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INTRODUCTION

Experimental work has shown that the load-displacement (or
moment-curvature) relationship for structural members, structural steel
in particular, is not an elasto-plastic curve. The actual load displace-
ment curve has an elastic branch followed by a transition curve that leads
to a plastic branch(l)° When the displacement is reversed, due to
Baugchinger effect, the transition becomes more gradual. Such a rela-

tionship can be expressed quite closely by a Ramberg-Osgood function,<2)f(3)’(4>

= L s : (1)

where X the displacement (or curvature)

i

Xy = & characteristic displacement
g = the load (or moment)
q. = a characteristic load

r = an exponent

9. and r are the Ramberg-Osgood parameters.

Plots of Equation (1) are shown in Figure 1 for various values
of r. It also includes as limiting cases the elastic (r=1) and the elasto-
plastic (r = «) relations. A complete description of a Ramberg-0sgood
equation is found in Figufe 2,

Ramberg-0Osgood parameters so far have been determined. from test
results only. Data for a given section are obtained in the form of load-
displacement (moment-curvature) hysteresis loops and the parameters Ay 1 Xy
and r are chosen to give the best fit in the sense of least squares.

A typical example of this is shown in Figure 30(2)
1=
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The purpose of the present study is to find an analytical basis
to determine these parameters for various sections
a) from a stress-strain consideration, when the stress-strain
relation across a section in bending can be expressed by a
Ramberg-0sgood function(S)o
b) when a set of parameters for a section is available, say
from experimental results.
Finding the Ramberg-0Osgood parameter is essential in seismic
design. Dynamic analysis of a multi-degree-of-freedom structural frame
can be performed only after the parameters xy , g.. and r are known

Y

for all the members in the frame.

ASSUMPTIONS

To develop moment-curvature relations, the following assumptions

are being made:

a. Beams are prismatic and straight, and have a cross-sectional
area of symmetry about the plane of bending.

b. Planes normal to the axis of the beam remain plane after
deformation, i.e., strains vary linearly from the neutral
axis.

c. The stress-strain relation is of the Ramberg-Osgood type
and is applicable to the individual fibers in tension as
well as in compression.

d. A wide-flange séction can be closely approximated by the

difference of two rectangles.
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From assumption (c), the stress-strain relation is given as

r-1
=== i+ |5 (2)
y y y
where € = the strain

0 = the stress

€y = . a characteristic strain

Gy = @& characteristic stress

r = an exponent

ey s cy and r are the Ramberg-0Osgood stress-strain parameters, and

can be determined from test results.

For a given bending moment M at a section along a beam let
the maximum stress and the maximum strain in the extreme fibers be rep-
resented by op and €p respectively, see Figure 4, The stress and
the strain distribution across the section is shown in Figure 5. The

stress at any point y from the neutral axis (Figure 5) can be express-

ed as

where X is the difference between the stress at the extreme fiber

and the stress at point y . The corresponding expression for strain

from Equation (2) becomes

- - r-1

a

€ = €
¥
Oy Oy

(3a)
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At the extreme fiber the strain

r-1
9m | |1+ | Om (3b)

mycy Oy

RESULTANT FORCE AND MOMENT

For a rectangular cross-section of width b and depth =2c
the differential element of force dF and moment dM from Figure 5
are

aF

b(c - y) dx (L)

and

dM

c +ty b 2
— dF = = - d
> 5 (c y2) ax, (5)
also from Figure 5
c
y = —¢€ (6)
€

Substituting Equations (3a), (3b) and (6) into Equations (k)

and (5) and simplifying, results in

O, = X O, = X \ r
aF = bcjl-L m_oym 70 >dx (7)
a g o °
1 y v }
and
o r 2
be Om - X G, - X
Y Ry A m 0,/°m o] dx (8)
2 e 5 5 o
v v
where
p= Sm = %m+ [9m| ¥ = the ductility ratio.
*y Oy %y

