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acetylation-mediated chromatin remodeling is necessary for induction of important genes 

for adipose differentiation.  Thus, the mechanism of how HDACs, and associated 

changes in acetylation of their substrates, regulate adipose differentiation is unclear at 

present.  

 

Functional Consequences of Acetylation of Transcription Factors 

 

Acetylation of nuclear proteins was first detected in histones and is viewed as a 

part of a mechanism allowing DNA to become accessible to transcription regulatory 

machinery (132, 133).  It is now recognized that many cellular proteins are regulated by 

acetylation.  In the nucleus, acetylation of a growing number of transcription factors is 

reported to have broad impact on their function.  For example, the acetylation of the 

tumor suppressor p53 stabilizes it by preventing its ubiquitination by Mdm2, thereby 

allowing p53 to enter the nucleus to activate target genes (104).  Acetylation of p53 at 

lysines 320, 373, and 382 increases its binding to cognate DNA (134, 135).  Acetylation 

is also reported to increase nuclear localization of, and thus transcription activation by, 

NF-κB, by weakening its interaction with IκBα, which sequesters NF-κB in the 

cytoplasm (136).  Acetylation of GATA-1 was found to increase its binding to DNA, 

thereby stimulating GATA-1 dependent transcription (137).   

Other functional consequences of acetylation include promoting interaction of the 

nuclear import factor importin-α with importin-β (138).  Ku70 is unable to bind and 

sequester pro-apoptotic BAX when Ku70 is acetylated (139).  Acetylation in the DNA-

binding domain of HMGI(Y), a complex required for enhancesome assembly, is 
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inhibitory, decreasing its DNA-binding ability and weakening its transcriptional potency 

(105, 140).  Acetylation has also been observed to increase the stability of E2F1.  P/CAF, 

but not P/CAF with the HAT domain mutated, acetylates and concomitantly increases the 

stability of E2F1 by an unknown mechanism (141).  Thus, acetylation can modify the 

function of a variety of cellular proteins by altering binding to DNA, binding to other 

proteins, and regulating degradation. 

 

Aims of Thesis 

 

Control of transcription by transcription factors involved in adipose 

differentiation and potentially obesity, is an area of study of increasing interest as the 

prevalence of obesity rises.  One mode to control transcription factors is through 

posttranslational modifications such as acetylation, which we now recognize as a 

powerful determinant of transcription factor action.  This thesis explores the acetylation 

of C/EBPβ and its functional consequences, particularly in the regulation of target genes 

involved in adipogenesis. 

Chapter II presents studies conducted to demonstrate the acetylation of C/EBPβ 

by p300 and P/CAF.  Mapping studies were carried out to pinpoint acetylated amino 

acids within the C/EBPβ sequence.  These studies provide the foundation for further 

studies as to the functional consequences of acetylation of C/EBPβ at these lysines.  

Since C/EBPβ is a transcription factor, whether acetylation of C/EBPβ alters 

transcriptional activation of the target gene c-fos was examined.  c-fos has proven to be 

an excellent model gene not only of C/EBPβ transcriptional potential, but also of GH-
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mediated gene activation.  Whether acetylation and phosphorylation of C/EBPβ work in 

coordination was also investigated.  

C/EBPβ is also an early inducer of adipogenesis (10).  It induces the expression of 

the master regulators of adipogenesis, C/EBPα and PPARγ (3).  Chapter III explores 

whether endogenous C/EBPβ is acetylated in adipocytes, and what roles acetylation of 

C/EBPβ may play during adipogenesis, particularly in the activation of key regulators of 

adipogenesis.  Further, the deacetylation of C/EBPβ by HDACs was examined to 

characterize the dynamic regulation of the acetylation of C/EBPβ. 

Acetylation of C/EBPβ is likely to be one component of a complicated puzzle that 

contributes to adipogenesis.  Regulation of adipose differentiation involves control of 

many genes to convert preadipocytes to adipocytes.  Multiple posttranslational 

modifications of regulatory proteins most certainly contribute to this control.  Ultimately, 

targeting these posttranslational modifications may lead to treatment options to overcome 

problems related to obesity and obesity-related disorders.  
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