Note that the absolute value notations in Equations (7) and (8) have been

left out because (Gm ~Xg)/Gy in this analysis is always positive.
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The resultant force F over half the section, i.e., to one side
of the neutral axis, is obtained by integrating Equation (7) from Xg =0

to xg= oy ¢

Performing . the integration over the limits, the resultant force becomes

1 SL“+ 2 G_mr (9)

2| oy T+l | oy

F = Gmbc L -

To obtain the total moment M, Equation (8) is integrated over

the whole section, thus,

2
o 1 o, - X o -x\ 7T
M=bc2fm 1-"5 | m c+m o axg
v
o Oy Oy
which, upon integrating and simplifying, reduces to
2 r+1
2 a
M= obc® { 1- 35 1 [om) + e
b 13 | oy r+2 |\%
1 Om er
+ 5 _ (10)
2r + 1 y

The curvature ¢ corresponding to the moment above is obtained by divid-
ing the extreme fiber strain ey by its distance from the neutral axis.

In equation form the curvature



STRESS CENTER (CENTER OF PRESSURE)
The stress center YR for a rectangular section is found by

taking half the total moment and dividing it by the resultant force, i.e.,

M

Y2 T oF

Substituting Equations (9) and (10) into above and simplifying, yields

the desired expression for the stress center

1 —2 (22 + v6 2Tt 4+ 3 z2r
c 34 21" r+2 W 2r +1 7
‘YR =5 ) (12)
2 2 T
| -7 |Zm* Zm
2 ( r+1 )
where
o]
z = _N
n g
y

When the section approaches the fully plastic condition of stress, the
ductility ratio u tends to infinity making the stress center YR in

Equation (12) approach c¢/2 . On the other hand, a fully elastic dis-

2
tribution of stress in the section reduces YR to '5 ¢ . These are to
be expected for rectangular sections as limiting values for yR . The

stress center for any section must therefore lie between

P— "R — “E
where yP = the stress center for the fully plastic case
and yg = the stress center for the fully elastic case.
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TABLE I

APPROXIMATED SECTION PROPERTIES

Sec. Mod. | Plas. Mod.
Section Area Sx Zy ¥p g
4 LC 13 3.765 5,225 6.012 1.597 1.738
(3.82) (5.2) (6.1)

3WF 17 Lk.932 13.895 15.573 3.157 3.569
(5.00) (14.1) (15.8) (3.16) (3.566)

8 WF 20 5.814 16.795 18.837 3.240 3.629
(5.88) (17.0) (19.1) (3.24) (3.626)

10 WF 25 7.279 26.170 29.265 4,021 4.507
(7.35) | (26.4) (29.5) (k.02) | (¥.503)

12 WF 36 10.494 45.448 50,974 4.857 5.457
|| (10.59) (45.9) (51.4) (4.86) | (5.455)

16 WF 50 14.581 79.883 90.748 6.224 7.152
(14.70) (80.7) (92.7) (6.24) (7.16)

21 WF 62 18.039 124 .76 142.30 7.888 9,202
(18.23) | (126.4) (14k4.1) (7.90) (9.20)

2l WF 84 2k .516 194 41 222,01 9,056 10.547
(24 .71) | (196.3) (224.0) (9.07) |(10.55)

30 WF 108 || 31.khk 295.12 3h1.27 10.853 12.894
(3L.77) | (299.2) (345.5) (10.88) | (12.90)

8 x U 32,00 42,667 64 .00 2,00 2.667
NOTE: Bracketed numbers are from actual sections for comparison.




WIDE-FLANGE SECTIONS
A wide-flange section can be closely approximated by the dif-
ference of two rectangles as shown in Figure 6.

The moment MWF in a wide-flange section can be given as

Myp = My - Mg (13)

The subscripts A and B refer respectively to rectangles A and B
in Figure 6.

For a given o, 1in the extreme fiber of wide flange M,, the
moment in rectangle A , is found explicitely from Equation (10). There
is, however, no direct way of obtaining Mg . To find the latter, the
fiver strain at c' (i.e., —%L €m) in Figure 6 is first calculated
and the corresponding stress is found from Equation (2) by a numerical
method. This is the extreme fiber stress in rectangle B and is used
in Equation (10) to obtain the value of Mg . With M, and My known
the moment MWF in the wide-flange section is determined from Equation

(13), and the curvature @ , corresponding to MyF , is obtained from

Equation (11).

MOMENT-CURVATURE PARAMETERS

Points along the moment-curvature plot for a wide-flange sec-
tion are calculated from Equations (10), (11) and (13) by varying the
extreme fiber stress O and the moment-curvature parameters My (a
characteristic moment), ¢y (a characteristic curvature) and R (an ex-
ponent) are chosen to give the best fit in the sense of least squares.

Fitting the curve through the points is done with the aid of a computer.

-11-
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Thus, a single relation between moment and curvature is established:

%-:%}y— 1+|-‘“IM—y Rt (14)
¥ |

Moment-curvature plots from stress consideration as well as from curve
fitting Equation (14) are shown plotted in Figures 7 and 9 for 21 WF 62.

The results are typical for the wide-flange sections considered.

NUMERICAL WORK

To test the preceding presentation numerically, nine structural
steel sections are chosen ranging from 4 LC 13 to 30 WF 108. Also a rec-
tangular section 8" x 4" is considered for comparison.

To obtain the moment-curvature parameters, a stress-strain curve
of the Ramberg-Osgood type and a ductility ratio are assumed. Points
along the moment-curvature plot are calculated for each section from Equa-
tions (10), (11) and (13), and the parameters My , @y and R for Equa-
tion (14) are chosen.

Moment-curvature parameters are determined for various stress-
strain parameters and ductility ratios, and are shown tabulated in Tables

IT through V.

SIMPLIFIED EXPRESSIONS

To obtain the moment-curvature parameters the need for simpli-
city is apparent. The following simplified relations are being proposed
for wide-flange sections:

a) When the stress-strain parameters (e and r) are

vy %

known,
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TABLE IT

MOMENT-CURVATURE PARAMETERS COMPARED FOR

r =10, o, = 3% ksi, ey = .0012 in/in
po= 10
i -4
g, x 10 EI x 10
Section R My y MZ % lo-h >
(in-kips) (radians) ¢y (kip=in©)
4 1013 9.845 216,11 7.192 30.05 31.35
(10.0) (216.43) (7.196) (30.08)
Q.75 215,82 T1.205 2295
8 WF 17 9.779 559.49 3.570 156.72 166, 7k
(10.0) (560.63 (3.568) (157.12)
9.715 559, 0k 3.572 156.50
8 WF 20 9.796 676.85 3.494 193.71 205.07
(10.0) (678.13) (3.494) (19%4.08)
9.715 676.21 3.498 193.31
10 WF 25 9.795 1051.57 2.815 373.55 395.69
(10.0)  (1053.5) (2.814) (37437
9.715 1050.56 2,818 372.80
12 WF 3% 9.79%0  1831.5 2,327 87.06 83h4.43
(10.0) (18%.1) (2.327) (788.61)
9.715 1829.9 2.330 785.36
16 WF 50 9.74k  3258.8 1.795 1815,48 1947.15
(10.0)  (3266.9) (1.79%) (1821.01)
L2 2AT.T L.796 1813.86
21 WF 62 9.715 5108.3 1.406 3633.21 3928.07
' (10.0) (5122,7 (1.k04) (3648.64)
9.715 5108.3 1.406 3633.21
24 wr 84 9.717 7969.9 1.225 6506.04 7025,0
(10.0)  (7992.%) (1.224) (6529.73)
_o2:T15 T969.7. 1,226 6500.57
30 WF 108  9.674 1224k 1.012 12098.8 13245,0
(10.0)  (12286) (1.011) (12152.8)
9.715 12251 1.012 12105.7
8xh 9,210 2272,k 5.032 451.59 512.00
(10.0) (2304.0) (5.142) (448, 07)
9.715 2297.5 5.149 46,20
NOTE: Bracketed numbers are derived from Equations 15, 16 and 17.

Underlined numbers are from Equations 18, 19 and 20 based on

Section 21 WF 62 values.
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TABLE III

MOMENT- CURVATURE PARAMETERS COMPARED FOR

r = 10, oy, = 36 ksi, €, = .0012 in/in
h=>5
N "
@ x 10 EI x 10
Section R My Y yi x lo"LL o
(in-kips) (radians) ¢y (kip-in~)
4 IC 13 9.577 | 214.51 6.948 30.87 31.35
(10.0 (216.43) (6.904) (31.35)
9.231)| 212.82 6.983 30.48
8 Wr 20 9.442 | 669.98 3.333 201.01 205.07
(10.0) | (678.13) (3.307) (205.06)
9.231 | 666.81 3.345 199.35
21 WF 62 9.231 }5037.3 1.319 3819.0 3928.07
(10.0) {5122.7) (1.304) (3928.5)
.9:231 12037.3_ _1:319. _3619.0_
30 WF 108 9.130 | 120533 943 12782 13245.0
(10.0) | (12286) (.931) (13197)
9.231 | 12081 .9kl 12838
8 x k4 1 8.183 | 2215.3 4.526 489.5 512.00
(10.0) | (2304.0) (4.500) (512.0)
9.231 | 2266 L .552 497.8

NOTE: Bracketed numbers are derived from Equations 15, 16 and 17a.
Underlined numbers are from Equations 18, 19 and 20a based on
Section 21 WF 62 values.
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TABLE IV

MOMENT -CURVATURE PARAMETERS COMPARED FOR

r = 10, oy = 36 ksi, €, = 0012 in/in
B = 20
-l
g x 104 EI x 10
Section R Yy Y My 1o ,
(in-kips) (radians) ¢y (kip-in©)
L 1C 13 9.967 217.39 7.4h22 29.29 31.35
(10.0) (216.43) (7.52) (28.78)
_9:931 | 218,10 | 7.340 .21
8 WF 20 | 9.956 682.14 3.644 187.20 205.07
(10.0) (678,13) (3.71) (182.78)
9.937 683.35 §.6}8 }§§.§§
21 WF 62 9.937 5162,2 1.486 3473.9 £ 3928.07
(10.0) (5122,7) (1.522) (3365.8)
9.937 5162.2 1.486 3473.9
30 WF 108| 9.926 | 12388 1.076 11513 13245.0
(10.0) |(12286) (1.105) (11119)
9.937 | 12380 Lofo | 163
8 x L 9.771 | 2321.k4 5.570 416.8 512,00
(10.0) |(2304.0) (6.00) (384.0)
_2:931 | eeL.T 2.8 X681
NOTE: Bracketed numbers are derived from Equations 15, 16 and 17b.

Underlined numbers are from Equation 18, 19 and 20b based on

Section 21 WF 62 values.
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TABLE V

MOMENT- CURVATURE PARAMETERS COMPARED FOR

r =5, o, = 36 ksi, €, = .0012 in/in
=10
y | _l
M @ x 10 EI x 10
Section R Y v My X ILO"LL o
(in-kips) (radians) '%; (kip-in~)
L 1o 13 4,966 215.45 6.992 30.81 31.35
(5.0) (216.43) | (7.196) 30.08 .
RECEIQN S T e S 2
8 WF 20 h.955 674 .05 3.363 200.43 205,07
(5.0) (678.13) | (3.49k4) (194.08)
k.937 672.41 3.321 202.k7
21 WF 62 4.937 5079.6 1.335 3805.0 3928.07
(5.0) (5122.7) (1.404) (3648.6)
%937 | 50796 | 1-3% 39050
30 WF 108 || L4.928 | 12167 .956 12727 13245.0
(5.0) |(12286) (1.011) (12152)
N 937 }2182 9§1 12676
8 x L 4.828 | 2249.8 L .664 4824 512.00
(5.0) [(2304.0) (5.142) (448.1)
4,937 | 228k.6 889 B67-3.

NOTE: Bracketed numbers are derived from Equations 15, 16, and 17.
Underlined numbers are from Equations 18, 19 and 20 based on
Section 21 WF 62 values.
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My = Zx oy (15)
R = r (16)
2
¢ = —_— (17)
¥ Yp + VE N
where Zx =  the plastic section modulus.

Note that when p 1is small the characteristic curvature approaches the

lower limiting value of

¢y = 4 (l?a)

and for large values of u 1t approaches the upper limiting value of

g, = ¥ (17v)

b) When the moment-curvature parameters are known for a par-

ticular section,

(B)
(B) _ 2, My(A) (18)
7 (A)
z(B) _ (&) (19)
(a)
() e tye) T ()
Py - (vp + yE)(B) Py (20)

Superscript (A) denotes the particular section for which the moment-
curvature parameters are known, and superscript (B) denotes the section
for which the parameters are being found. Similar to (a) above, when u

is small the yield curvature approaches
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g, (B) s g ) (208)

and for large values of | it approaches

(20p)

Moment-curvature parameters obtained from Equations (15) to
(17) are shown in Tables II through V for comparison. These Tables

also show the results of Equations (18) to (20) based on 21 WF 62 values.

ALTERNATE EXPRESSION

For small values of M (compared to My ) the moment-curvature
relation of a section is elastic. The slope of Equation (14) at the ori-
gin

an y

ap Py
therefore must equal the elastic slope EI (Young's Modulus times moment
of inertia) of the section. This gives the relation

¢y = g;“ M, (21)

Equation (17) may be replaced by Equation (21) if desired.
These are shown compared in Figures 8 and 10, For large values of

r and p , Equation (17) results are closer to the actual moment-

curvature plot.



DISCUSSION OF RESULTS

The variation in yp or yg from the average value (yp + yE)/Z
is found to be between 4.2 and 8.4% for the sections used. See Table 1.
Since the actual center of stress YR is between Yp and Vg the above
variation becomes an upper limit for Vg in Equation (12).

Moment-curvature parameters are found somewhat dependent on the
curve length (or the ductility ratio u) employed in curve fitting. This
is found to be the case with experimental data as well.

The exponent R approximately equals 1r of the corresponding
stress-strain curve. The difference between them becomes negligible as
the ductility ratio increases.

Varying the ductility ratio or the exponent r effects the
characteristic moment My very little. The latter remains practically
unchanged.

Reducing the exponent r or the ductility ratio p has sim-

ilar effects on the characteristic curvature parameter ¢y o

CONCLUSIONS

A stress-strain relation of the Ramberg-Osgood type across a
beam section has been shown to result in a Ramberg-Osgood moment-curvature
function for the section.

The plastic section modulus of a cross-sectional area appears
to be an important parameter for determining the characteristic moment

parameter My o

-23-
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Simple expressions are presented for finding the Ramberg-Osgood
moment-curvature parameters for wide-flange sections

a) from the stress-strain parameters of the material.

b) from the moment-curvature parameters of a section.
Remarkable agreement exists between these simple expressions and the
actual results.

It should be noted in closing that the data available in the
literature were not sufficient to allow the experimental verification

of the results presented in this paper.
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APPENDIX - NOTATIONS

The following symbols are used in this paper:

b, b' = width of rectangle
¢, ¢' = half depth of rectangle
q = Tforce
q._ = characteristic force
= an exponent
t = <flange thickness
w = web thickness
X = displacement
Xy = characteristic displacement
x; = stress
y = distance from the neutral axis

Vg s Yp VR = stress center elastic, plastic and Ramberg-Osgood

Z, = gﬁ = gtress at the extreme fiber of yleld stress

%I = Young's modulus times moment of inertis
F = force
M = moment

My = characteristic moment

MA, M., MWF = moment

R = an exponent
S, = section modulus
ZX = 7plastic section modulus
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strain

characteristic strain
ductility ratio
stress

characteristic stress
curvature

characteristic curvature



T

3 9015 03024 3995



